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Abstract 
This paper reports o n  a technique f o r  specihing con- 

current systems by wing a formal  specification lan- 
guage with reflective computation mechanism. W e  call 
the specifications written by a reflective language re- 
dective specifications. Our  reflective language i s  a n  
enhanced version of L O T O S  (Language of Temporal 
Ordering Specification). W e  embedded reflection or 
reflective computation. facilities to behaviour specifica- 
t ion part of L O T O S  in order to  define complex be- 
haviour in simple and natural way. Reflection in a 
program is a mechanism to access and modifg its ex- 
ecution states which i ts  ezecutor has. Our enhanced 
version of L O T O S  is called R L O T O S ,  and has two 
level architecture object level and meta level. The  
processes in the meta  level, called nieta processes, have 
the computational information and interpret the be- 
haviour ezpressiow of their object level processes. W e  
can define meta processes in the same manner a8 LO-  
T O S  processes to control the behaviour of the object 
level processes. In this paper, uie present a case study 
of specifying a n  operating system by using R L O T O S .  
Furthermore we discuss the method to construct com- 
prehensive formal  specij$cation,p by uring reflective lan- 
guages and explore the applicability of the reflective 
language to formal  specification. The  essential point 
of comprehensiveness is  that the meta properties of the 
system such as control characteristics can be specified 
separately f r o m  the object level properties. 

1 Introduction 
LOTOS (Language of Temporal Ordering Speci- 

fication) [2] which has been developed for formal spec- 
ification of communication systems, has the pow- 
erful constructs for describing concurrency, non- 
determinism, synchronous and asynchronous interac- 
tion, and interruption. LOTOS lias been standard- 
.ized in International Organization for Standardization 
(ISO), and its many practical application examples 
have been reported. 

Reflection or reflective compntation[lO, 121 in a pro- 
gram i s  a mechanism to access and modify its execu- 

tion states which its executor has. This mechanism 
allows us to change dynamically the computational 
semantics of programs during their execution. Reflec- 
tion mechanism provides expressive power and flexi- 
ble enhancement for programming languages. In gen- 
eral, reflective facilities cause to introduce two level 
descriptions of programs - object level descriptions 
and meta-level descriptions. The object level descrip- 
tions are considered as data of its meta-level descrip- 
tions. As well as programs, the reflection allows us 
to  construct comprehensive specifications of complex 
systems. 

Specifications written in LOTOS consist of be- 
haviour specifications which define the observable in- 
teraction sequences of the systems, and data specifi- 
cations. We have introduced reflection facilities to  be- 
haviour specificatiou parts in order to define complex 
behaviour in simple and natural way. Our enhanced 
version of LOTOS is called R L O T O S  (Reflective LO-  
TOS).  In this paper, we discuss the benefit of applying 
the reflective languages to  formal specifications by us- 
ing RLOTOS. We call the specifications written in a 
reflective language reflective specifications. This paper 
is structured as follows. Section 2 and section 3 are 
introductory sections for LOTOS and for RLOTOS 
respectively. In section 4, we show an example of the 
specification written in RLOTOS - a MINIX oper- 
ating system. Furthermore we discuss the method to 
construct comprehensive formal specifications by us- 
ing reflective languages and investigate applicability of 
the reflective language to formal specification in sec- 
tion 5. The essential point of comprehensiveness is 
that the meta properties of the system such as con- 
trol characteristics can be specified separately from 
the object level properties. 

2 LOTOS 
The descriptions written in LOTOS consist of be- 

haviour specifications and data specifications. The 
formal semantics of LOTOS is based on CCS[S] for be- 
haviour specification and on Algebra of Abstract Data 
Type(ADT) for data specification. The behaviour 
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Constructors Naming 
a; B action prefix 
B1 OB2 
lGil + Bi 

choice 
choice with guard 

~ [ G Z ]  + Bz I I Bi is executed 
BllllBZ I Interleaving I B1 and Bz are independently, i.e. wyiichronounly exe- 

Intuitive Meaning 
The event a occurs, and after that B 
Either E1 or B2 is executed 
If Gi (i = 1,2) then, 

... 

Bill& 

B1 I(a1,. . . , ul,]1B2 

Table 1: Basic Constructor of Behavior Expressions 

Operator cuted in parallel 
Synchronizing 
Operator with all events. 
General 
Operator with a1,. ..,a,, 

B1 and E2 are executed in parallel mid synrhronously 

B1 and B2 are executed in prude1 and synchronously Parallel 

specifications define the observable behaviour, i.e. in- 
teraction sequences of the systeiri to be specified. The 
system to be specified is captured acl a set of processes 
communicating with each other at their gates. These 
processes may be decomposed iiito several subprocesses 
hierarchically. The atomic unit of the interaction is 
an event, and it is dso an unit of synchronized in- 
teraction. The process description contains the be- 
haviour eqression defining the observable behaviour 
of the process. LOTOS has several constructors for 
behaviour, e.g. ‘.; (action prefiz)” and “>> (enabling 
operator)” for sequential composition, “[I (choice oper- 
ator)” for selection, and “ l [a l ,  ..., ~,]l[generaZ parallel 
operator)” for parallel coinposition with synchronous 
events a l ,  ..., a,. The b a i c  constructors for behaviour 
expressions are listed in Table 1. 

Intuitively speaking, the event “g ?x:int”, where g is 
a gate name, represents the input of an integer through 
the gate g and the wsigiiment of the input data to the 
variable x. The event “g !a” where “a” is a value 
stands for an output of the value “a” through the gate 
g. Abstract data type definitions express what values 
are handled. Let’s consider a small LOTOS specifica- 
tion 

specification exa~iple[inpnt,output~J 

type Integer is 
sorts int 
OPm 
0 : + iiit 
s: int -+ iiit 

endtype 

behaviour 
hide middle in 
(input ?x:int ; middle !x : stop) 
\[middle11 
(middle ?y:int[not(y=O)] ; output !y : stop) 

where “in”, “middle”, and “out” are gate names. This 
specification specifies the system w shown in Figure 1. 
The statements from type to endtype represent an 

: noexit := 

endspec 

int example 

Figure 1: Ai1 Example 

abstract data type definition of “integer”. The terms 
of the sort “int” are constructed from uO” and the 
repetitive application of ”s”, i.e. 0,  s(O),  s(s(O)),  v . 0  

are examples of the terms. The statements from be- 
haviour to endspec are a definition of the behaviour 
of the buffer. 

fin ?x:int : middle !x : stoD) 

is an example of behaviour eqression. This behaviour 
expression shows two kinds of event sequences may 
occur in parallel. They communicate to each other 
synchronizing with the gate “middle” 
expression in the left hand side of “1 
synchronously the integer value x, w 
through the gate 5n” ,  to the right hand side through 
the gate “middle”. The right hand side can receive 
the value only if the value is not 0 because the con- 

is attached. The operator “hide 
operator and it shileds off the 

specified events from the external environment. Thus 
the event “middle” is not. observed from the outside 
of the buffer. Actually the behaviour expression pro- 
vides an event sequence %, out” as an observable be- 
haviour. And it represents the right hand receives the 
value, and then outputs it throu h the gate “out”. The 
gate names with variables aiidror values such aa “in 
?x:int” and “out !y” are syntactically called “action- 
denotation”, and semantically denote the events which 



Figure 2: An Example:exaniple2 

include data-passing. 
We will show another example. 

specification example2[in,out] : exit := 
(* defines for  integer *) 
behaviour 
in ?x:int p’” > 51 out !s(x) ; cxit 

x 5 51 --f out !x ; exit) 
endspec 

where operations “> (greater than)”,“< (less than or 
equal to)” are supposed to be defined in the inte- 
ger module by usual way, and 5 is an abbreviation of 
s ( s ( s ( s ( s (0 ) ) ) ) ) .  This description provides a behaviour 
or control structure ai9 shown in Figure 2. In this 
example, the system gets an integer number, if it is 
greater than 5,  the system puts out the number which 
is added by 1. And if it is less than or equal to  5, the 
system puts out the number as it is. 

3 LOTOS with Reflection - RLOTOS 
3.1 Reflection Mechanism in RLOTOS 

FUOTOS Reflective LOTOS) is an enhanced ver- 
sion of LO 4 OS with reflective mechanism. Simi- 
lar to other reflective concurrent languages[l5, 111, 
RLOTOS has hierarcliical architecture, which includes 
object level and meta level which is il level for control- 
ling the execution of the object level descriptions. Re- 
flective mechanism lim been embedded not to ADT 
part but to behaviour expression part. A labelled 
transition system is iised to model the execution of 
behaviour expressions of LOTOS. Let’s consider the 
behaviour expression a; B as an example. The transi- 
tion rule for the expression a; B is a; B 5 B .  From 
the operational viewpoint, it denotes that a; B can ex- 
ecute a and thereby turn into B, i.e. the occurrence 
of the event a in state a; B leads 11s into the state B.  
The essential information of this transition rules is a 
current state (a; B) and a pair of the next possible 
event (a) and the next state (B). Thus we can change 
and control the trailsition by providing the iiext events 
and the next states explicitly. A behaviour expression 
described in the meta level provides a next event and 
a next state for the executioii of the behaviour expres- 
sions in the object level. 

The behaviour expressions in the meta level can be 
constructed by the same constructors as the object 
level, which are shown in Table 1. Figure 3 shows 
how the meta level of RLOTOS interprets the object 
level. In the case of the original LOTOS, it can be 
considered that the only one meta process interpreter 
interprets the behaviour expressions of the object level 
processes and executes them following the transition 
rules. In the interpreter, the LOTOS source codes 
in object level or descriptions are handled as data 
themselves. Since terms in abstract data types ex- 
press data, we should establish the method to define 
LOTOS descriptions with the tewna. As discussed 
in [7], behavior expressions and other syntactic cat- 
egories of LOTOS can be defined as terms of abstract 
data types, whose constructors are the operators men- 
tioned the previous section such as action prefix, en- 
abling operator, choice operator and so on. We uses 
the sort names Event and Bexp to express the syn- 
tactic categories “action-denotation” and “behavior 
expression” respectively. For simplicity, we will use 
the notation ‘in ?x:int’ to express a term denoting the 
action-denotation “in ?x:int” in this paper. The sort 
of ‘in ?x:int’ is Event. 

In RLOTOS, we can specify the meta processes and 
they communicate with the interpreter through the 
special gates called reflective gates in order to  control 
the execution of the object level. We have three re- 
flective gates - “currentg”, “nextg”, and “controlg”, 
which are used for referring to information about the 
execution of the object level description and for chang- 
ing its behaviour. In addition, we should note that the 
meta processes can communicate with the object level 
processes except for reflective gates. However, we do 
not use these communications to  specify the systems 
by the reason mentioned later. 

A behaviour expression to  be currently executed is 
passed through the reflective gate “currentg.” The re- 
flective gate “nextg” outputs a set of pairs of a next 
possible event in and the expression after the next 
event occurs, i.e. a next event and a next state. Both 
of them are represented as ADT terms. If you change 
the execution of the object level process dynamically 
during its execution, you send to the gate “controlg” 
a pair of a new event and a new behaviour expression 
corresponding to  the next state. It may be different 
from one specified by labelled transition rules of LO- 
TOS. You need not specify an interpreter process but 
the meta processes and the object level processes in 
FUOTOS. Figure 4 shows how to access and how to 
control the execution by using reflective gates. The 
meta process proceeds to the next step of the execu- 
tion of the object level whenever it outputs to  controlg. 

3.2 Specifications in RLOTOS 

ten in RLOTOS is as follows. 

specification <specification identifier> ... 

The syntactical structures of the speciflcations writ- 

<data type definitions> 
(* Definition of Abstract Data Q p e s  *) 

... 



Mete Level 

.. 

Object Level 

(a)LOTOS 

Meta Level 

Object Level 

(b) Reflective LOTOS (RLOTOS) 

Figure 3: Relationship between Meta Level and Ob- 
ject Level 

U 2!?!!?l?E!?.! .......... .i 

Figure 4: Basic Reflective Procedure in RLOTOS 

behaviour of object level 
<behaviour expression of object level> 
(* Specification of behaviour in object level *) 
where 

<process definitions > 
(* processes used in behaviour ezpression are defined *) 

beLviour of meta level 
<behaviour expression of meta level> 

where 
(* Specification of behaviour in meta level *) 

<meta process definitions> 

beLviour of meta meta level 

(* Similar to object level processes *) 

(* Similar to meta leuel *) 
... ... 

end spec 
The following example of meta level descriptions 

rovides the execution control which follows the LO- 5 OS transition rules, i.e. the same execution aa LO- 
TOS interpreter does. 

speciflcation trivial : noexit 
(*Definition of ADT *) 
behaviour of object level 

(*Behavior Ezpnasion *) .., 
behaviour of meta level 
trivial-process[nextg,controlg] 
where 
process trivial-procerrs[nextg,controlg] : noexit := 

endproc 
endsp ec 

The trivial process obtains a set of pairs of a 
next possible event and a next behaviour expression 
through the nextg gate. "EventPairSet" is a sort name 
of the set of the airs of an event and a behaviour ex- 
pression, and ie tfeAned in built-in abstract data ty es 
of RLOTOS. The operation "choice" on Event Pairget 
is also one of the built-in operations of ADT. It chooses 
non-deterministically an element from a set given aa 
an input. The trivial process chooses a pau of IUI 
event and an expression from the set "x" and return 
it through controlg as a next event and a next state. 

nextg?x : EventPairSet ; controlg!choice(x) ; 
trivial-procese[nextg,controlg] 

4 Example - MINIX Operating Sys- 
tem 

In this section, we introduces a typical example of 
a specification written in RLOTOS - MINIX oper- 
ating system. We use the control mechanism of the 
meta processes to the object processes to s ecify the 
example. Control features and the normal gehaviour 
of the example systems are described separately in the 
meta level and in the object level. To clarify the sepe  
ration and to construct comprehensive specifications, 
we have not used the cominunication mechanism be- 
tween the object level and the meta level except for 
reflective gates as shown in Figure 3. This restriction 
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Figure 5:  Structure of MINIX 

will be discussed in the next section. Figure 8 shows 
the structural difference between the reflective specifi- 
cations and the usual specifications, and helps readers 
understand the reflective specification of the example. 

MINIX Operating System, UNIX compatible oper- 

layers aa shown in Figure 5(a). The processes in the 
layers 2, 3, and 4 are running in (pseudo) parallel, 
communicating with each other using messages. The 
lowest level layer, the process manager, provides a 
model of sequential processes for the higher level lay- 
ers. It selects a process from the higher layer processes 
which are waiting for running, and switches rapidly a 
running process to the selected one. The scheduling 
mechanism, i.e. the way to select a process for its 
running, is a priority scheduling using a three-level 
queuing system. Each level corresponds to the layer 
2, 3, and 4 in Figure 5(a , and round robin schedul- 
ing is used within it. The processes in the layer 2, 
i.e. 1/0 tasks, have thc highest priority, the memory 
manager(MM) and the file server(FS) in the layer 3 
are next and the user processes are the lowest prior- 
ity. A process cannot be running until no processes 
with the higher priority are ready to run. Thus the 
memory manager or the file server is selected as a run- 
ning process if no 1/0 tasks are ready to run. 

Message passing mechanism between MINIX pro- 
cesses is baaed on rendezvous principle. The processes 
communicate with each other by using two system 

calls - send and receive. If the send system call is 
done before the corresponding receive system call, the 
sending process is blocked until the receive is done. 
Similarly, if the receive is done before the send, the 
receiver waits until the send ir executed in the sender 
process. The process manager maintains the queue 
ready4 which consists of three sub queues of the pro- 
cess identifiers. Each sub queue holds the runnable 
ready to run) processes in each layer as shown in 

kigure 6 . We can have the following description of 
the abstract data type “Readyqueue”. abstract data 
types in RLOTOS. In this description, several opera- 
tors for general queues such as “remove” and “first” 
are used and are defined in [2]. “first(queue)” and 
“remove(queue)” produce the first element at the end 
of the queue and the queue after the first element is 
removed respectively. 
Type Ready-Queue is QueueOfP rocessId 
sorts Ready-queue 
O P n s  
<- - -> 
: QueueOfProcessId, QueueOfProcessId, 
QueueOfProcessId + Ready-queue 

task-q, serverq, user4 
: Ready-queue -+ QueueOfProcessId 

pick-process : Ready-queue -$ Readyqueue 
(* remove a process with the highest priority 

first-priorityprocess : Readyqueue ProcessId 
from Readyqueue *) 

(* return the process identifier with 
the highest priority in Ready-queue *) 

: ProcessId, Readyqueue 4 Ready-queue 
(* put a process ProcessId to the Ready-queue *) 

put-process 

... 
eqns ford  pid:ProcessId, tq,sq,uq:QueueOfProcessId 
ofsort QueueOfProcessId 
task-q(<tq,sq,uq>) = tq ; 
server-q(<tq,sq,uq>) = sq ; 

isnot-empty(tq) =+ 

... 
ofsort ProcessId 

first-priority-process( <tq,sq,uq>) = first(tq) ; ... 
ofsort Ready-queue 
isaot-empty(tq) + 
pickprocess( <tq,sq,uq>) = <remove(tq),sq,uq> ; 

is-empty(tq) and isnot-empty(sq) + 
pickprocess( <tq,sq,uq>) = <tq,remove(sq),uq> ; 

kindaf-process(pid) = task =+ 
put-process( pid ,< tq,sq,uq> ) 
= <add(pid,tq),sq,uq> : 

... 

... 
endtype 

Let’s consider how to describe the process manage- 
ment part of MINIX using RLOTOS. Each process in 
the layers 2, 3, and 4 is described in a LOTOS pro- 
cess of the object level. The process manager in the 
layer 1, which schedules and controls the processes, 
can be defined in the meta level of RLOTOS. The 
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Figure 6: MINIX Process Management 

structure of MINIX in RLOTOS is shown in Figure 5 
(b). The independent LOTOS parallel processes are 
executed in the arbitrary interleaving of their events. 
A process in the meta level controls the interleaving of 
the events of the processes in the object level such as 
the Disk Task, the memory manager, the file server, 
and the user processes. The ineta level process takes 
off the events in the ready or blocked processes from 
the candidates of the next possible events, even if 
they can occur next by LOTOS transitioii rules. It 
uses the built-in operator of RLOTOS “processid”, 
where “processid( event)” produces a process identi- 
fier which participates in “event”. This identification 
of the running process’s event can be made by com- 
paring “running-pid” , which holds the running pro- 
cess identifier, with the value of “processid(event)” . 
“Timeout” event lets the process manager know the 
time comes when it should switch the running pro- 
cess. When the tinieout occurs, the process manager 
adds the running process to the ready-q queue and 
selects the process with the highest priority from the 
ready4 queue as a new running process. The opera- 
tion “pick-process” defined in ADT computes the pro- 
cess identifier with highest priority. The process iden- 
tifier of the new running process is assigned to the 
running-pid. 

Message passing niechanism can be defined in the 
ineta level. The sender process offers a send event, 
and it corresponds to calling a send system call in 
MINIX. The process manager checks if the receiver 
process has been blocked to receive the message, i.e. 
waiting for arrival of the message. The receive-q queue 
holds the blocked receiver processes which are waiting 
for the corresponding send systein calls. If the receiver 
process is in the queue, the sender process continues 
the send event offer and the receive event occurs in 
the receiver process successively. After that, the pro- 
cess manager removes the receiver from receive-q and 
adds it to  ready-q. That is to say, the receiver pro- 
cess becomes ruunable. In contrast with the above 
case, if the receiver is iiot in receiveq, i.e. the corre- 
sponding receive system call does iiot happen yet in 
it, the sender becomes blocked and is added to send-q. 

Both send4 and receive4 have pairs of a sender and 
a receiver process identifier. The behaviour structure 
of the meta processes for MINIX’S process manage- 
ment part is shown in Figure 7 and its description by 
RLOTOS is as follows. 

MINIX Operating System by RLOTOS 
specification MINIX : noexit 

behaviour of object level 

where 

(*Definition of Abstract Data Qpes 
such au Ready-queue *) 

Init 111 UserProcess(O) 111 UserProcess(s(0)) 1 11 ... 
DiskTask 111 TTYTask 111 ... 111 MM 111 FS 11 

(* Definition of Object Level Processes, 

process DiskTask : noexit : = 

endpro c 

processmanager[currentg ,nextg,controlg,timeout] 

process processmanager[currentg,nextg,controlg] 

i.e. Processeu in the Layers 2, 3. and 4 *) 
action#l ; action#2 : ... 

behaviour of meta level 
... 

(InitReady-q,{ },{ },InitRunningPid) 
where 

(ready-q:Ready_queue, 
send4,receive-q:QueueOfProcessIdPair, 
runningpid:ProcessId) :noexit := 
hide timeout in 
(* cheek the nezt eoentu possible to occur, 
and control them *) 
(currentg?currentexp:Bexp ; 
nextg?nextset:EventPairSet, ; 
processmanagerl [currentg,nextg,controlg] 

(choice( nextset),nextset,ready-q,send-q,receive-q, 
running-pid) 
(* choice(neztuet) denotes a candidate 
for an nezt event and a nezt expression. *) 
0 (.* process switch by  the timeout event *) 
timeout ; 
process~nanager[currentg,nextg ,controlg] 



(pick-process( put-proccss( running-pid, ready-q)), 
send-q,receive-q, 
firstpriorityprocess 

( put-process (rutining-pid,rendy_q) ) ) 

w h ere 
process processniaiiagerl(corre~~tg,uextg,controlg] 

(nextpair:EventPair, nextset:EventPairSet, 
ready-q:Ready_qneue, 
send-q,receive-q:QueueOfF’rocessIdPair , 
running-pid:ProcessId ) 

let nextevent:Event=eventpart( nextpair), 

[processid(nextevei~t)=running-pid] + 
(* The possible event participates 
in the running process *) 

:noexit := 

next bexp:Bexp=cxpression-part (next pair) in 

( [nextevent =‘send!sender!receiver!message’] --t 
(* The selected next event is U send system call *) 
([pair(sender,receiver) E receive-q] -+ 
(* The receiver process has already been blocked *) 
controlg!pair (next eveiit, 
‘receive!receiver!sender!niessage ; nextbexp’) ; 

processmanager [currentg.nextg,controlg] 
(put-process(receiver. ready-q), 
send-q, remove(pair( sender,receiver),receiver_q), 
running-pid) 
(* The neztevcnt OCCUTS and the corresponding 
receive event will OCCUT successively. 
(* The blocked receiver is removed 
from receive-q *) 

not(pair(sender,receiwr) E receive-q)] --t 
(* The receiaer proccss is n.ot blocked. 
i.e. at3 execution does not reach 
the corresponding receive system call yet *) 
processmanager1 [currentg,nextg,co~itrolg] 

1 

(choice(rernove( nextpair’nextset ), 

pick-process( ready-q) , 
add(pair(sender,receiver),s,end-q), 
receive-q, first-priority-process( ready-q)) 

(* The sender process i.9 add to send-q 
as a blocked process *) 

remove( nextpair,nextset ), 

nexteve~it=‘receive!se~ider!receiver?x:~nessage’] + 
(* The selected nezteaent is a receive system call *) ... 

’p 
not( systemcall( nextevent) =*send’) 
and not(systenicall( ~lextevent)=‘receive’)] -+ 

(* The selected n.extevent is neither ‘send’ 
nor ‘receive’ *) 
controlg!nextpair : 
processmanager[currentg,nextg,contro~g] 

(* The nextevent occurs. *) 

P 

(ready-q,send-q,receive-q,runningid) 

\ r not(processid( nextevent~)=ruiiningpid)] -+ 

4 

4 

I 

I 

(* The selected neztcvent does not 
participate in the running process *) 
processmanagerl [currentg,nextg,controlg] 

(choice( remove(nextpair,nextset )), 
remove( nextpair.nextset ), readyq, 
send-q, receive-q, running-pid) 
(* The neztevent does not OCCUT, and choose 
another event again. *) 

1 
endproc 

endproc 
endspec 

Note that the descriptions of the object level pro- 
cesses do not contain the interactions with the pro- 
cessmanager but only essential actions for their tasks. 
Suppose that the DiskTask performs the event se- 
quence “action#l, action#2, - . -” to achieve its task, 
i.e. disk drive control. We specify nothing but this 
event sequence for the DiskTask process. 

5 Discussion 
In the previous section, we introduced a typical ex- 

ample of the reflective specification, i.e. specification 
written in the reflective language. First, we will dis- 
cuss its difference from the specification written in 
non-reflective language. The next problem is which 
kind of system we can apply a reflective language ef- 
fectively to, and how to construct a reflective specifi- 
cation. We will also discuss the considerable method 
for constructing reflective specification. 
5.1 Reflective Specification and Non- 

To clarify the characteristics of reflective specifica- 
tion, we introduce the MINIX specification written in 
Driginal LOTOS language, which is non-reflective. 

reflective Specification 

MINIX Specification by LOTOS 
specification MINIX : noexit 

behaviour 
(* Definition of Abstract Data Types *) 

hide port in 
(DiskTask port] 111 TTYTask[port] 111 . . . I l l  MM[port] 111 
FS[port] 11 I Init[port] 1 1 1  
UserProcess[port](O) 111 UserProcess[port](s(O)) 111 ...) 

(InitReady_q,{},{ \ ,InitRunningPid) 

(* Definition of Processes in Layer 2, 3, Ind .( *) 
process DiskTask ort : noexit := 

processma I [Port1 I nager[port 

where 

execution-request P I  port (DiskTask, ‘action#l’) >> 
action#l; 
port! DiskTask! terminated; 
execution-request[port](DiskTask, ‘action#2’) >> 
action#2; 
port!DiskTask!tcrminated; ... 

endproc 

process execution_req uest[port] 
... 
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A .............................................. I.. I I ! i  

(pid:Proccrrld, tvcnt:Evcnt): exit := where 
port!pid!cvcnt!rcqucrt ; 
port! pid?answer:Answer ; 
([answr = ack] + exit 
(* The request is gmnted *) 

bnswer = nack] -+ cxccution-rcquert[port](pid, event) 
(* The request is  pending *) 
1 

endproc 
(* Definition of Process Management Part *) 
process processmanager[port] 

(readyq:Readyqueue, 
sendq,receive-q:QueueOfProcessIdPair, 
running-pid:ProcessId) :noexit := 
hide timeout in 

(* check the nezt events possible to occur, 
and control them *) 
(port?pid:ProcessId?event :Event !request; 
processamnager1 [port] 

(pid,event ,ready,q,seiid-<l,receive-<l,running,pid) 
a (.* process switch by the timeout eoent *) 
timeout; 
process-manager [port] 

(pick-process( put-process( runnixig_pid,readyq)), 
send-q, receive-q, 
first-priority-process 

(putprocess( running-pid,ready-q))) 
1 

procerr procesalnanagerl [port] 
(pid:ProceesId, event:Event, read Readyqueue, 
sendq,r eceiveq:QueueOfProcessh?air , 
runningid:ProcessId) : noexit := 
([pid = running-pid] + 
(* The possible event participates 
in the running procear *) 

([event = ‘send!sender!receiver!meesage’] 4 

(* The requested event is  a send system call *) 
([pair(sender,receiver) E received .-) 
(* The receiver process haa already blocked *) 

portlpid!ack; 
port I receiver I ack; 
(* The comsponding receive event occurs 

portlpid!tcrminated; 
port! recciverlterminatd; 
processmanager[port] ‘ 

8UCCe88idy *) 

(putprocess( receiver,readyq), sendq, 
remove (pair (sender ,receiver) ,receive*), 
running-pid) 

not(pair(sender,receiwr) E receive-q)] + ... 
event = ‘receive!receiver!sender?x:measage’] -+ ... P 
Iot(event-part(event) = send) 
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and not(event-part( event) = receive)] + 
(* The requested event i a  neither ‘send’ 
nor ‘receive‘ *) 
port! pid !ack 
(* The requested event occurs *) 
port! pid!terminated 
processaanager[port] 

(ready-q, send-q, receive-q, running-pid) 
1 

kot(pid = running-pitl)] 4 

(* The requested event does not 
participate in the runnin,g prvcess. *) 

port!pid!nack ; 
(* The requested eocd does not occur, and choose 
another requested event *) 
port?ncwpid:Proccssld 

processmanager 1 (port] 
?ncwcvcnt:Evcnt[not( ncwpid=pid)] ; 

(newpid, newevent, ready-q, send-q, receive-q, 
running-pid) 

1 
endproc 

endproc 
endspec 

We should note that the above code includes the no- 
tation which cannot be used in original LOTOS syntax 
for readability. Its behaviour structure is very similar 
to the RLOTOS version mentioned in the previous sec- 
tion. Sans serif type style in the above code stands for 
the LOTOS statements different from the RLOTOS 
description. We have to introduce a new process called 
“executioxuequest”. This process receives the re- 
quests for executing an event from the processes in the 
layers 2, 3, or 4, and then nsks the processmanager 
if the requested event can be executed or not. Sup- 
pose that the DiskTask process will execute the event 
sequence “action#l, action#2, - a’’ for disk drive con- 
trol. These events in the sequence are controlled by 
the processmanager. Thus the DiskTask process re- 
quests the grant for the execution of action#l be- 
fore starting its execution by instantiating the exe- 
cutioniequest process. The process communicates 
with the processmanager through the gate “port”. 
If the execution is granted, the processmanager re- 
sponds with “ack” and the cxecutionrequest process 
exits. Otherwise, ‘‘nack is replyed and the execu- 
tionrequest continues requesting the execution until 
it is granted. For example, the action#l is executed 
only if the corresponding ack is returned. We have 
the event “port!Disk!Tnsk!terniinated” in the next line 
of the statement “action#l;”. The processmanager 
issues this event iiiimediately after the request of ac- 
tion#l is granted. The event forces the successive 
execution of act,ion#l. This request-response(ak or 
nack) mechanism controls the execution of the event 
step by step. Thus we must. embed the events and 
the processes for this request-response mechanism be- 
tween the lines of the LOTOS code in each object level 
process. 

(a) Non-reflective Language 

6 Z )  Meta Level 

(b) Reflective Language 

Figure 8: Structural Feature of Specification by Re- 
flective Languages 

Figure 8 shows the difference between RLOTOS 
code and LOTOS one schematically. 

In the MINIX example, we have modeled separately 
a process controller named processmanager (a pro- 
cess in layer 1) and the processes (in layer2,3, and 4) 
controlled by the controller. If we use a non-reflective 
language, we should embed into the the controlled pro- 
cesses the mechanism to control themselves by the in- 
formation obtained from the controller. See the state- 
ments printed in sans serif fonts in LOTOS code, and 
the shaded parts in Figure 8. It results in the complex 
descriptions which are difficult for us to  understand. 
If we use a reflective language, this control mechanism 
is hidden behind the reflective procedures and we can 
concentrate on specifying the essential behaviour of 
the controlled processes. The description of the ob- 
ject level is simple and we can understand easily what 
processes are performed in MINIX. 

The essential point of the reflective specification is 
the explicit separation of the meta properties such as 
control characteristics from the object level properties 
of the system. Thus we have not employed the com- 
munications between the object level processes and 
the meta processes in our examples. The reflective 
languages have much expressive power. However the 
complicated communications between the object level 
processes and the meta processes bring the specifi- 
cation writers and the readers into confusion. The 
restriction that communications between object level 
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processes and nieta processes shonld not be employed 
in our technique results in comprehensive specifica- 
tions, and seems to he important for applying the re- 
flective languages to formal specification. 

5.2 How to Construct Reflective Spec%- 
cation 

Next, we will discuss how to construct a reflective 
specification. The first thing we should do to specify 
a system is to identify ineta properties. How to iden- 
tify them depends on specification methods for reflec- 
tive languages. Scheduling, fault recovery, exception 
handling, and monitoring can be considered as meta 
features, so reflective languages are useful to specify 
the systems with these facilities. We also have expe- 
rienced specifyin several kinds of system -- a fault 
tolerant system[& a lift control system[ll, commu- 
nication protocols, software development process[8], 
and an interpreter for LOTOS-T (LOTOS with time 
concept)[3. The way to separate the meta level and 
the object 1 eve1 depends 011 the domain of the systems 
to  be specified, so we can construct specification pat- 
terns or styles according to the domain of the systems. 
These patterns help us to  construct the reflective spec- 
ifications. Four specification styles - monolithic, state- 
oriented, constraint-oriented, resource-oriented s t  les 
- only for original LOTOS has been proposed641. 
We can also extend these styles to  ones suitable for 
reflective languages. 

Object oriented analysis[9 can be effectively ap- 

pecially identification of the meta properties included 
in the systems. In object oriented paradigm, infor- 
mation is encapsulated into objects. Information en- 
capsulation may result in the complicated coinmunica- 
tions for the objects to obtain the global information. 
Su pose that the lift control system such as discussed 
in 711. Each lift always communicates with a sched- 
uler, which holds the state of all lifts, to  decide where 
it should go next. When we depict its object interac- 
tion diagram[9], many communicat,ions is centralized 
to the scheduler object. Such objects can be consid- 
ered as meta level objects. Thus we focus on the ob- 
jects to which communications are centralized. The 
same situation has appeared in the MINIX example 
as shown in Figure 8. This method for identifying the 
meta objects can be embedded to OOA and we can 
have reflective object oriented method. 

Supporting tools for reflective specifications should 
provide separative supports for object level descrip- 
tions and for meta level descriptions. It+ is a further 
research as well as the efficient execution of the reflec- 
tive descriptions such a.. [5]. 
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