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Abstract

To improve speech recognition performance in adverse condi-
tions, a noise compensation method is proposed that applies a
transformation in the spectral domain whaose parameters are op-
timized based on likelihood of speech GMM modeled on the
feature domain. The idea is that additive and convolutional
noises have mathematically simple expression in the speciral
domain while speech characteristics are better modeled in the
feature domain such as MFCC. The proposed method works
as a feature extraction front-end that is independent from de-
coding engine, and has ability to compensate for non-stationary
additive and convolutional noises with a short time delay. It
includes spectral subtraction as a special case when no param-
eter optimization is performed. Experimenis were performed
using the AURORA-2J database. It has been shown that signif-
icantly higher recognition performance is obtained by the pro-
posed method than spectral subtraction.

Index Terms: noisy speech recognition, spectrum, Gaussian
mixture model

1. Introduction

Speech recognition performance in real environment is largely
affected by additive and convolutional noises. The additive
noise is associated with sound waveforms other than target
speech to recognize and the convolutional noise corresponds
to channel characteristics. To achieve high recognition perfor-
mance, compensations for both of these noises are very impor-
tant. In the spectral domain, additive and convolutional noises
are simply expressed as additive and multiplicative terms to
original speech spectrum. However, during the feature extrac-
tion process for speech recognition such as MFCC [1], the noise
effects are diffused across spectral axis and are wound due to the
filter bank analysis, log transform, etc and the relation between
noise and speech become complicated. Therefore, the most di-
rect noise compensation approach would be applying a reverse
affine transformation in the spectral domain before filter bank-
ing.

Spectral subtraction [2] is one of the most popular noise
robustness techniques that works by subtracting a noise vector
from noisy speech in the spectral domain. The noise vector is
estimated from a non-speech segment. While it is very effective
for additive noise, a limitation is that it does not compensate
for convolutional noise. Since it assumes the noise vector is
constant, it also lacks an ability to follow the changes of ad-
ditive noise. Feature-space stochastic matching [3] applies an
affine transformation in the spectral domain so that features ob-
tained from the transformed spectrum match better with HMM
used for speech recognition. In the study by Sankar et. al. [3],
HMM likelihood was used as the objective function where the
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state alignment was obtained using a recognition hypothesis.
While the framework is designed to compensate both for ad-
ditive and convolutional noises, the experiment was limited to
additive noise in their study. Experiments that compensate hoth
types of noises were performed by Kim et. al. [4] in which
the transformation coefficients were estimated offline based on
likelihood that was computed with manually transcribed labels.
A disadvantage of these approaches is that the framework uses
HMM likelihood. Since this requires state alignment, it is not
suitable for online decoding.

In this paper, we propose a spectral compensation method
that applies a transformation in the spectral domain before filter
banking, in which parameters of the transformation are opti-
mized based on speech GMM likelihood. Since GMM is used
instead of HMM, the proposed method works as a feature ex-
traction front-end that is independent from decoder without re-
quiring state alignment. Although GMM can be regarded as
a special case of HMM, our parameter estimation algorithm is
different from the previous studies in that it introduces a contin-
uous function approximation and has an advantage that a floor-
ing operation necessary after the affine transformation is taken
into consideration in the optimization.

In terms of using GMM to compensate for noise, the
method is similar to the compensation method proposed by Se-
gura et. al. [5]. While the original Segura’s method was only
for additive noise, an extended method has been propaosed by
Fujimoto et. al. that compensates both additive and convolu-
tional noises [6]. The differences are that while these methods
apply compensation operation in the log spectral domain us-
ing both speech and noise models with some assumptions, our
method compensates noise in the spectral domain using only
speech GMM by directly maximizing its likelihood. Another
extension of the Segura’s method proposed by Miyake et. al.
uses GMM likelihood as an object function to estimate SNR [7]
but the difference is that their algorithm estimates only SNR
rather than a general transformation,

The proposed method is also similar to feature space MLLR
{constrained MLLR) [8, 9] in that it transforms input vectors
based on model likelihood. A difference is where to apply the
transformation. Feature space MLLR applies the transforma-
tion in the feature domain while the proposed method applies
it in the spectral domain. Another difference is frequency reso-
lution. For MFCC features, for example, the feature for speech
recognition is derived from a filter bank output that has typically
around 23 channels. The coarse frequency resolution is based
on the observation that important information for speech recog-
nition is encoded in spectral envelope rather than its finer struc-
ture and parsimony is useful in statistical modeling. However,
from noise compensation point of view, the filter bank scatters
the influence of noise across frequency as mentioned and spoils
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the opportunity to remove noise that is originally localized. Our
method applies the transformation to spectrum before the fil-
ter bank analysis. Therefore, it has a chance to compensate the
noise effects without being affected by the feature extraction
process. The time resolution is also different. While MLLR
is performed using multiple utterances, our method estimates
and applies a transformation for a short segment around 500 ms
without requiring initial recognition hypothesis for the transfor-
mation estimation.

This paper is organized as follows. In Section 2, the algo-
rithm of the proposed target speech GMM-based spectral com-
pensation is described. Experimental conditions are shown in
Section 3 and the results are presented in Section 4. Finally, a
summary and future works are given in Section 5.

2. Target Speech GMM-based Spectral
Compensation

In this section, we first describe how to formulate a spectral
compensation transformation and then explain how the param-
eters of the transformation are optimized. We refer to our target
speech GMM-based spectral compensation method as TGSC.

2.1. Spectral compensation transformation

Let w be an index of a frequency bin of a spectral vector, z.. be
short time clean speech spectrum, a.. be convolutional noise,
and b, be additive noise. Then, noisy speech spectrum n, is
denoted as Equation (1).

Ny = Ay - Tw + b (1)
If a., and b, are known, clean speech spectrum is estimated
using Equation (2).
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In the following, we express the transformation more generally
as f (n.,au,b.) that transforms noisy speech n,, depending
on parameters a., and b... The transformation is applied at each
frequency bin independently. We use notations A and B to de-
note vectors consisting of a., and .., respectively. The dimen-
sion of A and B is equal to the frequency resolution. For exam-
ple, if speech waveform is sampled at 8§ kHz and window size
of an FFT analysis is 25 ms, then the dimension of A and B is
%8{)00 -0.025 = 100. The problem is how to estimate A and B
and we describe the proposed algorithm in the following.

2.2, Transformation parameter estimation

The proposed method uses a speech GMM that is estimated
from the same training data as an acoustic model used for a de-
coding engine. Based on the GMM, the parameters A and B of
the transformation are estimated for every block of input noisy
speech spectrum vectors so as to maximize the likelihood of
the transformed spectrum vectors {Y1,Ya,--- , ¥} as shown
in Equations (3) and (4).

T
ZLGMM (Y: (4, B)),

t=1
argmax {L (4, B)},
AB

L(A,B) 3)

‘{Aupt H Bopt}' (4)

where  is a frame index and Loasar (Y2) is log likelihood of Y;
by the speech GMM. Since the likelihood evaluation is based on
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GMM, no state alignment is required and thus the process can
be embedded in a feature extraction front-end. Note in the trans-
formation estimation, the variables to be optimized are {4, B},
and the GMM is treated as a constant. The typical block size
T that we assume is around 50, which corresponds to 500 ms
when the frame rate is 100 Hz enabling very quick adaptation
to noisy environments. The local optimum of Equation (4) can
be obtained by using the gradient ascent method. The gradient
is obtained by Equation (5) using the chain rule.

AL Lgn Bk O

. 5
y. B op.’ =)

where p., is either a., or b., k is an index of an element of the
feature vector Y;, yf is the k-th element of Y;, and f* is the
transformed spectrum.

For MFCC, the feature is derived from the (transformed)
spectral vector by applying the filter bank analysis, log trans-
formation, and discrete cosine transformation. Therefore, the

gradient jfﬂ is obtained as Equation (6).

Y

57, (6)

= %— ZC‘“'-?' log (ij!u, -f_,) ;
F w'

where e ; is (k, ) element of a discrete cosine transforma-
tion matrix C' and w, ., is (j,w) element of a filter bank matrix
W, Since the delta coefficients [10] are linear sums of adjacent
frames, their gradients are obtained as linear sums of gradients
of the corresponding frames.

2.3. Tmplementation of transformation

Following the formulation of the magnitude spectrum subtrac-
tion [2], we assume magnitude spectrum rather than complex
spectrum as the noisy speech spectrum n.,. A problem is that
after subtracting an estimated additive noise, the compensated
magnitude spectrum might take a negative value. Therefore,
a flooring operation is necessary as in the spectral subtraction
and we formulated the spectral compensation transformation
f (nw,aw..b.) as shown in Equation (7), in which n_, a., and
b, are all real numbers. The reason that we used a2, and b7
instead of a., and b, respectively, was to limit the ranges of the
multiplicative and subtractive compensation terms to 7. non-
negative during the optimization '.

Since Equation (7) is non-continuous, the gradient method
can not be directly applied. To make the optimization possi-
ble, we approximated Equation (7) by a continuous function as
shown in Equation (8).

Ju

max {a’ -n, — b7, 0.1n.} )

log (ezp (a - n, — b2) + ezp (0.1n,)) . (8)

d

As an initial values for a2, and b2, proper constants may
be used. Alternatively, if an estimate of an additive noise is
known, it can be used as an initial value for b2. In that case, the
propased method reduces to spectral subtraction if o2, = 1 and
the number of iterations for the gradient ascent is zero.

"While there are other choices to make the ranges non-negative such
as |af, taking a square gave the best result in our preliminary experi-
ments.



Table 1: SNR and Word accuracy. Base is a baseline, TGSCe
is the proposed speciral compensation method initialized with
a constant, 8§ is spectral subtraction, TGSCss is the proposed
method initialized with a noise vector used in speciral subtrac-
tion. Bold results in TGSCc are better than Base and their dif-
ferences are statistically significant. Similarly, bold results in
TGSCss are better than §S and their differences are statistically
significant.

SNR
Method [ clean | 20 | 15 w] 57T 0T -5
Base 994 | 90.1 | 70.6 | 419 | 23.0 | 143 9.7
TGSCe 97.9 878 | 71.7 | 47.6 | 25.5 | 13.9 5.2
S8 98.7 022 | 837 | 665 | 416 | 21.8 | 11.6
TGSCss 99.0 958 | 898 | 75.1 | 50.0 | 25.5 | 12.8

3. Experimental setups

Speech recognition experiments were performed using the
AURORA-2]J database [11]. Both an HMM acoustic model for
decoding and a GMM for the proposed noise compensation are
estimated from the clean training data. The training data con-
sisted of gender balanced 8440 utterances from 110 speakers.
Test set was “test set C” of the AURORA-2J database whose
chamnel condition is open to the training data. As additive
noises, the test set includes subway and street noises with seven
different SNRs. At each SNR condition, the test set has 2002 ut-
terances. The recognition vocabulary was 13, which consisted
of 1!l entries for digits including two pronunciations for zero,
and two silences with different lengths. The training and de-
coding were conducted following the scripts provided by the
corpus. Therefore, the experiments corresponded to “category
0” accarding to the guideline of the corpus, The sampling fre-
quency of the speech data was 8 kHz, and the window width
and shift for the FFT analysis was 25 ms and 10 ms, respec-
tively. Feature vectors consisted of 12 MFCC, their delta, and
delta energy. Both the HMM and the GMM used these features.

For the spectral compensation by TGSC, 50 frames were
treated as a unit to estimate and apply the transformation. As
the initial value for a2, 1.0 was used. For b?_., two settings
were evaluated; one was a constant 100.0 and the other was
a noise vector estimated from the first 10 frames of each ut-
terance. When the estimated noise vector was used and if the
parameters were not updated, TGSC gave the same result as the
spectral subtraction as mentioned in Section 2.3.

4. Experimental results

Table 1 shows word accuracies for each SNR condition. The
Gaussian mixture used for TGSC had 422 Gaussian compo-
nents and the number of iterations for the gradient ascent to
optimize the transformation was five. Compared to the baseline
that applied no noise compensation, the proposed TGSC ini-
tialized with a constant vector (denoted as TGSCe in the table)
gave some improvements when SNR was 5 to 10 but a slight
degradation was observed in the clean condition. When a noise
vector was used to initialize TGSC (denoted as TGSCss in the
table), it gave better results than spectral subtraction for all the
conditions and the differences were all statistically significant
by the MAPSSWE significance test [12].

Figure | shows the relationship between the number of mix-
tures of GMM and word aceuracy when SNR=10 and the num-
ber of iterations was five. Improvements from spectral subtrac-
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Figure 1: Number of mixtures of GMM for TGSC and word
accuracy when SNR=10. TGSCss is the result by the proposed
method using an estimated noise vector as an initial value, and
8§ is a result by spectral subtraction that is independent of the
GMM.

Table 2: Number of irerations of the gradient ascent to optimize
TGSCss and word accuracy. Zero-th iteration is the result of
speciral subtraction.

SNR
#iter [clean | 20 [ 15 [ 10 [ 5 [ 0 ] -5
0 087 | 922 | 83.7 | 66.5 | 41.6 | 21.8 | 11.6
ik 988 | 94.1 | 86.6 | 71.0 | 465 | 23.8 | 125
2 09.0 | 949 | 88.2 | 72.9 | 489 | 249 | 13.1
5 99.0 | 958 | 89.8 | 75.1 | 50.0 | 25.5 | 12.8
L0 98.3 | 958 | 89.6 | 740 | 48.0 | 23.5| 12.1

tion were obtained when the number of mixtures was two or
larger. The improvements became larger for the increase of the
mixtures but it mostly converged at around 400 mixtures.

Table 2 shows a relationship between the number of iter-
ations and word accuracy when the noise vector was used for
the initialization. In the table, the results of zero-th iteration are
equivalent to spectral subtraction. The results of five iterations
corresponds to the results of TGSCss in Table 1. As can be
seen, improvements from the spectral subtraction method were
obtained from the first iteration. Overall, five iterations gave the
best results. The reason that 10 iterations gave slightly degraded
results from five iterations was probably aver-fitting.

Our software to apply TGSC was not optimized for efficient
computation but Table 3 shows the real time factor (RTF) of
TGSC using the program and 422 mixture Gaussian distribution
on computers with an Tntel Core 2 CPU. Since it involves the
optimization of the transformation, TGSC is computationally
more expensive than spectral subtraction. The cost was mostly
linear to the number of iterations.

While TGSC can compensate convolutional noise, the nor-
malization time scale is about 500 ms.To incorporate longer
characteristics, cepstral mean subtraction (CMS) [13] would
be useful. While there are many possibilities how to combine
TGSC and CMS, here we simply applied them sequentially by
first applying TGSC and then CMS. For this combination, the
GMM used for TGSC was the same as that used in the ex-
periments without CMS having 422 mixtures. Table 4 show the
results in which the number of iterations for TGSC was five.



Table 3: Number of iterarions of gradient ascent and real time
factor (RTF). Zero-th iteration is spectral subtraction.
[#ter [ 0 [ 1 [ 2] 510
[ RTF | 0.02 | 0.63 [d2 [ 32 [ &l

Table 4: SNR and Word accuracy when CMS was applied.
Bold results in TGSCc are better than CMS baseline and their
differences are siatistically significant.  Similarly, bold re-
sults in TGSCss are better than spectral subtraction with CMS
(55+CMS) and their differences are statistically significant.

[ SNR
[ Method [clean [ 20 [ 15 [ 10 [ 5 | 0 | -5
CMS | 995 [ 957 | 85.5 | 583 | 31.0 | 21.4 [ 134
TGSCc | 99.0 | 945 | 86.5 | 674 | 44.4 | 26.0 | 15.5
S8+CMS ‘ 99.1 | 946 | 89.6 | 774 | 56.0 | 31.1 | 155
TGSCss | 99.3 | 97.0 | 93.3 | 83.5 | 62.4 | 352 | 16.9

Compared to Table 1, the baseline was replaced with the one
with CMS that gave higher word accuracy. In this condition,
TGSCc that used the constant for the initialization gave better
results than the CMS baseline for SNR -5 to 15. A slight degra-
dation was observed in the clean condition but it was relatively
minor. When an estimated noise vector was used for the initial-
ization, TGSC gave better results than spectral subtraction with
CMS for all the conditions.

5. Conclusions

We have proposed a target speech GMM-based spectral com-
pensation (TGSC) method for noise robust speech recognition.
The proposed methed uses the knowledge of speech sound as
GMM and applies noise compensation transformation in the
spectral domain. The transformation has a simple representa-
tion in the spectral domain addressing both additive and convo-
lutional noises. The parameters of the transformation consisted
of multiplicative and subtractive terms and they are optimized
so that the transformed signal gives the highest GMM likelihood
in the feature domain. The parameters are estimated for a block
of frames whose length is around 50 frames or 500 ms. How
to initialize the parameters of the transformation is important.
In the experiment, when both the multiplicative and subtrac-
tive terms were initialized by constants, improvements fram a
baseline were observed depending on SNR. When the subtrac-
tion term was initialized by a noise vector, TGSC outperformed
spectral subtraction at all the SNR conditions. A combination
of TGSC and cepstrum mean subtraction (CMS) was also in-
vestigated by applying CMS to the output of TGSC, and it was
shown that TGSC initialized with a noise vector gave the best
results.

Future work includes the comparisons and combinations
with other noise robustness or adaptation techniques such as
MLLR. TGSC and MLLR have similarity in that the transforms
are estimaied based on the likelihood criterion. While an advan-
tages of TGSC over MLLR is that it is more suitable for online
decoding having shorter transformation estimation unit without
requiring recognition hypothesis, it is interesting to combine
TGSC and MLLR for offline processing since TGSC has higher
frequency resolutions than MLLR. On the other hand, TGSC
does not have ability to warp frequency axis that is useful to
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adapt to a speaker by normalizing the difference of vocal tract
length which MLLR can do [14]. Therefore, an additive ef-
fect is expected by combining them. Since the performance of
TGSC depends on how to initialize the parameters, more inves-
tigation on the initialization strategy will be useful. Reducing
the computational cost for TGSC is necessary but we are also
interested in investigating computationally more expensive vari-
ants for higher noise compensation performance by utilizing the
emerging power of parallel processors such as GPGPU [15].
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