TER2 ERIgALUS-FURI I

Tokyo Tech Research Repository

Jo /0000
Article / Book Information

Title Cost-Radius Balanced Spanning/Steiner Trees

Authors Hideki Mitsubayashi, Atsushi Takahashi, Yoji Kajitani

Citation IEICE Trans. Fundamentals, Vol. E80-A, No. 4, pp. 689-694

Pub. date 1997, 4
Rt | wsewchieesow
Copignt | (c) 1997 nstute of Elecroncs,information and Communicatin

Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

689

[PAPER Special Section on Discrete Mathematics and Its Applications |

Cost-Radius Balanced Spanning/Steiner Trees

Hideki MITSUBAYASHI', Nonmember, Atsushi TAKAHASHI', and Yoji KAJITANI', Members

SUMMARY The most crucial factor that degrades a high-
speed VLSI is the signal propagation delay in a routing tree. It
is estimated by the sum of the delay caused by the source-to-sink
path length and by the total length. To design a routing tree
in which these two are both small and balanced, we propose an
algorithm to construct such a spanning tree, based on the idea
of constructing a tree combining the minimum-spanning-tree and
shortest-path-tree algorithms. This idea is extended to finding a
rectilinear Steiner tree. Experiments are presented to illustrate
how the source-to-sink path length and total length can be bal-
anced and small.

key words: delay, spanning tree, steiner tree, VLSI layout

1. Introduction

In recent VLSIs, the signal propagation delay is one
of the most critical factors which influence the perfor-
mance of a circuit. To minimize this delay from the
source terminal to more than one sink terminal of a
net, many routing algorithms have been proposed [1]-
(4] [6], [81- 10].

In the Elmore delay model [11], the objective is to
reduce both the total length of the routing tree and the
path length from the source to each sink on the tree.
The minimum-spanning-tree (MST) algorithm realizes
the minimum total length but may generate very long
source-to-sink paths. The shortest-path-tree (SPT) algo-
rithm realizes the minimum source-to-sink path length
but may generate excessive total length. The difficulty
is in constructing a routing tree that has balanced small
total length (cos?) and source-to-sink path length (ra-
dius).

The rectilinear Steiner tree is a more practical rout-
ing tree used in conventional designs. Thus, the prob-
lem is extended to construct a rectilinear Steiner tree
with balanced small cost and radius.

The MST or SPT can be obtained using polyno-
mial time algorithms. Therefore, to find a cost-radius-
balanced tree, there are alternative ways of construct-
ing a cost-bounded minimum-radius tree or a radius-
bounded minimum-cost tree. However, it is difficult even
to find a feasible solution for the former, while it is easy
for the latter. Hence, reasonable heuristics will be Prim
based [3], Kruskal based [10], Dijkstra based or their

Manuscript received September 11, 1996.
Manuscript revised November 15, 1996.
TThe authors are with the Faculty of Engineering, Tokyo
Institute of Technology, Tokyo, 152 Japan.

combination[1], and the idea of the limit of radius will
be introduced. Note that the problem of finding a mini-
mum spanning tree or Steiner tree with a bounded path
length is NP-hard [5],[7].

Alpert et al.[1] showed a trade-off between cost
and radius. Pyo et al.[10] showed a Kruskal radius-
bounded based algorithm (called BKRUS) which con-
structs lower-cost trees than previous algorithms under
the radius-bounded condition.

Some heuristics proposed so far take the radius into
consideration after the radius exceeds a certain value,
and others follow the path-length-oriented strategy in
all stages. As a consequence, the former tends to in-
crease in cost in the later stage, and the latter may miss
a lower-cost connection for a point merely because its
path length is longer than the costlier connection, even
if the former connection is not critical with respect to
the radius. Therefore, a good algorithm should con-
tinuously take the radius into greater consideration ac-
cording to the distance from the source to the chosen
point.

By introducing a distance-dependent coefficient, we
realize the above idea in the form of new heuristic al-
gorithms which can be used to design a routing span-
ning/Steiner tree with balanced small cost and radius.
These trees perform better than the existing methods
with respect to cost and radius balance. An impor-
tant feature is that the radius-limit can be achieved by
setting a parameter to an appropriate value. This pa-
rameter also causes the algorithms to construct a variety
of trees from which we can choose an appropriate one
for minimizing the delay.

2. Definitions

A signal net V = {v,,v1,...,v,} is a set of terminals
to be connected on the Manhattan (L1 metric) plane,
with v, is for the source and vy, ..., v, are for sinks. If
n < 2, every problem concerned is trivial. A routing
tree T = (Vp,Er) is a spanning tree or a rectilinear
Steiner tree connecting V. Vr consists of all the termi-
nals and Steiner points (if the tree is a Steiner tree), and
the edges in Er connect those points in V.

D(p;,p;) is the distance between two points p; and
p; (terminals or Steiner points) on the plane. The length
of an edge is defined as the distance between two end

690

points. For the two points p; and p; on T, the length of
the path connecting them on T is denoted by D7 (p;, p;).
The cost W(T) is the sum of lengths of the edges of T,
and the radius of T is R(T) = mazyev (Dr(vs,v)).
Let Ry, = mazy,ev(D(vs,v)), the distance from
the source to the farthest sink. If the radius limit is
concerned, the limit should be set not less than R, ..

3. Spanning Tree Algorithm

The proposed algorithm called the cost-radius-balanced
tree (CRBT) yields a spanning tree. CRBT begins with
the tree consisting only of source v,. The algorithm it-
eratively adds sink vx ¢ V7 to Vr connecting v; € Vr by
an edge e;x. The pair v; and v is chosen to minimize
the cost function:

H(’Ui,'Uk) = C(’US,'Uk,P) : DT(U87U'L') + D(’Ui,Uk),

where C(vs, vk, P) = D(vs,vk)/P, with P (2 Roaz)
being an algorithm parameter.

As P is smaller than or the vertex v, under con-
sideration is more distant from v;, C monotonically
increases with increasing stress on the first term. In the
extreme case when C is very small (P = oo or vy, is close
to v,), H(vi,v) = D(v;,v). This increase of C is the
increase of total length when v;, is added to 7. Then,
the CRBT continues like Prim’s algorithm toward an
MST. In contrast, if C' approaches 1 (D(vs,vx) =~ P),
H(v;,v;) approximates the path length from v, to v
from the vertices on 7. Then, the CRBT performs like
Dijkstra’s algorithm toward an SPT.

Algorithm CRBT
1. VT = {’Us}, ET = (,‘b

2. Let v; € Vy and v, ¢ Vr be the pair which mini-
mizes the cost function H.

3. Vp=Vp U {Uk}, Er=FErV {eik}.
4. If V # Vp, return to step 2.

Theorem 1: The CRBT algorithm yields a spanning
tree " with R(T) < P.
Proof: Clearly, the initial tree satisfies R(T') < P. As-
sume that a tree 7 under construction satisfies R(T') <
P, but tree T, which is made by adding edge (v;, vx)
to T' in the algorithm, does not.
Since Drn (’Us, ’Uk) > P,
H(v;,vx) = D—(UISD’LIC)
D(v,,vg)
Do (s, vk)
_ D(vs,vi)
D (vs, vg)

Dy (vs, vi)
X <DT’ (ve,v3) + m)— D(quk))'

- Dpi(vs, v5) + D(vs, vk)

- Dpe(vs,v;) + D(vi, vg)

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

Since DT//('US,’Uk) >P2> D(vs,vk),
Dy (vs,vi)/D(vs, vg) > 1,

and since DT/(’US,’UZ') + D(vi,vk) = DT//(US,Uk), we
have

DT//('US, vk)

D sy : ()
7o)+ D)
> DTH(US, ’Uk).
Therefore, H(v;,vx) > D(vs,vx). However

H(vs,vi) = D(vs,vr) by definition. This contradicts
the assumptions that H(v;,vy) is minimal and that the
pair v; and vy, is selected in the algorithm. O

The time complexity of the CRBT is O(n?), since
the algorithm performs like the Prim- and Dijkstra-
based algorithms.

4. Steiner Tree Algorithm

The proposed algorithm called the cost-radius-balanced
Steiner tree (CRBST) yields a rectilinear Steiner tree T'
with R(T) < P.

Let Vgsr be the set of vertices which are termi-
nals or Steiner points contained in the current rectilin-
ear Steiner tree (RST) during construction and Eggr
the set of edges. e;; € Frsr denotes a directed edge
from v; to v;. The edge direction is introduced to show
the direction from the source. Let v, be a vertex which
is closest to the source v,.

The CRBST begins with Vggr = {US, ’Ut}, Epst =
{est}. The algorithm chooses an edge €;; € Ersr and
a sink vy € V — Vzgr which minimize the cost function
I(e;5,v) defined below.

For e;; and wvg, let v, be the middle point of
v;,v5, V%, Which is a point whose z-coordinate and
y-coordinate are both the second largest of the z-
coordinates and y-coordinates of v;, v;, vk, respectively.
Then (see Fig. 1),

I(eij,v) = C(vs, vk, P) - (D7(vs,v;) + D(v;,v1))
—+ D(vm,vk),

where C(v,, v, P) = D(vs,v)/P.

Fig. 1 Determination of vy, and I{e;;,vs).

MITSUBAYASHTI et al: COST-RADIUS BALANCED SPANNING/STEINER TREES

Fig. 3 Degenerated cases of Fig. 2.

Algorithm CRBST

1. Vrsr = {vs, v}, Ersr = {est}

2. Let e;; € Erst and vi € Vgsr be the pair which
minimizes the cost function I.

3. Vst = VrsT U {Vk, Um }.
Erst = (Erst — {€ij}) U {€im, €mjr €mk }-
(v, 1s the middle point of v;, v;,vx).

4. If V C Vgsr, then goto step 5, else return to step 2.

5. Change the remaining slant edges into an L-shaped
layout.

A slant edge shall be transformed into a rectilinear
layout to get a rectilinear Steiner tree. Of an infinite
number of possibilities, cost function I used in choos-
ing a new vertex is based on the expectation that the
connection will be completed with the shortest possi-
ble length. Step 3 is to realize this shortest length by
inserting a Steiner point. In the general case, an edge
is replaced with three edges, as shown in Fig. 2. If the
edge is slant, its partial layout is determined to achieve
the shortest connection. The possibilities that are not
concerned with the shortest connection are left as re-
placed by a new slant edge en;. In the degenerated
case when the middle point coincides with v; or v;, an
edge is added to T as shown in Fig. 3. Step 5 is to make
the slant edges left after Step 3 rectilinear. An example
of the entire procedure for n = 4 is shown in Fig. 4.
Theorem 2: The CRBST algorithm yields a rectilinear
Steiner tree T with R(T) < P.

A proof analogous to the proof of Theorem 1 can
be done, and is omitted here.

The time complexity of the CRBST is O(n? logn).
This is attained using the following popular ideas of

691

Fig. 4 Flow of algorithm CRBST.

the data structure. For each terminal v, ¢ Vgsr, keep
the evaluation I with respect to every edge e € Ersr
in a heap. In Step 2, find the minimum I that can be
achieved in O(n). In Step 3, the addition and recon-
figuration can be done in a constant time, and renewal
of each heap after reconfiguration can be achieved in
O(logn). In total, the time complexity of Step 3 takes
O(nlogn). Note that the Steiner points need not be
counted in the vertices since any Steiner point belongs
to T from the beginning. Other operations are smaller
than this in order. Since the repetition is n, the total
time is O(n?logn).

5. Experimental Results
5.1 Environments
5.1.1 Spanning Tree Problem

We tested the CRBT, Pyo’s BKRUS, and Alpert’s algo-
rithms.

P, the only parameter, is set to P = R,,,./c where
¢ is changed between 0.00 ~ 1.00.

The first term to be compared is the Radius Ra-
tio which is the radius of resultant trees of each algo-
rithm over that of the SPT algorithm, the latter being
the smallest. Therefore, the optimum radius ratio is
close to, but not less than, 1.

The second term to be compared is the Cost Ratio
which is the cost for each algorithm over that for the
MST algorithm, the latter being the minimum. There-
fore, the cost ratio is close to, but not less than, 1.

The third term to be compared is the CPU time
required on an Intel DX4 PC.

Three hundred randomly generated nets were tested
and the resultant value averages are shown in Table 1.

5.1.2 Steiner Tree Problem

Steiner tree versions of the above three algorithms, the
CRBST, Pyo’s BKST, and the Steiner version of Alpert’s

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

692
Table 1 Comparison of spanning tree algorithms (size is the number of terminals of the net).

size| ¢ CRBT(Ours) BKRUS(Pyo’s) Alpert’s
Radius| Cost | CPU [Radius| Cost | CPU [Radius| Cost [CPU
Ratio | Ratio| (s) |Ratio |Ratio| (s) [Ratio |Ratio| (s)
6 10.00(1.310 | 1.000|0.013| 1.357 | 1.000|0.013(1.310 | 1.000 | 0.013
0.50] 1.088 | 1.037 [0.013] 1.348 | 1.001 [0.013] 1.112 | 1.057 | 0.013
0.751 1.027 | 1.115 [0.013] 1.146 | 1.039 (0.013] 1.026 | 1.143|0.013
1.00] 1.000 | 1.275]0.013] 1.000 | 1.207 | 0.013] 1.000 | 1.318]0.013
12 10.00| 1.476 | 1.000 | 0.020| 1.476 | 1.000 [0.043| 1.476 | 1.000 | 0.020
0.50(1.134 [1.058 (0.020| 1.430 | 1.004 {0.043] 1.149 | 1.081 | 0.020
0.75] 1.043 | 1.128 [0.020] 1.215 | 1.042 | 0.043| 1.033 | 1.221 | 0.020
1.00] 1.000 | 1.321]0.020] 1.000 | 1.213 | 0.043| 1.000 | 1.430]0.020
18 10.00] 1.608 | 1.000|0.033| 1.627 | 1.000 | 0.166 | 1.608 | 1.000 [0.033
0.50(1.130 | 1.063 {0.033| 1.473 | 1.005 [0.166 | 1.147 | 1.090 | 0.033
0.75(1.053 | 1.142 {0.033| 1.236 | 1.041 [0.166 | 1.034 | 1.243|0.033
1.00] 1.000 | 1.308 [0.033] 1.000 | 1.217 | 0.166] 1.000 | 1.499 | 0.033
24 [0.00] 1.653 | 1.000 | 0.060] 1.632 | 1.000 [0.503] 1.653 | 1.000 | 0.060
0.50(1.129 [1.063 [0.060| 1.555 | 1.005|0.503| 1.143 | 1.097 | 0.060
0.75] 1.046 | 1.127 [0.060] 1.254 | 1.039 | 0.503| 1.039 | 1.240 { 0.060
1.00| 1.000 | 1.334]0.060] 1.000 | 1.195]0.503| 1.000 | 1.530 | 0.060
30 |0.00| 1.705 | 1.000 | 0.103| 1.705 | 1.000 | 1.213 1.705 | 1.000 | 0.103
0.50(1.142 | 1.061 [0.103| 1.606 | 1.002 | 1.213] 1.152 | 1.093|0.103
0.75(1.053 [1.135[0.103| 1.277 | 1.046 | 1.213} 1.031 | 1.265|0.103
1.00| 1.000 | 1.347]0.103| 1.000 | 1.179|1.213] 1.000 | 1.533|0.103

Table 2 Comparison of Steiner tree algorithms.

size| ¢ CRBST BKST Alpert’s
Radius| Cost | CPU |Radius| Cost | CPU [Radius| Cost | CPU
Ratio | Ratio| (s) |Ratio | Ratio| (s) |Ratio | Ratio| (s)
6 10.00(1.133 {0910]0.020| 1.179 | 0.928 |0.025(1.157 | 0.916 |0.015
0.50] 1.028 | 0.927 [0.020f 1.135 | 0.928 | 0.025] 1.042 | 0.923 | 0.015
0.751 1.009 | 0.939 [0.020| 1.082 | 0.940 [0.025] 1.015 | 0.938 [0.015
1.00] 1.000 | 0.978 [0.020] 1.000 | 1.041 {0.020] 1.000 | 0.956 | 0.015
12 10.00| 1.243 | 0.906 | 0.028 | 1.338 | 0.924 [0.070] 1.340 | 0.914 | 0.020
0.50] 1.055 | 0.946 [0.028] 1.315 | 0.927 | 0.065| 1.065 | 0.949 [0.020
0.75] 1.013 | 0.970 | 0.028 | 1.150 | 0.938 |0.070| 1.011 | 0.994|0.020
1.00] 1.000 | 1.029|0.028] 1.000 | 1.038 | 0.075] 1.000 | 1.024 | 0.020
18 {0.00] 1.356 | 0.905|0.044(1.411 | 0.924{0.170(1.395 | 0.909 | 0.035
0.50) 1.061 | 0.947 | 0.044(1.396 [0.925|0.175| 1.072 | 0.960 | 0.040
0.751 1.020 | 0.978 | 0.044| 1.180 | 0.944 [0.180| 1.014 | 1.022|0.040
1.00| 1.000 | 1.045]0.044] 1.000 | 1.046 | 0.205] 1.000 | 1.066 | 0.040
24 10.00] 1.394 | 0.9050.068} 1.485 | 0.924 [0.385] 1.452 | 0.909 | 0.065
0.50 1.058 | 0.943 | 0.068| 1.433 | 0.923]0.385| 1.074 | 0.963 | 0.065
0.751 1.019 1 0.971 [0.068| 1.193] 0.942 (0.395| 1.013 | 1.035 | 0.065
1.00] 1.000 | 1.043]0.068] 1.000 | 1.040]0.440] 1.000 | 1.093 | 0.070
30 [0.00] 1.438 | 0.904] 0.104] 1.510 | 0.923(0.710] 1.502 | 0.906 [0.115
0.50(1.064 [0.947|0.104| 1.466 | 0.927|0.720| 1.078 | 0.969 | 0.115
0.75] 1.017 | 0.977 (0.104] 1.223 | 0.945(0.735| 1.018 | 1.042|0.115
1.00| 1.000 | 1.048)0.104] 1.000 | 1.043|0.830] 1.000 | I.111[0.115

algorithm, are compared in the same environments. The
results are shown in Table 2. An alternate way of ex-
tending the CRBT for a Steiner tree is simply to trans-
form the output of the CRBT to a rectilinear Steiner
tree in the same way as in Alpert’s algorithm. We exper-
imentally compared this method with the CRBST and
the Steiner version of Alpert’s algorithms. In most cases,
extended CRBT and CRBST are superior to Alpert’s,
and CRBST is superior to extended CRBT in terms of
the cost-radius balance.

5.2 Analysis

The CRBT is designed to take the path length into con-
sideration from a very early stage. Therefore, the CRBT
tends to construct a tree whose radius is far smaller than
P which is a provable radius bound, as in Alpert’s al-
gorithm. On the other hand, since BKRUS tries to min-
imize the cost as long as the radius limit is not violated,
its radius is close to the limit. Therefore, under the same
parameter ¢ (= R,,,./P), it is expected that the CRBT
and Alpert’s algorithms will both generate small-radius
large-cost trees while the BKRUS method will generate
a large-radius small-cost trees. The experiments verified

MITSUBAYASHI et al: COST-RADIUS BALANCED SPANNING/STEINER TREES

1.00 110 1.20 w(T)
W(MST)

Fig. 5 Cost-Radius balance of spanning tree algorithms.

s,

w(T)
W(MST)

Fig. 6 Cost-Radius balance of Steiner tree algorithms.

this observation, as is clearly seen in Table I. For the
Steiner trees, a similar tendency was found.

A cost-radius balance graph showing the radius ra-
tio versus cost ratio is given in Fig. 5. The curve for each
algorithm is shown with ¢ ranging from 0 to 1 in in-
crements of 0.04. The samples represent 200 randomly
generated nets of 20 terminals for each P (= Rya./c).
The results illustrate that the CRBT constructs slightly
better cost-radius balanced trees. This feature is more
apparent for Steiner trees, as shown in Fig. 6, under the
same environment.

As the net becomes large, the difference in CPU
time becomes significant because the time complexity of
BKRUS is O(n?), but those of the CRBT and Alpert’s
algorithm are only O(n?).

693

6. Conclusions

In looking for an efficient algorithm to construct a prac-
tical and useful routing tree with respect to delay reduc-
tion, we have presented two heuristic algorithms, CRBT
and CRBST, which yield a spanning tree and a Steiner
tree with a fairly good balance between cost and radius,
and demonstrated the performance of our algorithms.

A future task is to generalize these algorithms to al-
low the radius limit to be defined to each sink. However,
the basic problem, which is beyond the scope of our
work, is to realize a best balanced routing tree which
may depend on the device process used.

Acknowledgments

This work is supported in part by the Research Body of
CAD?2I at the Tokyo Institute of Technology.

References

[1] CJ. Alpert, T.C. Hu, J.H. Huang, AB. Kahng, and
D. Karger, “Prim-Dijkstra tradeoffs for improved perfor-
mance driven routing tree design,” IEEE Trans. Computer-
Aided Design, vol.14, no.7, pp.890-896, July 1995.

[2] K.D. Boese, J. Cong, A.B. Kahng, K.S. Leung, and D.
Zhou, “On highspeed VLSI interconnects: analysis and
design,” Proc. Asia-Pacific Conf. Circuits Syst., pp.35-40,
Dec. 1992.

[3] J. Cong, A.B. Kahng, G. Robins, M. Sarrafzadeh, and C.K.
Wong, “Provably good performance-driven global rout-
ing,” IEEE Trans. CAD, vol.11, no.6, pp.739-752, June
1992.

(4] J. Cong, K. Leung, and D. Zhou, “Performance-driven in-
terconnect design based on distributed RC delay model,”
Proc. ACM/IEEE Design Automat. Conf.,, pp.606-611,
June 1993.

[5] M. Garey and D.S. Johnson, “The rectilinear Steiner prob-
lem is NP-complete,” SIAM J. Appl. Math., vol.32, no.4,
pp.826-834, April 1977.

[6] M. Hanan, “On Steiner’s problem with rectilinear dis-
tance,” SIAM J. APPL. MATH., pp.255-265, March 1966.

[7] J. Ho, D.T. Lee, C.H. Chang, and C.K. Wong, “Bounded
diameter spanning trees and related problems,” Proc. ACM
Symp. Computational Geometry, pp.276—282, 1989.

[8] J-M. Ho, G. Vijayan, and C.K. Wong, “New algorithms
for rectilinear Steiner trees,” IEEE Trans. Computer-Aided
Design, vol.9, no.2, pp.185-193, Feb. 1990.

[9] S. Khuller, B. Raghavachari, and N. Young, “Balanc-
ing minimum spanning and shortest path trees,” Proc.
ACM/SIAM Symp. Discrete Algorithms, pp.243-250, Jan.
1993.

[10] I Pyo,J. Oh, and M. Pedram, “Constructing minimal span-
ning/Steiner trees with bounded path length,” Proc. Euro-
pean Design & Test Conf., pp.244—249, March 1996.

[11] J. Rubinstein, P. Penfield, and M.A. Horowitz, “Signal de-
lay in RC tree networks,” IEEE Trans. Computer-Aided
Design, vol.2, no.3, pp.202-211, July 1983.

694

a _

Hideki Mitsubayashi received his
B.E. degree in electrical and electronic
engineering from the Tokyo Institute of
Technology, Tokyo, Japan, in 1996. He
is currently a master student of electronic
engineering at the Tokyo Institute of Tech-
nology. His research interests are in VLSI
layout design and combinatorial algo-
rithms.

Atsushi Takahashi received his B.E.,
M.E., and D.E. degrees in electrical and
electronic engineering from the Tokyo In-
stitute of Technology, Tokyo, Japan, in
1989, 1991, and 1996, respectively. Since
1991, he has been with the Tokyo Institute
of Technology, where he is now a research
associate in the Department of Electrical
and Electronic Engineering. His research
interests are in VLSI layout design and
combinatorial algorithms. He is a mem-

ber of the Information Processing Society of Japan.

Yoji Kajitani received his B.S., M.S.
and D.E. degrees from the Tokyo Insti-
tute of Technology, Tokyo, all in electri-
cal engineering, in 1964, 1966 and 1969,
respectively. He has been a professor in
the Department of Electrical and Elec-
tronic Engineering at the Tokyo Institute
of Technology since 1985, and has been
a professor at the Japan Advanced Insti-
tute of Science and Technology from 1992
to 1995. His current research interest is in

combinatorial algorithms applied to VLSI layout design. He was
awarded an IEEE Fellowship in 1992.

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

