
論文 / 著書情報
Article / Book Information

Title Reflective Specification: Applying A Reflective Language To Formal
Specification

Author MOTOSHI Saeki, Takeshi Hiroi, Takanori Ugai

Journal/Book name Proc. 7th International Workshop on Software Specification & Design,
Vol. , No. , pp. 204-213

発行日 / Issue date 1993, 12

権利情報 / Copyright (c)1993 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Reflective Specification : Applying A Reflective Language To
Formal Speciflcation

Motoshi Saekit Takeshi Hiroit Takanori UgaiS
tDept. of Electrical & Electronic Engineering, Tokyo Institute of Technology

Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
E-mail : { saeki , hiroi}@cs . titech. ac . jp

$Institute for Social Information Science, Fujitsu Laboratories LTD.
Nakase 1-9-3, Mihama-ku, Chiba-shi, Chiba 261 Japan

E-mail : ugaiQiias.flab.fujitsu.co. jp

Abstract
This paper reports o n a technique f o r specihing con-

current systems by wing a formal specification lan-
guage with reflective computation mechanism. W e call
the specifications written by a reflective language re-
dective specifications. Our reflective language i s a n
enhanced version of L O T O S (Language of Temporal
Ordering Specification). W e embedded reflection or
reflective computation. facilities to behaviour specifica-
t ion part of L O T O S in order to define complex be-
haviour in simple and natural way. Reflection in a
program is a mechanism to access and modifg its ex-
ecution states which i ts ezecutor has. Our enhanced
version of L O T O S is called R L O T O S , and has two
level architecture object level and meta level. The
processes in the meta level, called nieta processes, have
the computational information and interpret the be-
haviour ezpressiow of their object level processes. W e
can define meta processes in the same manner a8 LO-
T O S processes to control the behaviour of the object
level processes. In this paper, uie present a case study
of specifying a n operating system by using R L O T O S .
Furthermore we discuss the method to construct com-
prehensive formal specij$cation,p by uring reflective lan-
guages and explore the applicability of the reflective
language to formal specification. The essential point
of comprehensiveness is that the meta properties of the
system such as control characteristics can be specified
separately f r o m the object level properties.

1 Introduction
LOTOS (Language of Temporal Ordering Speci-

fication) [2] which has been developed for formal spec-
ification of communication systems, has the pow-
erful constructs for describing concurrency, non-
determinism, synchronous and asynchronous interac-
tion, and interruption. LOTOS lias been standard-
.ized in International Organization for Standardization
(ISO), and its many practical application examples
have been reported.

Reflection or reflective compntation[lO, 121 in a pro-
gram i s a mechanism to access and modify its execu-

tion states which its executor has. This mechanism
allows us to change dynamically the computational
semantics of programs during their execution. Reflec-
tion mechanism provides expressive power and flexi-
ble enhancement for programming languages. In gen-
eral, reflective facilities cause to introduce two level
descriptions of programs - object level descriptions
and meta-level descriptions. The object level descrip-
tions are considered as data of its meta-level descrip-
tions. As well as programs, the reflection allows us
to construct comprehensive specifications of complex
systems.

Specifications written in LOTOS consist of be-
haviour specifications which define the observable in-
teraction sequences of the systems, and data specifi-
cations. We have introduced reflection facilities to be-
haviour specificatiou parts in order to define complex
behaviour in simple and natural way. Our enhanced
version of LOTOS is called R L O T O S (Reflective LO-
TOS). In this paper, we discuss the benefit of applying
the reflective languages to formal specifications by us-
ing RLOTOS. We call the specifications written in a
reflective language reflective specifications. This paper
is structured as follows. Section 2 and section 3 are
introductory sections for LOTOS and for RLOTOS
respectively. In section 4, we show an example of the
specification written in RLOTOS - a MINIX oper-
ating system. Furthermore we discuss the method to
construct comprehensive formal specifications by us-
ing reflective languages and investigate applicability of
the reflective language to formal specification in sec-
tion 5. The essential point of comprehensiveness is
that the meta properties of the system such as con-
trol characteristics can be specified separately from
the object level properties.

2 LOTOS
The descriptions written in LOTOS consist of be-

haviour specifications and data specifications. The
formal semantics of LOTOS is based on CCS[S] for be-
haviour specification and on Algebra of Abstract Data
Type(ADT) for data specification. The behaviour

204
10638766193 0.00 Q 1993 IEEE

Constructors Naming
a; B action prefix
B1 OB2
lGil + Bi

choice
choice with guard

~ [G Z] + Bz I I Bi is executed
BllllBZ I Interleaving I B1 and Bz are independently, i.e. wyiichronounly exe-

Intuitive Meaning
The event a occurs, and after that B
Either E1 or B2 is executed
If Gi (i = 1,2) then,

...

Bill&

B1 I(a1,. . . , ul,]1B2

Table 1: Basic Constructor of Behavior Expressions

Operator cuted in parallel
Synchronizing
Operator with all events.
General
Operator with a1,. ..,a,,

B1 and E2 are executed in parallel mid synrhronously

B1 and B2 are executed in prude1 and synchronously Parallel

specifications define the observable behaviour, i.e. in-
teraction sequences of the systeiri to be specified. The
system to be specified is captured acl a set of processes
communicating with each other at their gates. These
processes may be decomposed iiito several subprocesses
hierarchically. The atomic unit of the interaction is
an event, and it is dso an unit of synchronized in-
teraction. The process description contains the be-
haviour eqression defining the observable behaviour
of the process. LOTOS has several constructors for
behaviour, e.g. ‘.; (action prefiz)” and “>> (enabling
operator)” for sequential composition, “[I (choice oper-
ator)” for selection, and “ l [a l , ..., ~,]l[generaZ parallel
operator)” for parallel coinposition with synchronous
events a l , ..., a,. The b a i c constructors for behaviour
expressions are listed in Table 1.

Intuitively speaking, the event “g ?x:int”, where g is
a gate name, represents the input of an integer through
the gate g and the wsigiiment of the input data to the
variable x. The event “g !a” where “a” is a value
stands for an output of the value “a” through the gate
g. Abstract data type definitions express what values
are handled. Let’s consider a small LOTOS specifica-
tion

specification exa~iple[inpnt,output~J

type Integer is
sorts int
OPm
0 : + iiit
s: int -+ iiit

endtype

behaviour
hide middle in
(input ?x:int ; middle !x : stop)
\[middle11
(middle ?y:int[not(y=O)] ; output !y : stop)

where “in”, “middle”, and “out” are gate names. This
specification specifies the system w shown in Figure 1.
The statements from type to endtype represent an

: noexit :=

endspec

int example

Figure 1: Ai1 Example

abstract data type definition of “integer”. The terms
of the sort “int” are constructed from uO” and the
repetitive application of ”s”, i.e. 0, s(O), s(s(O)), v . 0

are examples of the terms. The statements from be-
haviour to endspec are a definition of the behaviour
of the buffer.

fin ?x:int : middle !x : stoD)

is an example of behaviour eqression. This behaviour
expression shows two kinds of event sequences may
occur in parallel. They communicate to each other
synchronizing with the gate “middle”
expression in the left hand side of “1
synchronously the integer value x, w
through the gate 5n” , to the right hand side through
the gate “middle”. The right hand side can receive
the value only if the value is not 0 because the con-

is attached. The operator “hide
operator and it shileds off the

specified events from the external environment. Thus
the event “middle” is not. observed from the outside
of the buffer. Actually the behaviour expression pro-
vides an event sequence %, out” as an observable be-
haviour. And it represents the right hand receives the
value, and then outputs it throu h the gate “out”. The
gate names with variables aiidror values such aa “in
?x:int” and “out !y” are syntactically called “action-
denotation”, and semantically denote the events which

Figure 2: An Example:exaniple2

include data-passing.
We will show another example.

specification example2[in,out] : exit :=
(* defines for integer *)
behaviour
in ?x:int p’” > 51 out !s(x) ; cxit

x 5 51 --f out !x ; exit)
endspec

where operations “> (greater than)”,“< (less than or
equal to)” are supposed to be defined in the inte-
ger module by usual way, and 5 is an abbreviation of
s (s (s (s (s (0))))) . This description provides a behaviour
or control structure ai9 shown in Figure 2. In this
example, the system gets an integer number, if it is
greater than 5, the system puts out the number which
is added by 1. And if it is less than or equal to 5, the
system puts out the number as it is.

3 LOTOS with Reflection - RLOTOS
3.1 Reflection Mechanism in RLOTOS

FUOTOS Reflective LOTOS) is an enhanced ver-
sion of LO 4 OS with reflective mechanism. Simi-
lar to other reflective concurrent languages[l5, 111,
RLOTOS has hierarcliical architecture, which includes
object level and meta level which is il level for control-
ling the execution of the object level descriptions. Re-
flective mechanism lim been embedded not to ADT
part but to behaviour expression part. A labelled
transition system is iised to model the execution of
behaviour expressions of LOTOS. Let’s consider the
behaviour expression a; B as an example. The transi-
tion rule for the expression a; B is a; B 5 B . From
the operational viewpoint, it denotes that a; B can ex-
ecute a and thereby turn into B, i.e. the occurrence
of the event a in state a; B leads 11s into the state B.
The essential information of this transition rules is a
current state (a; B) and a pair of the next possible
event (a) and the next state (B). Thus we can change
and control the trailsition by providing the iiext events
and the next states explicitly. A behaviour expression
described in the meta level provides a next event and
a next state for the executioii of the behaviour expres-
sions in the object level.

The behaviour expressions in the meta level can be
constructed by the same constructors as the object
level, which are shown in Table 1. Figure 3 shows
how the meta level of RLOTOS interprets the object
level. In the case of the original LOTOS, it can be
considered that the only one meta process interpreter
interprets the behaviour expressions of the object level
processes and executes them following the transition
rules. In the interpreter, the LOTOS source codes
in object level or descriptions are handled as data
themselves. Since terms in abstract data types ex-
press data, we should establish the method to define
LOTOS descriptions with the tewna. As discussed
in [7], behavior expressions and other syntactic cat-
egories of LOTOS can be defined as terms of abstract
data types, whose constructors are the operators men-
tioned the previous section such as action prefix, en-
abling operator, choice operator and so on. We uses
the sort names Event and Bexp to express the syn-
tactic categories “action-denotation” and “behavior
expression” respectively. For simplicity, we will use
the notation ‘in ?x:int’ to express a term denoting the
action-denotation “in ?x:int” in this paper. The sort
of ‘in ?x:int’ is Event.

In RLOTOS, we can specify the meta processes and
they communicate with the interpreter through the
special gates called reflective gates in order to control
the execution of the object level. We have three re-
flective gates - “currentg”, “nextg”, and “controlg”,
which are used for referring to information about the
execution of the object level description and for chang-
ing its behaviour. In addition, we should note that the
meta processes can communicate with the object level
processes except for reflective gates. However, we do
not use these communications to specify the systems
by the reason mentioned later.

A behaviour expression to be currently executed is
passed through the reflective gate “currentg.” The re-
flective gate “nextg” outputs a set of pairs of a next
possible event in and the expression after the next
event occurs, i.e. a next event and a next state. Both
of them are represented as ADT terms. If you change
the execution of the object level process dynamically
during its execution, you send to the gate “controlg”
a pair of a new event and a new behaviour expression
corresponding to the next state. It may be different
from one specified by labelled transition rules of LO-
TOS. You need not specify an interpreter process but
the meta processes and the object level processes in
FUOTOS. Figure 4 shows how to access and how to
control the execution by using reflective gates. The
meta process proceeds to the next step of the execu-
tion of the object level whenever it outputs to controlg.

3.2 Specifications in RLOTOS

ten in RLOTOS is as follows.

specification <specification identifier> ...

The syntactical structures of the speciflcations writ-

<data type definitions>
(* Definition of Abstract Data Q p e s *)

...

Mete Level

..

Object Level

(a)LOTOS

Meta Level

Object Level

(b) Reflective LOTOS (RLOTOS)

Figure 3: Relationship between Meta Level and Ob-
ject Level

U 2!?!!?l?E!?.!i

Figure 4: Basic Reflective Procedure in RLOTOS

behaviour of object level
<behaviour expression of object level>
(* Specification of behaviour in object level *)
where

<process definitions >
(* processes used in behaviour ezpression are defined *)

beLviour of meta level
<behaviour expression of meta level>

where
(* Specification of behaviour in meta level *)

<meta process definitions>

beLviour of meta meta level

(* Similar to object level processes *)

(* Similar to meta leuel *)
... ...

end spec
The following example of meta level descriptions

rovides the execution control which follows the LO- 5 OS transition rules, i.e. the same execution aa LO-
TOS interpreter does.

speciflcation trivial : noexit
(*Definition of ADT *)
behaviour of object level

(*Behavior Ezpnasion *) ..,
behaviour of meta level
trivial-process[nextg,controlg]
where
process trivial-procerrs[nextg,controlg] : noexit :=

endproc
endsp ec

The trivial process obtains a set of pairs of a
next possible event and a next behaviour expression
through the nextg gate. "EventPairSet" is a sort name
of the set of the airs of an event and a behaviour ex-
pression, and ie tfeAned in built-in abstract data ty es
of RLOTOS. The operation "choice" on Event Pairget
is also one of the built-in operations of ADT. It chooses
non-deterministically an element from a set given aa
an input. The trivial process chooses a pau of IUI
event and an expression from the set "x" and return
it through controlg as a next event and a next state.

nextg?x : EventPairSet ; controlg!choice(x) ;
trivial-procese[nextg,controlg]

4 Example - MINIX Operating Sys-
tem

In this section, we introduces a typical example of
a specification written in RLOTOS - MINIX oper-
ating system. We use the control mechanism of the
meta processes to the object processes to s ecify the
example. Control features and the normal gehaviour
of the example systems are described separately in the
meta level and in the object level. To clarify the sepe
ration and to construct comprehensive specifications,
we have not used the cominunication mechanism be-
tween the object level and the meta level except for
reflective gates as shown in Figure 3. This restriction

3 Server Process

2 I/O Task

1

(a) MINIX Internal Structure

ObJect Level

m o m

1111111111111111111111111111111

Maa b v o l
Process Manager

(b) MINIX Structure from Reflective View

Figure 5: Structure of MINIX

will be discussed in the next section. Figure 8 shows
the structural difference between the reflective specifi-
cations and the usual specifications, and helps readers
understand the reflective specification of the example.

MINIX Operating System, UNIX compatible oper-

layers aa shown in Figure 5(a). The processes in the
layers 2, 3, and 4 are running in (pseudo) parallel,
communicating with each other using messages. The
lowest level layer, the process manager, provides a
model of sequential processes for the higher level lay-
ers. It selects a process from the higher layer processes
which are waiting for running, and switches rapidly a
running process to the selected one. The scheduling
mechanism, i.e. the way to select a process for its
running, is a priority scheduling using a three-level
queuing system. Each level corresponds to the layer
2, 3, and 4 in Figure 5(a , and round robin schedul-
ing is used within it. The processes in the layer 2,
i.e. 1/0 tasks, have thc highest priority, the memory
manager(MM) and the file server(FS) in the layer 3
are next and the user processes are the lowest prior-
ity. A process cannot be running until no processes
with the higher priority are ready to run. Thus the
memory manager or the file server is selected as a run-
ning process if no 1/0 tasks are ready to run.

Message passing mechanism between MINIX pro-
cesses is baaed on rendezvous principle. The processes
communicate with each other by using two system

calls - send and receive. If the send system call is
done before the corresponding receive system call, the
sending process is blocked until the receive is done.
Similarly, if the receive is done before the send, the
receiver waits until the send ir executed in the sender
process. The process manager maintains the queue
ready4 which consists of three sub queues of the pro-
cess identifiers. Each sub queue holds the runnable
ready to run) processes in each layer as shown in

kigure 6 . We can have the following description of
the abstract data type “Readyqueue”. abstract data
types in RLOTOS. In this description, several opera-
tors for general queues such as “remove” and “first”
are used and are defined in [2]. “first(queue)” and
“remove(queue)” produce the first element at the end
of the queue and the queue after the first element is
removed respectively.
Type Ready-Queue is QueueOfP rocessId
sorts Ready-queue
O P n s
<- - ->
: QueueOfProcessId, QueueOfProcessId,
QueueOfProcessId + Ready-queue

task-q, serverq, user4
: Ready-queue -+ QueueOfProcessId

pick-process : Ready-queue -$ Readyqueue
(* remove a process with the highest priority

first-priorityprocess : Readyqueue ProcessId
from Readyqueue *)

(* return the process identifier with
the highest priority in Ready-queue *)

: ProcessId, Readyqueue 4 Ready-queue
(* put a process ProcessId to the Ready-queue *)

put-process

...
eqns ford pid:ProcessId, tq,sq,uq:QueueOfProcessId
ofsort QueueOfProcessId
task-q(<tq,sq,uq>) = tq ;
server-q(<tq,sq,uq>) = sq ;

isnot-empty(tq) =+

...
ofsort ProcessId

first-priority-process(<tq,sq,uq>) = first(tq) ; ...
ofsort Ready-queue
isaot-empty(tq) +
pickprocess(<tq,sq,uq>) = <remove(tq),sq,uq> ;

is-empty(tq) and isnot-empty(sq) +
pickprocess(<tq,sq,uq>) = <tq,remove(sq),uq> ;

kindaf-process(pid) = task =+
put-process(pid ,< tq,sq,uq>)
= <add(pid,tq),sq,uq> :

...

...
endtype

Let’s consider how to describe the process manage-
ment part of MINIX using RLOTOS. Each process in
the layers 2, 3, and 4 is described in a LOTOS pro-
cess of the object level. The process manager in the
layer 1, which schedules and controls the processes,
can be defined in the meta level of RLOTOS. The

Blocked
Ready(Runnab1e) receive- -

USER-Q 3 &l sfx#3 d I-‘ Running
runnlna DM

I I -

Figure 6: MINIX Process Management

structure of MINIX in RLOTOS is shown in Figure 5
(b). The independent LOTOS parallel processes are
executed in the arbitrary interleaving of their events.
A process in the meta level controls the interleaving of
the events of the processes in the object level such as
the Disk Task, the memory manager, the file server,
and the user processes. The ineta level process takes
off the events in the ready or blocked processes from
the candidates of the next possible events, even if
they can occur next by LOTOS transitioii rules. It
uses the built-in operator of RLOTOS “processid”,
where “processid(event)” produces a process identi-
fier which participates in “event”. This identification
of the running process’s event can be made by com-
paring “running-pid” , which holds the running pro-
cess identifier, with the value of “processid(event)” .
“Timeout” event lets the process manager know the
time comes when it should switch the running pro-
cess. When the tinieout occurs, the process manager
adds the running process to the ready-q queue and
selects the process with the highest priority from the
ready4 queue as a new running process. The opera-
tion “pick-process” defined in ADT computes the pro-
cess identifier with highest priority. The process iden-
tifier of the new running process is assigned to the
running-pid.

Message passing niechanism can be defined in the
ineta level. The sender process offers a send event,
and it corresponds to calling a send system call in
MINIX. The process manager checks if the receiver
process has been blocked to receive the message, i.e.
waiting for arrival of the message. The receive-q queue
holds the blocked receiver processes which are waiting
for the corresponding send systein calls. If the receiver
process is in the queue, the sender process continues
the send event offer and the receive event occurs in
the receiver process successively. After that, the pro-
cess manager removes the receiver from receive-q and
adds it to ready-q. That is to say, the receiver pro-
cess becomes ruunable. In contrast with the above
case, if the receiver is iiot in receiveq, i.e. the corre-
sponding receive system call does iiot happen yet in
it, the sender becomes blocked and is added to send-q.

Both send4 and receive4 have pairs of a sender and
a receiver process identifier. The behaviour structure
of the meta processes for MINIX’S process manage-
ment part is shown in Figure 7 and its description by
RLOTOS is as follows.

MINIX Operating System by RLOTOS
specification MINIX : noexit

behaviour of object level

where

(*Definition of Abstract Data Qpes
such au Ready-queue *)

Init 111 UserProcess(O) 111 UserProcess(s(0)) 1 11 ...
DiskTask 111 TTYTask 111 ... 111 MM 111 FS 11

(* Definition of Object Level Processes,

process DiskTask : noexit : =

endpro c

processmanager[currentg ,nextg,controlg,timeout]

process processmanager[currentg,nextg,controlg]

i.e. Processeu in the Layers 2, 3. and 4 *)
action#l ; action#2 : ...

behaviour of meta level
...

(InitReady-q,{ },{ },InitRunningPid)
where

(ready-q:Ready_queue,
send4,receive-q:QueueOfProcessIdPair,
runningpid:ProcessId) :noexit :=
hide timeout in
(* cheek the nezt eoentu possible to occur,
and control them *)
(currentg?currentexp:Bexp ;
nextg?nextset:EventPairSet, ;
processmanagerl [currentg,nextg,controlg]

(choice(nextset),nextset,ready-q,send-q,receive-q,
running-pid)
(* choice(neztuet) denotes a candidate
for an nezt event and a nezt expression. *)
0 (.* process switch by the timeout event *)
timeout ;
process~nanager[currentg,nextg ,controlg]

(pick-process(put-proccss(running-pid, ready-q)),
send-q,receive-q,
firstpriorityprocess

(put-process (rutining-pid,rendy_q)))

w h ere
process processniaiiagerl(corre~~tg,uextg,controlg]

(nextpair:EventPair, nextset:EventPairSet,
ready-q:Ready_qneue,
send-q,receive-q:QueueOfF’rocessIdPair ,
running-pid:ProcessId)

let nextevent:Event=eventpart(nextpair),

[processid(nextevei~t)=running-pid] +
(* The possible event participates
in the running process *)

:noexit :=

next bexp:Bexp=cxpression-part (next pair) in

([nextevent =‘send!sender!receiver!message’] --t
(* The selected next event is U send system call *)
([pair(sender,receiver) E receive-q] -+
(* The receiver process has already been blocked *)
controlg!pair (next eveiit,
‘receive!receiver!sender!niessage ; nextbexp’) ;

processmanager [currentg.nextg,controlg]
(put-process(receiver. ready-q),
send-q, remove(pair(sender,receiver),receiver_q),
running-pid)
(* The neztevcnt OCCUTS and the corresponding
receive event will OCCUT successively.
(* The blocked receiver is removed
from receive-q *)

not(pair(sender,receiwr) E receive-q)] --t
(* The receiaer proccss is n.ot blocked.
i.e. at3 execution does not reach
the corresponding receive system call yet *)
processmanager1 [currentg,nextg,co~itrolg]

1

(choice(rernove(nextpair’nextset),

pick-process(ready-q) ,
add(pair(sender,receiver),s,end-q),
receive-q, first-priority-process(ready-q))

(* The sender process i.9 add to send-q
as a blocked process *)

remove(nextpair,nextset),

nexteve~it=‘receive!se~ider!receiver?x:~nessage’] +
(* The selected nezteaent is a receive system call *) ...

’p
not(systemcall(nextevent) =*send’)
and not(systenicall(~lextevent)=‘receive’)] -+

(* The selected n.extevent is neither ‘send’
nor ‘receive’ *)
controlg!nextpair :
processmanager[currentg,nextg,contro~g]

(* The nextevent occurs. *)

P

(ready-q,send-q,receive-q,runningid)

\ r not(processid(nextevent~)=ruiiningpid)] -+

4

4

I

I

(* The selected neztcvent does not
participate in the running process *)
processmanagerl [currentg,nextg,controlg]

(choice(remove(nextpair,nextset)),
remove(nextpair.nextset), readyq,
send-q, receive-q, running-pid)
(* The neztevent does not OCCUT, and choose
another event again. *)

1
endproc

endproc
endspec

Note that the descriptions of the object level pro-
cesses do not contain the interactions with the pro-
cessmanager but only essential actions for their tasks.
Suppose that the DiskTask performs the event se-
quence “action#l, action#2, - . -” to achieve its task,
i.e. disk drive control. We specify nothing but this
event sequence for the DiskTask process.

5 Discussion
In the previous section, we introduced a typical ex-

ample of the reflective specification, i.e. specification
written in the reflective language. First, we will dis-
cuss its difference from the specification written in
non-reflective language. The next problem is which
kind of system we can apply a reflective language ef-
fectively to, and how to construct a reflective specifi-
cation. We will also discuss the considerable method
for constructing reflective specification.
5.1 Reflective Specification and Non-

To clarify the characteristics of reflective specifica-
tion, we introduce the MINIX specification written in
Driginal LOTOS language, which is non-reflective.

reflective Specification

MINIX Specification by LOTOS
specification MINIX : noexit

behaviour
(* Definition of Abstract Data Types *)

hide port in
(DiskTask port] 111 TTYTask[port] 111 . . . I l l MM[port] 111
FS[port] 11 I Init[port] 1 1 1
UserProcess[port](O) 111 UserProcess[port](s(O)) 111 ...)

(InitReady_q,{},{ \ ,InitRunningPid)

(* Definition of Processes in Layer 2, 3, Ind .(*)
process DiskTask ort : noexit :=

processma I [Port1 I nager[port

where

execution-request P I port (DiskTask, ‘action#l’) >>
action#l;
port! DiskTask! terminated;
execution-request[port](DiskTask, ‘action#2’) >>
action#2;
port!DiskTask!tcrminated; ...

endproc

process execution_req uest[port]
...

210

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

&--
I
I
I
I
I
I

A .. I.. I I ! i

(pid:Proccrrld, tvcnt:Evcnt): exit := where
port!pid!cvcnt!rcqucrt ;
port! pid?answer:Answer ;
([answr = ack] + exit
(* The request is gmnted *)

bnswer = nack] -+ cxccution-rcquert[port](pid, event)
(* The request is pending *)
1

endproc
(* Definition of Process Management Part *)
process processmanager[port]

(readyq:Readyqueue,
sendq,receive-q:QueueOfProcessIdPair,
running-pid:ProcessId) :noexit :=
hide timeout in

(* check the nezt events possible to occur,
and control them *)
(port?pid:ProcessId?event :Event !request;
processamnager1 [port]

(pid,event ,ready,q,seiid-<l,receive-<l,running,pid)
a (.* process switch by the timeout eoent *)
timeout;
process-manager [port]

(pick-process(put-process(runnixig_pid,readyq)),
send-q, receive-q,
first-priority-process

(putprocess(running-pid,ready-q)))
1

procerr procesalnanagerl [port]
(pid:ProceesId, event:Event, read Readyqueue,
sendq,r eceiveq:QueueOfProcessh?air ,
runningid:ProcessId) : noexit :=
([pid = running-pid] +
(* The possible event participates
in the running procear *)

([event = ‘send!sender!receiver!meesage’] 4

(* The requested event is a send system call *)
([pair(sender,receiver) E received .-)
(* The receiver process haa already blocked *)

portlpid!ack;
port I receiver I ack;
(* The comsponding receive event occurs

portlpid!tcrminated;
port! recciverlterminatd;
processmanager[port] ‘

8UCCe88idy *)

(putprocess(receiver,readyq), sendq,
remove (pair (sender ,receiver) ,receive*),
running-pid)

not(pair(sender,receiwr) E receive-q)] + ...
event = ‘receive!receiver!sender?x:measage’] -+ ... P
Iot(event-part(event) = send)

211

and not(event-part(event) = receive)] +
(* The requested event i a neither ‘send’
nor ‘receive‘ *)
port! pid !ack
(* The requested event occurs *)
port! pid!terminated
processaanager[port]

(ready-q, send-q, receive-q, running-pid)
1

kot(pid = running-pitl)] 4

(* The requested event does not
participate in the runnin,g prvcess. *)

port!pid!nack ;
(* The requested eocd does not occur, and choose
another requested event *)
port?ncwpid:Proccssld

processmanager 1 (port]
?ncwcvcnt:Evcnt[not(ncwpid=pid)] ;

(newpid, newevent, ready-q, send-q, receive-q,
running-pid)

1
endproc

endproc
endspec

We should note that the above code includes the no-
tation which cannot be used in original LOTOS syntax
for readability. Its behaviour structure is very similar
to the RLOTOS version mentioned in the previous sec-
tion. Sans serif type style in the above code stands for
the LOTOS statements different from the RLOTOS
description. We have to introduce a new process called
“executioxuequest”. This process receives the re-
quests for executing an event from the processes in the
layers 2, 3, or 4, and then nsks the processmanager
if the requested event can be executed or not. Sup-
pose that the DiskTask process will execute the event
sequence “action#l, action#2, - a’’ for disk drive con-
trol. These events in the sequence are controlled by
the processmanager. Thus the DiskTask process re-
quests the grant for the execution of action#l be-
fore starting its execution by instantiating the exe-
cutioniequest process. The process communicates
with the processmanager through the gate “port”.
If the execution is granted, the processmanager re-
sponds with “ack” and the cxecutionrequest process
exits. Otherwise, ‘‘nack is replyed and the execu-
tionrequest continues requesting the execution until
it is granted. For example, the action#l is executed
only if the corresponding ack is returned. We have
the event “port!Disk!Tnsk!terniinated” in the next line
of the statement “action#l;”. The processmanager
issues this event iiiimediately after the request of ac-
tion#l is granted. The event forces the successive
execution of act,ion#l. This request-response(ak or
nack) mechanism controls the execution of the event
step by step. Thus we must. embed the events and
the processes for this request-response mechanism be-
tween the lines of the LOTOS code in each object level
process.

(a) Non-reflective Language

6 Z) Meta Level

(b) Reflective Language

Figure 8: Structural Feature of Specification by Re-
flective Languages

Figure 8 shows the difference between RLOTOS
code and LOTOS one schematically.

In the MINIX example, we have modeled separately
a process controller named processmanager (a pro-
cess in layer 1) and the processes (in layer2,3, and 4)
controlled by the controller. If we use a non-reflective
language, we should embed into the the controlled pro-
cesses the mechanism to control themselves by the in-
formation obtained from the controller. See the state-
ments printed in sans serif fonts in LOTOS code, and
the shaded parts in Figure 8. It results in the complex
descriptions which are difficult for us to understand.
If we use a reflective language, this control mechanism
is hidden behind the reflective procedures and we can
concentrate on specifying the essential behaviour of
the controlled processes. The description of the ob-
ject level is simple and we can understand easily what
processes are performed in MINIX.

The essential point of the reflective specification is
the explicit separation of the meta properties such as
control characteristics from the object level properties
of the system. Thus we have not employed the com-
munications between the object level processes and
the meta processes in our examples. The reflective
languages have much expressive power. However the
complicated communications between the object level
processes and the meta processes bring the specifi-
cation writers and the readers into confusion. The
restriction that communications between object level

212

processes and nieta processes shonld not be employed
in our technique results in comprehensive specifica-
tions, and seems to he important for applying the re-
flective languages to formal specification.

5.2 How to Construct Reflective Spec%-
cation

Next, we will discuss how to construct a reflective
specification. The first thing we should do to specify
a system is to identify ineta properties. How to iden-
tify them depends on specification methods for reflec-
tive languages. Scheduling, fault recovery, exception
handling, and monitoring can be considered as meta
features, so reflective languages are useful to specify
the systems with these facilities. We also have expe-
rienced specifyin several kinds of system -- a fault
tolerant system[& a lift control system[ll, commu-
nication protocols, software development process[8],
and an interpreter for LOTOS-T (LOTOS with time
concept)[3. The way to separate the meta level and
the object 1 eve1 depends 011 the domain of the systems
to be specified, so we can construct specification pat-
terns or styles according to the domain of the systems.
These patterns help us to construct the reflective spec-
ifications. Four specification styles - monolithic, state-
oriented, constraint-oriented, resource-oriented s t les
- only for original LOTOS has been proposed641.
We can also extend these styles to ones suitable for
reflective languages.

Object oriented analysis[9 can be effectively ap-

pecially identification of the meta properties included
in the systems. In object oriented paradigm, infor-
mation is encapsulated into objects. Information en-
capsulation may result in the complicated coinmunica-
tions for the objects to obtain the global information.
Su pose that the lift control system such as discussed
in 711. Each lift always communicates with a sched-
uler, which holds the state of all lifts, to decide where
it should go next. When we depict its object interac-
tion diagram[9], many communicat,ions is centralized
to the scheduler object. Such objects can be consid-
ered as meta level objects. Thus we focus on the ob-
jects to which communications are centralized. The
same situation has appeared in the MINIX example
as shown in Figure 8. This method for identifying the
meta objects can be embedded to OOA and we can
have reflective object oriented method.

Supporting tools for reflective specifications should
provide separative supports for object level descrip-
tions and for meta level descriptions. It+ is a further
research as well as the efficient execution of the reflec-
tive descriptions such a.. [5].

Acknowledgements
The authors wish to tliaiik Prof. C. A. Vissers and

Mr. L. F. Pires of University of Twente for their dis-
cussions and comments to RLOTOS.

plied to construction of the re B ective specifications, es-

References
[l] Problem Set for the 4th International Workshop

o n Software Specification and Design : Proc. of

4th International Workshop on Software Specifi-
cation and Design, 1987.

I S 0 8807. Information processing systems -
Open S y s t e m Interconnection - LOTOS - A
formal description technique bused on the tempo-
ral ordering of obsevational behaviour, 1989.

ISO/IEC JTCl/SCSl/WGl N1180. Contribution
on Enhancements to LOTOS, 1992.

N.G. Leveson and J.L. Stolzy. Safety Analysis
Using Petri Nets. IEEE Duns. on Software En-
gineering, 13(3):386-397, 1987.

H. Masuhara, S. Matsuoka, T. Watanabe, and
A. Yonezawa. Object-Oriented Concurrent Re-
flective Languages can be Implemented Effi-
ciently. In Proc. of ACM OOPSLA'92, 1992.

R. Milner. Communication and Concurrency.
Prentice Hall, 1989.

K. Ohmaki, K. Takahashi, and K. Futatsugi.
A LOTOS simulator in OBJ. In J. Quemada,
J. Manaa, and E. Vazquez, editors, Formal De-
scription Techniques 111, pages 535-538, 1991.

M. Saeki, T. Kaneko, and M. Sakamoto. A
Method for Software Process Modeling and De-
scription using LOTOS. In Proc. of 1st Interna-
tional Conference on the Software Process, pages
90-104, 1991.

S. Shlaer and S.J. Mellor. An Object-Oriented
Approach to Domain Analysis. ACM SIGSOFT
Software Engineering Notes, 14(5):66-77, 1989.

B.C Smith. Reflection and semantics in Lisp. In
Proc. of 12th ACM Sympo. on POPL, pages 23-
35, 1984.

H. Sugano. Concurrent Logic Language and
Reflective Computation in Distributed Environ-
ments. In Proc. of International Workshop on
New Models for Software Architecture '92, pages

J. Tanaka. An Experimental Reflective Program-
ming System written in GHC. Journal of Infor-
mation Processing, 14(1). 1991.

A.S. Tanenbaum. Operating Systems - Design
and Implementation. Prentice Hall, 1987.

C.A. Vissers, G. Scollo, and M. Sinderen. Archi-
tecture and Specification style in formal descrip-
tions of distributed systems. In Protocol Spec@-
cation, Testing and Verification VIII, pages 189-
204, 1988.

T. Watanabe and A. Yonezawa. Reflective Com-
putation in Object-Oriented Concurrent System
and Its Applications. In Proc. of Fifth IWSSD,
pages 56-58, 1989.

69-74, 1992.

21s

