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Gate-Level Register Relocation in Generalized Synchronous
Framework for Clock Period Minimization∗

Yukihide KOHIRA†a), Student Member and Atsushi TAKAHASHI†, Member

SUMMARY Under the assumption that clock can be inputted to each
register at an arbitrary timing, the minimum feasible clock period can be
determined if delays between registers are given. This minimum feasible
clock period might be reduced by register relocation maintaining the cir-
cuit behavior and topology. In this paper, we propose a gate-level register
relocation method to reduce the minimum feasible clock period. The pro-
posed method is a greedy local circuit modification method. We prove that
the proposed method achieves the clock period achieved by retiming with
delay decomposition, if the delay of each element in the circuit is unique.
Experiments show that the computation time of the proposed method and
the number of registers of a circuit obtained by the proposed method are
smaller than those obtained by the retiming method in the conventional
synchronous framework.
key words: register relocation, retiming, clock period minimization, gen-
eralized synchronous framework

1. Introduction

The semiconductor manufacturing process technology has
improved the scale, speed, and power consumption of LSI
circuits. However, increasing the ratio of the routing de-
lay in the propagation delay bounds the amount improve-
ments in the complete-synchronous framework (c-frame) in
which the simultaneous clock distribution to every register
is assumed. The increases of the size and power consump-
tion of a clock distribution circuit have become serious is-
sues in c-frame. While, the generalized synchronous frame-
work (g-frame) [3]–[6], in which the clock is assumed to be
distributed periodically to each individual register though
not necessarily to all registers simultaneously, is expected
to give an essential solution. By using g-frame, the im-
provements of the clock frequency, clock distribution circuit
size, peak power consumption, and etc. are expected to be
achieved.

The framework of synchronization by a global clock
without restriction of simultaneity was discussed in the con-
text of clock scheduling, useful-skew, semi-synchronous,
and etc. In this paper, we call the framework g-frame to
emphasize the framework includes c-frame. In the begin-
ning of studies of g-frame, clock scheduling algorithms [3]–
[6] and clock distribution circuit synthesis algorithms [7],
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[8] for given logic circuits were proposed. However, given
logic circuits are synthesized for c-frame. In order to im-
prove the clock period in c-frame, a circuit is synthesized
so that the maximum delay between registers is as small
as possible. However, in g-frame, the clock period might
not be reduced even if the maximum delay is reduced. The
effort in c-frame might degrade the circuit performance in
g-frame. So the optimization of circuit synthesis that takes
g-frame into account must be investigated.

As logic circuit modification methods that improve the
performance in g-frame, delay insertion methods [9]–[11],
a gate sizing method [12], a multi-clock cycle path method
[13], and a register relocation method [14] are proposed.

In c-frame, the circuit modification in which registers
are relocated while maintaining the circuit behavior and
topology is called retiming [15]. But, in g-frame, retiming
may be confused with the change of the clock input timing
of a register. Therefore, in g-frame, we call it register relo-
cation.

In [14], a mixed integer linear programming (MILP)
formulation and a heuristic algorithm of the register relo-
cation in g-frame are proposed. The objective of these al-
gorithms is the clock period minimization or the tolerance
maximization to clock signal delay variations. But since the
computation time of these algorithms is too long, these algo-
rithms cannot be applied to circuits with thousands of gates.

In this paper, we propose a gate-level register reloca-
tion method in g-frame for the clock period minimization.
The proposed method is a greedy local circuit modifica-
tion method in order to improve the minimum clock pe-
riod in g-frame. It is known that retiming with delay de-
composition achieves a lower bound of the minimum fea-
sible clock period in c-frame. We prove that the proposed
method achieves this lower bound without delay decomposi-
tion and changing the timing of I/O. Moreover, experiments
show that the computation time of the proposed method
and the number of registers of circuits obtained by the pro-
posed method are smaller than those obtained by the retim-
ing method in c-frame [15] in most circuits.

2. Preliminaries

In this paper, we consider a circuit consisting of registers
and gates, and wires connecting them. We call them ele-
ments. A circuit is represented by the circuit graph G =
(Vg, Eg), where Vg is the vertex set corresponding to ele-
ments in the circuit. Vg consists of two vertex sets Vd and
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Fig. 1 Circuit graph G.

Vr. Delay vertex set Vd corresponds to elements with delay.
Register vertex set Vr corresponds to registers. In this paper,
we assume that each element has a unique and non-negative
delay. Let d(v) be the weight of v ∈ Vd which corresponds to
the delay of the corresponding element, and d(v) = 0 where
v ∈ Vr. In this paper, we assume that the delay, setup time,
and hold time of a register are 0 for simplicity. If they are
not 0, they can be represented by using delay vertices. Eg is
the directed edge set corresponding to signal propagations
in the circuit. Let d(e) = d(u), where e = (u, v) ∈ Eg.
This means that an edge weight is equal to the weight of
the head vertex of the edge. Let D(P) =

∑i
k=1 d(ek), where

P = (e1, e2, . . . , ei)(e1, e2, . . . , ei ∈ Eg) is a path in G. Let
Dmax(a, b) be the maximum delay from a vertex a to a ver-
tex b without going through registers. A path P from a to
b through no register is said to be a Dmax path from a to b
if D(P) = Dmax(a, b). Similarly, Dmin path is defined. The
cycle weight D(C) of a cycle C in G is defined as the sum of
edge weights on C.

An example of a circuit graph is shown in Fig. 1. In
the circuit graph shown in Fig. 1, {a, b, c, I/O} is the register
vertex set, and the figure in each delay vertex represents its
weight.

2.1 Generalized Synchronous Framework

In the complete-synchronous framework (c-frame) the clock
timing of a register is the same as those of the other reg-
isters. C-frame in which the clock timings of registers are
assumed to be equal is a kind of the generalized synchronous
framework (g-frame). In g-frame [3]–[6], the clock timing
of a register may be different from other registers. The clock
timing S (r) of a register r is defined as the difference in the
clock arrival time between r and an arbitrary chosen refer-
ence register.

A circuit works correctly with a clock period T if the
following two types of constraints are satisfied for every reg-
ister pair with signal propagations (Fig. 2) [3].

Setup (No-Zero-Clocking) Constraints

S (a) − S (b) ≤ T − Dmax(a, b)

Hold (No-Double-Clocking) Constraints

S (b) − S (a) ≤ Dmin(a, b)

Since c-frame has the premise that a clock ticks all the

Fig. 2 Timing chart.

register simultaneously, the clock period must be larger than
the maximum delay between registers. On the other hand, in
g-frame, the circuit can work correctly with the clock period
which is smaller than the maximum delay between registers,
if all the register pair with the signal path satisfies two types
of constraints.

Let TS (G) be the minimum clock period of a circuit G
in g-frame under the assumption that the clock can be in-
putted to each register at an arbitrary timing. Hereafter, we
simply call TS (G) the minimum clock period of G. TS (G)
is determined by the constraint graph H(Vr(G), Er(G)) for
G defined as follows. The vertex set Vr(G) corresponds to
register vertex set Vr in G. The directed edge set Er(G) cor-
responds to two types of constraints. An edge from a register
a to a register b with weight Dmin(a, b), called D-edge, cor-
responds to the Hold constraint, and an edge from a register
b to a register a with weight T − Dmax(a, b), called Z-edge,
corresponds to the Setup constraint. Hereafter, we simply
refer to H(Vr(G), Er(G)) as H(G). The weights of Z-edges
are the functions of the clock period T . Let H(G, t) be the
constraint graph H(G) in which the clock period T is set to t.
Let the weight W(P) of a directed path P in H(G) be the sum
of edge weights on P and the weight W(C) of a directed cy-
cle C in H(G) be the sum of edge weights on C. We refer to
a cycle C whose weight W(C) is positive, 0, and negative as
positive-cycle, zero-cycle, and negative-cycle, respectively.
It is known that TS (G) is determined as in the following the-
orem.

Theorem 1 ([5]): TS (G) is the minimum t such that there
is no negative-cycle in the constraint graph H(G, t).

A cycle C that is zero in H(G, TS (G)) and is negative
in H(G, t) where t < TS (G) determines the minimum clock
period TS (G) in g-frame. Therefore, we call such cycle C
critical-cycle. In this paper, since we assume that each ele-
ment has a non-negative delay, no critical-cycle consists of
only D-edges.

For example, Dmax(a, b) in G shown in Fig. 1 is 12,
which is the maximum delay between registers. Therefore,
the minimum clock period in c-frame is 12. The constraint
graph H(G) for G shown in Fig. 1 is shown in Fig. 3(a).
Since H(G, 9) shown in Fig. 3(b) includes no negative-cycle,
the weight of cycle (a, c, b, a) in H(G, 9) is zero, and that in
H(G, t) where t < 9 is negative, then cycle (a, c, b, a) is crit-
ical and TS (G) is 9. In the following, Z-edge, D-edge, and
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(a) Constraint graph H(G). (b) Constraint graph H(G, 9).

Fig. 3 Constraint graph.

(a) Forward (f-reloc(x)). (b) Backward (b-reloc(x)).

Fig. 4 Cone relocation.

edges in critical-cycles of a constraint graph are drawn by
solid lines, dotted lines, and bold lines in figures, respec-
tively.

If the clock timings of some registers are requested to
be equal, such constraints can be represented by contracting
the corresponding vertices into one vertex in the constraint
graph. In this paper, inputs and outputs of a circuit are con-
tracted into one vertex (I/O register) in the constraint graph
because input and output timings of circuits are assumed to
be equal in general.

2.2 Register Relocation

Register relocation method is a circuit modification method
in g-frame. We propose cone relocation which is a kind of
register relocation.

Let i-cone(x), the input cone of a delay vertex x in G,
be the set of vertices of G from which a signal propagates to
x without go through registers in G. Let i-reg(x) be the set
of input registers of i-cone(x). An edge (u, v) in G is called
an output of the i-cone(x) if u is in i-cone(x) and v is not in
i-cone(x).

The forward cone relocation of a delay vertex x (f-
reloc(x)) is a modification of G in which all i-reg(x) are
removed and which a register is inserted to each output of
i-cone(x) (Fig. 4(a)). Similarly, the backward cone reloca-
tion of x (b-reloc(x)) is defined (Fig. 4(b)). In f-reloc(x) or
b-reloc(x), x is called the base vertex.

In a cone relocation, we can consider that a register is
relocated along a path in the circuit with duplication when
the path branches and with merging when the path con-
verges. A cone relocation is an enhancement of the well-
known register relocation of a vertex [15] which we call
vertex relocation. A cone relocation can be defined as the
set of vertex relocations.

Fig. 5 Circuit graph G′ obtained from G shown in Fig. 1 by retiming.

2.3 Retiming

Register relocation methods in c-frame are called retiming
[15]. The number of registers in a cycle remains same by
a register relocation. If registers can be relocated to any
edge in G and if each element can be decomposed into two
elements with arbitrary delays whose delay sum is equal to
the delay of the decomposed element, then the minimum
clock period achieved by retiming is the maximum of the
delay sum over the number of registers of a cycle among
cycles in G. This minimum clock period of G achieved by
retiming is called the lowest clock period TL(G).

Definition 1 ([9]): The lowest clock period TL(G) is de-
fined as

TL(G) = max
C∈cycles in G

D(C)
N(C)

,

where N(C) is the number of registers in a directed cycle C
in G.

In G shown in Fig. 1, the lowest clock period TL(G) is
7, since the delay sum and the number of registers of cycle
(a, b, c, I/O, a) are 28 and 4, respectively. The circuit graph
G′ obtained from G shown in Fig. 1 by retiming is shown
in Fig. 5. In the following, the decomposed delay elements
and registers inserted by register relocation are drawn by
shade in figures. The circuit corresponding to G′ in c-frame
achieves the lowest clock period since the maximum delay
between registers is 7. While, the minimum clock period of
G in g-frame is 9, which is larger than lowest clock period.

Although the retiming method achieves the lowest
clock period, the assumption that each element can be de-
composed into two elements with arbitrary delays is not
practical. If the delay cannot be decomposed into two de-
lays, retiming does not always obtain a circuit that achieves
the lowest clock period.

3. Cone Relocation in Generalized Synchronous
Framework

As mentioned in the previous section, g-frame does not al-
ways achieve the lowest clock period. On the other hand,
the retiming method achieves the lowest clock period if an
element can be decomposed, but does not always achieves
the lowest clock period otherwise. Therefore, we propose
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Table 1 Register relocation methods. A method is allowed to use “allowed” techniques, but not
allowed to use “—” techniques.

method
c-frame g-frame

technique original retiming retiming with delay decomposition original proposed

clock scheduling — — — allowed allowed
register relocation — allowed allowed — allowed

delay decomposition — — allowed — —

achieved minimum TC TR TL TS TL

clock period (TL ≤ TR ≤ TC) (TL ≤ TS ≤ TC)

Fig. 6 A part of a circuit graph Ge and its constraint graph H(Ge) with
cycles C1 = (a, d, c, . . . , a) and C2 = (a, d, b, . . . , a).

Fig. 7 A part of a circuit graph G′e and its constraint graph H(G′e) with
cycles C′1 = (a, d1, c, . . . , a) and C′2 = (a, d1, c, d2, b, . . . , a) obtained from
Ge by b-reloc(x).

a circuit modification method combining g-frame and the
cone relocation in order to achieve the lowest clock period
without delay decomposition (Table 1).

Figure 6 shows a part of a circuit graph Ge and the
corresponding constraint graph H(Ge) with directed cycles
C1 = (a, d, c, . . . , a) and C2 = (a, d, b, . . . , a). Figure 7
shows the result obtained by b-reloc(x) from Ge. C′1 =
(a, d1, c, . . . , a) and C′2 = (a, d1, c, d2, b, . . . , a) in H(G′e) cor-
responds to C1 and C2 in H(Ge), respectively.

Note that W(C′1) is equal to W(C1), though the weight
of D-edge (a, d1) in H(G′e) is less than the weight of D-edge
(a, d) in H(Ge) and the weight of D-edge (d1, c) in H(G′e)
is larger than the weight of D-edge (d, c) in H(Ge). On the
other hand, W(C′2) is larger than W(C2) if the sum of weights
of edges (d, c) and (c, d) in H(Ge) is positive.

A register r on a critical-cycle is called D-D register of
the critical-cycle if r is incident from D-edge and incident to
D-edge on the critical-cycle. Even if a D-D register is relo-
cated by a cone relocation, the critical-cycle remains critical.
Similarly, even if a Z-Z register that is incident from Z-edge
and incident to Z-edge on a critical-cycle is relocated by a
cone relocation, the critical-cycle remains critical.

A register r on a critical-cycle is called D-Z register of
the critical-cycle if r is incident from D-edge and incident
to Z-edge on the critical-cycle. Let C′ be the cycle obtained
from C by a backward cone relocation which duplicates r
and takes a cycle in C. C′ is not critical if a positive-cycle
is taken in. Similarly, if a Z-D register r of a critical-cycle

(a) Circuit graph G′′ obtained
by f-reloc (p).

(b) Circuit graph G′′′ obtained
by b-reloc(q).

Fig. 8 Cone relocations of G shown in Fig. 1.

Fig. 9 The constraint graph H(G′′, 7).

C is relocated by a forward cone relocation, the correspond-
ing cycle C′ in the obtained constraint graph might not be
critical.

For example, assume that cone relocation in g-frame is
applied to G shown in Fig. 1. The constraint graph is shown
in Fig. 3. Cycle (a, c, b, a) is critical, where (c, b) and (b, a)
are Z-edges, and (a, c) is a D-edge. Then, register a is a Z-D
register and register c is a D-Z register. The circuit graph G′′
obtained from G by f-reloc(p) in Fig. 1 is shown in Fig. 8(a)
and the circuit graph G′′′ obtained from G by b-reloc(q) in
Fig. 1 is shown in Fig. 8(b). The constraint graph H(G′′, 7)
is shown in Fig. 9. Since H(G′′, 7) includes no negative-
cycle, the weight of cycle (c, b, a1, I/O, c) is zero, and that
in H(G′′, t) where t < 7 is negative, TS (G′′) is 7. Since the
lowest clock period of G is 7, G′′ achieves the lowest clock
period in g-frame. Similarly, G′′′ achieves the lowest clock
period in g-frame.

3.1 Preliminaries of the Proposed Method

Let r be a D-Z register (Z-D register) of a critical-cycle C
such that (a, r) is D-edge (Z-edge) and (r, b) is Z-edge (D-
edge) of C. Let P1 and P2 be a Dmin (Dmax) path from reg-
ister a to r (r to a) and a Dmax(Dmin) path from register b to
r (r to b) in G, respectively. The vertex which is nearest to r
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among vertices at which P1 and P2 merge (branch) is called
junction vertex of r of C.

A cone relocation of a vertex x that relocates a register r
is called a cone relocation of r. A D-Z register (Z-D register)
in a critical-cycle C is called a target register of C. A cone
relocation of a target register r of a critical-cycle C whose
base vertex is a junction vertex of r of C is called a target
cone relocation of r of C. Note that a junction vertex of r
of C must be a delay vertex. C has a chance to become non
critical if a target cone relocation of r of C is performed.

In f-reloc(x) or b-reloc(x), all registers in i-reg(x) or o-
reg(x) are called removed registers. In this paper, the cone
relocations such that removed registers contain I/O regis-
ter are prohibited in order to keep the communication data
from/to environment. A target register r is said to be legal
if there is a target cone relocation of r of a critical-cycle C
such that no I/O register is contained in removed registers
by the target register relocation of r of C.

The critical graph of a constraint graph is the subgraph
of the constraint graph that consists of edges in all critical-
cycles. A critical-cycle C is said to be maximal if no critical-
cycle is obtained from C by removing a target register r of
C and adding a path connecting two removed registers by a
cone relocation of r in the critical graph.

The proposed method is guaranteed to achieve the low-
est clock period by applying a target cone relocation of a
legal target register of a maximal critical critical-cycle iter-
atively. In the following, we will show that the proposed
method achieves the lowest clock period.

3.2 Proposed Method

The proposed method is shown in the following.

Inputs : circuit G
Outputs : circuit obtained by target cone relocations

Step 1 : Determine TL(G) from the constraint graph con-
sisting of Z-edges ([10]).

Step 2 : Determine TS (G) from the constraint graph. If
TS (G) = TL(G), then output circuit G and terminate.

Step 3 : Choose a legal target register r in a maximal
critical-cycle C.

Step 4 : Obtain G by applying a target cone relocation of r
of C and go to Step 2.

Hereinafter, we show the validity of the proposed
method. At first, we show that there exists a target regis-
ter in a critical-cycle.

Lemma 1 ([9]): If TS (G) > TL(G), a critical-cycle con-
tains at least one D-edge.

A critical-cycle contains at least one Z-edge from the
assumption that no critical-cycle consists of only D-edges.
From Lemma 1 and the fact mentioned above, a critical-
cycle contains at least one Z-D register and D-Z register if
TS (G) > TL(G). So we have the following theorem.

Theorem 2: If TS (G) > TL(G), a critical-cycle contains a
target register.

If TS (G) = TL(G), a critical-cycle which consists of
only Z-edges exists in the constraint graph [9]. So, if
TS (G) = TL(G), the proposed method cannot improve the
minimum clock period in g-frame since no target register
exists on the critical-cycle.

Theorem 3: If a critical-cycle contains a target register,
there exists a target cone relocation of the terget register of
the critical-cycle.

Proof. We will show that a junction vertex of the target reg-
ister d of the critical-cycle C is a delay vertex. Let d be
a D-Z register of C = (a, d, b, · · · , a), x be a junction ver-
tex of d. P1 be a Dmin path from a to d via x, and P2 be
a Dmax path from b to d via x. If a � b, then x is nei-
ther a nor b but a delay vertex since internal vertices of
P1 and P2 are not registers. Otherwise, P1 and P2 form a
critical-cycle C = (a, d, a). If x is register a, we have that
Dmax(a, d) = Dmin(a, d) since the delay of a vertex is unique
and P1 = P2. Then, we have W(C) = T . But this fact
contradicts the assumption that C is critical (W(C) = 0).
Therefore, x is a delay vertex.

The case when d is a Z-D register can be proved simi-
larly. �

By using the following lemma, we will show that there
exists a maximal critical-cycle in the critical graph.

Lemma 2: If a critical-cycle C1 of H(G) contains a target
register d, a cycle C2 obtained from C1 by replacing d with
f1 is critical, where f1 is a removed register by a target cone
relocation of d of C1.

Proof. Assume that d is a D-Z register of C1 = (b, d, a, P1, b)
and x is a junction vertex of d of C1. f1 is removed by b-
reloc(x) (See Fig. 10). Since C1 is critical, we have that

W(C1) = W(P1) + Dmin(b, d) + TS (G) − Dmax(a, d)

= 0.

Since x is a junction vertex and the delay of each element is
unique, we have that Dmin(x, d) = Dmax(x, d). So we have
that

W(P1) + Dmin(b, x) + TS − Dmax(a, x) = 0. (1)

Since Dmin(x, f1) ≤ Dmax(x, f1), we have that

W(C2) = W(P1) + Dmin(b, f1) + TS (G) − Dmax(a, f1)

≤ 0,

where cycle C2 = ( f1, a, P1, b, f1). Since the minimum clock

Fig. 10 A part of a circuit graph and a part of the constraint graph before
b-reloc (x).



KOHIRA and TAKAHASHI: REGISTER RELOCATION FOR CLOCK PERIOD MINIMIZATION
805

period is TS (G), the constraint graph H(G, TS (G)) has no
negative-cycle. So W(C2) = 0 and C2 is also critical.

The case when d is a Z-D register can be proved simi-
larly. �

Theorem 4: A maximal critical-cycle exists in a strongly
connected component of the critical graph of H(G).

Proof. If TS (G) = TL(G), a critical-cycle which consists
of only Z-edges exists in H(G) [9]. Since a critical-cycle
which consists of only Z-edges contains no target register,
the critical-cycle is a maximal critical-cycle.

If TS (G) > TL(G), a critical-cycle contains a tar-
get register from Theorem 2. Let d be a D-Z register
of a critical-cycle C1 = (d, a, P1, b, d) which is not max-
imal. Since C1 is not maximal, without loss of general-
ity, we assume that removed registers f1 and f2 by a target
cone relocation of d of C1 have a path P2 = ( f2, . . . , f1)
on the critical graph (Fig. 10). From Lemma 2, cycles
( f1, a, P1, b, f1) and ( f2, a, P1, b, f2) are also critical. Then
cycle (a, P1, b, f2, P2, f1, a) is critical and this critical-cycle
has more registers than C1. Therefore, if a critical-cycle C is
not maximal, then there exists a critical-cycle that has more
registers than C. If a strongly connected component of the
critical graph contains no maximal critical-cycle, then its
size is infinite. But since the size of a strongly connected
component is finite, a maximal critical-cycle exists in the
strongly connected component.

The case when d is a Z-D register can be proved simi-
larly. �

A strongly connected component of the critical graph
is found in linear time [6]. A maximal critical-cycle is found
by the procedure shown in the proof in polynomial time.

Next, we show that there exists a legal target register
on each critical-cycle. From Lemma 2 and Theorem 2, we
can prove the following theorem.

Theorem 5: If TS (G) > TL(G), a critical-cycle contains at
least one legal target register.

Proof. From Theorem 2, a critical-cycle contains a target
register if TS (G) > TL(G). Actually, there are at least two
target registers. We will show that at least one of two target
registers of a critical-cycle such that the path from one to
another which consists of only Z-edges is legal.

Assume that target registers a and b of a critical-
cycle C1 = (a, P1, b, · · · , a) are not legal, where path P1

consists of only Z-edges. From Lemma 2, cycle C2 =

(I/O, P1, b, · · · , I/O) is also critical, since I/O register is re-
located by a target register relocation of a of C1. Similarly,
cycle C3 = (a, P1, I/O, · · · , a) is also critical. Therefore,
since C1, C2, and C3 are contained by a strongly connected
component of the critical graph, cycle C4 = (I/O, P1, I/O)
is critical. This contradicts Theorem 2, since C4 is a critical-
cycle which consists of only Z-edges. �

At last, we show that the minimum clock period in g-
frame can be improved by the lowest minimum clock period.

Theorem 6: If TS (G) > TL(G), the number of zero-cycles

Fig. 11 A part of a circuit graph Gp and a part of the constraint graph
H(Gp) before b-reloc (x).

Fig. 12 A part of a circuit graph G′p and a part of the constraint graph
H(G′p) after b-reloc (x).

in the constraint graph H(G, TS (G)) is reduced by a cone
relocation of a legal target register in a maximal critical-
cycle.

Proof. From above Theorems 4 and 5, a maximal critical-
cycle contains at least one legal target register if TS (G) >
TL(G). Let d be legal and a D-Z register of a maximal
critical-cycle C1 = (d, a, P1, b, d) and x be a junction vertex
of d of C1. Let C2 = (d′3, h, P2, g, d′3) be a cycle in H(G′p) ob-
tained by the b-reloc(x) (See Figs. 11 and 12). Assume that
C2 is critical and y is a junction vertex of d′3 of C2. Since C1

and C2 are critical, similar to Eq. (1), we have that

W(P1) + Dmin(b, x) + TS − Dmax(a, x) = 0 (2)

and

W(P2) + Dmin(y, h) + TS − Dmax(y, g) = 0. (3)

Here, we focus on cycle C = (a, P1, b, f2, h, P2, g, f1, a) in
H(Gp). W(C) in H(Gp, TS ) is as follows.

W(C) = W(P1) + Dmin(b, f2) + Dmin( f2, h)

+W(P2) + TS − Dmax( f1, g)

+TS − Dmax(a, f1)

= W(P1) + Dmin(b, x) + TS − Dmax(a, x)

+W(P2) + Dmin(y, h) + TS − Dmax(y, g)

+Dmin(x, y) − Dmax(x, y)

From Eqs. (2) and (3), we have that W(C) = 0 and C
is critical. This fact contradicts C1 is maximal. Thus C2

is not critical. The other type of non-critical-cycle also re-
mains non-critical. Thus, no zero-cycle is formed by the
proposed cone relocation method in the constraint graph
H(G′p, TS (G)) after the cone relocation.

Since C1 takes over a positive-cycle by a target
cone relocation of d of C1, the number of zero-cycles in
H(G′p, TS (G)) after a cone relocation is smaller than that in
H(Gp, TS (G)) before the target cone relocation.

The case of a Z-D register can be proved similarly. �
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Table 2 Results. Figures in () of the proposed method are achieved ratios of the retiming method by
MILP [15]. The results of s13207, s15850, s38417 by the retiming method by MILP cannot be obtained
because of the lack of memory, and that of s15850.1 cannot be obtained within a day.

original retiming by MILP proposed
model #gate TC TS #FF TR #FF time[s] TL ([%]) #FF ([%]) time[s] ([%])

TR > TL (12 circuits)
s344 160 37 34.0 15 20 27 0.12 19.00 (95.00) 26 (96.30) 0.06 (50.00)
s349 161 37 34.0 15 20 27 0.13 19.00 (95.00) 26 (96.30) 0.06 (46.15)
s382 158 18 12.0 21 12 29 0.14 11.25 (93.75) 25 (86.21) 0.03 (21.43)
s400 164 18 12.0 21 12 29 0.17 11.25 (93.75) 27 (93.10) 0.04 (23.53)
s444 181 20 13.0 21 13 29 0.33 11.67 (89.75) 35 (120.69) 0.09 (40.91)
s499 152 23 19.0 22 12 89 0.10 11.50 (95.83) 109 (122.47) 0.74 (740.00)
s635 286 162 158.0 32 89 63 1.57 88.50 (99.44) 76 (120.63) 2.10 (133.76)

s1269 569 70 61.0 37 40 123 5.88 39.34 (98.34) 90 (73.17) 3.10 (52.72)
s1512 780 54 43.0 57 41 72 25.72 40.50 (98.78) 61 (84.72) 0.11 (0.43)
s3271 1572 58 34.0 116 28 185 8.80 27.72 (98.98) 199 (107.57) 6.47 (73.52)
s3384 1685 168 154.0 183 76 183 111.10 75.50 (99.34) 292 (159.56) 0.04 (0.04)
s6669 3080 231 197.0 239 58 448 133.49 56.50 (97.41) 975 (217.63) 612.49 (458.83)

TR = TL (10 circuits)
s298 119 18 12.0 14 10 47 0.07 10.00 (100.00) 17 (36.17) 0.01 (14.29)
s526 193 18 12.0 21 11 63 0.26 11.00 (100.00) 22 (34.92) 0.01 (3.85)

s526n 194 18 12.0 21 11 63 0.25 11.00 (100.00) 22 (34.92) 0.01 (4.00)
s991 519 117 110.0 19 109 26 7.63 109.00 (100.00) 20 (76.92) 0.01 (0.13)

s1423 657 164 156.0 74 146 87 193.59 146.00 (100.00) 81 (93.10) 0.88 (0.45)
s3330 1789 66 40.0 133 32 123 7.34 32.00 (100.00) 147 (119.51) 1.00 (13.62)
s4863 2342 144 129.0 104 75 159 253.55 75.00 (100.00) 219 (137.74) 21.91 (8.64)
s9234 5597 107 72.0 228 63 263 445.65 63.00 (100.00) 240 (91.25) 2.37 (0.53)

s9234.1 5597 107 72.0 211 63 255 444.04 63.00 (100.00) 223 (87.45) 2.36 (0.53)
prolog 1601 68 40.0 136 31 144 6.04 31.00 (100.00) 154 (106.94) 0.97 (16.06)

TR cannot be obtained. (4 circuits)
s13207 7951 106 76.0 669 N.A. N.A. N.A. 75.00 (—) 670 (—) 1.43 (—)
s15850 9772 141 104.0 597 N.A. N.A. N.A. 78.00 (—) 643 (—) 41.46 (—)

s15850.1 9772 141 124.0 534 N.A. N.A. N.A. 103.00 (—) 544 (—) 16.59 (—)
s38417 22179 85 61.0 1636 N.A. N.A. N.A. 60.00 (—) 1638 (—) 9.74 (—)

By repeating a target cone relocation, all zero-cycles in
H(G, t), where t equals to the minimum clock period, be-
come positive if the minimum clock period is larger than the
lowest clock period, the minimum clock period is reduced,
and the lowest clock period is achieved.

A legal target register on a maximal critical-cycle is
chosen at Step 3 in the proposed method. Actually, the pro-
posed method chooses the legal target register on a maximal
critical-cycle so that the number of registers of the circuit
obtained by the target cone relocation is small in order to
minimize the number of registers of the obtained circuit.

4. Experiments

We implement retiming method in c-frame using a MILP
formulation [15] and the proposed cone relocation method
in g-frame in a PC with 3.06 GHz/512 K Intel Pentium-4
CPU, 512 MB RAM and gcc3.5.5 of C++. MILP is solved
by CPLEX 9.0.0 [16]. We perform these methods on the IS-
CAS89 benchmark suite. In experiments, NOT gate delay is
set to 1, NAND and NOR gate delay are set to 2, AND and
OR gate delay are set to 3, and routing and register delays
are set to 0.

In 22 circuit among 48 ISCAS89 benchmark circuits,
the lowest clock period TL(G) is equal to the minimum

clock period in g-frame TS (G). We do not apply the re-
timing method by MILP and the proposed method to these
22 circuits since they are optimal. We apply the retiming
method by MILP and the proposed method to the other 26
circuits. Note that the retiming method by MILP cannot
always achieve the lowest clock period since each delay el-
ement cannot be decomposed into two delays.

The results are shown in Table 2. TC means the mini-
mum clock period of the original circuit in c-frame. The re-
sults of s13207, s15850, and s38417 by the retiming method
by MILP cannot be obtained because of the lack of memory,
and that of s15850.1 cannot be obtained within a day. In 12
circuits among the other 22 circuits, the lowest clock pe-
riod TL(G) achieved by the proposed method is smaller than
the minimum clock period TR(G) achieved by the retim-
ing method by MILP. In 6 circuits among these 12 circuits,
the number of registers of circuits obtained by the proposed
method is smaller than that by retiming method by MILP. In
most circuits, the computation time of the proposed method
is smaller than that of the retiming method by MILP.

Among 10 circuits such that TR(G) = TL(G), the com-
putation time of the proposed method is smaller than that of
the retiming method by MILP in all circuits, and the number
of registers of circuits obtained by the proposed method is
smaller than that by the retiming method by MILP in 7 cir-
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cuits. The number of registers of a circuit by the proposed
method is larger than that by the retiming method by MILP
in 3 circuits. This means that the proposed method is not op-
timal in terms of the number of registers. Since the proposed
method is a greedy local circuit modification method in or-
der to improve the minimum clock period in g-frame until
the minimum clock period in g-frame is equal to the lowest
clock period, the computation time and the number of reg-
isters become large if the amount of improvement from the
initial minimum clock period is large.

Naturally, the results such as the number of improved
circuits, the improved ratio of clock period and so on depend
on the delay of each gate. For example, if routing and reg-
ister delays are set to 0 and the other gate delays are set to
1, then in 28 circuit among 48 ISCAS89 benchmark circuits,
the lowest clock period TL(G) is equal to the minimum clock
period in g-frame TS (G). Moreover, in 10 circuits among the
other 20 circuits, the lowest clock period TL(G) achieved by
the proposed method is smaller than the minimum clock pe-
riod TR(G) achieved by the retiming method by MILP.

5. Conclusions

In this paper, we propose a gate-level register relocation
method in the generalized synchronous framework in order
to achieve the lowest clock period without delay decompo-
sition under the assumption that the delay of each element
is unique. We prove that the proposed method achieves the
lowest clock period. Moreover, experiments show that the
computation time of the proposed method and the number
of registers of circuits by the proposed method are smaller
than those of the retiming method by MILP in most circuits.

In the future work, since the proposed method is a
greedy local circuit modification method, it is not optimal
in terms of the number of registers. So we try to improve
the proposed method in order to improve the number of reg-
isters and the computation time. Moreover, we need to han-
dle more practical delay model. Although the lowest clock
period is not always achieved when we adopt more practical
delay model, we think the basic idea of the proposed method
can be applied even if we adopt more practical delay model.
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