
論文 / 著書情報
Article / Book Information

Title Fast and Accurate Generalized Harmonic Analysis and Its Parallel
Computation by GPU

Authors Hisayori Noda, AKINORI NISHIHARA

出典 / Citation IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E92-A, No. 3, pp. 745-752

発行日 / Pub. date 2009, 3

URL http://search.ieice.org/

権利情報 / Copyright 本著作物の著作権は電子情報通信学会に帰属します。
 Copyright (c) 2009 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Science Tokyo Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009
745

PAPER Special Section on Latest Advances in Fundamental Theories of Signal Processing

Fast and Accurate Generalized Harmonic Analysis and Its Parallel
Computation by GPU

Hisayori NODA†a), Nonmember and Akinori NISHIHARA†, Member

SUMMARY A fast and accurate method for Generalized Harmonic
Analysis is proposed. The proposed method estimates the parameters of
a sinusoid and subtracts it from a target signal one by one. The frequency
of the sinusoid is estimated around a peak of Fourier spectrum using bi-
nary search. The binary search can control the trade-off between the fre-
quency accuracy and the computation time. The amplitude and the phase
are estimated to minimize the squared sum of the residue after extraction of
estimated sinusoids from the target signal. Sinusoid parameters are recal-
culated to reduce errors introduced by the peak detection using windowed
Discrete-Time Fourier Transform. Audio signals are analyzed by the pro-
posed method, which confirms the accuracy compared to existing methods.
The proposed algorithm has high degree of concurrency and is suitable to
be implemented on Graphical Processing Unit (GPU). The computational
throughput can be made higher than the input audio signal rate.
key words: generalized harmonic analysis, graphical processing unit

1. Introduction

Generalized harmonic analysis (GHA) [1] is a concept of
signal analysis introduced by N. Wiener in 1930, in which
a target signal is expressed as sum of sinusoids. Each sinu-
soid has three parameters; frequency, amplitude, and phase.
Unlike short-time Fourier Transform, the frequency is not
restricted to multiples of inverse of the frame size. So the
frequency resolution is very high by its nature, and the time
resolution is also high because the frame size can be made
short without affecting the frequency resolution.

A target signal is divided into frames having size N.
The signal in a frame is approximated by the sum of sinu-
soids as

x0(n) �
K∑

k=1

Ak sin(ωkn + φk), (1)

where Ak, ωk and φk are the amplitude, the angular fre-
quency and the phase of the k-th sinusoid, respectively, and
K is the number of sinusoids to be extracted. We can easily
synthesize the signal using the sinusoidal parameters. We
estimate these parameters so as to minimize the difference
between the target signal and the synthesized signal.

GHA is used for several applications. Hirata [2] and
Nakazawa [3] applied GHA to the audio coding. Hirata’s
method achieved high compression ratio for speech audio.

Manuscript received July 4, 2008.
Manuscript revised October 17, 2008.
†The authors are with the Department of Communications and

Integrated Systems, Tokyo Institute of Technology, Tokyo, 152-
8550 Japan.

a) E-mail: hisayori@nh.cradle.titech.ac.jp
DOI: 10.1587/transfun.E92.A.745

Nakazawa’s method achieved high quality and high speed
compression using 1/12N octave frequency quantization for
sounds of musical instruments.

Takamizawa [4] proposed a method to repair sound on
a SP record. The method reduces pulse noises using Wavelet
transform as preprocessing, extracts important sound ele-
ments using GHA and resynthesizes the target signal.

A disadvantage of GHA has been its computational
cost, which limits the applications of GHA. In this paper, we
propose a fast and accurate algorithm for GHA using a peak
detection of Fourier spectrum, binary search around that
peak to estimate the frequency parameters. The other pa-
rameters are estimated by minimizing residual signal power.

The algorithm can calculate GHA much faster than
conventional methods, and can be made even faster using
high degree of concurrency in the algorithm. When the algo-
rithm is implemented on GPU, the computational through-
put is higher than the input audio signal rate.

2. GHA

2.1 ABS Method

George and Smith proposed an algorithm for GHA named
Analysis By Synthesis (ABS) [5], in which sinusoids are
extracted one after another as

xk(n) = xk−1(n) − S k(n), k = 1, 2, · · · (2)

where S k(n) is the k-th sinusoid given by

S k(n) = Ak sin(ωkn + φk). (3)

Sinusoid parameters are found by linear search to minimize
the power of the residue xk defined as

Ek =

N−1∑
n=0

{xk(n)}2, (4)

where N is the frame size. Once parameters of the k-th si-
nusoid are estimated, that sinusoid is extracted from xk−1(n)
as in (2). This process is repeated K times to approximate
the original signal as

x0(n) � xK(n) =
K∑

k=1

Ak sin(ωkn + φk). (5)

This algorithm takes much time because multiple pa-
rameters are searched simultaneously by linear search.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

746
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

2.2 Ushiyama’s Algorithm

In 1994, another algorithm for GHA [6]–[8] was proposed,
in which the template function is defined by

S k(n) = Ak sin

(
2πn
Tk

)
+ Bk cos

(
2πn
Tk

)
. (6)

The period of the k-th sinusoid Tk is linearly searched with
an appropriate step size. The m-th searched point of Tk is
referred to as T (m)

k , and the corresponding amplitudes of sine
and cosine are calculated by

A(m)
k =

2

rT (m)
k

rT (m)
k −1∑
n=0

xk−1(n) sin

⎛⎜⎜⎜⎜⎜⎝ 2πn

T (m)
k

⎞⎟⎟⎟⎟⎟⎠ , (7)

B(m)
k =

2

rT (m)
k

rT (m)
k −1∑
n=0

xk−1(n) cos

⎛⎜⎜⎜⎜⎜⎝ 2πn

T (m)
k

⎞⎟⎟⎟⎟⎟⎠ , (8)

where r is the largest integer which satisfies rT ≤ N.
Among all the searched points, parameters which minimize
the squared sum of the residual error

E(m)
k =

N−1∑
n=0

{e(m)
k (n)}2, (9)

e(m)
k (n) = xk−1(n) −

⎧⎪⎪⎨⎪⎪⎩A(m)
k sin

⎛⎜⎜⎜⎜⎜⎝ 2πn

T (m)
k

⎞⎟⎟⎟⎟⎟⎠ + B(m)
k cos

⎛⎜⎜⎜⎜⎜⎝ 2πn

T (m)
k

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

(10)

are adopted as Ak, Bk and Tk.
Since this algorithm searches only T (m)

k and amplitudes
are determined by (7) and (8), it is faster than ABS method.

2.3 Hirata’s Algorithm

In 1998, Hirata proposed a fast algorithm for GHA [2], [9],
in which FFT spectrum of the target signal is first used to
find a rough estimate of the frequency. To estimate the fre-
quency of the k-th sinusoid, the peak frequency of the FFT
spectrum of the previous residue xk(n) is taken as the initial
value and named as f (0)

k . In the m-th search phase, the fre-
quency is searched in the region between f (m−1)

k − Fs/(2mN)

and f (m−1)
k + Fs/(2mN), and the frequency which minimizes

the squared sum of the residue is chosen as f (m)
k .

This method can reduce the number of search while
keeping the accuracy of the estimated frequency.

3. Improvement of Parameter Estimation

In this section, we propose a method to estimate sinusoidal
parameters to be extracted from a target signal. Our method
applies peak detection of the Fourier spectrum to estimate
parameters and the frequency accuracy is improved at every
iteration.

3.1 Frequency Estimation

In the first step, we estimate the frequency (angular fre-
quency) of a sinusoid to be extracted. In this step, we use
discrete time fourier transform (DTFT) of the frame defined
by

Xk(ω) =
N−1∑
n=0

xke−iωn. (11)

We search ω which maximizes |Xk(ω)| defined by

|Xk(ω)| =
√

X2
kr

(ω) + X2
ki

(ω) (12)

Xkr (ω) =
N−1∑
n=0

xk(n) cos(ωn) (13)

Xki (ω) =
N−1∑
n=0

xk(n) sin(ωn), (14)

where Xkr (ω) and Xki (ω) are the real and imaginary part of
(11).

Instead of DTFT, we apply FFT to a target signal to get
sampled frequencies. Among FFT spectra a peak is detected
and call it ω(0). The truly optimal ω is considered to be
around ω(0). So the range from ω(0)−2π/N to ω(0)+2π/N
is searched to find the optimal ω, where N is the frame size.

We assume |Xk(ω)| is convex upward in this range so
that

∂|Xk(ω)|
∂ω

= 0 (15)

holds at the maximum ω.
The derivative is calculated as

∂

∂ω
|Xk(ω)| = ∂

∂ω

√
X2

kr
(ω) + X2

ki
(ω)

=
Xkr (ω) ∂

∂ω
Xkr (ω) + Xki (ω) ∂

∂ω
Xki (ω)√|Xk(ω)|

= 0, (16)

where ∂
∂ω

Xkr (ω) and ∂
∂ω

Xki (ω) are expressed as

∂

∂ω
Xkr (ω) = −

N−1∑
n=0

nx(n) sin(ωn) (17)

∂

∂ω
Xki (ω) =

N−1∑
n=0

nx(n) cos(ωn). (18)

∂
∂ω
|Xk(ω)| is a monotonically decreasing function in

this range, and ω can be found by binary search. We can
narrow the search range by 1/2 in one iteration. So calcula-
tion accuracy of ω is 2−M where M is the number of itera-
tion. In other words, we can estimate ω in time complexity
O(−N log ε) where ε is tolerance of frequency.

When we search ω by binary search, the numerator of

NODA and NISHIHARA: FAST AND ACCURATE GENERALIZED HARMONIC ANALYSIS AND ITS PARALLEL COMPUTATION BY GPU
747

(16) is unimportant, because only the sign of (16) is consid-
ered in the binary search.

Pseudo code to search ω is shown below. search
Omega() returns a value of ω searched by binary search,
where g is ω(0) detected by FFT, N is the frame size and x
are samples of the frame. grad() returns the denominator
of (16), where o is ω of (16)

float grad(float o, float x[])

{

float a = 0;

float b = 0;

float da = 0;

float db = 0;

for (int n = 0; n < N; ++n) {

float s = sin(o * n);

float c = cos(o * n);

a += x[n] * s;

b += x[n] * c;

da += n * x[n] * c;

db -= n * x[n] * s;

}

return a * da + b * db;

}

float searchOmega(float g, int N, float x[])

{

float l = g - 2.0f * PI / N;

float r = g + 2.0f * PI / N;

for (int i = 0; i < ITERATION; ++i) {

float m = (l + r) * 0.5f;

if (grad(m, x) > 0) {

r = m;

} else {

l = m;

}

}

return (l + r) * 0.5f;

}

The searched ω is the k-th frequency ωk.
This algorithm may not work well when there are more

than two local maxima of |Xk(ω)| in the range from ω(0) −
2π/N to ω(0) + 2π/N. Otherwise it works well even if some
noises, Gaussian noise for example, are mixed in the target
signal. In that case, not only sinusoids which construct the
target signal but also noise components are extracted.

The time complexity of this method is the same as that
of Hirata’s algorithm. But the number of calculation is about
1/4 of Hirata’s algorithm, because the number of sum cal-
culation in |Xk(ω)| is half of the Ak and Bk calculations in
Hirata’s method, and the iteration of the binary search is
half of the search routine of Hirata’s method.

3.2 Phase and Amplitude Estimation

After estimation of the frequency, we can estimate the phase
of the sinusoid simply by

Fig. 1 Algorithm flow of the proposed method.

φk = arctan

(
Xki (ωk)

Xkr (ωk)

)
. (19)

To estimate the amplitude of the sinusoid, we use the
square sum of the residue. We estimate the amplitude to
minimize Ek, expressed by

Ek =

N−1∑
n=0

{ek(n)}2 (20)

ek(n) = xk−1(n) − Ak sin(ωkn + φk). (21)

To minimize it, we calculate ∂Ek

∂Ak
= 0. It is derived as

∂Ek

∂Ak
=
∂

∂Ak

N−1∑
n=0

{xk−1(n) − Ak sin(ωkn + φk)}2

=

N−1∑
n=0

{2(xk−1(n) − Ak sin(ωkn + φk))

sin(ωkn + φk)} = 0 (22)

Ak =

∑N−1
n=0 xk−1(n) sin(ωkn + φk)∑N−1

n=0 sin2(ωkn + φk)
. (23)

After calculating parameters of the sinusoid, we sub-
tract it from the target signal. We repeat these steps until
enough number of sinusoids are extracted.

This entire algorithm is shown in Fig. 1.

3.3 Time Complexity

Time complexities for FFT, frequency estimation, phase
estimation, amplitude estimation and subtraction are
O(N log N), O(−N log ε), O(1), O(N) and O(N), respec-
tively. We repeat sinusoid extraction for K times. So the
time complexity of the proposed method is

O(K(N log N − N log ε + 1 + N + N))

748
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

= O
(
NK log

N
ε

)
. (24)

The time complexity of Hirata’s algorithm is also
O(NK log N

ε
). But the number of calculations is four times

bigger than our proposed method.

4. Recalculation of Extracted Sinusoids

To speed up the calculation we used windowed DTFT whose
samples are actually computed by FFT. This windowed
DTFT naturally introduces an effect of the (rectangular)
window, which appears as sidelobes of spectra. Those side-
lobes violate the accurate estimation of sinusoidal parame-
ters.

To avoid this problem, the frequency of the extracted
sinusoid is recalculated after other sinusoids are extracted.
Since GHA is basically undisturbed by the window, we
can recalculate the sinusoidal parameters using the ones ob-
tained in the previous section as good approximate values.

We propose two recalculation algorithms.

4.1 Single Recalculation

The first algorithm recalculates the parameters of the ex-
tracted sinusoids one by one.

Before a new sinusoid is extracted, the parameters of
the extracted sinusoids are recalculated. The effect of the
sidelobe becomes bigger in proportion to the amplitude of
the sinusoid. So the parameters of the first extracted sinu-
soid, which has the biggest amplitude, are recalculated first
to have less effect to the calculation error of the other sinu-
soids, and then gradually smaller sinusoids are recalculated.

The k-th extracted sinusoid is added back to the resid-
ual signal to recover xk−1(n). A sinusoid is extracted from
xk−1(n) again by the method in Sect. 3 to replace the sinu-
soidal parameters. This process is repeated until all the si-
nusoids are recalculated.

We call this algorithm as single recalculation algo-
rithm, and Fig. 2 shows its flow.

Fig. 2 Recalculating one by one.

4.2 Double Recalculation

The second algorithm recalculates the parameters of two si-
nusoids adjacent in the frequency domain at the same time,
to remove possible redundancy where two sinusoids have
the identical frequency. This problem arises because the am-
plitude estimation is not optimal. That is also due to inaccu-
racy introduced by the windowed DTFT, which is corrected
at this stage.

The algorithm is the same as the previous subsection
except the following steps. Before recalculation the ex-
tracted sinusoids are sorted by their frequencies, which clar-
ifies the existence of two identical frequencies. Possible two
identical sinusoids are combined, added back to the resid-
ual signal, and the sinusoid of that frequency is recalculated
just like the single recalculation algorithm. This algorithm
reduces the redundancy and thus improves the overall accu-
racy.

We call this method as double recalculation algorithm.
Figure 3 shows the algorithm flow.

4.3 Time Complexity

Time complexities of FFT, frequency estimation, phase es-
timation, amplitude estimation, addition and subtraction are
O(N log N), O(−N log ε), O(1), O(N), O(N) and O(N), re-
spectively. We repeat sinusoid extraction for 1

2 K2 times. So
the overall time complexity of the proposed method is

O(K2(N log N − N log ε + 1 + N + N + N))

= O
(
NK2 log

N
ε

)
. (25)

Fig. 3 Recalculating two by two.

NODA and NISHIHARA: FAST AND ACCURATE GENERALIZED HARMONIC ANALYSIS AND ITS PARALLEL COMPUTATION BY GPU
749

5. Parallel Calculation by GPU

Graphics Processing Units (GPUs) are used for general pur-
pose computations these days. In this case they are called
General Purpose GPUs (GPGPUs) [10]. The proposed
method in this paper computes a given signal in frames, and
each frame is independent from other frames. That is, the
algorithm has high degree of parallelism, and it is suitable
for parallel computation.

The proposed method is computed using GPU simply
by allocating each frame computation to a computational
unit of GPU.

5.1 Implementation

CUDA is an environment to support programmers to code
algorithms for execution on GPU. In CUDA (compute uni-
fied device architecture) [11], the computation programs are
divided into small programs which are called “kernel pro-
gram” and kernel programs are calculated by GPU. The pro-
posed method can be divided into five kernel programs as

INITIALIZATION Initialize the target signal data
FFT Apply Fast Fourier Transform to the target signal
EXTRACTION Extract a sinusoid and subtract it from the

target signal (or residue in the following cycles)
ADDITION Add the sinusoid back to the target (residue)

signal
SORT Sort the extracted sinusoids by those frequencies,

where FFT is computed by CUFFT library included in
CUDA.

In the first step, INITIALIZATION program is run to
locate the target signal data to the device memory on the
GPU. Then FFT, EXTRACTION, ADDITION and SORT
programs are run on GPU according to the order shown in
Figs. 1, 2 and 3.

After the whole computations on GPU, the resultant
data are copied from the GPU memory to the host memory,
which are our results.

The programs except INITIALIZATION program are
completed on GPU and do not transfer data between the host
and GPU during the computation, and this computation-
intensive nature of the proposed algorithm is quite suitable
for GPU computation.

6. Experiment

6.1 Experimental Method

We implemented the proposed methods using C++ and
CUDA, and measured the extraction accuracy and the com-
putational time. Ten-second, 44.1 kHz sampled, 16-bit,
stereo, rock music was used as the target signal. Figure 4
shows Fourier spectrum of the target signal. We extracted
128 sinusoids from each of 512-point frames of the target
signal, resynthesized them and measured the Generalized

Fig. 4 Fourier spectrum of the target signal.

Table 1 Machine environment.

CPU Intel Core 2 Quad Q6600
MEM 2.0 GByte
HDD 80 GByte
OS Windows Vista 64-bit
IDE Visual Studio 2008

Fig. 5 GDL of resynthesized sinusoids computed by the CPU.

Distortion Level (GDL) [9] between the target signal and
the resynthesized signals, where the repeat count of binary
search is 20 times. The GDL is defined by

GDL = 10 log10

∑N−1
n=0 {x0(n) − x̂0(n)}2∑N−1

n=0 {x0(n)}2 [dB], (26)

where x̂0(n) is the resynthesized signal.
Microsoft Visual C++ 9.0 (MSVC9) and Intel C++

Compiler 10.1 (ICC10) are used for the C++ program and
CUDA 2.0 beta 1 is used for the CUDA program as compil-
ers. Table 1 shows the specifications of a machine used for
our experiment.

6.2 Results

Figures 5–13 and Table 3 show the results of the experi-
ments.

750
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

Fig. 6 GDL of resynthesized sinusoids computed by the GPU.

Fig. 7 Extracted sinusoids computed by the Hirata’s method.

Fig. 8 Extracted sinusoids computed by the proposed no recalculation
method by the CPU.

Figure 5 shows the GDL between the original audio
signal and the signals resynthesized by Hirata’s algorithm
and the proposed methods both computed on the CPU.
The proposed method without recalculation has 6.86 dB
higher GDL compared to Hirata’s algorithm. When the sin-
gle recalculation and the double recalculation methods are
adopted, the GDL is 9.45 dB and 11.12 dB higher than Hi-

Fig. 9 Extracted sinusoids computed by the proposed single
recalculation method by the CPU.

Fig. 10 Extracted sinusoids computed by the proposed double
recalculation method by the CPU.

Fig. 11 Extracted sinusoids computed by the proposed no recalculation
method by the GPU.

rata’s algorithm, respectively. This means that the proposed
methods can resynthesize the signal more accurately than
Hirata’s algorithm using the same number of sinusoids. In
other words, the proposed method can resynthesize the sig-
nal with less number of sinusoids than Hirata’s algorithm
with the same accuracy.

NODA and NISHIHARA: FAST AND ACCURATE GENERALIZED HARMONIC ANALYSIS AND ITS PARALLEL COMPUTATION BY GPU
751

Fig. 12 Extracted sinusoids computed by the proposed single
recalculation method by the GPU.

Fig. 13 Extracted sinusoids computed by the proposed double
recalculation method by the GPU.

Figure 6 shows the GDL of the signals parallelly com-
puted by GPU. This results are similar to Fig. 5, which
means that the computation accuracy is maintained when
GPU is used.

In Figs. 5, 6 and Table 2, the GDLs of 128 sinusoids
extracted by single recalculation method between CPU and
GPU are different. In the result of GHA, the parameters of
after 83-th sinusoid are different between CPU and GPU.
This is due to the difference in architectures for floating
point computation between CPU and GPU.

Figures 7–10 show the frequencies and the amplitudes
of the extracted sinusoids. Compared to Fig. 7, Fig. 8 con-
tains more sinusoids with lower levels in the high frequency
band. Since the total numbers of sinusoids are the same, im-
proved accuracy of the proposed method makes it possible
to resynthesize the signal with fewer sinusoids, and more
sinusoids are extracted in the high frequency range to bet-
ter approximate the original signal. From the same reason,
Figs. 9 and 10 contain more sinusoids than Figs. 7 and 8.

The middle frequency band of Figs. 9 and 10 have less
sinusoids compared to Figs. 7 and 8. This means that the
redundant sinusoids in the middle frequency range are re-
moved by the recalculation.

Table 2 GDL (dB) resynthesized 128 sinusoids.

Method CPU GPU
Hirata’s −20.65 no data

Proposed Norecalc −27.50 −27.50
Proposed Recalc Single −30.29 −31.71
Proposed Recalc Double −31.77 −31.77

Table 3 Computation time (ms).

Microsoft Intel C++ CUDA
Method Visual Compiler 2.0

C++ 9.0 10.0
Hirata’s 1084862 512042 no data

Proposed No Recalc 165985 86237 2435
Proposed Single Recalc 10603139 5621527 175115
Proposed Double Recalc 10461006 5635848 175258

Fig. 14 Computation time.

Table 3 and Fig. 14 show the computational time of
each method and each implementation. The computational
times of the proposed method without recalculation are 5-6
times faster than that of Hirata’s algorithm simply due to the
difference in the number of calculations.

The time needed to compute by GPU is 60–68 times
faster than MSVC9, 32–35 times faster than ICC10, and
210–445 times faster than Hirata’s algorithm computed on
CPU. This verifies the suitability of parallel computation in
the proposed method.

There are two main reasons for the improvement in
computational time. One is that the inherent parallelism of
the proposed algorithm is fully utilized. The other is that
GPU has an assembler level instructions for computation of
trigonometric functions which are calculated by hardware.

With the recalculation the computational time becomes
much longer than both the proposed method without recal-
culation and Hirata’s algorithm. It matches up to the com-
putational complexities of the algorithm. These show that
there is a tradeoff between computational time and accuracy.
It is thus needed to select the algorithms depending on the
purpose.

We also experimented with two other audio signals.
One hundred twenty eight sinusoids are extracted with Hi-
rata’s method and the proposed method. GDL of the resyn-
thesized signal are compared for each signal.

The first one is a single tone of clarinet. The signal has

752
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

a fundamental tone, several overtones whose frequencies are
integer multiples of the fundamental tone, some noises and
flickers. The GDL is −23.03 dB by Hirata’s method and is
−49.27 dB by the proposed method. This shows that the
proposed method can analyze simple audio signals more ac-
curately than Hirata’s method.

The second one is a mix of two chirp signals. The fre-
quency of the first chirp signal changes linearly and the fre-
quency of the second chirp signal changes in second order.
The GDL by Hirata’s method is −12.65 dB and is −68.89 dB
by the proposed method. This shows that Hirata’s method
is not suitable for signals whose frequency changes and the
proposed method can analyze them normally.

7. Conclusion

A new method for GHA is proposed, which uses peak esti-
mation of Fourier spectrum and binary search. Samples of
windowed Discrete-Time Fourier Transform of each frame
is calculated by FFT.

To remove the effect of the windowing two recalcula-
tion methods of sinusoidal parameters are also proposed.

The proposed method has high degree of concurrency
because frames can be calculated independently, and it can
properly be computed in parallel. We implemented the
method on GPU.

Using the proposed method, one hundred twenty eight
sinusoids are extracted from each frame of 10-second au-
dio signal. Signal is resynthesized and compared with the
original audio signal. The proposed method shows 11.2 dB
improvement in GDL compared to Hirata’s algorithm with
maximum of 445 times faster speed. This speed is faster
than the playback speed of the audio signal.

References

[1] N. Wiener, “Generalized harmonic analysis,” Acta Mathematica,
vol.55, pp.117–285, 1930.

[2] Y. Hirata and T. Koike, “Speech band compression using a general-
ized harmonic analysis,” IEICE Technical Report, EA98-3, 1998.

[3] M. Nakazawa and Y. Yamasaki, “Sound coding using 1/12n octave
analysis,” GITS/GITI Research Bulletin, vol.2002, pp.81–85, July
2003.

[4] R. Takamizawa, K. Katayama, Y. Kanda, and T. Muraoka, “Scratch
noise reduction of sp record utilizing generalized harmonic analysis
(gha),” IPSJ SIG Technical Reports. SLDM, vol.2004, no.102, pp.1–
6, Oct. 2004.

[5] E.B. George, “Analysis-by-synthesis/overlap-add sinusoidal model-
ing applied to the analysis and synthesis of musical tones,” J. Audio
Eng. Soc., vol.40, no.6, pp.497–515, 1992.

[6] S. Ushiyama, M. Tohyama, M. Iizuka, and Y. Hirata, “Generalized
harmonic analysis of non-stationary waveforms,” IEICE Technical
Report, EA93-103, 1994.

[7] M. Tohyama and T. Koike, “High resolution frequency analysis,”
Journal Acoust. Soc. Jpn. (E), vol.54, no.8, pp.568–574, 1998.

[8] T. Terada, “Nonstationary waveform analysis and synthesis using
generalized harmonic analysis,” IEEE TF/TS Symp., pp.429–432,
1994.

[9] T. Muraoka and S. Kiriu, “Reduction of frequency searching pro-
cesses for generalized harmonic analysis (gha),” IEICE Technical
Report, DSP03-1, 2003.

[10] gpgpu.org, “General-purpose computation on gpus (gpgpu),”
http://gpgpu.org/

[11] N. Corp. NVIDIA CUDA Compute Unified Device Architecture
Programming Guide Version 2.0 beta 1, 2008.

Hisayori Noda received the B.E. in Com-
puter Science and M.E. in Communications
and Integrated Systems from Tokyo Institute of
Technology in 2006 and 2008, respectively. He
is now a doctor course student of the Depart-
ment of Communications and Integrated Sys-
tems, Tokyo Institute of Technology. His main
research interests are in signal analysis and pro-
cessing especially for audio applications.

Akinori Nishihara received the B.E., M.E.
and Dr.Eng. degrees in electronics from Tokyo
Institute of Technology in 1973, 1975 and 1978,
respectively. Since 1978 he has been with Tokyo
Institute of Technology, where he is now Profes-
sor of the Center for Research and Development
of Educational Technology. His main research
interests are in one- and multi-dimensional sig-
nal processing, and its application to educational
technology. He has published more than 200
technical papers in international journals and

conferences. He served as an Associate Editor of the IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences
from 1990 to 1994, and then an Associate Editor of the Transactions of
IEICE Part A (in Japanese) from 1994 to 1998. He was an Associate Editor
of the IEEE Transactions on Circuits and Systems II from 1996 to 1997 and
Editor-in-Chief of Transactions of IEICE Part A (in Japanese) from 1998
to 2000. He has been serving in IEEE Region 10 Executive Committee, as
Student Activities Committee Chair (1996–1996), Treasurer (1999–2000),
Educational Activities Committee Chair (2001–2004) and Bylaws and Op-
erations Manual Coordinator (2007–2008). He also served as an Executive
Committee Member of IEEE Tokyo Section (1995–2004) and IEEE Japan
Council (1999–2004). He served as a member of the Board of Governors,
IEEE Circuits and Systems Society (2004–2005). He was Chair or the
IEICE Technical Group on Circuits and Systems from 1997 to 1998, and
since 1998 he has been serving as an Advisor of that Technical Group. He is
now serving as Vice President, Service Activities of the IEICE Engineering
Sciences Society. He received Best Paper Awards of the IEEE Asia Pacific
Conference on Circuits and Systems in 1994 and 2000, a Best Paper Award
of the IEICE in 1999, and IEEE Third Millennium Medal in 2000. He also
received a 4th LSI IP Design Award in 2002. Prof. Nishihara is a Fellow
of IEEE, and a member of EURASIP, European Circuits Society, Associ-
ation for Advancement of Computing in Education, and Japan Society for
Educational Technology.

