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ABSTRACT
Independent component analysis (ICA) is not only popular for
blind source separation but also for unsupervised learning when
the observations can be decomposed into some independent
components. These components represent the specific speaker,
gender, accent, noise or environment, and act as the basis functions

to span the vector space of the human voices in different conditions.

Different from eigenvoices built by principal component analysis,
the proposed independent voices are estimated by ICA algorithm,
and are applied for efficient coding of an adapted acoustic model.
Since the information redundancy is significantly reduced in
independent voices, we effectively calculate a coordinate vector in
independent voice space, and estimate the hidden Markov models
(HMMs) for speech recognition. In the experiments, we build
independent voices from HMMs under different noise conditions,
and find that these voices attain larger redundancy reduction than
eigenvoices. The noise adaptive HMMs generated by independent
voices achieve better recognition performance than those by
eigenvoices.

Index Terms— Independent
recognition, environment modeling

component analysis, speech

1. INTRODUCTION

ICA [3] was developed for blind source separation (BSS) where a
set of observation data is seen and the underlying source
information is unseen. BSS aims to identify the source signals or
the mixing weights so as to separate the information sources in
signal domain, feature domain or model domain [1]. There are two
assumptions in developing ICA algorithm; the source signals
should be mutually independent, and non-Gaussian distributed. In
ICA model, an M x1 observation vector x is produced from M
statistically independent sources s by x=4s where 4 is a
M x M mixing matrix. We are engaged in an inverse problem by
finding a demixing matrix # and recovering the source signals by
y=Wx . In [2], a mutual information measure was proposed for
ICA transformation, and so the inter-cluster data in transformed
space were independent and intra-cluster data were dependent.
Such an unsupervised learning framework was applied to establish
multiple hidden Markov models (HMMs) for compensating the
pronunciation variations in speech recognition [1][2].

HMM is a popular paradigm for automatic speech recognition.
To deal with the mismatch between training and test data, HMM

parameters should be adapted to fit the unknown test environments.

The adaptive HMMs achieve the robustness in speech recognition.
However, an important issue in speaker or environment adaptation
is to find the solution to rapid adaptation from very limited
adaptation data. Kuhn er al. [8] presented the rapid adaptation in
eigenvoice space, which was spanned by the eigenvoice basis
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vectors. These eigenvoices were estimated by principal component
analysis (PCA) from a set of reference models. Since the
eigenvoices are orthogonal and representative as the most
important components of speaker variations, we can use sparse
adaptation data to estimate the coordinate coefficients and find the
adapted acoustic model in eigenvoice space. In [10], the
eigenvoices were extended to the kernel eigenvoices by
performing a nonlinear PCA using the composite kernels.

Although PCA is useful for dimension reduction and the
reduction of information redundancy, we challenge that the
reduction performance is not as good as ICA. Different from PCA
extracting the orthogonal components, [CA identifies the
independent components, which are sufficient to refer as the basis
vectors to form the minimal spanning set. Accordingly, we present
an ICA approach to extract the independent voices and construct
an independent space where the environmental variations can be
effectively represented. With this space, we perform the sparse
coding to encode the noise adaptive HMMs for speech recognition.
In [7], the sparse coding via ICA was developed to extract image
features which were rarely and significantly active. In [9], the
sparse coding was used to find the statistical structure of male and
female speech signals. In this study, we focus on identifying the
significantly active components of HMMs using ICA. These
components represent the acoustic models in different noise types
and signal-to-noise ratios (SNRs). The HMM parameters are
adapted by wusing the maximum likelihood independent
decomposition. Experimental results on Aurora2 database show
that the proposed independent voices achieve higher information
redundancy reduction and speech recognition performance in
comparison with eigenvoices under different noise conditions and
numbers of components and adaptation sentences.

2. SURVEY OF RELATED WORKS
First of all, we address a standard ICA method and explain why
ICA is feasible for sparse coding.

2.1 Independent component analysis

ICA is an extension of PCA and is specialized in finding the
underlying factors or sources, which are as independent as possible.
ICA algorithm is designed to identify the independent sources
from the mixed signals. The sources are non-Gaussian distributed
with higher-order statistics, and so a demixing matrix ¥ can be
estimated by optimizing an objective function measuring the
independence or non-Gaussianity. There are many ICA objective
functions proposed in the literature [1][2][3][6]. The negentropy
was one of the most popular metrics, which was used to measure
the non-Gaussianity and adopted to develop the Fast ICA
algorithm [6]. This algorithm builds the negentropy-based contrast
function and performs the optimization by
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W =arg max {E[GOWx)] - E[G(V)]}> )
w

under the constraint of decorrelation in individual components. In
(1), G()) is a nonquadratic function and v is a standardized

Gaussian vector. There are two useful nonquadratic functions in
building contrast function, and given by [6]

Gi(s)= bi log cosh(b,s) 2
1

Go() == exp(-b,57/2) 3)
2

where 1< b, <2, b, ~1 are constants. The demixing matrix W is

accordingly estimated to identify the independent components.
This study applies the Fast ICA algorithm [6] to build independent
voice space for speaker and environment adaptation.

2.2 Sparse coding

Interestingly, ICA methods are feasible to fulfilling sparse coding
which is important for feature extraction, data compression, and
some other applications. The relation between source coding and
statistical density estimation is illustrated by the Shannon’s
information theorem [4]

E[I(s)]= Z p(s) log—(—T

—Xp(s) log?+ZP(S) og——

4
p(s) tal

q(s)
Here, p(s) and g(s) denote the true density and the approximate
density of a source signal s, respectively. The lower bound of an
expected code length E[/(s)] depends on the entropy of source
signal and the Kullback-Leibler (KL) divergence between p(s)
and q(s). True density p(s)is unknown. If g(s) equals to p(s),
i.e. KL(p(s), q(s)) =0, the expected code length only relies on the
entropy of the data. As we know, Gaussian variable has the
maximum entropy ameng ail distributions with a given mean and
variance. If a source signal is distributed by a super-Gaussian
density following the assumption of ICA, this signal has shorter
code length than a Gaussian signal. However, ICA is comparable
to transform the mixed signal by some basis functions so that the
transformed signal attains the largest non-Gaussianity and can be
encoded by the shortest length. This property is crucial to illustrate
the capability of high information packing by using ICA
transformation.

Accordingly, the non-negative sparse coding [5] was presented
to extract the basis vectors from non-negative observed signal

X ={x,}Y, with only a few nonzero source signals S ={s,}" .
The objective function is expressed by

0,8 = argmm—”X W"ls“ +n Z 21//(5,"" (3)

(W.S) n=lm=1

where / is a sparseness measure and 7 >0 is a tuning parameter.
This method aims to minimize the reconstruction error with the
sparse distribution for coefficients and under the constraints of unit
column vectors in # ™! and positive entries in ™' and S. Using
this scheme. only a few coefficients affect the estimated basis
functions. Sparseness of source signals is proportional to the
information conveyed in the entries of basis vectors. This property

of sparse coding was applied to extract image features in [7] and
was related to Rissanen’s minimum description length (MDL)

algorithm [11]. In speech recognition, we would like to perform
sparse coding and build a set of basis functions, which represents
the variations of noisy environments and encodes the acoustic
model as efficient as possible.

3. INDEPENDENT VOICE SPACE
This works focuses on building a voice space from a set of
reference models containing some redundant information. The
information redundancy can be reduced to simplify the model
uncertainty as well as to decrease the number of components in a
factor model [13]. In what follows, we address why ICA
minimizes information redundancy for for environment adaptation.

3.1 PCA versus ICA
PCA and ICA are useful to reduce information redundancy. In
contrast to PCA extracting principal components, ICA identifies
the independent components. As pointed in [9], the degree of
sparseness in distribution of the recovered signals is proportional
to the amount of information conveyed by the transformation or its
basis vectors. Typically, sparse distribution has sharp peak and
heavy tails. With the sparse distribution, the recovered signals are
clearly clustered. In general, the sparseness in independent
components is more significant than that in principal components.
The reason is that ICA extracts higher-order statistics while PCA
performs a linear de-correlation process. Using PCA, the extracted
M principal components {e,,e,.---,e,,} have zero mean and obey
the uncorrelation property

Eleje; - ey ]1=Ele;] E[e;]-+ Eley ] - (6)
The first moment of joint distribution p(e;,---,e,,) equals to the
product of the first
distributions { p(e,, )}'1, .

moments of individual marginal

However, the extracted M independent

components {s,,S,,---,5,} in ICA have zero mean and satisfy
Els{s3 -+ sy 1= E[s{1E[s;] - E[s3,] @]
for any integer » . This property holds at different moments. The
higher-order correlations in independent components are zero.
Independent components are uncorrelated, but the principal
components are not sufficiently independent. The extracted
independent components give us the means of exploiting
information embedded in higher-order statistics of observed data.
Owing to this advantage, we apply ICA method to build up
independent voices holding the higher-order uncorrelation. Using
these significantly active voices, we estimate a composite model
for speech recognition. The composite model using ICA is superior
to that using PCA. In this study, we conduct the performance
evaluation of different components and their numbers by the
metric of minimum description length (MDL) [11] or Bayesian
information criterion (BIC) [12]. MDL and BIC are initialized
from different aspects, but come up with the same formula which
is popular for model selection. In the experiments, we compare
BIC values of eigenvoices and independent voices, and investigate
the performance of two sets of components in building the adapted
acoustic model. A better model shall either attain larger Bayesian
information for model regularization or produce smaller
description length for sparse coding of unknown environment, and
so the unexpected variations shall less likely happen. Let K denote
the number of selected components and A denote the adopted
model: PCA or ICA. We evaluate BIC value for different 4 and K
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BIC().,K)z]ogp(X|A,K)—%.f,‘-K-logN 6

where ¢ is a control parameter [13].
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3.2 Adaptation in independent voice space

We construct the independent voice space for representing the
acoustic models covering different speakers and noise conditions.
The information redundancy in reference models are reduced.
With these independent voices, we calibrate a new acoustic model
by using sparse adaptation data. Figure 1 shows the adaptation
using eigenvoices and independent voices. In the procedure, we
gather a set of reference models or HMMs which were trained by
stereo speech data in different noisy conditions. Similar to speaker
adaptation in eigenvoice space, we first setup N dimensional
supervector consisting of Gaussian mean vectors of different
words, HMM states and mixture components and form the matrix
X using the aligned supervectors from a set of M reference HMMs.
In the next step, we reduce the redundancy information in the
supervectors or M x N matrix X by performing the Fast ICA
algorithm [6]. An M xM demixing matrix J¥ is calculated and
A:{a,,,,,}=W'1 is obtained. In [8], the eigenvectors with the
largest K eigenvalues are selected as the eigenvoices for building
eigenvoice space. Here, we sort the column vectors in 4 and pick
up the independent components according to the component
importance measure (CIM) [13]

1 M
CIM(™) = -7 [ ©

The independent voices are obtained by selecting demixing vectors
w,, with the largest X CIM values. These vectors act as the basis

vectors or minimal spanning vectors to build the independent voice
space for noisy speech recognition. As illustrated in Figure 1, the
independent voices are salient and feasible to represent the noise
variations with larger redundancy reduction compared with the
eigenvoices. When performing speaker and environment
adaptation, we use a small set of enrollment data and estimate the
coordinate vector of the adapted HMM mean vectors in
independent voice space. Similar to the maximum likelihood
eigen-decomposition (MLED) in eigenvoice method [8], we
perform the maximum likelihood independent decomposition where
the coordinate coefficients are estimated by maximizing the
likelihood of adaptation data given the independent voices.
Detailed formula of MLED can be found in [8].

4
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4. EXPERIMENTS

4.1 Experimental setup

In the experiments, we conducted the evaluation of different
methods by using Aurora2 speech database. The eigenvoices and
independent voices were implemented. The number of extracted
components K was changed in the evaluation. In addition to speech
recognition, we calculate the kurtosis and BIC to evaluate the
information redundancy reduction and the goodness of selected
components, respectively. In speech recognition, the multi-
conditional training set with four noise materials (subway, babble,
car and exhibition hall), four SNR levels (5, 10, 15, 20 dB) and
clean data was prepared. There were 34 gender-dependent sets of
HMM parameters and one set of multi-conditional HMM
parameters trained to act as the reference models. Totally, 35
supervectors (M =35) were generated from HMM mean vectors
with aligned Gaussian mixture components. PCA and ICA were
performed to extract eigenvoices and independent voices,
respectively. In the connected digit recognition, each digit was
characterized by 16 states and each state was characterized by
three mixture components. The silence model was characterized by
three states and the short pause was characterized by one state.
Each state was characterized by 6 components. All training data
were characterized by 39 Mel-frequency cepstral coefficients
(MFCCs), which contained 13 MFCCs and their first and second
derivatives. The test set A in Aurora2 was used to evaluate the
recognition performance. The multi-conditional training method
with no adaptation was referred as the baseline system.
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Figure 2 Comparison of information redunancy reduction

4.2 Evaluation for information redundancy reduction

The sparseness of transformed signals reflects the amount of
information which is conveyed by the coefficients in basis
functions. The fourth-order statistics, called kurtosis, is used to
measure the sparseness of the sources, or equivalently the
significance of information redundancy reduction in PCA and ICA
transformation. The kurtosis of a zero-mean signal is given

by kurt(s):E[s4]/E2[s2]—3. Here, we calculate kurtosis for

each of 34 supervectors of the transformed HMM mean vectors
from different noise environments. Figure 2 displays the kurtosis
of 34 sorted eigenvoices and independent voices. The kurtosis
values of independent voices are consistently higher than those of
eigenvoices. The mean of kurtosis of independent voices is 9.54
and that of eigenvoices is 6.49. These results imply that
information redundancy reduction using independent voice



approach is more significant than that using eigenvoice approach.
The main reason is due to the capability of exploring higher-order
statistical structure in using independent voices. Thus, the kurtosis
is increased and the distribution becomes peaky.

4.3 Evaluation for noisy speech recognition

In noisy speech recognition, we performed noise adaptation by
using 5, 10, 15 adaptation sentences collected in different noise
environments. The averaged frame number (V) in a sentence was
176. The word error rates (WERs) in cases of no adaptation and
adaptation using eigenvoices and independent voices are shown in
Figure 3. The number of basis vectors K was set as 10 and 15 for
comparison. The WERs in clean and noisy conditions with
different noise types and SNRs were averaged. The averaged
WERs were significantly improved by eigenvoice and independent
voice methods. The WERs of using independent voices were
further decreased. In cases of K =10 and K =15, the averaged
WER reduction over different number of adaptation sentences
(L=5, 10, 15) is 5.54% and 5.86% by using independent voices
relative to eigenvoices, respectively. The WERs were consistently
reduced by increasing the number of adaptation sentences. Figure
4 shows the BIC per sentence averaged over clean and different
noise conditions. The BIC in (8) was calculated by using the
likelihood of adaptation sentences and the regularization term
determined by the number of components for the case of
£=0.008 and SNR =10dB . This value was increased with large

K but was saturated between K =10 and K=15 . The
independent voices consistently attained higher BIC than
eigenvoices under different K. This result indicates that the
independent voice model is selected as a better model than
eigenvoice model when model regularization is concerned.
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Figure 3 Comparison of word error rates

5. CONCLUSION
This paper presented the construction of independent voice space
using ICA method and estimated the composite model for adaptive
speech recognition. These independent voices were illustrated to
perform sparse coding to reduce the information redundancy or
model uncertainty in generation of speech HMMs in different
noise conditions. High-order statistical structure was explored in
using independent voices. The maximum likelihood decomposition
was implemented to estimate a composite model for noise
adaptation. Experiments showed that the independent voices
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reduced larger information redundancy and achieved better model
description than the eigenvoices for different number of
components. Independent voices obtained lower word error rates
than eigenvoices for speech recognition in different noise
environments using different number of adaptation sentences.
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Figure 4 Comparison of BIC values
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