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Minimization of Delay Insertion in Clock Period Improvement in
General-Synchronous Framework∗

Yukihide KOHIRA†a), Member, Shuhei TANI†, Nonmember, and Atsushi TAKAHASHI†, Member

SUMMARY In general-synchronous framework, in which the clock is
distributed periodically to each register but not necessarily simultaneously,
the circuit performance such as the clock period is expected to be improved
by delay insertion. However, if the amount of inserted delays is too much,
then the circuit is changed too much and the circuit performance might
not be improved. In this paper, we propose an efficient delay insertion
method that minimizes the amount of inserted delays in the clock period
improvement in general-synchronous framework. In the proposed method,
the amount of inserted delays is minimized by using an appropriate clock
schedule and by inserting delays into appropriate places in the circuit. Ex-
periments show that the proposed method can obtain optimum solutions in
short time in many cases.
key words: delay insertion, clock scheduling, general-synchronous frame-
work

1. Introduction

The semiconductor manufacturing process technology has
improved the scale, speed, and power consumption of LSI
circuits. However, increasing the ratio of the routing de-
lay in the propagation delay bounds the amount of im-
provements in complete-synchronous framework (c-frame)
in which the simultaneous clock distribution to every reg-
ister is assumed. The increases of the size and power con-
sumption of a clock distribution circuit have become serious
issues in c-frame. While, general-synchronous framework
(g-frame) [2]–[4], in which the clock is assumed to be dis-
tributed periodically to each individual register though not
necessarily to all the registers simultaneously, is expected
to give an essential solution. By using g-frame, the qual-
ity of circuit such as the clock frequency, clock distribution
circuit size, power consumption, and etc. are expected to be
improved. The efforts toward improvements of qualities in
g-frame are summarized in [5].

Since the clock period might not be reduced in g-frame
even if the maximum delay is reduced, the effort in c-frame
might degrade the circuit performance in g-frame. There-
fore, the optimization of circuit synthesis that takes g-frame
into account must be investigated. In this paper, we focus
on delay insertion methods [6]–[9]. Even though we do not
consider the detailed delay insertion methods, the delay in-
sertion will be realized by replacing a large module with a
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small module synthesized under looser delay constraints, by
using smaller transistors and narrower wires, and by delet-
ing buffers from long interconnects, as well as by inserting
buffers to short interconnects.

In [6], a delay insertion method that minimizes the
clock period was proposed. Since the amount of an inserted
delay is iteratively determined by searching the whole cir-
cuit, the method takes too much computation time. In [7],
a fast delay insertion method that minimizes the clock pe-
riod was proposed. Although it is fast and the amount of
inserted delays is smaller than that by the method in [6], a
lot of redundant delays are still inserted. In [8] and [9], the
mixed integer linear programming (MILP) formulations that
minimize the clock period and that minimize the amount
of inserted delays at the given clock period were proposed,
respectively. Although optimum solutions are obtained by
MILP, the methods based on MILP cannot be applied to
large circuits since the required memory size and compu-
tation time of MILP are large. Although the computational
complexity of the problem that minimizes the amount of in-
serted delays in a circuit at the given clock period in g-frame
is not known, we conjecture that this problem is NP-hard.

In this paper, we propose an efficient delay inser-
tion method that minimizes the amount of inserted delays
in clock period improvement in g-frame. The proposed
method is based on the method in [7]. In the method in
[7], a clock schedule for a target clock period that has tim-
ing violations is assumed, and delays are greedily inserted
to recover the timing violations of the assumed clock sched-
ule. The amount of inserted delays by the method in [7]
is relatively large since it assumes an inappropriate clock
schedule and adopts a greedy delay insertion approach. In
the proposed method, a clock schedule that has fewer tim-
ing violations is assumed in order to reduce the amount of
inserting delays. Furthermore, delays are inserted into ap-
propriate places so that the timing violations are recovered
by fewer inserted delays. Experiments show that the pro-
posed method can obtain optimum solutions in short time in
many cases.

The rest of the paper is organized as follows. Section 2
provides some definitions. Section 3 discusses existing de-
lay insertion methods. Section 4 describes our proposed
clock scheduling method and delay insertion method. In
Sect. 5, the experimental results are given. Section 6 con-
cludes with a summary and future works.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

In this paper, we consider a circuit consisting of registers,
gates, and wires connecting registers and gates. We refer to
registers, gates, and wires as elements. A circuit is repre-
sented by the graph G = (Vg, Eg), where Vg is the vertex
set corresponding to elements in the circuit and Eg is the di-
rected edge set corresponding to signal propagations in the
circuit. In this paper, we assume that the maximum delay of
each element is equal to its minimum delay. Let d(v) be the
weight of v ∈ Vg which corresponds to the delay of corre-
sponding element. Let Vr be a register set. Necessarily, the
register set is a subset of Vg. An example of the circuit is
shown in Fig. 1(a). In Fig. 1(a), {a, b, c, d} is the register set,
and the figure in each vertex except registers represents its
weight.

In general-synchronous framework (g-frame), the
clock arrival timing of a register may be different from other
registers. The clock timing S (r) of register r is defined as
the difference in clock arrival time between r and an arbi-
trary chosen reference register. Moreover, the set of clock
timing of all the registers S is called clock schedule.

A circuit works correctly with a clock period T if the
following two types of constraints are satisfied for every reg-
ister pair with signal propagations [2].

Setup (No-Zero-Clocking) Constraints

S (a) − S (b) ≤ T − Dmax(a, b)

Hold (No-Double-Clocking) Constraints

S (b) − S (a) ≤ Dmin(a, b),

where Dmax(a, b) is the maximum delay and Dmin(a, b) is the
minimum delay from a register a to b (Fig. 2).

Since a clock ticks all the register simultaneously in
complete-synchronous framework (c-frame), the clock pe-
riod must be larger than or equal to the maximum delay be-
tween registers. On the other hand, in g-frame, circuits can
work correctly with the clock period which is smaller than
the maximum delay between registers, if all the register pair
with signal path satisfies two types of constraints.

Let TS (G) be the minimum clock period of a circuit
G in g-frame under the assumption that the clock can be
inputted to each register at an arbitrary designated timing.
Hereafter, we simply call TS (G) the minimum clock period
of G in g-frame. TS (G) is determined by the constraint
graph H(G) = (Vr, Er) for G, where vertex set Vr corre-
sponds to registers in G and directed edge set Er corresponds
to two types of constraints [3], [4]. An edge in Er from a reg-
ister a to a register b with weight Dmin(a, b), called the D-
edge, corresponds to the hold constraint, and an edge from
a register b to a register a with weight T −Dmax(a, b), called
the Z-edge, corresponds to the setup constraint. Let H(G, t)
be the constraint graph in which the clock period T of Z-
edges in H(G) is set to t. Let the weight of a directed cycle

Fig. 1 A circuit G and a constraint graph H(G, 7).

Fig. 2 Timing chart.

in H(G, t) be the sum of edge weights on the directed cy-
cle. It is known that the minimum clock period TS (G) is the
minimum t such that there is no cycle with negative weight
in the constraint graph H(G, t).

Although the clock period of G is bounded by TS (G),
a faster circuit G′ in g-frame might be obtained from G by
delay insertion. It is known the lower bound of the mini-
mum clock period TL(G) of a circuit G in g-frame by delay
insertion is defined as follows.

TL(G) = max
C∈cycles in G

D(C)
N(C)

,

where N(C) and D(C) are the number of registers and and
the sum of delay on a directed cycle C in G, respectively.
TL(G) is the minimum t such that there is no cycle with neg-
ative weight in the constraint graph H(GZ , t) whose edge set
consists of Z-edges only [7]. Note that TL(G) ≤ TS (G).

For example, the constraint graph H(G, 7) of G shown
in Fig. 1(a) is shown in Fig. 1(b). Since the clock period
must be larger than or equal to the maximum delay between
registers in c-frame, the minimum clock period of G in c-
frame TC(G) = 10. Since H(G, 7) has no cycle with negative
weight and the weight of cycle (a, c, a) is negative when T <
7, TS (G) = 7. Moreover, TL(G) = 4, which is determined by
cycle (a, c, d, a) in the constraint graph with only Z-edges.

3. Existing Delay Insertion Method

The existing delay insertion methods can be classified into
heuristic methods [6], [7] and mixed integer linear program-
ming (MILP) formulations [8], [9]. Although optimum so-
lutions are obtained by MILP, the methods based on MILP
cannot be applied to large circuits since the required mem-
ory size and computation time of MILP are large. Although
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Fig. 3 The method in [7] (S init+DFS).

the computational complexity of the problem that minimizes
the amount of inserted delays in a circuit at the given clock
period in g-frame is not known, we conjecture that this prob-
lem is NP-hard. We focus on the heuristic methods.

In [6], a delay insertion method that minimizes the
clock period was proposed. Since the amount of an inserted
delay is iteratively determined by searching the whole cir-
cuit, the method takes too much computation time. In [7], a
delay insertion method that minimizes the clock period was
proposed (Fig. 3). The method in [7] consists of two steps.
At the first step, a clock schedule without considering all
the hold constraints is determined. At the second step all
the violating hold constraints of the clock schedule are re-
covered by delay insertion. The method in [7] determines
the amount of an inserted delay according to the delay-slack
and delay-demand. The delay-slack and delay-demand are
defined by the difference between the arrival time of the lat-
est signal and that of the earliest signal (see Fig. 4). If the
delay-demand of an edge in a circuit is positive and a delay
which is equal to the delay-demand is inserted to the edge,
then the corresponding hold violation is recovered. If the
delay-slack of an edge in a circuit is positive, a delay which
is less than or equal to the delay-slack can be inserted to the
edge without generating setup violations.

The methods in [6], [7] guarantee that the obtained cir-
cuit achieves the lower bound of the minimum clock pe-
riod of the circuit G in g-frame TL(G). However, since the
amount of inserted delays was not taken into account, a lot
of redundant delays were inserted.

For example, the constraint graph H(G, 4) of G shown
in Fig. 1, and the clock schedule S ′ which is obtained by the
method in [7] are shown in Fig. 5(a). The circuit G′ which

Fig. 4 Delay-slack and delay-demand.

Fig. 5 H(G, 4) of G shown in Fig. 1, clock schedule S ′, and circuit G′
obtained by the method in [7].

is obtained by the method in [7] is shown in Fig. 5(b).

4. Proposed Method

In this paper, we propose an efficient delay insertion method
that minimizes the amount of inserted delays to achieve the
target clock period. Note that the circuit which achieves the
target clock period is not obtained by delay insertion if the
target clock period is set to be less than TL(G). Moreover,
the original circuit does not need to be inserted delays if the
target clock period is set to be more than or equal to TS (G).
Hereafter, we assume that the target clock period is set to be
more than or equal to TL(G), and less than TS (G).

The proposed method is based on the method in [7]
and shown in Fig. 6. The proposed method consists of three
steps. At the first step, an initial assumed clock schedule
without considering all the hold constraints is obtained [7].
At the second step, the assumed clock schedule is modi-
fied to reduce the amount of inserted delays by reducing the
number of hold violations. At the third step, the delays are
inserted into appropriate places considering the whole cir-
cuit so that the circuit works correctly in the assumed clock
schedule.

4.1 Clock Schedule Modification

In the method in [7], since an assumed clock schedule is
determined ignoring hold constraints, the number of hold
violations in the clock schedule tends to be large. The
number of hold violations is not necessarily proportional
to the amount of required delay to recover the hold vio-
lations. However, if the number of hold violations in the
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Fig. 6 Proposed method (S mod+MinCut).

Fig. 7 The changed slack after clock schedule modification.

clock schedule is large, the amount of inserted delays usu-
ally tends to be large. The proposed method tries to min-
imize the number of hold violations in the assumed clock
schedule to reduce the amount of inserted delays.

Let a slack Δ(a, b) of an edge (a, b) on H(G, t) be
Δ(a, b) = S (a) + w(a, b) − S (b), where w(a, b) is the edge
weight of (a, b) on H(G, t), and S is an assumed clock sched-
ule. Note that the timing constraint of (a, b) is violated if and
only if Δ(a, b) < 0. Assume that Δ(a, b) < 0. The timing
violation of an edge (a, b) is recovered if the clock timing
of its head vertex b is decreased (see Fig. 7). However, new
timing violation of an edge (b, c) for which the clock timing
of its tail vertex b is decreased is generated if the slack of the
edge is small. An generated new timing violation of an edge
(b, c) is recovered if the clock timing of its head vertex c is
decreased. By repeating the procedure in which the clock

Fig. 8 Slacks by clock schedule S ′ and S ′′.

timing of head vertex is decreased, the timing violation of
edge (a, b) is recovered without generating new timing vio-
lations if the clock timing of its tail vertex a is not changed
by the above procedure.

Before describing the formal definition of the above
procedure, we give some definitions. Let HS (G, t) be the
graph obtained from H(G, t) by deleting all the edges (u, v)
with Δ(u, v) < 0 in clock schedule S . Let the length for a
path be the sum of slacks of the edges in the path in HS (G, t).
Let dist(w, x) be the minimum length for paths from a vertex
w to x in HS (G, t). If there is no path from w to x, then let
dist(w, x) be infinite.

Here, we describe the procedure that reduce the num-
ber of hold violations. In the procedure, an edge (a, b) such
that Δ(a, b) < 0 and dist(b, a) ≥ −Δ(a, b) is found and S (v)
is changed to S (v)+min{0,Δ(a, b)+ dist(b, v)} for each ver-
tex v. By this procedure, the slack of (a, b) becomes 0 and
no new violation is generated. However, the slack of an
edge whose slack is negative might be decreased since the
HS (G, t) does not contain these edges.

Note that the number of hold violations is decreased
by the above procedure. While, the total amount of hold
violations might be increased by the above procedure. In
our proposed method shown in Fig. 6, a clock schedule that
removes as many hold violations as possible is obtained by
the above procedures and is used in delay insertion.

For example, slacks of edges on H(G, 4) by clock
schedule S ′ shown in Fig. 5(a) are shown in Fig. 8(a). In
Fig. 8(a), since slacks of edges (a, b) and (a, c) are nega-
tive, hold constraints (a, b) and (a, c) are violated in S ′. If
hold violation (a, c) is recovered by clock schedule modifi-
cation, then setup constraint (c, a) is violated. Hold violation
(a, c) cannot be recovered by the proposed clock schedule
modification since the proposed clock schedule modifica-
tion method never creates new violations. On the other hand,
hold violation (a, b) can be recovered by the proposed clock
schedule modification since hold violation (a, b) is recov-
ered by decreasing S (b) without generating new violations.
Slacks of edges by clock schedule S ′′ which is obtained
by the proposed clock schedule modification are shown in
Fig. 8(b).

4.2 Delay Insertion

In the method in [7], since a delay is inserted iteratively
without considering the global structure of the circuit, re-
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Fig. 9 Definition of the capacity.

dundant delays are inserted. If a delay is inserted into an ap-
propriate place in the circuit, several hold violations might
be recovered at once.

In the proposed method, delays are iteratively inserted
into appropriate places in the circuit so that the circuit works
correctly in the assumed clock schedule.

The proposed method constructs a flow graph in which
the capacity of each edge, source vertices, and sink vertices,
are defined. Then, delays are inserted into edges in a mini-
mum capacity cut with finite capacity that separates source
vertices and sink vertices. Source vertices, sink vertices, the
capacity of each edge is defined as follows.

The source vertices are all registers which are corre-
sponding to the tail vertices of the edges which violate the
hold constraints in the constraint graph. Similarly, the sink
vertices are all registers which are corresponding to the head
vertices. The capacity of each edge is defined according to
the delay-slack and delay-demand as shown in Fig. 9. If the
delay-demand of an edge is non-positive, the capacity is set
to 0. Otherwise, if the delay-slack of an edge is non-positive,
the capacity is set to infinite. Otherwise, if the delay-slack
of an edge is larger than or equal to the delay-demand, the
capacity is set to one. Otherwise, if the delay-slack of an
edge is smaller than the delay-demand, the capacity is set to
two.

If the delay-demand of an edge is non-positive, the de-
lay does not need to be inserted to the edge. The capacities
of these edges are set to 0 so that the minimum capacity cut
does not take these edges into account. If the delay-slack
of an edge is non-positive, the delay cannot be inserted to
the edge. The capacities of these edges are set to infinite
so that the minimum capacity cut does not contain these
edges. If the delay-slack of an edge is larger than or equal
to the delay-demand, a hold violation is recovered by insert-
ing delay to the edge only. The capacities of these edges are
set to one so that the minimum capacity cut contains these
edges easier. If the delay-slack of an edge is smaller than

Fig. 10 The flow graph for G shown in Fig. 1 whose clock schedule is
set to S ′′ shown in Fig. 8.

the delay-demand, then a hold violation is not recovered by
inserting delay to the edge only although the delay can be
inserted to the edge. The capacities of these edges are set to
two.

By delay insertion into edges, no setup violation is gen-
erated if the number of edges to which delays are inserted is
at most one for any register-to-register path in G and the
amount of inserted delay to an edge is at most its delay-
slack. Basically, the delays are inserted into the edges on
the found minimum cut of the flow graph defined above.
However, there are two exceptions.

The first one is the amount of delay insertion. In some
cases, the found minimum cut contains more than one edge
of a register-to-register path. In such cases, no delay is in-
serted into an edge if some delays are inserted into edges on
the source side of the edge.

The second one is the construction of the flow graph.
In some cases, there is a path from a source a to a sink b in
which the delay-slack of every edge is 0 and the capacity is
infinite in the flow graph defined above. In such cases, we
do not need to insert delays into edges on the path since it
is guaranteed that the hold constraint of (a, b) is not violated
[7], but a and b are defined as source and sink due to other
source-to-sink paths, respectively. In order to ignoring the
path from a to b, the flow graph is modified as follows. An
edge with infinite capacity whose tail vertex is a source is re-
moved. Furthermore, for each removed edge, the tail vertex
is removed from source vertices if it has no outgoing edge
and the head vertex is added into source vertices if it has no
incoming edge.

If every source to sink path has exactly one edge with
capacity one in the found minimum cut, then all the hold
violations are recovered at once. Otherwise, the procedure
is repeated.

For example, the flow graph for G shown in Fig. 1
whose clock schedule is set to S ′′ shown in Fig. 8(b) is
shown in Fig. 10. The delay shown in Fig. 10 is inserted by
the proposed method. The amount of inserted delays by the
proposed method is less than that by the method [7] shown
in Fig. 5.
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5. Experimental Results

We implement the clock scheduling method of the method
in [7] (S init), the delay insertion method of the method in [7]
(DFS), the clock scheduling method of the proposed method
(S mod), and the delay insertion method of the proposed
method (MinCut), respectively. We implement these meth-
ods in C++, which was compiled by gcc4.1.2, and execute
on a PC with a 2.93 GHz Intel Core2 CPU and 2 GB RAM.
In order to observe the efficiency of each clock schedul-
ing method and that of each delay insertion method, we
apply four methods to circuits in combination: S init+DFS
[7], S init+MinCut, S mod+DFS, and S mod+MinCut (pro-
posed method). We also implement the mixed integer lin-
ear programming formulation for minimization of the in-
serted delay (MILP) based on [8], [9]. MILP is solved by
CPLEX11.0.0 [10] on the same PC. We perform these meth-
ods on the ISCAS89 benchmark suite.

First, the delay of each NOT, AND, OR, NAND, and
NOR gate is set to 1 and that of each register and routing is
set to 0. In experiments, we assume that delay insertion is
realized by inserting delay gates and we evaluate the delay
insertion methods according to the number of inserted delay
gates and the computation time. The delay of each inserted
delay gate is also set to 1. In 30 circuits among 48 ISCAS89
benchmark circuits, since the minimum clock periods in g-
frame are not decreased by the delay insertion, the original
circuits are optimal. The other 18 circuits are shown in Ta-
ble 1. In this experiment, the target clock period is set to the
lower bound of minimum clock period in g-frame TL [6],

Table 1 Benchmark circuits and those clock periods under the delay of
each gate is set to 1.

size clock period
circuit |Vg | |Eg | |Vr | |Er | TC TS TL

s298 270 400 15 168 9 6 5.334
s344 360 479 16 230 20 17 14.000
s349 362 484 16 230 20 17 14.000
s444 408 584 22 346 11 7 6.584
s526 432 689 22 330 9 6 5.500
s635 639 829 33 1184 127 124 66.000
s991 1142 1457 20 218 59 55 54.000

s1269 1231 1718 38 702 35 30 18.667
s1423 1480 1991 75 3794 59 54 53.000
s1512 1704 2208 58 1226 30 24 22.500
s3271 3403 4541 117 1880 28 19 14.715
s3384 3780 4875 184 3876 60 51 26.500
s4863 4942 6707 105 1530 58 53 30.000
s6669 6722 9039 240 4816 93 81 25.167
prolog 3511 4786 137 1530 26 14 12.500

s15850 20753 24712 598 31782 82 57 42.000
s15850.1 20690 24712 535 24926 82 71 63.000

s35932 35622 48145 1729 13880 29 28 27.000
|Vg | the number of vertices in the circuit graph
|Eg | the number of directed edges in the circuit graph
|Vr | the number of register in the circuit
|Er | the number of directed edges in the constraint graph
TC the minimum clock period of the original in c-frame
TS the minimum clock period of the original in g-frame
TL the lower bound clock period in g-frame

[7].
The experimental results of MILP and four combina-

tional methods are shown in Table 2. The optimum solutions
except s6669 are obtained by MILP. On the other hand, the
optimum solution of s6669 is not obtained by MILP due
to out of memory when the MILP is solved by CPLEX.
The comparisons between S init+DFS and S mod+DFS, and
between S init+MinCut and S mod+MinCut show that the
proposed clock schedule modification method reduces the
number of inserted delay gates and the computation time.
Furthermore, the comparisons between S init+DFS and
S init+MinCut, and between S mod+DFS and S mod+MinCut
show that the proposed delay insertion method also reduces
the number of inserted delay gates and the computation
time. The number of inserted delay gates obtained by the
proposed method S mod+MinCut is only about 1.24 times as
large as that of the optimum solution on average, and the
computation time of the method in [7] is about four times as
fast as that of MILP on average. In particular, the optimum
solutions are obtained by the proposed method in 12 circuits
among 18 circuits.

Next, the delay of each NOT gate is set to 1, that of
each NAND, NOR and inserted delay gate is set to 2, that
of each AND and OR gate is set to 3, and that of each reg-
ister and routing is set to 0. In 23 circuits among 48 IS-
CAS89 benchmark circuits, the original circuits are optimal.
The other 25 circuits and the result of MILP, S init+DFS [7],
and S mod+MinCut (proposed method) are shown in Table 3.
In this experiment, the target clock period is also set to the
lower bound of minimum clock period in g-frame TL.

The optimum solutions of three circuits are not ob-
tained by MILP under this delay model. We expect that the
optimum solutions are not obtained by MILP for larger cir-
cuit under more practical delay model. While, the proposed
method obtain optimum solutions in short time in most cir-
cuits.

Last, in order to observe the relations between the tar-
get clock period and the number of inserted delay gates, the
target clock period is changed from TL to TS of the original
circuit. Note that the optimum solution of inserted delays
is 0 when the target clock period is set to TS . The delay of
each NOT gate is set to 1, that of each NAND, NOR and in-
serted delay gate is set to 2, that of each AND and OR gate
is set to 3, and that of each register and routing is set to 0. In
the experiments, MILP and four combinational methods are
applied to s3271 and s3384. The results of s3271 and s3384
are shown in Fig. 11 and Fig. 12, respectively.

In two circuits, if the assumed clock schedule is not
modified, then the delays are inserted when the target clock
period is set to TS . This fact means that the assumed clock
schedule obtained by the method in [7] is not appropriate.
On the other hand, if the assumed clock schedule is modi-
fied by the proposed method, the number of inserted delay
gates is 0 when the target clock period is set to TS . The
number of inserted delay gates obtained by MILP is not in-
creased when the target clock period is increasing. While,
in Fig. 12, the number of inserted delay gates obtained by
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Table 2 Experimental results under the delay of each gate is set to 1.

MILP S init+DFS [7] S init+MinCut S mod+DFS S mod+MinCut
circuit #Dins Time[s] #Dins Time[s] #Dins Time[s] #Dins Time[s] #Dins Time[s]

s298 3 0.01 13 <0.01 8 <0.01 3 <0.01 3 <0.01
s344 3 0.01 69 <0.01 69 <0.01 3 <0.01 3 <0.01
s349 3 0.01 69 <0.01 69 <0.01 3 <0.01 3 <0.01
s444 13 0.02 20 <0.01 17 <0.01 14 <0.01 13 <0.01
s526 3 0.03 13 <0.01 8 <0.01 3 <0.01 3 <0.01
s635 422 0.03 1304 0.01 1304 <0.01 422 <0.01 422 <0.01
s991 1 0.05 6293 0.13 1649 0.02 1 0.01 1 0.01

s1269 120 0.85 615 0.04 511 0.02 313 0.03 197 0.01
s1423 1 0.05 3090 0.16 2825 0.03 1 0.02 1 0.02
s1512 4 0.07 1395 0.17 1024 0.04 10 0.01 4 0.01
s3271 48 0.41 1668 0.53 844 0.04 68 0.09 54 0.02
s3384 256 1.68 2309 0.33 2019 0.03 433 0.14 386 0.02
s4863 552 0.41 6229 2.88 4535 0.81 2145 1.16 1257 0.31
s6669 ∗2488 ∗490.59 11465 6.62 7238 1.18 8492 4.87 5615 1.02
prolog 9 0.22 514 0.35 138 0.02 16 0.03 9 0.01

s15850 82 1.48 10495 30.11 4926 1.25 320 3.03 120 0.84
s15850.1 8 0.96 21785 35.55 14150 2.32 8 0.36 8 0.35

s35932 1 2.03 4290 95.03 4290 3.41 1 0.42 1 0.42
AVE. [%] (100.00) (100.00) 94744.76 945.50 60893.00 72.67 173.74 55.71 123.73 22.98

#Dins the number of inserted delay gates to achieve TL

Time[s] computation time
AVE. average of comparison ratio between heuristic and optimal except computation time which is less than 0.01[s]
∗ The best feasible solution of s6669 is shown before out of memory.

Table 3 Experimental results under the delay of each NOT gate is set to 1, the delay of each NAND,
NOR, and inserted gate is set to 2, and the delay of each AND and OR gate is set to 3.

clock period MILP S init+DFS [7] S mod+MinCut
circuit TC TS TL #Dins Time[s] #Dins Time[s] #Dins Time[s]

s298 18 12 10.000 1 0.01 14 <0.01 1 <0.01
s344 38 34 29.000 3 0.01 81 <0.01 3 <0.01
s349 38 34 29.000 3 0.01 81 <0.01 3 <0.01
s382 18 12 11.250 1 0.02 9 <0.01 1 <0.01
s400 18 12 11.250 1 0.01 9 <0.01 1 <0.01
s444 20 13 11.667 8 0.07 12 <0.01 8 <0.01
s526 18 12 11.000 1 0.04 9 <0.01 1 <0.01

s526n 18 12 11.000 1 0.04 9 <0.01 1 <0.01
s635 162 158 88.500 233 0.18 774 0.01 233 0.01
s991 117 110 109.000 1 0.04 6350 0.12 1 0.01

s1269 70 61 39.334 ∗126 ∗990.29 653 0.04 197 0.01
s1423 164 156 146.000 5 0.07 4498 0.16 5 0.02
s1512 54 43 40.500 3 0.10 944 0.10 3 <0.01
s3271 58 34 27.715 41 1.82 1774 0.54 43 0.02
s3330 66 40 32.000 9 0.52 233 0.17 10 <0.01
s3384 168 147 75.500 406 227.67 3762 0.36 611 0.03
s4863 144 129 75.000 ∗623 ∗396.68 7188 2.36 1495 0.21
s6669 231 197 62.167 ∗3054 ∗623.91 13767 5.48 6466 0.74
s9234 107 72 63.000 13 0.73 3948 4.33 18 0.04

s9234.1 107 72 63.000 13 0.98 4136 5.35 18 0.04
prolog 68 40 31.000 11 0.43 543 0.30 11 0.01

s13207 106 76 75.000 1 0.83 16442 12.50 1 0.11
s15850 141 104 78.000 49 3.40 10349 31.74 71 0.56

s15850.1 141 124 103.000 14 1.35 17403 36.11 14 0.47
s38417 85 61 60.000 1 2.34 52562 340.43 1 1.24

AVE.[%] (100.00) (100.00) 315608.90 1268.80 119.85 12.66
#Dins the number of inserted delay gates to achieve TL

Time[s] computation time
AVE. average of comparison ratio between heuristic and optimal except computation time which is less than 0.01[s]
∗ The best feasible solutions of s1269, s4863, and s6669 are shown before out of memory.

the proposed method when the target clock period is set to
130 are larger than that when the target clock period is set
to 125. The clock schedule obtained by the proposed clock

scheduling modification method depends on the given tar-
get clock period, and the number of inserted delay gates ob-
tained by the proposed delay insertion method depends on
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Fig. 11 The result of s3271.

Fig. 12 The result of s3384.

the assumed clock schedule. Since both the proposed clock
scheduling modification method and the proposed delay in-
sertion method are heuristic, the number of inserted delay
gates obtained by the proposed method is rarely increased
when the target clock period is increasing. However, the
number of inserted delay gates obtained by the proposed
method is optimal in many target clock periods.

It is known that MILP can be solved in short computa-
tion time if the constraint matrix of a MILP formulation is
totally unimodular. The constraint matrix of MILP formu-
lation for minimization of the inserted delay gates is not to-
tally unimodular, but seems to have a similar property when
the target clock period is integer and the input variables are
small integers. Then, the computation time of MILP for
the delay insertion is very fast in above experiments. How-
ever, it seems that MILP based delay insertion methods are
not applicable to the problems which are defined based on
a more practical delay model. For example, the delay of
each NOT, NAND, NOR, AND, OR, inserted delay gates,
register, and wire are set to 1001, 1999, 2001, 2999, 3001,
2001, 0, and 0, respectively. Then, CPLEX stops due to out
of memory and gives no feasible solutions in some circuits.
On the other hand, our proposed method gives a feasible so-
lution in a short time in all circuits. Our method is expected

to be applicable to larger circuits even if a practical delay
model is adopted.

6. Conclusion

We propose an efficient delay insertion method that mini-
mizes the amount of inserted delays based on the method
in [7]. Experiments showed that the proposed method can
obtain optimum solutions in short time in many cases under
the assumption that the maximum delay of each element is
equal to its minimum delay.

For the future work, we will proposed more efficient
delay insertion method according to the amount of in-
serted delays and the computation time, apply the proposed
method to the real delay model and evaluate the whole
circuit performance after the delay insertion including the
clock distribution circuit.
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