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PAPER Special Section on Image Media Quality

Identification of Piecewise Linear Uniform Motion Blur

Karn PATANUKHOM†a), Nonmember and Akinori NISHIHARA††, Fellow

SUMMARY A motion blur identification scheme is proposed for non-
linear uniform motion blurs approximated by piecewise linear models
which consist of more than one linear motion component. The proposed
scheme includes three modules that are a motion direction estimator, a mo-
tion length estimator and a motion combination selector. In order to identify
the motion directions, the proposed scheme is based on a trial restoration
by using directional forward ramp motion blurs along different directions
and an analysis of directional information via frequency domain by using
a Radon transform. Autocorrelation functions of image derivatives along
several directions are employed for estimation of the motion lengths. A
proper motion combination is identified by analyzing local autocorrelation
functions of non-flat component of trial restored results. Experimental ex-
amples of simulated and real world blurred images are given to demonstrate
a promising performance of the proposed scheme.
key words: blur identification, motion blur, image restoration

1. Introduction

Due to an imperfection of a recording process, in many prac-
tical situations, a recorded image is a degraded version of a
desired original scene. For a noisy linear shift-invariant blur
condition, the degradation process can be modeled in a spa-
tial domain as

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y), (1)

where f (x, y) and g(x, y) are original and blurred images, re-
spectively; n(x, y) is an additive noise; and h(x, y) is called a
point spread function (PSF) of the blur. One of well-known
types of the image degradation is a motion blur. The mo-
tion blur is caused when there are relative motions between
a camera and objects during exposure time. The motion
blurred images are often seen when hand or camera is trem-
bling, objects in the scene are moving, a light condition or
shutter speed is low.

In general, a deblurring process can be considered as
two problems that are identification and deconvolution prob-
lems. The first step of image restoration is to identify the
PSF of blur and noise parameters. Then, to restore the orig-
inal image, the blurred image is deconvoluted by using the
estimated PSF of blur and noise parameters. Identification
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Fig. 1 Piecewise linear motion vector.

of the blur’s PSF plays an important role in restoration of
motion blurred images. To identify the motion blur, a num-
ber of approaches have been proposed [1]–[12]. The motion
blurs can be identified by only using the information from
blurred image itself which can be analyzed based on a zero-
crossing pattern in transform domain [1], [2], an autocorre-
lation function of an image derivative [3], a trial restoration
[4], [5], or human visual-motion sensing [6]. However, the
identification ability of these methods are limited to a spe-
cific and very simple motion models such as linear motion
in one direction or constant velocity of the motion. In some
practical situations, the motion blur may not be a linear mo-
tion vector in a single direction. To identify more complex
models of blurs, several methods such as auto-regressive
(AR) model and maximum likelihood (ML) based methods
[7], [8], vector quantization (VQ) based methods [9], [10]
and multiple-image-based methods [11], [12], are proposed.
Although these methods can be employed for more com-
plex motion models, there are some practical limitations.
ML-based approaches require a good prior estimation of the
blur length, strong assumptions on image models, and high
computational cost. For VQ-based approaches, there is a
difficulty in selecting proper candidates of blur operator for
blur identification codebook. Different shots of the scene
are necessary in multiple-image-based methods which may
require an additional hardware cost.

In this paper, a blur identification scheme for piece-
wise linear uniform motion blur (PLUMB) is proposed. The
blur parameters are extracted from the blurred image itself
without using any a priori knowledge of the original image
or noise. The motion blur is approximated and considered
to be a piecewise linear motion which has multiple direc-
tional components as shown in Fig. 1. The proposed scheme
includes modules of a motion direction estimation, a mo-
tion length estimation, and a motion combination identifica-
tion. A mathematical model for the PLUMB is described
in Sect. 2. Details of the proposed scheme are presented
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in Sect. 3. Some experimental results are demonstrated in
Sect. 4. Finally, Sect. 5 gives conclusions of this paper and
directions for future work.

2. Piecewise Linear Uniform Motion Blur

The PSF of the linear motion blur with a constant velocity
in a direction of θ for the length of L can be defined by

h(x, y; Lejθ) = h(x′θ, y
′
θ; L), (2)

where[
x′θ
y′θ

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
, and (3)

h(x, y; L)=

{
1/L; 0≤ x≤L − 1,y=0,
0; otherwise.

(4)

For discrete spatial domain, interpolation techniques have
to be employed for a rotation process in (3) when values of
non-integer pixels are needed.

For the PLUMB, the motion shown in Fig. 1 is repre-
sented by a vector of linear motion components as

V =
[

L1e jθ1 L2e jθ2 . . . LMejθM
]
, (5)

where V is a piecewise linear motion vector, θi and Li are
the motion direction and length of the i-th component; and
M represents the number of motion components. The vector
of motion direction, VD, and the vector of motion length, VL,
are defined as

VD =
[
θ1 θ2 . . . θM

]
, and (6)

VL =
[

L1 L2 . . . LM

]
. (7)

From (5), V provides the information of motion directions
and lengths of all piecewise linear components and an order
of the combination to form its corresponding piecewise lin-
ear motion. Each element of V corresponds to each linear
motion component which is represented by a complex num-
ber (in a polar form) where the motion length and direction
are represented by amplitude and phase, respectively.

By assuming that the PSF has an uniform distribution
of coefficients for an entire motion route which is identical
to the constant motion velocity during an entire exposure
period while the period for each linear motion becomes a
direct variation of motion length, the PSF of PLUMB can
be defined by

h(x, y; V) =
1∑M

i=1Li

M∑
i=1

Lih(x − Xi, y − Yi; Vi), (8)

where

Xi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; i = 1,
i−1∑
k=1

Lk cos(θk); otherwise,
(9)

Yi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; i = 1,
i−1∑
k=1

Lk sin(θk); otherwise,
(10)

and Vi = Lie jθi is the i-th element of V . From (8), PSF
for PLUMB model can be obtained by the weighted sum-
mation of the shifted versions of the PSFs of every linear
motion component with constant velocity defined in (2). An
example of PSF of PLUMB with VD = [−15◦ 30◦ 80◦] and
VE = [7 7 7] is illustrated in Fig. 7(b).

3. Proposed Scheme for PLUMB Identification

3.1 Identification Stages

To identify the PSF of PLUMB, the proposed three-stage
scheme which consists of motion direction estimator, mo-
tion length estimator, and motion combination selector is
demonstrated in Fig. 2. In Fig. 2, θ̂i and L̂i represent esti-
mated motion direction and length for the i-th motion com-
ponent; M̂ denotes the number of the identified motion com-
ponents; and ĥ(x, y) represents an estimated PSF of the blur.
In the first stage, the directions of all motion components
are identified. The result is a set of estimated motion direc-
tion, {θ̂1, θ̂2, . . . , θ̂M̂}. Note that M̂ is also obtained in this
stage. A proposed algorithm for the estimation of motion
direction will be described in Sect. 3.2. Then, in the next
stage, the motion length corresponding to each direction is
estimated. As a result, a set of identified motion compo-
nents, {L̂1e jθ̂1 , L̂2e jθ̂2 , . . . , L̂M̂e jθ̂M̂ }, is obtained in this stage.
Section 3.3 will present an algorithm to estimate the motion
length for PLUMB. Although the set of motion components
is estimated in the previous steps, the PSF from motion ob-
tained by different ordering of the components affects the
restored results. Therefore, it is important to choose the
best combination. Section 3.4 will give details about how
to choose the proper combination from the set of identified
motion components.

3.2 Estimation of Motion Direction

The proposed scheme for motion direction estimation is
based on the method of Tan, et al. [5]. In order to estimate
the direction of the motion blur, Tan proposed to firstly try
to restore the blurred image by using a forward ramp PSF

Fig. 2 Proposed three-stage identification scheme.
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Fig. 3 Scheme for motion direction estimation.

along the horizontal direction. The PSF of the horizontal
forward ramp motion blur with the length equal to L can be
written by

hFR(x, y; L)=

{
x+1; 0 ≤ x ≤ L − 1, y = 0,
0; otherwise.

(11)

Then, a vertical differentiation was applied to the trial re-
stored image to strengthen strips along the blur direction.
Finally, the image derivative was transformed into a Fourier
domain; and a Radon transform was employed in the Fourier
domain to extract an information about the direction. The
expected motion direction was the direction corresponding
to a location of maxima of the output after Radon transform.
The method of Tan, however, did not consider the cases of
multiple directional components.

In order to estimate a set of the motion directions for
PLUMB, a direction analysis function ψ is defined as shown
in Fig. 3. To compute ψ, the blurred image, g(x, y), is firstly
restored by using forward ramp PSF along the trial direc-
tions of φ and 90◦ + φ with an arbitrary trial length, LT . The
PSF of the forward ramp motion blur in the directions of φ
and 90◦ + φ with the length of LT can be obtained from

hFR(x, y; LT e jθ) = hFR(x′θ, y
′
θ; LT ), (12)

when θ = φ and 90◦ + φ; and (x′θ, y
′
θ) is obtained from

(3). The trial restored images are named as f̂FR(x, y; φ) and
f̂FR(x, y; 90◦ +φ) for the directions of φ and 90◦ +φ, respec-
tively. Then, the image differentiation along the directions
of 90◦ + φ and φ are applied to f̂FR(φ) and f̂FR(90◦ + φ),
respectively, where the directional differentiation of any im-
age s(x, y) is calculated by

Δθ(s(x, y)) = s(x′θ, y
′
θ) − s(x′θ − 1, y′θ), (13)

for any direction of θ; and (x′θ, y
′
θ) is obtained from (3).

The image derivatives are denoted by Δ90◦+φ( f̂FR(x, y; φ))
and Δφ( f̂FR(x, y; 90◦ + φ)). A reason of using the parallel
scheme of two perpendicular directions of φ and 90◦ + φ
is to strengthen the directional information of blur along
the differentiation direction which may be lost due to the
differentiation process. Then, the directional informa-
tion is analyzed by using Fourier and Radon Transforms.
Δ90◦+φ( f̂FR(φ)) and Δφ( f̂FR(90◦ + φ)) are transformed into
DFT domain, resulting in F 1(ωx, ωy; φ) and F 2(ωx, ωy; φ),
where ωx and ωy are horizontal and vertical frequencies, re-
spectively. In order to extract the information about the di-
rection, Radon transform is applied to |F 1(ωx, ωy; φ)| and

|F 2(ωx, ωy; φ)|. The Radon transform can be obtained by

Rk(a, ρ; φ)=
∫ ∞
−∞

∫ ∞
−∞

[ |F k(ωx, ωy; φ)|
· δ(ρ − ωx cos(a)−ωy sin(a))]dωxdωy,

(14)

where k = 1 and 2; R is the result after the Radon transform;
a and ρ are the dimensions of an angle and a distance from
the origin; respectively. Then, a local average of Rk(a, ρ; φ)
in the dimension of ρ denoted by R̄k(a; φ) is calculated by

R̄k(a; φ) =
1

2D

∫ D

−D
Rk(a, ρ; φ)dρ, (15)

where D is an adjusting parameter. Next, in order to em-
phasize the local maxima, a high-pass filtering operator is
employed to R̄k(a; φ) as

R̃k(a; φ) = R̄k(a; φ) − 1
2A

∫ A

−A
R̄k(a; φ)da, (16)

where A is an adjusting parameter. Finally, ψ is defined by

ψ(a; φ) = max(R̃1(a; φ), R̃2(a; φ)). (17)

Since, in practice, the motion directional information
obtained from ψ are affected by φ used in trial restoration
process, a scheme which uses multiple trial motion direc-
tion is preferable to cover more directional information. As
a result, the set of motion direction can be obtained by ap-
plying the following iterative scheme.
Initialization: An initial identified set of motion directions
denoted by {θ̂(0)

1 , θ̂
(0)
2 , . . . , θ̂

(0)
M̂(0)} can be obtained from a set of

locations of local maxima of Ψ(0)(a) = ψ(a; 0◦) whose val-
ues are over a pre-determined threshold.
Updating: The identified set of motion directions in the p-th
iteration, {θ̂(p)

1 , θ̂
(p)
2 , . . . , θ̂

(p)
M̂(p)
}, is the set of locations of local

maxima of Ψ(p)(a) whose values are over a threshold where

Ψ(p)(a) = max
i

(ψ(a; θ̂(p)
i ),Ψ(p−1)(a)). (18)

The iteration can be terminated when the difference between
{θ̂(p)

1 , θ̂
(p)
2 , . . . , θ̂

(p)
M̂(p)} and {θ̂(p−1)

1 , θ̂
(p−1)
2 , . . . , θ̂

(p−1)
M̂(p−1)} is small enough.

3.3 Estimation of Motion Length

The proposed motion length estimation scheme is modified
from the method of Yitzhaky [3]. Yitzhaky proposed that
the motion length can be estimated from a location of global
minima of an autocorrelation function (ACF) extracted from
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Fig. 4 Scheme for motion length estimation.

an image derivative along the motion direction. However,
an identification accuracy of this method is low when it is
extended to use for PLUMB.

To improve the identification results, the modified
scheme is proposed as shown in Fig. 4. Since, in the cases
of PLUMB, there is more than one directional component,
the identification of the motion length for each component
may be interfered by other components. As a result, the
scheme is modified by adding a lower path illustrated in
Fig. 4 which is differentiation along every identified motion
direction to reduce the effect from the other directional com-
ponents. For estimation of the blur length along the direc-
tion of θ̂i ∈ {θ̂1, θ̂2, . . . , θ̂M̂} which is denoted by L̂i, the dif-
ferentiation of the blurred image, g(x, y), along directions of
90◦ + θ̂i and θ̂i are continuously computed where the output
is named as ΔS (g(x, y); θ̂i). In parallel, the image differenti-
ation along directions of 90◦ + θ̂i, θ̂1, θ̂2, . . ., and θ̂M̂ are also
applied to the blurred image, continuously; and the result
is denoted by ΔA(g(x, y); θ̂i). Then, the normalized ACFs
along the direction of θ̂i are computed for ΔS (g; θ̂i) and
ΔA(g; θ̂i), resulting in RS (τ; θ̂i) and RA(τ; θ̂i), respectively.
After that, RS (τ; θ̂i) and RA(τ; θ̂i) are added together to ob-
tain RT (τ; θ̂i). Finally, the identified blur length for the di-
rection of θ̂i is a location of the global minima of RT (τ; θ̂i).
After the process has been repeated for every direction of
θ̂i where i = 1, 2, . . . , M̂, in the end of this stage, the set of
identified motion components, {L̂1e jθ̂1 , L̂2e jθ̂2 , . . . , L̂M̂e jθ̂M̂ },
is obtained.

3.4 Identification of Motion Combination

Although the set of motion directions and lengths can be es-
timated by the methods proposed in Sects. 3.2 and 3.3, the
ordering of the motion components to form the piecewise
linear motion vector is still the other parameter that have to
be identified. In this work, to limit the number of possible
combinations, we assume that the actual motion directions
are mutually different from each other or θi � θ j when i � j.
Then, in order to select the proper combinations of the mo-
tion vector, we propose the following steps.
Step 1: By using an identified set of the motion components,
{L̂1e jθ̂1 , L̂2e jθ̂2 , . . . , L̂M̂e jθ̂M̂ }, obtained in Sects. 3.2 and 3.3,
the motion components are permutated to create all possi-
ble PSFs where the PSF of the q-th permuted combination
is denoted by ĥq(x, y). The number of all PSFs, NC , is equal
to 2M̂−1M̂! obtained from M̂! possible cases that can be per-
muted from M̂ components and two cases for forward and

Fig. 5 Scheme for motion combination identification.

reverse directions (θ̂i and 180◦ + θ̂i) which provide the same
identified result for M̂ − 1 components (one component is
used for reference).
Step 2: The blurred image, g(x, y), is restored on trial
by using every possible ĥq(x, y), resulting in f̂q(x, y) when
1 ≤ q ≤ NC .
Step 3: To evaluate the trial restored results, the image
derivatives in both horizontal and vertical directions are
computed for every f̂q(x, y), resulting in Δ0◦ ( f̂q(x, y)) and
Δ90◦ ( f̂q(x, y)), respectively.
Step 4: A non-flat component, Γq(x, y), is given by

Γq(x, y) = max(|Δ0◦ ( f̂q(x, y))|, |Δ90◦ ( f̂q(x, y))|). (19)

Step 5: Each Γq is divided into NB sub-blocks, resulting in
Γ

[r]
q for 1 ≤ r ≤ NB. A normalized ACF of Γ[r]

q denoted as
R[r]

q is computed by

R[r]
q (x, y) =

∑
mx,my

Γ[r]
q (mx,my)Γ

[r]
q (mx−x,my−y)

∑
mx,my

Γ[r]
q (mx,my)Γ

[r]
q (mx,my)

. (20)

A diagram for the step one to five is shown in Fig. 5.
Step 6: Under an assumption that good restoration results
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should have less residual blur and ringing artifact which cor-
responds to less spread in the ACF, the spread of ACF is
compared by observing an area size of ACF whose value is
over a threshold level. As a result, Area and Size functions
are calculated by

Area[r]
q (x, y) =

⎧⎪⎪⎨⎪⎪⎩
0; R[r]

q (x, y) < T,

1; R[r]
q (x, y) ≥ T,

(21)

Size[r]
q =
∑
x,y

Area[r]
q (x, y), (22)

where T is the threshold level. To determine the spread of
the ACFs, a binary quantization is applied to the normalized
ACF, resulting in Area function. Then, in order to com-
pare the spread of ACF, the size of area is counted form the
Area function where Area[r]

q (x, y) = 1. The threshold level,
T , in (21) can be arbitrary but must be the same value for
every trial restored version for comparison. However, T
which provides higher variation of Size[r]

q with respect to q
is preferable in the next step for more obvious comparison
of the spread of ACF between trial restored results.
Step 7: In order to compare the spread of ACF, S core func-
tion and TotalScore function are calculated by

Score[r]
q =

{
1; Size[r]

q ≤ Size[r]
k for 1 ≤ k ≤ NC ,

0; otherwise,
(23)

TotalScore(q) =
NB∑
r=1

Score[r]
q . (24)

In every sub-block, the Size function between the trial re-
stored versions are compared and a score is given to the
trial restored version that provides the minimum value of
Size function comparing to the other trial restored version as
shown in (23). Then, a summation of the Score function for
every trial restored image is calculated as (24), resulting in
TotalScore function. Finally, the identified PSF is ĥq(x, y)
which gives the maximum TotalScore(q).

4. Experimental Results

In this section, the performance of the proposed method
is presented for both simulation and real world cases in
Sects. 4.1 and 4.2, respectively. In every simulation, the
blurred images were added with Gaussian noise, resulting
in SNR = 40 dB. The proposed method was used to iden-
tify the motion blurred images for the identification step.
After the PSF is estimated, the blurred image is deconvo-
luted by using a method based on [13]. There is an example
given to demonstrate the details of each stage of the pro-
posed identification scheme in comparison to the conven-
tional approaches.

4.1 Simulated Blur

Experiment I: The first example is the PLANE image with
the size of 512 × 512 shown in Fig. 6. The original image

Fig. 6 Original PLANE image.

(a) Noisy Blurred Image

(b) PSF

Fig. 7 Noisy motion blurred version of PLANE image with VD=

[−15◦ 30◦ 80◦] and VE = [7 7 7] and S NR = 40 dB.

is blurred by the simulated PSF with VD = [−15◦ 30◦ 80◦]
and VL = [7 7 7] illustrated in Fig. 7(b). The noisy blurred
version is shown in Fig. 7(a).

The results of the motion direction estimation are
demonstrated in Fig. 8. The output of Radon transform,
R1(a, ρ; 0◦), which is used to identify the motion direction
in the conventional method [5] is shown in Fig. 8(a). The
directions of three motion components can not clearly be
observed from R1(a, ρ; 0◦). On the other hand, Fig. 8(b)
shows the parameter Ψ (normalized by the maximum value)
which is used in the proposed scheme for both Ψ(0)(a) (ini-
tial iteration) and Ψ(1)(a) (final iteration). The identifica-
tion result is obtained from the locations of local maxima
whose value are over the threshold level that was empiri-
cally chosen as 0.3 of the maximum value which provides
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good performances for the most of testing images and PSFs
based on the experiment. From Fig. 8, the estimated sets
of motion directions are {41◦, 79◦, 135◦, 172◦} in the initial
iteration and {41◦, 80◦, 172◦} in the final iteration (172◦ is
equivalent to −8◦). From the results, the directions of three
motion components can be clearly observed by using the
proposed scheme via the parameter Ψ. In addition, the itera-
tion process can provide the result that is closer to actual set
of motion directions which is {−15◦, 30◦, 80◦} in this exam-
ple.

The proposed estimation of motion lengths via the
ACF, R(τ; θ̂i), for the directions of θi ∈ {41◦, 80◦, 172◦} is

(a) Conventional Approach

(b) Proposed Approach

Fig. 8 Estimation of motion direction for Fig. 7(a).

(a) θ̂1 = 41◦ (b) θ̂2 = 80◦ (c) θ̂3 = 172◦

Fig. 9 Estimation of motion length for Fig. 7(a).

presented in Fig. 9 for both the proposed and conventional
schemes [3]. The conventional approach gives the identi-
fied lengths (locations of global minimum) which are equal
to 5, 9, and 10 for the directions of 41◦, 80◦, and 172◦, re-
spectively. On the other hand, the proposed method gives
the identified lengths of 5, 8, and 6 for the directions of
41◦, 80◦, and 172◦, respectively. The identification results
obtained from the proposed method are closer to the actual
vector of motion length which is equal to [7 7 7] than the
conventional method.

Figure 10(a) shows 24 possible combinations permuted
from three identified motion components, {5e

41
180 jπ, 8e

80
180 jπ,

6e
172
180 jπ}, obtained in two previous stages. All PSFs in 10(a)

have the same identified motion lengths and directions (for-
ward and reverse) but only the order of combinations are
different. Figure 10(b) shows TotalScore functions used
for choosing the proper combination. The identification re-
sult is the 14th-combination (V̂ = [6e

−8
180 jπ 5e

41
180 jπ 8e

80
180 jπ])

whose TotalScore is the highest which can be observed from
Fig. 10(b).

In this example, the proposed scheme is programmed
by MATLAB7 and tested on a machine with Pentium D
Processor 3.00 GHz and RAM 2.00 GB. An actual com-
putational time that is needed to identify the blur is about
250 sec.

Finally, the restored result obtained by deconvolut-
ing the blurred image with the identified PSF (14th-
combination in Fig. 10(a)) is demonstrated in Fig. 11.

Experiment II: This experiment is conducted to com-
pare the performance of blur direction identification by the
proposed and conventional schemes [5]. Since the con-
ventional scheme does not consider the multiple directional
component, the comparison is done by using the linear mo-
tion blur with constant velocity model. The original PLANE
image in Fig. 6 is blurred by a linear motion blur with length
of nine where the motion direction, θ, is varied from 0◦ to
180◦. The identified direction, θ̂, is obtained by the pro-
posed and conventional schemes and the identification er-
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(a) Possible Motion Combinations (from the Set of Identified Components = {5e
41

180 jπ, 8e
80

180 jπ, 6e
172
180 jπ})

(b) TotalScore Function

Fig. 10 Identification of motion combination of Fig. 7(a).

Fig. 11 Restored image of Fig. 7(a).

Fig. 12 Motion direction estimation of linear motion blur in various di-
rection.

rors, |θ̂ − θ|, are calculated. A distribution of the errors
is demonstrate in Fig. 12. The identification error obtained
from the conventional scheme is higher around the vertical
direction due to the effect of vertical differentiation while the
proposed scheme using multiple trial direction, φ, can pro-
vide more uniform error and reduce a mean of identification

error from 2.7778◦ to 1.1111◦.
Experiment III: The effectiveness of the proposed

modified scheme for estimation of motion length compar-
ing to the conventional scheme [3] is presented in this ex-
periment. The original PLANE image in Fig. 6 is blurred
by twelve simulated PSFs in the PLUMB model. The lists
of the original motion vector, identified motion lengths, V̂L,
and their corresponding identification errors, |V̂L − VL|, are
shown in Table 1. An average of identification error per di-
rectional component is calculated from twelve samples that
include totally 32 directional components. The identifica-
tion results show that the proposed modified scheme can re-
duce the average identification error from 1.2188 to 0.6875.

Experiment IV: In this sub-section, the proposed
scheme was used to identify simulated blurred images with
different original images and PSFs. The blurred images
were deconvoluted by identified PSFs. The restoration re-
sults were evaluated via improvement in signal to noise ra-
tio, ISNR, which is defined by

ISNR = PSNRf̂ − PSNRg, (25)

where PSNRs for s(x, y) = g(x, y) and f̂ (x, y) is obtained by

PSNRs = 10 log

[
2552NxNy∑

x,y(s(x, y) − f (x, y))2

]
, (26)

for image size of Nx × Ny. The identified vectors of motion
directions and lengths (V̂D and V̂L) and their corresponding
PSNR and ISNR of several blurred images are demonstrated
in Table 2. The results show that the proposed method was
successful to estimate vectors of direction and length well
and gave the good restoration results which can be observed
via ISNR.
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Table 1 Motion length estimation of PLANE image with various PSFs.

Actual Estimated Motion Lengths

Motion Vector Conventional [3] Proposed

VD VL V̂L |V̂L − VL | V̂L |V̂L − VL |
[0◦ 30◦] [5 9] [7 11] [2 2] [6 10] [1 1]

[0◦ 60◦] [5 9] [5 10] [0 1] [5 10] [0 1]

[0◦ 90◦] [5 9] [5 9] [0 0] [5 9] [0 0]

[0◦ 120◦] [5 9] [5 10] [0 1] [5 9] [0 0]

[0◦ 150◦] [5 9] [5 9] [0 0] [5 9] [0 0]

[0◦ 45◦ 90◦] [10 5 7] [11 4 8] [1 1 1] [10 3 7] [0 2 0]

[0◦ 45◦ 90◦] [7 4 4] [8 4 5] [1 0 1] [7 4 4] [0 0 0]

[60◦ − 20◦ 30◦] [7 7 7] [4 10 6] [3 3 1] [5 9 7] [1 1 1]

[−20◦ 30◦ 80◦] [7 7 7] [9 6 8] [2 1 1] [8 6 8] [1 1 1]

[70◦ 140◦ 180◦] [7 5 9] [9 4 10] [2 1 1] [9 4 9] [2 1 0]

[45◦ 160◦ − 90◦] [11 5 5] [13 6 7] [2 1 2] [13 6 7] [2 1 2]

[90◦ 45◦ 0◦ − 45◦] [5 6 9 4] [6 4 4 4] [1 2 5 0] [5 4 8 4] [0 2 1 0]

Average Error per Directional Component 1.2188 0.6875

Table 2 Identification and restoration results by using proposed scheme.

Image Actual Motion Vector Estimated Motion Vector PS NR [dB] IS NR

(512 × 512) VD VL V̂D V̂L g f̂ [dB]

[45◦ − 30◦] [9 9] [45◦ − 29◦] [9 9] 22.9206 34.9134 11.9928

PLANE [−15◦ 30◦ 80◦] [7 7 7] [−8◦ 41◦ 80◦] [6 5 8] 21.5258 28.0485 6.5227

[70◦ 140◦ 180◦] [10 5 7] [71◦ 136◦ 178◦] [11 4 6] 21.2408 29.5017 8.2609

[−30◦ 50◦] [11 11] [−35◦ 48◦] [12 11] 21.4409 25.5173 4.0764

LENNA [120◦ 40◦ 0◦] [9 5 7] [116◦ 44◦ 2◦] [11 5 9] 20.6011 26.3715 5.7704

[10◦ 50◦ 140◦] [7 10 9] [16◦ 48◦ 136◦] [5 11 10] 20.8873 25.5545 4.6672

[120◦ 15◦] [8 11] [118◦ 15◦] [9 11] 22.7087 28.5113 5.8026

PEPPERS [10◦ 50◦] [9 5] [9◦ 47◦] [10 5] 24.5400 30.2049 5.6649

[0◦ 80◦ 40◦] [9 5 4] [−1◦ 84◦ 47◦] [9 6 3] 24.1867 28.3024 4.1157

[5◦ 105◦] [6 10] [8◦ 103◦] [7 10] 20.8253 31.5510 10.7257

BOAT [−75◦ 75◦] [7 8] [−75◦ 73◦] [8 8] 23.7790 28.9861 5.2071

[−90◦ − 45◦ 45◦] [5 5 4] [−89◦ − 47◦ 47◦] [5 4 4] 21.9204 31.2507 9.3303

4.2 Real World Blur

In this sub-section, the identification result of a sample real
world blurred image obtained by using the proposed scheme
and its corresponding restored result are demonstrated. Fig-
ure 13 shows an original real world blurred image with the
size of 480 × 640. The result from each identification pro-
cess is given in Fig. 14. From Fig. 14(a), the estimated set
of directions is obtained as {13◦, 92◦}. Figure 14(b) shows
that the identified lengths which are equal to 11 and 3 in the
directions of 13◦ and 92◦, respectively. The combination
estimation process which consists of PSFs of four possible
combinations permuted from two identified components and
TotalScore function obtained from each combination is il-
lustrated in Fig. 14(c). Finally, the identified motion combi-
nation is the second PSF in Fig. 14(c) whose V̂D = [13◦ 92◦]
and V̂L = [11 3]. Then, the corresponding restored image
is illustrated in Fig. 15. The characters appearing in the im-
age can clearly be seen in the restored image in comparison
to the original blurred image in Fig. 13. By using the same

Fig. 13 Real world blurred image.
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(a) Estimation of Motion Direction (b) Estimation of Motion Length

(c) Identification of Motion Combination

Fig. 14 Details of identification process for Fig. 13.

Fig. 15 Restored image for Fig. 13.

machine mentioned in the previous example, it took about
150 sec. in this example.

5. Conclusion

The single image based scheme for identifying the PSF of
PLUMB without using any information about the original

image and noise was proposed. The proposed scheme con-
sists of the algorithms for the motion direction and length
estimation and the motion combination identification. The
experiment demonstrated that the proposed scheme provides
the ability to estimate the PSF of PLUMB in the both cases
of simulation and real world blurred images and provides the
better performances, comparing to the conventional meth-
ods. Although the number of linear motion components of
the blurs is expected to be small in many practical situa-
tions, the computational cost of the proposed scheme expo-
nentially increases with the increase in the the number of
motion components; therefore, it is difficult to identify the
blur with a large number of motion components. For the fu-
ture work, the performance of the proposed scheme should
be improved in the cases when there is a large number of
components, or the direction of component is too close to
each others or in the same direction.
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