[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

oo /00000
Article / Book Information

Title Storage Consumption of Variable-length XML LabelsUninfluenced by
Insertions

Author Akihiro Takahashi, Wenxin Liang, Haruo Yokota

Journal/Book name Proceedings of the Second IEEE International Conference on Digital
Information Management, , , pp.571-573

Issue date 2007, 10

DOI http://dx.doi.org/10.1109/ICDIM.2007.4444284

URL http://www.ieee.org/index.html

Copyright (c)2007 IEEE. Personalll use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note OO0000000000000O00O0d
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/ICDIM.2007.4444284
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Storage Consumption of Variable-length XML Labels
Uninfluenced by Insertions

Akihiro Takahashi
Tokyo Institute of Technology
akihiro @de.cs.titech.ac.jp

Wenxin Liang
Japan Science and Technology Agency
Tokyo Institute of Technology

Haruo Yokota
Tokyo Institute of Technology
yokota@cs.titech.ac.jp

wxliang @de.cs.titech.ac.jp

Abstract

In recent years, the method of assigning labels to the
nodes of an XML tree is getting more attraction. Various
functions in an RDBMS can be easily utilized by storing the
labeled XML documents into the RDB. However, in tradi-
tional labeling methods, a number of nodes need to be re-
labeled, when the XML documents are updated. To address
this problem, we proposed DO-VLEI code combining VLEI
code with the Dewey Order method. DO-VLEI code is ef-
fective to reduce the update cost, but the label size increases
rapidly when handling large XML documents. To reduce the
label size, we presented Compressed-bit-string DO-VLEI
(C-DO-VLEI) code. However, it is difficult to handle the
length of C-DO-VLEI because it is a variable-length code.
In this paper, we propose two effective methods, VLEI-ABL
and VLEI-EOL for handling the code length of C-DO-VLEL
We perform experiments to compare the storage consump-
tion of the proposed methods with the previously known OR-
DPATH. The experimental results show that our methods
considerably outperform the ORDPATH.

1 Introduction

Relational Database systems (RDBs) are now widely
used for storing XML data, so that their management func-
tions can be used for retrieval, updating, transactions, stor-
age, etc. An XML document can be considered as a tree
structure by treating each element between a start tag and
end tag as a node [3], because the XML document forms a
nested construction of elements enclosed by these tags.

The method of assigning labels to the nodes of an XML
tree is called a labeling scheme. The labeling scheme makes
it possible to determine the containment relationships be-
tween nodes and the positions of the nodes in the XML tree.

A number of labeling schemes based on the Dewey Or-
der (DO) numbering method [9] have been proposed. The
DO numbering method uses a delimiter to extend the la-
bel of a parent node and includes the code that represents
the child’s sibling order. However, the naive DO labeling
scheme, which uses numerical values for the codes, has the
problem of expensive update cost. When a new node is in-
serted into an intermediate position of the XML tree, a num-
ber of nodes need to be re-labeled.

To address this problem, we proposed Variable-Length-
Endless-Insertable code (VLEI code) and DO-VLEI label-
ing method [6] combining the VLEI code with the DO num-
bering method. It uses the VLEI code [6] for representing
the sibling orders, which enables unlimited insertion of new
nodes without relabeling any nodes.

DO-VLEI code is effective to reduce the update cost.
However, the label size increases rapidly when handling
large XML documents. To reduce the label size, we
presented Compressed-bit-string DO-VLEI (C-DO-VLEI)
code which represents the label by using variable-length bit-
strings instead of using character strings in DO-VLEI code.
However, it is difficult to handle the length of the code.

In this paper, we propose two effective methods, VLEI-
ABL and VLEI-EOL for handling the code length of C-
DO-VLEI. We perform experiments to compare the storage
consumption of the proposed methods with the previously
known ORDPATH. The experimental results show that our
methods considerably outperform the ORDPATH.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce DO-VLEI and C-DO-VLEI labeling
methods. Section 3 describes the ORDPATH. In Section 4,
we describe the properties of C-DO-VLEI code. Section
5 discusses two methods for handling the variable-length
code. In Section 6, we show the experimental evaluation of
the storage consumptions comparing the proposed methods
with the ORDPATH. Section 7 summarizes the paper and
discusses future directions.

2 DO-VLEI

We first explain the VLEI code and the DO-VLEI code.
2.1 Definition of the DO-VLEI Code

Definition 1 (VLEI code) Assume v is a bitstring compris-
ing bits from {0,1} whose initial bit is 1. v is a VLEI code,
if it satisfies the following order:

v-0-{01}" <v<wv-1-{0]1}"

A new VLEI code between two arbitrary adjacent VLEI
codes can be unrestrictedly generated [6][5].

In DO numbering method, the label for a child node is
expressed by adding a delimiter and a sibling code that rep-
resents the sibling order. In the DO-VLEI labeling method,
the sibling code is expressed by the VLEI code.

Definition 2 (DO-VLEI)

1. The DO-VLEI label of a root node is assumed to be 1.

2. A sibling code C.p;14 is a VLEI code in which the or-
der between sibling nodes is expressed by the VLEI
code. If the label of a parent node is Ly,yent, the DO-
VLEI label of the child node comprises a delimiter “.”,
Lparent, and Cepiiq as follows.

DO-VLEI = Lparent . Cchild
2.2 Compressed-bit-string DO-VLEI

DO-VLEI code is composed by character strings. Thus,
when it handles large XML documents, the size of DO-
VLEI code may increase exponentially. Therefore, an ef-
fective method for reducing the label size becomes critical.
In [7], we have proposed the Compressed- bit-string DO-
VLEI (C-DO-VLEI) labeling method, in which it expresses
both the DO-VLEI codes and the delimiters by bitstrings.

The Compressed-bit-string DO-VLEI(C-DO-VLEI) is

defined as follows:
Definition 3 (Compressed-bit-string DO-VLEI)
Corresponding to DO-VLEI, “.1” is expressed as the
bit string (11), the element “1” is expressed by bitstring
(10) and the element “0” is expressed by the bitstring
(0). This bitstring expression of DO-VLEI is called
Compressed-bit-string DO-VLEI (C-DO-VLEI).

3 Related Work

Similar to the DO-VLEI code method, some labeling
methods that can update the XML document without re-
labeling have been proposed[8][4][12]. In the following
subsection, we briefly introduce ORDPATH which is the
comparison object in our experiments.

3.1 ORDPATH

The ORDPATH label of a child node is made from a sib-
ling code, a delimiter, and the label of the parent node based
on the DO numbering method.

In ORDPATH, only positive odd numbers are used for
the initial labeling, because negative integers and even num-
bers are used for insertion operations. Besides, the end of
a sibling code, which decides the sibling order, must be an
odd number. For example, when a node is newly inserted
between nodes““1.3.1” and “1.3.3”, the label of the new node
can be “1.3.2.1”, where the sibling code is “2.1”.

3.1.1 Compressed-bit-string ORDPATH

ORDPATH is implemented by bitstring expressions using
“0” and “1”. In this paper, the binary representation of OR-
DPATH is called the Compressed-bit-string ORDPATH (C-
ORDPATH). An integer in ORDPATH is translated into a
bitstring by using a prefix schema. A pair of bitstrings L;
and O; are used to express an integer. A label is a string of
delimited integers, and ¢ is the order of the integer within

Table 1. Algorithm: CompareDO-VLEI
Algorithm CompareDO-VLEI(v, w)
! Input
1111 1y, w :C-DO-VLEI code to which are to be compared
1111111 (where length(v)<length(w))
! Output
1111 v is greater than w
" = length(w) — length(v)
v =v-1-{0} !
ifv' >w
return true
else
return false
endif

the string. L; is a bitstring specifying the number of bits
of O;. L, is specified by analysis of the tree using a prefix
schema. O; is treated as a binary number within a range set

4 Properties of C-DO-VLEI

The C-DO-VLEI code keeps the property of DO, be-
cause we convert each element of DO-VLEI code into bit-
strings.

Let“0” = vp!$.17" =vg!181” = v;. If

1-vg<p1<p1-vg<p1-11 (1)
then, the ascending order by using the comparison algo-
rithm shown in Table 1 equals to the XML document order!.

5 Handling Code Length

It is difficult to extract the C-DO-VLEI label from bit-
string because the length of labels is variable. In order to
derive the length of each label, we propose two methods.
The one provides the length of each code at the head of
the bitstring, which is called VLEI-ABL. The other adds a
terminal symbol (EOL) to the end of each code, which is
called VLEI-EOL.

5.1 VLEI-ABL

At first we generate the C-DO-VLEI code. After that
we figure out the length of it, and add a part specifying
the length at the head of it. We call that code VLEI-Add
Bit Length (VLEI-ABL). In the VLEI-ABL, we use the
variable-bitstring component L/O just as C-ORDPATH. The
prefix schema of Table 2 is used for our experiments.

5.2 VLEI-EOL

The length of a variable-length code can be also handled
by adding a terminal symbol, EOL (End of Label) to the
end of the label. In this case, the elements representing the
DO-VLEI code becomes: “.17,1”, “0” and “EOL”. Next,
we discuss how to convert the four elements into bitstrings.

ISee [11] for the prove.

Table 2. Prefix Schema for Length

L Bitstring | O length | O value range

0 3 [1,7]

100 4 [8,23]

101 6 [24, 87]

1100 8 [88, 343]

1101 12 [344, 4439]

11100 16 [4440, 69975]

11101 20 [69976, 1118551]

11110 24 [1118552, 17895767]
ITIT1 31 [17895768, 2165379414]

Table 3. Summary of VLEI-ABL and VLEI-EOL

vlei-ABL | vleil vlei2 | vlei3 | vleid | vlei5 | vlei6

0 0 00 0 0 0 00 00

1 10 11 10 110 11 1 1

1 11 10 110 10 10 01 01
EOL 0l 111 111 1111 | 0101 | OI10

At first we present the Huffman-coding based method.
“EOL” has the lowest occurrence frequency because it ap-
pears only once in each label. “.1” occurs (depth) — 1 times
in each label, because it is the only element that represents
the delimiter. “0”” and “1”” occur at least once in each sibling
number.

“07 > “17 <> “.17 > “EOL” 2)

Inequality (2) shows the occurrence frequency of each
element when the frequency of “0” is greater than “1”. Ac-
cording to Inequality (2), the vlei 1-3 show in Table 3 can
be generated based on the Huffman-coding.

On the other hand, since the occurrence frequency of
“EOL” is apparently smaller than that of other symbols, we
can define specific sign patterns as “EOL”. The patterns of
“EOL” used in vlei 4-6 are shown in Table 3. Since the
“EOL” has the lowest occurrence frequency, the code length
of vlei 4-6 can be decreased.

When XML documents are labeled by vleil,3,4 , we can
use the comparison algorithm of Table 1.

6 Experiment

We assign the labels to the nodes of XML documents by
VLEI-ABL, VLEI-EOL and C-ORDPATH to compare their
storage consumptions. Because the C-ORDPATH is also
variable-length codes, we add the bit length information to
the C-ORDPATH. We use 23 XML documents in the exper-
iments that are taken from XML Data Repository [1] and
generated from XMLGEN [2], which is a XML document
generator for XMark[10].

6.1 Experimental Results

The total label size of each method in the initial state is
measured. Table 4 shows the average ratio of the label size
of the VLEI-ABL and VLEI-EOL comparing with that of
the C-ORDPATH?.

As we can see from Table 4, the label size using vlei4—6
and vlei-ABL is about 30% and 24 % smaller than that using
the C-ORDPATH. Therefore, we consider that the proposed
C-DO-VLEI methods consume much lower storage space
than the C-ORDPATH.

2Here the label size of C-ORDPATH is set to 1

Table 4. Average ratio of each method

[VIE-ABL [vleil [vielz [viei3__[Vieid [vieis__[viei6

[0.7638 | 0.8221 | 0.7289 | 0.7505 | 0.7015 | 0.6979 | 0.6911 |

7 Conclusions and Future Work

In this paper we have proposed two effective methods,
VLEI-ABL, VLEI-EOL for handling the length of C-DO-
VLEI code.

We have compared the storage consumption of the pro-
posed methods with that of the C-ORDPATH. The experi-
mental results show that our methods consume less storage
space than the C-ORDPATH.

In future, it is necessary to do further experiments to
evaluate the performance of the C-DO-VLEI code.

Acknowledgments

This work is partially supported by MEXT of the
Japanese Government via Grant-in-Aid for Scientific Re-
search #19024028, the JST of CREST and the TokyoTech
21st Century COE Program.

References

[1] XML Data Repository. http://www.cs.
washington.edu/research/xmldatasets/.

[2] xmlgen. http://monetdb.cwi.nl/xml/downloads.html.

[3] T. Eda, Y. Amagasa, M. Yoshikawa, and S. Uemura. A
robust node-labeling scheme fro xml trees. In DBSJ Let-

ters,No.1 in Vol.1,2002, 2002.

[4] M. P. Haustein, T. Hérder, C. Mathis, and M. Wagner.
Deweyids - The Key to Fine-Grained Management of XML
Documents. In SBBD, pages 85-99, 2005.

[5] K. Kobayashi, W. Liang, D. Kobayashi, A. Watanabe, and
H. Yokota. Update conscious xml labeling methods using
dedicated codes. Technical Report TR04-0006, Dept. of
Comp. Sci., Tokyo Institute of Technology, 2004.

[6] K. Kobayashi, W. Liang, D. Kobayashi, A. Watanabe, and
H. Yokota. VLEI code: An Efficient Labeling Method for
Handling XML Documents in an RDB. In /CDE, 2005.

[7]1 S. Murakami, D. Kobayashi, and H. Yokota. The label size
and query performance of xml storage using the do-vlei. In
Proc. of DEWS2006., 2006.

[8] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-friendly XML Node La-
bels. In Proc. of the ACM SIGMOD International Confer-
ence on Management of Data 2004, pages 903-908. ACM
Press New York, NY, USA, 2004.

[9] Online Computer Library Center. Introduction to the
Dewey Decimal Classification. http://www.oclc.
org/oclc/fp/about/about_the_ddc.htm.

[10] A. Schmidt, F. Waas, M. Kersten, and D. Florescu. The
XML Benchmark Project. Technical report, Technical
Report INS-R0103, http://monetdb.cwi.nl/xml/
index.html, April 2001.

[11] A. Takahashi, W. Liang, and H. Yokota. Storage Consump-
tion of Variable Length XML Labels Uninfluenced by In-
sertions. Technical report, IEICE Technical Report vol.107,
No.131, DE2007-38, pp.97-102, 2007.

[12] W. H. Xiaodong Wu and, Mong Li Lee and. A Prime Num-
ber Labeling Schema for Dynamic Ordered XML Trees. In
ICDE, pages 66-78, 2004.

