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PAPER Special Section on Cryptography and Information Security

Relationship between Standard Model Plaintext Awareness and
Message Hiding∗

Isamu TERANISHI†,††a), Nonmember and Wakaha OGATA††b), Member

SUMMARY Recently, Bellare and Palacio defined the plaintext aware-
ness (PA-ness) in the standard model. In this paper, we study the relation-
ship between the standard model PA-ness and the property about message
hiding, that is, IND-CPA. Although these two notions seem to be indepen-
dent at first glance, we show that PA-ness in the standard model implies
the IND-CPA security if the encryption function is oneway. By using this
result, we also showed that “PA + Oneway⇒ IND-CCA2.” We also show
that the computational PA-ness notion is strictly stronger than the statistical
one.
key words: plaintext awareness, standard model

1. Introduction

1.1 Background

The Plaintext Awareness (PA-ness) [1], [2], [4], [12] is a no-
tion about the security of a public-key encryption scheme.
Intuitively, we say that a public-key encryption scheme sat-
isfies the PA security, if no adversary can generate a cipher-
text “without knowing” the corresponding plaintext.

The PA notion is important, because the following
fundamental theorem [1], [2], [4] holds: the PA-ness im-
plies the IND-CCA2 security [13], [14], if a public-key en-
cryption scheme is IND-CPA secure [11]. Therefore, the
PA-ness is useful when we show the IND-CCA2 security
of a public-key encryption scheme, such as the Fujisaki-
Okamoto padded scheme [10].

The original definition [1], [4] of the PA security was
formalized in the random oracle model [3] and was highly
dependent on this model, although the intuitive definition
mentioned above does not depend on this model.

In Asiacrypt 2004, Bellare and Palacio [2] defined the
PA-ness in the standard model (that is, the non-random or-
acle model). Here we briefly review their definition. They
define the PA notion based on the indistinguishability of two
worlds, “Dec world” and “Ext world.” An adversary in the
Dec world can access the decryption oracle. In contrast, the
same adversary in the Ext world can access an extractor,
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which simulates the decryption oracle. The extractor has to
simulate the decryption oracle by using only data “which the
adversary knows.” They define the three types of the PA-
ness, named perfect/statistical/computational PA-ness, de-
pending on whether the Dec world and the Ext world being
perfectly/statistically/computationally indistinguishable for
the adversary.

They also succeeded in proving the fundamental theo-
rem, which states that all of these plaintext awareness no-
tions, together with the IND-CPA security, imply the IND-
CCA2 security.

1.2 Our Contributions

Main Result: We study the relationship between the stan-
dard model PA-ness and the property about message hiding,
that is, IND-CPA. At first glance, these two notions seem to
be independent. That is, the PA-ness does not seem to imply
the IND-CPA security and the IND-CPA security does not
seem to imply the PA-ness.

We, however, show that all three types of the PA secu-
rity (that is, the perfect, statistical, and computational PA-
nesses) imply the IND-CPA security if the encryption func-
tion is oneway. Recall that the fundamental theorem that
“PA + IND-CPA ⇒ IND-CCA2” holds. Therefore, com-
bining our result with the fundamental theorem shows “PA
+ Oneway⇒ IND-CCA2.”

Weakening the Onewayness Assumption: We also show
that we can weaken the onewayness assumption of our result
“PA +Oneway⇒ IND-CCA2.” We first give our motivation
for weakening it. The fundamental theorem of the PA-ness
is “PA + IND-CPA ⇒ IND-CCA2” and we show that “PA
+ Oneway⇒ IND-CCA2.” Therefore, it seems that we suc-
ceeded in weakening the IND-CPA assumption of the funda-
mental theorem into the onewayness assumption. However,
this is not true because the IND-CPA security does not im-
ply the onewayness. (See Sect. 4 for details.) Therefore, we
present a theorem “PA + XXX ⇒ IND-CCA2,” such that
XXX is weaker than both the onewayness and the IND-CPA
security.

We prove such a theorem for the perfect and the statisti-
cal PA-nesses. That is, we first define a new security notion,
non-triviality, which is weaker than both the onewayness
and the IND-CPA security, and show the following fact:

(Perfect or Statistical) PA + NonTriv⇒ IND-CCA2.

The non-triviality is a notion given by weakening the
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onewayness in two ways. First, the non-triviality does not
ensure that the success probability of an adversary is negli-
gible. It only ensures that the amount of “bad” ciphertext is
negligible. Here the term “bad” means that an adversary can
invert the ciphertext with a probability exceeding a certain
constant.

Second, the way of generating a ciphertext is general-
ized. In the case of onewayness, the experimenter of the
onewayness game selects a random plaintext M and com-
putes a challenge ciphertext C = Encpk(M). This means
that the experimenter has to “know” the plaintext M corre-
sponding to the challenge ciphertext C. The non-triviality
notion is weakened in this point. That is, the experimenter
of the non-triviality is allowed to generate an instance ci-
phertext in any way. Therefore, it may generate the instance
ciphertext “without knowing” the corresponding plaintext,
(if possible). Note that this weakening can be important in
the study of the PA-ness, because the PA-ness is a notion
about the knowledge of the plaintext.

We show that the non-triviality notion is in fact weaker
than both the onewayness and the IND-CPA security. There-
fore, we can say that our new result “(Perfect or Statistical)
PA + NonTriv ⇒ IND-CCA2” is a strengthened version of
both our result “PA + Oneway⇒ IND-CCA2” and the fun-
damental theorem “PA + IND-CPA⇒ IND-CCA2” for the
perfect or statistical PA-ness.

Statistical PA-ness is Strictly Stronger than Computa-
tional PA-ness: We also show that the statistical PA secu-
rity is strictly stronger than the computational one. In the
proof of this fact, we also show some tricky aspect of the
computational PA-ness. More precisely, we show that, for
some public-key encryption scheme, the extractor for the
computational PA-ness never extract the correct plaintext
even if the public-key encryption scheme is computationally
PA secure.

Recall that this phenomenon never occurs in the case
of the random oracle PA-ness, because the extractor for the
random oracle PA-ness can extract the correct plaintext with
overwhelming probability. Therefore, we can say that the
computational PA-ness is quite different from the original
random oracle PA-ness.

Comparing our result with Fujisaki’s result [9] about
the random oracle PA-ness is interesting. In his paper, he
defined the plaintext simulatability (PS) notion, which was
a “computational variant” of the random oracle PA-ness, and
showed that the PS notion was strictly weaker than the ran-
dom oracle PA. Therefore, our result can be recognized as a
standard model variant of Fujisaki’s result [9]. By compar-
ing his result with ours, we can say that the statistical and
computational standard model PA notions are related to the
random oracle PA and the PS, respectively.

1.3 Organization

Section 2 describes preliminaries. Section 3 describes the
difference between the computational PA-ness and the sta-

tistical PA-ness. Section 4 describes our main result that
PA-ness together with the onewayness implies the IND-CPA
security. Section 5 describes that the perfect or the statisti-
cal PA-ness together with the non-triviality implies the IND-
CPA security. Section 6 describes our conclusions.

2. Preliminary

2.1 Notations and Terminologies

We let N and Z denote the set of all natural numbers and
that of all integers respectively. We let a‖b denote the con-
catenation of a bit string a and b. We let ε denote both the
null string and the empty list.

We abbreviate a probabilistic Turing machine to ma-
chine, and an expected polynomial time probabilistic Turing
machine to polytime machine.

For a set X, “x ← X” means that x is chosen from
X uniformly randomly. For a machine A, “x ← A(a; r)”
means that A outputs x when A is provided with a as an
input and r as a random tape. “x ← A(a)” means that
A outputs x when A is provided with a as the input and
a uniformly randomly selected bit string as a random tape.
“Pr[x0 ← X, x1 ← A1(x0), . . . , xn ← An(xn−1) : xn = 1] =
1/2” means the probability that xn = 1 will hold is 1/2 if
we generate xn as follow: x0 ← X, x1 ← A1(x0), . . . , xn ←
An(xn−1).

For a real-valued function f , we say that f is negligi-
ble if, for any positive valued polynomial p, the following
property holds:

∃κ0 ∈ N
∀κ > κ0 : | f (κ)| < 1/p(κ).

We say that f is non-negligible if f is not negligible,
that is, if f satisfies the following property: there exists a
positive valued polynomial p such that

∀κ0 ∈ N
∃κ > κ0 : | f (κ)| ≥ 1/p(κ).

2.2 Public-Key Encryption Scheme

Let κ be a security parameter. Let Gen and Enc be polytime
machines, and Dec be a deterministic polytime machine sat-
isfying the following properties:

• On inputting 1κ, Gen outputs a public key pk and a
secret key sk.

• On inputting pk and a message (or plaintext) M, Enc
outputs a ciphertext C.

• On inputting sk and C, Dec outputs a message or a
symbol ⊥.

Above, the message is an element of a set MessSpκ
named message space.

We say that the tupleΠ = (Gen,Enc,Dec) is a (public-
key) encryption scheme if it satisfies the following correct-
ness property:
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∀M : Pr

[
(pk, sk)← Gen(1κ)
C ← Encpk(M)

: M = Decsk(C)

]

is overwhelming.

2.3 Security Notions

Definition 2.1 (Onewayness): Let κ be a security param-
eter, Π = (Gen,Enc,Dec) be a public-key encryption
scheme, and MessSpκ be a message space of Π. Let
I be a polytime machine named inverter. For a pub-
lic key/secret key pair (pk, sk) and a ciphertext C, we let
OnewayΠI (pk, sk,C) denote the following experiment:

M′ ← I(pk,C)
If M′ = Decsk(C), output 1.
Otherwise output 0.

We say thatΠ is oneway (against CPA attack) if for any
I the probability

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(pk, sk)← Gen(1κ),
M ← MessSpκ,
C ← Encpk(M).

: OnewayΠI(pk, sk,C) = 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is negligible.

Definition 2.2 (IND-CPA, IND-CCA2 [11], [13], [14]).
Let Π = (Gen,Enc,Dec) be a public-key encryption
scheme and O oracle. Let B = (Bfind,Bguess) be a poly-
time adversary,and b be a bit. For a public key pk, we let
INDb

Π,B(pk) denote the following experiment:

(M0,M1,St)← BOfind(pk),
C ← Encpk(Mb),
b′ ← BOguess(C,St),
If b′ = 1, output 1,
Otherwise, output 0.

Above,A is not allowed to make query C to O and M0

and M1 have to be elements of the message space MessSpκ.
We set

νb(κ) = Pr[(pk, sk)← Gen(1κ) : INDb
Π,B(pk) = 1].

—PADec
Π,A,P(κ)—

Take coins RA and RP forA and P randomly.
(pk, sk)← Gen(1κ), CList← ε, StP ← ε.

(Here StP is the state of P.)
RunA(pk; RA) until it halts,

replying to its oracle queries as follows:
IfA makes query (enc,Q)

(M,StP)← P(Q,StP; RP), C ← Encpk(M),
CList← CList‖C. Send C toA as the reply.

IfA makes query (dec,Q)
M ← Decsk(Q).
Send M toA as the reply.

Return an output S ofA.

—PAKΠ,A,P(κ)—

Take coins RA, RP, and RK forA, P, and K randomly.
(pk, sk)← Gen(1κ), CList← ε, StP ← ε, StK ← (pk,RA).

(Here StP and StK are the states of P and K .)
RunA(pk; RA) until it halts,

replying to its oracle queries as follows:
IfA makes query (enc,Q)

(M,StP)← P(Q,StP; RP), C ← Encpk(M).
CList← CList‖C. Send C toA as the reply.

IfA makes query (dec,Q)
(M,StK )← K(Q,CList,StK ; RK ).
Send M toA as the reply.

Return an output S ofA.

Fig. 1 Experiments used to define PA of [2].

Let ε(·) be the oracle whose oracle-answers are always
the null-string. We say that Π is IND-CPA secure, if |ν1(κ)−
ν0(κ)| is negligible for any B where O = ε(·). We say that Π
is IND-CCA2 secure, if |ν1(κ)−ν0(κ)| is negligible for any B
where O = Decsk(·).

2.4 PA-ness

We first give intuition behind the definition of the PA-ness
[2]. The definition of the PA-ness is based on the indistin-
guishability of two worlds named the Dec world and the Ext
world, and uses entities named adversary and extractor. In
the Dec world, the adversary can access the decryption ora-
cle and the encryption oracle. In contrast, the adversary in
the Ext world can access the extractor and the encryption or-
acle. The extractor has to simulate the decryption oracle by
using only data “which the adversary can see,” such as the
adversary’s description, its random tape, and the answers
from the encryption oracle.

A characteristic feature of the definition is that it has
a mechanism to hide the encryption query of the adversary
from the extractor. In order to hide the encryption query,
an entity named plaintext creator is also introduced. This is
an entity which makes encryption queries as the adversary’s
proxy. The adversary, in both the Dec and Ext worlds, does
not make encryption queries directly but sends an order to
the plaintext creator, to make it send a query to the encryp-
tion oracle.

The extractor is not allowed to observe the plaintext
creator’s random tape, although it is allowed to observe the
adversary’s. Hence it cannot know what queries are made
to the encryption oracle. We say that an encryption scheme
satisfies the standard model PA, if the Dec and Ext worlds
are indistinguishable for the adversary.

We now define the (standard model) PA-ness formally:

Definition 2.3 (PA-ness [2]). Let Π = (Gen,Enc,Dec) be
a public-key encryption scheme. Let A, P, K be polytime
machines that are called adversary, plaintext creator, and
extractor, respectively. Let A(pk; RA) denote the execution
of an algorithmA on inputting pk with the random coin RA.
For a security parameter κ ∈ N, we define two experiments
PADec
Π,A,P(κ) and PAKΠ,A,P(κ), as shown in Fig. 1. In these ex-
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periments, it is required thatA makes no query (dec,C) for
which C ∈ CList.

We say that the public-key encryption scheme Π is
perfectly/statistically/computationally (standard model) PA
secure if

∀A∃K∀P : PADec
Π,A,P(κ) and PAKΠ,A,P(κ) are

perfectly/statistically/computationally

indistinguishable for κ.

Note that the PA security is called the PA2 security in
[2].

Theorem 2.4 (Fundamental Theorem for the PA-ness
[1], [2], [4]). Let Π be an IND-CPA secure public-key en-
cryption scheme. If Π is (perfect, statistical, or computa-
tional) PA secure, then Π is IND-CCA2 secure.

3. Statistical PA is Strictly Stronger than Computa-
tional PA

In this section, we study the difference between the statis-
tical PA-ness and the computational PA-ness and show that
the former is strictly stronger than the latter.

We see that the computational PA-ness is quite dif-
ferent from the statistical PA-ness. The statistical PA-ness
ensures that the adversary “knows” the plaintext M in the
sense that the extractor succeeds in extracting the plaintext
M = Decsk(C) with overwhelming probability. In con-
trast, the computational PA-ness ensures that the adversary
“knows” the plaintext M only in the computational sense.
More precisely, the computational PA-ness ensures that an
extractor outputs a plaintext M′ which is computationally
indistinguishable from M = Decsk(C), but it does not en-
sure that M′ = M holds. Therefore, there may be a case
where the extractor never outputs M.

We show that this case in fact occurs, if there exists at
least one public-key encryption scheme satisfying the com-
putational PA security and the IND-CPA security. That is,
we construct a computationally PA secure public-key en-
cryption scheme Π′ = (Gen′,Enc′,Dec′) such that no ex-
tractor can output M = Dec′sk′(C) from a ciphertext C output
by some adversary.

Recall that an extractor for the statistical PA-ness has
to output M = Dec′sk′ (C) with overwhelming probability.
This means that our encryption schemeΠ′ is not statistically
PA secure. Therefore, the existence of such Π′ shows that
there is a gap between the computational PA-ness and the
statistical PA-ness, in particular:

Theorem 3.1: Suppose that there exists at least one public-
key encryption scheme which satisfies both the computa-
tional PA security and the IND-CPA security. Then there
exists a computationally PA secure public-key encryption
which is not statistically PA secure.

Note that the Cramer-Shoup encryption scheme [5], [6]
is computationally PA secure [8] and IND-CPA secure, if the
DHK assumption [2], [7] and the DDH assumption holds.

—Gen′(1κ)—
(pk, sk)← Gen(1κ)
Select a message M0 randomly.
C0 ← Encpk(M0).
pk′ ← (pk,C0), sk′ ← sk.
Output (pk′, sk′).

Enc′pk′ (M) = Encpk(M), Dec′sk′ (C) = Decsk(C).

—A′0(pk′)—
Parse pk′ as (pk,C0).
Make decryption query C0.
Receive M′

0 as an answer.
Output (pk,C0,M′

0).

Fig. 2 Descriptions of Π′ = (Gen′,Enc′,Dec′) andA′0.

Therefore, Theorem 3.1 in particular shows that there is a
gap between the computational PA-ness and the statistical
PA-ness, if these two assumptions hold.

We now construct the encryption scheme Π′ such that
no extractor can output M = Dec′sk′(C) from a ciphertext C
output by some adversary. Let κ be a security parameter. Let
Π = (Gen,Enc,Dec) be a public-key encryption scheme
which is computationally PA secure and IND-CPA secure
(and therefore IND-CCA2 secure). We construct the desired
public-key encryption scheme Π′ = (Gen′,Enc′,Dec′) by
modifying Π. The key generation algorithm Gen′(1κ) first
executes Gen(1κ) and obtains a public key/secret key pair
(pk, sk) as the output. After that, it selects a message
M0 randomly and computes a ciphertext C0 = Encpk(M0).
Then it sets pk′ = (pk,C0) and sk′ = sk. Finally, it out-
puts the public key/secret key pair (pk′, sk′). We also set
Enc′pk′(M) = Encpk(M) and Dec′sk′(C) = Decsk(C). See
Fig. 2 also for the description of Π′.

We see that Π′ satisfies the desired properties. See Ap-
pendix A for the detailed proof. We first see that there exists
an adversaryA′0 such that no extractor can extract a message
from a ciphertext output byA′0.

Our adversary A′0 is the one that obtains C0 from its
input pk′ = (pk,C0), makes decryption query C0, receives a
plaintext M′0 as an answer, and outputs (pk,C0,M′0). Recall
that not A′0 but the key generation algorithm Gen′ gener-
ates M0 and C0. Therefore, A′0 “does not know” the mes-
sage M0 corresponding to C0. Since an extractor for A′0 is
provided with only data which the adversary can see, the
extractor “cannot know” M0 = Dec′sk′ (C0) = Decsk(C0) ei-
ther. Therefore, no extractor can output M0. In particular,
the encryption scheme Π′ is not statistically PA secure.

We next see that Π′ is computationally PA secure. As
mentioned above, no extractor can output M0 itself. How-
ever, recall that an extractor for the computational PA-ness
is allowed to output a plaintext M1 which is different from
M0, although the distribution of M1 has to be computation-
ally indistinguishable from M0. Therefore, we construct an
extractor which can output such M1.

Recall that an adversary “knows” neither the plaintext
M0 nor the random number r which was used in the com-
putation of C0 = Encpk(M0; r). Since Π satisfies the IND-
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CPA security and the computational PA security, Π satisfies
the IND-CCA2 security. Hence, the adversary cannot dis-
tinguish a randomly selected message from M0. Therefore,
an extractor can output a randomly selected message as the
answer to the decryption query C0.

4. Main Result

Our main result is the following theorem:

Theorem 4.1 (PA + Oneway⇒ IND-CPA): Let Π =

(Gen,Enc, Dec) be a public-key encryption scheme satisfy-
ing the onewayness. IfΠ is perfectly, statistically, or compu-
tationally PA secure, then Π is IND-CPA secure (and there-
fore IND-CCA2 secure).

Our result shows that a PA secure scheme satisfies the
very strong message hiding property, the IND-CCA2 secu-
rity, or does not satisfy even the very weak message hiding
property, onewayness.

Before giving the proof of Theorem 4.1, we show that
we cannot remove the onewayness assumption from Theo-
rem 4.1:

Theorem 4.2 (PA � IND-CPA): There is a public-key
encryption which satisfies perfect, statistical, and compu-
tational PA securities, but is not IND-CPA secure.

Proof of Theorem 4.2, sketch Let Π = (Gen,Enc,Dec) be
a public-key encryption scheme, such that a ciphertext of an
message M is M itself. Then Π is clearly not IND-CPA se-
cure. Recall the definition of the perfect PA-ness. We say
that Π satisfies the perfect PA security if, for any adversary
A, there exists an extractor K such that K succeeds in ex-
tracting the plaintext M which corresponds to a ciphertext
C output by A. Since K can know the message M directly
from the ciphertext itself, Π satisfies the perfect PA-ness.
Therefore, Π satisfies the statistical and computational PA-
nesses also. �

We now give the proof of Theorem 4.1. We use a sim-
ilar idea to the proof of Theorem 3.1. In both proofs, an
adversary is required to output a ciphertext “without know-
ing” the corresponding plaintext. In the proof of Theorem
3.1, the adversary obtains such a ciphertext from the public
key. In the proof of Theorem 4.1 the adversary obtains such
a ciphertext by “receiving” from a plaintext creator.

Sketch of the Proof of Theorem 4.1 We here consider the
special case where Π is statistically PA secure. See Ap-
pendix D for the detailed proof for the general case where Π
satisfies only the computational PA security.

Let us make a contradictory supposition that there ex-
ists a statistically PA secure public-key encryption scheme
Π = (Gen,Enc,Dec) which is not IND-CPA secure. We
will show that Π is not oneway.

We would like to construct an inverter I0(pk,C) for
the onewayness game. To this end, we will construct an
adversary A0 and a plaintext creator PC

0 such that PC
0 can

“send” the ciphertext C to A0 in some way. A0 “receives”

C from PC
0 and makes the decryption query C.

From the definition of the statistical PA-ness, there ex-
ists an extractor K0 for A0. K0 can output the plaintext
M = Decsk(C) with overwhelming probability. That is, K0

succeeds in inverting C.
Therefore, if there exists suchA0 andP0

C , we can con-
struct an inverter I0(pk,C) that inverts the ciphertext C by
executing PAK0

Π,A0,PC
0

(pk). Here PAK0

Π,A0,PC
0

(pk) is the experi-

ment PAK0

Π,A0,PC
0
(κ) in which pk is used as a public key.

However, there is no communication channel that al-
lows P0

C to send the ciphertext C to A0. Therefore, we
construct a “virtual channel” from P0

C to A0. Here we ex-
ploit the assumption that Π is not IND-CPA secure. Recall
that the definition of the statistical PA security allows PC

0 to
send plaintexts to the encryption oracle. Therefore, PC

0 can
send to A0 a ciphertext c such that PC

0 generates the corre-
sponding plaintext.

Since Π is not IND-CPA secure, the ciphertext c leaks
information of the corresponding plaintext. This means that
PC

0 can send to A0 some sort of information via the cipher-
text c. Therefore, PC

0 can use the ciphertext c as a “virtual
channel.” We will describe the details of how to construct a
“virtual channel” and show that PC

0 can “send” C toA0 with
non-negligible probability, in later subsections.

Recall that we constructed the inverter I0(pk,C) which
inverts the ciphertext C by executing PAK0

Π,A0,PC
0
(pk), and K0

succeeds in extracting a plaintext with overwhelming prob-
ability. Therefore, I0(pk,C) succeeds in inverting C with
overwhelming probability ifA0(pk) succeeds in “receiving”
C from P0

C . SinceA0 can “receive” C with non-negligible
probability, this means that I0(pk,C) succeeds in invert-
ing C with non-negligible probability. Therefore, Π is not
oneway. �

4.1 How to Construct the “Virtual Channel”

Let A0, K0, and P0
C be machines described in the sketch

of the proof of Theorem 4.1. In order to complete the proof
of Theorem 4.1, we describe how to construct the “virtual
channel” and show thatP0

C can “send” data toA0 with non-
negligible probability.

We here only give the procedures on how P0
C can

“send” a bit b to A0. P0
C can “send” the ciphertext C by

executing the procedures for each bit of C. See Appendix B
for the formal description of the “virtual channel”.

From the assumption, Π is not IND-CPA secure.
Therefore, there exists an adversary B = (Bfind,Bguess)
which has non-negligible advantage to the IND-CPA game.
We use the notations in Sect. 2.3. For a public key pk, we
set

νb(pk) = Pr[INDb
Π,B(pk) = 1].

Clearly, νb(κ) is the expected value of νb(pk) when we gen-
erate pk by using Gen(1κ).

Before “receiving” the bit b,A0 has to do two prepara-
tory things. First, A0 guesses the value νb(pk) as follows:
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A0 executes, N times, the experiment INDb
Π,B(pk). Let �b be

the number of times that INDb
Π,B(pk) outputs 1. A0 guesses

that νb(pk) is ν̄b = �b/N.
Second, A0 executes Bfind(pk), N times, obtains the

outputs (m(1)
0 ,m

(1)
1 ,St(1)

B ), . . ., (m(N)
0 ,m

(N)
1 ,St(N)

B ) of B, and

sends (m(1)
0 ,m

(1)
1 ,St(1)

B ), . . ., (m(N)
0 ,m

(N)
1 ,St(N)

B ) to P0
C .

In order to “send” a bit b toA0, P0
C makes query m(1)

b ,
. . ., m(N)

b to the encryption oracle. Then, the oracle sends

c1 = Encpk(m(1)
b ), . . ., cN = Encpk(m(N)

b ) toA0.
A0 “receives” the bit b as follows: A0 computes b′1 =

Bguess(c1,St(1)
B ) . . ., b′N = Bguess(c1,St(N)

B ). Let � be the
number of i satisfying b′i = 1. It sets b′ = 1 or b′ = 0,
depending on whether �/N ≥ (ν̄0 + ν̄1)/2 holds or not.

4.2 Proof that the Virtual Channel Sends Messages Cor-
rectly

We use the notations in Sect. 2.3. As described in the proof
of Theorem 4.1, we can construct a virtual channel if Π
is not IND-CPA secure. Let Π be a public-key encryption
scheme that is not IND-CPA secure. Then, there exists an
adversary B such that |ν1(κ) − ν0(κ)| is non-negligible.

Therefore, there exists a non-negative valued polyno-
mial p0(κ) such that |ν1(κ) − ν0(κ)| ≥ 1/p0(κ) holds for in-
finitely many κ.

Let B′ be a polytime algorithm which outputs 1 or 0
if B outputs 0 or 1. Recall that νb(κ) the probability that
B outputs b. By replacing B with B′, if necessary, we can
suppose that ν1(κ)−ν0(κ) ≥ 1/p0(κ) holds for infinitely many
κ.

Lemma 4.3 (Informal Version): There exists a family {Ωκ}κ
of sets of public keys and a polynomial p0(κ) such that, for
infinitely many κ, the following two properties hold:

1. For (pk, sk) ← Gen(1κ), pk ∈ Ωκ holds with probabil-
ity of at least 1/p0(κ).

2. For any fixed pk ∈ Ωκ, A0(pk) can “receive” C from
P0

C with the probability of more than 4/5.

In particular, the bit b′ whichA0 “receives” is equal to
the bit b whichP0

C “sends” with non-negligible probability.

See Appendix B for the formal description of Lemma
4.3 and the formal proof for it. We will use Lemma 4.3 in
Section 5 also.

Idea of Proof of Lemma 4.3 Let µ(κ) and µ(pk) be ν1(κ) −
ν0(κ) and ν1(pk)−ν0(pk). As mentioned before, the inequal-
ity µ(κ) = ν1(κ) − ν0(κ) ≥ 1/p0(κ) holds for infinitely many
κ. We restrict our discussion for κ satisfying this inequality.

Since µ(κ) = ν1(κ) − ν0(κ) ≥ 1/p0(κ) holds, ν1(κ) ≥
ν0(κ) holds.

We fix a value κ, and set Ωκ = {pk s.t. µ(pk) ≥ µ(κ)/2}.
From the definition of µ(κ) and µ(pk), µ(κ) is equal to the
expected value of µ(pk) when we take (pk, sk) according to
Gen(1κ). Therefore, many pk satisfy µ(pk) � µ(κ). So,
many pk satisfy µ(pk) ≥ µ(κ)/2. By using this fact, we can

show that

Pr[pk ∈ Ωκ] ≥ µ(κ)2
≥ 1/p0(κ).

That is, the first inequation of Lemma 4.3 holds.
Let n be the bit length of the ciphertext C. We will show

thatA0(pk) can “receive” the correct bit with the probability
more than 1 − (n/5), for any pk ∈ Ωκ. Then, since C is
an n bit string, A0(pk) can receive C with probability (1 −
(n/5))n ≥ 1 − (1/5) = 4/5. That is, the lemma holds.

We now show thatA0(pk) can “receive” the correct bit
with the probability 1 − (n/5). Suppose that P0

C “sends” a
bit b = 1. Then ci = Encpk(m(i)

1 ) and b′i = Bguess(ci,St(i)B )
are computed by the encryption oracle and A0 respec-
tively. From the definition, the probability that b′i = 1
holds with probability ν1(pk). Therefore, the mean value
�/N =

∑
i b′i/N satisfies �/N � ν1(pk) if N is a large number.

Recall that ν̄0 and ν̄1 are statistical inferences of ν0(pk) and
ν1(pk). That is, ν̄0 � ν0(pk) and ν̄1 � ν1(pk) hold if N is a
large number.

Recall that ν1(κ) − ν0(κ) ≥ 1/p0(κ) ≥ 0 holds. Hence,
for any pk ∈ Ωκ, it follows that ν1(pk) − ν0(pk) = µ(pk) ≥
µ(κ)/2 = (ν1(κ) − ν0(κ))/2 ≥ 0. Therefore, ν1(pk) ≥ ν0(pk)
holds.

Hence, it follows that �/N � ν1(pk) ≥ (ν0(pk) +
ν1(pk))/2 � (ν̄0 + ν̄1)/2. This means that the bit b′ “re-
ceived” by A0 is 1. That is, b′ = 1 = b holds with high
probability, if N is large and pk ∈ Ωκ holds. By taking suf-
ficiently large N, we can show that b′ = 1 = b holds with
high probability 1 − (n/5).

If P0
C “sends” b = 0 (and if pk ∈ Ωκ holds also),

we can show that �/N � ν0(pk) ≤ (ν0(pk) + ν1(pk))/2 �
(ν̄0 + ν̄1)/2 via a similar discussion. Therefore, b′ = b holds
with high probability 1−(n/5), even if N is sufficiently large
and P0

C “sends” b = 0. �

5. Weakening the Onewayness Assumption

5.1 Preparation

In this section, we show that we can weaken the onewayness
assumption of Theorem 4.1, if Π is perfectly or statistically
PA secure.

Before showing this, we describe our motivation for
weakening it. Recall that our main theorem, Theorem 4.1,
shows that “PA +Oneway⇒ IND-CCA2” holds. Therefore,
it seems that we succeed in strengthening the fundamental
theorem of the PA-ness, “PA + IND-CPA ⇒ IND-CCA2.”
However, this is not true. In fact, Theorem 4.1 does not
imply the fundamental theorem, because the IND-CPA se-
curity does not imply the onewayness:

Proposition 5.1 (IND-CPA � Oneway): Suppose the ex-
istence of an IND-CPA secure public-key encryption
scheme. Then, there exists a public-key encryption scheme
which satisfies the IND-CPA security but does not satisfy the
onewayness.
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Therefore, we would like to weaken the onewayness
assumption of Theorem 4.1 and show a stronger variant of
the main theorem, “PA + XXX ⇒ IND-CCA2,” such that
XXX is weaker than both the onewayness and the IND-CPA
security.

Proof of Proposition 5.1 Let Π = (Gen,Enc,Dec) be
an IND-CPA secure public-key encryption scheme, and
MessSpκ be the message space of Π. If MessSpκ has only
one element, clearly Π is not IND-CPA secure. Therefore,
MessSpκ has at least two elements, M and M′.

Let Π′ is the encryption scheme that is obtained from
Π by restricting the message space to {M,M′}. Clearly the
Π′ is also IND-CPA secure.

However, we can construct an inverter I for the
onewayness game of Π′. Here I is an inverter which ran-
domly outputs M or M′. Since the message space of Π′ is
{M,M′}, an instance C of the onewayness game is an en-
cryption of M or M′. Hence, the probability that I out-
puts Decsk(C) is 1/2, and therefore is non-negligible. This
means that Π′ is not oneway. �

We now weaken the onewayness assumption of Theo-
rem 4.1. More precisely, we give the new security notion
non-triviality, show that the non-triviality is weaker than
both the onewayness and the IND-CPA security, and show
the following fact:

(Perfect or Statistical) PA + NonTriv⇒ IND-CCA2

The non-triviality is a notion given by weakening the
onewayness. It is weaker than the onewayness in two ways.
First, it does not ensure that the success probability of an
inverter is negligible. It only ensures that the amount of
“bad” instances (pk, sk,C) is negligible. Here the term
“bad” means that an inverter I(pk,C) can invert C with a
probability exceeding a certain constant.

Second, the way to generating a ciphertext is general-
ized. In the case of the onewayness, the experimenter of the
onewayness game selects a random message M and com-
putes a challenge ciphertext C = Encpk(M). This means that
the experimenter has to “know” the plaintext M correspond-
ing to the challenge ciphertext C. The non-triviality notion
is weakened in this point. That is, the experimenter of the
non-triviality is allowed to generate an instance ciphertext in
any way. Therefore, it may generate the instance ciphertext
“without knowing” the corresponding plaintext (if possible).
Note that this weakening can be important in the study of the
PA-ness, because the PA-ness is a notion about the knowl-
edge of the plaintext.

Definition 5.2 (Non-Triviality): Let Π = (Gen,Enc,
Dec) be a public-key encryption scheme. Let I and C be
polytime machines which are respectively called inverter
and ciphertext generator. For a public key/secret key pair
(pk, sk) and a ciphertext C, we define OnewayΠI(pk, sk,C)
as in Definition 2.1, and we let EI(pk, sk,C) be an event that

Pr[OnewayΠI (pk, sk,C) = 1] ≥ 2/3

holds. Here probability is taken over the random tape of I.

We say that Π is non-trivial, if, for any I, there exists
C such that

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk).

: EI(pk, sk,C)

]

is negligible.

We should note the following points about the above
definition. First, the ciphertext generator C is allowed to
output a ciphertext C such that Decsk(C) = ⊥. In the case
where C outputs such a ciphertext, the inverter I has to out-
put ⊥ in order to win in the experiment.

Second, we can replace the constant 2/3 with any other
constant c satisfying 0 < c < 1. Even if we define the c-non-
triviality by using not Pr[OnewayΠI(pk, sk,C) = 1] ≥ 2/3
but Pr[OnewayΠI(pk, sk,C) = 1] ≥ c, the c-non-triviality
notion is equivalent to the original non-triviality notion of
Definition 5.2. This is because an adversary can raise its
success probability by executing the same algorithm many
times.

We now show that the non-triviality notion satisfies the
desired property:

Proposition 5.3 (Oneway ⇒ NonTriv, IND-CPA ⇒ Non
Triv) The onewayness implies the non-triviality. Moreover,
the IND-CPA security also implies the non-triviality.
Proof
(Oneway ⇒ NonTriv) Suppose that a public-key encryp-
tion scheme Π = (Gen,Enc,Dec) is not non-trivial. Then
there exists an inverter I such that, for any ciphertext gener-
ator C, Pr[(pk, sk) ← Gen(1κ),C ← C(pk) : EI(pk, sk,C)]
is non-negligible.

We let C0(pk) denote the ciphertext generator which
generates a ciphertext C as follow: select a message M
randomly, and set C = Encpk(M). Then Pr[(pk, sk) ←
Gen(1κ),C ← C0(pk) : EI(pk, sk,C)] is non-negligible,
in particular. That is, Pr[(pk, sk) ← Gen(1κ),M ←
(rand),C ← Encpk(M) : EI(pk, sk,C)] is non-negligible.

Therefore, if we generate (pk, sk,C) by using the
same way as that used in the onewayness game, the event
EI(pk, sk,C) holds with non-negligible probability. This
means that I can invert C with probability 2/3 if (pk, sk,C)
is selected in this way. Therefore, I can win the onewayness
game with non-negligible probability.

(IND-CPA⇒ NonTriv) Suppose that a public-key encryp-
tion scheme Π = (Gen,Enc,Dec) is not non-trivial. Then
there exists an inverter I such that, for any ciphertext gener-
ator C, Pr[(pk, sk) ← Gen(1κ),C ← C(pk) : EI(pk, sk,C)]
is non-negligible.

By using I as a subroutine, we construct an adversary
B against the IND-CPA security. B(pk) selects two cipher-
texts M0 and M1 randomly and sends (M0,M1) to the exper-
imenter of the IND-CPA security. Then B receives a cipher-
text C = Encpk(Mb) and then executes I(pk,C). I(pk,C)
outputs a message M (or ⊥). If the output M is equal to Mb′

for some b′ ∈ {0, 1}, B outputs b′. Otherwise, B selects a bit
b′ randomly and outputs b′.
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—Gen(1κ)—
(pk, sk)← gen(1κ). Output (pk, sk).
—Encpk(M)—
(Here M ∈ {0, 1} × Xκ).
Parse M as b‖M′.
If b = 0, set C = b‖M′.
Otherwise, set C = b‖ fpk(M′).
Output C.
—Decsk(C)—
Parse C as b‖C′.
If b = 0, output C′.
Otherwise, output f −1

sk (C′).

Fig. 3 Non-trivial scheme which is not oneway or IND-CPA.

We let C0(pk) be a ciphertext generator which gener-
ates a ciphertext C as follows: select two ciphertexts M0 and
M1 randomly and a random bit b, and sets C = Encpk(Mb).

Since Π is not non-trivial, for a public key/secret key
pair (pk, sk) generated by Gen(1κ) and for a ciphertext C
generated by C0(pk), the event E(pk, sk,C) occurs with non-
negligible probability. Let µ(κ) be the (non-negligible) prob-
ability that the event E(pk, sk,C) occurs. From the defi-
nition of B, if the event E(pk, sk,C) occurs, the output b′
of B is equal to b with probability 2/3. Even if the event
E(pk, sk,C) does not occur, the output b′ of B is equal to b
with probability 1/2. Therefore, b′ = b holds with proba-
bility 2

3µ(κ) +
1
2 (1 − µ(κ)) = 1

2 +
1
6µ(κ). Since µ(κ) is non-

negligible, the advantage of B is non-negligible. �
We finally give an example of a non-trivial public-key

encryption scheme Π = (Gen,Enc,Dec) which satisfies
neither the onewayness nor the the IND-CPA security. Let
Xκ be a set, fpk : Xκ → Xκ be a trapdoor oneway permuta-
tion, and gen be the key generator of f . We construct the
public-key encryption scheme Π as in Fig. 3.

Proposition 5.4 The public-key encryption scheme Π de-
picted in Fig. 3 satisfies the non-triviality but does not satisfy
onewayness or the IND-CPA security.
Proof. (idea) From the definition of Enc, if we select a mes-
sage M = b‖M′ randomly, Encpk(M) = M holds with the
probability 1/2. We consider the inverter such that, by giv-
ing a ciphertext C, it outputs C itself. Clearly, the inverter
succeeds in inverting the ciphertext with the probability at
least 1/2. This means that Π is not oneway.

Moreover, since Encpk is a deterministic function, Π =
(Gen,Enc,Dec) is not IND-CPA secure.

We finally show that Π is non-trivial. Let I be an ar-
bitrary inverter. Let C(pk) be a ciphertext creator which se-
lects M′ ∈ Xκ randomly, computes C = Encpk(1‖M′) =
1‖ fpk(M′), and outputs C. Since f is oneway, I succeeds in
inverting C with only negligible probability. That is,

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk)

: OnewayΠI(pk, sk,C) = 1

]

is negligible.
For any (pk0, sk0,C0), we let Ppk0,sk0,C0 be

Pr[OnewayΠI (pk0, sk0,C0) = 1],

and Qpk0,sk0,C0 be

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk)

:
(pk, sk) = (pk0, sk0),
C = C0

]
.

Then it follows that

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk)

: OnewayΠI (pk, sk,C) = 1

]

=
∑

pk0,sk0,C0

Ppk0,sk0,C0 Qpk0,sk0,C0

≥
∑

pk0,sk0,C0 s.t. EI(pk0,sk0,C0) holds.

Ppk0,sk0,C0 Qpk0,sk0,C0

≥
∑

pk0,sk0,C0 s.t. EI(pk0,sk0,C0) holds.

(2/3)Qpk0,sk0,C0

=
2
3

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk).

: EI(pk, sk,C)

]
.

Therefore,

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk).

: EI(pk, sk,C)

]

is also negligible. That is, Π is non-trivial. �

5.2 Result

We now state our theorem formally:

Theorem 5.5 (Perfect or Statistical) PA + Non Triv ⇒
IND-CPA Let Π = (Gen,Enc, Dec) be a public-key en-
cryption scheme satisfying the non-triviality. If Π is per-
fectly or statistically PA secure, then Π is IND-CPA secure
(and therefore IND-CCA2 secure).

The proof for Theorem 5.5 is similar to the sketch of
the proof of Theorem 4.1, described in Section 4. See Ap-
pendix C for the detailed proof.

Proof. We takeA0,K0, P0
C , I0 as in the sketch of the proof

of Theorem 4.1. From Lemma 4.3, there exists a family {Ωκ}
of sets of public keys and a polynomial p0(κ) such that, for
infinitely many κ, the following two properties hold:

1. For (pk, sk) ← Gen(1κ), pk ∈ Ωκ holds with probabil-
ity of at least 1/p0(κ).

2. For any fixed pk ∈ Ωκ, A0(pk) can “receive” C from
P0

C with the probability of more than 4/5.

We restrict our discussion for κ satisfying the above
property.

Recall that we constructed the inverter I0(pk,C) which
inverts the ciphertext C by executing PAK0

Π,A0,PC
0

(pk). K0 suc-

ceeds in extracting a plaintext with overwhelming probabil-
ity. Therefore, I0(pk,C) succeeds in inverting C with over-
whelming probability if A0(pk) succeeds in “receiving” C
from P0

C . In particular, I0(pk,C) succeeds in inverting C
with probability of at least 4/5 if pk ∈ Ωκ holds. Hence, for
a public key pk ∈ Ωκ and the corresponding secret key sk,
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the event EI0 (pk, sk,C) occurs for any C. Therefore, for any
pk ∈ Ωκ and the corresponding sk, for any ciphertext gen-
erator C, and for a ciphertext C generated by C, the event
EI0 (pk, sk,C) occurs.

Since pk ∈ Ωκ holds with probability of at least
1/p0(κ), for any ciphertext generator C, Pr[(pk, sk) ←
Gen(1κ),C ← C(pk) : EI0 (pk, sk,C)] is more than
1/p0(κ).That is, Pr[(pk, sk) ← Gen(1κ),C ← C(pk) :
EI0 (pk, sk,C)] is non-negligible. This means that Π is not
non-trivial. �

6. Conclusion

In this paper, we studied the relationship between the stan-
dard model PA-ness and the property of message hiding, that
is, IND-CPA. Although these two notions seem to be inde-
pendent at first glance, we showed that all three types of PA-
ness (that is, the perfect, statistical, and computational PA-
ness) imply the IND-CPA security if the encryption func-
tion is oneway. We also showed that we can weaken the
onewayness assumption of the above result to a new weak
assumption, named non-triviality, if a public-key encryption
scheme is perfectly or statistically PA secure.

Combining this result with the fundamental theorem
implies the stronger variant of the fundamental theorem,
“(perfect, statistical or computational) PA + NonTriv ⇒
IND-CCA2.”

We also showed that the computational PA notion is
strictly stronger than the statistical one. In particular, we
showed a tricky aspect of the computational PA-ness. By
comparing Fujisaki’s result [9] with our result, we can say
that statistical and computational standard model PA notions
are related to the random oracle PA and the plaintext simu-
latability [9], respectively.
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Appendix A: Detailed Proof of Theorem 3.1

Proof. Let Π′ be the public-key encryption scheme de-
scribed in Fig. 2. We have to show that Π′ is not statistically
PA secure and Π′ is computationally PA secure.

(Π′ is Not Statistically PA Secure.) Let us make a contra-
dictory supposition that Π′ is statistically PA secure. Then
we show that the original encryption scheme Π is not IND-
CPA secure.

Let A′0 be the adversary depicted in Fig. 2. Since Π′
is statistically PA secure, there exists an extractor K′0 for
A′0 such that, for any P, the output of PADec

Π′,A′0,P(κ) and that

of PA
K′0
Π′,A′0,P(κ) have statistically indistinguishable distribu-

tions.
We fix an arbitrary plaintext creator P0. For a

public key pk′, we let PA
K′0
Π′,A′0,P0

(pk′) be the experiment

PA
K′0
Π′,A′0,P0

(κ) in which pk′ is used as a public key.

By using PA
K′0
Π′,A′0,P0

(pk′) as a subroutine, we construct
an adversary B against the IND-CPA security of Π. B(pk)
randomly selects two messages M0,M1, and makes query
(M0,M1) to the challenge oracle for the IND-CPA secu-
rity of Π. Then B obtains the challenge ciphertext C =
Encpk(Mb) for some b = 0, 1. B sets pk′ = (pk,C), exe-

cutes PA
K′0
Π′,A′0,P0

(pk′) and obtains the output (pk′,C,M′) of

PA
K′0
Π′,A′0,P0

(pk′). Since K′0 is an extractor for the statistical

PA-ness, the output M′ of K′0 is equal to Decsk(C) with
overwhelming probability. B compares Decsk(C) with M0

and M1. If B outputs b′ = 0 or b′ = 1 depending on whether
M1 = Decsk(C) holds or not. This means that B has a non-
negligible advantage in the IND-CPA game. Therefore, Π is
not IND-CPA secure.

(Π′ is Computational PA Secure.) Let A′1 be an arbitrary
adversary for Π′. In order to prove the PA security of Π′,
we have to construct an extractor K′1 for A′1. To this end,
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—A1(pk;RA1 )—
Parse RA1 as (R,RA′1 ).
Send a special symbol“GenM0” to a plaintext creator as a query.
Receive a ciphertext C0 as an answer from the query from the encryption oracle.
pk′ ← (pk,C0).
RunA′1(pk′; RA′1 ) until it halts, replying to its oracle as follows:

IfA′1 makes query (enc,Q), then
Pass this query directly on to the plaintext creator.
Receive the answer from the encryption oracle, and send it toA′1 as the reply.

IfA′1 makes query (dec,C0) then
By using the random coins R, select M1 randomly. Send M1 toA′1 as the reply.

IfA′1 makes query (dec,C) for C � C0, then
Pass this query directly on to the decryption oracle forA1.
Receive the answer M from the oracle, and send M toA′1 as the reply.

Return the output S ofA′1.

—K′1(Q,CList,StK′1 ;RK′1 )—
Parse RK′1 and StK′1 as (R,RK1 ) and (pk′,RA′1 ,StK1 ). (Initially, StK1 = ε.)
Parse pk′ as (pk,C0).
If StK1 = ε then set StK1 = (pk, (R,RA′1 )).
If Q = (dec,C0) then

By using random coins R, select M1 randomly. Return (M1,StK′1 ).
Otherwise

(M,StK1 )← K1(Q,CList,StK1 ; RK1 ), StK′1 ← (pk′,RA′1 ,StK1 ). Return (M,StK′1 ).
—P1(Q,StP1 ; RP1 )—
Parse RP1 as (R,RP′ ). StP′ ← StP1 .
If Q = GenM0 then

By using random coins R, select a message M0 randomly. Return (M0,StP1 ).
Otherwise

(M,StP′ )← P′(Q,StP′ ; RP′ ). StP1 ← StP′ . Return (M,StP1 ).
—E(pk0; RE)—
Parse RE as (R,RA′1 ).
By using the random coins R, select messages M0 and M1 randomly.
Make query (M0,M1) to Oenc(b, pk0, ·), and receive the answer C0 = Encpk0 (Mb).
Set pk′ = (pk0,C0).
RunA′1(pk′; RA′1 ) until it halts, replying to its oracle as follows:

IfA′1 makes a query (enc,Q) then
Send the query Q to P′, and receive the answer M.
Compute Encpk0 (M) and send it toA′1 as the reply.

IfA′1 makes a query (dec,C0) then
Send M0 toA′1 as the reply.

IfA′1 makes a query (dec,C) such that C � C0, then
Pass this query directly on to its own decryption oracle Odec(sk0, ·).
Receive the answer, and send it toA′1.

S ← (the output ofA′1), returnD1(S ).

Fig. A· 1 Descriptions ofA1(pk;RA1 ), K′1(Q,CList,StK′1 ;RK′1 ), P1(Q,StP1 ; RP1 ), and E(pk0; RE).

we consider the adversary A1 described in Fig. A· 1. A1

usesA′1 to attack Π. Since Π satisfies the PA security, there
exists an extractor K1 forA1 such that

∀P : The distribution of the output of PAK1

Π,A1,P(κ)
and that of the output of PADec

Π,A1,P(κ) are
computationally indistinguishable.

(A· 1)

Now, by using K1, we construct the extractor K′1 for
A′1, described in Fig. A· 1. We will show that this K′1 is a

desirable extractor for A′1, that is, PA
K′1
Π′,A′1,P′ (κ) is computa-

tionally indistinguishable from PADec
Π′,A′1,P′ (κ) for any plain-

text creator P′.
In order to show this, we construct a plaintext creator

P1 for Π by using P′. The description of P1 is presented in
Fig.A· 1. From the definition of algorithmsA1,K1,K′1, and

P1, the distribution of the output of PA
K′1
Π′,A′1,P′ (κ) is equal to

that of the output of PAK1

Π,A1,P1
(κ). See Fig. A· 2.

Recall that the statement (A· 1) is satisfied. In partic-
ular, the distribution of the output of PAK1

Π,A1,P1
(κ) and that

of the output of PADec
Π,A1,P1

(κ) are computationally indistin-
guishable from each other.

Furthermore, we show that the distribution of the out-
put of PADec

Π,A1,P1
(κ) and that of the output of PADec

Π′,A′1,P′ (κ) are
computationally indistinguishable, by using the IND-CCA2
security of Π:

Lemma Appendix A.1: The distribution of the output of
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—A1—
GenM0

M0 rand.
C0 ← Encpk(M0)

C0

—P1— —OΠenc—

pk′ ← (pk,C0)

—A′1—
↓

(enc,M)

M1:rand

Encpk0 (M)

—PADec
Π,A1 ,P1

(κ) and PAK1
Π,A1 ,P1

(κ)—

M0

pk← Gen(1κ)

↓

—PADec
Π′ ,A′1 ,P′ (κ) and PA

K′1
Π′ ,A′1 ,P′

(κ)—

—Gen′—

M0 : rand. C0 ← Encpk(M0)

pk′ ← (pk,C0)

(enc,Q)

(dec,C0)
M1:rand

M1

(dec,C) s.t. C � C0

—P′— M

Encpk(M)

—OΠdec or K1—

M

—A′1— —P′—(enc,Q) M

Encpk(M)

—OΠ′enc—

—K′1—(dec,C0)
M1 : rand.

M1

(dec,C) s.t. C � C0

M

—K1—

pk0 ← (An instance of IND-CCA2 game).

—E—

M0,M1 : rand

pk′ ← (pk0,C0)

(enc,Q)

M0,M1 —Oenc—

C0 = Encpk0 (Mb)

—P′—

(dec,C) s.t. C � C0

Decsk0 (C)

—Odec—

(dec,C0)

M0

In the case of
PADec
Π′ ,A′ ,P′ (κ),

this oracle is

not K′ but OΠ′dec.

—A′1—

pk← Gen(1κ),

S

S

S

D1(S )

b

Fig. A· 2 Experiments for proof of Theorem 3.1.
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PADec
Π,A1,P1

(κ) and that of the output of PADec
Π′,A′1,P′ (κ) are com-

putationally indistinguishable.

Therefore, PA
K′1
Π′,A′1,P′ (κ) is computationally indistin-

guishable from PADec
Π′,A′1,P′ (κ) for any plaintext creator P′. �

Proof of Lemma Appendix A.1 Before proving the lemma
strictly, we give the intuition behind the proof. Recall
that A1 uses A′1 as a subroutine. The two experiments
PADec
Π,A1,P1

(κ) and PADec
Π′,A′1,P′ (κ) are almost equal, except for

who sends the answer of the query C0 to A′1 and what
answer A′1 receives. In the experiment PADec

Π′,A′1,P′(κ), the
decryption oracle sends the answer of the query C0 to
A′1 and the answer which A′1 receives is the message
M0 = Decsk(C0). On the other hand, in the experiment
PADec
Π,A1,P1

(κ), A1 sends the answer to the query C0 to A′1
and the answer which A′1 receives is a randomly selected
message M1.

Recall that Π is IND-CPA secure and computationally
PA secure. In particular, Π is IND-CCA2 secure. HenceA′1
cannot distinguish the answer M0 from the decryption oracle
and the random answer M1 from A1. Therefore, the distri-
bution of the output of PADec

Π,A1,P1
(κ) and that of the output of

PADec
Π′,A′1,P′(κ) are computationally indistinguishable.

Based on the above intuition, we show the lemma
strictly. Let us make a contradictory supposition. That is, we
suppose that there exists a polytime distinguisherD1 which
can computationally distinguish the distribution of the out-
put of PADec

Π,A1,P1
(κ) from that of the output of PADec

Π′,A′1,P′ (κ).
By using algorithms A′1, P′, and D1, we construct an

adversary E(pk0) against the IND-CCA2 game, which satis-
fies the following properties. Here pk0 is an instance of the
IND-CCA2 game, b is an unknown bit, and Oenc(b, pk0, ·)
and Odec(sk0, ·) are the encryption oracle and the decryption
oracle.

• If input b of the encryption oracle Oenc(b, pk0, ·) is 0,
the distribution of the output of E is equal to that of
D1(S 0). Here S 0 is the output of PADec

Π′,A′1,P′ (κ).• If input b of the encryption oracle Oenc(b, pk0, ·) is 1,
the distribution of the output of E is equal to that of
D1(S 1). Here S 1 is the output of PADec

Π,A1,P1
(κ).

The description of E is depicted in Fig. A· 1. From the
definition of E, the properties mentioned above clearly hold.
(See Fig. A· 2.)

Since Π is IND-CCA2 secure, the distribution of the
output of PADec

Π,A1,P1
(κ) has to be computationally indistin-

guishable from that of the output of PADec
Π′,A′1,P′ (κ). This

means that the lemma is proved. �

Appendix B: Details of “Virtual Channel”

As described in the sketch of the proof of Theorems 4.1 and
5.5, we require a “virtual channel” which enables P0

C to
“send” data to A0. In this section, we give the definition of
the virtual channel in detail.

We here only give the procedures on how P0
C can

“send” a bit b to A0. P0
C can “send” the ciphertext C by

executing the procedures for each bit of C.
We use the notations in Sect. 2.3. We can construct

a virtual channel if Π is not IND-CPA secure. Let Π be
a public-key encryption scheme which is not IND-CPA se-
cure. We use the notation of Sect. 2.3.

Then there exists an adversary B = (Bfind,Bguess) such
that |ν1(κ) − ν0(κ)| is non-negligible.

Let B′ be a polytime algorithm which outputs 1 or 0
if B outputs 0 or 1. Recall that νb(κ) the probability that
B outputs b. By replacing B with B′, if necessary, we can
suppose that ν1(κ)−ν0(κ) ≥ 1/p0(κ) holds for infinitely many
κ.

For a public key pk0, we set

νb(pk0) = Pr[INDb
Π,B(pk0) = 1].

Clearly, νb(κ) is the expected value of νb(pk) when we gen-
erate pk by using Gen(1κ).

We would like to use the value νb(pk0) in order to
construct a “virtual channel.” However, there is no way
to know the value νb(pk0). So we prepare a function
guessNuN,b

B (pk0), which enables us to guess the value
νb(pk0). The description of guessNuN,b

B (pk0) is quite sim-
ple. That is, guessNuN,b

B (pk0) executes N times the ex-
periment INDb

Π,B(pk0). Let �b be the number of times that
INDb

Π,B(pk0) outputs 1. We guess that νb(pk0) is ν̄b = �b/N.

The precise description of guessNuN,b
B (pk0) is depicted

in Fig. A· 3. We use guessNuN,b
B (pk0) as a subroutine when

we construct a virtual channel.
The “virtual channel” comprises three algorithms

SetupN
B , SendN

B,pk,Param, and ReceiveN
B,pk,Param. The roles of

the three algorithms are as follow:

• SetupN
B is used to generate a parameter Param, which

will be used to “send” and “receive” data.
• SendN

B,pk,Param enables P0
C to “send” a bit.

• ReceiveN
B,pk,Param enablesA0 to “receive” a bit.

We stress that the “virtual channel” enables P0
C to

“send” only one bit b. Therefore, P0
C have to use the “vir-

tual channel” n times with A0, in order to “send” an n bit
string.

We now give the description of the “virtual channel.”
See Fig. A· 3 for the detailed description.

SetupN
B(pk) executes the algorithms guessNuN,0

B (pk)
and guessNuN,1

B (pk), and obtains the estimated value ν̄0 and
ν̄1 of ν0(pk) and ν1(pk). Then it executes N times the al-
gorithm Bfind(pk), and obtains the outputs (m(1)

0 ,m
(1)
1 ,St(1)

B ),

. . ., (m(N)
0 ,m

(N)
1 ,St(N)

B ). SetupN
B(pk) finally sets Param =

((ν̄0, ν̄1), (m(1)
0 ,m

(1)
1 ,St(1)

B ), . . ., (m(N)
0 ,m

(N)
1 ,St(N)

B )) and out-
puts Param.

SendN
B,pk,Param(b, i) is the algorithm which outputs m(i)

b .

Note that P0
C has to execute SendN

B,pk,Param(b, i) for i =
1, . . . ,N, in order to “send” a bit b to A0. Then P0

C ob-
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—guessNuN,b
B (pk)—

For i = 1, . . . ,N, execute the following procedures:
Select ri, si randomly.
(m0,m1,StB)← Bfind(pk; ri),
c← Encpk(mb; si),
b′′i ← Bguess(pk, c,StB).
�b ← (The number of b′′i satisfying b′′i = 1).
ν̄b ← �b/N, output ν̄b.

—SetupN
B(pk)—

ν̄0 ← guessNuN,0
B (pk), ν̄1 ← guessNuN,1

B (pk).
Select r1, . . . , rN randomly.
(m(1)

0 ,m
(1)
1 ,St(1)

B )← Bfind(pk; r1),
. . . ,

(m(N)
0 ,m

(N)
1 ,St(N)

B )← Bfind(pk; rN ).
Param← ((ν̄0, ν̄1), (m(1)

0 ,m
(1)
1 ,St(1)

B ), . . . , (m(N)
0 ,m

(N)
1 ,St(N)

B )).
Output Param.

—SendN
B,pk,Param(b, i)—

Parse Param as
((ν̄0, ν̄1), (m(1)

0 ,m
(1)
1 ,St(1)

B ), . . . , (m(N)
0 ,m

(N)
1 ,St(N)

B )).
Output m(i)

b .

—ReceiveN
B,pk,Param(c1 . . . , cN )—

Select s1, . . . , sN randomly.
Parse Param as

((ν̄0, ν̄1), (m(1)
0 ,m

(1)
1 ,St(1)

B ), . . . , (m(N)
0 ,m

(N)
1 ,St(N)

B )).
b′1 ← Bguess(c1, St(1)

B )
. . . ,

b′N ← Bguess(cN ,St(N)
B ).

� ←(The number of j satisfying b′j = 1).
If �/N ≥ (ν̄0 + ν̄1)/2, output b′ ← 1.
Otherwise, b′ ← 0.
Output b′.
—ChannelNB(pk, b)—
Param← SetupN

B(pk)
m(1)

b ← SendN
B,pk,Param(b, 1) . . . ,m(N)

b ← SendN
B,pk,Param(b,N)

c1 ← Encpk(m(1)
b ), . . . , cN ← Encpk(m(N)

b ).
b′ ← ReceiveN

B,pk,Param(c1 . . . , cN )
Output b′.

Fig. A· 3 Description of “virtual channel” and related functions.

tains the outputs m(1)
b , . . ., m(N)

b and sends these messages
to the encryption oracle. The encryption oracle computes
encryptions c1 = Encpk(m(1)

b ), . . ., cN = Encpk(m(N)
b ).

We finally give the description of ReceiveN
B,pk,Param(c1,

. . . , cN). ReceiveN
B,pk,Param(c1, . . . , cN) executes the algo-

rithm Bguess(ci,St(i)B ) for i = 1, . . . ,N, and obtains the out-
puts b′1, . . . , b

′
N . Then it sets � to be the number of j satisfy-

ing b′j = 1. It sets b′ = 1 or b′ = 0, depending on whether
�/N ≥ (ν̄0 + ν̄1)/2 holds or not. It finally outputs b′. If
ReceiveN

B,pk,Param outputs b′, this means that A0 “receives”
the bit b′.

We next give the formal description of Lemma 4.3.
To this end, for a public key pk and a bit b, we define
an algorithm ChannelNB(pk, b) as follow: (See Fig. A· 3
for the formal description of it.) It executes SetupN

B(pk)
and obtains Param as an output. Then it executes
SendN

B,pk,Param(b, 1), . . ., SendN
B,pk,Param(b,N) and obtains

m(1)
b , . . ., m(N)

b as outputs. It computes ciphertexts c1 =

Encpk(m(1)
b ), . . ., cN = Encpk(m(N)

b ). Then it computes
b′ = ReceiveN

B,pk,Param(c1 . . . , cN) and outputs b′.

Lemma Appendix B.1 (Formal Version of Lemma 4.3):
We take Π = (Gen,Enc,Dec), B, and νb(κ) as mentioned
before. Let pk be a public key and b be a bit.

Then, there exists a infinite set Λ of security param-
eters, a polynomial p0, and a family {Ωκ}κ of sets of pub-
lic keys such that the following two properties hold for any
κ ∈ Λ:

1. Pr[(pk, sk)← Gen(1κ) : pk ∈ Ωκ] ≥ 1
p0(κ) ,

2. ∀n > 0∀α > 0∀pk ∈ Ωκ∀b ∈ {0, 1} :
Pr[ChannelN(κ)

B (pk, b) = b] ≥ 1 − 1
nκα .

Here N(κ) = �32nκα/p0(κ)2�.
Note that we will set n to the length of a ciphertext in

the proof of Theorem 5.5.
Proof. For a public key pk and a bit b, we let νb(pk) de-
note Pr[INDb

Π,B(pk) = 1]. Then clearly, the expected value
E((pk, sk)← Gen(1κ) : νb(pk)) is equal to νb(κ).

Let µ(κ) be ν1(κ) − ν0(κ) and µ(pk) be ν1(pk) − ν0(pk).
From the assumption, µ(κ) is non-negligible. Moreover, (by
replacing B with B′, if necessary,) we supposed that ν1(κ) −
ν0(κ) ≥ 1/p0(κ) holds for infinitely many κ. Therefore, there
exists infinite set Λ and a polynomial p0 such that, for any
κ ∈ Λ, µ(κ)/2 ≥ 1/2p0(κ) holds. In particular, µ(κ) ≥ 0
holds. We define the set Ωκ as

Ωκ = {pk s.t. µ(pk) > µ(κ)/2}.
Let Qκpk be the probability that pk arises. That is,

Qκpk = Pr[(PK,SK)← Gen(1κ) : PK = pk].

From the definition of µ(κ) and µ(pk), µ(κ) is equal to
the expected value of µ(pk) when we take (pk, sk) according
to Gen(1κ). That is, it follows that

µ(κ) =
∑
pk

µ(pk)Qκpk.

Therefore, it follows that

µ(κ)
=
∑

pk µ(pk) · Qκpk
=
∑

pk∈Ωκ µ(pk) · Qκpk +
∑

pk�Ωκ µ(pk) · Qκpk

≤ ∑pk∈Ωκ Qκpk +
∑

pk�Ωκ (µ(κ)/2) · Qκpk
≤ Pr[pk ∈ Ωκ] + (µ(κ)/2) · Pr[pk � Ωκ]
= Pr[pk ∈ Ωκ] + (µ(κ)/2) · (1 − Pr[pk ∈ Ωκ])
= (µ(κ)/2) + (1 − µ(κ)/2) · Pr[pk ∈ Ωκ]
≤ (µ(κ)/2) + Pr[pk ∈ Ωκ].

Here the probabilities are taken over the random coins of
Gen which generates pk.
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Hence, it follows that

Pr[pk ∈ Ωκ] ≥ µ(κ)2

Therefore, for any κ ∈ Λ, it follows that

Pr[pk ∈ Ωκ] ≥ µ(κ)2
≥ 1/p0(κ). (A· 2)

That is, the first inequation of Lemma Appendix B.1 holds.
We next show the second inequation of Lemma Ap-

pendix B.1. We take α and n arbitrarily. Let b be a
bit. We take a security parameter κ ∈ Λ and a public
key pk0 ∈ Ωκ and study the algorithm ChannelNB(pk0, b),
where N = N(κ) = �32nκα/p0(κ)2�. In the execution of
ChannelNB(pk0, b), SetupN

B(pk0) is executed. In the execu-
tion of guessNuN,0

B (pk0) of SetupN
B(pk0), the value ν̄0 is

computed. We estimate |ν̄0 − ν0(pk0)|.
From the definition, ν̄0 = �0/N holds, where �0 is the

number of b′′i satisfying b′′i = 1. Therefore, it follows that

ν̄0 =
1
N

∑
i=1,...,N

b′′i .

From the definition of b′′i , it follows that

Pr[b′′i = 0] = ν0(pk0).

Moreover, from the definition of b′′i , the data b′′1 , . . . , b
′′
N are

computed by using random tapes different from each other.
That is, the distributions of b′′1 , . . . , b

′′
N are independent from

each other, (for any fixed pk0.)
Hence, for any fixed pk0, the distribution of ν̄0 =∑

j b′′j /N is binomial distribution with the average ν0(pk0)

and the standard deviation σ0 =
√
ν0(pk0)(1 − ν0(pk0))/N ≤

1/
√

N.
Therefore, from Chebyshev’s inequality, for any ε > 0,

it follows that

Pr[|ν̄0 − ν0(pk0)| ≥ ε] ≤ σ0
2

ε2
≤ 1

Nε2
.

Hence, it follows that

Pr

[
|ν̄0 − ν0(pk0)| ≤ µ(κ)

8

]
≥ 1 − 64

Nµ(κ)2
.

Via a similar discussion, we can also show that

Pr

[
|ν̄1 − ν1(pk0)| ≤ µ(κ)

8

]
≥ 1 − 64

Nµ(κ)2
.

holds.
Therefore, it follows that

Pr
[∣∣∣∣ ν̄0+ν̄12 − ν0(pk0)+ν1(pk0)

2

∣∣∣∣ ≤ µ(κ)8

]
≥ 1 − 128

Nµ(κ)2 . (A· 3)

Here we use the fact (1 − 64
Nµ(κ)2 )2 ≥ 1 − 128

Nµ(κ)2 .
We next estimate the probability

Pr[ChannelNB(pk0, 1) = 1],

where pk0 ∈ Ωκ is a fixed public key. From the defini-
tion of ChannelNB(pk0, 1) and ReceiveN

B,pk0,Param(c1 . . . , cN),

the output b′ = ChannelNB(pk0, 1) is 1 if and only if
�/N ≥ (ν̄0 + ν̄1)/2 holds. Here �/N is a value computed
in ReceiveN

B,pk0,Param(c1 . . . , cN) of ChannelNB(pk0, 1).
We can apply a similar discussion to the case of �0/N.

Hence, for any fixed pk0, the distribution of �/N =
∑

j b′j/N
is binomial distribution with the average ν0(pk0) and the
standard deviation σ0 =

√
ν0(pk0)(1 − ν0(pk0))/N ≤ 1/

√
N.

We can apply a discussion similar to that for the case
of �0/N again and can show the following inequality:

Pr

[∣∣∣∣∣ �N − ν0(pk0)
∣∣∣∣∣ ≤ µ(κ)8

]
≥ 1 − 64

Nµ(κ)2
. (A· 4)

From pk0 ∈ Ωκ, it follows that

ν1(pk0) − ν0(pk0) ≥ µ(κ)/2. (A· 5)

From the inequality (A· 3), (A· 4), and (A· 5), we can
conclude that

Pr

[
�

N
≥ ν̄

0 + ν̄1

2

]
≥ 1 − 32

Nµ(κ)2
. (A· 6)

Here we use the inequality (1− 128
Nµ(κ)2 )(1− 64

Nµ(κ)2 ) ≥ 1− 128
Nµ(κ)2−

64
Nµ(κ)2 ≥ 1− 32

Nµ(κ)2 . From the definition of ChannelNB(pk0, 1),
the inequation (A· 6) means that

Pr[b′ ← ChannelNB(pk0, 1) : b′ = 1] ≥ 1 − 32
Nµ(κ)2

holds.
By using similar discussions to the above one, we can

also conclude that

Pr[b′ ← ChannelNB(pk0, 0) : b′ = 0] ≥ 1 − 32
Nµ(κ)2

Therefore,

Pr[b′ ← ChannelNB(pk0, b) : b′ = b] ≥ 1 − 32
Nµ(κ)2

(A· 7)

holds for b = 0, 1.
Recall that we set N(κ) = �32nκα/p0(κ)2�. Recall also

that µ(κ) ≥ 1/p0(κ) holds. Since we took κ ∈ Λ arbitrarily,
from inequality (A· 7), the second inequality of Lemma Ap-
pendix B.1 holds. �

Appendix C: Detailed Proof of Theorem 5.5

Proof. We suppose that there exists a statistically PA se-
cure public-key encryption scheme Π = (Gen,Enc,Dec)
which is not IND-CPA secure, and we will show that Π is
not non-trivial.

From the assumption that Π is not IND-CPA secure,
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—A0(pk; RA)—

N ← �nκα/P(κ)�.
Parse RA as {Ri}i.
Parami ← SetupN

B(pk; Ri), for i = 1, . . . , n.
Send (SendPk, pk, {Parami}i,N)

to a plaintext creator.

(Then receive an answer from
the encryption oracle, and discard it.)

Execute the following subroutine
for i = 1, . . . , n:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Make query (Sendb, i, j)
to the plaintext creator
for j = 1, . . . ,N.

Receive a ciphertext c(i)
j as an answer

for j = 1, . . . ,N.
b′i ← ReceiveN

B,pk,Parami
(c(i)

1 . . . , c
(i)
N )

C′ ← b′1‖ · · · ‖b′n.

Make decryption query C′.
Receive a message M′ as the answer.
Return (pk,C′,M′).

—PC
0 (Q,StP; RP)—

(Initially, StP = ε.)

If Q = (SendPk, pk, {Parami}i,N)
for some (pk, {Parami}i,N), then

StP ← (pk, {Parami}i,N).
Return (Null,StP).

If Q = (Sendb, i, j) for some (i, j), then
Parse StP as (pk, {Parami}i,N).
bi ← (i-th bit of C).
m(i, j)

bi
← SendN

B,pk,Parami
(bi, j)

Return (m(i, j)
bi
,StP).

(Then the encryption oracle sends
the encryption of m(i, j)

bi
to the adversary.)

Otherwise, return (Null,StP).

Fig. A· 4 Description ofA0 and PC
0 .

there exists an adversary B against the IND-CPA property
with a non-negligible advantage.

We use the notations in Sect. 2.3 and Sect. Appendix B.
As in Appendix B, we set νb(κ) = Pr[(pk, sk) ← Gen(1κ) :
INDb

Π,B(pk) = 1]. and µ(κ) = ν1(κ) − ν0(κ).
Let n be the bit length of ciphertexts of Π. We take

an infinite set Λ, a polynomial p0(κ), and a family {Ωκ}κ of
sets of public keys, whose existences are ensured in Lemma
Appendix B.1. We take an arbitrary α > 0 and set N =
N(κ) = 32nκα/p0(κ)2. Then, from Lemma Appendix B.1
and the definition of N, the following two properties hold
for any κ ∈ Λ:

1. Pr[(pk, sk)← Gen(1κ) : pk ∈ Ωκ] ≥ 1
p0(κ) ,

2. ∀pk ∈ Ωκ∀b ∈ {0, 1} : Pr[ChannelNB(pk, b) = b] ≥
1 − 1

nκα .

By using B as a subroutine, we construct an adversary
A0 as in Fig. A· 4.

Since Π is PA secure, for this A0, there exists an ex-
tractor K0 such that, for any plaintext creator P, the output
of PADec

Π,A0,P(κ) and that of PAK0

Π,A0,P(κ) are statistically indis-
tinguishable.

Let C be an arbitrary ciphertext. We construct a plain-

text creator PC
0 which “sends” C to an adversary. The pre-

cise description of PC
0 is depicted in Fig. A· 4.

Since the output of PADec
Π,A0,P(κ) and that of PAK0

Π,A0,P(κ)
are statistically indistinguishable for any P, the output of
PADec
Π,A0,PC

0
(κ) and that of PAK0

Π,A0,PC
0

(κ) are statistically indis-

tinguishable, in particular.
For a public key/secret key pair (pk, sk), we let

PADec
Π,A0,PC

0
(pk, sk) denote the experiment PADec

Π,A0,PC
0
(κ) in

which the experimenter uses pk as a public key and sk as a
secret key. We also let PAK0

Π,A0,PC
0

(pk) denote the experiment

PAK0

Π,A0,PC
0

(κ) in which the experimenter uses pk as a public

key. (Note that no entity uses a secret key in the experiment
PAK0

Π,A0,PC
0

(κ).)

Let C′ be the ciphertext depicted in Fig. A· 4. That
is, let C′ be the ciphertext which A0 “receives.” We show
that C = C′ holds with high probability in the experiment
PADec
Π,A0,PC

0
(pk, sk), if (pk, sk) is an element of Ωκ for some

κ ∈ Λ. That is, we show that A0 succeeds in “receiving”
C with high probability if (pk, sk) is an element of Ωκ for
some κ ∈ Λ.

To this end, we fix κ ∈ Λ and a public key/secret key
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pair (pk0, sk0) ∈ Ωκ. We take bi and b′i as in Fig. A· 4. Then
C = b1‖ · · · ‖bn and C′ = b′1‖ · · · ‖b′n hold. Therefore, C = C′
holds if and only if bi = b′i holds for any i = 1, . . . , n.
From the definition of Ωκ, bi = b′i holds with probability
1− 1

nκα in the experiment PADec
Π,A0,PC

0
(pk0, sk0). Hence, C = C′

holds with probability (1 − 1
nκα )n ≥ 1 − 1

κα
in the experiment

PADec
Π,A0,PC

0
(pk0, sk0). Similarly, C = C′ holds with probabil-

ity 1 − 1
κα

even in the experiment PAK0

Π,A0,PC
0
(pk0).

Since Λ is a infinite set, there exists κ0 such that for
any κ ∈ Λ satisfying κ ≥ κ0, 1 − 1

κα
> 2/3 holds. We let

Λ0 denote the set of κ ∈ Λ satisfing κ ≥ κ0. Therefore, for
any κ ∈ Λ0 and for any (pk0, sk0) ∈ Ωκ, C = C′ holds with
probability 2/3 in both experiments PADec

Π,A0,PC
0
(pk0, sk0) and

PAK0

Π,A0,PC
0

(pk0).

By using A0, K0, and PC
0 , we construct an inverter

I0 against the non-triviality game. By giving an in-
stance (pk,C) of the non-triviality game, I0(pk,C) executes
PAK0

Π,A0,PC
0

(pk). Then I0 obtains an output (pk,C′,M′) of

PAK0

Π,A0,PC
0

(pk), and outputs M′.
We now show that Π is not non-trivial. In other words,

we show that I0 satisfies the following property: for any
ciphertext generator C,

Pr

[
(pk, sk)← Gen(1κ),
C ← C(pk).

: EI0 (pk, sk,C)

]

is non-negligible. Here EI0 (pk, sk,C) is the event that

Pr[OnewayΠI0
(pk, sk,C) = 1] ≥ 2/3

holds.
Let C0 be an arbitrary ciphertext generator. In order

to show that Π is not non-trivial, we construct a plaintext
creator PC0

0 as follows: PC0

0 executes C0(pk), obtains the
output C of C0, and executes PC

0 . From the definition of
PADec

Π,A0,PC0
0

(κ), the output (pk,C′,M′) of PADec

Π,A0,PC0
0

(κ) sat-

isfies M′ = Decsk(C′) clearly. Since PADec

Π,A0,PC0
0

(κ) and

PAK0

Π,A0,PC0
0

(κ) are statistically indistinguishable, the output

(pk,C′,M′) of PAK0

Π,A0,PC0
0

(κ) satisfies M′ = Decsk(C′) with

overwhelming probability also.
We study the experiment PAK0

Π,A0,PC0
0

(κ) step by step. In

the experiment PAK0

Π,A0,PC0
0

(κ), a key pair (pk, sk) = Gen(1κ)

is first generated, a ciphertext C = C0(pk) is next gener-
ated by PC0

0 , then PAK0

Π,A0,PC
0

(pk, sk) is executed and finally

the output (pk,C′,M′) of PAK0

Π,A0,PC
0

(pk, sk) is output. From

the definition of I0, the last component M′ of the output
(pk,C′,M′) of PAK0

Π,A0,PC
0

(pk, sk) is equal to the output of

I0(pk,C).
We have already proved that C = C′ holds with proba-

bility 2/3 if (pk, sk) ∈ Ωκ holds for some κ ∈ Λ0 Moreover,

we also showed that M′ = Decsk(C′) holds with overwhelm-
ing probability. This means that, if (pk, sk) ∈ Ωκ holds for
some some κ ∈ Λ0, the output M′ of I0(pk,C) is equal to
Decsk(C) with probability 2/3. From the definition of the
event EI0 (pk, sk,C), this means that the event EI0 (pk, sk,C)
occurs if (pk, sk) ∈ Ωκ holds for some κ ∈ Λ0.

From the definition of Ωκ, (pk, sk) ∈ Ωκ holds with
probability of at least 1/p0(κ). This means that

Pr

[
(pk, sk)← Gen(1κ),
C ← C0(pk).

: EI0 (pk, sk,C)

]
≥ 1/p0(κ)

holds for any C0 and for any κ ∈ Λ0 Since Λ0 is a infinite
set, this means that

Pr

[
(pk, sk)← Gen(1κ),
C ← C0(pk).

: EI0 (pk, sk,C)

]

is non-negligible for any C0. �

Appendix D: Detailed Proof of Theorem 4.1

Theorem 4.1 for the perfect and statistical PA-nesses is
clearly derived from Theorem 5.5 and Proposition 5.1.
Therefore, we show Theorem 4.1 for the computational PA-
ness.
Proof. We suppose that there exists a computational PA
secure public-key encryption scheme Π = (Gen,Enc,Dec)
which is not IND-CPA secure, and we will show that Π is
not oneway.

From the assumption that Π is not IND-CPA secure,
there exists an adversary B against the IND-CPA prop-
erty with a non-negligible advantage. We use the notations
of Sect. 2.3 and Appendix B. As in Appendix B, we set
νb(κ) = Pr[(pk, sk) ← Gen(1κ) : INDb

Π,B(pk) = 1]. and
µ(κ) = ν1(κ) − ν0(κ).Without loss of generality, we can sup-
pose that µ(κ) ≥ 0 holds.

Let n be the bit length of ciphertexts of Π. We take
a infinite set Λ, a polynomial p0(κ) and a family {Ωκ}κ of
sets of public keys, whose existences are ensured in Lemma
Appendix B.1. We take an arbitrary α > 0 and set N =
N(κ) = (n + 1)κα/p0(κ). Then, from Lemma Appendix B.1
and from the definition of N, the following two properties
hold for any κ ∈ Λ:

1. Pr[(pk, sk)← Gen(1κ) : pk ∈ Ωκ] ≥ 1
p0(κ) ,

2. ∀pk ∈ Ωκ∀b ∈ {0, 1} : Pr[ChannelNB(pk, b) = b] ≥
1 − 1

(n+1)κα .

The basic idea behind the proof of Theorem 4.1 for
the computational PA-ness is similar to that of Theorem 5.5.
However, these proofs are essentially different in one point.
Recall that, in the proof of Theorem 5.5, we used the extrac-
tor K0 in order to invert a ciphertext C, because an extractor
for the statistical PA-ness succeeds in outputting Decsk(C)
with overwhelming probability.

In contrast, we can not do so now. This is because
an extractor for the computational PA-ness may not output
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—A1(pk; RA)—

N ← �(n + 1)κα/p0(κ)�.
Parse RA as ({Ri}i ,R′).
Parami ← SetupN

B(pk; Ri), for i = 1, . . . , n.
Send (SendPk, pk, {Param}i,N)

to a plaintext creator.

(Then receive an answer from
the encryption oracle, and discard it.)

Execute the following subroutine
for i = 1, . . . , n:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Make query (Sendb, i, j)
to the plaintext creator
for j = 1, . . . ,N.

Receive ciphertext c(i)
j as an answer

for j = 1, . . . ,N.
b′i ← ReceiveN

B,pk,Parami
(c(i)

1 . . . , c
(i)
N ; R̂i)

C′ ← b′1‖ · · · ‖b′n .

Make decryption query C′.
Receive a message M′ as the answer.

Param′ ← SetupN
B(pk; R′).

Send (SendCMPram′,C′,M′,Param′)
to a plaintext creator.

(Then receive an answer from
the encryption oracle, and discard it.)

Execute the following subroutine:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Make query (SendT, j)
to the plaintext creator
for j = 1, . . . ,N.

Receive ciphertexts c′j as an answer
for j = 1, . . . ,N.

T ′ ← ReceiveN
B,pk,Param′ (c

′
1 . . . , c

′
N ; R̂′)

If T ′ = 1, then return (pk,C′,M′).
Otherwise, return ⊥.

—P1(Q,StP; RP)—

(Initially, StP = ε.)

If Q = (SendX, pk, {Parami}i,N)
for some (pk, {Parami}i ,N), then

M ← (rand), C ← Encpk(M).

StP ← (pk, {Parami}i ,N,C,M).
Return (Null,StP).

If Q = (Sendb, i, j) for some (i, j), then
Parse StP as (pk, {Parami}i,N,C,M).
bi ← (i-th bit of C).
m(i, j)

bi
← SendN

B,pk,Parami
(bi, j)

Return (m(i, j)
bi
,StP).

(Then the encryption oracle sends
the encryption of m(i, j)

bi
to the adversary.)

If Q = (SendCMParam′,C′,M′,Param′)
for some (C′,M′,Param′) then

Parse StP as (pk, {Parami}i,N).

T ←
{

1 if M = M′,
0 otherwise.

StP ← (pk,Param′,N,M′, T ).
Return (Null,StP).

If Q = (SendT, j) for some j, then
m( j)

T ← SendN
B,pk,Param′ (T, j)

Return (m( j)
T ,StP).

(Then the encryption oracle sends
the encryption of m( j)

T
to the adversary.)

Otherwise, return (Null,StP).

—P2
C (Q,StP; RP)—

(Initially, StP = ε.)

If Q = (SendX, pk, {Parami}i,N)
for some (pk, {Parami}i ,N), then

StP ← (pk, {Parami}i ,N,C).
Return (Null,StP).

If Q = (Sendb, i, j) for some (i, j), then
Parse StP as (pk, {Parami}i,N,C).
bi ← (i-th bit of C.)
m(i, j)

bi
← SendN

B,pk,Parami
(bi, j)

Return (m(i, j)
bi
,StP).

(Then the encryption oracle sends
the encryption of m(i, j)

bi
to the adversary.)

If Q = (SendCMParam′,C′,M′,Param′)
for some (C′,M′,Param′) then

Parse StP as (pk, {Parami}i,N).

T ← 1

StP ← (pk,Param′,N,M′, T ).
Return (Null,StP).

If Q = (SendT, j) for some j, then
m( j)

T ← SendN
B,pk,Param′ (T, j)

Return (m( j)
T ,StP).

(Then the encryption oracle sends
the encryption of m( j)

T
to the adversary.)

Otherwise, return (Null,StP).

Fig. A· 5 Description ofA1, P1, and P2
C .

Decsk(C), although it outputs a plaintext which is computa-
tionally indistinguishable from Decsk(C).

Therefore, we have to use a more elaborate technique.
In order to prove Theorem 4.1 for the computational PA-
ness, we construct an adversary A1, by modifying the de-
scription of the adversaryA0 of the proof of Theorem 5.5.

The precise description of A1 is depicted in Fig. A· 5.
(We will later give the intuitive description of A1.) Since
Π is computationally PA secure, for this A1, there exists an
extractorK1 such that, for any plaintext creatorP, the output
of PADec

Π,A1,P(κ) and that of PAK1

Π,A1,P(κ) are computationally
indistinguishable.
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We construct a plaintext creator P1, by modifying the
description of P0 of the proof of Theorem 5.5. The pre-
cise description of P1 is depicted in Fig. A· 5. We now give
the intuitive descriptions of A1 and P1. In the experiment
PAK1

Π,A1,P1
(κ), P1 generates a plaintext M randomly, com-

putes C = Encpk(M), and “sends” C to A1 via the “virtual
channel.” Then A1 “receives” C′ (which is expected to be
equal to C), makes a decryption query C′, obtains a mes-
sage M′ as an answer, and sends M′ to P1. P1 sets T = 1
or T = 0, depending on whether M = M′ holds or not. P1

“sends” T toA1.
Then A1 “receives” T ′ (which is expected to be equal

to T ), and outputs (pk,C′,M′, T ′).
We will show that K1 succeeds in outputting M =

Decsk(C) with non-negligible probability in the experiment
PAK1

Π,A1,P1
(κ). In other words, we will show that M′ = M

holds with non-negligible probability in this experiment. To
this end, we study the experiment PADec

Π,A1,P1
(κ). In the exper-

iment PADec
Π,A1,P1

(κ), the decryption oracle answers the query
C′. Therefore, M′ = Decsk(C′) holds. From Lemma Ap-
pendix B.1, C = C′ holds with non-negligible probabil-
ity. Therefore, M′ = Decsk(C′) = Decsk(C) = M holds
with non-negligible probability. From the definition of T ,
this means that T = 1 holds with non-negligible probabil-
ity. From Lemma Appendix B.1, T = T ′ holds with non-
negligible probability. Therefore, T ′ = 1 holds with non-
negligible probability.

Recall that the output of PADec
Π,A1,P1

(κ) and that of

PAK1

Π,A1,P1
(κ) are computationally indistinguishable. There-

fore, even in the experiment PAK1

Π,A1,P1
(κ), T ′ = 1 holds

with non-negligible probability. From Lemma Appendix
B.1, T = T ′ holds with non-negligible probability. There-
fore, T = 1 holds with non-negligible probability. From the
definition of T , this means that M = M′ holds with non-
negligible probability, even in the experiment PAK1

Π,A1,P1
(κ).

That is, K1 succeeds in outputting M = Decsk(C) with non-
negligible probability.

Let C be a ciphertext. We cannot use P1 itself in order
to invert a ciphertext. So, we construct another plaintext
creator P2

C by modifying P1, and show that we can invert a
ciphertext by using P2

C . There are two differences between
the description P1 and that of P2

C . First, P2
C “sends” the

input ciphertext C toA1, although P1 generates a ciphertext
itself and “sends” the ciphertext toA1. Second, P2

C always
sets T = 1, although P1 sets T = 1 or T = 0, depending on
whether M = M′ holds or not. The precise description of
P2

C is depicted in Fig. A· 5.
We give the description of PAK1

Π,A1,P2
C (κ) step by step.

P2
C “sends” C to A1. Then A1 receives C′ (which is ex-

pected to be equal to C), makes decryption query C′ and re-
ceives a plaintext M′, and sends M′ to P2

C . P2
C sets T = 1

and “sends” T to A1. Then A1 “receives” T ′ (which is ex-
pected to be equal to T ), and outputs (pk,C′,M′, T ′).

We let PAK1

Π,A1,P2
C (pk) denote the experiment PAK1

Π,A1,P2
C

(κ) in which pk is used as a public key. By using
PAK1

Π,A1,P2
C (pk) as a subroutine, we construct an inverter I1

for the onewayness game as follows. I1(pk,C) executes
PAK1

Π,A1,P2
C (pk) to obtain the output (pk,C′,M′, T ′) and out-

puts M′.
We compare I1(pk,C) and PAK1

Π,A1,P1
(pk). K1 is ex-

ecuted in both I1(pk,C) and PAK1

Π,A1,P1
(pk), which are

perfectly indistinguishable from the viewpoint of K1.
More precisely, the input of K1 in I1(pk,C) and that in
PAK1

Π,A1,P1
(pk) are perfectly indistinguishable, (if the input

(pk,C) of I1 is chosen randomly by the experimenter of
the onewayness.) Recall that K1 succeeds in outputting
the decrypted plaintext in PAK1

Π,A1,P1
(pk) with non-negligible

probability. Therefore, even in the execution of I1(pk,C),
K1 succeeds in outputting the decrypted plaintext M =

Decsk(C) with non-negligible probability. This means that
I1(pk,C) succeeds in inverting C with non-negligible prob-
ability. Therefore, Π is not oneway. �

Isamu Teranishi received B.S. and M.E. de-
grees in mathematics in 2000 and 2002 respec-
tively, from Tokyo Institute of Technology. He
joined the NEC as a researcher in 2002.

Wakaha Ogata received B.S., M.E. and
D.E. degrees in electrical and electronic engi-
neering in 1989, 1991 and 1994, respectively,
from Tokyo Institute of Technology. From
1995 to 2000, she was an Assistant Professor at
Himeji Institute of Technology. Since 2000, she
has been an Associate Professor at Tokyo Insti-
tute of Technology. Her current interests are in-
formation security and cryptography.


