
論文 / 著書情報
Article / Book Information

Title Implementation and Evaluation of Fast On-the-fly WFST Composition
Algorithms

Authors Tasuku Oonishi, Paul Dixon, Koji Iwano, Sadaoki Furui

Citation Interspeech2008, , , pp. 2110-2113,

Pub. date 2008, 9

Copyright (c) 2008 International Speech Communication Association, ISCA

DOI http://dx.doi.org/

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/
http://t2r2.star.titech.ac.jp/

Implementation and Evaluation of Fast On-the-fly WFST Composition
Algorithms

Tasuku Oonishi, Paul R. Dixon, Koji Iwano, Sadaoki Furui

Department of Computer Science, Tokyo Institute of Technology, Japan
{oonishi,dixonp,iwano,furui}@furui.cs.titech.ac.jp

Abstract
When using Weighted Finite State Transducers (WFSTs) in
speech recognition, on-the-fly composition approaches have
been proposed as a method of reducing memory consumption
and increasing flexibility during decoding. We have recently
implemented several fast on-the-fly techniques, namely avoid-
ing dead-end states, dynamic pushing and state sharing in our
decoding engine. The goal of this paper is to provide a uni-
fied study of how the different on-the-fly techniques and on-
line composition combinations effect speech recognition perfor-
mance. The evaluations were performed on a large spontaneous
speech recognition task and the results show that when us-
ing on-the-fly composition with a fully dynamically composed
language model component the performance degrades substan-
tially even when avoiding dead-end states. We then show in
these cases the recognition performance can be dramatically im-
proved with the addition of dynamic pushing and state sharing.
Index Terms: LVCSR, WFST

1. Introduction
Within recent years it is evident that the Weighted Finite State
Transducer (WFST) approach pioneered at AT&T [1] is becom-
ing a very popular approach for building speech recognition
systems. The elegant WFST framework allows for the search
networks to be pre-compiled and heavily optimized often lead-
ing to much better recognition performance. The unified WFST
representation brings many advantages when developing a high
quality decoding engine, for example changes to any of the
knowledge sources should not require extensive modifications
of the decoder.

Currently at Tokyo Institute of Technology we are also de-
veloping a WFST based speech decoder with the aim of achiev-
ing state-of-the-performance and high flexibility [2].

When using the WFST framework for speech recognition
the various knowledge sources are all first represented as an
equivalent WFST, typically these will consist of:

• H maps HMM states to context-dependent phones.

• C represents a transduction from context-dependent
phones to context-independent phones.

• L is lexicon converted to a WFST that will map context-
independent phone sequences to words.

• G is a WFST that represents the language model, for
example an N-gram model that maps words to N-gram
weighted word sequences.

The composition operation (denoted by ◦) combines WFSTs to-
gether. To generate an integrated search network that will map
from HMM states to language model weighted word sequences

the multiple levels of information are combined together ac-
cording to H◦C◦L◦G. The optimization procedures are typ-
ically performed on the individual WFSTs as well as the final
composed WFST to reduce computational resources both dur-
ing composition and decoding.

A drawback of this WFST approach is access to original
knowledge sources is lost once the final network has been com-
posed and optimized. On-the-fly composition and optimiza-
tion algorithms have been developed by others [3, 4, 5, 6] as
a method of increasing flexibility within the WFST paradigm.
However, one disadvantage with such on-line algorithms is
some of the optimization powers available in the static equiv-
alents are sacrificed.

In this paper we evaluate our fast on-the-fly implementa-
tions based on the schemes proposed by [4, 5, 6] that we have
recently added to our decoding engine. When using on-the-fly
composition there exists many different combinations of static
and on-the-fly compositions and it is very useful to have knowl-
edge of where the combination and optimization effects perfor-
mance the most, today few studies have attempted to investigate
this area. The results presented will illustrate the speed and ac-
curacy of the decoder operating on a variety of transducer cas-
cades.

The remainder of the paper is structured as follows: sec-
tion 2 describes WFST evaluated in this paper, section 3 de-
scribes our fast on-the-fly composition implementations. Next
in Section 4 we present experiment evaluations and then the
paper is finished in section 5 with conclusions.

2. WFST combinations evaluated
In this paper we evaluate the different on-the-fly composition
combinations as detailed below. With the exception of the fully
static network, composition operations occurring within paren-
thesis indicate a static composition and composition operations
occurring outside parenthesis are on-the-fly operations.

• H ◦C ◦L ◦G: Fully statically composed and optimized
WFSTs.

• (H ◦C) ◦ (L ◦G): This combination was studied in [6],
the lexicon and the language model are bound together
and therefore can be changed dynamically as a unit but
cannot be changed individually.

• (H ◦C ◦L ◦Guni) ◦Gtri/uni: The WFSTGuni repre-
sents a uni-gram language model and WFST Gtri/uni

represents a tri-gram model divided by the uni-gram
probability. This scheme as studied in [3] allows for the
inclusion of some static language model information and
the addition of this look-ahead information can improve
the search performance.

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia2110

0

a:ε
1 3

b:ε

5

2 4 6

c:A

x:ε
y:ε z:X

L1

0
A:A

1

R1

(0,0)

L1�R1

(1,0) (3,0) (5,1)

(2,0) (4,0)

a:ε

b:ε c:A

x:ε
y:ε

Figure 1: Dead-end state generation when performing compo-
sition.

• (H ◦C ◦L)◦G: The language model information can be
changed dynamically and therefore it has the potential to
be very flexible [4, 5].

• (H ◦ C) ◦ L ◦ G: The lexicon and language model can
be changed individually offering a great deal of potential
flexibility, however, the two dynamic composition op-
erations could incur a large overhead and generate sub-
optimal search networks.

3. Fast on-the-fly composition
One of the biggest potential drawbacks when using on-the-fly
transducer composition is the inability to fully optimize the fi-
nal search graph used in the decoder. This will often lead to a
degradation in performance and speed. On-the-fly composition
algorithms have been proposed [4, 5, 6] that attempt to perform
some type of on-line optimization thus giving both flexibility
and incurring fewer performance penalties, examples of such
algorithms are avoiding dead-end states, dynamic pushing and
state-sharing.

3.1. Dead-end states

The composition of the transducers L1 with R1 to give the
transducer L1 ◦ R1 is shown in Figure 1. In L1 ◦ R1 the path
(0,0)-(2,0)-(4,0) will not reach a valid end state because it con-
tains a non-coaccessible or dead end state (4,0). The dead-end
state was produced because WFST L1 did not have any output
labels that matched an input label in R1. A static composition
operation would remove such a path from the final transducer,
however, when performing search with on-the-fly composition,
such states can be generated frequently and this can lead to a
degradation in recognition performance and speed.

Caseiro [4] proposed an on-the-fly composition technique
that could remove dead-end states and this technique was also
extended by Cheng [5] and McDonough [6]. In this approach
before composing WFSTs, L and R, a set of anticipated non ε
output labels is pre-calculated for each of the states in L. Dur-
ing composition when the state pair (ql, qr) is generated, if the
intersection of ql anticipated output labels and qr input labels
is empty then the state does not produce a valid output transi-
tion and is culled. We have implemented a similar operation to
remove dead-end states in our decoder.

3.2. Dynamic pushing

The weight pushing operations allow for the weights to be
moved closer to the initial state [1]. If pushing is applied to
search networks the decoder will encounter the weights earlier
in search and this can lead to improvements in performance.

0

42 3

1

a:ε

a:ε a:A

a:ε

L2

0

A:A/10

R2

(0,0)

(4,0)(2,0) (3,0)

(1,0)

a:ε/10

a:ε a:A/0

a:ε/10

L2�R2

[0]

[10] [10] [0]

[0]

Figure 2: Composed WFST with dynamic pushing.

The pushing operation is performed after static composition,
therefore, when switching to on-the-fly composition it is no
longer possible to perform the pushing and hence a decline of
speech recognition performance is often observed.

Also proposed in Caseiro [4] is a pushing algorithm for use
in on-the-fly composition known as dynamic pushing and this
technique was also extended by Cheng [5] and McDonough [6].

In this algorithm a look-ahead score is stored at the com-
posed states and when a transition is generated, the difference
between destination and source look-ahead scores is added to
the transition weight. For example the look-ahead score which
is set at state (ql, qr) is the minimum value of a transition weight
from qr whose input label is included in an anticipated label set
for ql. Figure 2 shows an example of composition with dynamic
pushing. The values inside the square brackets are the look-
ahead scores stored inside the states. The figure shows how the
weights are moved closer to the initial states.

The example in Figure 3 serves to illustrate a potential prob-
lem that can occur when using dynamic pushing. Two possible
weightings for the composed transducer L3◦R3 are shown Fig-
ure 3 (1) and (2). The cause of the non-deterministic problem
is the pair of ε and non-ε transitions in L3 entering the common
state 2.

In order to solve the problem, a filterWFST [1] (F) shown
in Figure 4 is used in our dynamic pushing implementation. At
the first step of the on-the-fly composition, the ε output symbols
inWFSTL3 and ε input symbols inR3 are substituted with “ε2”
and “ε1”, respectively and the resulting WFSTs are denoted by
L

′
3 and R

′
3. The composition “L

′
3 ◦ F ◦ R

′
3” is performed and

in the process the pair of ε and non-ε transitions in L3 enter-
ing state 2 becomes separated into two transitions with different
destination states (2,2,0) and (2,0,0) in the final transducer (Fig-
ure 5). Since both transitions entering a common state (3,2,0)
becomes ε transitions the weighting conflict is avoided.

3.3. State sharing

When the minimization [1] operation is applied to a determin-
istic WFST, it will produce an equivalent WFST that contains
the minimum number of states. The practical effects of this op-
eration are a potential reduction in decoder memory usage and
speed-up due to the removal of redundant information.

To perform the minimization operation for a given state we
need to know all the future states we can reach from it. How-
ever, during on-the-fly composition only neighboring state in-
formation is available and therefore it is not possible to run the
minimization algorithm in an on-line manner. To simulate min-
imization operation, the state sharing algorithm in conjunction
with the on-the-fly composition was proposed in [7]. In this

2111

0

42 3

1

a:ε

a:ε a:A

a:A

L3

0

A:A/10

R3

(0,0)

(4,0)(2,0) (3,0)

(1,0)

a:ε/10

a:ε a:A/0

a:A/10

L3�R3

[0]

[10] [10] [0]

[0]

(0,0)

(4,0)(2,0) (3,0)

(1,0)

a:ε

a:ε/10 a:A/0

a:A/10

[0]

[0] [10] [0]

[0]

(1)

(2)

Figure 3: Incorrect dynamic pushing of a WFST.

0

1

2

x:x

x:x

x:x

ε1:ε1

ε2:ε2

ε2:ε1

ε1:ε1

ε2:ε2F

Figure 4: Filter WFST.

algorithm two states (ql, qr) and (ql, q
′
r) are shared when they

enter a common destination state using arcs with equal input
labels.

4. Experiments

4.1. Experimental setup

The speech waveforms were first converted to sequences of 38
dimensional feature vectors with 10 ms frame rate and 25 ms
window size. Each feature vector was composed of 12 Mel-
frequency cepstral coefficients (MFCCs) with delta and delta-
deltas, augmented with delta and delta-delta energy terms.

The acoustic models were three state left-to-right HMM tri-
phone models where each state output density was a 32 compo-
nent Gaussian mixture model with diagonal covariance. EM
training was performed utilizing the data from 967 lectures.

The language model was back-off tri-gram with a vocabu-
lary of 55k words trained on 2,682 lectures of data.

The test set used for evaluations was composed of 2338 ut-
terances which spanned 10 lectures. This yielded a total of 116
minutes of speech. The experiments were conducted on a 2.4
GHz Intel Core2 machines with 2GB of memory.

(0,0,0)

(4,0,0)

(2,2,0)

(3,2,0)

(1,0,0)

a:ε/10 a:ε

a:A/0

a:A/10

[0] [10]

[10] [0]

(2,0,0)

[0] [0]

a:ε/10

L’3�F�R’3

Figure 5: WFST with dynamic pushing and filter.

4.2. Experimental results

We considered how performing on-the-fly composition of dif-
ferent combinations would effect speed and accuracy by using
the cascades listed in Table 1. The composition operator is de-
noted by ◦. With the exception of the fully composed network,
any parts of a cascade occurring within parenthesis indicate an
up-front static composition and in such cases determinization,
pushing, minimization and factorization are performed in the
manner described in [1]. When the composition operator occurs
outside parenthesis, this means we are performing composition
on-the-fly.

In Large Vocabulary Continuous Speech Recognition
(LVCSR) tasks theWFST network often accounts for the largest
part of the overall memory consumption during decoding. The
parameter counts for each of the WFSTs cascades we consid-
ered are listed in Table 1. The table shows the total memory
requirements of the (H ◦ C) ◦ (L ◦ G) cascade were greater
than the H ◦ C ◦ L ◦ G, which may be due to the additional
optimizations applied after full composition. For consistency
we factored the (H ◦ C) part of the (H ◦ C) ◦ (L ◦ G) cas-
cades, and in accordance with our expectations no significant
compression of this WFST was observed. A substantial reduc-
tion in the total number of WFST parameters was observed in
the (H ◦ C ◦ L ◦ Guni) ◦ Gtri/uni, (H ◦ C ◦ L) ◦ G and
(H◦C)◦L◦G cascades, with all cases requiring approximately
half of the parameters used in theH ◦ C ◦ L ◦ G network.

In Figure 6 we illustrate the performance of various WFST
combinations. At 1xRTF, the performance of the (H ◦C)◦(L◦
G) and (H ◦C ◦L◦Guni)◦Gtri/uni networks is very close to
theH◦C◦L◦GWFST. In the (H◦C◦L)◦G and (H◦C)◦L◦G
configurations, a significant degradation of performance is ob-
served, this is because the on-line composition does not perform
any weight pushing on the language model WFSTs leading to
inefficient pruning during decoding.

The (H ◦ C ◦ L)◦ G and (H ◦ C) ◦ L ◦ G networks were
utilized to consider the benefits of performing dynamic push-
ing and state sharing in addition to dead-end state avoidance.
Figure 7 shows that the addition of these techniques can lead
to a substantial improvement in performance, especially in the
(H ◦ C ◦ L) ◦ GWFST which is now able to achieve a similar
performance level as the H ◦ C ◦ L ◦ G network at the 1xRTF
operating point. Even after the addition of dynamic pushing
and state sharing, the performance of the (H ◦ C) ◦ L ◦ G net-
work did not converge adequately, which is partly because of
the overhead and inefficiencies present in the on-line composi-
tion of the network. Finding a solution to this problem is an
issue we are currently investigating.

5. Conclusions and future work
Is this paper we have presented a combination of fast on-the-
fly composition algorithms and evaluated the performance using

2112

Table 1: Size of WFSTs used in the evaluations.

1st WFST 2nd WFST 3rd WFST Total
#state #transition #state #transition #state #transition #state #transition

H ◦ C ◦ L ◦ G 2,643,523 5,665,967 2,643,523 5,665,967
(H ◦ C) ◦ (L ◦ G) 1,500 6,080 3,118,382 5,918,451 3,119,882 5,924,531
(H ◦ C ◦ L ◦ Guni) ◦ Gtri/uni 38,000 112,907 752,185 3,784,320 790,185 3,897,227
(H ◦ C ◦ L) ◦ G 38,000 112,907 752,185 3,784,320 790,185 3,897,227
(H ◦ C) ◦ L ◦ G 1,500 6,080 39,666 95,057 752,185 3,784,320 793,351 3,885,457

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

W
or

d
Er

ro
r R

at
e

(%
)

RTF

H C L G
(H C) (L G)

(H C L Guni) Gtri/uni
(H C L) G
(H C) L G

○ ○ ○

○ ○ ○

○ ○ ○ ○

○ ○ ○

○ ○ ○

Figure 6: Performance of various recognition cascades when
performing on-the-fly composition with dead-end states avoid-
ance.

various WFST combinations.

Our experimental results showed that by utilizing dead-end
state removal in a recognition cascade that contains some form
of static language model information a performance level nearly
the same as the fully statically composed and optimized search
network can be achieved.

Cascades which only contain a dynamically composed lan-
guage model did not perform as well. However, we demon-
strated that the performance of such combinations can be dra-
matically improved by the addition of dynamic pushing and
state sharing operations in combination with dead-end state
avoidance.

In future work we will investigate efficient techniques for
performing on-the-fly composition of several layers of informa-
tion. Hori [8] also proposed a fast on-the-fly composition algo-
rithm and demonstrated high performance with low composi-
tion overhead. In our future work we would like to evaluate the
possibility of combination of both the Hori [8] and Caseiro [4]
approaches. Another area of future work is to evaluate the cur-
rent on-the-fly implementation on various corpora and differ-
ent types of models. For example a class base language model
WFST or the interpolation of several higher order N-gram lan-
guage models will be investigated.

6. Acknowledgments

This work was supported by the METI Project “Development
of Fundamental Speech Recognition Technology”.

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

W
or

d
Er

ro
r R

at
e

(%
)

RTF

H C L G
no dynamic pushing (H C L) G

dynamic pushing (H C L) G
no dynamic pushing (H C) L G

dynamic pushing (H C) L G

○ ○ ○

○ ○ ○

○ ○ ○

○ ○ ○

○ ○ ○

Figure 7: The Effect on the performance after the addition of
dynamic pushing and state sharing.

7. References
[1] M. Mohri, F. Pereira, and M. Riley., “Weighted finite-state trans-

ducers in speech recognition,” Computer Speech and Language,
vol. 16, no. 1, pp. 69–88, 2002.

[2] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui, “The TITECH
large vocabulary WFST speech recognition system,” Proc. IEEE
Workshop on ASRU, pp. 443–448, 2007.

[3] H. J. Dolfing and I. Hetherington, “Incremental language models
for speech recognition using finite-state transducers,” Proc. IEEE
Workshop on ASRU, pp. 194–197, 2001.

[4] D. A. Caseiro and I. Trancoso, “A specialized on-the-fly algorithm
for lexicon and language model composition,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14, no. 4, pp.
1281–1291, 2006.

[5] O. Cheng, J. Dines, and M. M. Doss, “A generalized dynamic com-
position algorithm of weighted finite state transducers for large vo-
cabulary speech recognition,” Proc. ICASSP, pp. 345–348, 2007.

[6] J. McDonough, E. Stoimenov, and D. Klakow, “An algorithm for
fast composition of weighted finite-state transducers,” Proc. ASRU,
pp. 461–466, 2007.

[7] D. A. Caseiro and I. Trancoso, “A tail-sharing wfst composition
algorithm for large vocabulary speech recognition,” Proc. ICASSP,
pp. 356–359, 2003.

[8] T. Hori and A. Nakamura, “Generalized fast on-the-fly composition
algorithm for WFST-based speech recognition,” Proc. Interspeech,
pp. 847–805, 2005.

2113

