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PAPER Special Section on Signal Processing

Multiple-Image-Based Restoration for Motion Blur with
Non-uniform Point Spread Function

Karn PATANUKHOM†a), Nonmember and Akinori NISHIHARA††, Fellow

SUMMARY A blind image restoration for non-linear motion blurs with
non-uniform point spread functions based on multiple blurred versions of a
same scene is proposed. The restoration is separately considered as identifi-
cation and deconvolution problems. In the proposed identification process,
an identification difficulty is introduced to rank an order of blur identi-
fication. A blurred image with the lowest identification difficulty is ini-
tially identified by using a single-image-based scheme. Then, other images
are identified based on a cross convolution relation between each pair of
blurred images. In addition, an iterative feedback scheme is applied to
improve the identification results. For the deconvolution process, a spatial
adaptive scheme using regional optimal terminating points is modified from
a conventional iterative deconvolution scheme. The images are decom-
posed into sub-regions based on smoothness. The regional optimal termi-
nating points are independently assigned to suppress a noise in smooth re-
gions and sharpen the image in edgy regions. The optimal terminating point
for each region is decided by considering a discrepancy error. Restoration
examples of simulated and real world blurred images are experimented to
demonstrate the performance of the proposed method.
key words: blur identification, motion blur, image restoration, multiple
image

1. Introduction

A motion blur is one of frequently seen types of image
degradation caused by relative motions between a cam-
era and objects during exposure time. Restoration for
the blurred images has been studied [1]–[12]. An origi-
nal scene can be restored by using only one blurred im-
age (single-image-based restoration) or by using additional
images (multiple-image-based restoration). Most of the
single-image-based approaches are limited for identifica-
tion of simple blur models such as 1D motion models [1]–
[3] or constant velocity motion models [1]–[4]. To iden-
tify more complex models of blurs, several methods such as
auto-regressive (AR) model and maximum likelihood (ML)
based methods [5], [6] have been proposed. Although the
ML-based approaches can estimate more complex models
of blurs by using a single image, there are some practical
limitations such as a good prior estimation of a blur length,
strong assumptions on image model and noise, and a high
computational cost.
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On the other hand, multiple-image-based methods can
identify more complex motion models without strong as-
sumptions on image models because more information is
provided by additional images. In addition, an ill-posed
problem appearing in the single-image-based deconvolution
approaches tends to become well-posed when more than one
blurred image are provided. For identification of complex
motion blur models, multiple-image-based approaches have
been studied [7]–[10]. Ben-Ezra, et al. [7] proposed an ap-
proach that needs an additional sensor to capture an image
sequence for estimation of the motion in the scene. Instead
of capturing the image sequence, Tico, et al. [8] proposed to
capture an additional special shot. To avoid the motion blur
in the additional shot, an image with low SNR is captured
by using a small exposure time. Then, the blur is identi-
fied based on a relation between the two shots. However,
the exposure time has to be adjusted for each shot. In ad-
dition, the deconvolution processes in [7], [8] are still based
on a single image which may suffer from the ill-posed prob-
lem. On the other hand, Giannakis, et al. [9] proposed a
scheme that reconstructs an original image by using multi-
ple blurred images with a general type of blurs. The multi-
ple blurred image formation and restoration are modeled by
a filter bank where a reconstruction filter is equivalent to a
synthesis filter bank with a perfect reconstruction property.
However, this scheme is not suitable for the cases of motion
blur with long motion length because a number of 2-D FIR
filter coefficients have to be prepared to model the blur func-
tion while most of actual values for the prepared coefficients
are zeros according to characteristics of motion blur. There-
fore, a number of support coefficients are redundant, which
may cause errors. In addition, the complexity also signifi-
cantly increases due to the number of support coefficients;
the scheme is not robust enough for the noises and misalign-
ments in the real situation; and the minimum-norm perfect
reconstruction solution may enlarge the noises. More spe-
cific scheme which uses two linear motion blurred images
with different blur direction was proposed by Rav-Acha, et
al. [10]. Since a dimension of the blur function reduces
from 2-D to 1-D, more robust and accurate identification
scheme can be obtained while the number of unknowns and
complexity are less than [9]. However, the scheme is only
limited to the linear motion blur model.

In this paper, a more robust and flexible blind image
restoration scheme for motion blur using multiple blurred
version of the same scene is proposed. The objective of
the proposed scheme is to deal with general motion blurs,
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including non-linear motion or non-constant velocity mo-
tion. The proposed scheme includes both identification and
deconvolution algorithms. Details of the proposed identifi-
cation and deconvolution schemes are presented in Sect. 2
and Sect. 3, respectively. Some experimental examples are
demonstrated in Sect. 4. Finally, Sect. 5 gives conclusions
of this paper.

2. Identification Scheme Using Blur Identification Dif-
ficulty

Based on an assumption that the blur operator is shift-
invariant and all blurred images are aligned, the multiple
degraded version of the same original scene can be modeled
in a spatial domain as

gi(x, y) = hi ∗ f (x, y) + ni(x, y), (1)

where f and g are original and degraded images of size
X ×Y , respectively; n is an additive noise; h is called a point
spread function (PSF) of the blur; and subscript i denotes
a parameter for the i-th capturing process. In the practical
cases, the blurred images may not align due to relative trans-
lation or rotation. The pure translation can be included as
a shifted versions of the PSFs while image alignment tech-
niques [10], [13], [14] are necessary to correct the alignment
for other misalignments before the identification process.

From (1), in the case of noiseless condition, a convo-
lution of the i-th blurred image, gi, with the j-th PSF, hj,
is equal to a convolution of the j-th blurred image, g j, with
the i-th PSF, hi. Accordingly, a cross convolution relation
between any pair of blurred images can be obtained as

hj ∗ (gi − ni) = hi ∗
(
g j − nj

)
. (2)

However, due to the noise, the PSFs which satisfy the equal-
ity in (2) may not be obtained in the practical situations. In
that case, a cross comparison error is evaluated by

ξ ji(q, r) = q ∗ (gi − ni) − r ∗
(
g j − nj

)
, (3)

where ξ ji is the cross comparison error between a pair of
the j-th and the i-th blurred images; q and r are estimated
blur PSFs for the j-th and the i-th capturing process, re-
spectively. From (1) and (3), ξ ji(q, r) becomes zero when
(q, r) = (hj, hi). In general, a set of identified PSFs, {ĥi}M−1

i=0
where M is the number of the capturing process, should be a
set of PSFs that minimize a total power of the error function
in (3) for every i and j. However, it is not easy to directly
solve the minimization problem since there is a number of
variables needed for all PSF coefficients and the solution
may not be unique depended on the prepared PSF regions.
In addition, this minimization problem is also difficult to be
solved in the frequency domain.

If one of the PSF, hi, is given, another PSF, hj, can be
easily obtained from

hj = (gi − ni)
−1 ∗ hi ∗

(
g j − nj

)
. (4)

In order to assume that condition, the proposed scheme uses

{g0, g1, g2, · · · , gM−1}

g0 g1 g2 · · · gM−1

ĥ(0)
0 ĥ(0)

1 ĥ(0)
2 · · · ĥ(0)

M−1

ĥ0 ĥ1 ĥ2 · · · ĥM−1

Ranking the blurred images
in the order of identification difficulty

Initial identification

Iterative identification

� � � �

� � � �

� � � �

�

Fig. 1 Proposed three-stage identification scheme.

the single-image-based identification algorithm [4] for an
initial identification of one PSF which seems to have the
least difficulty to identify. A blur identification difficulty is
proposed to rank an identification order of a provided set
of blurred images, {gi}M−1

i=0 . The PSF of the easiest image
which tends to need the least information for identification
should be firstly estimated. Then, other blur PSFs can be
identified based on (4). Details of the ranking process and
initial identification are presented in Sect. 2.1 and Sect. 2.2,
respectively. After the initial PSFs are identified, an itera-
tive feedback scheme in Sect. 2.3 is applied for a further im-
provement. A flow diagram for the proposed identification
stage is shown in Fig. 1.

2.1 Ranking the Difficulty of Blur Identification

The first step of the proposed identification scheme is to rank
blurred images according to the difficulty of identification.
The blur identification difficulty is introduced to evaluate the
difficulty to identify the PSF from the blurred image which
includes a confidence level of identified blur parameters by
using a single image. The identification difficulty can be
determined by considering a size and a shape of support re-
gion for PSF coefficients. For the cases of two linear mo-
tion blurs, since the motion length corresponds to the num-
ber of unknowns, a blur with longer motion length tends
to have more difficulty to identify than a blur with shorter
motion length. In addition, non-linear motion blurs tends to
have more difficulty to identify than linear motion blurs with
the same total motion length. Finally, for a comparison of
two non-linear motion blurs, a piecewise linear approxima-
tion is used. The identification difficulty can be compared
by counting the number of piecewise linear motion compo-
nents. The non-linear motion blur which has more piecewise
linear components tends to have more difficulty to identify
than others with the same total motion lengths.

To find the identification difficulty, motion directional
components are firstly analyzed based on the piecewise lin-
ear motion model. Then, the motion length corresponding
to each direction is estimated. As a result, the support num-
ber of PSF coefficients can be obtained. Section 2.1.1 and
Sect. 2.1.2 give brief reviews of the proposed algorithms to
analyze the motion directions and lengths in the piecewise
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Fig. 2 Motion direction analysis function.

linear model which have been introduced for the single-
image-based identification in our prior work [4]. By using
the information from the motion direction and length anal-
ysis processes, the blur identification difficulty can be eval-
uated. A mathematical expression for the blur identification
difficulty is described in Sect. 2.1.3. After the identification
difficulty has been evaluated for every blurred image, the set
of provided blurred images is ranked in an ascending order
of the identification difficulty. The ordered set of blurred im-
ages is represented by [g0, g1, . . . , gM−1] where g0 and gM−1

are the blurred images with the lowest and the highest iden-
tification difficulties, respectively.

2.1.1 Analysis of Directional Components

To analyze the directional components of the motion blur
for each blurred image, a motion direction analysis func-
tion, D, is defined as shown in Fig. 2. Firstly, to stimulate
and strengthen strips along the blur direction, each blurred
image is restored on trial by assuming the linear motion blur
along a trial direction of φ and supposing that the distribu-
tion of PSF coefficients are forward ramp [3], [4]. Then, it
is differentiated along the direction of 90◦ + φ. A Fourier
transform is applied to each image derivative to observe the
motion directions from a spectrum characteristic. Finally,
a Radon transform is employed in frequency domain, re-
sulting in the motion direction analysis function,D(a, ρ; φ),
where a and ρ represent the dimensions of an angle and a
distance from the origin, respectively.

The motion directions are corresponding to the domi-
nant angles in D. In order to locate the dominant angles,
local maxima are emphasized by using a high-pass filtering
operator as

D̃(a; φ) = D̄(a; φ) − 1
2A

∫ A

−A
D̄(a; φ)da, (5)

where D̄(a; φ) =
1

2P

∫ P

−P
D(a, ρ; φ)dρ, (6)

A and P are adjusting parameters for the filter, and D̃ is a
peak emphasized direction analysis function. Since, in the
practical cases, the identified motion directions are possible
to be lost near the direction of 90◦ + φ due to the differen-
tiation process, a scheme which uses multiple trial motion
direction is preferable. As a result, the motion directional
components can be obtained by applying the following iter-
ative scheme.
Initialization: An initially identified set of motion direc-

tions denoted by {θ̂(0)
i }Ĉ

(0)

i=1 can be obtained from a set of loca-
tions of local maxima ofΨ(0)(a) = max(D̃(a; 0◦), D̃(a; 90◦))
whose values are over a pre-determined threshold. As a
result, the number of the initial identified motion compo-
nents, Ĉ(0), is equal to the number of local maxima ofΨ(0)(a)
whose values are over the threshold.
Updating: The identified set of motion directions in the k-th
iteration, {θ̂(k)

i }Ĉ
(k)

i=1 , is the set of locations of local maxima of
Ψ(k)(a) whose values are over a threshold where

Ψ(k)(a) = max
i

⎛⎜⎜⎜⎜⎜⎝ Ψ
(k−1)(a), D̃(a; θ̂(k−1)

i ),

D̃(a; 90◦ + θ̂(k−1)
i )

⎞⎟⎟⎟⎟⎟⎠ , (7)

and Ĉ(k) is the number of identified motion components in
the k-th iteration which is obtained from the number of local
maxima ofΨ(k)(a) whose values are over the threshold. The
iteration can be terminated when a change of the identified
results is small enough. In the end of this step, a set of iden-
tified motion directions, {θ̂i}Ĉi=1, and an estimated number of
motion components, Ĉ, are obtained for each blurred image.

The number of the identified motion components de-
pends on the threshold level. The threshold level can be
empirically chosen based on experiments or experiences [4]
while another solution for selecting the threshold can be de-
scribed by a probability function. The probability that the
direction a is the correct blur direction of the given blurred
image g can be defined by

P(a|g) =
⎧⎪⎪⎨⎪⎪⎩ e−

∣∣∣∣ Ψ̄
Ψ(a)−Ψ̄

∣∣∣∣; Ψ(a) > Ψ̄,
0; Ψ(a) ≤ Ψ̄, (8)

where Ψ̄ = 1
π

∫ π
0
Ψ(a)da is the mean of Ψ. From (8), the

probability function is described by Ψ(a). The higher Ψ(a)
compared to the mean Ψ̄, the higher possibility that a is the
actual blur direction. Now, suppose that all actual direc-
tions of motion approximately locate in the locations of lo-
cal maxima. In other words, they are members of A = {ȧi}
where ȧi is a location of each local maximum of Ψ(a) which
is a candidate of the motion blur directions. A selection ker-
nel denoted by B = {bi} is a set of binary values where the
direction ȧi is selected as the identifed motion direction if
bi = 1 and the direction ȧi is discarded if bi = 0. The pos-
sibility that the selection kernel B yields the correct set of
motion direction for the given g andA can be obtained as

P(B|g,A) =
∏

i

|P(ȧi|g) − bi| . (9)

To maximize the probability function in (9),

bi =

{
1; P(ȧi|g) ≥ 1 − P(ȧi|g),
0; P(ȧi|g) < 1 − P(ȧi|g). (10)

From (10), the direction ȧi is selected as the motion direction
(bi = 1) when P(ȧi|g) � 0.5 or Ψ(ȧi) �

(
1 + 1

ln(2)

)
Ψ̄. As a

result, based on the maximization of the probability function
in (8), the threshold level can be set to 2.4427 times of the
mean of Ψ(a).
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Fig. 3 Motion length analysis function.

2.1.2 Estimation of Motion Length

For each blurred image, a motion length analysis function,
L, is computed as shown in Fig. 3. In order to estimate
the motion length, L̂i, corresponding to every identified di-
rection of θ̂i ε {θ̂1, θ̂2, . . . , θ̂Ĉ}, the blurred image derivatives
along both directions of 90◦+ θ̂i, and θ̂i are continuously
computed. In parallel, the image differentiation along every
direction of 90◦ + θ̂i, θ̂1, θ̂2, . . ., and θ̂Ĉ are continuously ap-
plied to the blurred image to reduce the effect from the other
directional components. Then, the normalized autocorrela-
tion functions along the direction of θ̂i are computed to both
image derivatives. After that, the length analysis function,
L(τ; θ̂i), can be obtained by a summation of two normal-
ized autocorrelation functions where τ represents a lag in
the autocorrelation function along the direction of θ̂i. Fi-
nally, the motion length L̂i can be estimated from a location
of the global minima of L(τ; θ̂i). After the process has been
repeated for every direction of {θ̂i}Ĉi=1, a set of identified mo-

tion components in the piecewise linear model, {(θ̂i, L̂i)}Ĉi=1,
for each blurred image is obtained in the end of this stage.

2.1.3 Blur Identification Difficulty

Based on the information obtained from the motion direc-
tions and lengths analysis processes, the blur identification
difficulty can be determined by the number of necessary
support PSF coefficients and the confidence level of iden-
tification by using the single-image-based approaches. The
blur identification difficulty, γ, is defined by the three parts
as

γ = γS γDγL. (11)

In (11), γS corresponds to a size of area of support region
for PSF coefficients which is defined by

γS = Ĉ
Ĉ∑

i=1

L̂i. (12)

From (12), the identification difficulty increases due to the

total motion length and the number of piecewise compo-
nents which correspond to the number of variable and a level
of non-linearity, respectively. Higher γS means that there
are more variables to identify the corresponding PSF or blur
identification is more difficult.
γD corresponds to the identification difficulty in con-

sideration of a confidence level of the estimated motion di-
rections. Since the motion directions are identified by using
the locations of local maxima in the direction analysis func-
tion, Ψ(a), a higher peak increases the confidence level of
identification or reduces the identification difficulty. Conse-
quently, γD is defined by the ratio of the height of the lo-
cal maxima of the direction analysis function, Ψ(θ̂i), to the
mean level as

γD =

Ĉ∑
i=1

∣∣∣∣∣∣
Ψ̄

Ψ(θ̂i) − Ψ̄

∣∣∣∣∣∣ . (13)

Higher γD corresponds to lower confidence level of the esti-
mation or identification is more difficult.

On the other hand, γL corresponds to the identification
difficulty in consideration of a confidence level of the esti-
mated motion lengths. In a similar way to γD, the motion
length is identified by using the location of global minima
of the length analysis function, L. The depth of global min-
ima increases the confidence level of identification or re-
duces the identification difficulty. γL is defined by the ratio
of the depth of global minima L(L̂i; θ̂i) to the depth the sec-
ond lowest local minima, L2min(θ̂i), as

γL =

Ĉ∑
i=1

∣∣∣∣∣∣
L2min(θ̂i)

L(L̂i; θ̂i) − L2min(θ̂i)

∣∣∣∣∣∣ . (14)

Higher γL means lower confidence level of the length esti-
mation or higher identification difficulty.

After the motion directions and lengths are analyzed
and the identification difficulties are evaluated for every
blurred image, the set of blurred images can be ranked in
an ascending order of the identification difficulty, resulting
in [g0, g1, . . . , gM−1].

2.2 Initial Identification Stage

From the ordered set of the blurred image, the identification
can be started from the blurred image g0 that seems to have
the easiest PSF to identify. The PSF h0 is initially identi-
fied by using only g0 via the single-image-based identifica-
tion method. The initial estimation of h0 is denoted by ĥ(0)

0 .
In this work, h0 is initially approximated by the model of
constant velocity or uniform distribution of PSF while the
motion route is identified by using our prior work on the
single-image-based identification scheme [4]. The motion
route can be approximately estimated in the piecewise lin-
ear model by using the directional and motion length analy-
sis functions that are presented in Sect. 2.1.1 and Sect. 2.1.2.
(Note that the piecewise linear model is only used for the ini-
tial guess of the identification process while the final identi-
fied results can be converted to the actual blur PSFs which
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can be any type of the shift-invariant motion blurs.)
Next, the multiple-image-based identification approach

is started from estimation of h1 to hM−1, respectively. The
PSFs are identified in the ascending order of the identifi-
cation difficulty where hj can be estimated by using hi for
i < j based on minimization of the total error power of the
error function in (3). The initial estimation of hj is denoted
by ĥ(0)

j . Consequently, the PSFs which have more difficulty
are estimated by using more blurred images with the initial
identified PSFs that provide more information.

For the error minimization, the cross comparison error
in (3) can be re-written in the matrix and vector form as

ξ ji(q, r) = (Gi − Ni) q −
(
G j − N j

)
r, (15)

where ξ ji, q, and r are XY-element vector representation of
ξ ji(x, y), q(x, y), and r(x, y), respectively; and Gi, G j, Ni,
and N j are XY × XY matrix operators corresponding to the
convolution with gi(x, y), g j(x, y), ni(x, y), and nj(x, y), re-
spectively. To minimize the cross comparison errors be-

tween a current PSF estimate, ĥ
(0)
j , and every estimated PSF,

{ĥ(0)
i } j−1

i=0 , a raw estimation of h j is defined by

h̃
(0)
j = arg min

q
E

⎧⎪⎪⎨⎪⎪⎩
j−1∑
i=0

∥∥∥∥ξ ji(q, ĥ
(0)
i )

∥∥∥∥2

2

⎫⎪⎪⎬⎪⎪⎭ , (16)

where h̃
(0)
j denotes the raw estimation of hj(x, y) in vector

form; and ĥ
(0)
i is a vector form of ĥ(0)

i (x, y). In the end of
the identification process, a post-processing process is em-
ployed to condition the raw estimation, h̃

(0)
j , to obtain the

final result, ĥ
(0)
i . According to (16), h̃

(0)
j can be obtained

from q where

∂E
{∑ j−1

i=0

∥∥∥∥ξ ji(q, ĥ
(0)
i )

∥∥∥∥2

2

}
∂q

= 0, (17)

resulting in

h̃
(0)
j =

⎡⎢⎢⎢⎢⎢⎢⎣
j−1∑
i=0

(
GT

i Gi − XYσ2
i I

)⎤⎥⎥⎥⎥⎥⎥⎦
−1 j−1∑

i=0

GT
i Ĝ jĥ

(0)
i , (18)

where σ2
i is a variance of ni. For implementation, (18) can

be written in the frequency domain as

H̃(0)
j (ω) =

j−1∑
i=0

G∗i (ω)G j(ω)Ĥ(0)
i (ω)

j−1∑
i=0

[
G∗i (ω)Gi(ω) − σ2

i

] . (19)

By using the frequency domain approach, the number of
support coefficients for the raw estimation of PSF, h̃ j(x, y),
can be ideally unlimited; therefore, the initial identification
of the support region is unnecessary and, roughly, the com-
putational cost does not increase by the size of support re-
gion. However, the identification errors may appear in the

redundant positions.
As a result, after the raw estimation, h̃ j(x, y), is ob-

tained, a post-processing described in the following steps
is applied for conditioning the results based on the charac-
teristic of motion blur.
Step 1: Based on an assumption that the large values ap-
pearing in the raw estimation, h̃ j(x, y), should be included
in the identified PSF, ĥ j(x, y), (small values may be dom-
inated by errors) the locations of PSF coefficients whose
values are over than a threshold level denoted by T is
marked. A set of marked positions is denoted byM j where
M j = {(x, y)|h̃ j(x, y) ≥ T }. T can be decided based on the
estimated number of PSF coefficients which corresponds
to the total motion length,

∑Ĉ
i=1 L̂i, including with margin

due to an error tolerance of the identified motion lengths
and spread of the coefficients due to a quantization of non-
integer pixels’ index in a discrete spatial domain. T can be
assigned to obtain the desired number of non-zero coeffi-
cients in ĥ j(x, y).
Step 2: Since the motion blur should be characterized by
a one connected component, a connected component label-
ing algorithm [15] is applied toM j. In consideration of the
number of members of every connected component, posi-
tions of undesired components are removed fromM j if the
number of their connected members is too small. On the
other hand, if any pair of connected components are very
close to each other, positions in a gap between two con-
nected components are filled inM j.
Step 3: Normalization is applied to satisfy an energy con-
servation constraint,

∑
x,y ĥ j(x, y) = 1. Finally, the identified

PSF, ĥ j(x, y), can be obtained by,

ĥ j(x, y) =

⎧⎪⎪⎨⎪⎪⎩
h̃ j(x,y)∑

(x,y)εM j
h̃ j(x,y)

; (x, y)εM j,

0; otherwise.
(20)

2.3 Iterative Identification Stage

From the initial identification stage, the set of initial iden-

tified PSFs, {ĥ(0)
i }M−1

i=0 , is now obtained. In this section, the
iterative algorithm is applied for more improvement because
more information is now provided. The identified PSFs can
be updated to obtain the better results by feeding back previ-
ous versions of estimated PSFs. The proposed iterative algo-
rithm tries to minimize the cross comparison errors between

the current updating blur PSF, ĥ
(k)
j , and other estimated PSFs

which are obtained in the previous iteration, {ĥ(k−1)
i }M−1

i= j+1, or

has been updated in the current iteration, {ĥ(k)
i } j−1

i=0 . Conse-
quently, the raw estimation of hj in the k-th iteration can be
written as

h̃
(k)
j = arg min

q
E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑
i=0

∥∥∥∥ξ ji(q, ĥ
(k)
i )

∥∥∥∥2

2

+

M−1∑
i= j+1

∥∥∥∥ξ ji(q, ĥ
(k−1)
i )

∥∥∥∥2

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (21)
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h̃
(k)
j which satisfies (21) can be obtained in the frequency

domain as

H̃(k)
j (ω) =

j−1∑
i=0

G∗i G jĤ
(k)
i +

M−1∑
i= j+1

G∗i G jĤ
(k−1)
i

M−1∑
i=0,i� j

[
G∗i Gi − σ2

i

] . (22)

After the raw estimation is obtained, the same post con-
ditioning processes described in 2.2 is employed to ob-

tain the final estimated blur PSF, ĥ
(k)
j . Finally, the iter-

ation is terminated when the difference of updated PSFs,∑M−1
j=0 ‖ĥ(k)

j − ĥ
(k−1)
j ‖22, is small enough.

3. Iterative Deconvolution Scheme Based on Regional
Optimal Termination

In this work, a modified version of Landweber iterative de-
convolution scheme [12] is employed. The proposed spa-
tial adaptive scheme can be written in the matrix and vector
form as

f̂
(k)
j = f̂

(k−1)
j +

βW(k−1)
j

M − 1

M−1∑
i=0,i� j

Ĥ
T
i

(
gi − Ĥi f̂

(k−1)
j

)
, (23)

where f̂
(0)
j =

1
M − 1

M−1∑
i=0,i� j

gi, (24)

W j is a weighting matrix operator, β is a step size, and su-
perscript (k) denotes the iteration round. The restored im-

ages, f̂
(k)
j , are combined together to obtain the final result as

f̂
(k)
=

1
M

M−1∑
j=0

f̂
(k)
j , (25)

where f̂
(k)

represents the final restored result in the vector
form. From (23), the proposed scheme includes two mod-
ifications from the conventional Landweber method. The
first modification is the weighting matrix operator W j for
spatial adaptation. The other modification is an inequality
condition i � j in the summation. According to (23) and

(1), f̂
(k)
j and n j are uncorrelated because f̂

(k)
j is obtained from

gi where i � j. This uncorrelated property will be applied
to increase the accuracy of an error analysis for an estima-
tion of optimal terminating points. However, to avoid the
ill-posed problem which may appear in (23) when M ≤ 2,
the deconvolution process is modified to

f̂
(k)
= f̂

(k)
j = f̂

(k−1)
j +

βW(k−1)
j

M

M−1∑
i=0

Ĥ
T
i

(
gi − Ĥi f̂

(k−1)
j

)
, (26)

where f̂
(0)
j =

1
M

M−1∑
i=0

gi. (27)

To evaluate the result, a restoration error, e(x, y), is de-
fined as

e(k)(x, y) = f (x, y) − f̂ (k)(x, y) =
1
M

M−1∑
j=0

e(k)
j (x, y), (28)

where e(k)
j (x, y) = f (x, y) − f̂ (k)

j (x, y). (29)

Typically, there is a trade-off between residual blur and am-
plified noise components in the restoration process. The
deblurring operator which reduces blur component by am-
plifying lost high frequency components may also enlarge
the noise. In consideration of the smoothness of the im-
ages, the weighting operator, w(k)

j (x, y), is applied to sup-
press the noise amplification in smooth regions where degra-
dation is dominated by the noise and sharpen the image in
non-smooth regions where the error is dominated by the blur
component. Accordingly, in the homogeneous regions, w(k)

j
should be small to slow down the noise magnification rate.
On the contrary, w(k)

j could be higher in the edgy regions to
accelerate the blur reduction rate. As a results, the proposed
scheme in (23) starts from w(0)

j (x, y) = 1 for all (x, y). Then,

w(k)
j (x, y) is set to zero to stop the iteration in order to ob-

tain the optimal result which is analyzed by decomposing
the image into sub-regions and considering their estimated
mean square restoration error. The details are described in
the following steps.

Region Decomposition : In consideration of the blur
component, Δ(x, y), which is a difference between the orig-
inal and its blurred version,

Δ(x, y) =
1
M

M−1∑
j=0

(
ĥ j ∗ f (x, y) − f (x, y)

)2
, (30)

the image is decomposed into regions of {Ri}αi=1 where α is
the number of decomposed regions which can determined
by the size of image. The restoration should be early termi-
nated to suppress the noise amplification in the area where
Δ(x, y) is small since there is less blur component to be re-
stored. On the other hand, the restoration should be late
terminated to reduce the blur component if Δ(x, y) is high.
Since f is unknown, Δ can not be obtained from (30). An
approximation, Δ̂, is found by using the blurred images as

Δ̂(x, y) =
1

M2

M−1∑
j=0

M−1∑
i=0

(
ĥ j ∗ gi(x, y) − gi(x, y)

)2
. (31)

Then, in this work, R1 which corresponds to the set of pix-
els in the smoothest region can be obtained from the pixels
(x, y) whose values of Δ̂ are less than the 50th percentile;
Ri corresponds to the set of pixels where Δ̂ is in between the
100(1−2−i+1)-th percentile and the 100(1−2−i)-th percentile;
and Rα corresponds to the set of pixels in the most edgy re-
gion whose values of Δ̂ are larger than the 100(1− 2−α+1)-th
percentile. In this stage, median filters may be employed to
the decomposed region to remove impulsive enclaves.

Stopping Rule: Ideally, the restoration should be
stopped to hold the best result by setting w(k)

j (x, y) to

zero when the result does not improve or |e(k)
j (x, y)| −
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|e(k+1)
j (x, y)| ≤ 0. However, e(k)

j can not practically be ob-
tained from (29) because f is unknown. As a result, in or-
der to evaluate the restoration result, a discrepancy error,
ε j(x, y), is defined by

ε(k)
j (x, y) = g j(x, y) − ĥ j ∗ f̂ (k)

j (x, y). (32)

From (29) and (32), by assuming that the identified PSF is
approximately equal to the original PSF or ĥ j ≈ hj, the rela-
tion between e(k)

j and ε(k)
j can be approximated by

ε(k)
j (x, y) ≈ ĥ j ∗ e(k)

j (x, y) + nj(x, y). (33)

Now the error analysis is separately considered into two
cases according to the number of blurred images, M.

In the case of M ≥ 3, since e j is a function of f̂ j which
is uncorrelated to nj according to (29) and (23),

E
{∣∣∣∣ε(k)

j (x, y)
∣∣∣∣2
}
≈ E

{∣∣∣∣ĥ j ∗ e(k)
j (x, y)

∣∣∣∣2
}
+ σ2

j . (34)

∑
x,y(|e(k)

j |2 − |e(k+1)
j |2) is assumed to have the same sign with∑

x,y(|hj ∗ e(k)
j |2 − |hj ∗ e(k+1)

j |2) when the size of summation

area of (x, y) is large enough. Finally, w(k)
j (x, y) for (x, y) ε Ri

when i = 1, 2, . . . , α is set to zero when∑
(x,y)εRi

(∣∣∣∣ε(k)
j (x, y)

∣∣∣∣2 −
∣∣∣∣ε(k+1)

j (x, y)
∣∣∣∣2
)
≤ 0. (35)

On the other hand, when M ≤ 2, since the correla-
tion between e j and nj can not be neglected, the error anal-
ysis becomes more complicated. In this work, the conven-
tional stopping rule [11], [12] is used. Thus, w(k)(x, y) for
(x, y) ε Ri and M ≤ 2 is set to zero when there is a small
improvement of the discrepancy error,

∑
(x,y)εRi

M−1∑
j=0

(∣∣∣∣ε(k)
j (x, y)

∣∣∣∣2 −
∣∣∣∣ε(k+1)

j (x, y)
∣∣∣∣2
)
. (36)

Unfortunately, when M ≥ 3, the proposed deconvolu-
tion scheme increases a computational cost M−1 times com-
paring to the conventional multiple-images-based schemes
[10] and M2−M times comparing to the conventional single-
images-based schemes [12].

4. Experimental Results

In this section, the performance of the proposed method
is demonstrated by simulation and real world examples in
Sect. 4.1 and Sect. 4.2, respectively. The proposed method
was used to reconstruct the original scene from various sets
of motion blurred images. In the deconvolution step, the im-
ages are decomposed into three sub-regions (α = 3) based
on the proposed scheme for all experiments. For every sim-
ulation, Gaussian noises were added to the blurred images,
resulting in S NR = 30 dB. The quality of the images (de-
graded and restored images) in the simulation are evaluated
by using PSNR. For s(x, y) = gi(x, y) or f̂ (x, y),

PSNRs = 10 log

[
2552XY∑

x,y(s(x, y) − f (x, y))2

]
. (37)

Fig. 4 Original, blurred and restored versions of LENNA image
(cropped from the original size for displaying.) (a) Original image. (b)
Restored image. (c)–(f) Input blurred images.

4.1 Simulated Blur

Experiment I: In this example, the proposed scheme was
tested to restore the LENNA image from four simulated mo-
tion blurred versions. The original LENNA image of size
512 × 512 shown in Fig. 4(a) was blurred by four simulated
PSFs in Figs. 5(a)–(d). The corresponding degraded images
are shown in Figs. 4(c)–(f).

In the first step of blur identification, the identification
difficulties of four blurred images are evaluated, resulting
in Table 1. g0 is the blurred image with the lowest iden-
tification difficulty that consists of only one linear motion
component and has the shortest motion length. On the other
hand, g3 which is composed of three estimated components
obtains the highest identification difficulty. After the blurred
images are ranked, the blur PSFs are identified according to
the proposed algorithm. The identified PSFs are illustrated
in Figs. 5(e)–(h). It is clear that the identified results are
similar to the original PSFs in Figs. 5(a)–(d). Then, the orig-
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Fig. 5 Original and identified blur PSFs of Figs. 4(c)–(f) (displaying size
is 49 × 47.) (a)–(d) Original simulated PSFs of Figs. 4(c)–(f), respectivly.
(e)–(h) Identified PSFs of Figs. 4(c)–(f), respectively, by Proposed algo-
rithm.

Table 1 Blur identification difficulty of Figs. 4(c)–(f).

Blurred
Image

PSNR
[dB]

Set of Identified
Motion Components

(θ̂i, L̂i)
γS γD γL γ

g0 25.7928 (73◦, 13) 13 0.099 0.112 0.14
g1 21.6137 (100◦, 22) 22 0.102 0.199 0.45
g2 20.4297 (44◦, 10)(156◦ , 21) 62 0.475 1.475 43.42

g3 21.5416
(56◦, 9)(115◦ , 16)

(135◦, 8)
99 1.067 0.557 58.86

inal image is reconstructed by the proposed spatial adaptive
scheme. A clear restored result with PSNR = 32.34 dB is
shown in Fig. 4(b). In addition, the set of the original PSFs
showed in Figs. 5(a)–(d) and a set of PSFs that are identified
from the single-image-based scheme presented in [4] are
also employed to the restoration process in order to compare
an effect of the identification results. According to [4], the
PSFs are directly modeled by the piecewise linear function
corresponding to the identified set of motion components,
(θ̂i, L̂i), demonstrated in Table 1 under an assumption of the
constant velocity motion. As a result, the restored images
with PSNR = 34.60 dB and 29.19 dB are obtained when the
actual set of PSFs and the PSFs identified by [4] are used
for restoration, respectively. It confirms that the proposed
identification scheme can improve the results from the sin-
gle image approach which has less accuracy due to use of
information from the only one image.

Experiment II: This experiment is conducted to com-
pare the restoration results of the proposed and conventional
methods [4], [8]–[10]. The blurred image g0 in Fig. 4(c) is
restored by the single-image-based scheme [4], the conven-
tional multiple-image-based schemes [8]–[10] and the pro-
posed scheme with an additional image. The comparison of
the restoration results are demonstrated in Table 2 via PSNR.

The single-image-based scheme [4] provides the low-
est PSNR = 27.95 dB comparing to other schemes that use
two images because both identification and deconvolution
steps are operated by using only one blurred image (g0)
which provides the less information comparing to the mul-
tiple image cases.

Table 2 Comparison of the restoration results from the proposed scheme
and the other schemes.

Restoration
Scheme

Provided Set of
Images

PSNR f̂
[dB]

Proposed Scheme
Two Blurred Images
g0: PSNR = 25.79 dB
g1: PSNR = 21.61 dB

30.57

Multiple Images
with General Blurs [9]

Two Blurred Images
g0: PSNR = 25.79 dB
g1: PSNR = 21.61 dB

28.75

Two Linear Motion
Blurred Images [10]

Two Blurred Images
g0: PSNR = 25.79 dB
g1: PSNR = 21.61 dB

29.75

Blurred Image and
Noisy Image [8]

Blurred Image
g0: PSNR = 25.79 dB
Noisy Image
f + n: SNR = 3 dB

28.79

Single Blurred
Image [4]

Blurred Image
g0: PSNR = 25.79 dB

27.95

For [8], the additional shot using short exposure time
to avoid the blur is needed. The noisy version of the original
image, f + n, is simulated, resulting in SNR = 3 dB. The
blurred image g0 is identified by using the noisy image f +
n and it is deconvoluted by using the single-image-based
scheme. The restored image gains PSNR = 28.79 dB. Since
the additional information is provided in the identification
process, More accurate PSF can be estimated comparing to
[4].

In the cases of [10] which has been proposed for
restoration of two linear motion blurred images with the dif-
ferent blur direction, two linear blurred images (g0 and g1 as
the additional image) illustrated in Figs. 4(c)–(d) was chosen
as the provided blurred images. In this example, the differ-
ence of the direction between two PSF is 25◦. The restora-
tion result gains PSNR = 29.75 dB which is better than [4],
[8] because both identification and deconvolution processes
are based on information from two blurred images.

When the same set of blurred images (g0 and g1) are
used as the observed inputs as in the cases of [10], the
restoration result with PSNR = 28.75 dB is obtained by us-
ing the algorithm based on [9] which has been proposed for
restoration of the multiple blurred images with general types
of blur. The restoration result is worse than [8], [10] because
there are more PSF identification errors that can spread into
the redundant support region.

By using the same provided blurred images as in the
cases of [9], [10] (g0 and g1), the proposed methods can pro-
vide the best PSNR = 30.57 dB among the other schemes.

In the second part of this experiment, in order to
demonstrate the robustness of the proposed scheme in the
cases that the direction of two linear motion blurs are the
same, h0 in Fig. 5(a) was rotated to obtained the same di-
rection as h1 in Fig. 5(b). Then, h1 and the rotated ver-
sion of h0 are used as the original PSFs to simulated two
blurred blurred versions of LENNA image. From this con-
dition, the restoration result from the proposed methods
gains PSNR = 30.48 dB while the conventional method [10]
which is weak for this condition provides PSNR = 25.97 dB.
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Table 3 Restoration results from various set of original images and
simulated PSFs by using proposed scheme.

Image PSFs maxi

(
PSNRgi

)
PSNR f̂

(512 × 512) (ranked by γ) [dB] [dB]

LENNA

[hb, hc] 25.79 30.57
[he, h f , hh] 22.58 32.68

[hb, hc, hh, hi] 25.79 32.34
[hb, hc, h f , hl] 25.79 32.69

PLANE

[hd , hk] 22.35 30.58
[ha, hd] 22.35 32.65

[he, hi, h j] 23.39 33.08
[he, hg, hi, h j] 23.39 34.00

PEPPERS

[ha, hk] 24.53 31.46
[hg, hh, hl] 25.52 31.80
[ha, hg, hl] 25.52 31.94

[hd , h f , h j, hk] 24.66 32.23

Fig. 6 Original PSFs using for simulating the blur images in Table 2
(Displaying size is 49 × 47).

Experiment III: In this sub-section, examples of re-
stored results obtained from the proposed scheme are given
in Table 3. Three samples of the original images and twelve
samples of the PSFs illustrated in Fig. 6 are used. In each
row of Table 3, the original image is blurred by using two,
three, or four PSFs to obtain the set of provided blurred im-
ages. The best PSNR among the provided degraded images
is shown in the column of maxi(PSNRgi ) and the PSNR of
the restored images are shown in the column of PSNRf̂ .
From Table 3, the restoration results are satisfactory and
tend to improve when more blurred image is provided.

4.2 Real World Blur

Example I: In this example, three real world blurred im-
ages in Figs. 7(a)–(c) captured from the same scene were
deblurred by the proposed scheme. The misalignment is as-
sumed to be the pure translation; therefore, the identification
and restoration processes can be operated without an initial
correction of the alignment. Firstly, the identification diffi-
culty was computed, resulting in Table 4. Then, the iden-
tified PSFs can be obtained as shown in Figs. 8(a)–(c) cor-
responding to the blurred images in Figs. 7(a)–(c). In this
example, phase differences between the blurred images due
to misalignment in translation can be observed. Fortunately,
the translation can be included as a phase shift of PSFs. The
restoration result is demonstrated in Fig. 7(d). The improve-
ment can be clearly seen from the characters and edges of
the restored image comparing to the blurred images. Due
to the proposed spatial adaptive scheme, the edges can be

Fig. 7 Real world blurred images and their restored version of size 620×
410 (cropped from the original size 640×480 for displaying.) (a)–(c) Input
blurred images. (d) Restored image from given blurred image by using
proposed algorithm.

Table 4 Blur identification difficulty of Figs. 7(a)–(c).

Blurred
Image

Set of Identified
Motion Components

(θ̂i, L̂i)
γS γD γL γ

g0 (4◦, 24) 24 0.045 0.465 0.50
g1 (90◦, 28) 28 0.073 2.039 4.17
g2 (91◦, 18) 18 0.047 18.136 15.25

Fig. 8 Identified PSFs of real world blurred images in Figs. 7(a)–(c),
respectively (displaying size is 91 × 71).

enhanced while the noise are suppressed in the smooth re-
gions.

Example II: The other example for real world blurred
images are demonstrated in Fig. 9. Figures 9(a)–(c) show
three blurred images and their corresponding restored result
is shown in Fig. 9(d). The identified PSFs for the blurred
images in Figs. 9(a)–(c) are illustated in Figs.9(e)–(g), re-
spectively. Since, in this example, the input blurred images
have not only large relative translations but also different
rotation angles, the image registration process is needed to
align the blurred inputs before the identification and restora-
tion processes.

The results obtained from the two examples confirm
that the proposed scheme can identify and restore the
blurred images with the non-linear motion blurs and non-
uniform distribution of PSFs in the real situations.
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Fig. 9 The second example of the real world blurred images (a)–(c) input
blurred images of size 620× 410 (cropped from the original size 640× 480
for displaying). (d) Restored image from given blurred images by proposed
scheme of size 536 × 386 (cropped from the original size for displaying).
(e)–(g) Corresponding identified PSFs of (a)–(c), respectively (Displaying
size is 67 × 36).

5. Conclusion

The multiple-image-based scheme for restoration of the
general motion blur was proposed. The proposed scheme in-
cludes both identification and doconvolution algorithms. In
the identification step, the identification difficulty was intro-
duced to rank the blurred images for the initial estimation of
the PSF which has less difficulty by using the single-image-
based approach. By using the initial identified result, the
PSFs can iteratively be identified based on the cross con-
volution relations of the pairs of blurred images. For the
doconvolution step, the blurred images are restored by de-
composing the image into sub-regions and applying the dif-
ferent optimal terminating point to each region. The experi-
ment demonstrated that the proposed scheme can restore the
non-linear motion blurs with non-uniform PSFs via the ex-
amples of the simulation and real world blurred images and
provides the better restoration results in a comparison with
the conventional methods.
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