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Vector-Quantization-Based Speech Recognition

and Speaker Recognition Techniques

Sadaoki Furui
NTT Human Interface Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180 Japan

Abstract

This paper reviews major methods of applying the
veclor quantization (VQ) technique to speech and speaker
recognition. These include speech recognition based on the
combination of VQ and the DTW/HMM technique, VQ-
distortion-based recognition, learning VQ algorithms,
speaker adaptation by VQ-codebook mapping, and VQ-
distortion-based speaker recognition. Not only has it
reduced the amount of computation and storage, the Vo
technique has also created new ideas of solving various
problems in speechispeaker recognition.

1. Introduction

The vector quantization (VQ) technique was first
applied to speech coding and image coding. In speech/
speaker recognition, the VQ technique was also first used as
an efficient spectral quantization technique, and it has
greatly helped to reduce the amount of computation and
storage. The VQ technique has also been used as a non-
parametric representation method of spectral distribution,
and this approach has created various new algorithms for
speech/speaker recognition. The following chapters give an
overview of these techniques.

2. VQ-Based Speech Recognition
2.1 Combination of VQ and DTW

Speech recognition is essentially based on the
comparison between an utterance and a representation (a
reference pattern or a reference model) of the vocabulary
words obtained by a training phase. Two main distortions
are generally observed between them. The first one is a
non-lincar warping of the time scale, which can be coped
with by using the dynamic time warping (DTW) technique.
The second difference concerns the pronunciation itself in
that a dissimilarity remains in spite of optimal restoration of
the time scale.

If the reference patterns or both the input utterance
and the reference patterns are represented as sequences of
VQ code sequences instead of spectral parameter
scquences, the amount of computation and storage for the
reference palterns can be greatly reduced [1][2]. Here, the
VQ is also implicitly used as a clustering technique to
generate good, efficient and reliable templates.

In the SPLIT (strings of phoneme-like templates)
system, the first word recognition system based on this
technique [1], phoneme-like templates (codewords,
prototype vectors) are generated by clustering a set of
spectral parameters in training utterances, and each word is
represented as a sequence of templates. Since the spectral
distance calculation is performed between input utterance
frames and phoneme-like templates, the amount of
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calculation does not depend on the vocabulary size. This
method is, therefore, especially effective for speaker-
dependent large vocabulary word recognition, as well as
speaker-independent word recognition using multiple
templates.

2.2 Discrete HMM

Recently, the hidden Markov model (HMM) [31-[9]
has become more popular than the DTW technique. The
HMM has the capability of modeling both of the two main
distortions described above: the time warping and the
pronunciation variations. The HMM which uses VQ-based
discrete spectral density is called "discrete HMM" in
contrast to "continuous HMM" which uses continuous
spectral density functions.

A typical structure of a discrete HMM is based upon a
left-to-right Markov chain. The observed spectral sequence
of an utterance is assumed to be a stochastic function of the
state sequence of the Markov chain. The state sequence
itself is unobservable (hidden). The parameters
characterizing the HMM are the number of states, the state
transition matrix, and the observation probability functions.

Training of the HMM, that is, choosing the
parameters to optimally match the observed spectral
sequences can be performed with the Baum-Welch
algorithm. In the recognition phase for an unknown input,
the probability that the observed spectral sequence is
generated from an HMM for cach vocabulary word is
calculated with the forward-backward or the Viterbi
algorithm which is similar to the DTW algorithm. The
word with the highest probability is selected as the correct
recognition.

2.3 Semi-Continuous HMM (SCHMM) and Fuzzy-VQ-
Based HMM (FVQHMM)

Although the discrete HMM has various advantages,
such that it can model events with any distribution provided
enough training data exist, it has a serious problem of
causing quantization errors. That is, the VQ opcration
partitions the spectral space into separate regions according
to some distortion measure. Solving this problem by
increasing the codebook size creates another problem in that
huge amounts of training utterances are necessary and that
the amount of computation in the recognition stage
becomes very large.

From this point of view, the continuous HMM has
been introduced, and is becoming more popular than the
discrcte HMM. However, the continuous HMM also has a
problem in that mixtures of a large number of probability
density functions considerably increase not only the
computational complexity, but also the number of free
parameters that need to be reliably estimated. To cope with




these problems, the semi-continuous HMM (SCHMM) [10]
and the fuzzy-VQ based HMM (FVQHMM) [11]112],
which arc somewhere in between the discrete and
continuous HMMs, have been proposed.

In the SCHMM, the VQ codebook consists of a
mixture of continuous probability density functions (for
example, each codeword is represented by a mean vector
and a covariance matrix), such that the distributions are
overlapped, rather than partitioned. The SCHMM has the
modeling ability of large-mixture probability density
functions. In addition, the number of free parameters and
the computational complexity can be reduced in
comparison with the continuous HMM, since all of the
" probability density functions are tied together in the
codebook. The SCHMM thus provides a solution to the
conflict between detailed spectral modeling and insufficient
training data. The VQ codebook can also be optimized
together with the HMM paramelers in terms of the
maximum likelihood criterion.

The fuzzy VQ is based on a fuzzy K-means method
used in pattern recognition. Unlike the standard VQ that
generates the index of a single codeword that best matches
an input vector, the fuzzy VQ makes a soft decision about
which codeword is closest to the input vector. It generates
an output vector whose components indicate the relative
closeness of each codeword to the input.

It is important that the model, trained by limited data,
is robust against variations, such as noise, recording
conditions, and speaking styles. Robusiness of six types of
phoneme-HMMs against speaking-style variations was
examined [13]. The six types were discrete HMM,
FVQHMM, and single-Gaussian and mixture-Gaussian
HMMSs with either diagonal or full covariance matrices.
Eighteen Japanese-consonant recognition experiments were
performed using isolated word utterances, phrase-by-phrase
utterances, and sentence utierances. The FYQHMM, the
mixture-Gaussian HMM with diagonal covariance matrices
and the single Gaussian HMM with full covariance matrices
displayed better results than the other three types, when
different speaking-style uttcrances were used in training
and testing.

2.4 VQ-Distortion-Based Recognition

In all of the above-mentioncd methods, the vector
quantizers have been incorporated with a DTW- or HMM-
pascd time alignment mechanism. Recently, simpler
recognition algorithms based more directly on VQ have
been proposed, in which each word in the vocabulary has its
own codebook, designed by clustering the training data for
that word. The input test sequence is then encoded by the
codebook for each word and the word corresponding to the
minimum distortion codebook is chosen as the recognizer
output [14][15]). Although this method produced good
results with a small amount of computation, especially as a
method of preprocessor in large vocabulary recognition
[16], the lack of temporal information caused problems in
recognizing similar words.

Several variations of the VQ-based recognizer have
therefore been proposed to include temporal information.
One approach is to divide the words into several sections (or
states) and design a sequence of codebooks, one for each
section, for each word (multi-section vQ) [17].

Another approach is a conditional histogram
approach, which incorporates the relative likelihoods that
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certain codewords follow others into the distortion measure
[18]. The distortion between the input frame and a
codeword is defined as the weighted sum of the ordinary
spectral distortion and the ncgative logarithm of the
conditional probability of getting this codeword given the
predecessor in the same codebook.

Another technique of incorporating temporal
information into the codebook has been proposed, in which
cepstral and delta-cepstral parameters (short-time
regression coefficients) are jointly used as spectral features
[19]. Figure 1 shows the block diagram of a word
recognizer incorporating a VQ preprocessor and an HMM-
or DTW-based postprocessor. A universal codebook for the
above-mentioned parameters is constructed based on a
multi-speaker, multi-word database, and a separate
codebook is designed as a subset of the universal codebook
for each word in the vocabulary. These codebooks are used
for preprocessing to eliminate word candidates whose
distance scores are large. A discrete HMM- or DTW-based
recognizer using the universal codebook then resolves the
choice among the remaining word candidates. Recently this
method was expanded to include hierarchical delta-cepstral
parameters extracted over multiple time lengths [20].
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Fig. I - Block diagram of a word recognizer incorporating a VQ
preprocessor and an HMM -IDTW-based postprocessor.

3. Learning VQ (LVQ)

Learning vector quantization (LVQ) [21][22) is a
classifier that is closely linked to Kohonen's work on self-
organizing feature maps [23]; the main difference is that
LVQ is concerned with finding good category boundaries,
while the self-organizing feature maps are designed to find
reference vectors that are centroids of the input vectors.
The learning in LVQ is, therefore, supervised, while that in
self-organizing feature maps is unsupervised.

In LVQ, each category to be learned is assigned a
number of reference vectors. Initial configurations of the
reference vectors are usually obtained by using the



traditional K-means clustering procedure. LVQ training
then tries to adjust these positions so that each input vector
has a reference vector of the right category as its closest
reference vector. Kohonen proposed two versions of LVQ:
LVQ!1 and LVQ?2. The difference between them is the way
they select the reference vectors to be adapted.

The adaptation rule for LVQ1 is as follows. If the
reference vector closest to the input vector belongs to the
same category as the input vector, it is moved closer to the
input vector, in proportion Lo the distance between the two
vectors. If the closest reference vector belongs to a category
other than that of the input vector, it is moved away, again in
proportion to the distance between the two vectors. LVQ2
requires that a number of conditions be met before vector
adaptation can occur. These conditions allow the system to
pay closer attention to the decision lines of a given
categorization problem.

4. Speaker Adaptation by VQ-Codebook
Mapping

A number of approaches have been tricd in an effort
to build speaker-independent recognition systems, typically
under HMM-based frameworks. However, since the
distributions of feature parameters across speakers are very
broad, it is difficult to separate phonemes using speaker-
independent methods.  Speaker adaptation is a method of
automatically adapting reference templates to each new
speaker or normalizing interspeaker variations in input
utlerances.

Since a VQ codebook represents the distribution of
given samples in a multi-dimensional spectral space in a
non-parametric way, the rclationships between spectral
distributions of a reference speaker and a new speaker can
be represented by correspondences between codewords
associated with them. Using mapping rules based on the
correspondences, spectra of a new speaker can be adapted to
the reference speaker or vice versa. Individual variations on
how a word is uttered are modeled by an HMM or multiple
sequences of codebook entrics in the word dictionary.
Speaker-adaptation methods are generally classified into
supervised (text-dependent) methods in which training
words or sentences are known, and unsupervised (text-
independent) methods in which arbitrary utterances can be
used.

4.1 Supervised Learning

For supervised adaptation [24}], the mapping rules arc
obtained through DTW or the Viterbi algorithm. First,
utterances of a reference speaker are used 10 create an initial
codebook. These utterances are then vector-quantized, that
is, converted into sequences of codewords. In the training
stage, training utterances of a new speaker are converted
into code scquences and time-aligned with the same word or
sentence uttered by the reference speaker. The spectral
mapping function between the codewords of these two
speakers is oblained from alignment functions, that is, the
correspondences between the time axes.

Each codeword is included in various words, and each
codeword of the reference speaker corresponds to various
codewords of the new speaker. Thus, a histogram of
correspondences between codewords of the reference
speaker and the new speaker, that is, a histogram of co-
occurrences of codewords, is calculated using the alignment
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results of all training words or sentences. The mapping
function is weighted by the histogram to find the best
correspondence rule. In the recognition stage, input speech
is vector-quantized and mapped to the reference speaker's
spectrum using the mapping rules at every frame. The
similarity between the normalized input speech and each
word of the reference speaker is then calculated and used in
the recognition decision.

In HMM-based recognition, probabilistic spectral
mapping from the reference speaker's spectral space to that
of the new speaker has also been investigated [25]. The
transformation matrix, which represents the conditional
probability of a codeword of the new speaker, given a
codeword of the reference speaker, is computed by applying
a modified forward-backward algorithm to training
uiterances.

An approach to speaker adaptation for a large-
vocabulary HMM-based speech recognition system has
also been tried [26]. The approach is based on the use of a
stochastic model, called the "speaker Markov model". The
model indicates which codeword of the new speaker is
likely to occur and what spectral parameters arc generated
by the reference speaker if, at the same time, a certain
codeword is generated by the new speaker,

4.2 Unsupervised Learning

Figure 2 is a block diagram of an unsupervised
codebook adaptation method [27]. The idea of this method
is based on an adaptation algorithm for a segment vocoder
(28]. First, an imtial codebook and a VQ-indexed word
dictionary are prepared. The initial codebook is produced
by clustering the voices of multiple spcakers, and
commonly serves as the initial condition for each new
speaker.

In the adaptation process, a set of spectra from the
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Fig. 2 - Block diagram of an unsupervised codebook adaptation
method.




training utterances of a new speaker and the reference
codebook clements are clustered hierarchically in an
increasing number of clusters. Using the deviation vectors
between centroids of the training spectra clusters and the
corresponding codebook clusters, either codebook elements
or input frame spectra are shifted so that the corresponding
centroids coincide. Continuity between adjacent clusters is
maintained by determining the shifting vectors to be the
weighted-sum of the deviation vectors of adjacent clusters.
Adaptation is thus performed hicrarchically from global to
local individuality. Several modifications to the adaptation
method have also been investigated [29].

5. VQ-Distortion-Based Speaker Recognition

VQ-based speaker recognition methods, which are
similar to the VQ-distortion-based speech rccognition
methods, have been investigated. Speaker-specific
codebooks are produced in the training stage by clustering
the spectral distribution of each reference speaker. In the
recognition stage, an input uticrance is vector-quantized
using the codebook of each reference speaker, and the mean
value or the distribution of the quantization error over the
entire speech interval is calculated. These values obtained
using each reference codebook are examined to make the
recognition decision.

Speaker recognition methods can be classified into
text-dependent and text-independent methods. The former
require the speaker 1o issue a predetermined utterance,
whereas the latter do not rely on a specific text being
spoken.

5.1 Text-Dependent Recognition

In the text-dependent speaker recognition, three vQ
approaches have been investigated: single section VQ
(normal VQ), multi-section VQ, and matrix quantization
(MQ) [30]. The multi-section VQ and the MQ approaches
are iwo different ways of incorporating temporal
information into the recognition process. Multi-section VQ
models a source by dividing it into several independent,
time-ordered subsources. On the other hand, MQ models an
utterance with a single codebook that contains an unordered
set of time-ordered speech spectrum scquences. Although
speaker verification performances of the three approaches
when using only a single digit per speaker were similar, the
multi-section VQ approach did best when 10- or 5-digit sets
were used.

5.2 Text-Independent Recognition

A method using two VQ codebooks, containing the
cepstral and delta-cepstral parameters, has been examined
[31]. The VQ codebooks for each speaker are constructed
using the isolated utterances of 10 digits. An unknown
speaker then says any onc of the 10 digits. Therefore, this
method is text-independent but vocabulary-dependent.
Distances (distortions) from test vectors to the two VQ
codebooks are optimally combined and averaged over the
test utterance to make a final recognition decision. The
experimental results show that since the cepstral and delta-
cepstral parameters are relatively uncorrelated, they provide
complementary information for speaker recognition. They
also show that the transitional representations and
performance are relatively resistant to simple transmission
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channel variations.

A method using a single codebook for long feature
vectors consisting of instantancous and transitional features
representing both cepstral and pitch characteristics has
recently been investigated [32). Figure 3 is a block diagram
of the recognition system. Three key techniques were
introduced to cope with any temporal and text-dependent
spectral variations. First, cither an ergodic HMM or a
voiced/unvoiced decision was used to classify input speech
into broad phonetic classes. Sccond, a new distance
measure, Distortion-Intersection Measure (DIM), was
introduced for calculating VQ distortion of input speech
using speaker-specific codebooks. DIM is characterized by
selective matching using only a stable subset of test speech
in the distortion calculation. Third, a new normalization.
method, Talker Variability Normalization (TVN), was
introduced. TVN normalizes parameter variation taking
both inter- and intra-speaker variability into consideration.
TVN emphasizes feature parameters that have relatively
large inter-speaker variability and small intra-spcaker
variability. The combination of the three techniques
provides highly accurate speaker identification.

A connectionist approach based on the LVQ
algorithm has also recently been tried [33].
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Fig. 3 - Block diagram of text-independent speaker recognition
incorporating broad phonetic classification.

6. Summary

This paper revicwed various methods of applying the



VYQ technique to speech/speaker recognition. Not only has
it reduced the amount of computation and storage, the VQ
technique has also created new ideas of solving various
problems in speech/speaker recognition, such as speaker
adaptation using codebook mapping. Several techniques,
such as fuzzy VQ and semi-continuous modeling of HMM,
have also been investigated to cope with the quantization
distortion problem. The VQ technique has the potential to
produce new ideas in speech/speaker recognition in
combination with new technigues, such as neural networks
and statistical approaches.
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