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Abstract

We propose a new fault localization technique for
software bugs in large-scale computing systems. Our
technique always collects per-process function call
traces of a target system, and derives a concise execu-
tion model that reflects its normal function calling be-
haviors using the traces. To find the cause of a failure,
we compare the derived model with the traces collected
when the system failed, and compute a suspect score that
quantifies how likely a particular part of call traces ex-
plains the failure. The execution model consists of a call
probability of each function in the system that we esti-
mate using the normal traces. Functions with low prob-
abilities in the model give high anomaly scores when
called upon a failure. Frequently-called functions in the
model also give high scores when not called. Finally,
we report the function call sequences ranked with the
suspect scores to the human analyst, narrowing further
manual localization down to a small part of the overall
system. We have applied our proposed method to fault
localization of a known non-deterministic bug in a dis-
tributed parallel job manager. Experimental results on a
three-site, 78-node distributed environment demonstrate
that our method quickly locates an anomalous event that
is highly correlated with the bug, indicating the effec-
tiveness of our approach.

1 Introduction

Root causes of software faults in parallel and dis-
tributed computing environments, such as HPC clusters
and grids, are notoriously hard to localize due to their
scale and heterogeneity. Ever increasing scale of current
HPC clusters can make even a simple bug take days to
find its root cause. Heterogeneous configurations of user
environments can cause hard-to-reproduce, rare faults,
where such standard engineering disciplines as in-house
pre-release testing would be less effective.

Several trace-based anomaly detection techniques

have been proposed to semi-automate the fault localiza-
tion process in such environments [4,7,12,14,16]. Most
of them employ a centralized approach, assuming that
traces distributed over remote machines can be collected
to a centralized trace analyzer without scalability limit.
Although such a centralized approach could allow one to
comprehend higher-level control and data flows among
distributed nodes [4, 7, 12, 14, 16], their applicability to
the current HPC clusters, where hundreds to thousands
of machines are not exceptional but commonplace, is
still unclear.

To aid human analysts in localizing faults in large-
scale computing environments, we propose an auto-
mated model-based fault localization method that views
the localization as an anomaly detection problem. Our
method uses function call traces, which have been
shown to be effective in fine-grained fault localiza-
tion [15]. Given fault traces, our goal is to locate spe-
cific function call sequences that are highly correlated
with the given fault. To do so, our method consists of
two phases: pre-fault model derivation and anomaly de-
tection in the fault traces using the derived model. The
first phase, using traces collected under normal opera-
tions, automatically derives an execution model that re-
flects the normal function calling behaviors of the target
system. When a fault actually happens in the system,
the second phase locates specific calling sequences in
the traces that are highly correlated with the fault.

The key challenge in realizing such model-based
fault localization is how to learn an accurate execution
model for fault localization in an automated, scalable
manner. Learning accurate models requires to iden-
tify self-similar, repetitive behaviors in target systems.
While we assume that they exhibit historical similarity,
automatically identifying similar behaviors in raw func-
tion call traces is not a trivial problem. Often raw traces
are very huge in size since typical processes in our tar-
get domain do not start and stop in a frequent manner as
in desktop applications, but rather always run with little
downtime. Furthermore, as stated above, such model
derivation must work at scale. For example, the In-
Trigger distributed computing platform consists of six
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clusters distributed among Japanese universities and re-
search laboratories. Decentralization and scalability are
key factors in analyzing faults occurring in such dis-
tributed environments.

To tackle the above challenge, we exploit two obser-
vations on typical software architectures and fault char-
acteristics in distributed systems. First, we see that many
of the distributed software for clusters and Grids, such
as batch job schedulers and parallel file systems, con-
sist of processes that employ the event-driven architec-
ture, where several different event-processing routines
are multiplexed into a single event loop. For exam-
ple, a batch job scheduler for clusters could employ a
daemon process on each node whose responsibilities in-
clude monitoring of jobs under the node and handling
of requests from the master job scheduler. A typical
software architecture for such purposes would model
job status changes and incoming requests from the mas-
ter as events, and consist of an infinite loop of event-
processing routines. Second, we have observed with our
previous work [15] and results by other researchers [16]
that many anomalies manifesting themselves over dis-
tributed nodes also exhibit locally-observable deviant
behaviors. For instance, a bug discussed in [16] caused
an event handler function not to be called, failing to
serve incoming requests; such a behavior would be de-
tectable using locally-observable information, namely
function calling behaviors in this particular example.

Based on the above observations, our approach mod-
els system executions by first learning per-process func-
tion calling behaviors, and then aggregating them into a
single model that represents the behaviors of the entire
system. Specifically, for each member process, we gen-
erate a concise per-process model called process model
from its function call traces. Unlike the previous ap-
proaches that attempt to reconstruct distributed flows by
matching distributed traces [4,7,12,14,16], we only use
the local information to generate the process model in
order to eliminate centralized bottlenecks.

To derive the process model, we first decompose the
entire function traces into sub traces, or execution units,
based on its associated event source, and then derive a
model for each event source. As a type of events, this pa-
per focuses on network events, which we believe would
be the most important events in distributed computing
systems. The event source of network events is its con-
nection; thus, we treat a sequence of function calls cor-
responding to the same network connection as a single
execution unit. Next, for each connection, we derive a
model by constructing a call tree of every function ap-
pearing in its associated units, and assigning each func-
tion an estimated probability of appearance. We esti-
mate the probability of a function by dividing the num-
ber of its occurrences by the total number of occurrences
of the execution units for the same connection. For in-

stance, if a function always appears when any message
arrives at a connection, we give the function probabil-
ity 1. Creating separate models for different connec-
tions improves the accuracy of the probability estima-
tion, since different connections are likely to have dif-
ferent function calling behaviors. Finally, we derive the
global model by merging the process models whose pro-
cesses are inferred to have played the same role in the
system.

We aid human analysts in localizing the root cause
of a fault by comparing its fault traces with the derived
model. Given the fault traces, we first decompose them
into execution units as in the model derivation. For each
execution unit, we compute a suspect score that quanti-
fies how likely a particular part of call traces are corre-
lated with the fault. Functions with low probabilities in
the model give high suspect scores when called upon a
failure. Frequently-called functions in the model also
give high scores when not called. Finally, we report
the execution units ranked with the suspect scores to
the human analyst, narrowing further manual localiza-
tion down to a small part of the overall system.

Both our modeling and fault localization operate in
a mostly-decentralized fashion. In the model deriva-
tion phase, only the derivation of global models requires
a globally-coordinated centralized operation, while the
derivation of process models analyzes raw traces in par-
allel using the same set of nodes as the target sytem.
Once the global model is derived and deployed to each
local node, our fault localization requires no remote op-
erations. Therefore, our method can achieve higher scal-
ability compared to the previous approaches based on
centralized algorithms [4, 7, 12, 14, 16].

We have applied our proposed method to localiz-
ing a known non-deterministic bug in a distributed job
manager. Experimental results on a three-site 78-node
distributed environment demonstrate that our method
quickly locates an anomalous event that is highly corre-
lated with the bug. Specifically, without our automated
trace analysis, we would have needed to examine all
traces of 78 nodes accounting for a complete 70-second
run. Our localization analysis narrowed the localization
only to the traces from two nodes for less than a second,
significantly reducing the fault localization burden.

2 Model Derivation

Our execution modeling aims to detect program logic
anomalies. A logic anomaly is a situation where an in-
tended operation is not performed or a non-intended op-
eration is performed. Such misbehavior often leads to
different function coverage. For instance, a bug dis-
cussed in [16] caused an event handler function not to
be called. Another example is a bug that caused a hang
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in a distributed job manager presented in Section 4. The
bug caused a function that had never been called in nor-
mal operations to be called.

We derive the execution model so that it can give
quantitative differences between traces with such logic
anomalies and normal traces. To do so, we consider the
following two classes of functions as having higher sus-
picions:

• Functions that are rarely called in normal opera-
tions, but are called when a fault happens.

• Functions that are often called in normal opera-
tions, but are not called when a fault happens.

Our model quantifies how such properties hold between
normal and fault traces with the estimated function call
probabilities. We compute the probabilities by obtaining
known-normal function call traces from the same sys-
tem under normal operation states. Using the collected
normal traces, we derive the execution model via the
following three-step process: 1) decomposition to ex-
ecution units, 2) process model derivation, and 3) global
model derivation. The result of this process is a global
model consisting of multiple process models, each of
which reflects the normal function call probabilities of
a particular process group. The rest of this section de-
scribes the details of each step.

2.1 Function Call Tracing

We use per-process function call traces for learning
execution models for the following three reasons. First,
it gives fine-grained localization resolution compared
to other approaches that use higher-level system prop-
erties, such as nodes, processes, and software compo-
nents [4, 7, 12]. Second, it is relatively easy to obtain
compared to finer-grained information such as branch
profiles. Modern programming languages, especially
VM-based ones such as Java and Python, often provide
a built-in function tracing capability. Even a popular
C compiler gcc provides a compile-time function call
hook framework. Furthermore, use of a binary instru-
mentor such as Dyninst [6] can produce function traces
of binary programs as well. Third, function traces can
often be taken with acceptable performance overhead.
In our experimental studies presented in Section 4, we
have observed less than 7% of slowdown of application
performance running under a traced job manager.

A trace entry consists of four fields—type, times-
tamp, caller, and callee—and a variable number of op-
tional fields. The type field consumes one byte and des-
ignates the type of the entry; we have currently three
types: call, return, and exception. For ease of the model-
ing and anomaly detection, we also encode unique iden-
tifiers for particular functions such as connect and

recv. The timestamp field records the value of the CPU
cycle counter, and consumes seven bytes. The caller and
callee fields record the address of the caller and callee,
respectively. The size of the fields depends on architec-
tures: two bytes and six bytes on the x86 architecture
and its 64-bit extension x86-64, respectively. Note that
while the x86-64 architecture allows 64-bit addressing,
the current available products do not use the top-most
two bytes [1, 11]. We omit those two bytes for reduc-
ing the trace size. The optional fields encode the pa-
rameter and return values for particular functions. For
example, for the trace decomposition described in Sec-
tion 2.2, we record the value of the file descriptor param-
eter of the recv system call. The largest optional field
in our current implementation is 128 bytes for recording
the ready file descriptor numbers on returns from the
select system call. Overall, the total size of a trace
entry ranges from 16 bytes to 148 bytes.

2.2 Decomposing Traces into Execution
Units

Once function traces are obtained, we decompose
them into sub traces, or execution units, based on their
associated events, assuming that the target system em-
ploys an event-driven architecture. By separating event-
handling routines into different execution units, we aim
to improve the resulting accuracy of the derived model.
Among various events in distributed systems, this paper
focuses on network events such as arrivals of incoming
messages since they are one of the most representative
classes of events in distributed systems. Figure 1 illus-
trates an example of such trace decomposition. Note
that a program can include regions that are not related
with any meaningful network events. For example, the
function calling behaviors in the program initialization
and finalization parts should not depend on any incom-
ing messages. We also identify such parts as different
units.

We decompose traces into execution units by the fol-
lowing three-step process of automated trace and pro-
gram analyses. We describe here an algorithm for pro-
grams that use the select system call for event mul-
tiplexing. It should be easily extended to other event-
processing frameworks, such as polling, as well.

Step 1: Identification of the event loop Since we as-
sume that our target system uses select to multiplex
message-handling routines, we can also assume that the
event loop must include calls to select and recv.
Based on this observation, we find the event loop as fol-
lows. First, we detect loops at run time by detecting
recurring call stacks in the function traces. We consider
the call sequence inside the recurring stacks as a loop
body trace. Next, among the detected loops, we locate
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call main
do initialization
while (1)
call select
for each FDs
if FD is ready for recv
recv from FD
call handler for FD

end
end
do finalization
exit
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Figure 1. An example of trace decomposi-
tion into execution units.

the loop that has calls to select and recv in its body
by analyzing the program source or binary code, and de-
termine it as the event loop.

Step 2: Identification of the handler units We de-
compose the traces inside the loop at every call to
accept or recv, and determine a sequence of trace
entries from a call to the next as a handler unit. The
trace decomposition at recv calls assumes that a sin-
gle event handling starts by receiving a message at first
and performs any operations according to the received
message content without further receiving data from the
connection. Note that a recv system call can return
only a partial message when the given receive buffer is
too small to copy the whole message. Thus, the typi-
cal use case of the API repeats a call to recv until no
more data is available on the connection. We treat con-
secutive calls to recv with the same file descriptor as a
single recv call.

Step 3: Identification of the other units The part of
traces from the very beginning of the program to the start
of the event loop should represent the initialization of
the program, which typically includes such operations as
listening-port setup and event handler registration. We
call the part the initializer unit. In addition, the calls af-
ter running the event loop until the process exits should
represent its finalization; we call the part finalizer unit.

2.3 Process Model Derivation

A process model consists of call trees of the functions
in the decomposed execution units. We derive the pro-
cess model in the following automated analysis. Note
that we perform this model derivation at the same node

as each target process, making it completely decentral-
ized.

First, for each unit, we construct a tree represent-
ing function calls from the starting function of the unit.
Each node n corresponds to a function call annotated
with its call site s and callee function g, denoted as
s → g. The call site s denotes a unique location in the
parent node’s function f . The path from the tree root to
each child node corresponds to a function call stack ex-
ecuted at its trace collection time. We allocate different
nodes to calls from different call sites to the same func-
tion, i.e., if n = s1 → g and m = s2 → g, then n 6= m.
However, we allocate a single node to multiple calls to
the same function from the same location, in order to
avoid the size of the tree growing excessively due to a
large number of loop iterations.

Next, we merge the handler units based on their
associated connections so that the process model has
a unique sub model for each event source. We de-
fine the equality of connections by their call stacks to
the connection-establishing functions, including bind,
connect, listen, and accept of the Berkeley
Socket API. Specifically, let h be a handler unit, and c be
the connection from which the unit received a message.
Let s be the call stack to one of the connection establish-
ing functions for c, denoted as s = {n0, . . . , nk}, where
the stack originates from call tree node n0 and ends with
nk. Let S(c) be the set of all the call stacks s associated
to connection c, i.e., S(c) = {si}. We consider two con-
nections, c1 and c2, to be equal if and only if their associ-
ated call stacks are the same, i.e., S(c1) = S(c2). Based
on this equality relation, we categorize handler units into
multiple groups where handler units in the same group
have the equal connection each other. For each group,
we create a single call tree by merging the trees of the
member units.

The observation behind the above handler unit merg-
ing is that we expect that if two connections are estab-
lished by the same call stacks, the handler units asso-
ciated with them should include similar function calls.
This is not necessarily the case: for example, if multi-
ple connections are established by a single call site to
connect in a loop with different socket descriptors,
and those connections are actually related to different
roles in the program. However, we expect that such a
program structure would be rather rare; in fact, our case
study presented in Section 4 exhibits no such behavior.

Finally, we annotate each node of the call trees by
its estimated call probability. We estimate the proba-
bility of a node by counting the number of occurrence
of execution units where the call-stack path of the node
appears. Let f and g be calls in a tree where f is the
parent of g. Also let nf and ng be the number of ex-
ecution units where f and g appear, respectively. We
compute the estimated occurrence probability of g as
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pg = ng/nf . Note that we do not consider how many a
node appears in a unit (i.e., frequency), but only whether
it appears or not (i.e., coverage). Thus, ng is always less
than or equal to nf .

2.4 Global Model Derivation

Once process models are created, we gather them to
a central location, and merge them into a single global
model so that it includes the function call behavior of
each one of the member processes. The reason to merge
process models is the scalability with respect to num-
ber of processes. The space cost to keep individual
models for, e.g., hundreds of thousands of processes
would be prohibitively high. For example, in our case
study presented in Section 4, the size of process mod-
els was 40KB approximately, reaching 4GB with a hun-
dred thousand processes. We expect, however, that there
would be significant duplication in learned models; not
all the processes would perform different operations, but
several processes would have the same role in the sys-
tem, thus generating similar function call traces. For
example, typical distributed software for clusters would
employ a tree-style network topology with varying tree
heights for organizing each member process, where each
node would have a different role depending on its depth
in the tree. A leaf node process would only commu-
nicate with its parent process, while an internal node
process with both its parent and child processes. The
tree root process would be responsible for overall pro-
cess management, responding incoming user requests,
etc.

To derive a concise global model where these dupli-
cated behaviors are removed, we categorize processes
into groups where we can expect that their roles are the
same inside each group. We infer the role of each pro-
cess by the network connections established in its ini-
tializer unit. For example, in the tree-topology orga-
nization, the root process would establish connections
by accepting requests from its children, while the leaf
processes would do so by connecting to their parent.
By looking at the call stacks that establish connections
in the process initialization stage, we define the equal-
ity relation of processes, and derive a single model for
equal processes. More specifically, we identify such call
stacks in the initializer unit by locating calls to bind,
connect, listen, and accept. Let S(p) be the set
of those stacks of process p. We call S(p) the process
signature and define the equality of process p and q by
the equality of their signatures S(p) and S(q).

Figure 2 illustrates an example of process grouping in
a master-worker system. The master process, which per-
forms operations written in the nearby rectangle, forms
a process group alone. The italicized lines, including lis-
tening to connections from clients and workers, denote

Worker

1. start execution
2. connect to master
3. call select
4. receive 
5. back to 3

Master

Worker

1. start execution
2. connect to master
3. call select
4. receive 
5. back to 3

Worker

1. start execution
2. connect to master
3. call select
4. receive 
5. back to 3

1. start execution
2. listen to clients
3. listen to workers
4. call select
5. accept or recv
6. back to 4

Client

Process 
Group

Process 
Group

Figure 2. An example of process grouping
in a master-worker system. Each of the
master and worker processes performs
the operations described in the nearby
rectangle, where italicized lines denote
the process signature calls.

the process signature calls for the master process. On
the other hand, the three worker processes form a sin-
gle process group, since they execute the same signature
functions, i.e., connecting to the master.

Once the process models are categorized into groups,
we merge the models in each group into a single process
model as follows. First, for each initializer and finalizer
model, we merge them by aggregating the trees and an-
notating each node by the mean probability of the orig-
inal nodes. Next, for each handler model, we identify
the matching model with the same associated connec-
tion as in the handler unit grouping in the process model
derivation. If such a model is found, we merge them into
a single handler model in the same way as the initializer
and finalizer models. Otherwise, we copy the model to
the resulting merged model as is.

3 Model-Based Fault Localization

Once the global model for a target system is derived,
we deploy it to each local node so that we can perform
the following model-based localization in a decentral-
ized way. When a failure happens in the system, we
compute a suspect score that quantifies the correlation
of each execution unit in the traces with the observed
failure by comparing the traces with the pre-deployed
model. Our scoring algorithm described below gives
high suspect scores to units whose behaviors are greatly
deviated from the learned normal model. Finally, we
gather the scores to a central location and report the
scores sorted in a decreasing order to the problem an-
alyst so that more suspicious parts of the program can
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be prioritized in a further localization process.

3.1 Suspect Score Calculation

We compute the scores by the following three-step
decentralized process:

Step 1: Decomposing traces Decompose the traces
into execution units in the same way as the model
derivation.

Step 2: Finding the corresponding process model
Find the process group with the same process
signature. If no such corresponding process group
is found, report the process as an anomaly to the
analyst. If found, proceed to the next step.

Step 3: Finding the corresponding execution models
For each trial unit, find the corresponding execu-
tion model in the process model as follows. For
both the initializer and finalizer units, we locate
the initializer and finalizer models, respectively.
For each handler unit, we find the handler model
with the same connection, where the equality
of connections is defined in the same way as
the model derivation phase. If no corresponding
handler model is found, we mark the unit as an
anomalous unit. If found, we compute its suspect
score by comparing the unit with the found model.

For the anomalous processes and units whose corre-
sponding models are not found in the above steps, we
give the maximum suspect score of 1. For the other
units, we compute their anomaly scores by the algorithm
described below.

We consider the following functions more suspi-
cious: those with higher probabilities of occurrence, but
not called when a fault happens, and those with lower
probabilities of occurrence, but called when a failure
happens. Thus, our goal in designing the suspect score
calculation is that it gives higher values to those more
suspicious functions.

First, we construct a call tree from the given trial unit,
u, in the same manner as the model derivation. Next,
we compute commonality and minimum difference sets
of the nodes in the model and trial tree. Let M and T
be the sets of nodes that appear in the model and trial
units, respectively. We define commonality, M ∩ T , by
the standard definition of the set commonality. We intro-
duce minimum difference, M ⊕T , to filter out duplicate
contributions to the suspect score calculation. For ex-
ample, suppose that there is a call stack f → g → h
in a model, where g is called by f and h is called by g.
In this case, if g is not called in a trial unit, h must not
be called either. Since the absence of h is a direct effect
of the absence of g, the former absence should not be of

interest in assessing the difference between normal and
anomalous executions. Based on this observation, we
define the minimum difference as a set of nodes that ap-
pear only in either of the two sets, but excluding those
nodes whose parent is also included in the minimum dif-
ference set. For example, in Figure 3, the commonality
of the trees includes the nodes labeled with a, b, and c,
and the minimum difference only includes the nodes d
and e.

Next, we define an effective node set, E, as the union
of the commonality and minimum difference sets, i.e.,
E = (M ∩ T ) ∪ (M ⊕ T ), and call the nodes in E
the effective nodes. For every effective node n ∈ E, we
compute the suspect score ∆(n) as follows:

∆(n) =


1 − p(n) if n ∈ M ∩ T

p(n) if n ∈ M ∧ n /∈ T

1 if n /∈ M ∧ n ∈ T

(1)

For example, if a function was called 90% of the times
when the system was operating normally and was also
called when a failure happens, we give ∆ of 0.1 to that
node. The node b in Figure 3 illustrates such a case.
On the other hand, if that function was not called in the
given trial unit, we give ∆ of 0.9. This scoring scheme
meets the design goal of suspect scores.

Finally, we define the suspect score ∆(u) for the
given unit u as follows:

∆(u) =
∑

n∈E ∆(n)
|E|

(2)

In other words, we use the average of the scores of all
nodes in the commonality and minimum difference sets
as the suspect score of the unit. Since we only consider
the effective nodes, we avoid having non-interesting
calls affect the overall scoring. For example, we com-
pute the suspect score of the trial unit in Figure 3(b) as
follows:

∆(u) =
∑

n∈E ∆(n)
|E|

=
∆(a) + ∆(b) + ∆(c) + ∆(d) + ∆(e)

5
=

0.0 + 0.1 + 0.2 + 1.0 + 0.3
5

= 0.32
(3)

4 Preliminary Evaluation

To evaluate the effectiveness of the proposed ap-
proach, we have applied our prototype fault localizer to
a known bug in a distributed job manager called MPD.
MPD spawns a parallel job on a specified set of ma-
chines, monitors the job status, and returns the output
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a (1.0)

b (0.9) e (0.3)

c (0.8) d f (0.5) g (0.9)

(a) Normal Model

a

b e

c d f g

(b) Trial Unit

Figure 3. A sample normal model and its
trial unit. In the left tree, the value in
the parentheses of each node shows its
estimated probability. Dotted edges and
nodes indicate that such nodes or edges
do not exist in that tree. Grey nodes in-
dicate the commonality, while nodes with
double lines the minimum difference.

of each process to the user. It is shipped with MPICH2,
a standard implementation of the Message Passing Inter-
face (MPI), and used by a wide variety of parallel pro-
gramming users [10].

A user of the distributed computing platform called
InTrigger reported a hang of MPD when he had tried
to run a small MPI program. InTrigger is a large-scale
computing platform consisting of six clusters distributed
over Japanese universities and national laboratories. We
applied our localization method to MPD running on the
InTrigger platform, and have successfully identified an
anomalous event that is highly correlated with the bug.
The rest of this section describes the experimental setup
and the fault localization result of the bug.

4.1 Prototype Implementation

To collect function call traces, we have implemented
a tracer for C and Python programs as well as a non-
blocking concurrent trace buffer pool. The buffer pool
allows both traced processes and trace readers to access
trace data in a concurrent, non-blocking fashion. Below,
we describe their implementation details.

4.1.1 Trace Collection

Our current implementation supports tracing of function
calls in C and Python programs as well as dynamic li-
brary calls. For tracing C programs, we currently use
the compile-time function-call instrumentation available
in the gcc compiler, which requires recompilation of the
traced program by the gcc compiler. We are planning
to use binary instrumentation tools, such as Dyninst [6],
for greater flexibility.

For tracing Python programs, we use the debugging
API, sys.settrace, that is available in the official
Python implementation. We require almost no modifi-
cations to the traced program; we use our own Python
code that sets our tracing functions to be invoked each
time when the traced process makes calls and returns,
and then calls the original starting function of the target
program.

For tracing dynamic library calls, we use the library
preloading mechanism available on standard Unix and
Linux systems so that our library wraps the target li-
brary calls. This technique requires no modifications in
the traced program, but setting an environment variable,
LD PRELOAD, to include our tracer library. The wrap-
per functions, upon called by the target, generate trace
entries before and after calling the real library functions.

4.1.2 Non-Blocking Concurrent Trace-Buffer Pool

To make a trace buffer accessible from both a traced pro-
cess and trace readers, we inject a shared library into the
process by the dynamic library preloading mechanism.
The library, upon loaded, allocates a shared memory re-
gion of specified size, and divides it into sub-buffers.
Each sub-buffer is in either free or written state, en-
queued to either free queue or written queue, respec-
tively. The traced process records its traces into free
buffers, while trace readers consume the traces from
written buffers. Figure 4 illustrates an example case
where a buffer pool is used by a single traced process
and three reader processes. By exploiting the library
preloading mechanism, we again require no modifica-
tion of the traced program itself.

The trace library initially adds the sub-buffers to the
free queue for write accesses from the target process.
A target process, instrumented to generate function call
traces by the abovementioned methods, obtains a free
buffer from the free queue in the pool, and starts exe-
cuting its functions, appending call traces to the buffer.
Each time when the traced process finds the current
buffer becomes out of space, it gets the next available
free buffer from the pool. Simultaneously, multiple trace
reader processes can attach to the pool and get the writ-
ten buffers for read access. Upon finishing reading the
buffer, it returns the buffer to the pool, which then be-
comes available as free buffers.

When a traced process attempts to obtain a free
buffer, but no more such buffers are currently available,
it gives up generating traces for a specified number of
calls and returns, instead of blocking on a free buffer be-
coming available. It retries to get a free buffer after the
specified count of calls and returns. This non-blocking
scheme aims to minimize the perturbation to the traced
process, while sacrificing the completeness of the trace.

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: TOKYO INSTITUTE OF TECHNOLOGY. Downloaded on January 28, 2010 at 23:27 from IEEE Xplore.  Restrictions apply. 



Process

Tracer

Process

Tracer

Buf Buf BufBuf Buf Buf

Buf Buf BufBuf Buf Buf

Written buffer queue

Free buffer queue

Buffer pool

Buf

ReaderBuf

ReaderBuf

ReaderBuf

Figure 4. An example usage scenario of
the trace buffer pool.

4.2 Partial Message Receive Bug in
MPD

MPD manages each node by running a daemon pro-
cess that is connected each other by a ring-topology net-
work. When a new parallel job is submitted to the sys-
tem, it spawns a specified number of processes by for-
warding the job information over the ring network. The
network is also used to coordinate the ready state of each
process to start execution.

The reported hang occurred when the user submitted
a small MPI program using the MPD version 1.0.5p4
running on multiple distributed clusters. Although the
MPI program is a very small test program that runs
flawlessly within a single cluster, using multiple clus-
ters caused the program not to start, but apparently to be
hanging up during its job startup stage. Further exami-
nation by the user through printf-style message logging
revealed that one of the MPD job manager daemons er-
roneously closed a connection in the ring-topology dae-
mon network, causing all the daemons to infinitely wait
for a particular message that should have been sent over
the ring connection. The reason of the connection re-
set turned out that one of the calls to recv function in
the socket API silently ignored its return value. The call
expected to receive eight bytes every time when a mes-
sage arrives to the connection, but in fact it sometimes
received partial messages, which in turn caused the dae-
mon to close the connection, because it erroneously de-
cided that an error occurred in the system. Of course,
the assumption does not necessarily hold on distributed
environments, yet, since MPI is mainly used in tightly-
connected single-site clusters, the bug had not been re-
ported before.

This particular fault exhibits several common prop-
erties that make fault localization particularly difficult
in such a large-scale environment. First, it is non-
deterministic: in some runs, the daemons always re-
ceived completely-formed messages, allowing jobs suc-
cessfully to be started even on multiple clusters. In
fact, the greater the number of nodes, the more often

the fault happened, requiring scalable localization tech-
niques. Second, since it is a timing-related bug, use
of an interactive debugger, if possible, would signifi-
cantly reduce the chance to reproduce the bug, although
debugging of as little overhead as printf-style message
logging still allowed the bug to occur. Third, it is not
a fail-stop, but a silent bug. Although the ring topol-
ogy was not operating correctly after the bug occurred,
each daemon was still in a normal state, waiting on the
event-processing loop. While examining a call stack of
a failed process is an effective debugging technique in
many cases, it would not help reveal the root cause in
this case; the stack trace would look normal since wait-
ing on the event loop is a legitimate operation.

4.3 Model Derivation

We generated the global model from normal traces of
MPD runs on a single cluster as follows. First, we traced
MPD on seven different configurations using a simple
MPI program called CPI and the NAS Parallel Bench-
mark [19] as sample parallel jobs. CPI, shipped with
the MPICH itself, calculates the value of π by a Monte
Carlo method. For the buffer pool on each node, we al-
located ten sub-buffers of 1MB, or 10MB in total. We
obtained per-process function call traces using an online
trace reader that saves the contents of the written trace
buffers to its local disk. Next, on each local node, we
generated a process model for each trace using our pro-
totype model generator. Next, we gathered the process
models into a central location and generated the global
model. Below, we describe the detailed results of model
derivation as well as performance overhead caused by
function tracing.

4.3.1 Process Model Derivation

Table 1 lists the seven configurations and their results
on process model generation. We executed traced MPD
on different numbers of nodes, each of which hosted a
single MPD process. The three columns of time, trace
size, and model size list the averaged values of all the
nodes. Because we implemented the model derivation
by a Python program, and thus derived process models
are Python objects, we measured their sizes by serializ-
ing them to binary data. We see that, while the execution
times vary significantly, the sizes of resulting process
model are very similar, suggesting that MPD had exhib-
ited repetitive function call behaviors and our modeling
efficiently encoded the behavior without substantial du-
plicated information.

To study the performance impact on the application
programs by MPD tracing, we have compared their ex-
ecution times with and without our tracing enabled.
In Figure 5, the y-axis shows the relative performance
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Table 1. Process model generation configurations and results.

Application # processes Time (sec) Trace Size (KB) Process Model Size (KB)

CPI 58 0.95 949.2 43.8
CG Class C 4 127.75 448.8 43.4
IS Class A 8 3.29 483.7 43.7
CG Class C 16 58.31 566.9 43.5
MG Class B 32 2.16 682.9 43.7
LU Class D 32 1782.85 939.7 43.6
BT Class D 49 1223.16 1395.3 43.6
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Figure 5. Performance overhead due to
function call tracing.

when executed under our tracer compared to normal ex-
ecutions. The overhead ranges from approximately 0%
to 7%; while such a small overhead does matter for ex-
tremely performance critical systems, we expect that
such small perturbation would be affordable in many
cases, considering the effectiveness of our fault local-
ization presented below.

4.3.2 Global Model Derivation

We gathered all the 199 process models into a cen-
tral location, and generated the global model including
the overall behaviors of MPD. The resulting model was
171KB in size with only three different process groups.
Although we aggregated such a large number of process
models with different runs, this result again suggests the
space efficiency of our model derivation.

4.4 Localization through Suspect Score
Computation

We obtained a set of per-process trial traces by re-
producing the bug on three geographically-distributed
clusters in InTrigger, called hongo, chiba, and okubo.
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Figure 6. Suspect scores of the execution
units in the trial traces.

We started traced MPD with the sample MPI program
CPI on 78 nodes spanning the three distributed clusters,
and decided that the system hung up after observing no
output for approximately 70 seconds. We stopped the
system by killing all the daemons. Out automated anal-
ysis decomposed the trial traces into execution units and
computed the anomaly scores.

Figure 6 shows the scores of all the units plotted at
their timestamps. We see that the beginning and ending
of the run had significantly deviant behaviors, while the
rest did not exhibit any interesting behaviors. We see
that the most interesting unit is the one with the maxi-
mum score near the beginning of the run, since we ex-
pect that the earlier a deviant behavior occurs, the more
likely it would be correlated with the failure. We find
that the particular unit is a handler unit that was notified
of a connection-reset event. The reason of the high sus-
pect score of the unit is that the reset event had never
been observed in the normal traces. From the trace en-
tries before the unit, we found that the other peer of the
connection was running on node hongo102 in the hongo
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cluster, while the unit itself was on node chiba121 in
the chiba cluster. Another high-score duration before
the end of the run turned out to be caused by our abrupt
killing of the daemons.

To identify why the connection was reset between
chiba121 and hongo102, we manually examined the
MPD source code and the trace entries in hongo102
around the time when the reset happened. We
found that hongo102 closed the connection in function
handle lhs input of MPDMan class, and that the
function closed it because a call to recv dict msg of
MPDSock failed. The trace entries for the calls from
recv dict msg included a call to recv that actu-
ally received only three bytes of data from the con-
nection, while recv dict msg expected eight bytes.
As a result, because of the partial-message receive
bug, the execution of recv dict msg failed, causing
handle lhs input to close the connection.

This case study suggests the effectiveness of our lo-
calization support. Although we were not able to pin-
point the buggy recv call, our suspect score ranking
identified as the most suspicious event the connection
close event observed by the connection peer process.
Without our automated trace analysis, we would have
needed to examine all the traces of 78 nodes accounting
for the complete 70-second run. Our localization anal-
ysis narrowed the localization only to the traces of two
nodes accounting for less than a second, significantly re-
ducing the manual fault localization burden.

5 Related Work

Most of previous approaches to fault detection and
localization in distributed systems use tracing with some
variation. For example, trace-based automated detec-
tion of performance and logic bugs proposed in, among
others, [2, 4, 7, 12, 14–16, 20], finds anomalies in large
volume of traces with various statistical and machine-
learning techniques. In the rest of this section, we elab-
orate on the similarities and differences with previous
projects on fault localization and other closely-related
areas.

Identifying distributed control and data flows is a key
algorithm in many of the trace-based automated perfor-
mance and logic debugging approaches. Barham et al.
presented a flow analysis method that uses a user-written
application-specific event schema and instrumented OS
kernel and other middleware layers [4]. The schema
is a set of rules to separate and join individual events
observed in distributed components. Chen et al. and
Kiciman et al. presented root-cause identification ap-
proaches that are also based on flows in distributed en-
vironments [7, 8, 12]. Their approaches assume that the
system under observation has naturally-observable user

request flows, such as RPC-based systems. For exam-
ple, an algorithm targeted to HTTP-based distributed
systems uses HTTP request logs to recover user re-
quest flows in web-server farms. Another algorithm as-
sumes that the target system uses a high-level compo-
nent framework, such as J2EE, and modifies an under-
lying framework implementation to record component
interactions. To find root causes of a failure, they cor-
relate the failure with particular components by analyz-
ing recovered flows with several statistical techniques,
including cluster analysis, decision trees, and proba-
bilistic context-free grammar. Mirgorodskiy presented
another trace-based flow-recovering algorithm that re-
quires little human burden by automated binary instru-
mentation across node boundaries [14]. Similar to us,
they use function call traces, and quantify the differ-
ences of distributed function call flows to find anoma-
lous calls. They also use a filtering rule that removes
duplicated contributions from child nodes. Reynolds et
al. proposed an approach to assisting system developers
in detecting unexpected system behaviors [16]. Similar
to our model generation, their approach first infers from
test runs the expected program behaviors that include in-
teraction of distributed components, and generates their
textual representation. The auto-generated expectation,
which the user can extend for more accurate analysis,
is checked against the traces of trial runs. Aguilera et
al. [2] presented a statistical algorithm that requires no
a-priori knowledge on the target system, while trading
off the accuracy of the recovered flows.

The key difference between these previous ap-
proaches and ours is that while their flow-based algo-
rithms assume centralized processing, we designed our
localization algorithm to be mostly decentralized. As
shown by Roth et al. [18], decentralized processing is
essential to work at the scale of today’s HPC systems,
such as the 106,496-node Blue Gene/L at Lawrence Liv-
ermore National Laboratory and the 655-node Tsubame
supercomputer at Tokyo Institute of Technology. An-
other notable difference is that flow-based approaches
require to determine correlation of message send and re-
ceive operations by either message counting as in [14] or
tagging as in [7,8,12]. While counting is relatively sim-
ple to implement, it cannot be used for datagram-based
connections. Message tagging works for both stream-
and datagram-based connections, but the perturbation
due to embedding a tag into each message can be too
large to catch non-deterministic, timing-related bugs.

Research projects on fault localization that do not
rely on distributed flows include Mirgorodskiy et
al. [15], Zheng et al. [20], and Arnold et al. [3]. Sim-
ilar to us, Mirgorodskiy et al. proposed a fault localiza-
tion method using function call traces [15]. To localize
faults, it exploits an observation that in a SPMD-style
distributed program, its member processes should be-
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have similarly to each other. It detects anomalous pro-
cesses by finding outliers in function execution time pro-
files of the target processes. However, such assumption
does not necessarily hold in distributed systems. For
example, the master process of a master-worker sys-
tem would always be considered an anomaly since it
would have no other similar process. To compensate
such natural differences, their method can also use pre-
vious known-normal traces; if previous traces include
one that is similar to outlier traces, they consider the
outliers normal. Our modeling is similar to this method
since we also use previous data to localize faults. How-
ever, ours is more space efficient since we do not simply
keep previous data but a concise representation of nor-
mal behaviors as exeuction models. Furthermore, it is
more scalable. Once models are derived, the analysis
for fault localization is completely decentralized since
it requires no network communication, while they need
to exchange the time profiles among all the processes to
compare the traces of each process.

Zheng et al. also presented an anomaly detection al-
gorithm based on the node-similarity assumption [20].
Unlike Mirgorodskiy et al., they use standard perfor-
mance metrics, such as CPU and memory load. We
could also improve the effectiveness of our approach
by using such metrics as well. For instance, such bugs
as deadlocks might manifest themselves as significantly
lower CPU load. However, their method can only re-
veal process-level anomalies, unlike our function-level
analysis that can identify anomalous functions.

Arnold et al. proposed a bug detection method using
stack trace sampling [3]. Similar to us, their primary
focus is scalability with an increasing number of nodes.
Thanks to MRNet, a tree-based overlay network [17],
they achieve low-latency collection of call stacks from
thousands of processes; we could also make use of such
a scalable overlay network for gathering process models.
Unlike us, they use a sampling-based analysis, which
makes detecting rare anomalous behaviors difficult.

Another related research area is the scalability of per-
formance analysis in large-scale HPC systems [9, 18].
Roth et al. presented a scalable performance analysis
framework based on MRNet [18]. They gather perfor-
mance profiles at run time by construct a tree network of
distributed nodes using MRNet. Their highly decentral-
ized analysis framework allowed the performance bot-
tleneck search by Paradyn [13] to be possible with mod-
erate CPU and network load even in more than a thou-
sand processes, while a centralized analyzer could not
handle such a large number of processes. Tree-based
overlay, like MRNet, would also be useful in our global
model derivation, though we have not yet seen bottle-
necks in gathering process models.

Geimer et al. proposed a parallel algorithm for find-
ing communication patterns with sub-optimal perfor-

mance [5, 9]. They use the same set of nodes as the
target system, and attempt to discover inefficient com-
munication patters in a scalable way by replaying each
communication event on the same node and identify-
ing distributed message correlation. We could have used
such a parallel correlation-based technique in our model
derivation phase as well. For example, while the current
modeling assigns a single model to each connection, we
could have differentiated function calling patterns by us-
ing the call stack of the sender as a key. By doing so, we
could have generated a model for a pair of a unique con-
nection and its sender, which would improve the accu-
racy of the resulting model. However, it in turn requires
to find distributed message correlation by such methods
as message counting and tagging. Since the overhead
incurred by message correlation can be too large to de-
tect timing-related bugs, the effectiveness of correlation-
based analysis applied to our problem domain remains
unclear and a subject of future work.

6 Conclusion

We presented our model-based fault localization
technique that aims to help the human analyst nar-
row down the manual localization process into a small
fraction of the whole system. Our method consists
of two parts: pre-fault model generation and model-
based anomaly detection. The first part collects func-
tion call traces from each process and derives an execu-
tion model that reflects the function calling behaviors of
the whole system. When a failure happens, we com-
pute the anomaly score of each execution unit in the
trial traces by comparing it against the derived model.
The anomaly score, ranging from 0 to 1, quantifies how
likely the execution unit is correlated with the fault. Our
claim is that the analyst can substantially reduce the
manual localization burden by prioritizing the execution
units with higher anomaly scores. Our preliminary ex-
periment with a distributed job manager supported this
claim: our method narrowed down a bug finding pro-
cess of a 70-second faulty run on a 78-node distributed
platform into just sub-second behaviors on two nodes.

We have several remaining issues to explore. First,
we will explore online approaches to model derivation
and anomaly score calculation. Our current method
dumps function call traces into local disks by running
the online trace dumper in the background of the target
process. While this scheme was effective for the experi-
ment with MPD, the trace size dumped to the local disk
could be too large to keep for longer-running programs.
We will explore online modeling and anomaly score cal-
culation to keep the space overhead minimum. Second,
we will apply our technique to localization of faults in
different distributed systems. Specifically, for each dif-
ferent target system, we are planning to investigate 1)
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whether the assumed event-driven architecture holds or
not, 2) how concise our modeling can encode its behav-
iors, and 3) how effective the model can be effective in
localizing faults on the system.
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