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GENERALIZATION OF SPECIALIZED ON-THE-FLY COMPOSITION

Tasuku Oonishi, Paul R. Dixon, Koji Iwano, Sadaoki Furui

Department of Computer Science, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo, Japan, 152-8552

ABSTRACT

In the Weighted Finite State Transducer (WFST) framework for
speech recognition, we can reduce memory usage and increase flex-
ibility by using on-the-fly composition which generates the search
network dynamically during decoding. Methods have also been pro-
posed for optimizing WFSTs in on-the-fly composition, however,
these operations place restrictions on the structure of the component
WFSTs. We propose extended on-the-fly optimization operations
which can operate on WFSTs of arbitrary structure by utilizing a
filter composition. The evaluations illustrate the proposed method is
able to generate more efficient WFSTs.

Index Terms— WFST, on-the-fly composition, optimization
operation

1. INTRODUCTION

We are currently developing the Tokyo Tech Transducer-based de-
coder( T3 Decoder) based on the Weighted Finite State Transducer
(WFST) framework with the aim of achieving high performance and
flexibility [1]. In the WFST framework, the models used for speech
recognition are all expressed as WFSTs. We can then use WFST
operations to compose and optimize the knowledge sources together
and this can give a final highly efficient network that can achieve
high recognition performance. Drawbacks with the approach are that
large models require large amounts of memory during optimization
and decoding, and access to the original knowledge sources is lost
so that making on-line changes is very difficult.

To reduce memory usage and increase flexibility during de-
coding, on-the-fly dynamic composition techniques have been pro-
posed [2]. In on-the-fly composition states are generated as needed,
which reduces memory requirements because the size of the sum of
the component WFSTs is smaller than the size of the fully composed
network. On-the-fly methods also give direct access to the original
knowledge sources, therefore they allow models to be replaced or
changed more easily and quickly.

However, when using on-the-fly composition decoding speed
decreases mainly due to two reasons. Firstly, there is overhead asso-
ciated when performing the composition operation during decoding.
Secondly, it is no longer possible to optimize the fully composed
WFST. Hori has proposed re-scoring technique [3] to solve first issue
and Caseiro has proposed on-line approximate optimization opera-
tions [4] to solve the second one. However, the Caseiro operations
placed restrictions on the topology of the component of WFSTs.

We propose a generalized version of the Caseiro operations
by utilizing a filter technique [5]. We have evaluated the speed of
these operations within theT3 Decoder on various WFST combina-
tions [6]. In this paper we describe in detail the improved algorithms
for on-the-fly optimization derived from the Caseiro approach and
show new experimental results.

Cheng also proposed on-the-fly composition techniques to opti-
mize WFSTs with arbitrary structure [7]. This approach simulates
composition and optimization operation by modifications to the to-
kens inside the decoder. As a result, the clean abstraction between
decoding engine and the knowledge sources is lost.

One of the advantages of our approach is that we can separate
the decoding and search network composition parts thus maintaining
maximum system flexibility. Moreover, it is may be possible to use
our operations in other tasks because no restrictions are placed on
the WFSTs. In the next section, we explain the composition and
optimization operations.

2. COMPOSITION

Let L be a WFST which maps from x to y with weight wl and R be
a WFST which maps from y to z with weight wr . The composition
transducer L ◦ R will map from x to z with wl + wr under the
tropical semiring [5]. The composition state (ql, qr) corresponds to
state ql in L and state qr in R. A transition is denoted as the tuple
(q, i, o, w, q

′
) with source state q, input symbol i, output symbol o,

weight w and destination state q
′
. Composition arcs are generated

according to:

1. If ol = ε then generate ((ql, qr), il, ε, wl, (q
′
l , qr)). We call

the destination “state by ε-output”

2. If ir = ε then generate ((ql, qr), ε, or, wr, (ql, q
′
r)). We call

the destination “state by ε-input”

3. If ol = ir then generate ((ql, qr), il, or, wl + wr, (q
′
l , q

′
r))

We call the destination “state by symbol matching”

3. OPTIMIZATION IN ON-THE-FLY COMPOSITION

Caseiro proposed the following operations for on-line optimization
during on-the-fly composition: avoiding dead-end states, dynamic
pushing and state sharing. We have implemented generalized ver-
sions of these optimization operations which can accept transducers
of arbitrary structure. In this section we describe avoiding dead-
end state and dynamic pushing operations proposed by Caseiro then
present our extended operations.

3.1. Avoiding dead-end states

States which do not have a path to a final state are known as non-
coaccessible or dead-end states. Such states impact search efficiency
and therefore they are removed after off-line composition, however,
on-line removal is more difficult. Fig. 1 shows an example of dead-
end states in composition transducer L1 ◦ R1. One example is state
(4, 2) which was generated because the previous epsilon transition
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Fig. 1. Example of a WFST with dead-end states.

could not be followed by a matching rule (section 2) that would allow
for an exit transition.

3.1.1. Method of Caseiro

Caseiro proposed a method for avoiding dead-end state generation
when performing on-the-fly composition [4]. First, during a pre-
processing step for each state in the L transducer an anticipated
label set is constructed. The set contains all the outputs which can
be reached from a particular state in L transducer.

During composition of (ql, qr) we take the intersection between
the anticipated label set of ql and the input label set from qr . If
the intersection is empty, no future matches are possible so no arcs
will be generated. For example by using this technique the transition
from states (2, 2) to (4, 2) would not be generated because there
would be no arcs in the anticipated label set of state 2 inL1 matching
an arcs input label from state 2 in R1.

We observe problems when qr has ε input transitions. For exam-
ple when expanding the arcs to (0, 1), the input epsilon in R has no
input labels to match against so the intersection is null. If we avoid
to generate such states, an incorrect WFST is produced. While, if
we omit dead-end checking for ε input transitions in R, we generate
inefficient WFST which has many dead-end states.

To solve these problems, Caseiro placed the following restriction
in composition:

• Only allow ε input transitions (rule 1. in section 2) when ql is
in the initial state of L. Dead-end state is not checked.

• Otherwise use only transition of rules 2. and 3. to omit gen-
erating a transition that will lead to dead-end states using the
above algorithm.

The composed WFST with these rules is shown in Fig. 2. The fol-
lowing restrictions are also placed on the L transducer:

• The transducer must loop through the initial state.
• Each path between the initial and final state must output only
one label.

3.1.2. Proposed Method

In this paper we propose a generalized extension which accepts
transducers with arbitrary structure.
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Fig. 2. WFST with Caseiro method [4].

0

1

2

x:x

x:x

x:x

ε1:ε1

ε2:ε2

ε2:ε1

ε1:ε1

ε2:ε2

F

Fig. 3. Filter for composition F.

The idea is to use the filter [5] shown in Fig. 3. In filter compo-
sition the ε outputs in L are substituted with ε2 symbols and ε inputs
in R are substituted with ε1. A self loop with output ε1 is added to
every state in L and a self loop with input ε2 is added to every state
in R. These transducers are denoted L

′
and R

′
respectively. The x

symbol in filter F of Fig. 3 represents a match with any non ε label.
Performing the composition L

′ ◦ F ◦ R
′
will give a WFST with the

redundant paths removed. With the introduction of a filter the fol-
lowing three way composition of L, F and R gives state identified
with the following tuple (ql, qf , qr). The additional parameter qf is
one of the three filter states which we can enter as follows: State zero
is generation by symbol matching. State one is generation by ε input
and state two is generation by ε output. The filter does not permit a
transition between states one and two, which means the composition
WFST will not have the paths which contain an ε output (input) tran-
sition followed by an ε input (output) transition before a transition
by symbol matching.

The proposed method exploits these transition restrictions
to perform dead-end state avoidance. Given a composed state
(ql, qf , qr) the below rules are used:
1. If qf = 0 and qr has no ε input transition, then perform stan-
dard dead-end checking with intersection of ql and qr .

2. If qf = 1 and ql has only ε output transitions, do not expand.
3. If qf = 2 then perform standard dead-end checking with in-
tersection of ql and qr .

With this technique no restrictions are placed on the component
transducer. After applying these rules the WFST in Fig. 4 is gen-
erated. We can avoid most dead-end states, however, all dead-end
states cannot be avoided completely like (2, 0, 1).

3.2. Dynamic pushing

The pushing operation attempts to move weight as close to the initial
state as possible and spread weight throughout the path. It is a gen-
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Fig. 4. WFST with filter composition and avoiding dead-end state
operation.
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eralization of language model look-ahead [8] and can help improve
decoding speed. For each state the pushing operation first calculates
the best path cost to a final state. Next each transition is re-weighted
by accumulating the difference between lookahead score of desti-
nation state and source state. However, pushing during on-the-fly
composition is difficult because of the complexity in obtaining the
shortest distance to a final state. Caseiro proposed an approximate
on-the-fly operation known as dynamic pushing [4].

3.2.1. Method of Caseiro

In Caseiro’s dynamic pushing a lookahead score is set in (ql, qr)
according to the following rules:

• If state by ε output, the lookahead score is set as the small-
est arc weight from qr whose input is also contained in the
anticipated label set of ql.

• Otherwise, the lookahead score is set to zero.
However, in certain topologies the above rules attempt to set a con-
flicting lookahead score. Fig. 5 illustrates the problem, where the
square bracket [ ] indicates the lookahead score set in composition
state. In the WFST, the lookahead score in (2,0) is simultaneously
set to 10 by the incoming a : ε arc and zero by incoming a : A arc.
To avoid this problem Caseiro restricts the structure of L so that the
lookahead score in such ambiguous states are set to zero.

3.2.2. Proposed Method

Fortunately, when performing composition with an additional filter,
a separate state will be generated for the ε output, ε input and sym-
bol matching rules. Therefore, lookahead can be set in these states

0,0,0

4,0,0

2,2,0

3,2,0

1,0,0

a:ε/10
a:ε

a:A/0

a:A/10

[0] [10]

[10] [0]

2,0,0

[0] [0]

a:ε/10

L’2∘F∘R’2

Fig. 6. Dynamic pushing with filter composition.

without any conflict. Fig. 6 illustrates the results of the previous
composition after the addition of the filter. The corresponding state
(2,0) in Fig. 5 has now become unique states (2,2,0) and (2,0,0), and
therefore the lookahead score can be set uniquely.

4. EXPERIMENT

We evaluated our proposed on-the-fly algorithms on a large vocab-
ulary recognition using the Corpus of Spontaneous Japanese (CSJ).
The recognition cascade (H ◦C) ◦L ◦G consisted of three WFSTs
( (H ◦ C), L and G ) that were composed and optimized on-the-
fly during decoding. We compared the decoding speed against two
other composition methods. A pre-composed and optimized cascade
is (H ◦ C ◦ L ◦ G). Caseiro method where the L and G WFST is
composed with on-the-fly optimizations [4] and (H ◦ C) is com-
posed with L ◦ G without optimizations. The latter restriction oc-
curs because (H ◦ C) does not match the criteria in 3.1.1. In our
implementation the decoder holds a cache of states which are com-
posed on-the-fly, the cache is cleared for each utterance. Pushing
was performed in the tropical semiring.

4.1. Experimental Setup

The speech waveforms were first converted to sequences of 39 di-
mensional feature vectors with 10 ms frame rate and 25 ms window
size. Each feature vector was composed of 12 Mel-frequency cep-
stral coefficients (MFCCs) with delta and delta-deltas, augmented
with log energy, log delta and log delta-delta energy terms. The
acoustic models were three state left-to-right HMM tri-phone models
where each state output density was a 32 component Gaussian mix-
ture model with diagonal covariance. EM training was performed
utilizing the data from 967 lectures. The language model was back-
off tri-gram with a vocabulary of 65k words trained on 2,682 lectures
of data. The test set used for evaluations was composed of 2338 ut-
terances which spanned 10 lectures. This yielded a total of 116 min-
utes of speech. The experiments were conducted on a 2.4 GHz Intel
Core2 machines with 2GB of memory.

4.2. Results

We first consider the size of the WFSTs generated by various meth-
ods. The number of states and arcs for the L◦G and (H ◦C)◦L◦G
WFSTs composed by static, Caseiro and our proposed method is
shown in Table 1.

When considering the L ◦G combinations, all methods produce
networks of similar sizes due to application of optimization opera-
tions. As expected our method produces a slightly larger transducer
because of the extra information inserted by the filter. In the case
of (H ◦ C) ◦ L ◦ G WFST we are able to produce a substantially
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Table 1. The WFST parameter count for the various composition
method.

Network Method #states #arcs
L ◦ G Static 1,031,229 2,207,982
L ◦ G Caseiro 1,040,267 2,251,670
L ◦ G Proposed 1,217,744 2,865,283

(H ◦ C ◦ L ◦ G) Static 1,091,075 2,437,298
(H ◦ C) ◦ L ◦ G Caseiro 25,357,146 34,054,721
(H ◦ C) ◦ L ◦ G Proposed 5,342,672 11,533,358
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Fig. 7. The decoding speed without overhead of composition.

smaller network than the Caseiro approach. This is because we also
optimize the composition which takes theH ◦C WFST, while in the
Caseiro approach we use a standard composition at this stage, which
will generate many more useless states and arcs. The standard static
approach achieves much smaller networks. This is because we can
remove useless states completely and minimize the fully composed
WFST, further size reductions are achieved by factoring the phone
arcs.

Fig. 7 shows the speed of the various WFST techniques when
the composition and optimization operations are performed off-line.
The vertical axis expresses word accuracy and horizontal axis ex-
presses real time factor (RTF). This is to illustrate the efficiency
of the resulting networks without any of the composition overhead.
The result shows that the proposed method produces networks that
achieve better accuracy and decodes faster than the standard Caseiro
method. The slowdown when compared to the standard fully static
approach is partly because of larger state and arc count observed in
our’s and Caseiro’s approach and the approximated pushing.

Fig. 8 shows the decoding speed with on-the-fly composition
also enabled. In this figure the static network is fully pre-composing
and pre-optimizing. The other techniques contain two on-the-fly op-
erations. The result shows that proposed method decodes slightly
faster than the standard Caseiro method. The decoding speed of the
proposed method is closer to Caseiro one in Fig. 8 than in Fig. 7.
This indicates that the proposed method has larger composition over-
head.
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Fig. 8. The decoding speed of on-the-fly composition.

5. SUMMARY

In this paper we have described our generalized method for on-the-
fly composition. On the evaluation task the results show the method
can perform better than the original operation proposed in [4] in
terms of the network size and the accuracy. Furthermore, our method
is less restrictive on the type of topology of the component transduc-
ers. In future work we will investigate ways to reduce the computa-
tional overhead of the on-the-fly operations.
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