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ABSTRACT

We focus on the problem of speech recognition in the pres-
ence of nonstationary sudden noise, which is very likely to
happen in home environments. 1o handle this problem, a
model compensation method based on a factorial hidden
Markov model (FHMM) has been recently introduced. In
this architecture, speech and noise processes are modeled in
parallel by a phoneme FHMM that is built by combining a
clean-speech phoneme hidden Markov model (HMM) and a
sudden noise HMM, Here, to increase the robusmess of this
method further, we apply supervised and unsupervised home-
environment adaptation of phoneme FHMMs. A database
recorded by a personal robot PaPeRo in home environments
was used for the evaluation of the proposed method un-
der noisy conditions. The phoneme home-dependent FHMM
achieved better recognition accuracy than the clean-speech
home-independent HMM, reducing the overall relative ervor
by 16.2% and 12.3% on average for supervised and unsuper-
vised adaptation, respectively.

1. INTRODUCTION

In recent years. a great deal of effort has been devoted to
developing personal robots, such as household robots, edu-
cational robots. or personal assistants, that interact with hu-
man beings in the home environment. Recent achievements
in this area include the android Asimo (Honda). pet robot
Aibo (Sony), and family robot PaPeRo (NEC). Speech is the
most natural and the easiest way to communicate for humans,
so most of these robots are equipped with a speech recogni-
tion function because their interfaces should be sufficiently
easy for children and elderly people to control. While cur-
rent speech recognition systems give acceptable performance
under laboratory conditions, their performance decreases sig-
nificantly when they are used in real environments due to the
presence of nonstationary noise. Therefore, speech recogni-
tion devices that are robust against nonstationary noise are in
great demand.

Current studies on robust speech recognition can be cat-
egorized into the following three groups: speech enhance-
ment, missing data theory, and model compensation. Speech
enhancement methods try to suppress noise from the speech
signal. but they are only effective for stationary noise. Miss-
ing data theory aims at determining the level of reliability
of each spectral region in the speech spectrogram. Hence
missing data theory only works well for noise that selectively
corrupts a small portion of the signal spectrum. Model com-
pensation methods combine noise and speech models during
the recognition process, so they are able to deal with non-
stationary noise. A promising model compensation method

is the factorial hidden Markov model (FHMM), which is an
extension of hidden Markov models (HMMs)[1].

The FHMM consists of layers that model loosely coupled
processes. They have been used in [4] to increase the robust-
ness of speech recognition systems in the presence of nonsta-
tionary sudden noise, which is very likely to occur in home
environments. The scheme in [4] has been evaluated with
word FHMMs in a word-isolated speech recognition task.
An extension to phoneme FHMMs, which can be applied
to large-vocabulary continuous speech recognition (LVCSR)
systems, has been reporied in [5].

In this study, to improve the robustness of the speech
recognition system using phoneme FHMMSs, we apply adap-
tation of phoneme FHMM s to a specific home environment.
Different people have different voice characteristics and that
different places exhibit differences in their noise character-
istics. On the basis of that principle. a home-dependent
phoneme FHMM is expected to increase the robustness of
speech recognition systems compared with that of home-
independent phoneme models. which represent common
characterstics shared by all homes. For the evaluation of the
proposed algorithm. we used a database recorded by a per-
sonal robot PaPeRo [6] in home environments. The exper-
iments confirmed that our method improves the recognition
accuracy under noisy conditions.

2. ROBUST SPEECH RECOGNITION USING
FHMMS

2.1 FHMM

An FHMM is formed as a dynamic belief network com-
posed of more than one layer. Each layer can be seen as
a hidden Markov chain that evolves independently from the
other layers.

Let an FHMM be composed of two HMM layers. O and
R, with N and W states. respectively. The first layer, O, repre-
sents specch. while the second layer. R, models sudden noise.
Then. at each time frame, the speech and noise processes are
described by the FHMM metastate (q,r), which is defined
as a pair of states, ¢ and », of HMM Q and HMM R, respec-
tively. Furthermore. we assumed that the element-wise maxi-
mum of the output observations of the two layers is taken [7].
The structure of this FHMM is shown in Figure 1.

2,2 Model formulation

2.2.1 Transition matrix

The FHMM with layers Q and R defined in Section 2.1, can
be represented by a traditional HMM with N x W states [8].
Its transition matrix is defined by the Cartesian product of
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Figure 1: Structure of FHMM composed of two HMMs, Q
and R.
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the transition matrices Ap and Agp of HMMs QO and R, re-
spectively [8]:

ag ey = agaly. 1<LESN, 1<jISW. (1)

2.2.2 Outpur probability density function estimation for
static part of abservation vector

For each time frame. let y = (y1,52.....¥p)".
(x1,%2,...,xp)7. and n = (m,m,....,np)7 be the D-
dimensional Mel Frequency Spectral Coefficient (MFSC)
static vectors for noisy speech, clean speech, and noise, re-
spectively. Then, output y of the FHMM for each frame is

given by the log-max approximation:
¥ & max(x, n), )

where “max(.,.)” stands for the operation selecting the
element-wise maximum, This approximation is based on the
assumption that, at each time and at each frequency band, one
of the mixed signals is much stronger than the other. Hence.
the contribution to the outpul probability density function
(pd)) from the weaker signal can be neglected.

Let the output pdfs for state g in HMM Q and state r in
HMM R be represented by the mixture of Gaussians:

M
Pq(x) = 2 Cqu(xlﬂan:Eqm) and 3)
m=1
M
Pr(n) = 2 crmN(n“er: Erm)- (4)

m=1

where M is the number of Gaussians in each state, Ugm and
Urm are the mean vectors of the m-th mixture components of
states g and r, and cgp, and ¢, are the m-th mixture coeffi-
cients, respectively. We assume that the covariance matrices
Sgm and X,y of the m-th mixture in states g and r. respec-
tively, are diagonal. Hence. a D-variate Gaussian N(.|.,.) is
equivalent to the product of D univariate Gaussians. Then.
the pdf of the observation vector y for metastate (g.r) of the
FHMM is defined by [2]:

Pan(Y) = Pe(¥)F(Y) + pr(¥)Fo(y). (3)

where

M D
Fly)= z Cqmn / > Pglxa)dxy and (6)
d=17"=

m=1

M D
F(y)= Z Crm l—[ /yd pr(ng)dng. O]
=] d=1v "

Symbols pg(xg) and p,(ng) represent the d-th univariate
Gaussians in states g and » of HMM O and HMM R, respec-
tively.

2.2.3 Outpur probability density function estimation for
static and dynamic features

The calculation of the output pdf defined in (3) is based on
the log-max approximation, which is very effective for static
features but cannot be applied directly to the dynamic part
of the observation vectors. The element-wise maximum se-
lection operation between dynamic features of two different
signals is meaningless and does not approximate the A fea-
tures of the mixed signal because dynamic features contain
information about changes in the signal over time.

To incorporate dynamic features of the observation vec-
tor into the calculation of the pdf of metastate (g.7). three
steps are performed [4]. First. for each frame. the domi-
nant signal from the mixed signal is detected by applying the
log-max approximation to static features of the mixed sig-
nal. Next, if speech is dominant, state g is used to calculate
the pdf of the dynamic features; otherwise. state r is used.
Finally, the output pdf of FHMM p}, (y. Ay) for static and
dynamic features of the observation vector is calculated as
follows:

Pan(Y)pg(AY),
Plan(y.Ay)= if pr(Y)Fa(y) < Pa(y)F(¥).

Pier)(y)p-(Ay), otherwise,

(8)
where Ay represents the dynamic features of y. and p,(Ay)
and py(Ay) are the output pdfs for the dynamic part of the
observation vector y given by states g and r. respectively.
The pdf p(g,»(y) is defined in (5). The condition in (8) de-
fines whether process O or process R is dominant at a given
time, thus defining which state should be used to calculate
the output pdf for the A features. Terms Fy(y) and F,(y) are
defined in (6) and (7). respectively. and they can be regarded
as weighting coefficients.

2.3 Phoneme FHMM versus word FHMM

The theory presented in Sect. 2.1 can be applied to create
word FHMMSs and phoneme FHMMSs. In a word FHMM. the
speech layer is represented by a word HMM. In a phoneme
HMM, the speech layer is represented by a phoneme HMM.
In our FHMM formulation. we assume that the speech signal
and the sudden noise have the same duration. While this as-
sumption is usually correct in word FHMMs, it is not clear
that it is also correct in phoneme HMMs. The duration of
some samples of sudden noise might be longer than the du-
ration of a phoneme. In this case, the misalignment of noise
signals may deteriorate the recognition performance.

Nevertheless, in certain applications, such as in large-
vocabulary systems, phoneme FHMMs are more desirable
because they need less training data, reduce the computa-
tional time during the recognition process compared with that
of word FHMMs, and require significantly less memory.

We create phoneme FHMMs in two steps. First. clean
speech HMMs for each phoneme are trained using clean
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Figure 2: Tree structure for shifts estimation

speech data, and a noise HMM is trained using noise data.
Then. the phoneme FHMM that models speech and noise in
parallel is created by combining a phoneme HMM for clean
speech with a noise HMM for each phoneme. as described in
Sect. 2.1. The phoneme HMM and the noise HMM are the
mathematical representations of speech and noise layers of
the phoneme FHMM, respectively. The resulting transition
matrix of phoneme FHMM reflects how the noise signal and
the speech signal of the phoneme are mixed.

2.4 Home-environment adaptation

For the FHMM models defined in Section 2.1. the adaptation
process is conducted independently for speech layer Q and
noise layer R. For the adaptation of each layer, we use a
method proposed by Shinoda er al. [9]. The effectiveness of
this method and that of the (MLLR) method are comparabie
because both methods are piccewise linear transformations.
However. in Shinoda's algorithm, the tree structure is more
flexible because the number of branches in each level and the
depth of the wee can be arbitrarily designed.

In this method. the mean of each Gaussian component
in the home-independent HMM (HI-HMM) is mapped to the
unknown mean of the corresponding Gaussian component in
the home-dependent HMM (HD-HMM). Let y; and [1; be the
mean of the i-th Gaussian component of the HI-HMM and
the corresponding Gaussian component of the HD-HMM, re-
spectively. Then.

=i+ 6.

where & is a shift parameter obtained from the mean of the
HI-HMM. N is the number of states in the model. and M is
the number of Gaussian components in each state. Shift &;
is estimated using a training algorithm such as the forward-
backward algorithm or the Viterbi algorithm. The number
of &; is so large (N x M) that the correct estimation of these
shifts with a limited amount of adaptation data is often very
difficult. To overcome this problem. the proposed method
controls the number of shifis to be estimated by using a tree
structure of Gaussian components (see Figure 2). This tree
is constructed by clustering the Gaussian mixtures of all the
states of the HI-HMM with a top-down clustering method
that employs the k-means algorithm. The Kullback-Leibler

divergence is used as a measure of distance between two
Gaussians. In such a tree. each leaf node i corresponds to
Gaussian mixture 7, and a tied-shift A; is defined for each
nonleaf node j. Using this tree structure. we control the
number of free parameters according to the amount of data
available. When we do not have a sufficient amount of data.
a tied-shift A; in the upper part of the tree is applied to all
the Gaussian components below node j. As the amount of
data increases, tied-shifts in the lower levels are chosen for
adaptation. To conwrol this process, we use a threshoid that
defines the minimum amount of data needed to estimate A;.
This threshold represents the number of data frames needed
for the precise estimation of the shifts attached to each node
and is chosen experimentally.

3. EXPERIMENTS
3.1 Experimental conditions

For the evaluation of the proposed method. we used a
database recorded by a personal robot called PaPeRo. de-
veloped by NEC [6]. which was used in the houses of 12
Japanese families (HO1-H12). The database contains 74,640
sounds, each of which was detected by the speech detection
algorithm equipped in PaPeRo. These sounds recorded by
PaPeRo were labeled manually and classified into three dif-
ferent types: speech without noise. noisy speech. and noise
without speech. Furthermore. each noise sample was la-
beled with the corresponding noisc type: TV, human dis-
tant speech, sudden noise, motor. kitchen sounds. electrical
sounds, footsteps. robot speech, and miscellaneous (unde-
fined noise). There is a large variety of noise types in the
home environment, so each sample can contain more than
one noise type. In this study. we used 16.000 samples of
clean speech and 480 recordings of sudden noise. such as
doors slamming, knocking, and falling objects. We also used
2.828 samples of speech corrupted by sudden noise. Each
sample consists of a small period of silence at the beginning,
an uttered word (speech sample) or noise (noise sample) in
the middle, and silence at the end. Samples were digitized at
a11.025-Hz sampling rate and analyzed at a 10-ms frame pe-
riod. Log filter-bank parameters consisting of 24 static fea-
tures, 24 A features. and A energy were used as the input
features in each frame. We developed a system for recogniz-
ing isolated Japanese words (commands spoken to the PaP-
eRo robot), The vocabulary contains 1,492 entries. consist-
ing of words and simple phrases. For simplicity, we treated
each phrase as a word. The recognition units in clean-speech
HMMs were triphones, and the state output pdf for all HMMs
was a single Gaussian distribution.

3.2 Effectiveness of supervised and unsupervised adap-
tation of phoneme FHMMs

To build the phoneme home-dependent FHMM (HD-
FHMM), a speech home-independent HMM (HI-HMM) was
adapted to the conditions of a given house using the adapta-
tion procedure described in Sect. 2.4. The resulting phoneme
home-dependent HMMs (HD-HMM) were combined with
the noise HMM as described in Sect. 2.3. We applied super-
vised and unsupervised home-environment adaptation only
for the speech layer in the phoneme FHMM. We did not have
a sufficient number of sudden noise samples, so performing
adaptation for noise layer R was not possible.
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Figure 3: Results for supervised adaptation

For assessment, we used the “leave-one-out” method.
where the training and testing processes were repeated for
each house, except for H11, which had too few noisy speech
samples for testing. For each house. the training data con-
sisted of samples of clean speech from all other houses. The
noisy speech samples of the given house were used as a
testing set. For supervised and unsupervised adaptation of
speech layer O, we used 183 clean speech samples from
each house. which were not included in the training or testing
sets. In supervised adaptation. we used the true transcription
of the adapted data, which was manually prepared. On the
other hand, in unsupervised adaptation, the transcription of
the adaptation test was obtained via the speech-recognition
process.

The results of supervised and uonsupervised phoneme
FHMM adaptation are given in Figures 3 and 4, respec-
tively. On average. supervised adaptation of the phoneme
FHMM reduced the relative error by 6.7% compared to that
of the phoneme HI-FHMM and 16.2% compared to that of
HI-HMMSs. The best absolote improvement of 19.0% was
obtained for house HO3. The unsupervised adaptation gave
worse results that those of supervised adaptation. This is
expected because the systern might use incorrect labels for
given samples during the adaptation process. Nevertheless.
applying unsupervised speech adaptation to phoneme HI-
FHMM decreased the relative error by 2.6% compared to that
of HI-FHMM,

We also compared the adaptation performance of
phoneme and word FHMMSs (see Figure 5). The Word
FI-FHMM. the word HD-FHMM (unsupervised adapta-
tion), and the word HD-FHMM (supervised adaptation) gave
17.9%. 20.5% and 25.2% relative error reduction, respec-
tively. compared to those of HI-HMMs.

The word FHMM performs better than the phoneme

FHMM because the construction of the transition matrix
of the phoneme FHMM is based on the assumption that
the noise duration and the phoneme duration are similar.
However, in practice, this assurnption does not necessarily
hold. In our experiments, the average duration of Japanese
phonemes was 65 ms and that of sudden noise samples was
143 ms. A careful design of the transition matrix taking into
account variations on the duration of phonemes and noise is
expected to reduce the performance difference between word
and phoneme FHMMS.

|0 HMM B Phoneme FHMM 8 Word FHMM | {

Recognition Accuracy (%)

! HD HD

: Unsupervised Supervised
‘ adaptation adaptation
I acep plation.

Figure 5: Averaged results of home environment adaptation

4. CONCLUSION AND FUTURE WORK

We investigated the impact of phoneme FHMM adaptation
for speech recognition in the presence of nounstationary sud-
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Figure 4: Results for unsupervised adaptation

den noise, which is very likely to be present in home environ-
ments. The proposed phoneme HD-FHMMSs achieved better
recognition accuracy than clean-speech HI-HMMs, reducing
the overall relative error by 16.2% and 12.3% on average for
supervised and unsupervised adaptation, respectively. Al-
though phoneme HD-FHMMs did not outperform word HD-
FHMMs in our experiments. they require significantly less
training data and reduce the computational time of speech
recognition compared with that of word FHMMs. Hence.
phoneme FHMMs are more desirable candidates to be used
in more complex tasks. especially in LVCSR systems.

We created a noisy phoneme FHMM by combining an
HMM for clean speech and an HMM for noise, both of which
have simple structures in this study. In addition, HMMs cre-
ated with more complex structures (more Gaussians per state,
different HMM topologies, and number of states) need to be
investigated. In our experiments, we used MFSC features
because they follow the log-max approximation. In the fu-
ture. we would like to apply more robust features to FHMM
architecture.
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