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Abstract

This paper presents a new Bayes classification rule towards
minimizing the predictive Bayes risk for robust speech recognition.
Conventionally, the plug-in maximum a posteriori (MAP)
classification is constructed by adopting nonparametric loss
function and deterministic model parameters. Speech recognition
performance is limited due to the environmental mismatch and the
ill-posed model. Concerning these issues, we develop the
predictive minimum Bayes risk (PMBR) classification where the
predictive distributions are inherent in Bayes risk. More
specifically, we exploit the Bayes loss function and the predictive
word posterior probability for Bayes classification. Model
mismatch and randomness are compensated to improve
generalization capability in speech recognition. In the experiments
on car speech recognition, we estimate the prior densities of
hidden Markov model parameters from adaptation data. With the
prior knowledge of new environment and model uncertainty,
PMBR classification is realized and evaluated to be better than
MAP, MBR and Bayesian predictive classification.

Index Terms: Bayes classification, predictive distribution, robust
speech recognition

1. Introduction

Automatic speech recognition plays a crucial role in systems that
let people communicate naturally with machines, and many
investigators have contributed to the resolution of different issues.
Among these issues, how to build a robust decision algorithm is
critical. Maximum likelihood (ML) training combined with plug-in
maximum a posteriori (MAP) decision has been used in most
applications, but this approach has not met application-specific
requirements or proved robust to environmental variations. It is
necessary to develop adaptive algorithms for different
requirements and variations. Goel et al. [5] have developed the
minimum Bayes risk (MBR) classification through introducing
word error rate (WER) loss function. MBR decoding outperformed
MAP decoding with equal loss for different misclassifications.
Minimax classification [8] and Bayesian predictive classification
(BPC) [1][6] have also been used to make decision rules robust to
environmental variations. Minimax decision rules can assure the
smallest maximum risk for all admissible variations, while BPC
decision rules guarantees the smallest overall risk.

In this paper, we survey a series of decision rules and present
a new Bayes classification rule by minimizing the expected loss
where a loss function and a word posterior probability are
embedded. Basically, loss function acts as a classification penalty.
In Goel’s MBR decoding [5], a WER loss function was determined
by matching the assumed target string and the hypothesized string
by dynamic programming scheme. The lattice-based word error
minimization was implemented [9]. Also, the word posterior
probability was viewed as a confidence measure in decoding
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algorithm [10]. The best segmentation and the segmentations from
other competing candidates were merged in calculation of
posterior probability [3].

In previous studies, the loss function and the word posterior
probability were determined disregarding the issues of adverse
condition and ill-posed model. To conduct a Bayesian treatment,
we characterize the uncertainty of speech hidden Markov model
(HMM) using prior distribution and merge it in calculation of
Bayes risk. We present the Bayes loss function and the predictive
word posterior probability for MBR decoding using predictive
distributions. Loss due to a misclassification is viewed as a
hypothesis-test problem. Through examining the hypotheses of
loss and lossless events, the Bayes loss [2] is established by a
function of predictive distribution ratio. These prior distributions
are also used in calculation of predictive word posterior probability.
We follow the spirit of Bayes theory and establish the predictive
minimum Bayes risk (PMBR) classification for robust speech
recognition. The prior uncertainty is estimated from adaptation
data and associated with the specific speaker and noise condition.
PMBR classification is built for prediction of unknown test data.
Experiments on noisy speech recognition were used to evaluate the
effects of prior density estimation and predictive distribution in the
performance of decoding algorithms.

2. Bayes Classification Rules
Because of great success of HMMs and n-gram models, a variety
of statistical approaches have been developed for speech
recognition. Conventionally, ML estimation was used to train
HMM A and n-gram I as point estimates. Trained parameters
were plugged in MAP decision to transcribe test sentence X into

the word sequence W
dyiap (X) =W = argmax POW|X) = argmax P, (X|P)P. (W) . (1)
W w

However, a full Bayes decision should be achieved by minimizing
the overall risk, or the expectation of loss function /(W,d(X))

with respectto W e Qp and X e Qy

Ew W, d(X)]= [, P(X ){WZQI(W,d(X NPW|X )i|dX
' & @
= T BON [ o 107, dXDP (X)X = r(d().
MBR decision is constructed by

dypr (X) = argmin Y I(W,d(X))P(W|X)
d(X)=Qy W0y, 3
=argmin Y B-(W)[,_ I(W,d(X))P, (X|W)dX .
d(X)Qp W0y X
Because several assumptions are made in implementation of MBR
decision, speech recognition performance is limited substantially.
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One is that the observation space Q is known, another is that the
distributions of the acoustic model P, (.X| IW) and language model
F.(W) are known, and the third is that the loss function
I(W,d(X)) is not considered. MAP decision in (1) is obtained
without considering loss for different misclassification, or adopting
a zero-one loss function /[y, (W,d(X)) . In this study, we are

engaged in handling three assumptions for robust speech
recognition. The first assumption is problematic when the training
data does not match the test data. An adaptive decision is made via
adapting hyperparameters to the unknown observation space [4].
For the remaining two assumptions, we introduce some
classification rules.

2.1. Minimax and BPC Classification
With regard to the second assumption, when the assumed
distributions P(X] ]W) and P(W) are not consistent with the true

ones, the parameters A and I" shall incur estimation errors. We
can compensate these errors by using minimax [8] and Bayesian

predictive classification (BPC) [1][6] decision rules. Let U(A,f)
denote the uncertainty region of the true parameters A,T’" where

A,T" are ML parameters. A minimax decision rule is intended to
minimize the guaranteed upper risk in the uncertainty region

Aw@O)= s T B[ o (7, d(X)P, (X)X .

(AD)en(A1) W=Qp

. @
Minimax decision rule has been derived as [8]
dypy (X) = argmax [Pl._ (W) max P, (X|W)} , )
w Aen(A)

where HMM parameters were searched around neighborhood
77(;\) by ML approach. Also, BPC is used to compensate model
variations by averaging the uncertainties of A,I" expressed by the
prior densities P(A), P(I') . The overall risk of a BPC decision is
given by

Tgec (d()) = Ew xyEnnllo(W,d(X))]

(7, dCX) |, PA(XP)pM)dA] (6
Wy | x [, B (P)p(T)T '

where the integrals in bracket are known as predictive distributions
]3(X |W) and ﬁ(W) serving as distribution estimates for acoustic

and language models. BPC decision was simplified to [6]
dgpc (X) = arg;lax P.(W) L,\ P(X|W, A)p(A)dA . @

In minimax and BPC decisions, only a zero-one loss function and
the uncertainty of HMM were considered. These decisions dealt
with the same assumption but used different distortion models.

2.2. GMBR Classification

Considering the third assumption, we introduce an adaptive loss
function instead of zero-one loss function. Typically, the
nonnegative real-valued loss function /(W,d(X)) should reflect
the actual cost induced by a misclassification d(JX) of test
sentence X with the target transcription W . To obtain a metric
evaluating word error, we can measure the cost in word segments
of test sentence in online unsupervised mode. The higher the word

error rate, the larger the penalty assigned to measure the Bayes risk.

Goel’s minimum Bayes risk (GMBR) decision [5] uses the WER
loss function lygg (W,d(X)) given by the Levenshtein distance
between target W and hypothesis d(X) strings

deypr (X) =argmin 3 Ly (W,d(X))P;\ f(WlX) - ®

d(X)eQy W0y ’
Acoustic and language parameters A,f were assumed to be
accurate for approximating the word posterior probability [5]
P (X|W)P.(W)

S Py (XW)P(W")
N-best list or word lattice from the recognizer serves as the
hypotheses {W'|W’ # W} . Bayes risk of GMBR decision becomes

tamer (40)) = By x[lwer W, d(X))] . (10)
Typically, no probabilistic models and parameters are considered
in WER loss function lygg (W,d(X)).

P (W]X) = ©

3. PMBR Classification Rule

Owing to these assumptions in Bayes classification, we should
compensate the environmental mismatch and the ill-posed model
in calculation of Bayes risk. For example, in noisy speech
recognition, we are lacking for the prior information of noise type,
signal-to-noise ratio and speaker features. We don’t know the true
distributions of P, (X |W),Pr(W) from insufficient data X and

unreliable transcription W . We should simultaneously trace the
mismatch sources in data W, X and characterize the variability of

the estimated parameters A,T" . Model generalization can be
assured to elevate classification performance of test sentence. For
this concern, the Bayes risk should be not only averaged over the
randomness of W,X but also A,T' . We try to fulfill Bayes
classification through minimizing the predictive Bayes risk

remer (A0)) = Ewr xyE s 0y llse (W, d(X))].- (11)
The predictive minimum Bayes risk (PMBR) classification is
developed through combining BPC and GMBR decisions where
the uncertainty of A,I" and the adaptive loss function are merged

dpvpr (X) =argmin ¥ lgs (W,d(X)) P|X).  (12)
d(X)eQy WeQy,

We present a Bayes loss function /gp(W,d(X)) and a predictive
word posterior probability I3(W|X ) for Bayes classification.

3.1. Bayes Loss Function

Different from GMBR using the WER loss function, we present a
statistical loss function through solving a hypothesis-test problem.
The loss due to the classification action d(X) is formulated as a

confidence measure towards accepting the null hypothesis H,
occurring loss event against the alternative hypothesis H,

occurring lossless event [2]. Beyond the likelihood ratio test, we
cope with the test by measuring the Bayes factor [7]

P(X,d(X)|H, : d(X)# W) _

P(X,d(X)|H, :d(X)=W)

Y acormew by, PA(X[PIP(A)AA [ P (W")P(T)dT
[, PA(X[P)P(A)GA], R (W)PD)dT

b(W,d(X)) =

(13)

Null hypothesis is accepted if Bayes factor exceeds a critical
threshold. Importantly, Bayesian approach assumes randomness of
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parameters A,I" so that the predictive distributions ﬁ(X |W) and

ﬁ(W) are seen in (13). Bayes factor offers a way of incorporating
external information for penalizing misclassifications of speech
signals. The numerator sums up joint predictive distributions
I;(X ,d(X)) corresponding to wrong classification d(X)=W ,
whereas the denominator involves only the predictive distribution
for correct classification d(X)=W . The numerator can be
{dX)=w)=W}
provided by classifier d(.X) . Empirically, we smooth the

logarithm of Bayes factor via a sigmoid function and establish the
Bayes loss function by

g (W,d(X)) =

approximated using non-target strings

! L4
1+exp(—y logb(W,d(X))+ 0)
where y and @ are variables tuning the degree of nonlinearity.

This Bayes loss is computed as a continuous value, which is
related to discrete-valued WER. The higher the Bayes loss, the
more likely the misclassification increases the WER.

3.2, Predictive Word Posterior Probability
In this paper, the Bayesian treatment is not only taken in Bayes
loss function but also in word posterior probability. We calculate
the predictive word posterior probability by

~ P(XW)B(W P(XW)BW

Bowx) = (|~)()= (~|),(~)’

PX) Xy PP
LA P (X |W)P(A)a’AI,L B-(W)P(T)dl

TS b P XPP(NGA], B PP 13)

This predictive word posterior probability is determined by
replacing the point estimates of distributions P; (X |W), P.(W) in
word posterior probability of (9) with the predictive distributions
ﬁ(X 'W),ﬁ(W) . The uncertainties of parameters A,I" are
normalized. In comparison of (13) and (15), it is interesting that

Bayes factor equals the inverse of word posterior probability if the
same hypothesis set {#W'} is used to approximate the predictive

distribution 13(X ,d(X )|H0) and the evidence term P(X) even
though two distributions are inherently different. The Bayes loss
function in PMBR classification can be interpreted as an additional
smoothing of the predictive posterior probability 13(W|X ). The
higher the predictive word posterior probability is calculated, the
lower the Bayes loss is measured as a smoothing factor to

determine the Bayes risk. In implementation of PMBR, the Bayes
loss is calculated for N-best list rescoring.

3.3. Predictive Distribution

In the evaluation, we only investigate the uncertainties of HMM
mean vectors A ={u;} for different states / and mixture
components k . The remaining HMM parameters including initial
state probabilities {7}, state transition probabilities {a;}, mixture

weights {@,} and covariance matrices {X,} are assumed to be
deterministic in calculation of Bayes risk. A good way to model
the uncertainty of a Gaussian mean vector is to use the conjugate
prior, which is a Gaussian density P(y,.k|¢ik)=N(/1,-k;m,.,,,C,-,c)

with mean vector my; and covariance matrix C, . The

hyperparameters ¢ = {p,}={m,,C,} should sufficiently reflect
the randomness of parameters {x;} . The predictive distribution of

speech frame x, with word w, given a random mean vector 1,

and the deterministic covariance matrix ﬁ,-,, , is expressed by
P, w) = [POx i Zi0) Pt )ity ~ N(xi3mi, £+ Cie), (16)

which is a closed-form integral as a Gaussian distribution. The
predictive distribution of a whole sentence X ={x,} can be

determined by the Viterbi approximation
PXw) = [, PA(XI)P(A)dA = [ P, (X,3,1)P(A)dA
. " 17
~ ”31l?[af.fma’f‘i,N(xf;m},i,’Zf,i, +C5,1',) s
where the optimal state and mixture component sequences

§= {§,},i = {i,} are merged for computing acoustic score.

4. Experiments

4.1. Databases and Experimental Setup

To evaluate the robustness of Bayes classification rules, we
conducted speech recognition of connected Chinese digits in car
environments [1]. Two databases were prepared. The first database
was recorded in office environments via close-talking microphones.
There were 1000 utterances of connected digits from 50 males and
50 females. Each speaker uttered ten sentences. We applied these
utterances to train speaker-independent (SI) HMMs. Also, we
collected another test database CARNAV98 containing utterances
of five males and five females different from those in training data
and recorded in two medium class cars. These utterances were
collected using a hands-free far-talking microphone. We had three
sessions of standby, downtown and freeway conditions with the
averaged car speeds being 0, 50 and 90 km/h and the averaged
signal-to-noise ratios being 8.0, -3.1 and -7.0 dB, respectively.
During recording, we kept the engine on, the air-conditioner on,
the music off and the windows rolled up. The numbers of test
utterances were 50, 150 and 250 for standby, downtown and
freeway conditions, respectively. Each speaker provided five
adaptation utterances (N=5) for estimating {m,,C, }. WERs were

averaged over ten test speakers. All utterances contained three to
eleven random digits. We modeled each Chinese digit using a left-
to-right seven-state HMM without state skipping. There were 73
HMM states (70 for ten digits, 1 for pre-silence, 1 for post-silence
and 1 for silence within connected digits). Each HMM state was
composed of four mixture components. A speech frame was
characterized by a feature vector with 12 LPC-derived cepstral
coefficients, 12 delta cepstral coefficients, one delta log energy
and one delta delta log energy. No language model P.(W) was
involved. In the experiments, we compared MAP, minimax, BPC,
GMBR and PMBR decision rules. MAP decoding with ST HMMs
was referred as the baseline system. Using GMBR, we performed
MARP adaptation [4] and used the adapted parameters for decoding
the test data.

4.2. Implementation Issues

In BPC and PMBR, the hyperparameters ¢ ={m,C;} were
empirically estimated from training and adaptation data. To do so,
we individually estimated HMM mean vectors {/;} for each
training speaker s . The hyperparameters m, and C, were
determined by calculating the sample mean vector and the sample
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covariance matrix using the estimated means {/;,} over speakers
s=1,---,8 . The estimated hyperparameters modeled cross speaker
variability. As shown in (16)(17), the hyperparameter C; was

added to the HMM covariance matrix iik, which modeled rotal
variability. It was meaningful that the variance in predictive
distribution could represent the inter-speaker variability. To
capture intra-speaker variability, we further used adaptation data
and performed MAP adaptation [4] of hyperparameter m; to
target speaker. Hyperparameter C; was unchanged. Providing the
adaptation data and the marginalization in (16)(17), we established
a predictive decision rule for unknown test data. Similar to GMBR
decision [5], we used an exponential discounting weight o to

balance the scores between loss function and word posterior
probability. PMBR decision was made according to the criterion

3 I (W, d(X))* POW|X). (18)
WQy
Word-level Bayes losses and predictive word posterior

probabilities were calculated for individual word segments using
the confusion sets obtained in lattice alignment procedure. N-best
list was rescored accordingly. At each position in the alignment we
picked up the best word hypothesis with the lowest Bayes risk. In
the experiments, we selected o =1.6 for GMBR and o =1.2 for
PMBR. Sigmoid parameters were setto y =0.8 and 6 =0.2.
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Figure 1: Comparison of WERs using different classification rules.

4.3. Experimental Results

In the experiments, MAP decision reports WERs of 25.6%, 55%
and 62.3% for standby, downtown and freeway conditions,
respectively [1]. Figure 1 displays WERs of classifiers using MAP,
minimax, BPC, GMBR and PMBR with N=1, N=3 and N=5 in
different driving conditions. The distortion model using BPC is
better than that using minimax classifier. The hyperparameters
my and Cy provide informative statistics of target speaker and

noise. These two classifiers outperform MAP classifier with no
distortion model involved. However, we find that GMBR and
PMBR reduce WERs compared to MAP, BPC and minimax
decisions due to the incorporation of loss function and word
predictive probability. The performance of BPC gets close to that
of GMBR. PMBR improves WERs by increasing adaptation data
N and obtains the lowest WERs among these classifiers for three
driving conditions. This reveals the superiority of using predictive

distributions in noisy speech recognition. The higher the driving
speed is involved, the more the reduction of word error rate is
attained. In case of downtown condition, PMBR achieves WER
39.5%, which is significantly better than 49.7% using minimax,
44.3% using BPC and 42.4% using GMBR. The predictive
distributions do help putting the environmental statistics into
integration of Bayes risk and elevating MBR based speech
recognition in car environments.

5. Summary

To pursue the essence of Bayesian theory for speech recognition,
we introduced MAP, minimax, BPC and GMBR rules and
proposed a new PMBR rule to compensate the weaknesses of
decoding algorithms without considering the randomness of HMM
parameters and the statistical representation of loss function.
Through testing classification loss of speech signal, we presented
Bayes factor to develop Bayes loss function for speech recognition.
Also, we used the predictive distributions in calculation of word
posterior probability, or equivalently the predictive Bayes risk.
The prior information of HMM mean parameters was merged so
that the decision rule was robust to variations of parameter
estimation. In experiments on a car noisy speech database, we
investigated the effects of hyperparameters in Bayes decision rules.
We showed the superiority, in terms of WER, of speech
recognition using PMBR. In the future we will continue exploring
the effects of uncertainties of other HMM parameters and n-gram
parameters.
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