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Abstract. This paper studies pyramidal traveling fronts in the Allen–Cahn equation or in the
Nagumo equation. For the nonlinearity we are concerned mainly with the bistable reaction term
with unbalanced energy density. Two-dimensional V-form waves and cylindrically symmetric waves
in higher dimensions have been recently studied. Our aim in this paper is to construct truly three-
dimensional traveling waves. For a pyramid that satisfies a condition, we construct a traveling front
for which the contour line has a pyramidal shape. We also construct generalized pyramidal fronts
and traveling waves of a hybrid type between pyramidal waves and planar V-form waves. We use
the comparison principles and construct traveling fronts between supersolutions and subsolutions.
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1. Introduction. In this paper we consider the following equation:

∂u

∂t
= Δu + f(u) in R

3, t > 0,

u|t=0 = u0 in R
3.

Here a given function u0 is bounded and of class C1. The Laplacian Δ stands for
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. If the nonlinearity f is cubic, it is called the Allen–Cahn
equation or the Nagumo equation. We study general nonlinear terms of a bistable
type including cubic ones.

In the one-dimensional space, let Φ(x−kt) be a traveling wave that connects two
stable equilibrium states ±1 with speed k. By putting μ = x− kt, Φ satisfies

(1)
−Φ′′(μ) − kΦ′(μ) − f(Φ(μ)) = 0 −∞ < μ < ∞,

Φ(−∞) = 1, Φ(∞) = −1.

To fix the phase we set Φ(0) = 0. Such one-dimensional traveling waves have been
studied in many works. See Fife and McLeod [5], Aronson and Weinberger [1],
Kanel’ [10, 11], Chen [2], and Terman [18], for instance. We state equations for
the unbalanced nonlinearity and the balanced one.

The unbalanced case is as follows. The following are the assumptions on f in this
paper:

(A1) f is of class C1[−1, 1], with f(±1) = 0 and f ′(±1) < 0.

(A2)
∫ 1

−1
f > 0 holds true.

(A3) There exists Φ(μ) that satisfies (1) for some k ∈ R.
The assumption (A1) implies that f is bistable and that (A2) means that it

is unbalanced. Note that (A2) implies k > 0. Under (A1), (k,Φ(μ)) is uniquely
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determined if it exists. For the proof of this uniqueness, see [5] or [2]. We show simple
examples for f here.

Example 1. If f satisfies f ′(β) > 0 and

f(s) > 0 for β < s < 1,

f(s) < 0 for −1 < s < β,

with some β ∈ (−1, 1) in addition to (A1), then it is well known that (A3) is valid.
See [5] or [2]. Especially, f(u) = −(u + 1)(u + a)(u − 1) has a one-dimensional
traveling wave Φ(μ) = − tanh(μ/

√
2) with speed k =

√
2a for every a ∈ [0, 1). This

traveling wave is sometimes called the Huxley solution. See Nagumo, Yoshizawa, and
Arimoto [14].

Example 2 (Fife and McLeod [5, Theorem 2.7]). Assume f satisfies (A1) and
(A2). For −1 < λ < 1 assume that there exists (cL,ΦL) to

−Φ′′
L(μ) − kΦ′

L(μ) − f(ΦL(μ)) = 0 −∞ < μ < ∞,
ΦL(−∞) = 1, ΦL(∞) = λ,

and there exists (cR,ΦR) to

−Φ′′
R(μ) − kΦ′

R(μ) − f(ΦR(μ)) = 0 −∞ < μ < ∞,
ΦR(−∞) = λ, ΦR(∞) = −1.

If cL > cR, then (A3) holds true. If cL ≤ cR, there exists no solution to (1).
Example 3. For G with (B1) and (B2) below, we define

f(u) = −G′(u) + k
√

2G(u)

for k > 0. Then Φ0(μ) given by (3) is a solution to (1) for k > 0. If k is small enough,
f(u) satisfies (A1), (A2), and (A3).

We note that (A1) and (A2) do not always imply (A3), because we can construct
such f with cL ≤ cR in Example 2. If it exists, it is always monotone in μ as in
Lemma 1. See [5, Lemma 2.1] for the proof of the monotony of one-dimensional
fronts. We use this monotony and the comparison principles in this paper.

The balanced case is as follows:

∂u

∂t
= Δu−G′(u) in R

3, t > 0,(2)

u|t=0 = u0 in R
3.

The assumptions on G are as follows:
(B1) G is of class C2[−1, 1], with G′(±1) = 0, G′′(±1) > 0.
(B2) G(1) = 0 and G(s) > 0 for −1 < s < 1.

Under (B1) and (B2), (2) has a standing wave solution Φ0(x) to

−Φ′′
0(μ) + G′(Φ0(x)) = 0 −∞ < μ < ∞,

Φ0(−∞) = 1, Φ0(∞) = −1.

Φ0 is given by

(3) x = −
∫ Φ0

0

dv√
2G(v)

.
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The condition G(1) = 0 means that a potential density term G has minimizers with
an equal depth. If G takes a negative value or zero in (−1, 1), there exists no standing
wave. Thus (B2) is the condition for the existence of a standing wave solution Φ0. A
typical balanced nonlinearity term is −G′(u) = u− u3, with G(u) = (1/4)(1 − u2)2.

First we study traveling waves for the unbalanced nonlinearity. We adopt the
moving coordinate of speed c toward the z-axis without loss of generality. We put
s = z − ct and u(x, y, z, t) = w(x, y, s, t). We denote w(x, y, s, t) by w(x, y, z, t) for
simplicity. Then we obtain

wt − wxx − wyy − wzz − cwz − f(w) = 0 in R
3, t > 0,(4)

w|t=0 = u0 in R
3.

Here wt stands for ∂w/∂t and so on. We write the solution as w(x, y, z, t;u0). If v is
a traveling wave with speed c, it satisfies

(5) L[v]
def
= − vxx − vyy − vzz − cvz − f(v) = 0 in R

3.

We assume

c > k

throughout this paper. There exist many traveling waves in this situation, because k
is the speed of a planar traveling wave, and the curvature effect often accelerates the
speed.

In the two-dimensional plane there exists the following V-form wave.
Theorem 1 (see [15]). Under the assumptions c > k, (A1), (A2), and (A3),

there exists v∗(x, y), with

−(v∗)xx − (v∗)yy − c(v∗)y − f(v∗) = 0 for (x, y) ∈ R
2,

lim
R→∞

sup
x2+y2>R2

∣∣∣∣∣v∗(x, y) − Φ

(
k

c

(
y −

√
c2 − k2

k
|x|

))∣∣∣∣∣ = 0.

Under these two equalities v∗(x, y) is uniquely determined.
See also Hamel, Monneau, and Roquejoffre [8, 9] for V-form waves in the Allen–

Cahn equation. Recently Haragus and Scheel [13] studied V-form waves in reaction-
diffusion systems including the Allen–Cahn equation by using the bifurcation theory
when the angle arctan(

√
c2 − k2/k) is small enough. Such a bifurcation technique is

applicable to the cases where a one-dimensional traveling front loses its monotony.
For three- or higher-dimensional cases with cylindrical symmetry, Hamel, Mon-

neau, and Roquejoffre [8, 9] studied conical traveling waves for unbalanced bistable
nonlinearity. The proof is based on the results for bounded cylinders, and a passage
to the limit gives the existence of a conical front in the whole domain.

Now we study three-dimensional traveling waves, and our aim is to search truly
three-dimensional traveling waves that have pyramidal structures and are neither
cylindrically symmetric nor reducible to two-dimensional traveling waves. For this
purpose, we construct pyramidal traveling waves to (5). We apply the method of
Ninomiya and Taniguchi [15, 16]. A supersolution for the V-form wave is constructed
in [15] as follows. In the moving coordinate we put an almost flat planar front above
the shape “V.” This curve is almost flat, and then the real solution goes downwards
with speed c − k > 0, since we are using a moving coordinate. This means that
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an almost flat stationary planar front is a supersolution. This method is based on
the monotony of a one-dimensional traveling front and the comparison methods. The
application of this method is restricted to equations for which the comparison principle
holds true. In this paper, we put a mollified pyramid above a pyramid in R

3 and
construct a supersolution carefully, because a pyramidal wave is everywhere apart
from a pyramid near the edges.

Let n ≥ 3 be a given integer. We put

(6) τ
def
=

√
c2 − k2

k
> 0.

Assume (Aj , Bj) ∈ R
2 satisfies

(7) A2
j + B2

j = 1 for all j = 1, . . . , n

and

(8)
AjBj+1 −Aj+1Bj > 0, 1 ≤ j ≤ n− 1,

AnB1 −A1Bn > 0.

We assume (Aj1 , Bj1) �= (Aj2 , Bj2) if j1 �= j2. Now (−τAj ,−τBj , 1) is the normal
vector of a surface {z = τ(Ajx + Bjy)}. We put

hj(x, y)
def
= τ (Ajx + Bjy) ,

h(x, y)
def
= max

1≤j≤n
hj(x, y) = τ max

1≤j≤n
(Ajx + Bjy) .(9)

Then z = h(x, y) represents a pyramid in R
3. We set

Ωj = {(x, y) |h(x, y) = hj(x, y)}

and obtain

R
2 = ∪n

j=1Ωj .

We locate Ω1,Ω2, . . . ,Ωn counterclockwise as in Figure 1. To ensure this location we
assumed (8). We set

E
def
= ∪n

j=1 ∂Ωj ⊂ R
2.

Now the lateral surfaces of a pyramid are given by

Sj = {(x, y, z) ∈ R
3 | z = hj(x, y), (x, y) ∈ Ωj}

for j = 1, . . . , n. We put

Γj
def
=

{
Sj ∩ Sj+1 if 1 ≤ j ≤ n− 1,
Sn ∩ S1 if j = n.

Then Γj represents an edge of a pyramid. Also

Γ
def
= ∪n

j=1 Γj

represents the set of all edges.
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Fig. 1. The decomposition of the x-y plane by Ωj for n = 5.

For every (Aj , Bj) with (7), (5) has a solution Φ ((k/c)(z − hj(x, y))) , which is
called a planar wave. Now we have

Φ

(
k

c
(z − h(x, y))

)
= max

1≤j≤n
Φ

(
k

c
(z − hj(x, y))

)
= max

1≤j≤n
Φ

(
k

c
(z − ajx− bjy)

)
.

This becomes a subsolution to (5). We define

(10) D(γ)
def
= {(x, y, z) ∈ R

3 | dist((x, y, z), Γ ) > γ}

for γ > 0. We will construct a supersolution that is larger than this subsolution and
obtain a traveling wave between them.

The following theorem is the main assertion in this paper.
Theorem 2. Let c > k, and let h(x, y) be given by (9). Under the assumptions

(A1), (A2), and (A3), there exists a solution V (x, y, z) to (5) with

Φ

(
k

c
(z − h(x, y))

)
< V (x, y, z) < 1 in R

3

and

lim
γ→+∞

sup
(x,y,z)∈D(γ)

∣∣∣∣V (x, y, z) − Φ

(
k

c
(z − h(x, y))

)∣∣∣∣ = 0,(11)

Vz(x, y, z) < 0 for all (x, y, z) ∈ R
3.(12)

We state the proof of this theorem in section 3. A domain D(γ) is a complement
of a neighborhood of the edges. The property (11) implies that the geometric shape
of V can be approximated by a combination of n planar waves except on a neigh-
borhood of the edges (see Figure 2). We conjecture that the geometric shape of V
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Fig. 2. A pyramidal traveling wave.

can be approximated by two-dimensional V-form waves on the edges and that V is
a combination of planar waves and two-dimensional V-form waves. The uniqueness
and the stability of V is yet to be proved.

Section 4 is devoted to applications of Theorem 2. A two-dimensional V-form
wave in Theorem 1 immediately gives a three-dimensional wave v∗(x, z). We call this
wave a planar V-form wave. It is natural to search for a combination of a pyramidal
wave and a planar V-form wave. In section 4 we study a traveling wave of a hybrid type
between pyramidal waves and planar V-form waves as a special case of Theorem 2.

We studied pyramids whose lateral surfaces contain the origin in R
3 in Theorem 2.

We consider the case where the surfaces do not have a common point in section 5.
Even in that case a combination of n planar waves gives three-dimensional traveling
waves, and we construct generalized pyramidal traveling waves when the zero level
sets of planar waves have no common point.

We study traveling waves for the balanced nonlinearity in section 6. For any given
c > 0 we study

(13) L0[v]
def
= − vxx − vyy − vzz − cvz + G′(v) = 0 in R

3.

We call −G′(u) in Example 3 a balanced nonlinearity. Cylindrically symmetric trav-
eling waves for balanced nonlinearity have been studied in Chen et al [3] for two
or higher dimensions. The limit of traveling waves for unbalanced nonlinearity terms
when the difference of energy density goes to zero gives a traveling wave in (13). Pyra-
midal traveling waves for unbalanced nonlinear terms converge to traveling waves for
a balanced nonlinearity term as the difference of the energy density goes to zero. Up
to now the profile of the limit traveling wave is unknown and is yet to be studied.
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The characterization and classification of all traveling waves for unbalanced and
balanced nonlinearities will give interesting problems and are left for further studies.

2. Pyramids and mollified pyramids. In this section we make preparations.
We state known results for one-dimensional traveling waves and construct mollified
pyramids

Lemma 1 (Fife and McLeod [5]). Under the assumptions (A1) and (A3), Φ(μ)
as in (1) satisfies

Φ′(μ) < 0 for all μ ∈ R,

max {|Φ′(μ)|, |Φ′′(μ)|, |μΦ′(μ)|} ≤ K0 exp (−κ0|μ|) .

Here K0, κ0 are positive constants.
There exists a positive constant δ∗ (0 < δ∗ < 1/4), with

−f ′(s) > κ1 if |s + 1| < 2δ∗ or |s− 1| < 2δ∗,

where

κ1
def
=

1

2
min {−f ′(−1),−f ′(1)} > 0.

We construct mollified pyramids. Let ρ̃(r) ∈ C∞[0,∞) be a function with the
following properties:

ρ̃(r) > 0, ρ̃r(r) ≤ 0 for r ≥ 0,

ρ̃(r) ≡ 1 if 0 ≤ r ≤ 1
2 ,

ρ̃(r) = e−r if r > 0 is large enough,

2π

∫ ∞

0

rρ̃(r)dr = 1.

Then ρ(x, y)
def
= ρ̃(

√
x2 + y2) belongs to C∞(R2) and satisfies

∫
R2 ρ = 1. For a pyramid

z = h(x, y) we define a mollified pyramid z = ϕ(x, y) as ϕ(x, y)
def
= ρ ∗ h, which means

(14) ϕ(x, y) =

∫
R2

ρ(x−x′, y−y′)h(x
′
, y

′
)dx

′
dy

′
=

∫
R2

ρ(x′, y′)h(x−x
′
, y−y

′
)dx

′
dy

′
.

We set (aj , bj)
def
= τ(Aj , Bj). Then (aj , bj) ∈ R

2 satisfies

(15)
c√

1 + a2
j + b2j

= k for all j = 1, . . . , n.

We put

(16) S(x, y)
def
=

c√
1 + ϕx(x, y)2 + ϕy(x, y)2

− k.

Then we have the following lemma.
Lemma 2. Let ϕ and S be as in (14) and (16), respectively. Then one has

sup
(x,y)∈R2

|Di1
x Di2

y ϕ(x, y)| < +∞
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for all integers i1 ≥ 0, i2 ≥ 0, and

h(x, y) < ϕ(x, y) ≤ h(x, y) + 2πτ

∫ ∞

0

r2ρ̃(r) dr

|(∇ϕ)(x, y)| < τ, 0 < S(x, y) < c(17)

for all (x, y) ∈ R
2.

Proof. Now ρ satisfies |Di1
x Di2

y ρ(x, y)| ≤ (const)e−
√

x2+y2
for large

√
x2 + y2 > 0.

We get the first estimate from Di1
x Di2

y (ρ∗ gj) = (Di1
x Di2

y ρ)∗ gj . Note that ρ∗hj = hj .
Using ρ > 0, hj(x, y) ≤ h(x, y), and hj(x, y) �≡ h(x, y), we have a strict inequality
hj(x, y) < ϕ(x, y). Thus we get h(x, y) = max1≤j≤n (hj(x, y)) < ϕ(x, y). Now

|hj(x
′, y′) − hj(x, y)| ≤ τ

√
(x′ − x)2 + (y′ − y)2

gives

|h(x′, y′) − h(x, y)| ≤ τ
√

(x′ − x)2 + (y′ − y)2.

Thus we obtain

ϕ− h ≤
∫

R2

|h(x− x′, y − y′) − h(x, y)| ρ(x′, y′)dx′dy′ ≤ τ

∫
R2

√
x2 + y2ρ(x, y)dxdy

and prove the first inequality. We have

(∇ϕ)(x) =

∫
R2

ρ(x′, y′)(∇h)(x− x′, y − y′) dx′dy′.

Here ∇h is a constant vector in each Ωj , and at least two of these vectors are linearly
independent. Thus we get a strict inequality

|(∇ϕ)(x)| <
∫

R2

ρ(x′, y′)|(∇h)(x− x′, y − y′)| dx′dy′.

The right-hand side equals∫
R2

√
a2
j + b2j ρ(x

′, y′) dx′dy′ = τ.

Clearly S < c is valid, and S > 0 follows from |∇ϕ| < τ . This completes the
proof.

The following proposition plays a key role in this paper.
Proposition 1. For every integer i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3,

sup
(x,y)∈R2

|(Di1
x Di2

y ϕ)(x, y)|
S(x, y)

< +∞

holds true.
The proof of this proposition is given at the end of this section.
We study the difference of a mollified pyramid and the original pyramid, that is,

ϕ(x, y) − h(x, y). We put

(18) ϕ̃j(x, y)
def
= ϕ(x, y) − hj(x, y) = ϕ(x, y) − ajx− bjy.
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Then we have ϕ(x, y) − h(x, y) = ϕ̃j(x, y) in Ωj . It suffices to study ϕ̃j(x, y) in each
Ωj for studying ϕ(x, y) − h(x, y) in R

2. To do this we study here the simplest case.
For

q(x, y)
def
= max{x, 0} =

{
−x x < 0,
0 x ≥ 0,

we define

P (x)
def
=

∫
R2

ρ(x′, y′)q(x− x′, y − y′) dx′dy′

= −
∫ ∞

−∞

(∫ ∞

x

ρ(x′, y′)(x− x′) dx′
)
dy′ > 0.(19)

This P (x) is a mollified function for q(x, y). We use it to estimate ϕ(x, y) − h(x, y)
because it stands for the influence of a lateral surface when we construct a mollified
pyramid from the original pyramid. Then we have

P ′(x) = −
∫ ∞

−∞

(∫ ∞

x

ρ(x′, y) dx′
)
dy < 0,

P ′′(x) =

∫ ∞

−∞
ρ(x, y) dy =

∫ ∞

−∞
ρ̃(
√

x2 + y2) dy > 0,

P (3)(x) =

∫ ∞

−∞

x√
x2 + y2

ρ̃r(
√
x2 + y2) dy ≤ 0.

Especially we have

P ′′(x) =

∫ ∞

−∞
e−

√
x2+y2

dy, P (3)(x) = −
∫ ∞

−∞

x√
x2 + y2

e−
√

x2+y2
dy,

if x > 0 is large enough. Now we have the following lemma.
Lemma 3. Let P (x) be as in (19). Then it satisfies

lim
x→∞

P (x)√
2πxe−x

= 1

and

lim
x→∞

|P (i)(x)|
P (x)

= 1, 0 < inf
x≥1

|P (i)(x)|
P (x)

≤ sup
x≥1

|P (i)(x)|
P (x)

< +∞

for all i with 1 ≤ i ≤ 3.
Proof. For x > 0 we use y =

√
s2 + 2sx and obtain

2

∫ ∞

0

e−
√

x2+y2
dy = 2e−x

∫ ∞

0

e−s s + x√
s2 + 2sx

ds =
√

2xe−xQ(x).

Here

Q(x)
def
=

∫ ∞

0

1√
s
e−s

(
1 +

s

x

)(
1 +

s

2x

)− 1
2

ds.

By Lebesgue’s convergence theorem we have

lim
x→∞

Q(x) =

∫ ∞

0

1√
s
e−s ds =

√
π.
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Thus we have

(20) P ′′(x) =
√

2πxe−x(1 + o(1)) as x → ∞.

Similarly we get

2

∫ ∞

0

x√
x2 + y2

e−
√

x2+y2
dy =

√
2xe−x

∫ ∞

0

e−s

√
2x

s2 + 2sx
ds

=
√

2xe−x

∫ ∞

0

e−s 1√
s

(
1 +

s

2x

)− 1
2

ds =
√

2πxe−x (1 + o(1)) as x → ∞.

Thus we obtain

lim
x→∞

−P (3)(x)

P ′′(x)
= 1.

Now the Cauchy mean value theorem gives

P ′′(x)

P ′(x)
=

P (3)(x′)

P ′′(x′)

for some x′ > x. This yields

lim
x→∞

P ′′(x)

−P ′(x)
= 1.

Similarly we have

lim
x→∞

−P ′(x)

P (x)
= lim

x→∞

P ′′(x)

−P ′(x)
= 1.

Thus we obtain

lim
x→∞

−P ′(x)

P (x)
= lim

x→∞

P ′′(x)

−P ′(x)
= lim

x→∞

−P (3)(x)

P ′′(x)
= 1.

This completes the proof.
Now we come back to study

ϕ̃j(x, y) = ϕ(x, y) − hj(x, y) = (ρ ∗ (h− hj)) (x, y)

in Ωj . Hereafter we assume (x, y) ∈ Ωj . We write

aj = (aj , bj) (1 ≤ j ≤ n).

Then we get

(21) 0 < τ2 − |∇ϕ|2 = −2aj · ∇ϕ̃j − |∇ϕ̃j |2.

We have

h(x, y) − hj(x, y) =

{
(aj+1 − aj)x + (bj+1 − bj)y in Ωj+1,
(aj−1 − aj)x + (bj−1 − bj)y in Ωj−1.
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−

Ο
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π
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y
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j

Fig. 3. The definition of λ±.

Now

(22) m+

j
def
=

√
(aj+1 − aj)2 + (bj+1 − bj)2, m−

j
def
=

√
(aj−1 − aj)2 + (bj−1 − bj)2

give the gradients of the adjacent surfaces Sj+1 and Sj−1 from a surface Sj , respec-
tively. Let the angle of Ωj be denoted by 2θj , with θj ∈ (0, π/2) for j = 1, . . . , n as
in Figure 3. For (x, y) ∈ Ωj , let λ+ and λ− be the lengths of the perpendiculars onto
∂Ωj . We have

(23) λ+ =
(aj − aj+1)x + (bj − bj+1)y

m+

j

, λ− =
(aj − aj−1)x + (bj − bj−1)y

m−
j

.

We study ϕ̃j(x, y) and its derivatives in Ωj when
√
x2 + y2 is large enough. The

number of the nearest latent surfaces for (x, y) ∈ Ωj is at most two. This fact suggests

that ϕ̃j(x, y) can be approximated by m+P (λ+) + m−P (λ−) in Ωj if
√
x2 + y2 → ∞

up to the derivatives. We have

ϕ̃j = ρ ∗ (max{hj+1 − hj , 0}) + ρ ∗ (max{hj−1 − hj , 0}) + ρ ∗ gj ,

where

gj
def
= h− hj − max{hj+1 − hj , 0} − max{hj−1 − hj , 0}.

Using P , we write the first and the second terms as

(ρ ∗ (max{hj+1 − hj , 0})) (x, y) = m+

j P (λ+),

(ρ ∗ (max{hj−1 − hj , 0})) (x, y) = m−
j P (λ−),
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respectively. We estimate the third term. We have

gj ≡ 0 on Ωj−1 ∪ Ωj ∪ Ωj+1

and

hj(x, y) ≥ 0 for all (x, y) ∈ Ωj .

The distance between (x, y) and a line {(x, y) |hj(x, y) = 0} is (1/τ)hj(x, y). The gra-
dients of the planes hj (1 ≤ j ≤ n) are at most τ . We put Λ+ = dist((x, y),Ωj+2) and
Λ− = dist((x, y),Ωj−2). We have 0 < sin θj < 1 and min{λ+, λ−} ≤ (hj(x, y)/τ) sin θj .
There exists γ0 > 1 such that we have

γ0 min{λ+, λ−} ≤ min

{
Λ+,Λ−,

1

τ
hj(x, y)

}
.

The following lemma is useful to estimate ρ ∗ gj and ϕ(x, y) − h(x, y).
Lemma 4. For every j (1 ≤ j ≤ n), one has

ϕ(x, y) − h(x, y) = m+

j P (λ+) + m−
j P (λ−) + (ρ ∗ gj)(x, y) for all (x, y) ∈ Ωj,

where m±
j , λ± are given by (22) and (23), respectively. For all nonnegative integers

i1, i2, with 0 ≤ i1 + i2 ≤ 3, one has∣∣Di1
x Di2

y (ρ ∗ gj)(x, y)
∣∣ ≤ K (γ0 min{λ+, λ−})

1
2 exp (−γ0 min{λ+, λ−})

for (x, y) ∈ Ωj and x2 + y2 ≥ 1. Here K > 0 and γ0 > 1 are constants independent
of j, i1, and i2. In particular one has

lim
λ→∞

sup
{
S(x, y) | (x, y) ∈ R

2,dist((x, y), E) ≥ λ
}

= 0,

lim
λ→∞

sup
{
ϕ(x, y) − h(x, y) | (x, y) ∈ R

2,dist((x, y), E) ≥ λ
}

= 0.

Proof. We already obtained the first equality. We decompose gj as

gj = gjχ{hj+2−hj+1>0} + gjχ{hj−2−hj−1>0} + gjχ{hj+2−hj+1≤0,hj−2−hj−1≤0},

where χ{hj+2−hj+1>0} is the characteristic function of {hj+2 − hj+1 > 0} and so on.
For all nonnegative integers i1, i2, with 0 ≤ i1 + i2 ≤ 3, we take γ1 > 0 so large to get
|Di1

x Di2
y ρ(x, y)| ≤ γ1ρ(x, y) for all (x, y) ∈ R

2. Then applying Lemma 3 we obtain

|(Di1
x Di2

y ρ) ∗ gj(x, y)| ≤ 6τγ1P (Λ+) + 6τγ1P (Λ−) + 6τγ1P

(
−1

τ
hj(x, y)

)
for all (x, y) ∈ R

2. Using Di1
x Di2

y (ρ∗gj) = (Di1
x Di2

y ρ)∗gj , we get the desired inequality.
The last two equalities follow from this inequality.

We have

ϕ̃j(x, y) = m+

j P (λ+) + m−
j P (λ−) + (ρ ∗ gj)(x, y).

Using Lemma 4 we obtain

lim√
x2+y2→∞

ϕ̃j(x, y)

m+

j P (λ+) + m−
j P (λ−)

= 1,

lim√
x2+y2→∞

aj · (∇ϕ̃j)(x, y)

−τm+

j P
′(λ+) cos(θj + π

2 ) − τm−
j P

′(λ−) cos(θj + π
2 )

= 1.
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For all integers i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3, we can estimate |Di1
x Di2

y ϕ̃j(x, y)|
by ∣∣∣P ′′

(λ+)
∣∣∣ +

∣∣∣P (3)(λ+)
∣∣∣ +

∣∣∣P ′′
(λ−)

∣∣∣ +
∣∣∣P (3)(λ−)

∣∣∣ .
From Lemma 4 there exists a constant M > 0, with

(24) |Di1
x Di2

y ϕ̃j(x, y)| ≤ M (P (λ+) + P (λ−)) in Ωj

for every j (1 ≤ j ≤ n) and all integers i1 ≥ 0, i2 ≥ 0, with 0 ≤ i1 + i2 ≤ 3.
The definition of S(x, y) and (21) give

(25)
k3

2c2
(
−2aj · ∇ϕ̃j − |∇ϕ̃j |2

)
< S(x, y) <

k2

c + k

(
−2aj · ∇ϕ̃j − |∇ϕ̃j |2

)
.

Lemma 5. For any given ω > 0

0 < inf {S(x, y) | dist((x, y), E) ≤ ω}

holds true.
Proof. It suffices to prove the lemma assuming (x, y) ∈ Ωj and dist((x, y), ∂Ωj) ≤

ω. We have

−2(aj ,∇(m+

j P (λ+))) −
∣∣∇(m+

j P (λ+))
∣∣2

= −P ′(λ+)
(
2(aj ,aj − aj+1) + P ′(λ+)|aj+1 − aj |2

)
≥ −P ′(λ+)

(
2(aj ,aj − aj+1) −

1

2
|aj+1 − aj |2

)
= −P ′(λ+)

(
|aj |2 − (aj ,aj+1)

)
> 0.

As
√
x2 + y2 → ∞, we can assume λ+ remains finite and λ− → ∞ without loss of

generality. Then the inequality stated above implies

lim
r→∞

inf
{
S(x, y) | (x, y) ∈ Ωj ,dist((x, y), ∂Ωj) ≤ ω, x2 + y2 ≥ r2

}
> 0.

This completes the proof.
Now we prove the following lemma.
Lemma 6. There exists positive constants ν1, ν2 so that

0 < ν1 ≤ ϕ(x, y) − h(x, y)

S(x, y)
≤ ν2

holds true for (x, y) ∈ R
2.

Proof. We note that (ϕ(x, y)−h(x, y))/S(x, y) is a positive function in R
2. With-

out loss of generality, we assume (x, y) lies in Ωj . Due to Lemma 5 it suffices to prove

that it remains no less than a positive constant as
√
x2 + y2 → ∞ under the condition

|∇ϕ̃j | → 0. We have

lim sup√
x2+y2→∞

∣∣∣∣ ϕ̃j(x, y)

−aj · (∇ϕ̃j)(x, y)

∣∣∣∣ =
1

τ sin θj
lim sup√
x2+y2→∞

∣∣∣∣∣ m+

j P (λ+) + m−
j P (λ−)

−m+

j P
′(λ+) −m−

j P
′(λ−)

∣∣∣∣∣ .
The right-hand side takes a positive bounded value. Using Lemma 5, (25), and this
fact, we complete the proof.
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Proof of Proposition 1. Without loss of generality we can assume (x, y) ∈ Ωj for
some j. By Lemma 5 it suffices to prove

(26) sup
(x,y)∈Ωj

|(Di1
x Di2

y ϕ̃j)(x, y)|
S(x, y)

< +∞

for each i1 ≥ 0, i2 ≥ 0, with 2 ≤ i1 + i2 ≤ 3, under the condition |∇ϕ̃j | → 0. From
(24) we obtain

lim√
x2+y2→∞

∣∣∣∣∣ (Di1
x Di2

y ϕ̃j)(x, y)

−aj · (∇ϕ̃j)(x, y)

∣∣∣∣∣ ≤ M ′

τ sin θj
lim√

x2+y2→∞

∣∣∣∣∣ m+

j P (λ+) + m−
j P (λ−)

−m+

j P
′(λ+) −m−

j P
′(λ−)

∣∣∣∣∣ .
Here M ′ > 0 is a constant. The right-hand side is bounded. Using this estimate, (25),
and (21), we obtain (26). This completes the proof.

3. Proof of Theorem 2. In this section we prove Theorem 2 by constructing
a supersolution and a subsolution and by finding a pyramidal traveling wave between
them.

For α ∈ (0, 1) we consider the graph of

(27) z =
1

α
ϕ(αx, αy).

Later we will choose α to be small enough. We use this function as a mollified pyramid.
We note that

1

α
h(αx, αy) = h(x, y).

We use a rescaled coordinate (ξ, η, ζ) as

ξ = αx, η = αy, ζ = αz

and write (27) as ζ = ϕ(ξ, η).
For (x0, y0) ∈ R

2, the tangent plane of (27) at (x0, y0, α
−1ϕ(αx0, αy0)) is ex-

pressed by

−ϕξ(ξ0, η0)(x− x0) − ϕη(ξ0, η0)(y − y0) + z − 1

α
ϕ(ξ0, η0) = 0,

where ξ0 = αx0, η0 = αy0. The length of the perpendicular from (x0, y0, z0) onto the
tangent plane is ∣∣z0 − 1

αϕ(ξ0, η0)
∣∣√

1 + ϕξ(ξ0, η0)2 + ϕη(ξ0, η0)2
.

We define

(28) μ̂
def
=

z − 1
αϕ(αx, αy)√

1 + ϕξ(αx, αy)2 + ϕη(αx, αy)2
=

1

α

ζ − ϕ(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

.

Then we have

μ̂z =
1√

1 + ϕ2
ξ + ϕ2

η

, μ̂zz = 0.



PYRAMIDAL TRAVELING FRONTS 333

Also we get

μ̂x = − ϕξ√
1 + ϕ2

ξ + ϕ2
η

+ αμ̂F1(ξ, η), μ̂xx = αG11(ξ, η) + α2μ̂H11(ξ, η),

where

F1(ξ, η)
def
=

√
1 + ϕ2

ξ + ϕ2
η

⎛⎝ 1√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ξ

,

G11(ξ, η)
def
= −

⎛⎝ ϕξ√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ξ

− ϕξ

⎛⎝ 1√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ξ

=
(−1 + ϕ2

ξ − ϕ2
η)ϕξξ + (2ϕ2

ξ + 2ϕξϕη)ϕξη

(1 + ϕ2
ξ + ϕ2

η)
3
2

,

H11(ξ, η)
def
= (F1(ξ, η))ξ + F1(ξ, η)

2.

Similarly we obtain

μ̂xy = αG12(ξ, η) + α2μ̂H12(ξ, η),

where

G12(ξ, η)
def
= −

⎛⎝ ϕξ√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
η

− ϕη

⎛⎝ 1√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ξ

,

H12(ξ, η)
def
= (F1(ξ, η))η + F1(ξ, η)F2(ξ, η).

We get

μ̂y = − ϕη√
1 + ϕ2

ξ + ϕ2
η

+ αμ̂F2(ξ, η), μ̂yy = αG22(ξ, η) + α2μ̂H22(ξ, η),

where

F2(ξ, η)
def
=

√
1 + ϕ2

ξ + ϕ2
η

⎛⎝ 1√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
η

,

G22(ξ, η)
def
= −

⎛⎝ ϕη√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
η

− ϕη

⎛⎝ 1√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
η

,

H22(ξ, η)
def
= (F2(ξ, η))η + F2(ξ, η)

2.

We define

(29) U(x, y, z) = Φ(μ̂) + σ(x, y),

where μ̂ is as in (28) and

σ(x, y)
def
= εS(αx, αy).
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Here we will fix ε > 0 later. We have

Uz =
1√

1 + ϕ2
ξ + ϕ2

η

Φ′(μ̂), Uzz =
1

1 + ϕ2
ξ + ϕ2

η

Φ′′(μ̂),

and

Uxx + Uyy = Φ
′
(μ̂)(μ̂xx + μ̂yy) + Φ

′′
(μ̂)(μ̂2

x + μ̂2
y) + σxx + σyy.

Thus we get

Uxx + Uyy = αΦ
′
(μ̂)(G11(ξ, η) + G22(ξ, η)) + α2μ̂Φ

′
(μ̂)(H11(ξ, η) + H22(ξ, η))

+ Φ
′′
(μ̂)

ϕ2
ξ + ϕ2

η

1 + ϕ2
ξ + ϕ2

η

− 2αμ̂Φ
′′
(μ̂)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

+ α2μ̂2Φ
′′
(μ̂)(F1(ξ, η)

2 + F2(ξ, η)
2) + σxx + σyy.

We calculate L[U ] as

L[U ] = −Φ
′′
(μ̂) − c√

1 + ϕ2
ξ + ϕ2

η

Φ
′
(μ̂) − f(Φ + σ)

− αΦ
′
(μ̂)(G11(ξ, η) + G22(ξ, η)) − α2μ̂Φ

′
(μ̂)(H11(ξ, η) + H22(ξ, η))

+ 2αμ̂Φ
′′
(μ̂)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

− α2μ̂2Φ
′′
(μ̂)(F1(ξ, η)

2 + F2(ξ, η)
2) − εα2(Sξξ + Sηη).

We have

Sξξ(ξ, η) + Sηη(ξ, η) =

⎛⎝ c√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ξξ

+

⎛⎝ c√
1 + ϕ2

ξ + ϕ2
η

⎞⎠
ηη

and define

R(ξ, η, μ; ε, α)
def
= − Φ

′
(μ)(G11(ξ, η) + G22(ξ, η)) − αμΦ

′
(μ)(H11(ξ, η) + H22(ξ, η))

+ 2μΦ
′′
(μ)

ϕξ(ξ, η)F1(ξ, η) + ϕη(ξ, η)F2(ξ, η)√
1 + ϕξ(ξ, η)2 + ϕη(ξ, η)2

− αμ2Φ
′′
(μ)(F1(ξ, η)

2 + F2(ξ, η)
2) − εα (Sξξ(ξ, η) + Sηη(ξ, η)) .

Thus we get

L[U ] = −Φ
′′
(μ̂) − c√

1 + ϕ2
ξ + ϕ2

η

Φ
′
(μ̂) − f(Φ + σ) + αR(ξ, η, μ̂; ε, α).

Using −Φ
′′
(μ) − kΦ

′
(μ) − f(Φ) = 0, we obtain

L[U ] = −Φ
′
(μ̂)S(ξ, η) − σ

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds + αR(ξ, η, μ̂; ε, α).
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We estimate |R(ξ, η, μ; ε, α)| using

|R(ξ, η, μ; ε, α)| ≤ max
{
|Φ′

(μ)|, |μΦ
′
(μ)|, |μΦ

′′
(μ)|, |μ2Φ

′′
(μ)|

}
× (|G11(ξ, η)| + |G22(ξ, η)| + |H11(ξ, η)| + |H22(ξ, η)| + 2|F1(ξ, η) + F2(ξ, η)|

+|F1(ξ, η)|2 + |F2(ξ, η)|2 + |Sξξ(ξ, η)| + |Sηη(ξ, η)|
)

if 0 < α < 1. The first term |G11(ξ, η)| includes the second derivatives of ϕ as in the
definition of G11. Other terms also include the second or third derivatives of ϕ. Using
Lemmas 1 and 2, we estimate all terms and obtain

|G11(ξ, η)| + |G22(ξ, η)| + |H11(ξ, η)| + |H22(ξ, η)| + 2|F1(ξ, η) + F2(ξ, η)|
+|F1(ξ, η)|2 + |F2(ξ, η)|2 + |Sξξ(ξ, η)| + |Sηη(ξ, η)|
≤ A′

∑
2≤i1+i2≤3

|(Di1
ξ Di2

η ϕ)(ξ, η)| for all (ξ, η) ∈ R
2

with a constant A′. Using Proposition 1 we find a constant A so that

|R(ξ, η, μ; ε, α)|
S(ξ, η)

< A

holds true for all (ξ, η) ∈ R
2, μ ∈ R, ε ∈ (0, 1), and α ∈ (0, 1). Constants A′ and A

depend only on f and c. We continue to calculate L[U ] as

L[U ] = S(ξ, η)

(
−Φ

′
(μ̂) − ε

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds + α

R(ξ, η, μ̂; ε, α)

S(ξ, η)

)
.

Thus we get

(30) L[U ] ≥ S(ξ, η)

(
−Φ

′
(μ̂) − ε

∫ 1

0

f
′
(Φ(μ̂) + sσ)ds− αA

)
.

Now we choose ε and α as was mentioned before. We take ε small enough to get

(31) 0 < ε < min

{
1

2
,
δ∗
c
,
2K0

c
,
min−1+δ∗≤Φ(p)≤1−δ∗(−Φ

′
(p))

4 max|s|≤1+δ∗ |f
′(s)|

}
.

Then we choose α small enough to get

(32) 0 < α < min

{
1

2
,
εκ1

2A
,
min−1+δ∗≤Φ(p)≤1−δ∗(−Φ

′
(p))

4A
,

kκ0ν1

log
(

2K0

cε

)} .

Now we show that U is a supersolution and is larger than the maximum of planar
solutions.

Lemma 7. Assume ε and α satisfy (31) and (32), respectively. Let U be as in
(29). Then

L[U ] > 0 in R
3

holds true. Moreover

Φ

(
k

c
(z − h(x, y))

)
< U(x, y, z) in R

3

holds true.
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Proof. If Φ(μ̂) < −1+δ∗ or Φ(μ̂) > 1−δ∗, we have |sεS| ≤ sεc ≤ δ∗ for 0 ≤ s ≤ 1
in view of Lemma 2. We get Φ(μ̂) + sεS < −1 + 2δ∗ or Φ(μ̂) + sεS > 1 − 2δ∗.
Combining −Φ′(μ̂) > 0 and (30), we obtain

L[U ] ≥ S(ξ, η) (εκ1 − αA) > 0.

If −1 + δ∗ ≤ Φ(μ̂) ≤ 1 − δ∗, then we have

L[U ] ≥ S(ξ, η)

(
min

−1+δ∗≤Φ(p)≤1−δ∗
(−Φ

′
(p)) − ε max

|s|≤1+δ∗
|f ′

(s)| − αA

)
> 0.

In both cases we proved that U is a supersolution.
We use a similar argument as in [15] to prove the latter statement. It suffices to

prove

(33) Φ

(
k

c
(z − ajx− bjy)

)
< U(x, y, z)

for fixed j. Temporarily we denote aj , bj simply by a, b to prove (33). If

μ̂ ≤ k

c
(z − ax− by),

we get

U(x, y, z) > Φ(μ̂) ≥ Φ

(
k

c
(z − ax− by)

)
.

Thus it suffices to prove (33) by assuming

μ̂ >
k

c
(z − ax− by).

Substituting the definition of μ̂ into this inequality, we obtain

z − ax− by +
(
ax + by − 1

αϕ(ξ, η)
)√

1 + ϕ2
ξ + ϕ2

η

>
k

c
(z − ax− by),

which is equivalent to⎛⎝ c√
1 + ϕ2

ξ + ϕ2
η

− k

⎞⎠ (z − ax− by) ≥ c

α

ϕ(ξ, η) − aξ − bη√
1 + ϕ2

ξ + ϕ2
η

.

Combining this inequality with the definition of S(ξ, η), we get

(34) z − ax− by ≥ cν1

α
√

1 + ϕ2
ξ + ϕ2

η

≥ kν1

α
.
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Using α(ax + by) = aξ + bη ≤ ϕ(ξ, η), we obtain

U(x, y, z) − Φ

(
k

c
(z − ax− by)

)

≥ Φ

⎛⎝ z − ax− by√
1 + ϕ2

ξ + ϕ2
η

⎞⎠− Φ

(
k

c
(z − ax− by)

)
+ εS(ξ, η)

=
(z − ax− by)S(ξ, η)

c

∫ 1

0

Φ′

⎛⎝⎛⎝ θ√
1 + ϕ2

ξ + ϕ2
η

+
k

c
(1 − θ)

⎞⎠ (z − ax− by)

⎞⎠ dθ

+ εS(ξ, η)

≥ S(ξ, η)

⎛⎝ε− 1

c
sup

|μ|≥ kν1
α

∣∣∣∣μΦ′
(
k

c
μ

)∣∣∣∣
⎞⎠ .

By virtue of Lemma 1 and (32) we have

1

c
sup

|μ|≥ kν1
α

∣∣∣∣μΦ′
(
k

c
μ

)∣∣∣∣ < ε

2

and obtain

U(x, y, z) − Φ

(
k

c
(z − ax− by)

)
>

ε

2
S(ξ, η) > 0,

which yields (33). This completes the proof.
Thus U is a supersolution to (5). Now we prove the main assertion.
Proof of Theorem 2. We put

(35) v(x, y, z) = Φ

(
k

c
(z − h(x, y))

)
and consider solutions of (4) given by w(x, y, z, t; v) and w(x, y, z, t;U). Since U is a
supersolution and v is a subsolution, we have

v ≤ w(x, y, z, t; v) ≤ w(x, y, z, t;U) ≤ U

for (x, y, z) ∈ R
3 and t ≥ 0 by using [17, Theorem 3.4]. Then

(36) V (x, y, z)
def
= lim

t→∞
w(x, y, z, t; v)

exists in L∞(R3), with

v(x, y, z) < V (x, y, z) < U(x, y, z) in R
3.

This V (x, y, z) is a solution of (5). See Sattinger [17, Theorem 3.6] for detailed
arguments. Now we have

v(x, y, z) < V (x, y, z) < Φ(μ̂) + εS.
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Now we prove (11). Let ε be arbitrarily given. Let U be as in (29). It suffices to
prove

(37) sup
(x,y,z)∈D(γ)

(
U(x, y, z) − Φ

(
k

c
(z − h(x, y))

))
< 2ε

if γ > 0 is large enough. Assume the contrary. Then there exists (γn) such that we
have

(38) lim
n→∞

γn = ∞, (xn, yn, zn) ∈ D(γn),

and

(39)

∣∣∣∣Φ(μ̂n) − Φ

(
k

c
(zn − h(xn, yn))

)∣∣∣∣ ≥ ε.

Here we put ξn = αxn, ηn = αyn, ζn = αzn, and

μ̂n =
1

α

ζn − ϕ(ξn, ηn)√
1 + ϕξ(ξn, ηn)2 + ϕη(ξn, ηn)2

=
zn − h(xn, yn) − 1

α (ϕ(ξn, ηn) − h(ξn, ηn))√
1 + ϕξ(ξn, ηn)2 + ϕη(ξn, ηn)2

.

If we have limn→∞ dist ((ξn, ηn), E) = ∞, then we obtain limn→∞ |ϕ(ξn, ηn)−h(ξn, ηn)| =

0 and limn→∞ S(ξn, ηn) = 0 by applying Lemma 4. Recall E
def
= ∪n

j=1∂Ωj ⊂ R
2. Then

we get

lim
n→∞

∣∣∣∣μ̂n − k

c
(zn − h(xn, yn))

∣∣∣∣ = 0.

This contradicts (39). If dist ((ξn, ηn), E) remains finite uniformly in n, then (38)
implies that limn→∞(zn − h(xn, yn)) = ±∞ and limn→∞ μ̂n = ±∞, respectively.
This contradicts (39). This completes the proof of Theorem 2.

4. Application of Theorem 2. In this section we state applications of The-
orem 2. Traveling waves in Theorem 2 have a contour line of a pyramidal shape if
the normal vectors of lateral surfaces are linearly independent. What is the shape of
traveling waves in Theorem 2 if lateral surfaces are linearly dependent? In this section
we show an example of such a traveling wave.

Lemma 8. Let h(x, y) be given by (9) with (7) and (8). Assume that h(−x, y) =
h(x, y) and that at least one Aj is positive. For any fixed y, assume that h(x, y) is
nondecreasing for x > 0. Then V in Theorem 2 satisfies

V (−x, y, z) = V (x, y, z) in R
3,

Vx(x, y, z) > 0 for x > 0.

The same statement holds for y.
Proof. We have v(−x, y, z) = v(x, y, z) and thus w(−x, y, z, t; v) = w(x, y, z, t; v).

Then V given by (36) satisfies V (−x, y, z) = V (x, y, z). We have (v)x (x, y, z) ≥ 0 for
x > 0. Now wx(x, y, z, t; v) satisfies the derivative of (4) by x in {(x, y, z) ∈ R

3 |x > 0}
with the Neumann boundary condition wx(x, y, z, t; v) = 0 on {(x, y, z) ∈ R

3 |x = 0}.
Then the comparison principle gives wx ≥ 0 and thus Vx ≥ 0 for x > 0. From
Theorem 2, Vx �≡ 0, and thus we get Vx > 0.
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x

y

o

Fig. 4. The contour lines of τ max{x, |y|}.

We consider

h1(x, y) = τy, h2(x, y) = −τy,

and thus h(x, y) = τ |y|. Theorem 2 and its proof are applicable to this case. Then
V (x, y, z) as in Theorem 2 equals v∗(y, z), where v∗ is as in Theorem 1. The uniqueness
follows from that of Theorem 1 in this case. We call this a planar V-form wave.

As an application of Theorem 2 we consider the following example:

h1(x, y) = τx, h2(x, y) = τy, h3(x, y) = −τy,

and thus

(40) h(x, y) = max
1≤j≤3

hj(x, y) = τ max {x, |y|} .

See Figure 4. The edge lines are given by

Γ1 = {(x, y, z) |x = y = z, z ≥ 0} ,
Γ2 = {(x, y, z) |x = −y = z, z ≥ 0} ,
Γ3 = {(x, 0, 0) |x ≤ 0} .

We have Γ = ∪3
j=1Γj and D(γ) as in (10).

Proposition 2. Assume c > k, (A1), (A2), and (A3). Let V1(x, y, z) be a
solution of (5) as in Theorem 2 for (40). Then V1(x, y, z) satisfies V1(x,−y, z) =
V1(x, y, z) and

0 ≤ V1(x, 0, 0) for all x ≤ 0,

(V1)z (x, y, z) < 0, (V1)x (x, y, z) > 0 in R
3,

(V1)y (x, y, z) > 0 if (x, y, z) ∈ R
3, y > 0.
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Proof. We put v−
1 (x, y, z)

def
= Φ ((k/c)(z − τ max{x, |y|})). It suffices to prove

(V1)x > 0. We have (v−
1 )x ≥ 0 in R

3. The comparison principle yields

wx(x, y, z, t; v−
1 ) ≥ 0, (V1)x ≥ 0 in R

3.

The maximum principle gives (V1)x > 0. (V1)y > 0 follows from Lemma 8 for y > 0.
This completes the proof.

From Theorem 2, V1(x, y, z) satisfies

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣∣V1(x, y, z) − Φ

(
k

c
(z − τ max{x, |y|})

)∣∣∣∣ = 0.

If x < 0 and |x| is large enough, V1 has a profile of the planar V-form wave. If x > 0
is large, V1 has a profile of a pyramidal wave. Thus V1 is a hybrid of them.

5. Generalized pyramidal traveling waves. The lateral surfaces of a pyra-
mid have a common point. As a combination of planar traveling waves associated with
the surfaces, we construct a pyramidal traveling wave in Theorem 2. How about if the
surfaces have no common point? In this section we treat planes that have no common
point and construct a generalized pyramidal traveling wave from a combination of
planar traveling waves.

We introduce the following example:

h1(x, y) = τx, h2(x, y) = τy,
h3(x, y) = −τx, h4(x, y) = −τy.

Then we have

(41) h(x, y) = τ max{|x|, |y|}.

Let V2 be a solution as in Theorem 2 for (41). Then Lemma 8 gives

(V2)x(x, y, z) > 0 for x > 0,

(V2)y(x, y, z) > 0 for y > 0.

Let U2(x, y, z) be a supersolution as in Lemma 7 for (41). For any given a ≥ 0, we
define

h̃1(x, y) = τ(x− a), h̃2(x, y) = τy,

h̃3(x, y) = −τ(x + a), h̃4(x, y) = −τy,

and

(42) h̃(x, y; a)
def
= max

1≤j≤4
h̃j(x, y; a) = τ max{|y|, |x| − a}.

The edges of a pyramid z = h̃(x, y; a) are given by

Γ̃1 = {(x, y, z) | z = τ(x− a), x− a = y, z ≥ 0},
Γ̃2 = {(x, y, z) | z = τy, y = −x− a, z ≥ 0},
Γ̃3 = {(x, y, z) | z = −τ(x + a), x + a = y, z ≥ 0},
Γ̃4 = {(x, y, z) | z = −τy,−y = x− a, z ≥ 0}.
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We put Γ̃ = ∪4
j=1Γ̃j and

D̃(γ)
def
=

{
(x, y, z) ∈ R

3 | dist((x, y, z), Γ̃ ) > γ
}
.

We set

v−
2 (x, y, z)

def
= Φ

(
k

c
(z − h̃(x, y; a))

)
= max

1≤j≤4
Φ

(
k

c
(z − h̃j(x, y; a))

)
.

Let w(x, y, z, t; v−
2 ) be the solution of (4) with an initial condition w|t=0 = v−

2 . From
the comparison principle we obtain

(43) v−
2 (x, y, z) < w(x, y, z, t; v−

2 ) < U2(x− x0, y, z)

for any x0 with |x0| ≤ a. Thus we get

v−
2 (x, y, z) < w(x, y, z, t; v−

2 ) ≤ inf
−a≤x0≤a

U2(x− x0, y, z).

Then we get the limit function

Ṽ (x, y, z)
def
= lim

t→∞
w(x, y, z, t; v−

2 ) in C2
loc(R

3).

This satisfies (5). See Sattinger [17] for the general arguments. For every x0 ∈ [−a, a]
we have

h̃(x, y; a) ≤ τ max{|y|, |x− x0|}

and thus

v−
2 (x, y, z) ≤ Φ

(
k

c
(z − τ max{|y|, |x− x0|})

)
.

We consider each side as an initial function of (4) and send t → ∞. Then we get

Φ

(
k

c
(z − τ max{|y|, |x| − a})

)
< Ṽ (x, y, z) < V2(x− x0, y, z).

The strict inequality follows from the strong maximum principle. See Figure 5.
Theorem 3. Assume c > k, (A1), (A2), and (A3). Let V2 be the solution of (5)

in Theorem 2 for h(x, y) = τ max{|x|, |y|}. There exists a solution Ṽ (x, y, z) to (5)
with

Φ

(
k

c
(z − τ max{|y|, |x| − a})

)
< Ṽ (x, y, z) < inf

−a≤x0≤a
V2(x− x0, y, z)

and

(Ṽ )z(x, y, z) < 0 in R
3.

Ṽ satisfies Ṽ (−x, y, z) = Ṽ (x, y, z), Ṽ (x,−y, z) = Ṽ (x, y, z), and

(Ṽ )x(x, y, z) > 0 for x > 0,

(Ṽ )y(x, y, z) > 0 for y > 0.
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Fig. 5. A generalized pyramidal traveling wave.

Moreover

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣∣Ṽ (x, y, z) − Φ

(
k

c
(z − h̃(x, y; a))

)∣∣∣∣ = 0

holds true.
Proof. Since (v−

2 )z ≤ 0, we get wz(x, y, z, t; v
−
2 ) ≤ 0 and also get (Ṽ )z < 0.

Lemma 8 and the proof are applicable to h̃(x, y; a). Thus we get (Ṽ )x > 0 for x > 0

and (Ṽ )y > 0 for y > 0. The asymptotic property of Ṽ (x, y, z) follows from that of
V2 in Theorem 2.

This Ṽ (x, y, z) is a generalized pyramidal traveling wave. The method of this
section might be applicable to a general case. The classification of all generalized
pyramidal waves will give interesting problems.

6. Traveling fronts for balanced bistable nonlinearity. In this section we
study traveling waves for balanced nonlinearity. Recently Chen et al. [3] constructed
two-dimensional traveling waves and n-dimensional cylindrically symmetric traveling
waves for balanced nonlinearity. They constructed such traveling waves as the limit of
traveling waves for an unbalanced nonlinearity term when the difference of the energy
density goes to zero.

Now we construct traveling waves for balanced nonlinearity by taking the limit
of pyramidal traveling waves for unbalanced nonlinearity terms when the difference
of the energy density goes to zero.

We consider (2) with a balanced nonlinear term −G′(u). Let c > 0 be arbitrarily
fixed. We study (13) in section 1. We define

(44) Lδ[v]
def
= − vxx − vyy − vzz − cvz − fδ(v) = 0 in R

3
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for any δ with 0 < δ < 1, where

fδ(v)
def
= −G′(v) + δc

√
2G(v).

Putting k = δc, we see that Φ0(μ) given by (3) satisfies (1). Let Vδ(x, y, z) be a
solution of (44) as in Theorem 2 for

hδ(x, y) =

√
1 − δ2

δ
max{|x|, |y|}.

We fix λ1 ∈ (−1, 1), with G′(λ1) < 0. Let z1(δ) be defined by

(45) Vδ(0, 0, z1(δ)) = λ1.

We construct a solution of (13) as the limit of Vδ(x, y, z + z1(δ)).
Proposition 3. Assume (B1) and (B2). Let c > 0 be arbitrarily fixed. Let

Vδ(x, y, z) be a solution of (44) as in Theorem 2 for hδ(x, y) = (
√

1 − δ2/δ) max{|x|, |y|}.
There exists 1 > δ1 > δ2 > · · · > δi > · · · → 0 so that one has

lim
i→∞

Vδi(x, y, z + z1(δi)) = V∗(x, y, z) in C2
loc(R

3).

This solution V∗ satisfies V∗(0, 0, 0) = λ1 and

L0[V∗] = 0, (V∗)z < 0 in R
3.

Proof. We denote Vδi(x, y, z + z1(δi)) simply by vi(x, y, z). Let B(N) be a closed
ball defined by

B(N)
def
=

{
(x, y, z) |

√
x2 + y2 + z2 ≤ N

}
for N ∈ N. For any fixed N , vi(x, y, z) satisfies

L[vi] = 0, −1 < vi < 1 in B(N).

For any p > 1, (vi) is bounded in Lp(B(N)). The Schauder interior estimates [6,
Theorem 9.11] imply that

sup
i

‖vi‖W 2,p(B(N)) < ∞.

We take p so large as to get 1 − 3/p > β > 0. Then W 2,p(B(N)) is compactly
embedded in C1,β(B(N)). By taking a subsequence (vi) converges in C1,β(B(N)) as
i → ∞. Applying the Schauder interior estimates [6, Corollary 6.3] again, we find that
(vi) converges in C2,β(B(N)). By the diagonal argument we find a subsequence (vi)

that converges in C2,β
loc (R3). Let V∗ be the limit function. Then it satisfies (13). Since

(vi)z < 0 in R
3, we have (V∗)z ≤ 0 in R

3. From Lemma 8 we have (vi)xx(0, 0, 0) ≥ 0
and (vi)yy(0, 0, 0) ≥ 0 and thus (V∗)xx(0, 0, 0) ≥ 0 and (V∗)yy(0, 0, 0) ≥ 0. If (V∗)z ≡ 0,
we obtain a contradiction by G′(λ1) < 0 and L0[V∗] = 0 at the origin. By the strong
maximum principle, we get (V∗)z < 0 in R

3.
This V∗ might inherit pyramidal structures, or it might not. This problem is

yet to be studied. If we replace hδ(x, y) by (
√

1 − δ2/δ) max1≤j≤n (Ajx + Bjy) with
(7) and (8), we get the associated limit traveling waves from the argument stated
above and also find interesting open problems. The classification and the stability of
all traveling waves for unbalanced and balanced nonlinearity have a wide variety of
unknown problems and are left for further studies.
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Linéaire, 24 (2007), pp. 369–393.

[4] P. C. Fife, Dynamics of internal layers and diffusive interfaces, in CBMS-NSF Regional Conf.
Ser. in Appl. Math. 53, SIAM, Philadelphia, 1988.

[5] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to
travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), pp. 335–361.

[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer, Berlin, 1983.

[7] F. Hamel, R. Monneau, and J.-M. Roquejoffre, Stability of travelling waves in a model

for conical flames in two space dimensions, Ann. Sci. École Norm. Sup. (4), 37 (2004),
pp. 469–506.

[8] F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of
multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), pp. 1069–
1096.

[9] F. Hamel, R. Monneau, and J.-M. Roquejoffre, Asymptotic properties and classification of
bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), pp. 75–92.

[10] Y. I. Kanel’, Certain problems on equations in the theory of burning, Sov. Math. Dokl., 2
(1961), pp. 48–51.

[11] Y. I. Kanel’, Stabilization of solutions of the Cauchy problem for equations encountered in
combustion theory, Mat. Sb., 59 (1962), pp. 245–288.

[12] F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP
equation in R

N , Arch. Ration. Mech. Anal., 157 (2001), pp. 91–163.
[13] M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann.
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