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Abstract

In a speech recognition system a Voice Activity Detector (VAD)
is a crucial component for not only maintaining accuracy but
also for reducing computational consumption. Froni-end ap-
proaches which drop non-speech frames typically attempt to de-
tect speech frames by utilizing speech/non-speech classification
information such as the zero crossing rate or statistical models.
These approaches discard the speech/non-speech classification
information after voice detection. This paper proposes an ap-
proach that uses the speech/non-speech information to adjust
the score of the recognition hypotheses. Experimental results
show that our approach can improve the accuracy significantly
and reduce computational consumption by combining the front-
end method.

Index Terms: speech recognition, voice activity detection, de-
coder

1. Introduction

When a speech recognition system is deployed into a practical
environment such as controlling a car navigation system or an
automatic telephone attendant, the recognizer will frequently
have to process input signals which contain long non-speech
regions and environmental noises. It is essential to be able to
robustly detect and remove these non-speech regions, because
the introduction of the non-speech harms the recognition accu-
racy and background noise often leads to an increase in insertion
erTors.

A Voice Activity Detector (VAD) is a device which will at-
tempt to detect the speech and non-speech region in the given
input signal. Robust VAD techniques have been extensively uti-
lized because they are not only important in a speech recogni-
tion system, but alse a very fundamental part of most modern
speech communication systems. Often the non-speech regions
do not contain useful information, therefore removing the non-
speech regions allows for a reduction in the storage, transmis-
sion and computational requirements.

Several extremely popular methods for VAD are front-end
based approaches which exploit characteristics of the input sig-
nal such as the energy and Zero Crossing Rate (ZCR) [1]. Other
front-end based detector uses models such as Gaussian Mixture
Models (GMMs) to model the speech and non-speech statistics
and performs a likelihood ratio test [2].

The other major approach [3] utilizes recognition results
to segment input signal. After segmentation GMM based VAD
method is utilized to pick up a speech regions and decoder rec-
ognizes again by using only the speech regions.

These approaches typically take intervals from the input
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signal and perform detection by calculating a Speech/Non-
Speech (SNS) score. If the score exceeds some pre-determined
threshold, then the input interval is judged as speech and is
passed along the recognition pipeline. [f the score is below
the threshold, the input interval is marked as non-speech and
dropped. This approach to VAD is a hard decision and the score
assigned to speech interval is not used during decoding.

When the input signal contains a speech region whose SNS
score is high the system should correctly recognize this input
as a word. Likewise a silence region whose SNS score is low
should be correctly recognized as a silence. However, in noisy
conditions silence frames are often incorrectly labeled as speech
frames and passed to the decoder, the SNS scores are discarded
and the decoder will not have the ability to recover, therefore
the noise frames are often incorrectly recognized as words and
lead to insertion errors.

In this paper we introduce a novel approach to VAD that
makes use of SNS score on a frame by frame basis to bias the
hypothesis scores in the decoding phase. The basic idea is to
add a confidence measure of non-speech to a frame acoustic
score if the state belongs to a silence or short-pause model. Al-
ternatively, a confidence measure of speech is added if the state
belongs to a phonetic model. By using the proposed method
the SNS score is used as continuous value rather than a hard bi-
nary decision and the decoder uses the value to perform belter
discriminations of words and silences.

The rest of the paper is structured as follows; The next sec-
tion describes in more detail two common approaches to VAD
which will serve as the baselines in our experiments. In sec-
tion 3 we introduce our technique. In section 4 we demonstrate
the effectiveness of the proposed algorithm on an in-car speech
recognition task, The paper finishes with conclusions and future
wark.

2. Front-end based VAD

In this paper we use two front-end based approaches as base-
line comparisons. The first is a VAD that exploits the ZCR as
described in [1]. The second baseline is a GMM based likeli-
hood ratio scheme as detailed in [2].

2.1. Zero crossing rate based VAD

In conditions which have a high Signal to Noise Ratio (SNR)
a VAD based on the energy level of the signal can operate at
satisfactory accuracy [4]. However, the detector will often in-
carrectly label on low-power speech signals and as the SNR
falls the performance can suffer quite significantly [4]. The
ZCR based approach exploits another characteristic of speech
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signals. Speech signals will change phase frequently and this
fact can be combined with the energy level to more accurately
label an input signal frame by frame using the following:

L. Does the power exceeds pre-determined threshold:
THpawer‘

2. The sign of adjacent sample is opposite

If the number of samples which satisfies the above both two
conditions exceeds the pre-determined threshold: T Hzcor, we
judge the interval as speech, if not we judge the time interval as
non-speech. The main advantages of this method are simple to
implement and can yield good results.

2.2. GMM based YAD

Another common front-end based approach to VAD is to use
GMMs to learn the acoustic characteristics of the input sig-
nal. Typically this involves using labeled data to train sepa-
rate GMMs to model the speech and non-speech data. Then
given the i*" observation vector X, the frame can be labeled
as speech if the likelihood ratio below exceeds pre-determined
threshold (T Hgarasr) and the frame can be labeled as non-
speech it the likelihood ratio does not exceed the threshold.

p(X*|H)

Lean = log m

ey

Here, f1; is hypothesis of speech and Hp is hypothesis of non-
speech. This method has been demonstrated to detect speech
robustly even in the case of low SNR.

3. Proposed method

In this paper we propose a VAD scheme that utilizes an SNS
score to adjust the score of the recognition hypothesis. In this
section we describe details of our approach.

3.1. Acoustic likelihoods in the proposed method

The first step is to compute for each frame the SNS likeli-
hoods p(X*|H1) and p(X*|Ho) using the speech and non-
speech models. In this work we used the GMM likelihoods for
p( X H.) and p(X*|Hy). For each frame i these likelihoods
are then used to calculate confidence measures according to:

p(X'|Hi)
p(X?|H1) + p(X| Ho)

p(X'|Ho)
p(X*|Hz) + p(X | Ho)

2

i
Cy, =

Ch, =

()

Here, C'y, is the confidence measure of the i*" frame contains
speech, and C'fL;D is the confidence measure of the frame does
not contain speech. The denominator terms ensure the confi-
dence measures exist in the range 0 to 1.

We then use the confidence measures to bias the acoustic
model scores.

If the hypothesis belongs to a phone model, the acoustic
model score 1s biased using:

108 Pam (X*|8) = log pam(X*|6)

+a log Cl, ()
2 iin Ch -
Gy = 2n+1 (3)

Ortherwise the hypothesis must belong to a silence model and
the acoustic model score is biased using:

10g Bam (X'|0) = log pam(Xi\t?)

+a log Ch, (6)
~i Z:tz C}fo -
Cm=Tm1 @

Here, X% is the i*" feature vector, 0 is hypothesis, pam {Xiiﬂ) is
the acoustic model score, & is a scaling factor and n is a smooth-
ing parameter for computing C;, and C’},u over a window. The
smoothing parameter n means that the proposed method yields
latency of n frames.

If the parameter « is set to 0, log Pam(X'|8) and
108 Parm (X*|0) become equal. In the interval whase Cly, (or
C};—u) becomes 1, the acoustic model scores in word and si-
lence models become log Pam (X*[8) and —oc(or —so and
log Pam(X*|#)). This means that only a word (or silence) is
recognized in this interval. Tn the speech interval a word is cor-
rect and in the non-speech interval a silence is correct. There-
fore this method does not affect the score of the best hypothesis
if the C'fql and C_‘};D have high confidence.

3.2, Combination with front-end VAD

As previously discussed one of the merits of utilizing a front-
end VAD is that non-speech frames can be discarded early in
the recognition pipeline, which means computational cost is
saved because not all input needs to be recognized. To reduce
the computational burden we also employ frame discarding and
only reject frames in which we have a high confidence of non-
speech. The combination of our scoring technique with frame
discarding is a powerful approach allowing we can achicve
higher recognition accuracy and simultaneously reducing the
computational costs.

4. Experiments

We evaluated our approach using the Drivers Japanese Speech
Carpus in a Car Environment (DISC) corpus [5]. This is a
hands-free command and control task composed of utterances
recorded in a car driving on a moterway. The test set consists
of 40 speakers equally split between male and female speakers.
Each participant provided 41 commands in an utterance contin-
nously that would operate navigation whilst driving. The com-
mands within each utterance are separated by one to rwo sec-
onds non-speech regions which capture the background noise
conditions. The recordings were performed at 16 kHz using a
microphone mounted in the position of the navigation device.
The acoustic models were trained on 32 hours of speech data
from the Japanese Newspaper Article Sentences (JNAS [6])
corpus. The training material is gender balanced containing
130 male speakers giving 25 hours of speech and 130 female
speakers providing another 27 hours of speech. From the pro-
cessed data the acoustic models were EM trained and this pro-
cess yielded a set of three states lefi-to-right tri-phone HMM
with 2000 states. Each state output density was a 16 com-
ponent GMM with diagonal covariance. In the evaluation the
training and testing data were processed as follows. The raw
speech waveforms were converted to a sequence of 38 dimen-
sional feature vectors with 10 ms frame rate and 25 ms windows
size. Fach feature vector was composed of 12 Mel-frequency
cepstral coefficients (MFCCs) with deltas and delta-deltas, aug-
mented with log delta and delta-delta energy terms. The lan-



guage model was a network grammar and the vocabulary size
was 83 words to cover all of the commands. The network had
a path which corresponded to each of the valid commands that
looped through the initial state to allow continuous recognition
of the utterance stream.

The GMMs for the VAD each had four Gaussian compo-
nents. The speech GMM was trained using the data from 967
lectures of the Corpus of Spontaneous Japanese (CSJI) [7] and
the non-speech GMM was trained with data from car noise from
Japan Electronic Industry Development Association (JEIDA).
In the recognition evaluations we used T° Decoder [8] cur-
rently under development at Tokyo Institute of Technology.

4.1. Word accuracy results

We first show in Figure 1 the recognition accuracy when using
the different VAD methods.

e haseline represents the result without any VAD.

s ZCR is the result when using ZCR and energy for VAD
(front-end VAD).

GMM is the result using the GMM based likelihood ratio
detector (front-end VAD).

o proposed is the result of our proposed VAD.

e manual corresponds to the result when using the corpus
labels to remove non-speech region.

The scores Cy, and C;, were also caleulated using the GMMs
which were used with GMM based likelihood VAD. The pa-
rameters of each of the VADs were optimized manually. (In
ZCR VAD threshold of power T Hpgwer Was set to 0, thresh-
old of zero crossing rate THzer was set to 10 and the frame
length was 25ms. In GMM VAD threshold of likelihood ra-
tio Leara was set to -5, In the proposed method the scaling
factor & was set to 10 and smoothing parameter n was set to
15.) The results show that without any VAD the word recog-
nition accuracy was 43.1% (deletion:23.7%, insertion:5.0%,
substitution:28.2%). The ZCR method achieved 46.5% (dele-
tion:24.6%, insertion:4.3%, substitution:24.6%) and GMM
method achieved 45.8% (deletion:27.6%, insertion:3.7%, sub-
stitution:22.9%) word accuracy. These corresponded to an ab-
salute word improvement of 3.4% and 2.7% respectively. The
proposed technique achieved a 53.1% (deletion:25.6%, inser-
tion:1.8%, substitution:19.5%) word accuracy and this corre-
sponded to an absolute 10% improvement over the non-VAD
baseline, this was the highest word accuracy we obtained in
the evaluations and this result shows the effectiveness of our
method. Using the labels from the corpus a 60.4% (dele-
tion:19.3%, insertion:2.1%, substitution:18.2%) word accuracy
was achieved. This indicates that there is still room to improve
the proposed method.

4.2. Robustness results

Next we illustrate the performance of the proposed method for
various parameter settings. Figure 2 shows the relationship be-
tween word accuracy and the scaling factor . The X of n X
in this figure expresses the smoothing parameter, for example
n 12 means that qul and G};D are smoothed over 12 frames on
either side of the current frame X* (25 frames in total). This
figure shows that not only the accuracy is higher as the smooth-
ing factor n is increased, the selection of & parameter also be-
comes more robust. For these evaluations we achieved the high-
est word accuracy at a smoothing frame of 15 and an & value of
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Figure 2: The relationship between word accuracy and param-
eters in the proposed method.

10, This corresponds to the best case recognition latency of 150
ms.

4.3. Combination results

In this section we demonstrate accuracy of the decoder when us-
ing a combination of the GMM based front-end VAD with the
proposed method. Figure 3 shows the word recognition accu-
racy as the threshold value in the front-end GMM based detector
is varied. The horizontal axis is T Hearar for the GMM based
detector and the vertical axis is word accuracy. The threshold
was varied from -15 to 5 with the figure showing the best im-
provement occurring for the value of -5. This is because the
front-end rejects the frame with low scores and this rejection
reduced recognition errors from the non-speech interval.

After the threshold is increased past 0 there is a rapid reduc-
tion in accuracy. This is because blocks of speech are rejected
and this manifests as an increase in deletion errors.

4.4, Computational cost

In this section we show how the frame dropping front-end VAD
can lead to a reduction in computational cost. The horizon-
tal axis in Figure 4 is T Hgaras for the GMM based detector
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Figure 4: The reduction of computation cost.

and the vertical axis is the amount of frames dropped by the
front-end VAD. The threshold value of -5 achieved the highest
word accuracy and for this setting the front-end rejected 60% of
the frames. The front-end VAD rejects a lot of frames past the
threshold value of -3 and rejection rate beyonds 70% which is
ratio of speech and silence in the test sound data. In this case the
word accuracy degrades rapidly because a lot of speech frames
are rejected. Therefore it is important to reject frames safely in
front-end if the SNS score is low. Otherwise the frames should
be passed to the proposed VAD method. By combining tech-
niques in this manner we can reduce the computation cost by
60% without any degradation of accuracy.

5. Conclusion

In this paper we have described an approach to VAD method
that utilizes the speech/non-speech scare to adjust recognition
hypotheses. The experimental results show that by using the
method we can achieve a large improvement in word recogni-
tion under real warld noisy conditions. We have also shown that
the proposed method in combination with a front-end VAD can
maintain the best accuracy whilst reducing computational cost
by up to 60%.

In future work we are going to perform further evaluations
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on the robustness of the proposed method in various noise and
SNR conditions and investigate ways to adjust parameters au-
tomatically on-line. Although the combination method has the
ability to perform very well for certain parameter settings, fu-
ture work is needed to ascertain if this is a general result and
if on-line parameter adjustments are necessary to fully harness
the method in changing environmental conditions.
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