<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of L2_1_-ordering in full-Heusler Co_2_FeSi alloy thin films formed by rapid thermal annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Y. Takamura, R. Nakane, S. Sugahara</td>
</tr>
<tr>
<td>Citation</td>
<td>J. Appl. Phys., vol. 105, no. 7, 2009</td>
</tr>
<tr>
<td>Pub. date</td>
<td>4</td>
</tr>
<tr>
<td>Journal home page</td>
<td>http://jap.aip.org/</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright (c) 2009 American Institute of Physics</td>
</tr>
</tbody>
</table>
Analysis of $L2_1$-ordering in full-Heusler Co$_2$FeSi alloy thin films formed by rapid thermal annealing

Yota Takamura,1,2,a Ryosho Nakane,3 and Satoshi Sugahara1,2,4,b

1Department of Electronics and Applied Physics, Tokyo Institute of Technology, Yokohama 226-8503, Japan
2Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama 226-8502, Japan
3Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
4CREST, Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan

(Presented 12 November 2008; received 24 September 2008; accepted 4 January 2009; published online 30 March 2009)

The authors developed a new analysis approach for evaluation of atomic ordering in full-Heusler alloys, which is extension of the commonly used Webster model. Our model can give accurate physical formalism for the degree of atomic ordering in the $L2_1$ structure, including correction with respect to the fully disordered $A2$ structure, i.e., the model can directly evaluate the degree of $L2_1$ ordering under a lower ordering structure than the complete $B2$-ordering structure. The proposed model was applied to full-Heusler Co$_2$FeSi alloy thin films formed by rapid thermal annealing. The film formed at $T_{RTA}=800$ °C showed a high degree of $L2_1$ ordering of 83% under a high degree of $B2$ ordering of 97%. © 2009 American Institute of Physics. [DOI: 10.1063/1.3075989]

Recently, full-Heusler alloys, such as Co$_2$FeSi (Ref. 1) and Co$_2$MnSi,2,3 attract considerable attention since they have an unique half-metallic band structure4 with high Currie temperature. In particular, Si-containing full-Heusler alloys are a promising material for spin injector/detector of Si-based spin devices such as spin metal-oxide-semiconductor field-effect transistors,5–7 since they can be formed by siliconization reaction activated by rapid thermal annealing (RTA) that is commonly used formation process for metal source/drain technology in advanced CMOS devices. Recently, we reported that full-Heusler Co$_2$FeSi alloy thin films were successfully formed by RTA using silicon-on-insulator (SOI) substrates.8

A fully ordered atomic arrangement in full-Heusler alloys is the $L2_1$ structure, however, the partially disordered $B2$ and fully disordered $A2$ structures also exist. Half-metallicity in full-Heusler alloys is sensitive to their atomic arrangement and degrades with deterioration of atomic ordering.9 Therefore, characterization of atomic ordering in the $L2_1$ structure is an important concern for half-metallic full-Heusler alloys.10 Nevertheless, the standard approach to evaluate the degree of atomic ordering in full-Heusler alloys still leaves some issues. In this paper, we developed a novel analysis approach to evaluate atomic ordering in full-Heusler alloys, extending the commonly used Webster scheme. The proposed model was applied to full-Heusler Co$_2$FeSi alloy thin films formed by RTA.

The $L2_1$ structure of full-Heusler X_2YZ alloys (such as Co$_2$FeSi) is composed of eight stacked body-centered cubic (bcc) lattices shown in Fig. 1(a). The outside sublattice that consists of the eight cubic lattices is occupied by X atoms, and the inside cubic sublattice that consists of the body-centered sites of each bcc lattice is regularly occupied by Y and Z atoms, as shown in Fig. 1(b). In full-Heusler alloys, two kinds of disordering exist. When the YZ sublattice is randomly occupied by Y and Z atoms, i.e., disordering in the YZ sublattice occurs, the ordering structure is reduced to the $B2$ type. (Hereafter, this disorder process is denoted by $Y-Z$ disordering.) Furthermore, when disordering between the X and YZ sublattices occurs, the ordering structure is lowered to the $A2$ type. (Hereafter, this disorder process is referred to as $X-YZ$ disordering.)

In general, these ordered/disordered structures can be identified by x-ray diffraction (XRD) analysis using the following features on relations between atomic orderings and superlattice diffraction lines: $Y-Z$ disordering extinguishes odd superlattice diffraction lines [that are defined by the index relation of h, k, and l=odd numbers, e.g., (111)]. Furthermore, even superlattice diffraction lines $[|h+k+l|/2=2n+1$, e.g., (200)] vanish under $X-YZ$ disordering. On the other hand, fundamental diffraction lines $[(h+k+l)/2=2n$, e.g., (220)] are independent of the ordering structures.

The traditional analysis approach11,12 proposed by Webster has been extensively used to evaluate the degree of atomic ordering in full-Heusler alloys. In the Webster framework, ordering features in full-Heusler alloys are divided into two factors, i.e., the degree of $B2$ ordering, and the degree of $L2_1$ ordering. The degree of $B2$ ordering, S_{B2}, represents that of $X-YZ$ disordering (the definition will be discussed later). Although the degree of $L2_1$ ordering, S_{L21}^{W}, can

aElectronic mail: yota@isl.titech.ac.jp.
bElectronic mail: sugahara@isl.titech.ac.jp.
be defined by the same manner as that of B2 ordering (also discussed later), the disordering parameter α_W that is defined by a fraction of X atoms on the Z sites is generally used to evaluate L_2_1 ordering. Both S_{wB2} and α_W represent an index of the degree of $Y-Z$ disordering, however, the definition and physical meaning are different. S_{wB2}, γ_{L2_1}, and α_W can be easily determined from XRD intensity ratios between superlattice and fundamental lines.1112 (The corrected formula to deduce α_W was presented in Ref. 12.) The Webster model can give accurate formalism for the degree of B2 ordering.11 On the other hand, α_W is given under the hypothesis of the complete B2 structure of $S_{B2}=100\%$. Namely, α_W in the Webster model has no influence of $X-Y$Z disordering. In other words, when S_{B2} is less than 100\%, the physical meaning of α_W is ambiguous. It should be noted that although α_W represents the fraction of X atoms on the Z sites, the number of Y atoms on the Z sites also depends on the degree of B2 ordering.

Extending the Webster model, we developed physical formalism for the degree of L_2_1 ordering including correction from the degree of B2 ordering. Table I shows a definition of the number of atoms at each site (in unit of a Co$_2$Fe$_x$Si$_1$ molecule). In the table, $2x(0.5 \leq x \leq 1)$ and $y(x/2 \leq y \leq x)$ are the number n_{Co} of Co atoms on the X sites, and the number n_{Fe} of Fe atoms on the Y sites, respectively. The number of Si atoms on the Z sites is also y, where we assumed that $X-Y$ and $X-Z$ disorderings occur equiprobably, which is the same as the assumption of the Webster model1112. The other values can be easily deduced under the assumption of the stoichiometric composition. The proposed model can express two $X-Y$ and $Y-Z$ disorderings simultaneously. The degree of B2 ordering, S_{B2}, is defined as follows:

$$S_{B2} = \frac{n_{Co} \times x - n_{random}}{n_{Co} \times x} = 2x - 1,$$

where n_{Co} of $X (=1)$ is the number of Co atoms on the X sites for the most random distribution of Co atoms in the A2 structure, and n_{Co} of $X (=2)$ is the number of Co atoms on the X sites in the fully ordered X sublattice of the perfect B2 structure. In practice, S_{B2} can be obtained from XRD measurements using the following relation between even superlattice and fundamental lines:

$$\frac{I_{200}}{I_{220}} = (2x - 1)^2 \frac{I_{200}}{I_{220}} = S_{B2} \frac{I_{200}}{I_{220}},$$

where I_{200}/I_{220} is an experimentally obtained intensity ratio between (200) and (220) diffraction lines, and I_{200}/I_{220} is the (calculated) ideal diffraction intensity ratio for the perfect B2 structure (that is whole the X sites are occupied only by Co atoms). The expression of S_{B2} in our model corresponds to that in the Webster model ($S_{B2}=S_W$). The degree of L_2_1 ordering, S_{L2_1}, can also be defined by the following relation:

$$S_{L2_1} = \frac{n_{Fe} \times y - n_{random}}{n_{Fe} \times y} = \frac{2y - x}{2 - x},$$

where n_{Fe} of $Y (x/2)$ is the number of Fe atoms on the Y sites for the most random distribution of Fe atoms in the YZ sublattice, and n_{Fe} of Y is that for the fully ordered YZ sublattice. The codomain of S_{L2_1} depends on S_{B2} and it is limited to a range of $0 \leq S_{L2_1} \leq \frac{1 - S_{B2}}{2}$. Note that S_{L2_1} can take a finite value even under $S_{B2}=0$ since L_2_1-ordering portion without $Y-Z$ disordering can remain when the X sublattice are fully disordered (a half amount of whole the Fe and Si atoms is required for the fully disordered X sublattice). S_{L2_1} can be obtained from the following relation,

$$\frac{I_{111}}{I_{220}} = (2y - x)^2 \frac{I_{111}}{I_{220}} = S_{L2_1} \left(\frac{3 - S_{B2}}{2}\right) \frac{I_{111}}{I_{220}}.$$

This relation can be easily deduced by the ordinary procedure11 from crystal structure factors ($F_{111}=4f_x+a_2$ and $F_{220}=4(2f_x+y_f+d_f)$) and average atomic scattering factors at each site [$f_x=2xf_{Co}+(1-x)f_{Fe}+(1-x)f_{Si}$, $f_y=(1-x)f_{Co}+(y-x)f_{Fe}+(x-y)f_{Si}$, and $f_z=(1-x)f_{Co}+(x-y)f_{Fe}+(y-x)f_{Si}$]. It should be noted that S_{L2_1} cannot be determined only by the odd superlattice line, and that S_{L2_1} also depends on the degree of B2 ordering. In the Webster framework, S_{L2_1} is given by $S_{wL2_1}=1-2\alpha_W$ using the general definition shown in the second part of Eq. (3) and it is given by the relation of $I_{111}/I_{220}=S_{wL2_1}$ in our model. When $S_{B2}=100\%$ ($x=1$), our S_{L2_1} formula ($=2y-1$) is identical with Webster’s $S_{wL2_1}=(1 - 2\alpha_W)$ (since $x=1$). Webster’s disordering parameter is expressed by $\alpha_W=1-y$. Moreover, S_{L2_1} can evaluate the degree of L_2_1 ordering under a particular S_{B2} value of $S_{B2} < 100\%$.

Figure 2 shows S_{L2_1} as a function of S_{B2} with various diffraction intensity ratios I_{111}/I_{220}. The solid curves

| TABLE I. Definition of the number of atoms at each site in full-Heulser Co$_2$Fe$_x$Si$_1$ alloy (in unit of a Co$_2$Fe$_x$Si$_1$ molecule). |
|----------------|----------------|----------------|
| X sites | Y sites | Z sites |
| Number of Co atoms | $2x$ | $1-x$ | $1-x$ |
| Number of Fe atoms | $1-x$ | y | $x-y$ |
| Number of Si atoms | $1-x$ | $x-y$ | y |
show S_{L_2} in our model, and the solid circles show S_{W}^{SL} in the Webster framework that can be only plotted on $S_{B2}=100\%$, S_{L_2}, and S_{W} increase with increasing $I_{111}^{\text{full-order}}$. Although S_{L_2} are identical with S_{W} when $S_{B2}=100\%$, S_{L_2} decreases with decreasing S_{B2}. It should be emphasized that S_{L_2} can be evaluated for overall S_{W}^{SL}, whereas S_{W}^{SL} is only defined at $S_{B2}=100\%$ ($x=1$).

The developed model was applied to RTA-formed Co$_2$FeSi thin films. Recently, we reported that full-Heusler Co$_2$FeSi alloy thin films were successfully formed by RTA-induced silicidation reaction utilizing SOI substrates. Detailed experimental procedure was described in Ref. 8. After Co and Fe films were deposited on a SOI substrate in an ultrahigh vacuum, the silicidation was performed by RTA in N$_2$ atmosphere. RTA temperature T_A was varied in a range between 600–800 °C. The thicknesses of Co and Fe layers were determined so that the stoichiometric composition was achieved. The depth profiles of constituent elements were determined using these intensity ratios. Figure 3 shows XRD patterns measured with in-plane configuration for the samples formed at T_A ranging from 600 to 800 °C. Above $T_A=650$ °C, the three (−111), (002), and (2−20) diffraction peaks were clearly observed, indicating the formation of the L_2 ordered structure. The degree of atomic orderings in the films was estimated using these intensity ratios. Figure 4 shows S_{B2}, S_{L_2}, and S_{W}^{SL} as a function of T_A. In order to deduce these indices, the intensity ratios $I_{111}^{\text{full-order}}/I_{111}^{\text{full-order}}$ and $I_{002}^{\text{full-order}}/I_{2−20}^{\text{full-order}}$ shown in Eqs. (2) and (4), respectively, were calculated using International diffraction tables for crystallography volume C and D with the correction of multiplicity. The sample formed at $T_A=800$ °C showed a high degree of atomic ordering of $S_{L_2}=83\%$ under $S_{B2}=97\%$. It is dearly shown that S_{L_2} was overestimated in comparison with S_{L_2}, and that the deviation from S_{L_2} increased with decreasing S_{B2} as described in Fig. 4.

The authors would like to thank Prof. H. Munekata, Tokyo Institute of Technology, Profs. M. Tanaka and S. Takagi, The University of Tokyo. In-plane XRD measurements were performed by Rigaku Corporation.