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Chapter 1

Introduction

1.1 Applications

The path-width of a graph was introduced by Robertson and Seymour [71], and it was
shown that path-width is an important parameter with regards to minor containment of
forests. It has been shown that a wide variety of concepts important from an application
point of view have close connection with path-width. In what follows, we review some of

those applications.

1.1.1 VLSI Gate Matrix Layout

Gate matriz layout problem [29, 62] is a combinatorial problem that arises in several VISI
layout styles, including gate matrix layout, PLAs with multiple folding, Weinberger arrays,
and others.

In the most general form, an instance consists of an n x m Boolean matrix M, whose
rows and columns represent the nets and the gates of the circuit, respectively. The gates
may be thought of as the basic electronic devices that are arranged linearly in a row, and
the nets as realizing connections between them. Connections are realized horizontally by
reserving for a given permutation of the gates for every net the part of the row from the
leftmost to the rightmost gate to which a connection must be established. The connections
may share the same row, called track, if they have no column in common. Minimizing the
layout area, that is, minimizing the number of tracks, leads to the following gate matrix
layout problem. We are given an n x m Boolean matrix M and an integer k, and are asked
whether we can permute the columns of M so that, if in each row we change to * every
0 lying between the row’s leftmost and rightmost 1, then no column contains more than

k 1’s and #’s. The cost of a permutation is the maximum number of 1’s and *’s in any
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column of the corresponding matrix. The cost of a gate matrix layout is the minimum
cost over all its permutations.

As described in [36] an instance of the problem can be mapped to an equivalent instance
with only two 1’s per column and then modeled as a graph in which vertices correspond to
the rows and edges to the columns. Fellows and Langston [37] showed that the path-width

of a graph corresponding to a gate matrix layout with cost kis k — 1.

1.1.2 VLSI Channel Routing

An interval graph is the intersection graph of a set of intervals on a real line, in which the
vertices correspond to intervals and two vertices are connected by an edge if and only if
the corresponding intervals have nonempty intersection. Interval graphs have been studied
with regard to their application to a variety of subjects. For an overview see [42].

The concept of VLSI channel routing was introduced by Hashimoto and Stevens in
[45]. A channel is a rectangle routing region with two rows of terminals along its top
and bottom. A connection between terminals is routed by line segments on orthogonal
grids which are called horizontal and vertical tracks. Horizontal tracks are isolated from
vertical tracks, and connections between them are made through via holes on grid points.
A net is the set of terminals to be connected. The terminals of each net in the channel
are connected without connecting terminals of distinct nets. The major object of the
problem is to minimize the channel height, that is, the number of horizontal tracks used
to connect the terminals of every net in the channel. The density of a channel is the
maximum number of nets that can be cut by a vertical line through the channel, where
we say a net is cut by a vertical line if the net contains one or more terminals on each
side of the line or if the line passes through a terminal belonging to the net (and the net
is not a two terminal net both of whose terminals are on the line). A trivial lower bound
for the channel height is determined by the channel density. Let 7 be the set of intervals
corresponding to nets in the channel such that the left (respectively, right) endpoint of
an interval correspond to the position of the leftmost (respectively, rightmost) terminal of
the corresponding net. Then the density of the channel is equal to the number of vertices
in the maximum clique of the interval graph of 7.

Assume that terminals of nets can be moved with some constraints so that the density
of a channel is minimized. Let G be a graph such that the vertices correspond to nets
of a channel and two vertices are connected by an edge if and only if there exists a

constraint that the connections of the corresponding nets must be cross the same vertical



CHAPTER 1. INTRODUCTION 3

line in the channel. Although it is easy to see that not every graph is an interval graph,
every graph G is a subgraph of an interval graph since the complete graph with the same
number of vertices of G is an interval graph of G. An interval graph obtained from
G by adding edges is called an interval supergraph of G. Each interval supergraph of
(@ corresponds to a channel routing problem with two rows of terminals satisfying the
constraints. The problem is stated as follows: find an interval supergraph graph of G
such that the corresponding channel has minimum density. Kirousis and Papadimitriou
defined the interval thickness of a graph G which is the number of vertices in the smallest
maximum clique over all interval supergraphs of G. This formulation has already existed
in [65] for gate matrix layout problem. Mohring [62] and Scheffler [91] showed that the

interval thickness of a graph is equal to its path-width plus one.

1.1.3 VLSI Linear Layout

A separator of a connected graph is a set of vertices whose removal disconnects the re-
mainder of the graph. A separator whose removal separates the graph into two connected
components of nearly equal size has applications in VLSI layout [55] and divide and con-
quer algorithms [59]. Lengauer [56] called this a “static” definition of separator and in-
troduced a correéponding “dynamic” notion of a separator, called vertex separation game.
We consider the same concept as Lengauer but describe it in terms of linear layouts.

A linear layout of a graph G = (V, E) is a one-to-one mapping L:V — {1,2,...,|V|}.
For any layout L, define V;,(7) be the set of vertices of & mapped into integers less than
or equal to ¢ that are adjacent to vertices mapped into integers greater than 7. The vertex
separation number of G with respect to L, denoted by vsp(G), is the maximum number
of vertices in any V(7). The vertez separation number of G, denoted by vs(G), is the
minimum vsy,(G) over all possible layouts L of G. Kinnersley [48] showed that the vertex
separation number is identical to the path-width.

The concept of the vertex separation is closely related to a well known problem on
undirected graphs, called the mg’n—éut linear arrangement problem [40]. Indeed, if we use
edge separators instead of (vertex) separators in the above definition, we have the min-
cut linear arrangement problem. For any layout [, define Ep(7) be the set of edges of
G' that connect vertices mapped to integers less than or equal to ¢ and vertices mapped
to integers greater than 7. The cut-width of G with respect to L, denoted by cw(G), is
the maximum number of edges in any F(i). The cut-width of G, denoted by cw(G), is

the minimum cwr,(G) over all possible layouts L of . The min-cut linear arrangement
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problem is the problem of finding the cut-width of a graph. This problem formalizes the
cost measure for certain approaches to VLSI layout and have been extensively studied so
far {57, 26, 100, 60]. Chung and Seymour [25] showed a relation between cut-width and
path-width. _ -
Pebbling 1s a technique that allows relationships between time and space to be studied
by means of a game played on directed acyclic graphs. Computation time is modeled by
the length of the pebbling strategy. Storage space is modeled by the maximum number
of pebbles used at any instant in the game. For an overview see [67]. The black pebble
game models deterministic sequential computation using pebbles of only one color (black)
which represent computations. The black and white pebble game models nondeterministic
sequential computation. In the black and white pebble game, we allow a second kind of
pebbles called white pebbles which represent nondeterministic computations. The pro-
gressive pebble game does not allow repebbling which has been proposed as a model of
register allocation for the computation of arithmetic expressions, where recomputation is
not deemed realistic. Lengauer [56] showed that progressive black and white pebble games

and vertex separation games are polynomially reducible from one to the other.

1.1.4 Network Sufvivability

Consider the behavior of a rogue program, such as a computer worm or virus, in a network.
As soon as it is decided that the network is indeed infected, then all locations must be
suspected of being infected, and must be systematically tested and cleared. Suppose
that only a few copies of the vaccine program are available, and that it is impossible or
impractical to generate more copies. Then a clearing strategy is needed to use this limited
resource. Further, a poor strategy may cause some nodes to become reinfected. It is
irrelevant whether the rogue program is malicious or not, one must always assume that it
will spread whenever it can.

This type of model of damage spread, worst case spread, was formulated by Breisch
[17] and Parsons [66]. They, motivated by the problem of locating a lost explorer in a maze
of caves, invented a game on graphs, called edge-searching. We will define this search game
precisely in Chapter 4, but an informal description is as follows. A graph is thought of as
a system of tunnels, and is supposed that an infinitely fast and cunning intruder is hiding
in the graph. This intruder must be captured by searchers which slide along the edges at
finite speed and cannot see the intruder until they capture him. The edge-search number

of a graph is the minimum number of searchers necessary to guarantee the capturc of
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the intruder that cannot move through edges and vertices with searchers. Kirousis and
Papadimitriou [51] introduced another variant called node-searching. In node-searching,
we do not slide searchers along the edges, but only place them as guards on the vertices.
An intruder on an edge is captured by placing searchers at both end vertices of the edge
simultaneously. Mized-searching is a natural generalization of edge-searching and node-
searching which have been extensively studied so far. In mixed-searching, an intruder on
an edge is captured by placing searchers at both end vertices of the edge simultaneously
or by sliding a searcher along the edge. For an overview see [10]. ‘

Kirousis and Papadimitriou [50] proved that the node-search number of a graph is
equal to its interval thickness. Relations between node-searching, pebbling, and vertex
separation have been studied in [51], and edge-searching and vertex separation have been
studied in [32]. It was shown that the node-search number of a graph is equal to its
path-width plus one [62, 11].

1.1.5 Network Reliability

A k-tree is a graph obtained from a complete graph on k vertices by recursively adding a
new vertex which is adjacent to all vertices of an existing complete subgraph on k vertices.
A partial k-tree is a subgraph of a k-tree. Our interest in the family of partial A-trees
is motivated by some practical questions about reliability of communication networks in
the presence of isolated failures [33, 34, 99, 64], concurrent broadcasting in a common
medium network [27], reliability evaluation in complex systems [2]. For an overview see
[3]. In miany of these problems, the class of k-trees accurately captures the structure of
the application. Furthermore, many problems which are NP-complete for general graphs
have linear time algorithms for partial k-trees when k is fixed [5].

A k-tree Q is called a k-path if either the number of vertices of @ is at most k41 or Q)
has exactly two vertices of degree k. A k-tree @ is called a k-intercat if there exists a k-
path obtained from @ by deleting some vertices of degree k. These concepts of k-path and
k-intercat are useful to analyze problems related to k-tree. For example, given two non-
adjacent vertices u and v of a k-tree, it was shown that the union of complete subgraphs
on k vertices separating u and v is a (k— 1)-intercat and the vertices of minimal separators
which disconnect v and v induce a k-path [68]. A k-cableis a collection of & vertex disjoint
paths between vertices u and v in a k connected graph. The k-path plays a major role
in the analysis of k-cables in k-trees [43]. Moreover, Neufeld and Colbourn [64] showed

that 2-paths are most reliable 2-trees. That is, a 2-path has larger probability than any
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other 2-tree that the network is connected under the assumption that the probability that
a communication link is up is the same for every edge.

In Chapter 2, we show that a simple graph is a partial k-intercat if and only if the
path-width of the graph is at most k. Moreover we introduce the proper-path-width of a
graph which is a slightly different from the path-width, and show that a simple graph is
a partial k-path if and only if the proper-path-width of the graph is at most k.

1.1.6 Linguistics

In the syntactic theory [94], the structural description of sentences is given as directed
graphs in which the vertices correspond to words and the directed edges correspond to de-
pendencies. In the model shown in [52], a grammatical derivation starts with a dependency
graph which encodes the major syntactic relations that can be obtained among words by
labeled directed edges. A grammatical derivation of a sentence begins with a dependency
graph and ends with linear sequence of, vertices, corresponding to the temporal order in
which the words of the sentence are uttered or written.

The essential feature of the model is a relatively small storage unit called the shack.
The shack has the following feature: the shack is finite, unordered and random access
memory; elementary memory cells of the shack are indistinguishable. It is assumed that
the shack can hold at most six or seven vertices at any given moment and can not store
two or more copies of the same element. In modeling the production of actual sentences,
the shack hardly ever contains more than four items, and a research on human sentences
production suggests that in a realistic model overloading the shack results in the loss of
the entire memory content, rather than in the loss of the last item. This property is
successfully captured in connectionist symbol manipulation models.

During the derivation the graph is moved from a permanent storage space, called the
inner memory, to the outer memory via the shack. The order in which items are moved
from the inner memory to the shack is arbitrary. But a vertex can be moved from the
shack to the outer memory only if all of the vertices connected to it are also in the shack
or already in the outer memory. This constraint captures the idea that the structural
relations obtained between those parts of the sentence which are already spoken and those
which are not must be kept in the short term memory of the speaker. Similarly, in order to
understand the full content of the sentence, the listener has to remember all words having
dependencies to the unspoken part.

The sequence .S = {vy,vy,...,v,} of the vertices of a graph G, when viewed as a
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sequence from the inner memory to the shack, together with the constraint defines a
minimum demand on the shack capacity in the following way. In the i-th step, put
vertex v; from the inner memory to the shack; move all v; (j < %) with no neighbors vy
(k > i) from the shack to the outer memory. The narrowness of G with respect to 3,
denoted by nas(G), is the maximum number of vertices in the shack during this process.
This gives a lower bound for the capacity of the shack needed for a particular sequence.
The narrowness of G, denoted by na(G), is the maximum nag(G) over all sequences of
the vertices of G. Kornai and Tuza [52] showed that the narrowness of a graph is equal to

its path-width plus one.

1.2 Motivation

As shown in the previous section, the path-width and proper-path-width have been studied
in various fields of computer science, and have a number of applications. The purpose
of this thesis is to investigate the path-width and proper-path-width mainly from the
computational point of view.

The problem of computing the path-width of a graph is NP-hard. This was indepen-
dently shown for interval thickness [47], vertex separation number [56], and node-search
number [51]. It was also shown that the path-width can be computed in linear time for
trees [62, 91, 32]. However, no complexity results are known for proper-path-width. In
this thesis, we prove that the problem of computing the proper-path-width of a graph is
NP-hard for general graphs, but can be solved in linear time for trees. Many applica-
tions require a proper-path-decomposition to describe an explicit algorithm for the graphs
with bounded proper-path-width. Similar to the path-width, we show that a proper-path-
decomposition of a tree can be obtained in linear time.

Robertson and Seymour [86, 83] proved that the problem of testing membership for any
minor-closed family of graphs can be solved in polynomial time provided that we know all
the minimal forbidden minors for the family. Path-width plays an important role in graph
minor theory and the family of graphs with path-width at most & is minor-closed. However
the minimal forbidden minors are known only for the family of graphs with path-width at
most one or two [36, 49]. Similarly the family of graphs with proper-path-width at most &
is minor-closed, but no minimal forbidden minors are known for the family of graphs with
bounded proper-path-width. In this thesis, we list the minimal acyclic forbidden minors

for the family of graphs with bounded path-width or proper-path-width. Moreover we list
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all 36 minimal forbidden minors for the family of graphs with proper-path-width at most
two. This give us the first explicit membership test algorithm for the family of graphs
with proper-path-width at most two using a minor test algorithm.

Mixed-searching is a natural generalization of edge-searching and node-searching which
have been extensively studied so far, as mentioned in the previous section. In this thesis,
we prove that the mixed-search number of a simple graph is equal to the proper-path-
width of the graph. This also shows that the problem of computing mixed-search number
is NP-hard for general graphs but can be solved in linear time for trees. The optimal
mixed-search strategy for a tree is obtained from a proper-path-decomposition of the tree.

Given a family F of graphs, a graph G is said to be universal for F if G contains every
graph in F as a subgraph. A minimum universal graph for F is a universal graph for F with
the minimum number of edges. We denote the number of edges in a minimum universal
graph for F by f(F). Determining f(F) has been known to have applications to the
circuit design [97], data representation [24, 89}, and parallel computing [8]. Because, in the
context of parallel computing, for example, the edges in the universal graphs correspond to
the communication links of the parallel computing machine that simulates many parallel
algorithms without communication overhead. For general families of (unbounded-degree)
graphs, f(F) was investigated for the family of all planar graphs [7], trees [20], and 2-
paths [96]. Although the order of f(F) was known for trees and 2-paths (both of which
are subsets of planar graphs), there exists a gap between upper and lower bounds for the
family of all planar graphs. In this thesis, we show that the number of edges in a minimum
universal graph for the family of all graphs on n vertices with path-width at most % is
O (knlog(n/k)) (k > 1,n > 12k). This is a generalization of the results in [96], and it
follows that the number of edges in a minimum universal graph for the family of all planar

graphs on n vertices with bounded path-width is © (nlogn).

1.3 Thesis Outline’

We describe the outline of this thesis.

In Chapter 2, we define the path-width and proper-path-width of graphs, and discuss
properties of them. First, we show that the path-width and proper-path-width of a graph
may differ by at most one. To simplify the argument that follows, we introduce various
forms of decomposition each of which is equivalent to path-decomposition or proper-path-

decomposition. We show basic properties of (proper-)path-width of graphs such as upper
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bounds or lower bounds. The complexity of computing the path-width or proper-path-
width of graphs is discussed.

In Chapter 3, we attempt to characterize the family of graphs with bounded path-width
or proper-path-width by means of the set of minimal forbidden minors. We show that
some compositions and equivalence relations on graphs by which we can obtain minimal
forbidden minors for the family of graphs with bounded (proper-)path-width k from those
with bounded (proper-)path-width &' (k£ > k'). We list all the acyclic forbidden minors
for bounded (proper-)path-width and the forbidden minors for the family of graphs with
proper-path-width at most two. That is, we characterize the family of trees for bounded
(proper-)path-width and the family of graphs with proper-path-width at most two.

In Chapter 4, relations between path-width and search game are discussed. We in-
troduce a mew version of the search game, called mixed-searching, which is a natural
generalization of edge-searching and node-searching. Relations between mixed-searching
and two preceding searchings, and a monotonicity in mixed-searching are discussed. It
is known that the node-search number of a graph G is equal to the path-width of G
plus one. We show that the mixed-search number of a simple graph G is equal to the
proper-path-width of G. -

In Chapter 5, we give a universal graph for the family of graphs with bounded path-
width, and show that the number of edges in a minimum universal graph for the family
of n vertex graphs with bounded path-width is © (nlogn). We also give an embedding
algorithm of a graph with a path-decomposition on the universal graph.

In the last chapter, we conclude this thesis, and describe further future researches.



Chapter 2

Path-Width

2.1 Introductlon of Path-Width and Proper-Path—
Width

2.1.1 Definitions

The path-width of a graph was introduced by Robertson and Seymour in the first paper
of the Graph Minors series [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].
Graphs we consider are finite and undirected, but may have loops and multiple edges
unless otherwise specified. A graph with no edges is said to be empty. A graph is simple
if it has no loops and multiple edges. We denote the vertex set and edge set of a graph G
by V(G) and E(G), respectively. Let X = (X3, X,,...,X,) be a sequence of subsets of
V(G). The width of X is maxi<i<, | X;| — 1.

Definition 2.1 A sequence X = (X1,X,,...,X,) of subsets of V(@) is called a path-

decomposition of G if the following conditions are satisfied:

(i) For any distinct v and j (1 <4,j <r), X; € X;;

(i) Uiz Xi = V(G);

(iii) Ior any edge (u,v) € E(G), there caists an i such that u,v € X;;
(iv) Forany a,b, andc (1 <a<b<c<r), X,NnX.CX,.

The path-width of G is the minimum width over all path-decompositions of G, and denoted

by pw(G).
The definition of proper-path-width is slightly different from that of path-width.

10
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Definition 2.2 A sequence X = (X1,X,,...,X,) of subsets of V(QG) is called a proper-
path-decomposition of G if the following conditions are satisfied:

(1) For any distinct i and j (1 <i,j <r), X; € X;;

(i) Ups X; = V(G); |

(iii) For any edge (u,v) € E(G), there exists an 1 such that u,v € X;;

(iv) For any a,b, andc (1 <a<b<c< r), X,NX. CX,.

(v) Forany a,b, andc (1 <a<b<c<r), [X.NX.| < | Xp] — 2 of | X3] > 2.

The proper-path-width of G, denoted by ppw(G), is the minimum width over all proper—
path-decompositions of G.

As an example, path-decomposition and proper-path-decomposition of the graph
shown in Fig. 2.1 are shown in Figs. 2.2 and 2.3, respectively. The width of the
path-decomposition of G shown in Fig. 2.2 is two, and the width of the proper-path-
decomposition of G shown in Fig. 2.3 is three. It is easy to see that the width of the
path-decomposition is minimum over all path-decompositions of &, and pw(G) = 2. Sim-
ilarly, ppw(G) = 3. Notice that both the path-width and the proper-path-width of an
empty graph are zero, and both the path-width and the proper-path-width of a graph

with single edge are one.

—) O
2 4 : 9 10

Figure 2.1: A graph G.
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~ =

—~~ e e N
1 2 3 3 3 3 4 S TS S
. 9 10 10
2 ? 3 ? 4 ? 4 b 4 ? 4 ? 8 ? 10 ? 11 7 12
3 4 5 6 7 8 9 o
D e S
Figure 2.2: A path-decomposition of the graph shown in Fig. 2.1.

e N N N
1 3 4 9 =
3 4 4 10
2, ; ; , 4, 8, 10,
4 ) 6 ‘ 12
3 8 9 11 o
-_. 5 6 (NN
S

Figure 2.3: A proper-path-decomposition of the graph shown in Fig. 2.1.

The sequence obtained by concatenating sequences &; (1 < ¢ < r) is denoted by
(X1, Az, ..., &), For a sequence X = (X, Xs,...,X,) of subsets of V(G) and a set
5 C V(G), we denote the sequence (X; U 5, X, US,..., X, US) by (XY US), and (X; N
5, XaNnS,..., X, NS) by (X NS) for simplicity. G\S denotes the graph obtained from G
by deleting the vertices in S.

2.1.2 Consecutiveness in Path-Decomposition

We first show that vertices appear consecutive members in path-decomposition, and give

brief observations.

Lemma 2.1 Let X = (X1, Xs,...,X,) be a sequence of subsets of V(G). Then the fol-

lowing are equivalent:
1. For any a,b, and ¢ (1<a<b<e<r), X,Nn X, CX,.

2. For any vertex v € V(G), ifv € X, andv e X, (1 <s<t<7), thenv € X; for

any t (s <1 < 1), that is, v appears in consecutive X;’s.

Proof: Assume that X, N X, € X, for some distinct integers «,b, and ¢ (a < b < ¢).
Then there exists a vertex v € (X, N X,) — X}, and v does not appear in consecutive X,’s.

That is, v € Xy, v € X,, and v € X;. Conversely, assume that a vertex v € V(&) does
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not appear in consecutive X;’s. Then there exist distinct integers a,b, and ¢ (a < b < ¢
such that v € X, v € X, and v € X3, and X, N X, Z X;. ‘ a

Lemma 2.2 Let X = (X1, X,...,X;) be a sequence of subsets of V(G) such that X, N
X. C Xy for any a,b, and ¢ (1 < a < b<c<r). Then the following are equivalent:

1. For any distinct i and j (1 <14,j <r), X; € X;;
2. Foranyt (1 <i<r) X; € Xip1 and X; 2 Xipq.

Proof: It is trivial that if X; € X; for any distinct i and j (1 <14,5 <r),then X; € X;1q
and X; 2 X4y for any 7 (1 <i<r).

Assume that X;  Xiy; and X; 2 Xiyq for any 7 (1 < i < r). Suppose that X, C X,
for some distinct integers a and b (1 < a,b < 7). If ¢ < b then X, N X, C Xoq1 by the
assumption of the lemma. Thus X, = X, N X, C Xat1, and contradicting the assumption
that X, € Xqq1. Similarly, if @ > b then X, ; D X,, and contradicting the assumption
that X,y 2 X,. O

Lemma 2.3 Lel X = (X1, Xy,...,X,) be a sequence of subsets of V(G) such that X, N
Xe C Xy for any a,b, and ¢ (1 < a < b<c<r). Then the following are equivalent:

L. For any a,b, andc (1 <a<b<c<r), | X,NX,] <|Xp| =2 if | X3] > 2;

2. For any v such that [ X;| > 2 (1 <i<r), | X;o1 N Xiq| <X —2.
Proof: It is trivial that if |X, N X,| < |X,| — 2 for any a,b, and ¢ such that | Xy > 2
(1 <a<b<ec<r), then | Xy N Xy | < |X;] -2 for any ¢ such that [X;] > 2 (1 <7 < r).

Assume that |X;_; N X | < |X;| —2 for any ¢ such that [X;| > 2 (1 <7< r). Suppose
that [X,NX.| > |X}|—2 for some distinct a, b, and ¢ such that [X,| > 2 (1 <a <b< c < 7).

Since X, NX. C X;3_1NXpyq by the assumption of the lemma, | Xy—1 N Xppa| > [ XN X, | >
| Xp| — 2, and contradicting the assumption that |Xy_; N Xy, | < |X;] — 2. O

2.1.3 Path-Width and Proper-Path-Width

In this section, we show that the path-width and proper-path-width of a graph may differ

by at most one.

Theorem 2.1 For any graph G, pw(G) < ppw(G) < pw(G) + 1.
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Proof: The first inequality follows from the definition.

To prove the second inequality, we show that a proper-path-decomposition of G
with width at most k£ + 1 can be obtained from a k-path-decomposition of G. Let
(X1,X5,...,X,) be a k-path-decomposition of G. For any 7 (1 <7 <r),let X! = X;_UX;
| X NXia| = |Xz-|—1 (1<i<r),let X! = X; otherwise. It is trivial that the sequence
X = (X1, X5, ..., X]) satisfies conditions (ii) and (iii) in Definition 2.2. Since each vertex
appears in consecutive X;’s, X’ also satisfies condition (iv) in Definition 2.2 by Lemma 2.1.
Let X' be the sequence obtained from X" by deleting every X/ such that X C X7 ;. We
show that A" is a proper-path-decomposition of ¢ with width at most &k + 1. It is easy to
see that X also satisfies conditions (ii), (iil), and (iv) in Definition 2.2.

To verify the condition (i), assume that X] C X7 for some distinct 7 and j. Notice that
X; C X!'= X/ N X!} Since X; € Xj, X} = Xj_1 UXj. Ifé > j then X;_, N Xi_1 C X;
and X;_; N X; C X; by the condition (iv) in Definition 2.1. Thus X;; N X! C X;_; N
(Xisa U X;) © X Since X; N X[ C X, XN X] = (X;_;UX;)N X/ C X;. Hence, we
have X; C X]‘ N X] C X;. However, this is contradicting to X; € X;. Similarly, if 1 < j
then X; C X/ € X,_4, and we have ¢ = j — 1. Thus, X! C Xiyy. However X' does not
contain such X;. Hence A satisfies the condition (i) in Definition 2.2.

To verify the condition (v), first, assume that X] = X;_; U X; (1 < i < r). By the
condition (i) in Definition 2.1, |X}| = |X;-1 U X;| > |X;| 4+ 1. By the condition (iv) in
Definition 2.1, X; N X C X, N X,y € X; for any ¢ and ¢ (1 <a <7 < ¢ < r). Moreover,
X.NX.y # X;, for otherwise X, 2 X;. Thus [X.NX!| < |X;|—1, and | X.NX!| < |X!|-2
for any a and ¢ (1 < a <@ < ¢ <7). Next, assume that X! = X; (1 <1 < r). Notice that
|X;-1NXiq| < | X;|—2 by the definition of X{. If X/ ; = X;UX,;; then X! is not contained
in &. Thus we assume that X, = X;;;. Since X N X, C X/, n X/, C X, ; N Xy,
we have | X! N X]| < |X;| -2=|X]|-2forany e and ¢ (1 <a <i < c<r). Thus, X
satisfies the condition (v) in Definition 2.2.

Finally, we show that the width of X is at most k4 1. If X! = X, ; UX; then
| Xi| = | Xi-1 N Xi41| = 1 by the definition of X!. By the condition (iv) in Definition 2.1,
Xicga N Xy € Xy N Xy € X Moreover, X;_; N X;p1 = X;_1 N X;, for otherwise
Xio1nX; = Xy and X;_y 2 X;. Thus, X; — X, = X; —(X; 00 X;) = X, — (X210 X))
Hence, |X; — X;y] = 1 and |X!] = |X;L U Xj| = [Xiq|4+1 < k+2. If X! = X; then
| X7 = |Xi| < &+ 1. Hence, the width of X' is at most & + 1. O

The difference between the path-width and the proper-path-width of the graph shown

in Fig. 2.1 is one. The path-width and the proper-path-width of the graph shown in
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Fig. 2.4 are two.

Figure 2.4: A graph G'.

2.2 Path-Width

2.2.1 Path-Decomposition

A path-decomposition with width k is called a k-path-decomposition. A k-path-
decomposition (X1, Xa,...,X;) is said to be full if |X;] = k4+1 (1 < i < r) and
X;NXml=F0<5<r-1).

Lemma 2.4 For any graph G with path-width k, there exists a full k-path-decomposition
of GG.

Proof: It is trivial when & = 0. Thus we assume that & > 1. Let X = (X}, X5,..., X,) be
a k-path-decomposition of G such that 3-7_; (| X;| — k) is maximum. We shall show that X
is a full k-path-decomposition of G. If r = 1 then X is trivially a full k-path-decomposition
of G. Thus we assume that r > 2.

Suppose that |X;| < k for some 7 (2 <7 < 7). Let v € X;_y — X;. The sequence
X' = (Xy, Xy, Xion, Xy U {o}, Xiya, ..., X)) satisfies conditions (ii), (i), and (iv) in
Definition 2.1. To verify the condition (i), assume that X; C X; U {v} for some j(# 7).
If j > ¢ then X; C X since v ¢ X, contradicting the condition (i) in Definition 2.1.
Thus j =2 — 1 since X; = X; N (X; U {v}) € X;_;. Therefore, (X1, X, ., X5, X, U
{v}, Xit1, ..., X,) is a k-path-decomposition of . But this is contradicting the choice of
A since | X;_q] < k, for otherwise X;_; = X; U {v} and X;_; D X;. Thus X" satisfies the
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condition (i) in Definition 2.1, and X’ is a k-path-decomposition of G. But again this is
contradicting the choice of X. Thus |X;| = k+1 for any ¢ (2 < i < 7). Since (X,,...,X1)
is also a path-decomposition of G, |X;| =k + 1 for any 7 (1 <: < r).

Suppose next that |X;NX;11| < k—1forsome: (1 << r—1). Let v € X;41 —X; and
w € X; — X;y1. The sequence X' = (Xy,..., X, (Xi U {v}) — {w}, Xiy1, ..., X;) satisfies
conditions (ii), (iii), and (iv) in Definition 2.1. Assume that X; C (X; U {v}) — {w} or
(X U {v}) — {w} € X; for some j (1 < j < ). Since (X U {v}) — {w}| = [X;] = b+ 1,
X; = (X;U{v}) = {w}. Thenj =iorj=i+1since X; = X;N((X;U{v}) - {w}) € X;
if j <14, X; = ((Xi U {v}) = {w}) N X; C Xy otherwise. But this is contradicting the
assumption that | X; N X;11| < k—1. Thus A’ satisfies the condition (i) in Definition 2.1,
and &' is a k-path-decomposition of G. But this is contradicting the choice of & since
|(X; U{v}) = {w}| = k+ 1. Thus |X; N Xipa| = k for any 1 (1 <2 <r —1).

Therefore X is a full k-path-decomposition of G. a

As an example, full path-decomposition of the graph shown in Fig. 2.1 is shown in
Fig. 2.5. ‘

N e S N T N e
1 2 3 3 3 3 4 8 9 9
2,3, 4, 4,4, 4,8, 9,10, 10
3 4 3 6 7 8 9 10 11 12

N N e R g

Figure 2.5: A full path-decomposition of the graph shown in Fig. 2.1.

e

Although the condition (i) in Definition 2.1 makes a path-decomposition easy to handle,

it is not essential to characterize the path-width of graph.

Lemma 2.5 If there czists a sequénce X = (X1,Xa,...,X,) of subsets of V(G) with
width k satisfying the conditions (ii), (i), and (iv) in Definition 2.1, then pw(G) < k.

Proof: Let X’ be a sequence obtained from X by the following procedure:
1. Let =1, and 7 = 1;
2. While X; € X;4; and ¢ <7, let 2 =124 1.

3. Define X} = X;, and let ¢ =i +1 and j =7+ 1;
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4. While X;_;s D X;and i <r,let 2 =12+ 1.
5. ifz' < r then return to 2.
6. Let ' = j — 1 and define X' = (X}, X,,..., X})).

We will show that X’ is a path-decomposition of G with width k.

Since X' is obtained from X by deleting some X;’s, the width of A’ is k and each
vertex appears in consecutive X!’s. By Lemma 2.1, X’ satisfies the condition (iv) in
Definition 2.1. To verify the condition (ii) in Definition 2.1, assume that a vertex v € V(G)
is not contained in any X! (1 <: <r'). By the condition (ii) in Definition 2.1, there exists
an integer 7 such that v € X;. Let a and b be such minimum and maximum integers,
respectively. Since v € X, — Xoo1, Xgo1 P Xuo Thus X, C X4, since X, is not
contained in X’. Similarly, X; C X;y1 for any ¢ (¢ < ¢ < b) since X; is not contained
in X’. Thus we have X, C X,y1. However this is contradicting the assumption that
v & Xy Hence X' satisfies the condition (ii) in Definition 2.1. Similarly, we can verify
the condition (iii) in Definition 2.1. To verify the condition (i) in Definition 2.1, assume
that X! C X/,, for some ¢ (1 <7 < 7). Let X, = X{ and X; = X[, (1 <s<t <)
Then X, = X,N X, C X,,; by the condition (iv) in Definition 2.1, and contradicting that
X, € Xy41. Thus X! € X}, for any 7 (1 < i < ¢’). Similarly, we can show that X; 2 X, ,
for any ¢ (1 <4 < r’). By Lemma 2.2, X’ satisfies the condition (i) in Definition 2.1.

Thus &’ is a k-path-decomposition of G, and pw(G) < k. O

Lemma 2.6 Let X = (X4, Xs,..., X,) be a path-decomposition of G, and H be a subgraph
of G with path-width k. Let X! = X; NV (H). Then there exists an integer 1 (1 <2 <)
such that | X!| >k + 1.

Proof: For otherwise, X N V(H) is a sequence of subsets of V(H) with width &k — 1
satisfying the conditions (ii), (iii), and (iv) in Definition 2.1, and pw(H) < k — 1 by

Lemma 2.5. Contradicting to the assumption that pw(H) = k. O

2.2.2 Upper and Lower Bounds for Path-Width

In this section, we show upper and lower bounds for the path-width of graphs and present

the characterization for trees with path-width at least & + 1.
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Lemma 2.7 Let H be a connected subgraph of a graph G, and X = (X1, Xs,..., X,) be
a path-decomposition of G. Let X! = X;NV(H) (1 <i<7r). If X! # 0 and X| + 0
(1<a<b<r), then X! # 0 for any i (a <1 < b). That is, the vertices of H appear in
consecutive X;’s. Moreover, if |X[| =1 for some i (a <i < b), then X] = X]_ ;N X] ;.

Proof: Suppose that X! = { for some ¢ (¢ < ¢ < b). Each vertex of H appears in
consecutive X;’s by Lemma 2.1. Thus, if P = UiZ] X} and Q = Ul X/, PNQ = 0.
Since V(H) is partitioned into P-and @), and H is connected, there exist u € P and v € Q
such that (u,v) € E(H). However, {u,v} € X; for any ¢ (1 <7 < r), contradicting the
condition (iii) in Definition 2.1.

Suppose that |X!| = 1 for some ¢ (¢ < ¢ < b). Let v € X!. If v ¢ X!_, then
V(H) is partitioned into Uf;ll X; and U, X]. This is contradicting the condition (iv) in
Definition 2.1. Thus v € X/_,. Similarly, v € X ;. 0

The following lemma gives a lower bound for the width of a path-decomposition.

Lemma 2.8 Let X = (X1, Xs,...,X,) be a path-decomposition of a graph G, and Gy,
Gy, ..., G5, and H be disjoint connected subgraphs of G. Let X| = X;NV(H) (1 <i <r).
If there exists an integer b such that |X;| > k 4+ 1 and there exist integers a; and ¢;
(ai < b < ¢;) such that | X,, N V(Gi)| # 0 and | Xy, N V(G)| # 0 for any i (1 <1 < 3s),
then the width of X is at least k + s.

Proof: By Lemma 2.7, there exists at least one vertex in X, NV(G;) for any 7 (1 < i < s).
Thus | X5 > | X3 + | Xe D V(G + - + | Xe NV(Gs)| > k4 s+ 1, and the width of X is
at least k& + s. O

The following lemma shows a lower bound for the path-width of a graph.

Lemma 2.9 Let G be a connected graph and k be a positive integer. If G has a vertex v
such that G\{v} has at least three connected components with path-width k or more, then

pw(G) > k+1.

Proof: We may assume that the path-widths of connected components of G\{v} are
at most k, for otherwise trivially pw(G) > k + 1. Let Hy, H,, and Hj be connected
components of G\{v} with path-width k, and v, € V(H,), v, € V(H,), and v3 € V(H;)
be vertices adjacent to v in (.

Suppose contrary that pw(G) < k and there exists a path-decomposition X' =
(X1, Xy,..., Xy) of G with width < k. There exists some 4; such that [X; NV(H;)] > k+1
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for j = 1,2, and 3 by Lemma 2.6. Without loss of generality we assume that #; < 5 < i3.
It is trivial that G\V (H,) is a connected subgraph of G. Since X;, NV(G\V(H,)) # 0 and
X, NV(G\V(H3)) # 0, the width of X is at least k& + 1 by Lemma 2.8. This contradict
the assumption that the width of A’ is at most &. Thus pw(G) > k+1. a

The following two lemmas show upper bounds for the path-width of a graph.

Lemma 2.10 (Robertson and Seymour[71]) If every connected component of G has
path-width < k, then pw(G) < k.

Lemma 2.11 (Robertson and Seymour[71]) If S C V(G) and pw(G\S) < k, then
po(G) < k4],

The following lemma shows an upper bound for the path-width of a tree.

Lemma 2.12 Let T' be a lree and k be a positive integer. Suppose that for any v €
V(T), T\{v} has no connected component with path-width k +1 or more and at most two
connected components with path-width k. Then pw(T) < k.

Proof: Let Ty be T', and let vy be a vertex such that 75\{vs} has the maximum number
of connected components with path-width k.

If To\{vo} has no connected component with path-width k, then pw(7T") < k by Lem-
mas 2.10 and 2.11.

If To\{vo} has two connected components with path-width k, let Ty be one of these
components and vy € V(1}) be a vertex adjacent to vp in Tp. We recursively define 7; and
v; € V(1;) (1 < i < a) while T;_y\{v;_1} has a component with path-width k as follows:
Let T; be a connected component of T;_;\{v;_1} with path-width k and v; € V(T}) be a
vertex adjacent to v,y in Ti_y. T,\{v,} has no connected component with path-width k.
Let 1549 be the other connected component of To\{vo} with path-width k, and v,y €
V(T.y1) be a vertex adjacent to v in Ty. Define recursively T and v; € V(T}) (a +1 <
¢ < b) as above. Notice that T,\{vl} (1 <4 <) has at most one connected component
with path-width &, for otherwise 7o\ {v;} has three or more connected components with
path-width %, contradicting the assumption of the lemma.

Let ] (0 <2 < b) be the union of components of T;\{v;} with path-width < k —1,
-~ and H; (0 < ¢ < b) be the induced subgraph of T on V(H]) U {v;}. By Lemma 2.10,
pw(H!) <k —1(0<1i<b). By Lemma 2.11, pw(H;) < k (0 < < b). Let A(; be a path-

decomposition of H; with width < k—1. Then X(;) = (AU {vi}) is a path-decomposition
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of H; with width < k. We define sequences £ and R as follows.

L = (X(a)a {’Ua, va—l}a X(a—l)) {va-—la va-—2}7 R X(2)7 {v27 vl}a X(l)a {Uh ’Uo}).
R = ({vo,vas1}, Xas1)s {Vast1s Va2 }, Xas2), - - - » {0—2, Vb1 }, Xp-1), {Vo=1, 0}, X(5))-

It is easy to see that (£, X{g), R) is a sequence of subsets of V(T') with width at most &
satisfying the conditions (ii), (iii), and (iv) in Definition 2.1, and pw(T) < k by Lemma 2.5.
If To\{vo} has just one connected component with path-width &, the sequence R above

is empty, and (£, X(g)) is a sequence of subsets of V/(1') with width at most k satistying the
conditions (ii), (iii), and (iv) in Definition 2.1, and we also have pw(T") < k by Lemma 2.5.
0

The following theorem shows necessary and sufficient conditions for trees with path-

width at least k4 1.

Theorem 2.2 For any tree T and integer k > 1, pw(T) > k41 if and only if T' has
a vertex v such that T\{v} has at least three connected components with path-width k or

more.

Proof: Suppose that pw(T) > k+ 1. Let T be a minimal subgraph of T' with pw(7") >
k+1. Since T is minimal, 7"\{w} has no connected component with path-width > k +1
for any w € V(T"). Thus there exists a vertex v € V(7”) such that 7’\{v} has at least
three connected components with path-width k, for otherwise pw(7”) < k by Lemma 2.12.
Hence T'\{v} has at least three connected components with path-width > k. The converse

follows from Lemma 2.9. 0O

Theorem 2.2 was independently obtained by Scheffler [91], by Kinnersley [48], by Ko-
rnai and Tuza [52], and by Ellis, Sudborough and Turner [32]. Similar results can be also
found in the literature. Parsons [66]-obtained a similar results on edge-search number,

and Chung, Makedon, Sudborough, and Turner [26] obtained on cut-width.

2.3 Proper-Path-Width

2.3.1 Proper-Path-Decomposition

A proper-path-decomposition with width & is called a k-proper-path-decomposition. A
k-proper-path-decomposition (X7, X, ..., X, ) is said to be full if | X;|=k+1 (1 <7 <)
and | X; N X =k (1 <y <r=1).
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Lemma 2.13 Let k be a positive integer. If a graph G has a k-path-decomposition X' =
(Xl,Xz,...,X,-) such that ‘
IXioiN X <k—1 (2.1)

for anyi (1 <i <), then G has a full k-proper-path-decomposition.

Proof: Let X = (X1,Xs,:..,X,) be a k-path-decomposition of G satisfying inequal-
ity (2.1) such that Y7, (|X;| — k) is maximum. We shall show that A" is a full k-proper-
path-decomposition of G. In the following, X; =0 if j <0or j > r.

Assume that | X;| < kforsome: (2 <¢ < 7). If | X;o2NX;| =k—1,let v € X;_1 —X;_o,
otherwise let v € X;_; — X;. In former case, if v € X; then v € (X;_1 N X;) — (Xi—2 N
X;). Since X; o N X; € X;y NX;, | Xici N X > k and X;, O X, contradicting
the condition (i) in Definition 2.2. Thus v ¢ X;. In either case, we have v ¢ X; and
|Xi—o N(X;U{v})| < k—1. By Lemma 2.1, v € X;1,, and so |[(X; U {v}) N X} < k-1,
Thus, the sequence X’ = (X1, Xo,..., X;1, X;U{v}, Xi1q, ..., X,) satisfies inequality (2.1)
and conditions (ii), (iii), and (iv) in Definition 2.2. To verify the condition (i), assume
that X; C X; U {v} for some j(# ¢). If j > ¢ then X; C Xj since v € X, contradicting
the condition (i) in Definition 2.2. Thus j = ¢ — 1 since X; = X; N (X; U {v}) C
Xi_1. Therefore, (X1, Xy,..., X;o0, X; U{v}, Xipy,. .. ,XT) is a k-path-decomposition of
G satisfying inequality (2.1). But this is contradicting the choice of X since |X;_¢| <k,
for otherwise X;_; 2 X;. Thus X’ is a k-path-decomposition of G. But again this is
contradicting the choice of X. Thus |X;| =k +1 for any ¢ (2 <: < r). Since (X,,...,X;)
is also a path-decomposition of G, |X;| =k + 1 for any ¢ (1 << 7).

Assume next that [X;NXipq] < k—1forsomee (1 <7 <r—1). If | X;1NXip4| = k-1,
let v € X; — X;_1; otherwise let v € X; — X;;11. In either case, we have v & Xy
and | X;—1 N (Xipn U {v})] < k=1, I | X N Xigo| =k, let u € (Xipq N Xigo) — Xi.
Note that (X;y1 N Xip2) — X; # 0 since |X{+1 NXiel=k>k—12>|XiNXipq| If
| Xir1 N Xiga| < k, let w € Xip1 — Xi. In either case, we have |(Xiy — {u}) N Xigo| <
k—1. Since v € Uj_jyy Xj and u ¢ Uj-=1 Xj, the sequence X' = (Xy,...,X;,(Xig U
{v}) = {u}, Xipy, ..., X;) satisfies inequality (2.1) and conditions (ii), (iii), and (iv) in
Definition 2.2. To verify the condition (i), assume that X; C (X; U {v}) — {u} or (X;U
{v}) — {u} C X, for some j (1 <j < r). Since |(X; U {v}) —{u}| = |X;|=k+1, X; =
(X;U{v})={u}. Thenj =1iorj=1+1,sinceifj <i, X; = X;N((XiU{v})—{u}) € X
otherwise, X; = ((X;U{v})—{u}) N X; € X;j1. But this is contradicting the assumption

that |X; N X;11] < & —1. Thus A’ satisfies the condition (i) in Definition 2.2, and A" is a



CHAPTER 2. PATH-WIDTH

o
(S

k-path-decomposition of (3 satisfying Inequality (2.1). But this is contradicting the choice
of X since [(X; U {v}) — {u} =k +1. Thus |Xi NV Xipy| = k for any i (1<i<r—1).
Therefore X is a full k-path-decomposition of G satisfying inequality (2.1), and so a

full k-proper-path-decomposition of (¢ by Lemma 2.3 since IXioiNXip| < k—1 = |Xi|—2
(1<e<r). ; a

Lemma 2.14 For any graph G with ppw(G) = k, there exists a full k-proper-path-

decomposition of G.

Proof: It is trivial when &k = 0. Thus we assume that k > 1. A k-proper-path-

decomposition (X7, X,, ... y X:)of Gisa k-path-decomposition satisfying inequality (2.1).

Thus we obtain the lemma from Lemma 2.13. a

As an example, full proper-path-decomposition of the graph shown in Fig. 2.1 is shown
in Fig. 2.6.

e N e e N e T T NN
1 2 3 3 3 4 7 8 9
2 3 4 4 4 7 8 9 10
3747 57 678 9 10" 11
4 5 6 7 8 9 10 11 12

N N T T NG N

Figure 2.6: A full proper-path-decomposition of the graph shown in Fig. 2.1.

Similar to path-width, the condition (i) in Definition 2.2 is not essential to characterize

the proper-path-width of graph.

 Lemma 2.15 Let k be a positive integer. If there exists a sequence X = (X1, X,,. .. , X))
- of subsets of V(G) with width k satisfying the conditions (i), (iii), and (iv) in Defini-
Ction 2.2, and | X, N X, N X, <k —1 for any X,, X}, and X, such that each one is not a
M.l\/) 4 - a - - 15 —

- subset of the others (1 < a < b<c<r), then ppw(G) < k.
Proof: Let X' = (X1, X} X!,) be a sequence obtained from A by the procedure
. U~ = gy gy ey Dy o o
mentioned in Lemma 2.5. By Lemma 2.5, A’ is a A-path-decomposition of . Moreover
" X n X! | < k—1foranyi(l <1< r’). Thus by Lemma 2.13, there exists a
Ao THAL ] S

e el , 1) , 0
-~ k-proper-path-decomposition of ¢, and ppw(G) < k.
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Lemma 2.16 Let X = (X, X,,...,X,) be a proper-path-decomposition of G, and H be
a subgraph of G with proper-path-width k (k > 1) Let X! = X; N V(H). Then there
exists an integer ¢ (1 < ¢ < r) such that either (a) |X!| > k+1, or (b) |X!| = k and
X, N X > k- L.

Proof: For otherwise, X N V(H) is a sequence with width k — 1 satisfying the condition
of Lemma 2.15 if k > 2, contradicting to the assumption that ppw(H) = k. If k = 1 then
there exists an integer 2 such that X; contains both ends of an edge of H, that is, [ X}| > 2.

O

2.3.2 Upper and Lower Bounds for Proper-Path-Width

In this section, we show upper and lower bounds for the proper-path-width of graphs and

present the characterization for trees with proper-path-width at least k& + 1.

Lemma 2.17 Let H be a connected subgraph of a graph G, and X = (X1,Xs,...,X,) be
a proper-path-decomposition of G. Let X! = X;NV(H) (1 <i<r). If X! £ 0 and X} # 0
(1<a<b<r), then X] # 0 for any i (a <1 <b). That is, the vertices of H appear in
consecutive X;’s. Moreover, if | Xj| =1 for somei (a <i <), then X] = X| ;N X[,;.

Proof: Suppose that X = 0§ for some ¢ (¢ < ¢ < b). Each vertex of H appears in
consecutive X;’s by Lemma 2.1. Thus, if P = UiZ{ X} and Q = U, X/, PNQ = 0.
Since V(H) is partitioned into P and ), and H is connected, there exist v € P and v € Q
such that (u,v) € E(H). However, {u,v} € X; for any ¢ (1 < i < r), contradicting the
condition (iii) in Definition 2.2.

Suppose that |X!| = 1 for some ¢ (¢ < ¢ < b). Let v € X!, If v ¢ X! | then
V(H) is partitioned into U{Z{ X/ and U/_, X7. This is contradicting the condition (iv) in
Definition 2.2. Thus v € X[_;. Similarly, v € X/, ,. O

The following lemma gives alower bound for the width of a proper-path-decomposition.

Lemma 2.18 Let X = (X4, Xs,...,X;) be a proper-path-decomposition of a graph G,
and Gv, G, ..., G,, and H be disjoint connected subgraphs of G. Let X! = X; NV (H)
(1 <4 < 7). Assume that there exists an integer b such that either |X[| > k+1 or
X =k and [Xy_y N X 4] > k—1. If there exist integers a; and ¢; (a; < b < ¢;) such
that | X, N V(G)| # 0 and | X, N V(G)| # 0 for any i (1 <1 < s), then the width of X
is at least k +'s.
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Proof: By Lemma 2.17, there exists at least one vertex in X, N V(G;) (1 <1 < s). If
either | X;| > k41 or | X, NV(G;)| > 2 for some ¢, then |X;| > | X{| + [ X, 0 V(Gy)| +
Xy NV(Gs)] 2 k+ s+ 1, and the width of X’ is at least k4 s. Thus we assume that
|X;| = k and | X, NV(G;)| = 1 for any i. Let v; be a vertex in X, NV(G;) (1 < i< s). By
Lemma 2.17, v; € Xp1 N Xpyq. Since Xy N Xpyq 2 (X5 N X[ 1) U {v1,0s,...,0,}, we
have that |Xp| > | Xomy N Xy [+ 2 > [(Xp_y N X )+ Ho, 00,005 42 =k + s +1
by Definition 2.2(v). Thus the width of &X' is at least k + s. O

The following lemma shows a lower bound for the proper-path-width of a graph.

Lemma 2.19 Let G be a connected graph and k be a positive integer. If G has a vertez v
such that G\{v} has at least three connected components with proper-path-width k or more,
then ppw(G) > k + 1.

Proof: We may assume that the proper-path-widths of connected components of G'\{v}
are at most k, for otherwise trivially ppw(G) > k + 1. Let Hy, H,, and H; be connected
components of G\{v} with proper-path-width k, and v, € V(H,), va € V(H,), and
vs € V(Hs) be vertices adjacent to v in G.

Suppose contrary that ppw(G) < k and G has a proper-path-decomposition X =
(X1, Xo, ..., X)) with width < k. There exists some #; such that either | X;, NV (H;)| > k+1
or | X7 | = & and |X{ 1N X{ 4l = k~1for j =1,2, and 3 by Lemma 2.16. Without
loss of generality we assume that 7y < 45 < 23. It Is trivial that G\V(H;) is a connected
subgraph of G. Since X; NV(G\V(H3)) # 0 and X;, N V(G\V(H,)) # 0, the width of X
is at least & + 1 by Lemma 2.18. This contradict the assumption that the width of A is
at most k. Thus ppw(G) > k + 1. O

The following two lemmas show upper bounds for the proper-path-width of a graph.

Lemma 2.20 If every connected componeﬁt of G has proper-path-width < k, then
ppw(G) < k.

Proof: Let A}, A,,..., &, be proper-path-decompositions of each connected compo-
nent of G with width at most k. Then the sequence (A%, A,,...,4&,) is a proper-path-
decomposition of G with width at most £. O

Lemma 2.21 For any positive integer k, if S C V(G) and ppw(G\S) < k, then ppw(G) <
k+1]S|.
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Proof: Let A’ be a proper-path-decomposition of G\\S with width at most k. Then (X' US)
is a path-decomposition of G' with width at most k + | S| satisfying inequality (2.1). Thus
G has a proper-path-decomposition with width at most & + |S| by Lemma 2.13. ]

The following lemma shows an upper bound for the proper-path-width of a tree.

Lemma 2.22 Let T be a tree and k be an integer (k > 2). Suppose that for any v € V(T),
T\{v} has no connected component with proper-path-width k+1 or more and at most two

connected components with proper-path-width k. Then ppw(T) < k.

Proof: Let Ty be T, and let vy be a vertex such that Tp\{ve} has the maximum number
of connected components with proper-path-width k.

If To\{vo} has no connected component with proper-path-width k, then ppw(T) < k
by Lemmas 2.20 and 2.21.

If To\{vo} has two connected components with proper-path-width k, let 7} be one of
these components and vy, € V(11) be a vertex adjacent to vy in Tp. We recursively define T;
and v; € V(T;) (1 < ¢ < a) while T;_1\{vi_1} has a component with proper-path-width k
as follows: Let T; be a connected component of 7;_;\{v;—1} with proper-path-width & and
v; € V(T;) be a vertex adjacent to v;,_; in Ti_;. T,\{v,} has no connected component with
proper-path-width k. Let 7},41 be the other connected component of To\{ve} with proper-
path-width k, and v,4q € V(Z,11) be a vertex adjacent to vg in Ty. Define recursively 7
and v; € V(T;) (e +1 < i < b) as above. Notice that Ti\{v;} (1 < ¢ < b) has at most
one connected component with proper-path-width %, for otherwise 75\ {v;} has three or
more connected components with proper-path-width &, contradicting the assumption of
the lemma. , ]

Let H; (0 < ¢ < b) be the union of components of T;\{v;} with proper-path-width <
k—1, and H; (0 <¢ < b) be the induced subgraph of T on V(H})U {v;}. By Lemma 2.20,
pw(H) < k=10 <1< b). By Lemma 2.21, pw(H;) < k (0 <7 < b). It is easy to
sce that there exists a proper-path-decomposition (X(;) U {v;}) of H; with width at most
k such that X(’i) is a proper-path-decomposition of H] with width < &k —1 (0 < i < b).
Let X3y be a such proper-path-decomposition of H; (0 <7 < b). We define sequences £

and R as follows.

[, = (‘/’t'(a)7 {’l)a, ‘Ua._l}, /Y(a_.]_), {’Ua_l, 'Ua_f_)}, e 7(“\,}(‘2)’ {’1)27 ’01}7 ,-:\:’(1), {7)1, 'l)()}).

R = ({UO; Va1 }7 ‘:v(a-}-l)a {'Ua-l—la va—!—?}y /Y(a+2)a SR {'Ub——Zv vb——l}7 /\'}(b——l)a {vb—la Ub}: "’t,(b))'
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It is easy to see that (£, X(q),R) is a sequence of subsets of V(T') with width at most &
satisfying the conditions in Lemma 2.15, and ppw(T') < k by Lemma 2.15.

If T\ {vo} has just one connected component with proper-path-width &, the sequence R
above is empty, and (£, X(q)) is a sequence of subsets of V(I') with width at most
satisfying the conditions in Lemma 2.15, and we also have ppw(T") < k by Lemma 2.15.

O

The following theorem shows necessary and sufficient conditions for trees with proper-

path-width at least k& + 1.

Theorem 2.3 For any tree T and integer k > 2, ppw(T) 2 k+ 1 if and only if T has a
vertex v such that T\{v} has at least three connected components with proper-path-width k

or more.

Proof: Suppose that ppw(T') > k+1. Let 1" be a minimal subgraph of 7" with ppw(T") >
k+1. Since 7" is minimal, 7"\ {w} has no connected component with proper-path-width >
k41 for any w € V(I"). Thus there exists a vertex v € V(1”) such that 7"\ {v} has at
least three connected components with proper-path-width k, for otherwise ppw(7') < k
by Lemma 2.22. Hence T\{v} has at least three connected components with proper-path-

width ‘2 k. The converse follows from Lemma 2.19. ]

2.4 Complexity of Computing Path-Width
2.4.1 k-Path and k-Intercat

A clique of a graph G is a complete subgraph of G. A clique on k vertices is called k-clique.

For a positive integer k, k-trees are defined recursively as follows:
1. The complete graph on k vertices is a k-tree;

2. Given a k-tree ) on n vertices (n > k), a graph obtained from @ by adding a new

vertex adjacent to the vertices of a k-clique of @) is a k-tree on n + 1 vertices.

A k-tree @) is called a k-path [68] or k-chordal path [4] if either |V(Q)] < k+1 or Q has
exactly two vertices of degree k. A k-separator S of a connected graph G is an induced
" subgraph of G on k vertices such that G\V(.5) has at least two connected components. It
1s well-known that a k-separator of a k-tree @) is a k-clique of (). For a positive integer k,

k-intercats (interior k-caterpillars) [68] or k-interval graph [4] are defined as follows:
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1. A k-path is a k-intercat;

2. Given a k-intercat @) on n vertices (n > k + 2), a graph obtained from @ by adding
a new vertex adjacent to the vertices of a k-separator of Q is also a k-intercat on

n -+ 1 vertices.

A 1-path, l-intercat, and 1-tree are an ordinary path, caterpillar, and tree, respectively.
A subgraph of a k-path, k-intercat, and k-tree are called a partial k-path, partial k-intercat,
and partial k-tree, respectively.

It is well-known that any k-intercat H on n vertices (n > k) can be obtained as follows:

1. Define that @) is the complete graph on k vertices Cy;

2. Given @; and C; (kK < ¢ < n — 1), define that Q;y; is the k-intercat obtained
from @; by adding vertex viy; ¢ V(Q:) adjacent to the vertices in C;, and let
Ciy1 = (Ci U {vig1}) — {w;} where w; € C; U {v;41};

3. Define H = @,,.

In the following, to determine the complexity of computing (proper-)path-width, we
show that path-width characterizes partial k-intercat and proper-path-width characterizes

partial k-path.

2.4.2 Path-Width and k-Intercat

Theorem 2.4 For any simple graph G' and an integer k (k > 1), pw(G) < k if and only
if G is a partial k-intercat.

Proof: Suppose that pw(G) = h < k. If h = 0 then G is trivially a k-intercat. Thus we
assume that h > 1. There exists a full h-path-decomposition X = (X7, Xy,...,X,) of G
by Lemma 2.4. If » = 1 then G is a subgraph of a complete graph on h + 1 vertices, and
so we conclude that G is a partial h-intercat. Thus we assume that r > 2. We construct

an h-intercat H from X as follows:
1. Let vy be a vertex in X3 N X,. Define that Qg is the complete graph on X; — {v1 };

2. Define that ¢}y is the A-intercat obtained {from Qg by adding v, and the edges con-

necting vy and the vertices in Xy — {v; };
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3. Given @; (1 <7 < r —1), define that ()41 is the h-intercat obtained from @; by
adding viy; € X4 — X, and the edges connecting v;y; and the vertices in X;; —

{vita}s
4. Define H = Q),.

Since [Xiy1 — X;| = 1 from the definition of full h-path-decomposition, v;,; is uniquely
determined (1 <4 < r —1). Since Xip1 — {vipa} = (X; — {vi}) U{v;}) — {w;} where
w; € Xy — Xy (1 <4 <r—1), His an h-intercat. Furthermore, we have V(H) = V(G)
and E(H) 2 E(G) from the definitions of path-decomposition and @;. Thus G is a partial
h-intercat, and so a partial k-intercat.

Conversely, suppose, without loss of generality, that G is a partial h-intercat (1 <
h < k) with n' (n' > h) vertices and H is an h-intercat such that V(H) 2 V(G) and
E(H) 2 E(G). Let n = |V(H)|. As we mentioned before, we can assume that H can be

obtained as follows:

1. Define that @) is the complete graph on A vertices Cj;

2. Given @; and C; (b < ¢ < n — 1), define that Q;;, is the h-intercat obtained
from @); by adding vertex vy, &€ V(Q;) adjacent to the vertices in C;, and let
Ci+1 = (CZ U {'U'i-l—l}) — {wi} where w; € C; U {’UZ'_H};

3. Define H = @,,.

We define that X; = C;U{vip1} (A <t <n—1)and X = (X}, Xpta, ..., Xpeq). It is easy
to see that IS X; = V(H) and each vertex appears in consecutive X;’s. Thus X satisfies
conditions (ii) and (iv) in Definition 2.1. Since w; € X; — X;y; and vy € X;4q — X;,
X € Xipq and Xy € X (h <1 <n—2). Hence X satisfies condition (i) in Definition 2.1
by Lemma 2.2. Since each edge of H either connects v;.; and a vertex in C; for some ¢
(h <i<n—1) or connects vertices in C}, both ends of each edge of H are contained in
some X;. Thus A satisfies condition (iii) in Definition 2.1. It is easy to see that | X;| = A+1
(h<i<n—1)and |X;NX;41] = |Cia| = b (h <1 <n—2). Thus the sequence X is a
full h-path-decomposition of H‘. Therefore, we have that pw(G) < pw(H) < h < k. a

2.4.3 Proper-Path-Width and k-Path

Theorem 2.5 For any simple graph G and an integer k (k> 1), ppw(G) < k if and only
if G is a partial k-path.
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Proof: Suppose that ppw(G) = h < k. If h = 0 then G is trivially a k-path. Thus we
assume that A > 1. There exists a full h-proper-path-decomposition X = (X, Xs,..., X,)
of G by Lemma 2.14. If r = 1 then G is a subgraph of a complete graph on % -+ 1 vertices,
and so we conclude that GG is a pzirtial h-path. Thus we assume that r > 2. We construct

an h-path H from X as follows:
1. Let v; be a vertex in X; N X,. Define that ()1 is the complete graph on X; — {v;}.

2. Define that Q4 is the h-path obtained from @y by adding v, and the edges connecting

vy and the vertices in X; — {v;}.

3. Given @; (2 <4 <), define that Q;4; is the h-path obtained from Q; by adding

v; € X; — X;_; and the edges connecting v; and the vertices in X; — {v;}.
4. Define H = Qy41.

From the definition of full A-proper-path-decomposition, v; is uniquely determined (2 <
t <r). Since X;—{v;} CX;; (2<:< r),.the induced subgraph of @; on X; — {v;} is an
h-clique of Q; (2 <1 < r), and the induced subgraph of Q;y; on X; is (A + 1)-clique. Thus
H is an h-tree. Notice that v; € X;yy (2 <17 <r — 1), for otherwise | X;_; N X;y1| = h.
Since only the vertex in X; — X; and v, have degree h, H is an h-path. Furthermore, we
have V(H) = V(G) and E(H) 2 E(G) from the definitions of proper-path-decomposition
and ();. Thus G is a partial h-path, and so a partial k-path. ‘ ‘

Conversely, suppose, without loss of generality, that G is a partial h-path (1 < h < k)
with n (n > h) vertices and H is an h-path such that V(H) D V(G) and E(H) 2 E(G).
Let n = |V/(H)|. Since a graph obtained from an h-path by deleting a vertex of degree A,

if exists, is also an h-path, H can be ohtained as follows:
1. Denote by ()1 = R; the complete graph on h vertices.

2. Given @); and R; (1 < ¢ < n — h), denote by @4, the h-path obtained from Q; by
adding vertex v; ¢ @Q; and the edges connecting v; and the vertices of R;, and let

Rit1 be an h-clique of ();4; that contains v;.
3. Define H = Qn_py1-

We define X; = V(R) U{v;} 1<i<n—h)and X = (X1, Xs,..., X, n). It is easy to
sce that | X;| = A+ 1 for any 4, Uit X; =V (H), and each vertex appears in consecutive

X;’s. Thus X satisfies conditions (ii) and (iv) in Definition 2.2, and the width of X" is h.
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Since v; € X; — X;y and 0 #£ V(Riy) — V(R,) € X;oh — X5, Xi € Xiq and X, 1 € X;
for any ¢. Hence X satisfies condition (i) in Definition 2.2 by Lemma 2.2. Each edge of
H either connects v; with a vertex in V(R;) for some ¢ or connects vertices in V(R;). So,
both ends of each edge of H is contained in some X;. Thus X satisfies condition (iii)
in Definition 2.2. Since V(R;y1) = X; N X1y, | Xi N Xiwa| = |V(Riz1)] = h for any ¢
with 1 <4 <n—h. Since X;13 — Xio1 = {vi,vipa ), [ XKici N Xipql = =1 = | X;| — 2
(1 < ¢ < n—~h). Thus the sequence X is a full h-proper-path-decomposition of H from
Lemma 2.13. Therefore, we have that ppw(G) < ppw(H) < h < k. O

2.4.4 NP-hardness of Computing Path-Width and Proper-
Path-Width

Arnborg, Corneil, and Proskurowski [4] proved that the problem of deciding, given a
graph G and an integer k, whether GG is a partial k-intercat is NP-complete, and whether
G is a partial k-path is NP-complete. Thus we immediately have the following by Theo-

rems 2.4 and 2.5.
Theorem 2.6 The problem of computing pw(G) is NP-hard.
Theorem 2.7 The problem of computing ppw(G) is NP-hard.

There are many other parameters which are equivalent to the path-width. The path-
width of a graph G is equal to its vertex separation number vs(G) [48], its gate matrix
layout cost gml(G') minus one [37], its interval thickness #¢(G) minus one [62, 91], and its
narrowness na(G) minus one [52]. Kirousis and Papadimitriou proved that the node-search
number ns(G) of a graph G is equal to its interval thickness [50] and its vertex separation
number plus one [51]. The relation between path-width and node-search number was
mentioned in [62, 11]. Thus, for any graph G, pw(G) = vs(G) = gml(G)—1 = i(G)—1 =
na(G) — 1 =ns(G) — 1. -

As mentioned above, the problem computing these parameters are NP-hard. In fact,
NP-hardness was independently shown for interval thickness [47], vertex separation num-
ber [56], and node-search number [51]. Although this problem is NP-hard for chordal

“graphs [44], and for planar graphs with vertex degree at most three by combining the re-
sults in [63] and [51], it can be solved in linear time for trees [62, 91, 32]. It is also known

that for any fixed integer k, a k-path-decomposition of ¢ with path-width at most & can
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be obtained, if exists, in O(nlogn) time for general graphs by combining the results in

[15] and [69], and in O(n + €) time for cographs [16], where n = |[V(G)] and e = |E(G)|.
In the next section, we show that a proper-path-width of a tree T' can be computed in

linear time, and a proper-path-decomposition of 7' with width ppw(T') can be obtained in

linear time.

2.5 Proper-Path-Width of Trees

2.5.1 A Linear Time Algorithm for the Proper-Path-Width of
Trees

Although the problem computing proper-path-width is NP-hard, it can be solved in linear
time for trees. We show a practical algorithm to compute ppw(T) for trees T' based on

Theorem 2.3, and prove the following.
Theorem 2.8 For any tree T', the problem of computing ppw(T) is solvable in linear time.

Proof: For any tree T', ppw(T) > 2 if and only if T has a vertex v such that T'\{v}
has at least three connected components. That is, if we regard the proper-path-width
of a single vertex as one, then Theorem 2.3 is true when £ = 1. Thus we regard the
proper-path-width of a single vertex as one if a tree has an edge in the algorithm.

Our algorithm to compute ppw(T) is shown in Figs. 2.7 and 2.8. The outline of the
algorithm is as follows. |

We define the path-vector pv(v,T') = (p, e, n) for any tree T" with a vertex v € V(T
as the root to compute ppw(1'). p describes the proper-path-width of T'. ¢ and n describe
the condition of T as follows: If there exists u € V(T) — {v} such that T\{u} has two
connected components with proper-path-width ppw(7') and without v, then ¢ = 3 and
n is the path-vector of the connected component of T\{u} containing v; otherwise, ¢ is
the number of the connected components of T\{v} with proper-path-width ppw(T") and
n = nul. It should be noted that for any vertex u € V(1') the number of connected
components of T\ {u} with proper-path-width ppw(T') is at most two from Theorem 2.3.
Notice also that if there exists u such that T\{u} has two connected components with
proper-path-width ppw(T) and without v then w is uniquely determined. If there is no such
" then the number of connected components of T\ {w} with proper-path-width ppw(T') and
without v is not more than the number of connected components of T\{v} with proper-

path-width ppw(T"). In the following, we denote an element z in pv(v,T) by po(v,T')|z,
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where z is either p, ¢ or n.

Let Ty be a tree with root v € V(1) and P, be the path-vector of Tp. We recursively
define T; and P; (1 < ¢ < I) while P;_y|c = 3 as follows: Let ui_y € V(Ti—1) — {v}
be the vertex such that T;_;\{u;_1} has two connected components with proper-path—‘
width ppw(T;_;) and without v, T} be the connected component of T;_;\{w;_1 } containing
v as the root, and P; be the path-vector of T;. Assume that Pj|c # 3. We call such
path-vectors Py, Py, ..., P, the chain of the path-vector Py. We define b, n*, b*, and btm in
the chain of Py as follows: Define that P;|b - P;,_1 (1 < ¢ < 1); define that P;|n* = F; if
either 7 = 0 or Pilp < P_4|p—1 (1 < ¢ <) where j is the maximum integer such that
j —1 = Pip — Pj|p; define that P;|b* = P; if Pj|n* is defined and Pj|n* = P;; define that
Polbtm = P;. Thus we extend a path-vector as po(v,T) = (p, c,n,b,n*, b, btm) to reduce
the time to traverse the chain as used in [61].

In the procedure, we omit the description of substitutions for b,n*,b*, and btm in the
path-vector because no confusion is caused. Moreover, after substitutions, we can update
n*, b*, and bim in the path-vectors in the chain in constant time. So we also omit the
description of these operations. For the simplicity, if the substitution for P uses P|z, we

abbreviate Plz to .

Suppose that a tree Ty rooted at s is obtained from tree T} rooted at s and tree T; rooted ,
at ¢ by adding an edge (s,t). Based on Theorem 2.3, Procedure MERGE shown in Fig. 2.7
recursively calculates the path-vector of Ty from the path-vector P of T and the path-
vector P; of Tj. Since the larger proper-path-width of two merged trees is reduced by at
least two whenever Procedure MERGE is recursively called, the number of recursive calls
is at most max(ppw(1y), ppw(T;)) — 1. Since the time complexity of Procedure MERGE
is O(1) except for recursive célls, Procedure MERGE calculates the path-vector of Tg in
O(max(ppw (1), ppw (1)) time.

In Procedure LMERGE shown in Fig. 2.8, we can determine P’ by using btm and b*
in the chain of the path-vector in O(min(ppw(Ty), ppw(Ty))) time. If P’ is determined at
either 1b or 2b in Procedure LMERGE then the number of recursive calls of Procedure
MERGE is at most P'|n*|n|p < min(ppw(Ts), ppw(T;)). Otherwise Procedure MERGE
returns the path-vector in O(1) time. Thus Procedure LMERGE calculates the path-
vector of the join of two subtrees in O(min(ppw(Ty), ppw(T}))) time. Procedure DFS
“shown in Fig. 2.8 computes the path-vector of a maximal subtree rooted at s in 1" from
the path-vectors of maximal subtrees rooted at children of s in 7' by using Procedure
LMERGE. Procedure MAIN shown in Fig. 2.8 obtains the proper-path-width of T' from
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the path-vector of T obtained by Procedure DFS. The algorithm starts with the isolated
vertices obtained from T by deleting all edges in T" and reconstruct T’ by adding edge by
edge while computing path-vectors of connected components. 7

Let S(T') denote the time required to compute the path-vector of T', M (T}, T;) denote
the time required to obtain the path-vector of 1" from the path-vectors of Ty and T}, by
Procedure LMERGE. From Corollary 3.4 on page 49, we have ppw(T") = O(log |V (T))).

Thus we have the following,

S(T)y < S(N)+ S(Ty) + M(Ty,T3)
< S(T) + S(T2) 4+ O(min(ppw(1}), ppw(Ts)))
< S(Th) + S(Tz) + O(log(min(|V (11)], [V(T2)])))-

Notice that the recurrence defined by f(1) = 1 and, for n > 2,

[(n) = max (F(5) + (n — i) + [log, (mini,n — i))])
satisfies f(n) = O(n). An easy way to verify this is to prove that, for n > 1, f(n) < 2n —
1 — [log, ] by a straightforward induction. Thus we can prove that the time complexity

of the algorithm is O(n) where n = |V (1')]. O

2.5.2 Interval Set and Proper-Path-Decomposition

Let Z be the set of integers. We denote an interval on integers by I. Two intervals
and I on integers are said to be adjacent if there exist integers 7 € I, and j € I, such
that |t — j| < 1, and said to be independent if there exists no integer ¢ € Iy N I such that
{t—1,0+1}y € L and { — 1,7+ 1} € I,. A set T of distinct non-singleton intervals on
integers such that any two distinct intervals are independent is called an interval set of
a graph G if there exists a one-to-one correspondence J : V(G) — T such that J(u) and
J(v) are adjacent if (u,v) € E(G). For any ¢ € Z and a set Z of intervals on integers,
define Z(2) = {1 | 7 € 1,1 € Z}. The density of T is max;ez |Z(7)]. An interval set T of &
is said to be optimal if the density of 7 is minimum over all interval sets of G.

In the following, we denote a € A if « is a member of a sequence A.

Suppose that Z is an interval set of G with a one-to-one correspondence J : V(G) — T.
- For any vertex v € V((), define that I(v) (respectively, r(v)) is the integer ¢ such that
1€ J(v)and ¢ —1 & J(v) (vespectively, i +1 ¢ J(v)). A sequence (v1,vs,..., 7)) of V(G)
is called the left (respectively, right) terminal sequence of 7 if I{vy) < l(vy) < -+- < ()
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(respectively, r(vy) < r(vy) < -+ < r(vg)). A sequence (Lq,Ry,Ls, Rs,..., L., R,) is
called the terminal sequence of T if the following conditions are satisfied: (Ly, Lo,..., L,)
and (Ry, Ra,...,R,) are the left and right terminal sequences of Z, respectively; both L;
and R; are nonempty (1 < ¢ < r); for any vertices u € L; and v € R; (1 <7 < ),
l(u) < r(v); for any vertices v € R; and u € L;yy (1 < i <r—1), r(v) < I(u). Notice that
lu) # l(v), r(w) # r(v), and I(u) # r(v) for any distinct vertices u,v € V(G).

Before proving Theorem 2.9 below, we need the following lemmas.

Lemma 2.23 For any graph G with at least two vertices, there exists an optimal interval
set of G with the terminal sequence (L1, Ry, ..., L., R,) such that |L,|=1 and r > 2.

Proof: Suppose that Z is an optimal interval set of G with a one-to-one correspondence
J : V(G) — T and the terminal sequence (Ly, Ry,..., L, R,). Since |V(G)| > 2,if|L,]| =1
then » > 2. Thus we assume that |L,| > 2. Let v be the vertex in V(@) such that {(v) =
maxyer, [(w), and v be the vertex in V() such that r(u) = min,ep,—{»} 7(w). Define
that J'(v) = {t]l(v)+1 <7 < maxyer, r(w)+1,7 € Z}, J'(u) = {7|l(v) <1 < (v),1 € Z},
and J'(w) = J(w) for any w € V(G) = {u,v}. Let L. be the sequence obtained from L,
by deleting v, and R, be the sequence obtained from R, by deleting © and moving v into
the last. Then it is not difficult to see that {J'(w)|w € V(G)} is an optimal interval set of

G with the terminal sequence (Lq, Ry,..., R,—1, L., u,v, R.). Thus we have this lemma.
0

Lemma 2.24 For any proper-path-decomposition (X1, X, ..., X,) of a connected graph G
with at least two vertices, | X;| > 2 (1 <1< 7).

Proof: Suppose that X; = {v} for some / (1 <1 < ). Since @ is connected and contains at
least two vertices, there exists u € V(G) — {v} such that (v,u) € E(G). Thus {u,v} € X;
for some ¢ (1 < ¢ < r) by condition (iii) in Definition 2.2. But this is contradicting to

condition (i) in Definition 2.2 since X; C X. ‘ O

Theorem 2.9 For any non empty graph G and an integer k (k > 1), there exists a proper-
path-decomposition of G with width k if and only if there exists an interval set of G with

density k.

- Proof: If G is not connected, it is sufficient to confirm the lemma for each connected
component. It is trivial for a graph with one vertex. Thus we assume that G has at least

two vertices and connected.
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Suppose that X = (X1, X3,...,X,) is a k-proper-path-decomposition of G. Let V} =
X, Vi=X; =X 1 2<i<r),Ui=X;,-Xis 1<t <r—1),and U, = X,.. Let v; € V]
and u; € U; such that v; # u; (1 < ¢ <r). Notice that V; # 0, U; # 0, and |V; UU;| > 2
by Lemma 2.24 and conditions (i) and (v) in Definition 2.2. Let Z be the set of intervals

defined as follows:
1. Let i =1 and j = 1;
2. For each vertex w € V; — {v;}, define l(w) = j and let 7 = j + 1;
3. Define r(u;) = j and I(v;) = j + 1, and let j = 7 + 2;
4. For each vertex w € U; — {u;}, define r(w) = 7 and let j = j + 1;
5. Tfi < rthen let i =i + 1 and reburn to 2;

6.‘ Define J(w) = {i|ll(w) <1 < f(w),i € Z} for any w € V(G), and let T = {J(w) |
w € V(G)}.

First, we show that the intervals in 7 are well-defined. Since both of (V4,V3,...,V;) and
(Uy, U, ..., Uy) are partitions of V(G), both {(w) and r(w) are defined for any vertex w €
V(G). Assume that w € V; (1 < ¢ < r)and w € U; (1 <3 < r). If j < ¢ then
w € X;NX; and w ¢ X;41. But this is contradicting to condition (iv) in Definition 2.2
since X; N X; € Xj4q1. Thus ¢ < j. If i < j then trivially I(w) < r(w) by the definition
of l(w) and r(w). If 7 = j then also I(w) < r(w) since v; # u;. Thus J(w) is a non-
singleton interval on integers for any vertex w € V(). Hence 7 is a set of distinct non-
singleton intervals on integers such that any two distinct intervals in 7 are independent,
and J : V(@) — T is a one-to-one correspondence. Next, we show that Z is an interval
set of G. Tor some edge (u,v) € E(G), assume that {u,v} € X; by condition (iii) in
Definition 2.2. If {u,v} € X; — {v;} then intervals J(u) and J(v) are adjacent to each
other since {J(u), J(v)} C Z(r(u;)). Similarly, if {u,v} € X;—{u;} then intervals J(u) and
J(v) are adjacent to each other since {J(u), J(v)} € Z(I(v;)). Otherwise ({u,v} = {w, vi})
intervals J(u) and J(v) are adjacent to cach other since I(v;) — r(u;) = 1. Thus for any
edge (u,v) € E(G), intervals J(u) and J(v) are adjacent to each other. That is, Z is
an interval set of G. Finally, we show that the density of 7 is k. It is easy to see that
maxyev; [Z({(w))] = |Z(r(w))| = 1Z({(vi))] = maxyev, |Z(r(w))]| for any 2 (1 < )
Since maxy<i<, [Z(1(vi))] = maxy<icr |[Xi — {uwi}| = k, the density of T is k. Thus 7 1s an

interval set of G’ with density k.
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Conversely, suppose that Z is an interval set of G with the terminal sequence
(L1, By,..., Ly, R,) and density k. By Lemma 2.23, without loss of generality, we as-
sume that r > 2 and |L,| = 1. Let v; be the vertex such that I(v;) = min,eg, [(w) for any
i (1 <i<r). We define a sequence X = (Xy, X5,..., X,_1) as follows:

1. Define X; = L U {vp};
2. Given X; (1 <1< r—2), define X1y = (X; U Liys U {vige}) — Ry;

Since ;N Liy; = 0 (1 <4 <r—2) and L, = {v,}, X satisfies conditions (ii) and (iv) in
Definition 2.2. Since vip9 € Xjp1 —Xjand X; — Xy = R #0 (1 €i<r—2), X; € Xipq
and Xiy, € X;. Thus X; € X; for any distinct 7 and j, for otherwise X; = XinX; € X
(1<j)or Xi =XiNX; C X,y (1> j) Hence X satisfies condition (i) in Definition 2.2.
Let v; be the vertex such that /(v}) = maxyer, ((w), and u! be the vertex such that
1) = maxyep, r(w) (1 <i < 7). Let J: V(G) — T be a one-to-one correspondence.
Since Uyer, Z({(w)) = Uper, Z(r(w)) - I(l(v})) for any ¢ (1 < ¢ < r), if two intervals
I, I; € T are adjacent then I, I, € Z({(v])) or {1, L} = {J(u}), J(vit1)} (1 <i < r—1).
Notice that Z(I(v;)) C {J(v)lv € X,_1} since v, = v € X,_y. Since {J(v)|v € X;} =
Z(l(vi)) U {J(vig1)} (1 <4 < 7 —1), if two intervals J(u),J(v) € T are adjacent then
u,v € X;. Notice that u{ € X; (1 < ¢ < r —1). Thus by definition of an interval set,
X satisfies condition (iii) in Definition 2.2. Since viy1 ¢ X;—1 U R; and § # R; € Xiyq,
we have | X; 1 N Xiyq| < [X5] —2 (2 <7 < r—2). Thus & satisfies condition (v) in
Definition 2.2. Since maxi<icr—1 |X| = maxicicr—1 [Z(1(v])) U {J(vig1)}| = k + 1, the

width of A’ 1s k. Therefore X' is a k-proper-path-decomposition of G. : ]

r(u

Corollary 2.1 For any graph G on n veftz'ces, a k-proper-path-decomposition of G' can be
obtained in O(kn) time if the terminal sequence of an interval set of G with density k is

given.

Notice that r < n — k for any k-proper-path-decomposition (Xi, Xy,...,X,) of G on n

vertices.

2.5.3 A Linear Time Algorithm for Proper-Path-Decomposition
of Trees

In the following, we show a practical algorithm to construct a proper-path-decomposition
with optimal width for trees. As shown in Figs. 2.9 and 2.10, we modify the algorithm in

Figs. 2.7 and 2.8 to construct the terminal sequence of an optimal interval set of a tree.
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Theorem 2.10 For any tree T' with proper-path-width k (k > 1), the terminal sequence

of an interval set of T with densily k can be obtained in linear time.

Proof: Let 1y be a tree with root vo € V(1) and proper-path-width k. Suppose that
P0(vo, To)|c = 2. Let Ty be a connected component of Tp\{ve} with proper-path-width
k, and vy € V(T1) be the vertex adjacent to vy in T;. We recursively define T} and
v; € V(T3) (2 < i < a) while Ti—y\{v;-1} has a component with proper-path-width & as
follows: Let T; be a connected component of 7;_;\{v;_1} with proper-path-width & and
v; € V(T;) be the vertex adjacent to vi_y in T;—;. T,\{v.} has no connected component
with proper-path-width k. Let 7,41 be the other connected component of Tp\{vg} with
proper-path-width k, and v,.1 € V(T,41) be the vertex adjacent to vy in Tp. Define
recursively T} and v; € V(T;) (a+2 < i < b) as above. Notice that T;\{v;} (1 < i < b) has
at most one connected component with proper-path-width k, for otherwise Tp\{v;} has
three or more connected components with proper-path-width k. Let H! (0 < 1. < b) be the
union of components of 7;\{v;} with proper-path-width < &k — 1, and H; (0 < ¢ < b) be
the induced subgraph of 7y on V(H!)U {vl} Notice that there is no connected component
of Ti\{v;} if £ = 1. Let W/ be the terminal sequence of an optimal interval set of H!.
Since ppw(H!) < k—1 (0 <7 < b), W; = (v;, W/, v;) is the terminal sequence of an
interval set of H; with density at most & by Theorem 2.9. It is easy to see that there
exists an interval set 7 of Ty with density £ such that the terminal sequence of T is
(Woy Wart, oo, Wy, Wo, Waid, Woya, ..., Wh).

Thus, if po(ve, To)|lc = 2, we assume that the terminal sequence of an interval set
of Ty with density k is (W, vo, W§,vo, WR) where Wy, = (W, W,_1,...,Wi) and Wr =
(Wat1, Waga, ..., We). If po(vo, To)|c =1 then To\{vo} has just one connected component
with proper-path-width k, the sequence Wpg above is empty, and we assume that the
terminal sequence of an interval set of 1y with density k is (Wp, v, Wy, v0). Similarly, if
P0(vo, To)|e = 0 then To\{vo} has no connected component with proper-path-width %, and
we assume that the terminal sequence of an interval set of Ty with density & is (vo, Wy, vo).

If po(vo,To)lc < 2 then we denote a terminal sequence, Wy, Wi, Wpg, v, and
(W, Wi, Wgr) by W, L, C, R, r, and D, respectively.

Suppose that pv(vo, Tp)|e = 3. Let v € V(To) — {vo} be the vertex such that Tp\{u}
has two connected components with proper-path-width k. Let 1% and Tk be two con-
nected components of Tp\{u} with proper-path-width %, 7" be the connected compo-
nent of Tp\{u} containing vy, and 7" be the union of the other connected components of

To\{u}. Let uw; € Ty, and u, € Tx be the vertices adjacent to w in Ty, Since T\ {w}
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has at most one connected component with proper-path-width &, po(u;, Tr)|c < 1 and
po(ur, Tr)|c < 1. Thus we assume that the terminal sequences of optimal interval sets of
Ty, and T are Wi, = (W}, w;) and Wg = (u,, W}), respectively. Then it is easy to see that
there exists an interval set Z of Tj with density & such that the terminal sequence of 7 is
(Wp,u, W*, W' u, Wg) where W* and W' are the terminal sequences of optimal interval
sets of T, and 1", respectively. '

If p(vo, Tp)|c = 3 then we denote a terminal sequence, W, W*, W', Wg, and u by
W, L, N, C, R, and r, respectively. Moreover, the sequence obtained from the terminal
sequence by deleting v is denoted by D.

We extend a path-vector as po(v,T) = (p, ¢, n, b,n*, b*, btm,{L,r, N,C,r, R}, D). No-
tice that W = (L,r,N,C,r,R). In the procedure, we omit the description of op-
erations for b,n*,b*, and btm in the path-vector. Thus we denote the path-vector
(v, T) = (p,e,n, {L,r,N,C,r, R}, D). The reverse of a terminal sequence is denoted
by W, and maintained in the procedure together with the reverses of L, N, C', R, and D.
But we also omit the description of these operations.

Procedure MERGE-D shown in Fig. 2.9 recursively calculates the path-vector of T,
from the path-vector P, of T, and the path-vector P, of T} in O(max(ppw(T}), ppw(Ty)))
time. Note that the time complexity of Procedure MERGE-D is O(1) except for re-
cursive calls. In Procedure LMERGE-D shown in Fig. 2.10, we can determine P’ in
O(min(ppw(T5), ppw(T}))) time by using btm and b* in the chain of the path-vector. If
P’ is determined at 1.2 or 2.2 in Procedure LMERGE-D then the number of recursive
calls of Procedure MERGE-D is at most P'|n*|n|p < min(ppw(T}), ppw(1;)). Otherwise
Procedure MERGE-D returns the path-vector in O(1) time. Thus Procedure LMERGE-D
calculates the path-vector of the join of two subtrees in O(min(ppw(7}), ppw(Ty))) time.
Procedure DI'5-D shown in Fig. 2.10 computes the path-vector of a maximal subtree
rooted at s in 1" from the path-vectors of maximal subtrees rooted at children of s in T by
using Procedure LMERGE-D. Procedure MAIN-D shown in Fig. 2.10 obtains the proper-
path-width of T' from the path-vector of 7' obtained by Procedure DFS-D. The algorithm
starts with the isolated vertices obtained from 7" by deleting all edges in 7" and reconstruct
T by adding edge by edge while computing path-vectors of connected components. Thus
we can obtained the terminal sequence of an interval set of 7' with width ppw(7T') in linear

time. O

By Corollary 2.1 and Theorem 2.10, we obtain the following theorem.
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Theorem 2.11 For any tree T with proper-path-width k, a k-proper-path-decomposition
of T' can be obtained in O(nlogn) time.

Notice that ppw(1") = O(logn) for any tree 7" on n vertices. It should be noted that
a k-proper-path-decomposition of T', if exists, can be obtained in linear time if k is fixed.
By a similar argument, a pw(1')-path-decomposition can be obtained in O(nlogn) time

for any tree T' with n vertices.
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Procedure MERGE( P,, P )
Input: P, (path-vector of tree T rooted at s )
P; (path-vector of tree T; rooted at ¢ )
Output: the path-vector of tree rooted at s obtained from Ty and T; by adding an edge (s,t).

1. if Pslp > Plp then

(a) if Pic <2 then P;:= (p,c,nul);

(b) else if Pi|n*|p < Plp then P, := (p+ 1,0,nul);

(c) else if P;|n*|p = P|p then
i. if Pi|n*|lc > 2 or Pjc > 2 then P := (p+ 1,0, nul);
ii. else Fy|n* :=(p,c+ 1,nul);

(d) else if P;[n*|e <2 then Ps|n* := (p,c,nul);

(e) else if P;|n*|c =3 then
i. P|n*|n:= MERGE( P|n*n, B );
ii. if Pn*|nlp = Pi|n*|p then P, := (p+ 1,0, nul);
endif

(£f) return( P, );

2. else if P,p = Bjp then

(a) if Psle>2 or Pilc> 2 then Py :=(p+1,0,nul);
(b) else P :=(p,c+ 1,nul);
(¢) return( P );

3. else if P|p < P|p then

(a) if Ple <1 then P, := (p,1,nul); _
(b) else if Plc=2 then P, := (p,3,Ps);
(c) else if Pil|p> Pyn*|p then P;:=(p+1,0,nul);
(d) else if P;lp= Pyn*[p then
i. if Ple>2 or Pn*|c > 2 then P :=(p+ 1,0, nul);
ii. else Pn” := (p, Ps|c+ 1,nul);
(e) else if Pn*|c <1 then Pi|n* := (p,1,nul);
(£) else if Pi|n*|c =2 then P|n*:= (p,3,P;);
(g) else if Pin*|c =3 then
i. Pn*|n:= MERGE( P, Pin*|n );
ii. if Pin*|n|p = Pi|n*|p then P, := (p+ 1,0, nul);
endif

(h) return( B, );

endif
END

Figure 2.7: Procedure MERGE: The algorithm to compute the path-vector of the join of
two subtrees.
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Procedure LMERGE( P,, P )
Input: P; (path-vector of tree T, rooted at s )
P, (path-vector of tree T; rooted at ¢ )
Output: the path-vector of tree rooted at s obtained from 7, and T; by adding an edge (s, ).

1. if Pyp> Pi|p and Ps|c =3 then
(a) if Ps|btml|b*|p > Pijp then let P’ be P|btm|b*;
(b) else

let P’ be the path-vector P in the chain of P, such that P{n* is defined and
Plp 2 Filp> Pln"|n|p;

(¢) P':= MERGE( P/, P, );
(d) return( P, );
endif .
2. if Pilp < Plp and P;jc =3 then
(a) if Py|btm|b*|p > Ps|p then let P’ be Py|btm|b*;
(b) else

let P’ be the path-vector P in the chain of P, such that P|n* is defined and
Plp > Py|p > P|n*|n|p;

(¢) P’':= MERGE( P,, P');
(a) return( P, );
endif

3. return( MERGE( P,, P, ) );

END
Procedure DFS( s )
Input: a vertex s

Output: the path-vector of the maximal subtree rooted at s

1. P;:=(1,0,nul); /* path-vector of a tree with one vertex s */
2. for all children t of s in 7T do

(a) P,:= DFs( t );

(b) P, := LMERGE( P, P, );

endfor

3. return( P, );

END

Procedure MAIN(C T )
Input: a tree T ;
Output: the proper-path-width of T
1. Let » be a vertex in V(T);
2. if T has no edge then return( 0 );
3. else pu(r,T) := DFS( r );
4. return( pu(r,T)|p );

END

g2l

I'igure 2.8: The algorithm to compute ppw(T).
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Procedure MERGE-D( P, P; )
Input: Py (path-vector of tree T rooted at s )
P; (path-vector of tree T} rooted at ¢ )
Qutput: the path-vector of tree rooted at s obtained from 7 and 7} by adding an edge (s, 1).

i. if P|p > P|p then

(a) if Ple <2 then P, := (p,c,—,{L,r,—, (P|W,C),r, R}, (L, P|W,C, R));
(b) else if Py|n*lp < Blp then P, :=(p+1,0,—,{—,r,—,(P|W,D),r,-},(P:|W, D));
(c) else if Py|n*|p = Pi|p then
i. if P, [n le>2 or Pjc> 2 then
Py = (p+1:0a ’{ Ty 7(Pt|T/V)D):T7_}>(P1|VV’D));
ii. else if Ps|n*|c =0 then Pn* :=(p,1,—,{P|W,r,—,C,r,=}, (P|W,D));
iii. else if Py|n*|c=1 then Ps|n* :=(p,2,—,{L,r,—, C,r, %W}, (D, B|W));
endif
(d) else if Ps|n*|c <2 then Pi|n* = (p,¢,—,{L,r,—,(B|W,C),r,R}, (L, P,|W,C, R));
(e) else if P;|n*|c =3 then
i. Ps']n*|n := MERGE-D( P;|n*|n, P, );
ii. if Ps|n*|nlp = Ps|n*|p then P :=(p+1,0,—,{—,r,—,D,r,—},D);
endif
(£) return( P, );
2. else if P;|p = P|p then
(a) if P,jc>2 or Pjjc>2 then P, :=(p+1,0,—,{—, 7, —, (P|W,D),r,—},(P:|W,D));
(b) else if Pylc=0 then P := (p,1,—,{P|W,r,—,C,r,—},(2|W,D));
(c) else if Pyc=1 then P, := (p,2,—,{L,r,—,C,r, P{W}, (D, P|W));
endif
(d) return( P; );
3. else if P;|p < P|p then
(a) it Pile <1 then P, := (p,1,—,{W, Ps|r,—, Ps|D, Ps|r, =}, (W, P;| D));
(b) else if Fle=72 then P, := (p,3, P, {L,», ’|W,C,», R}, (L,», P5|D,C,r,R));
(¢) else if Filp> Pyn*|p then
=(p+1,0,—,{=, Ps|r,—, (W, P|D), P;Jr,—}, (W, P;|D));
(d) else if Pi|lp= PJn*|p then
i. if Psle> 2 or Pi|n*|c > 2 then
P, = (p+1,0,—,{—, Bs|r,—, (W, Ps| D), Ps|r,—}, (W, Ps| D));
ii. else if P;jc =0 then Pin* := (p,1,—,{W, P|r,—, B|C, Ps|r,—}, (W, P;|D));
iii. else if Pyc=1 then R|n* :=(p,2,—, {P:|L, P|r,—, P5|C, Ps|r, W}, (Ps|D, W));
endif
(e) else if P|n*|c <1 then Pin* := (p,1,—,{W, Pi|r,—, P|C, Ps|r, =}, (W, P|D));
(£f) else if Pn*lc =2 then Pin*:= (p,3, Ps,{L,r, B|W,C,r, R}, (L,r, |D,C,r, R));
(g) else if Pin*|lc =3 then
i. Pj|n*|n := MERGE-D( P,, Pjn*|n );
ii. if P|n*|n|p = P|n*|p then P, :=(p+ 1,0,—,{—, P:|r,—, D, Ps|r,=}, D);
endif
(h) return( P );

endif
END

Figure 2.9: Procedure MERGE-D.
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Procedure LMERGE-D( P,, P, )
Input: P (path-vector of tree T rooted at s )
P, (path-vector of tree T} rooted at ¢ )
Output: the path-vector of tree rooted at s obtained from T, and T} by adding an edge (s, t).

1, if Pijp > Pp and Ps|c =3 then
(a) if P;|btm|b*|p > P;|p then let P’ be P;|btm|b*;
(b) else

let P’ be the path-vector P in the chain of P; such that P|n* is defined and
Plp > Pilp > Pin*|n|p;

(¢) P':= MERGE-D( F', P, );
(d4) return( P );
endif

2. if Pip < Pi|p and P;Jc =3 then

(a) if P|btm|b*|p > Ps|p then let P’ be Pi|btm|b*;
(b) else

let P’ be the path-vector P in the chain of P, such that Pjn* is defined and
Plp > P,lp > P|n*|n|p;

(c) P':= MERGE-D( P,, P' );
(d) return( P, );
endif

3. return( MERGE-D( P,, P, ) );

END
Procedure DFS-D( s )
Input: a vertex s
Output: the path-vector of the maximal subtree rooted at s ]

1. P :=(1,0,—,{—,s,—,—,8,—},—); /* path-vector of a tree with one vertex s */
2. for all children { of s in 7T do

(a) P, := DFS-D( t );

(b) P, := LMERGE-D( P,, P, );

endfor
3. return( P, );

END

Procedure MAIN-D( 7' )
Input: atree T .

Output: the proper-path-width of T'

1. Let r be a vertex in V(T7);

2. if T has no edge then return( {—,s,—,—,s,—} );
3. else po(r,T) := DFS-D( » );

4. return( po(r,T)|W );

END

Figure 2.10: The algorithm to construct the terminal sequence of an interval set of a tree.



Chapter 3

Path-Width and Graph Minor
Theory

3.1 Introduction of Graph Minor Theory

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph
of G by contracting edges. A family F of graphs is said to be minor-closed if the following
condition holds: If G € F and H is a minor of G then H € F. A graph G is a minimal
forbidden minor for a minor-closed family F of graphs if G ¢ F and any proper minor of
G isin F. F is characterized by the minimal forbidden minors for F.

Robertson and Seymour developed Graph Minors Theory in the series of papers [71, 72,
73,774,715, 76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86]. Surveies of the theory [87, 88, 38, 46, 35)
or improvements of some results [11, 70] are also found in the literature. In the series,

Robertson and Seymour proved the following deep theorems.

Theorem A (Robertson and Seymour[86]) Every minor-closed family of graphs has

a finite number of minimal forbidden minors.

Theorem B (Robertson and Seymour[83]) The problem of deciding if a fized graph

18 a minor of an input graph can be solved in polynomial time.

It follows that the problem of testing membership for any minor-closed family F of
graphs can be solved in polynomial time provided that we know all the minimal forbidden
minors for 7. As many important problems can be reduced to the problem, it is important
to find all the minimal forbidden minors for minor-closed families of graphs. Although it

is known that there is no general method to find all the minimal forbidden minors for any

44
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minor-closed family of graphs [37, 38], a special method could be applied to each minor-
closed family of graphs. In fact, the minimal forbidden minors are known for minor-closed
families of planar graphs [98], graphs embeddable on the projective plane [41, 1], partial
2-trees [30, 6], partial 3-trees [6, 90, 28], partial 4-trees [58], A-Y graphs [31], graphs with
path-width at most 1 [36], and graphs with path-width at most 2 [49].

We investigate the family 7 of graphs with path-width at most k for any & > 0, and
the family P, of graphs with proper-path-width at most & for any £ > 1. The families
Fi and Py are minor-closed families. F;, and P, are known to have applications to VLSI
layout, linguistics, and games on graphs [62, 52]. Thus, it is important to list the minimal
forbidden minors for Fj and Pj. Although Kinnersley and Langston [49] list all 110
minimal forbidden minors for F,, it is open to list all minimal forbidden minors for F
(k > 3) and Py (k > 2). We show that every minimal acyclic forbidden minor for Fj
(respectively P) can be obtained from those for Fji_; (respectively Pr_1) by a simple
composition, and we list all 36 minimal forbidden minors for P;. Our proof contains many
general methods that would be useful to characterize minimal forbidden minors for Py
(k > 3). We also give estimates for the numbers of minimal forbidden minors for 73 and

Pr, and the numbers of vertices of the largest minimal forbidden minors for F; and P.

3.2 Minimal Forbidden Minors for Graphs with
Bounded Path-Width

3.2.1 Minimal Acyclic Forbidden Minors

We introduce the star-composition of graphs which plays an important role in the following.

Definition 3.1 Let Hy, Hs, and H3 be graphs. A graph obtained from Hy, H,, and H;

by the following-construction is called a star-composition of Hy, Ha, and Hj:
(1) choose a vertez v; € V(H;) fori=1,2, and 3;

(i1) let v be a new vertex not in Hy, Hy, or Hs;

(ii1) connect v to v; by an edge (v,v;) fori =1,2, and 3.

The vertex v is called the center of the star-composition. O

In this section, we prove the following theorem.
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Theorem 3.1 Let k > 1. A tree T is in Q,(F}) if and only if T is a star-composition of
(not necessarily distinct) three trees in Qq(Fy—1).

Proof: We prove this theorem by a series of lemmas.

Lemma 3.1 Ifk > 1 and Hy, Hz2, and H; are (not necessarily distinct) graphs in Q(Fy_1)
then any star-composition of Hy, Hs, and Hz is in Q(Fy).

Proof: Let G be a star-composition of H;, Hy, and Hjz, and v be the center of the
star-composition. Since H; € Q(F;_1) (¢ = 1,2, and 3), G\{v} has three connected
components with path-width k. Thus pw(G) > k& + 1 by Lemma 2.9. On the other hand,
pw(G\{v}) < k by Lemma 2.10, and so pw(G) < k+ 1 by Lemma 2.11. Hence we have
pw(G) =k +1. ,

Next we show that G is minimal. Let v; € V(H;) be a vertex adjacent to v in G. Since
H; € Q(Fi-1), pw(H\{vi}) = k — 1. Let &(;) be a path-decomposition of H;\{v;} with
width £ —1 ( = 1,2, and 3). It is sufficient to show that the path-width of a minor G’ of

(i obtained by deleting or contracting an edge e is at most k.

Case 1. e € {(v,v), (v,v2),(v,v3)}.
Without loss of generality we assume that e = (v,v;). If G’ is obtained by deleting
edge (v,vy), the sequence (Xpny U {v1}, X2y U {va}, {v,v2}, {v,v3}, Xz) U {v3}) is a
path-decomposition of G and pw(G’) < k. If G’ is obtained by contracting edge
(v,v1), the sequence (X2) U {v2}, {v,v2}, X1y U {v}, {v,v3}, X3y U {vs}) is a path-

decomposition of G and again pw(G') < k.

Case 2. ¢ & {(v,v1), (v,v2), (v,v3)}.
Without loss of generality we assume that e € E(H,). G’ is a star-composition
of Hy, H), and H; where H} is a minor of fI; obtained by deleting or contracting
e. Let A’ be a path-decomposition of H, with width < k£ — 1. Then the sequence
(X U{or ), {v, 01}, &'V {v}, {v,v3}, X3y U {vs}) is a path-decomposition of G' and
pw(G') < k.

Thus the path-width of any proper minor of & is at most k, and (' is minimal.

Hence G € Q(Fk). 0

Corollary 3.1 Ifk > 1 and Ty, Ty, and Ty are (not necessarily distinct) trees in Q,(Fr_y)

then any star-composition of Ty, Ty, and T3 is in Q,(Fy).



CHAPTER 3. PATH-WIDTH AND GRAPH MINOR THEORY 47

Proof: Any star-composition of trees is also a tree. d

Lemma 3.2 If k > 1 and T is any tree in Q,(F) then T is a star-composition of some
(not necessarily distinct) trees Ty, Ty, and T3 in Q,(Fr_1).

Proof: There exists a vertex v such that 7'\ {v} has three or more connected components
with path-width k£ or more by Theorem 2.2. Because T is minimal, T\{v} has exactly three
connected components with path-width k. Let Ty, T3, and T3 be connected components
of T\{v}. Suppose T1 & Q.(Fix—1). Let T] be a proper minor of 7} with path-width &
and 7" be a star-composition of 77, T3, and T3. Then pw(1’) = k + 1, contradicting that
T € Qu(Fk). Thus Ty € Q,(Fp—-1). Similarly T, and T3 are in Q4 (Fr_1). =]

By Corollary 3.1 and Lemma 3.2, we obtain Theorem 3.1. ]

Theorem 3.1 obtained independently by Kinnersley [48].
It is easy to see that (Fo) = {K2}. The graphs in Q(F;) and Q,(F3) are shown in

Figs. 3.1 and 3.2, respectively.

Figure 3.1: The graphs in Q(F7).

The following corollaries can easily be proved by induction on k.
Corollary 3.2 The number of vertices of a tree in Q,(Fy) is 53;—""1 (k>0).
Corollary 3.3 [Q,(F%)| > k1* (k> 0).

We counted |Q,(F)| for & = 0,1,2,3, and 4 as follows: |Q,(Fo)| = |Q(F1)| = 1,
100 (F2)| = 10, |90(Fs)| = 117,480, | (Fy)| = 14,403, 197,619,396, 707, 660.

3.3 Minimal Forbidden Minors for Graphs with
Bounded Proper-Path-Width

3.3.1 Minimal Acyclic Forbidden Minors

We have the following lemma and theorem for P, corresponding to Lemma 3.1 and The-

orem 3.1, respectively. Proofs are almost same as those for Fy.
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Figure 3.2: The trees in Q,(F2).

Lemma 3.3 Ifk > 2 and Hy, H,, and H3 are (not necessarily distinct) graphs in Q(Py_,)
then any star-composition of Hy, Ho, and Hjy is in Q(Py).

Proof: Let G be a star-composition of H;, H,, and Hs, and v be the center of the star-
composition. Since H; € Q(Py_1) (1 = 1,2, and 3), G\ {v} has three connected components
with proper-path-width k. Thus ppiu(G) > k+ 1 by Lemma 2.19. On the other hand,
pw(G\{v}) < k by Lemma 2.20, and so pw(G) < k+ 1 by Lemma 2.21. Hence we have
ppw(G) =k + 1.

Next we show that G is minimal. Let v; € V(H;) be a vertex adjacent to v in G. Since
H; € Q(Py_1), pw(H\{v;}) = k — 1. Let X; be a proper-path-decomposition of H;\{v;}
with width £ —1 ( = 1,2, and 3). Tt is sufficient to show that the proper-path-width of a

minor G’ of GG obtained by deleting or contracting an edge e is at most k.

Case 1. e € {(v,v1), (v,v2), (v,v3)}.
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Without loss of generality we assume that e = (v,v;). If G’ is obtained by deleting
edge (v,v,), the sequence (Xuy U {v1}, Xz) U {v2}, {v,v2},{v,vs}, Xy U {vs}) is a
proper-path-decomposition of G’ and ppw(G’) < k. If G' is obtained by contracting
edge (v,vy), the sequence (Xg) U {v2}, {v,v2}, X1y U {v}, {v,va}, Xz U {vs}) is a
proper-path-decomposition of G’ and again ppw(G’) < k.

Case 2. e & {(v,v1), (v,v2),(v,v3)}.

Without loss of generality we assume that e € E(H,). G is a star-composition of
Hy, Hj, and Hz where H} is a minor of H, obtained by deleting or contracting e. Let
X' be a proper-path-decomposition of Hj with width < k£ — 1. Then the sequence
(XyU{v}, {v, v}, XU {v}, {v,vs}, X5y U {v3}) is a proper-path-decomposition of
G and ppw(G') < k.

Thus the proper-path-width of any proper minor of G is at most k, and G is minimal.
Hence G € Q(P). 0

Theorem 3.2 Let k > 2. A tree T is in Qo(Pr) if and only if T is a star-composition of

(not necessarily distinct) three trees in Qq(Pr-1).

Proof: Let T be a tree in £,(Px). There exists a vertex v such that 7'\{v} has three or
more connected components with proper-path-width & or more by Theorem 2.3. Because
T is minimal, 7'\ {v} has exactly three connected components with proper-path-width £.
Let Ty, T3, and T3 be connected components of T\{v}. Suppose T ¢ Qu(Py-1). Let T}
be a proper minor of 1y with proper-path-width £ and 1" be a star-composition of 17, 15,
and T3. Then ppw(1’) = k + 1, contradicting that T' € Q,(P%). Thus 71 € Qu(Pr-1).
Similarly 75 and T3 are in Q,(Fr_y1).

Converse follows from Lemma 3.3 O

It is easy to see that Q(Py) = {3, K1,3}. The trees in 2,(P;) are shown in Fig 3.3.

Corollary 3.4 The number of verlices of a tree in Q,(Py) is 3k+21_1 (k>1).

Corollary 3.5 |Q,(Py)| = k1* (k> 1).

We counted |Q,(Py)| for k = 1,2,3, and 4 as follows: |Q,(P1)] = 1, |Q.(P2)] = 4,
10, (Ps)] = 1,330, |2 (Pa)| = 2,875,919, 312, 030.
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Figure 3.3: The trees in Q,(P2).

3.3.2 Delta Composition

Another kind of composition is possible for (Py). That is, graphs in 2(Px) can be

obtained by the composition of minimal forbidden minors for Pj_;.

Definition 3.2 A delta-composition of graphs Hy, Hs, and Hj is a graph obtained from
H,, H,, and H3 by the following construction:

(i) choose a vertex v; € V(H;) fori=1,2, and 3;

(i) connect vy to v2, vy to v3, and vs to vy by edges (vy,v2), (vg,v3), and (vs,vy), Tespec-

tively. O

Theorem 3.3 If k > 2 and Hy, Hy, and Hs are (not necessarily distinct) graphs in
Q(Py_1) then any delta-composition of Hy, Ha, and Hj is in QPr).

Proof: Let G be a delta-composition of Hy, Ha, and Hs. Let v; € V(H;) be the chosen
vertex for i = 1,2, and 3. Because H; € Q(Pe-1), ppw(H;) = k and ppw(H;\{vi}) = k1.
Let X(;) be the proper-path-decomposition of H\{v;} with width ¥ —1 (1= 1,2, and 3).

First, we show that ppw(G) = k+1. Suppose that ppw(G) < k and G has a full proper-
path-decomposition X = (X1, Xs,...,X;) with width < k. Assume that X; < V(Hy)
for any 7 (1 < i < 7). Then |X; NV(Hy)| < k for any i (1 < ¢ < 7). Since Hy
is a connected subgraph of ¢, there exists an integer a such that | X, NV (H1)| = k and
|X 01N X NV (Hy)| > k—1by Lemma 2.16. Since G\V(;) is a connected subgraph of &

and each X,_; and X,4; contains a vertex of G\V(H,), respectively, a vertexin X, —V (H;)
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is contained both X, ; and X,4; by Lemma 2.17. Thus |X,_1 N X.pq| > k = | X,| — 1,
and contradicting thath is a proper-path-decomposition. Thus there exists some 7,
such that X; € V(H;). Similarly, there exist some 75 and ¢3 such that X;, C V(H,)
and X;, C V(H;). Without loss of generality we assume that ¢ < ¢; < i3. Then
X, —V(Hy) =0, and X;, — V(H;) # 0 and X;, — V(H;) # 0, contradicting Lemma 2.17.
Hence we have ppw(G) > k + 1. It is easy to see that the sequence (X(y) U {v;1}, Xz U
{v1,v2}, {v1,v2,v3}, X5y U{vs}) is a proper-path-decomposition of G, and ppw(G) = k+1.

Next we show that G is minimal. It is sufficient to show that the proper-path-width

of a minor G’ of GG obtained by deleting or contracting an edge e is at most k.

Case 1. €€ {(v1,v2), (v2,v3), (v3,v1)}-

Without loss of generality we assume that e = (vy,v;). If G’ is obtained by deleting
edge (v1,v;), the sequence (Xay U {v1}, {v1,vs}, Xy U {vs}, {vs, v2}, Xy U {w2}) is a
proper-path-decomposition of G’ and ppw(G') < k. If G* is obtained by contracting
edge (v1,v2), the sequence (X(1y U {v1}, X2y U {v1}, {v1,v3}, X5y U {vs3}) is a proper-
path-decomposition of G' and again ppw(G’) < k.

Case 2. e & {(vy,vq), (v2,v3), (v3,v1)}.

Without loss of generality we assume that e € F(H,). G’ is a delta-composition of
Hy, H}, and H3 where Hj is a minor of H, obtained by deleting or contracting e.
Let X* = (X7, X3,..., X.) of Hj be a full proper-path-decomposition of Hj. If the
width of A™* is at most k—2 then the sequence (X(1yU{vy }, X*U{v1, v3}, X(z)U{vs}) is
a k-proper-path-decomposition of G'. Thus we assume that the width of X~ is & —1.
Suppose that v, € X. Then the sequence (X(3) U {v1}, {v1,v2,v3}, A* U {v3}, X5 U
{vs}) is a k-proper-path-decomposition of G’. Similarly, there exists a k-proper-
path-decomposition of G' if v, € X. Thus we suppose that v, € X7 (1 <7 < r*).
If v, € X7 and vy & X7, U X[ then X7 — {vp} = X3 N X7 = X7 n X7, and
| X7, N X7 4| = | X7 — 1 This contradict the assumption that X™* is a proper-path-
decomposition. Thus, without loss of generality, we assume that v, € X7 ,. Then
the sequence (X(1) U {v1}, X7 U {v1},..., X7 U {o )}, (X7 N X7) U {v, 05}, X7, U
{vs}, ..., X% U {vs}, Xisy U {vs}) is a k-proper-path-decomposition of G’. Hence

ppw(G’) < k.

Thus the proper-path-width of any proper minor of GG is at most k, and G € Q(P;,). O
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Notice that the above theorem does not hold for €2(F;). Although a graph shown in
Fig. 3.4 is a delta-composition of graphs in Q(F;), it is not in Q(F;) because its minor
shown in Fig. 3.5 is in 2(F;). Notice also that the star- and delta—composi‘tions are not
sufficient to characterize minimal forbidden minors for P;. A graph in Q(P;) shown in

Fig. 3.6 is neither a star-composition nor a delta-composition of graphs in Q(7;).

VoV

Figure 3.4: A graph not in Q(F3) that is a delta-composition of minors in Q(F7).

VoV

Figure 3.5: A graph in Q(F,).

3.3.3 Equivalence Relations on Graphs
In this section, we introduce two equivalence relations on graphs such that a graph equiv-

alent to a minimal forbidden minor for P, is also a minimal forbidden minor for Py.

Lemma 3.4 Let GG be a graph and G’ be an underlying simple graph of G. Then ppw(G) =
ppw(G’).
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Figure 3.6: A graph in Q(P;).

Proof: Since G’ is a minor of G and a proper-path-decomposition of G’ is also a proper-

path-decomposition of G, ppw(G) = ppw(G’). O

For any vertex v € V(G), dg(v) is the number of vertices adjacent to v. If an edge
(u,v) is contracted from a graph, the vertex obtained by identifying v and v is denoted

by u or v.

Lemma 3.5 Let G be a graph satisfying the following: there exist vertices u,v € V(G)
such that (u,v) € E(G), dg(u) = 2, and dg(v) = 1. If G’ is a graph obtained from G by
contracting edge (u,v), then ppw(G) = ppw(G’).

Proof: Since G’ is a minor of G, ppw(G) > ppw(G’). We will show that ppw(G) <
ppw(G’). Assume that ppw(G') = k. Let X = (X3, Xs,...,X,) be a k-proper-path-
decomposition of G/, and w be a unique vertex adjacent to u in . By Lemma 2.14, we
assume that X is full. By Definition 2.2(iii), there exists an integer a such that {u,w} C
X I {u,w} C Xy, then ((X;—{w})U{v}, X)is a k-proper-path-decomposition of &, and
ppw(G) < k. Notice that (X,, X,_1,...,X1) is also a k-proper-path-decomposition of G.
Thus, we assume that {u,w} C X, (1 < @ <r). Suppose that v € X,_1UX,1;. Since X is
full, X, NX, = X,NX,p1 = X, —{u}. However, we have | X,| > [X,1NX 1 |+2 = k42
by Definition 2.2(v), contradicting to the assumption that the width of X" is k. Thus we
assume, without loss of generality, that v € X,;;. For any integer z (¢ +1 <z < 7), let
X =(X; = {u}) U {v} ifu e X;, X] = X, otherwise. Then (X;,...,X,, (X, N X,)U

{v}, X;H, ..., X]) is a k-proper-path-decomposition of GG. Thus ppw(G) < ppw(G’). O

- Lemma 3.6 Let G be a graph salisfying the following: there exisl vertices u,v € V(G)
such that (u,v) € E(G), dg(u) = dg(v) = 2, and v and v have no common adjacent vertex.

If G7 is a graph obtained from G by contracting edge (u,v), then ppo(G) = ppw(G’).
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Proof: Since G’ is a minor of G, ppw(G) > ppw(G’). We will show that ppw(G) <
ppw(G’). Assume that ppw(G’) = k. Let X = (X3, X,,...,X,) be a full k-proper-path-
decomposition of G', and z and y be vertices adjacent to u in G'. If {u,z,y} C X,
then ((X; — {2}) U {v}, &) is a k-proper-path-decomposition of &, and ppw(G) < k. If
{u,z,y} € X; (1 <1 < r) then we can assume that {u,y} C X;4; since X is full. Thus
we assume that there exist distinct integers a and b such that {u,z} C X,,{u,y} C X, by
Definition 2.2(iii) (1 € a < b <r). For any integer ¢ (a+1 <1 <), let X! = (X; —{u})U
{v} if w € Xi, X! = X; otherwise. Then (X3, ..., Xa, (Xa N Xapa) U {0}, X! 0y,o 0, X7) s
a k—proper—path—'decomposition of G. Thus ppw(G) < ppw(G). 0

Figure 3.7: An example of graph G such that (u,v) € E(QG), dg(ﬁ) =2, and dg(v) = 1.

Figure 3.8: An example of graph G such that (u,v) € B(G) and dg(u) = dg(v) = 2.

Notice that a minimal forbidden minor for P, is connected, since the proper-path-
width of a graph & is the maximum proper-path-width over all connected components of

G. From Lemmas 3.4, 3.5, and 3.6, we have the following theorem.

- Theorem 3.4 If a graph G is in Q(Py) then G is connected and simple, and there are
no adjacent vertices w and v such that dg(v) < 2, dg(u) < 2, and they have no common

adjacent vertex.



CHAPTER 3. PATH-WIDTH AND GRAPH MINOR THEORY 35

Lemma 3.7 Let G be a connected graph and v be a vertex of G. Let H; be a connected
graph and u; be a vertez of H; (1 < ¢ < 2). Define that G; be the graph obtained from G
and H; by identifying v and u; (1 <1 <2). If Hy, Hy € Q(Py) then ppw(G,) = ppw(Gy).

Proof: Assume that ppw(G;) = h. Let X = (X1,Xs,...,X;) be a h-proper-path-
decomposition of Gy. Let a and b be integers such that v € X, N X, and v & X1 U Xy
(a <b). Let XH = X;nV(H) and XF = X; — V(H,) for any 7 (1 < i < r). From
Lemma 2.16, there exists an integer ¢ such that either (a) | XA > k+2 (1 <7 < 7),

or (b) |XF|l=k+1and | XE, N XE,| >k (1 <i<r) Letcbe such an integer. Let
X!'= XF U {v}if min{a,c} <1 < max{b,c}, X! = XF otherwise. Since H, is connected,
| X/ < h+1by Lemma 2.17 (1 <7 < 7). Since Hy € Q(Py), ppw(H\{uz}) = k. Let A™*
be a k-proper-path-decomposition of Hy\{u,}.

If | XF| > k42 then (X{,..., X/, X, UX* X/ ,...,X]) is a sequence with width
- satistying the conditions of Lemma 2.15, and ppw(G3) < h. Notice that | X.| = | X.| —
I X7|+1 < h—k. Thus we assume that [XF|=k+1 and | X < h—k I |XE, NXE| =

XN XZ,] =h—kthen XZ, NXEZ, = XF. We have that [X._y N X.] = [XE, N
X& |+ X2, nXE | = (h—k)+ k. However, we have |X,| > h + 2 by Definition 2.2(v),

contradicting to the assumption that the width of X is h. Thus, we assume, without loss of
generality, [XNXE | < h—k—1. Then, (X],..., X[, (XN X7 Ju{vu™ X7, ..., X))
is a sequence with width h satisfying the conditions of Lemma 2.15, and ppw(G2) < h.
Therefore, we have ppw(Gs2) < h = ppw(Gy). Similarly, we can prove that ppuw(Gy) <
ppw(G2), and we have ppw(Gq) = ppw(Gs). O

The following definition plays an important role to characterize Q(P}).

Definition 3.3 Let H be a graph and x be a vertex of H. R}(H,z) is the graph obtained
from H by adding vertices u, v, and w and edges (z,u), (z,v), and (z,w). R}(H,z) is
the graph obtained from R}(H,z) by adding edge (u,w) and deleting v. Ri(H,z) is the
graph obtained from R}(H,z) by adding edges (u,v) and (v,w) and deleting edges (x,u)
and (z,w). Graphs G| and (G5 are said to be semi-1-equivalent, denoted by G, é Gy, if
there exist a graph H and a vertex @ € V(H) such that Gy = R}(H,z) (1 <1i < 3) and
Gy = Ri(H,z) (1 <j <3). Graphs Gy and G; are said to be l-equivalent if there exists
a sequence of graphs G1,Gy, ..., G; (1 > 1) such that G4 é e é - G,

[t is easy to see that the l-equivalence is an equivalence relation on the graphs. An

example of l-equivalent graphs is shown in Iig. 3.9.
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Ri(H,x) R3(H,x) R3(H, %)

Figure 3.9: l-equivalent graphs.
Theorem 3.5 If G € Q(Py) then a graph I-equivalent to G is in QPy).

Proof: Let H be a graph and = € V(H). Let R; = R}(H,z) (1 < i < 3). Assume that
R, € Q(Py,) for some a (1 < a < 3). To prove the lemma, it is sufficient to show that
R; € Q(Py) for any ¢ (1 <7 < 3).

Let H; = R\(V(H) — {«}) (1 £ 4 £ 3). Since Hy, Hy, H3 € QP,), ppw(R;) =
ppw(Ry) = ppw(Rg,)» = k + 1 by Lemma 3.7. Thus it is sufficient to show that R; is
minimal for any ¢, that is, the proper-path-width of a graph obtained from R; by deleting
or contracting an edge is at most k. Let G} be a graph obtained from R; by deleting or
contracting an edge ¢ € E(H). We have ppw(G.,) = ppw(G}) = k for any 7 (1 <7 < 3)
by Lemma 3.7. Let GY be a graph obtained from R; by deleting or contracting an edge
e ¢ E(H). Proper-path-widths of connected components of GY not containing z are
at most one (< k). A connected component of (Y containing x is isomorphic to either
graphs G}, G3, (75, or 7} obtained from R, by deleting edge (z,u), contracting edge (z, u),
deleting edge (u,w), or deleting vertices u and w, respectively (See Fig. 3.10). Since both
(% and G are proper minors of R,, ppw(G%) < k and ppw(G3) < k. Since the underlying
simple graph of G is a proper minor of G3, ppw(G’g) < ppw(G3) < k by Lemma 3.4. By
Lemma 3.5, we have ppw(G7) = ppw(G3). Thus ppw(GY) < kfor any ¢ (1 < ¢ < 3). Hence
we have R; € Q(Pr) (1 <¢<3). . O

The following definition also plays an important role to characterize Q(Py,).

Definition 3.4 Let I be a graph, and x and y be non-adjacent vertices of H. RI(H,z,y)
is the graph obtained from H by adding vertices u and v and edges (z,u), (y,u), and (u,v).
-RY(H,z.,y) ts the graph obtained from RI(H,x,y) by adding edge (z,y) and deleting v.

2
Graphs Gy and Gy are said to be semi-2-equivalent, denoted by G = (G, if there exist a

graph H and non-adjacent vertices ¢ € V(H) and y € V(H) such that Gy = R}(H,z.y)
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u_ - w wu w
Gi G G3 Gi
Figure 3.10: Connected components of G containing z.

(1 =1,2), Gy = R}(H,z,y) (j = 1,2). Graphs Gy and G; are said to be 2-equivalent if
2 2 2
there exists a sequence of graphs Gi,Ga,...,G; (1 > 1) such that G, 2 G, = --- 2 G

It is easy to see that the 2-equivalence is an equivalence relation on the graphs. An

example of 2-equivalent graphs is shown in Fig. 3.11.

Ri(H,x,y)

Figure 3.11: 2-equivalent graphs.

Lemma 3.8 If a graph G is 2-equivalent to G’ then ppw(G) = ppw(G’).

Proof: Let I be a graph and =,y € V(H) be non-adjacent vertices. Let R; = R}(H,z,y)
(1 <i<2). To prove the lemma, it is sufficient to show that ppw(R;) = ppw(Rs).

First, assume that ppw(R;) = k. Let &' = (X1, X,,...,X,) be a full k-proper-path-
decomposition of Ry. Let X! = X; — {u,v}. If {u,2,y} C X, forsome: (1 <i<r), &
is a k-proper-path-decomposition of a graph @ obtained from R; by adding edge (z,y).
" Since R, is a minor of @), ppw(R2) < k. Thus we assume that {u,z,y} € X; for any
i (1 <¢< 7). Suppose that {u,z} € X,y N X, and {u,y} € X, for some « and b
(@ < b). Notice that | X!_, N X!| <k—1. Since (X1{,..., X, _,,(X._;nX)U{y,u}, X U

a—-11
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{y},..., X{i_; U{y}, X{,..., X]) is a sequence satisfying the conditions of Lemma 2.15,
ppw(Ry) < k. Thus we assume that {u,z} C X, {u,y} C Xy, z & Xop1, v € X1, and
u & Xoaey U Xy for some a and b (1 < a < b < 7). There exists an integer ¢ such that
{u,v} € X, (a < ¢ < b). Moreover, since & is full, we assume that {u,v} C X.N X, for
some ¢ (a < ¢ < b). Noticethat [XNX[,,| < k—2. Since (X{,..., X, X! U{z},..., XU
{e}, (XInX )U{z,y,u}, X, U{y},.... X5, U{y}, X{,..., X]) is a sequence satisfying
the conditions of Lemma 2.15, ppw(Rz) < k. Thus we have that ppw(R,) < ppw(R;).

Next, assume that ppw(Ry) = k and let X = (X7, X,,..., X,) be a full k-proper-path-
decomposition of R,. There exists an integer a such that {u,z,y} C X,. If {u,2,y} C Xj,
then ((X; — {z}) U {v}, X) is a k-proper-path-decomposition of Ry, and ppw(R;) < k. If
{u,z,y} C X, (1 < a < r) then we assume without loss of generality that {u,z} C X411
since X' is full. For any integer ¢ (a +1 <1 <r), let X! = (X; — {u}) U {v} if v € X|,
X{ = X; otherwise. Then (Xi,..., Xo,(Xe N Xoq1) U {v}, X[ ,4,...,X]) is a k-proper-
path-decomposition of R;. Thus ppw(R) < ppw(Ry).

Therefore we have ppw(R,) = ppw(Rz). ]

Theorem 3.6 If G € Q(Py) then a graph 2-equivalent to G is in Q(Py).

Proof: Let H be a graph and 2,y € V(M) be non-adjacent vertices. Let R; = R}(H, z,y)
(1 <7 <2). It is sufficient to show that By € Q(P;) if and only if R, € Q(P}).

First, assume that R; € Q(Py). By Lemma 3.8, we have ppw(R,) = ppw(R;) = k + 1.
It is sufficient to show that K, is minimal, that is, the proper-path-width of a graph
obtained from R, by deleting or contracting an edge is at most k. Let G} and G be graphs
obtained from R; and R, by deleting or contracting an edge e € F(H), respectively. We
have ppw(G%) = ppw(GY) = k by Lemma 3.8. Let G4 be a graph obtained from Ry by
deleting or contracting an edge e € {(z,u), (y,u),(x,y)}. Since either G or the underlying
simple graph of 74 is a proper minor of Ry, ppw(GY5) < k. Thus we have Ry € Q(Py).

Next, assume that R, € Q(Py). Similar to argument above, we have ppw(R;) =
ppw(Ra) = k + 1, and the proper-path-width of a graph obtained from R; by deleting or
contracting an edge e € E(H) is k. Let G| be a graph obtained from R; by deleting or
contracting an edge ¢ € {(z,u),(y,u), (u,v)}. Proper-path-widths of connected compo-

nents of (] not containing x is at most one. A connected component of G} containing z

“is isomorphic to either of graphs G7, 3, or G obtained from Ry by contracting (z,u),
deleting (@, u), or contracting (u,v), respectively (See Fig. 3.12). Let G be a graph ob-

tained from G% by contracting edge (u,v). We have ppw(G3) = ppw(G3) by Lemma 3.5.
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Since both G%, G, and G are proper minors of Ry, proper-path-widths of these graphs
are at most k. Then the proper-path-width of GY is at most k. Thus we have R; € Q(Py).
O

G3

Figure 3.12: Connected components of G containing z.
g p 1 O

3.3.4 Graphs with Cut-Vertices or Bridges

In this section, we show necessary conditions for a graph obtained from two disjoint graphs
with proper-path-width k by either identifying some vertex or adding an edge to be a
minimal forbidden minor for P, (k > 1). A vertex v is called a cut-vertex of a connected
graph G if G\{v} has at least two connected components. An edge (u,v) is called a bridge
of a connected graph G if the graph obtained from G by deleting (u,v) has at least two

connected components.

Lemma 3.9 Let GG be a connected graph with a cut-vertex v. Let H be a union of connected
components of G\{U}, Hy be the induced subgraph of G on V(H) U {v}, and H be the
induced subgraph of G on V(G)—V(H). If ppw(G) = ppw(Hy) = ppw(H,) = k and there
exists at most one connected component of H with proper-path-width k, then there exists

a k-proper-path-decomposition (X1, Xo,...,X,) of Hy such that v € X;.

Proof: Assume that the proper-path-width of each connected component of H is at most
k—1. Since ppw(H) = k — 1, there exists a (k — 1)-proper-path-decomposition X of H.
Then (X U {v}) is a k-proper-path-decomposition of H; satisfying the condition of this
lemma. Thus we assume that there exists a connected compbnent of H with proper-path-
“width k.

Let H' be a connected component of H with proper-path-width & and G’ be the induced

subgraph of G on V(H')UV (). Since Hy is a minor of G' and G’ is a minor of GG, we have
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ppw(G’) = k. Let X = (X1,X,,...,X,) be a k-proper-path-decomposition of G'. From
Lemma 2.16, there exists an integer ¢ such that either (a) (X, NV (H,)| > k+1 (1 < c < 1),
or (b) [ X, NV(H,)| = kand |[X.oy N Xy NV(H)| > k-1 (1 <c<r). Suppose that
there exist integers « and b such that X, NV (H') # 0, X, N V(H') # 0 (a < ¢ < b). Since
H' is connected, | X. N V(H')| > 1 by Lemma 2.17. If | X, NV (H;)| > k + 1 then |X.]| >
| X. NV (H)|+|X.NV(H)| >k +2, contradicting to that the width of A" is k. Thus we
suppose that |[X,NV(H;)| = k and | X.NV(H")| = 1. However, we have |X,_;NX | > k
since | X1 N Xop1 NV (H')| 2 1 by Lemma 2.17 and | X._; N X1 NV (H)| > k—1. Again
this is contradicting to that the width of & is k since | X, | > | X,y N X.q| +2 2>k + 2.
Thus, without loss of generality, we assume that Uiz} X;NV(H') = 0. Let d be the integer
such that v € Xy and v € Xq41. Notice that ¢ < d since there exists a vertex v’ € V(H')
such that (v,v") € E(G’). Let X] = (X; N V(H')) U {v} for any integer : (¢ <7 < d), and
X! = X;NV(H') for any integer ¢ (d < z). Notice that |X!| < k+1 since H; is connected.

Let H* be the induced subgraph of H; on V(H')U {v}. Then X' = (X[, X/ ,,..., X))
is a sequence of subsets of V(H*) with width k satisfying the conditions of Lemma 2.15.
Since the proper-path-width of Hy\V(H*) is at most k — 1, there exists a (k — 1)-proper-
path-decomposition A" of Hi\V(H7). Then (X" U {v}, X’) is a sequence of subsets of
V(H,) with width k satisfying the conditions of Lemma 2.15. Tt is not difficult to see that
we can obtain a k-proper-path-decomposition of H; satisfying the condition of this lemma
from the sequence (X" U {v}, X"). O

Theorem 3.7 Let G be a connected graph with a cut-vertex v. Let H be a union of
connected components of G\{v}, Hy be the induced subgraph of G on V(H) U {v}, and
Hy be the induced subgraph of G on V(G) — V(H). If ppw(H:) = ppw(Hy) = k and
G € Q(Py), then either G is a star-composition of (not necessarily distinct) graphs in
UPr-1), or Hy € Q(Pr-1), or Hy € Q(Pr_1).

Proof: Assume contrary that-G is not a star-composition of three graphs in Q(Py_;), H; ¢
Q(Pr-1), and Hy & Q(Py_1). Notice that G\{v} has at most two connected components
with proper-path-width k, for otherwise, GG is not minimal.

Assume first that Iy\{v} and H>\{v} have at most one connected component with
proper-path-width k&, respectively. Let H' be a proper minor of H; with proper-path-width
“ k. Let G’ be the minor of G such that V(G') = V(H,)UV(H') and E(G') = E(H,)UE(H').
Since G € Q(Py), we have ppw(G’) = k. By Lemma 3.9, there exists a k-proper-path-

decomposition X' = (X}, X;,..., X ) of Hy such that v € X. Similarly, there exists
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a k-proper-path-decomposition X = (X7, X2,...,X?2) of H, such that v € X2. Then
(X', &?) is a k-proper-path-decomposition of G, contradicting to that ppw(G) > k + 1.
Assume next that H;\{v} has exactly two connected components with proper-path-
width k. Let R; and R; be connected components of Hy\{v} with proper-path-width #,
H, = H;\V(R;), and Hy be the induced subgraph of G on V(H,) U V(R;). Note that
H, and Hy are connected, V(H,) N V(H,) = {v}, and E(H,) U E(H,) = E(G). Since
H\{v} and H,\{v} have exactly one connected components with proper-path-width £,
respectively, ppw(H,) = ppw(H,) = k, and H, and H, are not contained in Q(Py_;).
Thus, By similar argument, there exists a k—proper—path—decomposition of GG, contradicting
to that ppw(G) > k + 1. O

Theorem 3.8 Let G be a connected graph with a bridge (u,v). Let Hy be the connected
component containing u of the graph obtained from G by deleting (u,v), Hy be the other
component. If ppw(H,) = ppw(H,) = k and G € Q(Py), then G is a star-composition of
(not necessarily distinct) graphs in Q(Py_).

Proof: Assume contrary that GG is not a star-composition of three graphs in Q(Pj_y).
Since G is minimal, Hy\{u} and H,\{v} have at most one connected component with
proper—pat.h-width at most k, respectively. Let G’ be the graph obtained from G by con-
tracting edge (u, v). Then ppw(G') = k, and graphs G’, Hy, and Hy satisfy the condition of
Lemma 3.9. Thus there exist k-proper-path-decompositions X' = (X}, X}, ..., X} ) of H,
and X? = (X7,X3,..., X)) of Hy such that v € X! and v € X2. Then (X!, {u,v}, X?)
is a k-proper-path-decomposition of G, contradicting to that ppw(G) = k + 1. 0

3.3.5 Minimal Forbidden Minors for Graphs with Proper-
Path-Width at Most T'wo

In this section, we characterize the minimal forbidden minors for P,.
" Let P(agay -+ - ay_q) be the graph obtained from a cycle with vertices {vg,vq,...,vp_1}
and edges { (i, V(i41)modn)]0 < ¢ <n —1} by adding a; vertices and connecting them with

v; by edges for all 2 (0 <7 <n-—1).

Theorem 3.9 A graph isomorphic to either P(333), P(3202), P(2221), P(22010),
P(11111), P(101010), K4, or Ky5 (see Fig. 8.18) is a minimal forbidden minor for Ps.
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Proof: Let G be a graph isomorphic to P(11111). Let ug, u1,...,us be vertices of G such
that (u;, U(it1)modas) € E(G), and vg, vy, ..., v4 be vertices of G such that (v;,u;) € E(G)
(0 < i <4). Let X = (X;,Xs,...,X,) be a proper-path-decomposition of G. Let s;
be an integer such that v;,u; € X, (0 < ¢ < 4). Let to,t4,...,t4 be a permutation of
0,1, 2, 3, and 4 such that sy, < s, < --- < s,. Without loss of generality, we assume
that ¢, = 0 and (f,;) is a combination of either (1,2), (1,3), or (1,4). Assume first
that (%9,%) is a combination of (1,2). Let H, G, and G, be induced subgraphs of G' on
{vo}, {v1,v4,U0,u1,us} and {vy,vs,uz, us}, respectively. Notice that H, Gy and Gy are
disjoint connected subgraphs of G. If s; < s < s4 and s, < $¢ < 83, then | X, | > 4 by
Lemma 2.18, and the width of X is at least 3. Otherwise sy = s; for some ¢ (1 <7 < 4)
and {vo, uo,v;,u;} C X, again, |X,| > 4 and the width of X' is at least 3. Assume
next that (fo,%;) is a combination of either (1,3) or (1,4). Let H, G and G be induced
subgraphs of G on {vo}, {v1,va,u1,us} and {vs, v, us, us}, respectively. Similarly we have
the width of X is at least 3. Thus the width of X' is at least 3 and we have ppw(G) > 3.
It is easy to see that there exists a 3-proper-path-decomposition of G, and there exists a
2-proper-path-decomposition for each proper minor of . Thus G is a minimal forbidden
minor for Ps.

Although we can prove all the other cases similarly, we omit the proof for the sake of

space. O

Let P(aoa; - - an-y) be a graph such that a; <3 (0 <¢ <n—1). A graph l-equivalent
to P(aopay -+ an—1) is denoted by P(zo21---2,—1) where z; is a;, “b7, or “c” if a; = 3, »
z = a; otherwise (1 <1 <n—1). A graph 2-equivalent to P(apay ---an—y) is denoted by

P(z0z1 - z,—1) where z; is a; or “2” if a; = 1, z; = a; otherwise 1<i<n-—1).
Corollary 3.6 36 Graphs shown in Fig. 3.13 are minimal forbidden minors for Ps.

Proof: The eight graphs stated in Theorem 3.9 are minimal forbidden minors for Ps.
There exist new eleven (seven) graphs 1-equivalent (2-equivalent) to the graphs stated in
Theorem 3.9. These graphs are minimal forbidden minors for P, by Theorems 3.5 and 3.6.

Finally, ten graphs are minimal forbidden minors for P, by Theorem 3.2. O

Notice that any minimal forbidden minor for P, stated in Theorem 3.3 is isomorphic
" to a graph l-equivalent to P(333).
In the following , we show that a graph G is a minimal forbidden minor for P, if and

only if G is isomorphic to one of 36 graphs shown in Fig. 3.13.
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Figure 3.13: Minimal forbidden minors for Ps.

<
S

3
S

P(3bb) P(bbb) P(33c)

=

X
2 3

P(x1x11)

X
p=

Kaz3

¢

A block of a graph G is a nontrivial connected subgraph of 7, which contains no cut-
vertices and which is maximal with respect to that property. A block with at least three
vertices is called a cyclic block. Let G be a graph with a cyclic block B. For any vertex v
of a cyclic block B in a graph (G, L(v) is the connected component of G — E(B) containing
v and N(v) is the number of vertices of L(v)\{v} if L(v)\{v} consists of isolate vertices,

‘infinite otherwise.

Lemma 3.10 If a graph G is in Q(Pa), then G is connected and simple, and satisfies one

of the following conditions:
1. G is a star-composition of (not necessarily distinct) three graphs in Q(Py); or

2. G has exactly one cyclic block B, and N(v) <3 f0'r. any vertex v € V(B); or
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3. G is isomorphic to a graph I-equivalent to a graph satisfying 2.

Proof: By Theorem 3.4, a minimal forbidden minor for Py is connected and simple.

Let G be a graph in Q(P,). Assume that G is not a star-composition of (not necessarily
distinct) three graphs in Q(P;). If G has no cyclic block then G is acyclic, contradicting
to Theorem 3.2. Thus we assume that G has at least one cyclic block.

Assume that there exist distinct cyclic blocks By and B, of GG. Note that ppw(B;) =
ppw(By) = 2. If V(B1) N V(By) = 0 then there exists a bridge (u,v) of G such that
the graph obtained from G by deleting (u,v) has two connected components H; and Haz,
and B; and B, are subgraphs of H; and Ha, respectively. Notice also that ppw(H;) =
ppw(Hy) = 2. However, this is contradicting to Theorem 3.8. Thus V(By) N V(Bs) # 0.
Let v € V(B;)NV(B,). Let Hy be the connected component of G\(V(Bz)—{v}) such that
B is a subgraph of Hy, and H, = G\(V(H;) — {v}). Notice that V(Hy) N V(H;) = {v},
E(H,) U E(H,) = E(G), and ppw(H;) = ppw(Hz) = 2. By Theorem 3.7, H, € Q(Py)
or Hy € Q(Py). Without loss of generality, we assume that H; € Q(Py). Since Hy has
a cyclic block, Hj is isomorphic to a complete graph K3 € €(P;). Then G is isomorphic
to a graph l-equivalent to the minimal forbidden minor for P, such that the number of
connected components is one less than that of G.

Thus we assume, without loss of generality, G has exactly one cyclic block. Let B
be the cyclic block of G and w be a vertex in V(B). If ppw(L(w)) > 2 then either
G\(V (L(w)) — {w}) or L(w) is in Q(P1) by Theorem 3.7. If G\(V(L(w)) — {w}) € Q(P1)
then (i is l-equivalent to a tree. Thus G is a star-composition of three graphs in Q(P;), a
contradiction. Thus L(w) € Q(P;). Hence N(w) = 3 or G is l-equivalent to a graph with
N(w) = 3. If ppw(L(w)) = 1, then dg(u) < 2 for any vertex u € L(w). Since dg(u) =1
for any vertex u € L(w)— {w} by Theorem 3.4, N(w) < 2. Thus N(v) < 3 for any vertex
v € V(B), or G is isomorphic to a graph l-equivalent to a graph with N(v) < 3 for any
vertex v € V(B). O

Since it is easy to characterize the graphs in Q(P,) obtained by star-compositions of
” (not necessarily distinct) three graphs in Q(Py), we consider, in the following, graphs with
exactly one cyclic block. A graph is said to be outer planar if it can be embedded on the
plane so that its edges intersect only at their ends and its vertices lie on the boundary on
the exterior region. In the following, we call inner region of outer planar graph, simply,

region.
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Lemma 3.11 For any minimal forbidden minor G for Py, G is not outer planar if and

only if G is isomorphic to either Ky or K 3.

Proof: It is well-known that the class of all outer planar graphs is minor-closed, and K4
and K, 3 are the minimal forbidden minors for the class. Thus any non-outer planar graph
G in Q(P,) is either K4 or Ky 3 by Corollary 3.6. a

To show that a graph G € (P;) is isomorphic to one of 36 graphs shown in Fig. 3.13,
it is sufficient to consider graphs with one outer planar cyclic block. Let P(310000) be the
graph shown in Fig. 3.14.

2 4
O
1122

35

Figure 3.14: P(310000).
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Lemma 3.12 For any minor G of P(310000), there exists a 2-proper-path-decomposition
(X1, Xgy. .., X;) of G such that 0,1 € Xj.

Proof: ( {0,1,2}, {1,2,3}, {2,3,4}, {3,4,5}, {4,5,6}, {5,6,7}, {5,7,8}, {5,8,9} ) is
a 2-proper-path-decomposition of P(310000), and satisfies the condition of this lemma.

Thus there exists such a proper-path-decomposition for any minor of P(310000). a

Corollary 3.7 The proper-path-widths of P(310310), P(310130), P(33101), P(31310),
P(31130), P(3311), P(3230), P(3131) (shown in Fig. 3.15) are two.

First, we consider the case that there exists exactly one region in outer planar cyclic

block.

Lemma 3.13 Let G be a simple connected outer planar graph such that G has an outer
planar cyclic block B with one region and N(v) < 3 for any vertex v € V(B). If G €
Q(Py) then G is isomorphic to either P(333), P(3202), P(2221), P(22010), P(11111), or
P(101010).
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P(310130) P(310310) §
P(31310) é

P(33101) P(31130)
P(3311) P(3230) P(3131) é

Figure 3.15: Graphs with proper-path-widths two.

Proof: Assume that G is not isomorphic to either P(333), P(3202), P(2221), P(22010),
P(11111), or P(101010). We show that G ¢ Q(P,). To complete the proof, it is sufficient
to show that either ppw(G) = 2 or there exists a proper minor of GG that contained in
Q(Ps).

In the following, we consider several cases according to the number of vertices in B.
1. [V(B)| =3.
Since G is a proper minor of P(333) € Q(’sz), ppw(G) = 2.

2. |V(B)| = 4.

Assume that a vertex v; € V(B) such that N(v;) = 3 is adjacent to a vertex
vy € V(B) such that N(vy) = 3. If there exists a vertex v € V(B) — {v1,v2} such
that N(v) > 2, then P(3202) € Q(P,) is a proper minor of G, otherwise ppw(G) = 2
since (7 is a minor of P(3311). Thus vy is not adjacent to vy if N(v1) = N(vq) = 3.
If there exists a vertex v € V(B) such that N(v) = 0, then ppw(G) = 2 since G is
either a minor of P(3230) or a proper minor of P(3202) € Q(P;). Thus there exists
no vertex v € V(B) such that N(v) = 0. If there exist at least three vertices v such
that N(v) > 2, then P(2221) € Q(P2) is a proper minor of GG, otherwise ppw(G) = 2
since (7 is a minor of either P(3311) or P(3131).

3. |V(B)| = 5.

Assume that a vertex v, € V(B) such that N(v;) > 2 is adjacent to a vertex

vy € V(B) such that N(vy) > 2. Let v be a vertex in V(B) such that v is adjacent
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to neither vy nor vo. If N(v) > 1, then P(22010) € Q(P,) is a proper minor of G.
Thus N(v) = 0, and N(s) > 1 and N(¢) > 1 for the other two vertices s and ¢ of B
by Theorem 3.4. However, if N(s) = N(¢) = 1 then ppw(G) = 2 since G is a minor
of P(33101), otherwise P(2221) € Q(P,) is a proper minor of . Thus v; is not
adjacent to vy if N(vl) > 2 and N(vy) > 2. If N(v) > 1 for any vertex v € V(B),
P(11111) € Q(P,) is a proper minor of G, otherwise ppw(G) = 2 since G is a minor
of either P(31310) or P(31130).

4. [V(B)| = 6.

If there exists at most one vertex v in V(B) such that N(v) = 0, then P(11111) €
Q(P;) is a proper minor of GG. Thus we assume that there exist at least two vertices v
such that N(v) = 0. Let v; and vy be vertices in V(B) such that N(vy) = N(v2) = 0.
Notice that v; is not adjacent to v, by Theorem 3.4. If there exists a vertex adjacent
to both v; and vy, then P(101010) € Q(P3) is a proper minor of GG by Theorem 3.4.
Thus there exists no vertex adjacent to both vy and v,. Hence N(v) > 1 for each
vertex in V(B) — {v1,v2}. If a vertex vz € V(B) such that N(vs) > 2 is adjacent to
a vertex vy € V(B) such that N(vs) > 2, then P(22010) € Q(P,) is a proper minor
of G, otherwise ppw(G) = 2 since G is a minor of either P(310310) or P(310130).

5 [V(B)| > 6.

Assume that |V(B)| = n (n > 7). There exists at least [%] vertices v such that
N(v) > 1 by Theorem 3.4. If there exist at least five vertices v such that N(v) > 1,
then P(11111) € Q(P,) is a minor of G. Thus n < 9. In case when n = 7,8, there
exist at least four vertices v such that N(v) > 1 and P(101010) € Q(Ps) is a proper

minor of G.

Thus G & Q(P,) and we complete the proof. ‘ 0

Next, we consider the case that there exist more than one region in outer planar cyclic

block.

Lemma 3.14 Let G be a simple connected outer planar graph such that G has an outer
planar cyclic block B with more than one region and N(v) < 3 for any vertex v € V(B).
If G € Q(Pg)‘ then G is isomorphic lo either P(222z), P(22020), P(«1111), P(xlxll),
P(201010), P(20x010), or P(202020).
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Proof: Assume that G is not isomorphic to either P(222x), P(220z0), P(zx1111),
P(z1z11), P(201010), P(202010), or P(z02020).

Distinct regions F' and F” are said to be adjacent if there exists an edge e € E(F) N
E(F"). Suppose that some region in G is adjacent to more than two regions in G. Since
P(x02020) € Q(P;) is a proper minor of G, G ¢ Q(P;). Thus we assume that each
fegion in (@ is adjacent to at most two regions in G. Let Iy, Fy, ..., F; (f > 2) be
regions in G such that F; and Fiy; are adjacent to each other (1 < ¢ < f —1). Notice
that |E(F;) N E(Fyq)| = 1 for any ¢ (1 < ¢ < f —1) since G is outer planar. Let
(u,u') € E(Fy) N E(F,), and u = g, U1, Uz, . . ., Up, Upmy1 = ¥’ be vertices in F7 such that
(ui,uip1) € E(B) (0 < i < m,m > 1). Similarly, let (v,v") € E(Fs_1) N E(Fy), and
V = Vg, V1, V2, . ., U/, Umiqy1 = U be vertices in Fy such that (v;,vi41) € E(B) (0 < ¢ <
m/,m’ > 1).

Let Vi = V(I4) if o # ', Vi = V(F) — {«'} otherwise. Let Gy be the induced
subgraph of G on V(1) U Uyev, V(L(w)).

Claim 3.1 If u # v or N(u) =0 then Gy is a minor of P(310000).

Proof: Let a = 1if N(u) =0, a = 0 otherwise. Let b = m+1if v’ # v', b = m otherwise.
Notice that Gy is the induced subgraph of G on V(1) U U,<icp V(L(wi)).

Assume that N(u;) > 1 and N(u;y;) > 1forsomeiand j (¢ <1< 0-2,2<j <b—1).
Then P(x01010) € Q(P,) is a proper minor of G such that (v,v’) corresponds to an inner
edge of P(201010). If N(u;) > 2 and N(u;) > 2 for some 7 and j (@ <1 < j < b) then
P(22020) € Q(P,) is a proper minor of . Thus G4 is a minor of P(310000), since no
vertices w with N(w) = 0 are adjacent to each other by Theorem 3.4. O

Let Vo = V(Fy) if u # v, Vo = V(Ff) — {v} otherwise. Let G be the induced subgraph
of G on V(Ff) UUuew, V(L(w)). By a similar argument as above, if v/ # v’ or N(v') =0
then Gy is a minor of P(310000).

Let Va = V(F) UV (F3)U---UV(F_y). If there exists a vertex w € V3 — {u, v/, v,v'}
such that N(w) > 1, then G & Q(P,) since P(x02010) € Q(P,) is a proper minor of G.
Thus we assume that N(w) = 0 for each vertex w € V3 — {u,u/,v,v’}. Let G3 be the
induced subgraph of G on V5. Notice that V(G) = V(G1) UV(G2) UV(G3). We claim the

following.
Claim 3.2 If both Gy and Gy are minors of P(310000), then G & Q(Ps).

Proof: Since (7 is a minor of P(310000), there exists a 2-proper-path-decomposition
X = (X},X%,...,Xﬂl) of (G; such that u,u’ € X}l by Lemma 3.12. Similarly, there
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exists a 2-proper-path-decomposition X, = (X7, X3,...,X7) such that v,v" € X7. Since
N(w) = 0 for each vertex w € V3 — {u,u/,v,v'}, it is not difficult to see that there exists
a 2-proper-pathydecomposition X; = (X7, X3,...,X2) of Gs such that u,u' € X3 and
v,v' € X2. Then (&, A3, A3) is a 2-proper-path-decomposition of G, and G € Q(P,). O

Thus by Claims 3.1 and 3.2, without loss of generality, we assume that u = v and

N(u) > 0. In the following, we consider two cases.

Case 1. Assume that v’ # v' or N(u') = 0.

If N(w;) > 1 and N(v;) > 1forsome¢and j 2 <i<m+1,2<5<m+1)
then either P(zlzll) € Q(P;) or P(101010) € Q(P,) is a proper minor of G. Thus,
we have either N(u;) = 0 for any ¢ (2 < ¢ < m+ 1) or N(v;) = 0 for any j
(2 < j < m +1). Without loss of generality, we assume that N(u;) = 0 for any 2
(2 <i<m-+1). Assume that N(v;) > 1 forsome j (2 <57 <m' +1). I N(u) > 2
and N(u;) > 2, P(22010) € Q(P.) is a proper minor of G. Thus, either N(u) =1
or N(u;) <1, and & is a minor of P(310000). Since G is a minor of P(310000) by
Claim 3.1, G & Q(P,) by Claim 3.2. Thus, N(v;) =0 for any y (2 <5 <m/ +1).
There exist at most three vertices w such that N(w) > 0in V4 U Vs

Assume that N(u) > 3. If N(u1) > 2 and N(vy) > 2 then P(3202) € Q(P;) is a
proper minor of G. Thus, without loss of generality, we assume that N(u;) < 1
and Gy is a minor of P(310000). Since G5 is a minor of P(310000) by Claim 3.1,
G & QP,) by Claim 3.2. Assume that N(u) < 2. Let = and y be the vertices
in L(u)\{u}. Let G, be the induced subgraph of G' on V(F1) U {2}, and G, be
the induced subgraph of G on V(F;) U {y}. Since both G, and G} are minors of
P(310000), there exist a 2-proper-path-decomposition &, = (X{, X3,..., X7 ) of G,
such that u,u’ € X!, and a 2-proper-path-decomposition A} = (Xb, X%, .. ,be) of
Gy such that v,v" € X?. Then (X,, X3, /X,) is a 2-proper-path-decomposition of G,
and G & Q(P2).

Case 2. Assume that v’ = v and N(u') > 0.

If there exist at least two vertices u; (1 < 7 < m) such that N(w;) > 1, then
P(x1111) € Q(P) is a proper minor of G. Thus there exists at most one vertex
u; such that N(w;) > 1 for some ¢ (1 <7 < m). We have m < 3 by Theorem 3.4.
However, if m = 3 then P(101010) € Q(P,) is a proper minor of G since N(uz) > 1.

Thus we have m < 2. Similarly, there exists at most one vertex v; such that N(v;) > 1



CHAPTER 3. PATH-WIDTH AND GRAPH MINOR THEORY 70

for some 7 (1 < ¢ < m'), and m’ < 2. Without loss of generality, we assume that
m <m<2.

Assume that m = 2. Without loss of generality, we assume that N(u;) > 1. If
N(u) > 2 and N(w) > 2, then P(22010) € Q(P,) is a proper minor of G. Thus,
G is a minor of P(310000). If m' = 2 and N(v;) > 1 then P(101010) € Q(P,) is
a proper minor of (G. Thus, we have either m’ = 2 and N(vy) > 1, or m' = 1. If
N(v') > 2 and N(vg) > 2 then P(22010) € Q(P-) is a proper minor of G. Thus G,
is a minor of P(310000) and G & Q(P,) by Claim 3.2.

Assume that m = m’ = 1. Without loss of generality, we assume that N(u) > N(u').
If N(u) = 1 then both Gy and G5 are minors of P(310000), since N(u') = 1. Thus
we assume that N(u) > 2. If N(uy) > 2 and N(v;) > 2 then P(2221) € Q(Ps) is a
proper minor of . Thus, without loss of generality, we assume that N(u;) < 1. Then
G is a minor of P(310000). If N(u') > 2 and N(vy) > 2 then P(222z) € Q(P,) is a
proper minor of G. Thus G is a minor of P(310000) and G ¢ Q(P;) by Claim 3.2.

Thus G & Q(P2) and we complete the proof. a

Theorem 3.10 A graph G is contained in Q(P2) if and only if G is isomorphic to one of
36 graphs shown in I'ig. 3.13.

Proof: Since Q(P;) = {K3, K13}, the number of graphs in Q(P;) obtained by star-
compositions of (not necessarily distinct) three graphs in Q(P;) is ten. A graph in Q(P;)
with a cyclic block B and N(v) < 3 for any vertex v € V(B) is isomorphic to one of the
fifteen graphs shown in Lemmas 3.11, 3.13, and 3.14. The number of graphs 1-equivalent
to these graphs are eleven. Thus by Lemma 3.10, the number of graphs in Q(P,) is 36,

and the graphs shown in Fig. 3.13 are the minimal forbidden minors for P,. a

3.4 Remarks

We conclude with the following remarks.
Theorem 3.1 obtained independently by Kinnersley [48]. A special case of Theorem 3.2
when k& = 2 was proved by Takeuchi, Soejima, and Kishimoto [93] and independently by

Fukuhara [39].
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Robertson and Seymour [83] proved that there exists an O(n?) time algorithm to decide
if a given n-vertex graph is in a minor-closed family of graphs. The time complexity is
reduced to O(nlog® n) if the family does not contain all planar graphs. This is obtained by
combining the results in [83] and [53]. Moreover, the time complexity is reduced to O(n)
if the family avoids a 2 X k grid graph and a circus-graph [13]. It follows from our results
that we have an O(nlog?n) time membership test algorithm for P, since we have listed
all the minimal forbidden minors for P, and P, does not contain all planar graphs. Notice
that P, contains a 2 x k grid graph for any k. It should be noticed that our algorithm
is the first explicit membership test algorithm for P,, although it is believed that there
exists a more efficient and practical algorithm for P, which does not rely on a minor test
algorithm.

For applications in linguistics, it would be of definite interest to know the structure of
graphs with path-width at most 6 as mentioned by Kornai and Tuza in [52]. Although it

is known that the number of minimal forbidden minors for P, (£ > 3) is stupendous, we
| might be able to characterize all the minimal forbidden minors by simple compositions like
as the minimal acyclic forbidden minors. In this sense, some general properties of minimal
forbidden minors for P shown in this chapter give us a clue to characterize not only the

minimal forbidden minors for Py but also the minimal forbidden minors for Fx (k£ > 3).



Chapter 4

Path-Width and Search Games

4.1 Introduction of Search Games

This chapter considers a new version of search game, called mixed-searching, which is a
natural generalization of edge-searching and node-searching extensively studied so far. We
establish a relationship between the mixed-search number of a simple graph G and the
proper-path-width of G. We also prove complexity results.

Search games were first introduced by Breisch [17] and Parsons [66]. An undirected
graph G is thought of as a system of tunnels. Initially, all edges of G are contaminated
by a gas. An edge is cleared by some operations on G. A cleared edge is recontaminated
if theré is a path from an uncleared edge to the cleared edge without any searchers on its
vertices or edges.

In edge-searching, the original search game variant, an edge is cleared by sliding a
searcher along the edge. A search is a sequence of operations of placing a searcher on a
vertex, deleting a searcher from a vertex, or sliding a searcher along an edge. The object
of such an edge-search is to clear all edges by a search. An edge-search is optimal if the
maximum number of searchers on GG at any operation is minimum over all edge-searches of
(. This number is called the edge-search number of GG, and is denoted by es((). LaPaugh
[54] proved that there exists an optimal edge-search without recontamination of cleared
edges. This means that the problem of deciding whether es(G) < k is in NP. Megiddo,
Hakimi, Garey, Johnson, and Papadimitriou [61] showed that the problem of computing
es(G) is NP-hard for general graphs but can be solved in linear time for trees.

Another variant called node-searching was introduced by Kirousis and Papadimitriou
[51]. In node-searching, an edge is cleared by placing searchers at both its ends simul-

taneously. A mnode-search is a sequence of operations of placing a searcher on a vertex

72
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or deleting a searcher from a vertex so that all edges of GG are simultaneously clear after
the last stage. A node-search is optimal if the maximum number of searchers on G at
any operation is minimum over all node-searches of G. This number is called the node-
search number of G, and is denoted by ns(@). Kirousis and Papadimitriou [51] proved
the following results: (1) There exists an optimal node-search without recontamination
of cleared edges; (2) The problem of computing ns(G) is NP-hard for general graphs; (3)
ns(G) — 1 < es(@) < ns(G) + 1. The unexpected equality ns(G) = pw(G) + 1 was men-
tioned by Mohring [62], and implied by Kirousis and Papadimitriou [50]. This was also
shown in [11]. This provides a linear time algorithm to compute ns(G) for trees [62, 91].

Migzed-searching is a natural generalization of edge-searching and node-searching. In
mixed-searching, an edge is cleared by placing searchers at both its ends simultaneously or
by sliding a searcher along the edge. A mized-search is a sequence of operations of placing
a searcher on a vertex, deleting a searcher from a vertex, or sliding a searcher along an
edge so that all edges of G are simultaneously clear after the last stage. A mixed-search is
optimal if the maximum number of searchers on G at any operation is minimum over all
mixed-searches of G. This number is called the mized-search number of GG, and is denoted
by ms(G).

In the following, we first show the inequalities es(G) — 1 < ms(G) < es(G) and
ns(G) — 1 < ms(G@) < ns(G). We next show that there exists an optimal mixed-search
without recontamination of cleared edges. This implies that the problem of deciding,
given a graph G and an integer k, whether ms(G) < k is in NP. Finally, we characterize
the mixed-search number of a simple graph by means of the proper-path-width. That is,
we establish the equality ms(G) = ppw(G), so the problem of computing ms(G) is also

NP-hard for general graphs but can be solved in linear time for trees.

4.2 Mixed-Searching

In mized-search game, a graph G is considered as a system of tunnels. Initially, all edges
are contaminated by a gas. An edge is cleared by placing searchers at both its ends
simultaneously or by sliding a searcher along the edge. A cleared edge is recontaminated
if there is a path from an uncleared edge to the cleared edge without any searchers on its

vertices or edges.
Definition 4.1 A scarch is a sequence of the following operations:

(a) placing « new searcher on a vertex;
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(b) deleting a searcher from a vertex;

(c) sliding a searcher on a vertex along an incident edge and placing the searcher on the

other end;
(d) sliding a searcher on a vertex along an incident edge;
(e) sliding a new searcher along an edge and placing the searéher on its end;
(f) sliding a new searcher along an edge.

The object of such a mized-search is to clear all edges by a search. A mixed-search is
optimal if the maximum number of searchers on (7 at any operation is minimum over all
mixed-searches of G. This number is called the mized-search number of G, and is denoted
by ms(G). Mixed-searching was introduced independently by Bienstock and Seymour [12].

We first show a relation to edge-searching and node-searching.

Theorem 4.1 For any graph G, es(G) —1 < ms(G) < es(G) and ns(G) —1 < ms(G) <
ns(G).

Proof: The edge-search and node-search are special cases of the mixed-search by defi-
nition. Thus we have ms(G) < es(G) and ms(G) < ns(G). Using at most one more
searcher to traverse an edge that is cleared by placing searchers at both its ends, we can
convert any mixed-search to an edge-search. Thus es(G) < ms(G) + 1. Similarly, using
at most one more searcher to clear an edge that is cleared by sliding a searcher along the

edge, we can convert any mixed-search to a node-search. Thus ns(G) < ms(G)+1. O

All four cases are possible as shown in Fig. 4.1.

4.3 Monotonicity in Mixed-Searching

Kirousis and Papadimitriou proved that recontamination does not help in node-searching.

Theorem C ([51]) For any graph G, there exists an optimal node-search without recon-

tamination of cleared edges.

Corollary A ([51]) For any graph G, there exists an optimal node-search without recon-

tamination of cleared edges satisfying the following two condilions:

(1) every vertex is visited exactly once by a searcher,



CHAPTER 4. PATH-WIDTH AND SEARCH GAMES 75

K3

(a) ms(Ky3) =2, es(K13) =2, ns(K13) =2 (b) ms(Ky) =1, es(K3) = 1, ns(Ky) =2

K5

(c) ms(K33) = 4, es(K33) = 5; ns(Kz3) =4 (d) ms(G) =2, es(G) =3, ns(G) =3

Figure 4.1: Search numbers of graphs.
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(ii) every searcher is deleted immediately after all the edges incident to it have been

cleared (ties are broken arbitrarily).

We shall prove now that recontamination does not help even in mixed-searching.

Theorem 4.2 For any graph G, there exists an optimal mized-search without recontami-

nation of cleared edges.

Proof: Let G be a graph, and G, be the graph obtained from G by subdividing every
edge of G. We call the vertices of V(G) C V(Gn) original vertices of G, and the vertices
of V(Gim) — V(G) middle vertices of Gr,. We shall prove that ms(G) = ns(Gmn) —1 and
an optimal mixed-search of G without recontamination of cleared edges can be obtained
from an optimal node-search of G, of the form described in Corollary A.

Tt is almost obvious that ns(G) < ms(G)+1 since by one extra searcher we can carry
out node-search of G,,, simulating a mixed-search of G.

Conversely, we can carry out a mixed-search of G, simulating an optimal node-search
of G,, of the form described in Corollary A as follows. We can assume that a searcher is
placed on a middle vertex of G, after a searcher is placed on one of its neighbors. The

rules for the simulation are the following:

o When a searcher is placed on an original vertex v of G, a searcher is placed on v

of G if v has no searcher.

e When a searcher is deleted from an original vertex v of G, delete the searcher from

v of G if v has a searcher.

e When a searcher is placed on a middle vertex of Gm, clear the corresponding
edge (u,v) of G, if it is contaminated, as follows: We can assume that v has a
searcher and v does not have a searcher in G. If no recontamination is caused, clear
(u,v) € E(G) by sliding a searcher on « along (u,v), and place it on v. Otherwise,

clear (u,v) € E(G) by placing a new searcher on v.
e Do nothing in any other case.

It is not difficult to see that the simulation based on the rules above defines a mixed-
search of G without recontamination of cleared edges, and the number of searchers used
on G is at most ns(Gr,). We will show that ns(Gy,) — 1 searchers are enough. Suppose

that the number of searchers on G, raises to ns((G,,) when a searcher is placed on v of
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(/- The next operation on G, must be deleting a searcher from a vertex. A searcher on
v or a vertex adjacent to v must be deleted in the next operation by the assumption that
the node-search is of the form described in Corollary A. There are the following four cases

to be considered:
(1) v is an original vertex of Gy, and the searcher on v is deleted in the next operation.

(2) v is an original vertex of G,,, and a searcher on a vertex adjacent to v is deleted in

the next operation.
(3) v is a middle vertex of G, and the searcher on v is deleted in the next operation.

(4) v is a middle vertex of G, and a searcher on a vertex adjacent to v is deleted in the

next operation.

In the case of (1), all edges of G incident to v have been cleared before placing a searcher
on v of (3, since all middle vertices of (¢,,, adjacent to v have accepted searchers. Thus
placing a new searcher on v of GG is redundant. Similarly, we can show that no new
searcher on v or a vertex adjacent to v is necessary for the other three cases. Thus we
have ms(G) < ns(Gp) — 1. o

It should be noted that Theorem 4.2 implies that the problem of deciding, given a graph
G and an integer k, whether ms(G) < k is in NP.

A crusade in a graph G, introduced by Bienstock and Seymour [12], is a sequence
(C1,Cs, ..., Cy) of subsets of F(G), such that Cy = 0, C, = E(G), and |C; — Ci—1] <1 for
1 < ¢ <. The crusade uses at most k searchers if the number of vertices which are ends
of an edge in C; and also of an edge in F(G) — C; is at most k for 1 < < r. Bienstock
and Seymour characterized the mixed-search number of a graph with minimum degree at

least two by means of the concept of crusade.

Theorem D ([12]) For any graph G with minimum degree at least two, ms(G) < k if

and only if there exists a crusade in G using at most k searchers.

Moreover, they independently proved Theorem 4.2 by using the crusade.

We obtain the following corollary from Theorem 4.2.

Corollary 4.1 For any graph G, there exists an optimal mized-search without recontam-
ination of cleared edges such that il is a sequence of operations (a), (b), or (c) of Defini-

tion 4.1, and satisfying the following two conditions:
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(i) every vertex is visited exactly once by a searcher,
(11) every edge is visited at most once by a searcher.

A mixed-search described above is said to be simple.

4.4 Proper-Path-Width and Mixed-Searching

Bienstock and Seymour characterized the mixed-search number of a graph with minimum
degree at least two by the concept of crusade as shown in Theorem D. In the following,

we characterize the mixed-search number of a simple graph by the proper-path-width.
Theorem 4.3 For any simple graph G, ms(G) = ppw(G).

Proof: Suppose that ppw(G) = k and & = (X3, X,,...,X,) is a full k-proper-path-
decomposition of G. If r = 1 then let v; and u; be distinct vertices in X; and place k
searcher on the vertices of X; — {vi}. If (uq,v1) € E(G), slide a searcher on u; to-v; and
place it on v;. Otherwise, delete a searcher from u; and place a searcher on v;. This defines
a mixed-search with k searchers. Thus we assume r > 2. We can obtain a mixed-search

with & searchers as follows:
1. Let v; be a vertex in X7 N X5. Place the k searchers on the vertices of X; — {v;}.

2. Let u; be a vertex in X7 — Xa. If (uy,v1) € E(G), slide a searcher on u; toward vy
and place it on vy. Otherwise, delete a searcher from u; and place a searcher on v;.
Let z = 1.

3. Repeat Step 3 while7 <r —2. Let 1 =1+ 1. Let u; be a vertex in X; — X;4; and
v; be a vertex in X; — X;_y. If (u;,v;) € E(G), slide a searcher on u; toward v; and

place it on v;. Otherwise, delete a searcher from u; and place a searcher on v;.

4. Let u, be a vertex in X,_; N X, and v, be a vertex in X, — X,_y. If (u,,v,) € E(G),
slide a searcher on u, toward v, and place it on v,. Otherwise, delete a searcher from

u, and place a searcher on v,.

From the definition of full k-proper-path-decompesition, both u; (1 <1 <r—1) and v;
(2 <1 < r) are uniquely determined. It should be noted that ((X; —{vi}) — {wi})U {vi} =
XinXiy = X —{vir} and wiyq € Xy — {viq } for 1 <o <r—1. An edge with both

its ends in X; — {v;} (1 <14 < r) is cleared since the vertices in X; — {v;} have searchers
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simultaneously in 1, 2, or 3. Also, an edge with both its ends in X, — {u,} is cleared since
the vertices in X, — {u,} have searchers simultaneously in 4. Since G is simple, there
exists at most one edge connecting u; and v; (1 <7 < r), and each edge (u;,v;), if exists,
is cleared by sliding a searcher along the edge. Thus all edges are cleared at least once.
Suppose that all edges connecting the vertices in [J;;<;—1 X; are clear and k searchers are
placed on the vertices in X — {v;}. Since u; & U;1<j<- X;, all edges incident to u; except
for (u;,v;), if exists, are clear when a searcher on u; is deleted or slid from ;. Thus, when
the searcher is placed on v;, all edges in U;¢;¢; X; are clear and k searchers are placed
on the vertices in X;;; — {v;;1}. Thus by induction no edge is recontaminated. Thus
the search above is indeed a mixed-search with at most ppw(G) searchers, and we have
ms(G) < ppw(G).

Conversely, suppose that we have a simple mixed-search S with %k searchers. For the

t-th operation of S, we define X; as follows:

(1) When a searcher is placed on (deleted from) a vertex, we define X; as the set of

vertices having searchers.

(2) When a searcher is slid from u to v, we define X; as .the set consisting of u, v, and

the vertices having searchers.

Let X = (X1, Xa,...,X,) be the resulting sequence of sets of vertices. Since both ends of
an edge which is cleared in the ¢-th operation are contained in X;, all edges are contained in
some X;. Since § is simple, Uy <<, Xi = V(&) and each vertex of G appears in consecutive
X;’s. Thus X satisfies conditions (ii), (iii), and (iv) in Definition 2.2. Notice that |X;| < k
if X; is defined by (1), |X;| < k+ 1 otherwise. Let X,, X;, and X, be elements in A" such
that each one is not a subset of the others (1 < a < b < ¢ < 7). Il X, is defined by (1),
then | X, N X3] < £ —1since Xy € X,. Thus [ X, N Xy N X, <k —1. If X, is defined
by (2), then there exist distinct « and v in X, such that v € X, and v € X.. Therefore
| X.NX,NX,.| <k-—1. Hence, for any X,, X3, and X, such that each one is not a subset of
the others (1 <a <b<e<r), | XaNXyNX,| < k—1. Thus by Lemma 2.15, ppw(G) < k
and ppw(G) < ms(G). O

It should be noted that Theorems 3.2 and 4.3 provide a structural characterization of trees
T with ms(T) < k.

From Theorems 2.7, 2.8, and 4.3, we have the following complexity results on ms(G).
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Theorem 4.4 The problem of computing ms(G) is NP-hard for general graphs but can

be solved in linear time for trees.

4.5 Remarks

We conclude this chapter with the following remarks:

1.

b

Notice that Theorem 4.3 does not hold for multiple graphs. If GG is the graph con-
sisting of two parallel edges, ppw(G) = 1, and ms(G) = 2. However we can prove

that ppw(G) < ms(G) < ppw(G) + 1 for any multiple graph G.

Bodlaender and Kloks [15] showed an O(nlog® n) time algorithm to decide whether
pw(G) < k for any graph G and a fixed integer k. We can modify their algorithm
to decide whether ppw(G) < k for any graph G and a fixed integer k.

. We should mention the relation of mixed-searching with virus-searching [14, 92]. In

virus-searching, initially, all vertices are contaminated by a virus. A vertex is cleared
by placing a searcher on it. A cleared vertex is recontaminated if there is a path
from an uncleared vertex to the cleared vertex without any searchers on its vertices
or edges. A search is a sequence of operations of placing a searcher on a vertex,
deleting a searcher from a vertex, or sliding a searcher along an edge. The object
of such a virus-search is to clear all vertices by a search. A virus-search is optimal
if the maximum number of searchers on GG at any operation is minimum over all
virus-searches of GG. This number is called the virus-search number of G. Any virus-
search S can be considered as a mixed-search, and vice versa. It is easy to see that
an edge (u,v) is cleared by S as a mixed-search if and only if both its ends u and
v are cleared by S as a virus-search. Thus the virus-search number is equal to the

mixed-search number for any non empty graph G.
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Chapter 5

Path-Width and Universal Graphs

5.1 Introduction of Universal Graphs

Given a family F of graphs, a graph G is said to be universal for F if (G contains every
graph in F as a subgraph. A minimum universal graph for F is a universal graph for
F with the minimum number of edges. We denote the number of edges in a minimum
universal graph for F by f(F). f(F) is O(n?) for any family F of graphs on n vertices,
since a complete graph on n vertices is trivially a universal graph for 7. Determining
f(F) has been known to have applications to the circuit design, data representation, and
parallel computing [8, 9, 24, 89, 97]. Bhatt, Chung, Leighton, and Rosenberg [9] showed
a general upper bound for f(F) for a family F of bounded-degree graphs by means of the
size of separators.

For general families of (unbounded-degree) graphs, the following three results have

been known:

(5.1) If F is the family of all planar graphs on n vertices, f(F) is Q(nlogn) and O(ny/n)
[71;
(5.2) If F is the family of all trees on n vertices, f(F) is O(nlogn) [20];

(5.3) If F is the family of all 2-paths on n vertices, f(F) is O(nlogn) [96]. (A 2-path is

a special kind of outer planar graph.)

In this chapter, we show a generalization of (5.3). We consider finite undirected graphs
without loops or multiple edges. We denote the family of all graphs on n vertices with
path-width at most k by FF*.

The purpose of this chapter is to prove the following:

S1
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Theorem 5.1 For any integer k (k > 1) and n (n > 12k), f(FF) is © (knlog(n/k)). O

It follows from Theorem 5.1 that if F is the family of all planar graphs on n vertices with
bounded path-width then f(F)is © (nlogn).

Many related results can be found in the literature {7, 8, 9, 18, 19, 20, 21, 22, 23, 24,
89, 96, 97].

5.2 Universal Graphs for Graphs with Bounded
Path-Width

5.2.1 Lower Bound

Let dg(v) be the degree of a vertex v in G. Let D(G) = (8,6%,--.,04) be the degree
sequence for a graph G with n vertices, where 6% > 8% > --- > 6. For graphs G and H
with m and n vertices, respectively, we define D(G) > D(H) if and only if m > n and
6 > &4y for any 1 (1 <1 < n).

Lemma 5.1 If a graph G is a universal graph for a family F of graphs, D(G) > D(H)
for any graph H in F.

Proof: For otherwise, G cannot contain H as a subgraph. O

Lemma 5.2 For any integer k (kK > 1) and s (1 < s < |(n—2k)/k]), there exists a
k-intercat R(k,s) on n vertices such that 6%3(,;,3) > |(n—2k)/s]| + k.

Proof: Let r = |(n — 2k)/s|. R(k,s) can be constructed as follows:
1. Define that Q(k,k) is the complete graph on the vertices Cy = {v1,vo,..., 01 };

2. Given Q(l{:,.i) and C; (k <1 < 2k), define that QQ(k,2+ 1) is the k-intercat obtained
from Q(k,7) by adding vertex vi41 adjacent to the vertices in C;, and let Ciyy =

(Ci U {viga}) — {vita-i};

3. Given Q(k,1) and C; 2k +jr <i<r+k+jr,0 <j <s—2), define that Q(k,7+1)
is the k-intercat obtained from Q(k, ) by adding vertex v;4y adjacent to the vertices

in C;, and let Cpyy = Cf;
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4. Given Q(k,?) and C; (r+k+jr < i <r+2k+jr,0 <j < s~ 2), define that
Q(k,i+ 1) is the k-intercat obtained from Q(k,%) by adding vertex v;1; adjacent to
the vertices in C;, and let Ciyy = (C; U {viy1}) — {vi41—r};

5. Given Q(k,i) and C; (2k + (s — 1)r < i < n — 1), define that Q(k,7 + 1) is the
k-intercat obtained from Q(k,?) by adding vertex v;1 adjacent to the vertices in C,

and let Ci+1 = Ci;
6. Define R(k,s) = Q(k,n).

It is easy to see that |C;| = k and Q(k, 1) is a k-intercat for any i (k <7 < n). Itis also easy
to see that dpg,s)(Vegirir) =r+E (1 <1< k0S5 < s—2), and dp(k,s) (Vi (s-1)r) = Tk
(1 <7< k). Thus we have 5;‘"{(,6’5) >r4+k. ) O

For example, k-intercat R(2,1) and R(2,2) on 20 vertices such that 6%, ;) > 18 and
&R(2,2) = 10 are shown in Figs. 5.1 and 5.2.

Vi Vg Vg V, Vg Vg Vy Vg Vg Vi Vi Vis Vig Vig Vis Vie Viz Vis Ve Vao
Figure 5.1: R(2,1) on 20 vertices.

Theorem 5.2 For any integer k (k > 1) and n (n > 3k), f(FF) is Q(knlog(n/k)).

Proof: Let G be a universal graph for ¥ and t = |(n — 2k)/k]. Notice that 2|E(G)| =

n

Yovevie) dalv) 2 22in oL > otk 6L > kYt 65, By Lemmas 5.1, 5.2, and Theorem 2.4,

t ) ,-——-2'
ESD 6 = A:Z([" _ l‘jw«)
i=1 =1 ¢
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Figure 5.2: R(2,2) on 20 vertices.

t 9L
> kZ(n .2]”+k—1)
=1

[

> k(n — 2k)log, (” “]CQk) + (k= 1)(n — 3k).

Thus |E(G)| is Q (knlog(n/k)). 0

5.2.2 Upper Bound

We show an upper bound by constructing the graph G with n vertices and O (knlog(n/k))
edges, and proving that G¥ is a universal graph for Fr.

Let k* = 2M°8*1 §,; be the maximum power of 2 such thatvbili, and b; ; = max(b;, b;).
Notice that k < k* < 2k. Let Gf (k > 1,n > 1) be the graph obtained by the following

construction procedure:
(1) Let uy,us,...,u, be n vertices;
(2) For any distinct 7 and j, join u; and u; by an edge if |7 —¢| < 3k%b;; + k — 1.

For example, G5, is shown in Fig. 5.3.

Theorem 5.3 For anykinieger k (k>1) and n (n > 12k), |E(GE)| = O (knlog(n/k)).

Proof: Let F; (1 <17 < n) be the set of edges (u;,u;) € G* such that |5 —1] < 3k7b;+k—1.
It is casy to see that |E;| < min(2(3k*b; + k — 1),n — 1) for any ¢ (1 < ¢ < n), and
UL, By = E(G*). Notice that |{i | b; = 2,1 < < n}| = [(n + 2”)/2“1} and [{z | b; >
281 <i<n}| = [n/‘ZhJ for any integer h (h > 0). Since 2(3k*2°807/G5) Lk — 1) > pn,
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Figure 5.3: G3,.

the total number of edges added in (2) is at most

n |log 53| h
. +2 n
Bl < 2(3h2 4k~ 1 [n————J—l—n—l [__J
SiE < > )|BEE |+ - | e
i )
< Y @K k1) (—h+1> + 6k (n— 1)
h=0 =
< (6k7z+k—l)logé%—i—(‘z()k—l)n—(6k2—|—8k+1).

Thus |E(GE)| = O (knlog(n/k)).
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Theorem 5.4 For any integer k (k> 1) and n (n > 1), Gf is a universal graph for FE.

Proof: By Theorem 2.4, it is sufficient to show that any k-intercat is a subgraph of GF.

Let R be a k-intercat in F¥. We shall show that R is a subgraph of Gk Iftn <4k, R

is a subgraph of G* since G* is the complete graph on n vertices. Thus we assume that

n > 4k 4 1. As we mentioned before, we can assume that R can be obtained as follows:

1. Define that Qj is the complete graph on the vertices Cy = {vq,vs,. .. ,vk}';

2. Given Q; and C; (k < i < n — 1), define that (i is the k-intercat obtained

from Q; by adding vertex v;y; & V(Q;) adjacent to the vertices in Cj, and let

Cip1 = (Ci U {vigq }) — {0} where w; € C;U {vi1 };
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3. Define R = @),,.
For the construction above, we have the following two lemmas.

Lemma 5.3 If (vy,v.) € E(R) then (vs,vy) € E(R) for any distinct a,b, and ¢ (1 < a <
b<c<mn).

Proof: Assume contrary that (v,,v;) ¢ E(R). Since v, € Cp—q and v, € Ceoy, Vo = Viga
for some ¢ (b—1 < i < ¢ - 2), contradicting that vy & V(Q:). ]

Define /; = max(d | (vi,viyq) € E(R)V d =0) for any 7 (1 <i <n).

Lemma 5.4 For any integer i (1 <1 < n—1), [; =0 if and only if {v; | (vj,vig1) €
E(R),j <i}| = k.

Proof: First, assume that 1 <1 < k. Since (vi,v541) € E(R), I; > 0. Since @ is the

complete graph on the vertices vy, vg, ..., and vy, |[{v; | (v;,vi41) € E(R),j <1} =i-1<
k.

Next, assume that k41 < i < n — 1. Notice that vy is adjacent to the vertices in
Ci in Qip1, {v; | (vj,vi01) € E(R),j < i} = C; — {v;}, and |Ci| = k. Suppose that I; = 0.
By the definition of I;, we have (v;,vi11) € E(R), and v; ¢ C;. Thus [{v; | (vj,vi41) €
E(R),j < i}| = |Ci| = k. Conversely, suppose that [{v; | (vj,vi11) € E(R),7 < i}| = k.
Since |C;| = k, we have v; € C;, and (vi,viqy1) & E(R). Thus [; = 0 by Lemma 5.3. O

Let I¥ = 2Mogll if [; > 1, I = 1 otherwise. Let m; = [I7/(2k*)]. Now we define
mapping ¢:{1,2,...,n} — {1,2,...,n} as shown in Fig. 5.4.

A mapping ¢:{1,2,...,n} — {1,2,...,n}
1. Let Do =0, Uy = {1,2,...,n}, and 7 = 1.
2. Define that ¢(4) is the minimum integer such that ¢(z) € U;—; and m;|¢(2).
3. Let D; = Di_1 U {é(2)} and U; = U=y — {#(2)}.

4. If { = n, halt. Otherwise, set i = ¢ + 1, and return to Step 2.
[Figure 5.4: A mapping from k-intercat into G*.

Notice that m; < by for any 2 (1 <@ < n) since both m; and by(;y are power of 2 that

divide ¢(7). Notice also that [; <[f <2l if [; > 1.
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Lemma 5.5 ¢ is a one-lo-one mapping satisfying that —k < 9(1) i < [iz/2] — 1 for
anyt (1 <t <n).

Proof: By induction on ¢z, we show that

—k< (i) ~i< [g] ~1, (5.4)
and :
$(1) =i < li—k—1if m; > 2. (5.5)

Assume that the algorithm have determined $(1), #(2),- - ¢(1 — 1) satisfying the in-
equalities (5.4) and (5.5), and {1,2,...,1 ~h =1} C D;_yand i —h € U;_; (0 < h <
k,h < i). Notice h depends on ¢ and that these assumptions are trivially true if ¢ = 1,
since Dy = ) and 1 € Up. We show that the inequalities (5.4) and (5.5) hold also for ¢(2)
(6 > 1), and there exists b (0 < A’ < k, A" < i +1) such that {1,2,...,i — K} C D; and
1—h'+1€eU,.

First, suppose that 0 < h <k —1. It is easy to see that

h<d(i)—i < —h+(h+lmi—1

= (h+1)(mi—1)

o I*
< m+nﬁs§gyﬂ.

Notice that ¢(2) < i+ [lf/2] =1 <i+L—1<nif; > 1,and ¢(z) <1+ [I7/2] =1 =1

otherwise. Thus ¢(7) is uniquely determined in 2 in the algorithm. If m; > 2 then

o(i) — i g(h+n<£*_g

li—k—1
k

IA

(h+1)
< L—k-1.

Thus the inequalities (5.4) and (5.5) hold also for ¢(i). Since h < k — 1, there exists b’
(0< A <h+41<kh <i+1)suchthat {1,2,...,2 4"} CD; andi—h' +1€U,.
Next, suppose that h = k. We will show that m; = 1 and ¢(z) —1 = —k. Let
W={j|é(j) =i—k+1,j <i}. Sincei—k € Uiy, [W| =k and m; = 2 for any j € W.
Notice that § < ¢ +1 < ¢(j) +k+1 < j+1; for any 5 € W by the definition of W
and the inequality (5.5). Since (vj,vj4;) € E(R) for any j € W by the definition of

li, (vj,vi1) € E(R) by Lemma 5.3. Thus ; = 0 by Lemma 5.4, and we have m; =1
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and ¢(i) — i = —k. Therefore the inequalities (5.4) and (5.5) hold also for ¢(i). Since
$(1) = i — k, there exists h' (0 < B < k,h' < i+1)such that {1,2,... 4 — A’} C D; and
i—h +1cU.

Thus ¢ is a one-to-one mapping satisfying the inequality (5.4) for any ¢(z). 0

Lemma 5.6 If (v;,v;) € E(R) then (ug(), ug(j)) € E(GF).

Proof: Without loss of generality, we assume that ¢ < j. Notice that 1 <3 —¢ <[ <[
Since 4 is a one-to-one mapping, ¢(i) # #(j). From Lemma 5.5, we have —k < ¢(2) — ¢ <
[15/2] — 1 and —k < ¢(j) — < [17/2] = 1. Thus —([1;/2] + k —2) < ¢(j) = ¢(i) <
4 [15/2] + 5 — 1 and [9(j) — ¢(0)] < & + /2] +% -1

If 2 > I7 then |g(j) — $(5)] < [355/2] + k =1 < 3k™m; + b — 1 < 3k7bg(ap ) + kb — 1.
Notice that m; < by < bg(iye(i)- Thus (ug(), ug(s)) € E(Gh) by the definition of G*. The

same type of argument applies when 7 <7, mp

By Lemmas 5.5 and 5.6, we conclude that R is a subgraph of G¥. This completes the
proof of Theorem 5.4. ]

Theorem 5.1 follows from Theorems 5.2, 5.3, and 5.4.

5.3 Remarks

Notice that an embedding of a given graph with a path-decomposition can be obtained by
the mapping shown in Fig. 5.4. An embedding of the graph R(2,1) on 20 vertices and an

embedding of the graph R(2,2) on 20 vertices are shown in Figs. 5.5 and 5.6, respectively.

We conclude with the following open problems.
1. Close up the gap between upper and lower bounds in (5.1).

9. Generalize (5.2) to k-trees (k> 2).
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Chapter 6

Conclusion

In this thesis, we investigate the path-width and proper-path-width of graphs.

In Chapter 2, we define the path-width and proper-path-width of graphs, and discuss
properties of them. We show that a simple graph is a partial k-intercat if and only if its
path-width is at most k, and a simple graph is a partial k-path if and only if its proper-
path-width is at most k. Using these results, we show that the problem of computing the
path-width and the problem of computing the proper-path-width are NP-hard. However,
we show that the problem of computing the proper-path-width can be solved in linear time
for trees. Moreover, similar to path-width, we show that a proper-path-decomposition of
a tree can be obtained in linear time.

In Chapter 3, we list the minimal acyclic forbidden minors for the family of graphs
with bounded path-width or proper-path-width. Moreover we list all 36 minimal forbidden
minors for the family of graphs with proper-path-width at most two. This gives us the -
first explicit membership test algorithm for the family of graphs with proper-path-width at
most two, although it is believed that there exists a more eflicient and practical algorithm
which does not rely on a minor test algorithm. Our proof contains many general methods
that give us a clue to characterize the minimal forbidden minors for the family of graphs
with path-width or proper-path-width at most k (k = 3).

In Chaptei' 4, we introduce a new version of search game, called mixed-searching, which
is a natural generalization of edge-searching and node-searching. We show that there exists
an optimal mixed-search without recontamination of cleared edges, and the mixed-search
number of a simple graph G is equal to the proper-path-width of (. This also shows that
the problem of computing mixed-search number is NP-hard for general graphs, but can be
solved in linear time for trees. The optimal mixed-search strategy for a tree is obtained

from a proper-path-decomposition of the tree.

90
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In Chapter 5, we give a universal graph for the family of n vertex graphs with path-
width at most k, and show that the number of edges in a minimum universal graph is
O (knlog(n/k)). It follows that the number of edges in a minimum universal graph for
the family of all planar graphs on n vertices with bounded path-width is © (nlogn). We
also give an embedding algorithm of a graph with a path-decomposition on the universal
graph. _

The tree-width of graphs [72], which is a generalization of path-width, has been studied
extensively so far. It is well known that a simple graph G is a partial k-tree if and only
if its tree-width is at most k, and many problems become also solvable in polynomial for
the family of graphs with bounded tree—width\[5]. It is still open whether there exists a
problem which becomes solvable in polynomial time for the family of graphs with bounded

path-width, but still NP-complete for the family of graphs with bounded tree-width.
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