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Abstract

We focus on the problem of robust speech recognition in the pres-
ence of nonstationary sudden noise, which is very likely to hap-
pen in the home environment. As a model compensation method
for this problem, we investigated the use of Parallel Model Com-
bination (PMC) architecture developed from a clean-speech Hid-
den Markov Model (HMM), and a sudden-noise HMM. We ana-
lyzed three problems (1) the time structure of sudden noise, (2)
the position of noise in the corrupted speech, and (3) a possible
choice for the gain matching term based on the relation between
the noise power and the SNR. The study was carried out based on
the database recorded in home environments by a personal robot
PaPeRo of NEC Corporation.

1. Introduction

A great deal of effort has been devoted to developing personal
robots, such as household robots, educational robots, or personal
assistants, which interact with human beings in the home environ-
ment. Most of those robots are equipped with a speech recogni-
tion function because their interface should be sufficiently easy for
children and elderly people to control.

While current speech recognition systems give acceptable per-
formance in laboratory conditions, their performance decreases
significantly when they are used in actual environments. The major
reason for this degradation is that many different kinds of noise ex-
ist in actual environments. Developing speech recognition devices
that are robust against nonstationary noise is important. There have
been many studies on this topic, and they are categorized as fol-
lows: speech enhancement, missing data theory, and model com-
pensation.

Speech enhancement aims at suppressing noise in the speech
signal with the risk of degrading the original clean signal. Spectral
subtraction, filtering techniques, and mapping transformation [1]
belong to this category. They are known to be effective when the
noise is stationary, but their performance degrades significantly for
nonstationary noise.

Missing data theory tries to determine the level of reliability
of each spectral region in the speech spectrogram [2], assuming
that some portions of the speech spectrum are not contaminated
by noise. However, this approach is effective only for noise that
selectively corrupts a small portion of the signal spectrum.

Model compensation methods use noise models and combine
them with speech models during the recognition process. One ex-
ample is the well-known HMM composition and decomposition
method [3], which can deal with nonstationary noise, but it is com-
putationally expensive. A simplified version of HMM composi-

tion and decomposition is the parallel model combination (PMC)
approach [4]. Although computationally less expensive, the gain
matching term, which determines the signal-to-noise ratio (SNR),
must be manually chosen.

We present a comparative study on robust speech recognition
against nonstationary sudden noise, which is very likely to happen
in home environments. This noise appears suddenly and lasts for
a short time. As a model compensation method we have chosen
PMC. We studied three problems: (1) if time structure of sud-
den noise is informative during recognition process, (2) how the
recognition process is influenced by the position of noise in the
corrupted speech, and (3) we also investigated a possible choice
for the gain matching term based on the relation between the noise
power and the SNR. These problems were analyzed by several ex-
periments on the database recorded in home environment by per-
sonal robot PaPeRo (NEC Corp).

2. Robust speech recognition using PMC
2.1. Parallel model combination

The objective of PMC is to recognize noisy speech (speech con-
taminated by noise) using the combination of clean speech and
noise models. Clean speech and noise models trained in cepstral
domain can be combined in the linear or log-spectral domain by
using the mismatch function [4]:

O.(t) = log (e(sé(t)) + ge(Nf(t))) )

where OL(t), S!(t), N} (t) represents the ith element of the obser-

vation vector in the log-spectral domain at time ¢ for noisy speech,

clean speech, and noise, respectively. The parameter g is the gain

matching term. The mismatch function for the ith delta element of

the noisy speech observation, AOL(t), is defined as:

AOL(t) = log (eASéuHSéu_T) n eAN%(t)+N£<t—T>+1og<g>)
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where the parameter 7 defines the time shift.

2.2. Parameter estimation
2.2.1. Output probability density function estimation

In order to calculate the parameters of the noisy speech HMMs,
an expectation of the mismatch function should be calculated. As



there is no closed-form solution for this problem, a log-max ap-
proximation can be applied [6].

Let 22!, u2!, and 12! be the 2P-dimensional mean of mixture
component in corrupted speech HMM, clean speech HMM and

noise HMM, respectively, in the log-spectral domain.
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Then, the static mean of the corrupted speech HMM is given by [6]
b = log(e"t + ge™). ®)

Assuming stationarity, the delta mean is given by
Aﬂi = log (eAHé'FHé + eAﬁé'Fﬁé-HOg(g)) (4)

_ log (eﬂé Jr e["é"’loé’;(g)) .

2.2.2. Transition matrix estimation

A PMC built from clean speech HMM S (with K states) and noise
HMM N (with Z states) can be represented by a traditional HMM
with K2 x Z? states. Its transition matrix is defined by the Carte-
sian product between the transition matrices As and A of HMMs
S and N, respectively [7]:

1<4,k<K,

A (3,5)(k,1) = aiaj]'\lfv 1<45,1<2Z (5

3. Problemsin the home environment

There are several problems we encounter in home environments.
Firstly, the starting point and the duration of nonstationary noise
is difficult to be predicted. Even the same type of noise can last
for a different amount of time. As we will show later, the start-
ing point of nonstationary noise can have significant impact on
the recognition accuracy. Secondly, more than one type of noise
can appear at a time. Therefore robust speech recognition must
be able to deal with different combinations of noises. Thirdly, the
SNR of corrupted speech samples is not constant, as it is a function
of speaker, robot and noise source positions. Therefore a question
is how to alleviate the difference between the SNR of the training
and testing data, and how to define SNRs for these sets if each
noise and speech sample pair has different SNR. In this paper we
mainly address the following issues: (1) the time structure of sud-
den noise, (2) the position of noise in the corrupted speech, and (3)
a possible choice for the gain matching term based on the relation
between the noise power and the SNR.

In order to verify if the time structure is informative during
recognition, we tested different model structures. We fixed all the
parameters of HMMs except for those responsible for time model-
ing. If the time structure is relevant, the PMC based on the model
that properly represents the time structure should yield better per-
formance than the PMC based on HMM with no ability of time
structure modeling.

In order to define a possible choice for the gain matching term,
we observed in Eq. (1) that the gain matching term should reflect
the relationship between noise power in the training set and noise
power in the testing set. The most natural way is to follow the

same process as during the synthesis of the clean speech and noise
samples into the noisy speech samples at the desired SNR. Dur-
ing this process the noise sample is multiplied by the amplification
factor. We calculate the gain matching term in similar manner to
the amplification factor. However, the calculation is done over the
averaged power for speech and noise samples in the training set
[P(speech) and P(noise)]. Therefore, the gain matching param-
eter g for the given testing set is defined as:

U
_ -==\ P(speech)
9= <10 10> P(noise) ’ ©

where wu is the expected SNR for the testing set.

4. Experiments

4.1. Experimental conditions

For our studies, we used a database recorded by a personal robot
called PaPeRo developed by NEC Corporation [5], which was
used in the houses of 12 Japanese families (FO1-F12). The
database contains 74,640 sounds, each of which was detected
by the speech detection algorithm equipped in PaPeRo. These
sounds were classified manually into three categories: clean
speech (speech without noise), speech corrupted by noise, and
noise (noise without speech).

In this study, we used 16,000 samples of clean speech, and 480
recordings of sudden noise such as doors slamming, knocking, and
falling objects. The statistics for each family are shown in Figure 1
and Figure 2. Samples were digitized at the 11,025 Hz sampling
rate, and analyzed at a 10 msec frame period. Mel frequency cep-
stral coefficient parameters consisting of 12 static features and 12
A features were used as the input features in each frame. We de-
veloped a system for recognizing isolated Japanese words. The
vocabulary contains 1492 entries, consisting of words and simple
phrases (for simplicity we treated each phrase as a word).

The samples from eight families (F02-F06, FO8, F09, and F11)
were used for training the HMMs of clean speech and sudden
noise. The test set was prepared as follows. From each of the
remaining 4 families, all samples of sudden noise and 137 sam-
ples of clean speech were taken. Then, each clean speech sample
was paired with a sudden noise sample that was selected randomly
from the noise samples in the remaining 4 families. Next, the
paired speech and noise samples were mixed at different SNRs:
-5, 0,5, 10, and 20 dB.

To achieve the desired SNR for each pair of speech and noise
samples, the power of speech and noise was calculated as follows.
Let w(4) be the power in the ith frame of the signal s. In addition,
let C := {iJw (i) > A}, i.e., Cisthe setof indices in which the ith
frame has power greater than or equal to threshold \. The power
of signal s is defined by

2icow(i)
%7 )

where W is the number of frames in set C'. For our experiments,
we set the threshold A = 400 for speech, and A = 50 for noise.
These values were optimized in our preliminary experiments. A
clean speech sample and a sudden noise sample were synthesized
in such a way that the center point of these two samples was lo-
cated at the same point (middle position). Additionally two more

P(s) =
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Figure 1: Number of clean speech samples used in our experiments
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Figure 2: Number of sudden noise samples used in our experiments

sets were created where the center point of the noise sample was
shifted in relation to the center point of the speech sample by
—0.36 sec (frontal position) and by +0.36 sec (backward posi-
tion). An evaluation test with 548 utterances at each SNR was
prepared for each noise position.

We created a PMC as follows. First, we constructed clean-
speech HMMs and an HMM for sudden noise. The recognition
units in clean-speech HMMs were triphones, which were trained
using clean-speech data. An HMM for sudden noise was trained
using sudden noise samples. Then, for each entry in the vocabu-
lary, a word HMM was designed by concatenating the states of the
silence HMM and triphone HMMs according to their correspond-
ing sequence in the given entry. A noise HMM [which consists of
three states of silence, different number of states of sudden noise
(ranging from one to three), followed by additional three states of
silence] was built in similar manner . The state output pdf for all
states of speech HMMs was a single Gaussian distribution. Fi-
nally, a PMC that models speech and noise in parallel for a given
word was created by combining the word HMM for clean speech
and the noise HMM.

4.2. Timestructure of sudden noise

We investigated three different sudden noise model structures. An
HMM with one state with a single Gaussian distribution is the sim-
plest possible model, therefore a PMC built from this model should
give the worst accuracy. Experimentally, we found out that the op-
timal number of states for sudden noise HMM is three. Therefore,
the second HMM had three states and one Gaussian per state. As

Table 1: Gain matching term for different SNRs.

SNR (dB) g
5 15.84
0 5.01
5 1.58
10 0.46
20 0.05

we were interested in time structure of noise and its importance in
the PMC architecture, the third model had the same total number
of Gaussians as the second one, but differed in the time structure
modeling. It had one state and three Gaussians, and, unlike the
second model, it ignored the time structure of the noise.

From these noise HMMs and clean speech HMMs, three dif-
ferent PMC models where created and used for recognition of the
middle position test set. The results are shown in Figure 3. For
almost all SNR, the model with three mixtures and one state per-
formed better than model with three states and with one mixture
per state. The latter model gave slightly higher accuracy only
for SNR 0 dB. The same experiment was conducted for frontal
position and backward position test sets and similar results were
obtained. These results did not follow our expectation that the
time structure of noise is important. This might be due to the fact
that the sudden noise model parameters might not be estimated
correctly, since the number of sudden noise samples was limited.
Therefore experiments with more reliable database are needed.

4.3. Thenoiseposition in corrupted speech

Next, we investigated how the recognition results are influenced
by the position of noise in the corrupted speech. Based on the re-
sults from the last section, we decided to use a PMC built from a
noise HMM with one state and three Gaussians per state. \We per-
formed the recognition on three test sets: frontal position, middle
position and backward position test set. The results are shown in
Figure 4. The worst accuracy was achieved when the noise sample
was in the middle of the speech sample. The best accuracy was
achieved when noise appeared at the end of the speech. On aver-
age, the difference in recognition performance between these two
sets was more than 10%. In low SNR this dissimilarity was even
bigger, reaching about 20% at —5 dB. However at 20 dB, PMC
gave higher recognition score for middle position test set. It can
be explained by the fact that the noise is masked by speech and
therefore cannot be observed in high SNR. However, when noise
appears at the beginning or at the ending of the speech signal, it
is partially combined with silence and therefore it can still cause
dissortions in the recognition process. Interestingly, there is a no-
ticeable difference in the recognition results for frontal position
and backward position test sets. The results indicated that noise
that occurred at the beginning of speech causes more confusion
than the noise that occurred at the end. It might be due to the fact
that a Japanese word mostly starts with a consonant and ends with
a vowel, and consonant recognition performance might be more
influenced by the sudden noise than that of vowels.

4.4. Gain matchingterm

We investigated the value for the gain matching term that is used
to alleviate the mismatch between the SNR of the training set and
the SNR of the testing set. We calculated the gain matching term
for different SNR according to Eq. (6). The averaged SNR for the
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Figure 3: Recognition results given by three different PMC that
model differently time structure of sudden noise
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Figure 4: Recognition results for different noise position in the
corrupted speech

training set was 7dB. Table 1 shows the value of g for different
SNRs.

For each SNR a PMC model was created with the correspond-
ing value of the gain matching term . These models were compared
with a PMC with constant gain matching term g = 1, which as-
sumes that no mismatch of the test and train set SNR occurs. The
results are given in Table 2. The gain matching term improved
recognition accuracy in high SNRs. Applying g < 1 for higher
SNR (SNR > 7 dB) is equivalent to shifting the PMC model pa-
rameters towards those of the clean speech HMM. Such model is
more likely to recognize almost clean speech than noisy speech
PMC (with ¢ = 1). On the other hand, PMC models with the
estimated g did not improve accuracy in low SNRs. The results
of our experiments in low SNR can be influenced by the fact that
the SNR varied significantly between each clean speech and noise
speech samples in the training set. Therefore the gain matching
term g calculated over their averaged powers may not reflect cor-
rectly the difference between the training and testing sets.

5. Conclusion and future work

We presented a comparative study on robust speech recognition
against sudden noise in the home environment. Firstly, for sudden
noise time structure, more studies with larger database are needed.
Secondly, we found out that the position of the sudden noise influ-

Table 2: The recognition accuracy (%) under different SNRs

Test set -5dB | 0dB | 5dB | 10dB | 20dB

frontal
g constant | 48.3 | 56.0 | 60.6 63.9 66.4
gmatched | 32.1 | 51.4 | 59.7 | 64.0 68.4

middle
gconstant | 32.1 | 47.3 | 57.3 64.2 70.6
g matched | 25.5 | 48.3 | 56.6 | 65.5 735
backward
gconstant | 60.4 | 64.2 | 66.6 69.5 69.7
gmatched | 58.2 | 619 | 644 | 67.3 67.3

ences significantly the recognition performance in our experiments
using Japanese. In the future, more experiments using different
languages should be performed to exam language dependency for
this problem. Finally, our suggested adapting gain matching term
was effective in high SNRs. However, when it is difficult to de-
fine the SNR for the training set, it may be better to keep the gain
matching term constant during the calculation of the PMC param-
eters, as in low SNRs it did not improve recognition performance.
This study was conduct only for sudden noise. In the future, dif-
ferent kinds of noise and their combination should be taken into
account.
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