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Abstract

The Earth’s magnetic field is generated and maintained by the dynamo action in
the Earth’s fluid outer core. In order to understand a realistic geodynamo mechan-
ism, 1t is essential to clarify fluid motion in the electrically conducting outer core.
The fluid motion in the core should be responsible for the characteristics of the
Earth’s magnetic field, which should be closely related to the geodynamo mechanism.
In an opposite sense, information on fluid motion in the outer core would be provided
by the characteristics of the Earth’s magnetic field. Following such a presumption,
fluid motion in the Earth’s outer core is derived from geomagnetic field data by solv-
ing the induction and the Navier-Stokes equations. The basic standpoint is that the
non-axisymmetric poloidal magnetic field is maintained by induction processes associ-
ated with a large-scale fluid motion within the outer core. The radial dependence of
poloidal velocity field is unknown, but once a rather simple functional form is
assumed, the magnitude is constrained by the magnetic field data. The toroidal velo-
city field can be derived by solving the Navier-Stokes equation. We examine several
cases step By step.

In Cases 1 and 2, inducing magnetic fields for the generation of non-
axisymmetric poloidal magnetic fields are assumed to be zonal toroidal magnetic
fields which are expected to be generated by the interaction between the axial dipole
magnetic field and a zonal toroidal motion (the w-effect). It is then assumed that the
non-axisymmetric poloidal magnetic fields are maintained by the interaction between
poloidal velocity fields and the zonal toroidal magnetic fields. In Cases 3, 4 and 5,
axisymmetric poloidal magnetic fields, in particular the dipole magnetic field, are also
considered as inducing magnetic fields. Then the non-axisymmetric poloidal mag-

netic fields are assumed to be maintained by the interaction between poloidal velocity



fields and the axisymmetric poloidal and the zonal toroidal magnetic fields. In Cases
6 and 7, non-zonal toroidal velocity and non-zonal toroidal magnetic fields are further
taken into consideration. The inducing magnetic fields for the non-axisymmetric
poloidal magnetic fields are then assumed to be the toroidal and axisymmetric
poloidal magnetic fields. In Cases 2, 5 and 7, an axisymmetric poloidal velocity field,
which gives rise to zonal toroidal motions, is added with its magnitude varied vari-
ously.

In order to check the validity of solutions, time-dependent behavior of the mag-
netic field is examined with the velocity field fixed for respective cases. The time
integration is performed using the fourth-order Runge-Kutta scheme. Unless the
derived velocity field is realistic, the magnetic field would diverge or decay within a
short time. This is because some other induction terms, which have not been taken
into consideration in deriving fluid motion in the core, must also be important in
maintaining a steady magnetic field. In this sense, it is found that the fluid motions
derived for Cases 1 to 5 are not realistic. The most plausible fluid motion in the core
is derived for Case 6; the magnetic energy increases only by 20 % for 500 years in the
calculation of time-dependent behavior of the magnetic field. In addition, some of the
marked features in the velocity field are similar to those derivéd on the frozen-flux
approximation.

The fluid motion is characterized by two convection rolls; one is parallel to the
Earth’s rotation axis and the other inclined. The extension of convection roll axis
goes through the core surface beneath Canada and Siberia in the Northern Hemi-
sphere, where magnetic flux concentrations are also observed at the core-mantle
boundary (CMB). This result is consistent with a geodynamo model in terms of con-
vection rolls parallel to the Earth’s rotation axis as proposed by Busse (1975). It is

also consistent with the relation between the locations of convection roll axes and the
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magnetic flux concentrations at the CMB as suggested by Gubbins and Bloxham
(1987). The inclined convection roll seems to be related to the toroidal magnetic
field in the core. The distribution of the toroidal magnetic field also seems to be con-
sistent with the distribution of the radial component of the magnetic field at the
CMB. The entire patterns of the derived fluid motion at the epochs of 1600, 1700,
1800, 1900 and 1980 AD vary little, whereas the magnitude of velocity field is dif-
ferent from one epoch to another. The locations of convection rolls may be con-
trolled by the thermal interactions between the core and the mantle as pointed out
by Bloxham and Gubbins (1987). All these results suggest that a large-scale zonal
toroidal motion and a strong zonal toroidal magnetic field are not necessarily
required by the geodynamo; that is, the geodynamo is more likely to be of o’-type

rather than of aw-type.
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1. Introduction

The Earth possesses its intrinsic magnetic field, which varies with various
characteristic times; for example, polarity reversals of the axial dipole magnetic field
and the westward drift of the non-dipole magnetic field are well known. The creation
and maintenance of the Earth’s magnetic field are generally believed to be due to the
dynamo action in the Earth’s fluid core. Fluid motion in the electrically conducting
outer core should primarily be responsible for the characteristics of the Earth’s mag-
netic field. In order to understand a realistic dynamo mechanism, which is operative
in the core, it is essential to clarify the velocity field in the outer cdre, but this is an
extremely difficult problem. In an opposite sense, the characteristics of the Earth’s
magnetic field should be related closely to the dynamo mechanism and they would
provide information on fluid motion in the core. With such a presumption in mind,
we attempt to derive fluid motion in the Earth’s outer core from geomagnetic field
data.

One conventional approach to derive fluid motion in the core is based on the
frozen-flux approximation (Roberts and Scott, 1965); that is, the magnetic diffusion
term in the induction equation is neglected for a time scale of some tens of years
because of the high electrical conductivity of core fluid. Then the core behaves like a
perfect conductor so that magnetic lines of force move with the fluid. According to
Backus (1968), however, this approximation alone warrants no unique velocity field,
and an additional constraint is required; for example, steady flow (Voorhies, 1986;
Whaler and Clarke, 1988; Whaler, 1990), geostrophic flow (Le Mouél et al., 1985;
Gire and Le Mouel, 1990; Hulot et al., 1990), or toroidal flow (Gubbins, 1982; Blox-
ham, 1989; Lloyd and Gubbins, 1990) has been considered as a constraint.

Meanwhile, Bloxham and Gubbins (1986) presented a line of evidence showing



that the frozen-flux approximation is invalid in the South Atlantic region where mag-
netic flux diffusion seems to be significant. Bloxham (1986) also pointed out that a
strong toroidal magnetic field and+upwelling motions existing near the core-mantle
boundary (CMB) would invalidate the frozen-flux approximation. It should be
noted, however, that the result of Bloxham and Gubbins (1986) depends on their
error estimates and Bloxham {1988b) himself admits that their work does not neces-
sarily mean that the frozen-flux approximation should be abandoned.

Another approach to fluid motion in the core is based on the presumption that a
strong toroidal magnetic field must be generated by a differential rotation in the core
(Rikitake, 1967; Honkura and Rikitake, 1972; Honkura and Matsushima, 1988c;
Matsushima and Honkura, 1989a). The process is then simplified; non-axisymmetric
poloidal magnetic fields observed at the Earth’s surface are generated only by the
interaction between poloidal velocity fields and such a strong zonal toroidal magnetic
field. Then derivation of fluid motion in the core is rather straightforward.

Rikitake (1967), Honkura and Rikitake (1972), and Honkura and Matsushima
(1988c) further assumed that a strong zonal toroidal magnetic field with degree two
and order zero of spherical harmonics (hereafter we will express it as B[Tj]) with an
arbitrarily given magnitude exists only in a narrow shell within the core, and derived
poloidal velocity fields near the CMB. Matsushima and Honkura (1989a) improved
the method by estimating differential rotation, which is expected to generate a strong
toroidal magnetic field, and derived the magnitude and the radial dependence of the
toroidal magnetic field B[TJ] through the interaction between the axial dipole mag-
netic field B[S7] and the differential rotation V[T?]; this is the so-called w-effect. In
order to obtain the zonal toroidal motion V[Tg], they divided the outer core into
spherical shells of equal volume, following the method of Watanabe and Yukutake

(1975). An underlying assumption is that each spherical shell is subject to rigid



steady rotation as a result of the balance between the electromagnetic torque due to
the Lorentz force and the effective torque due to the angular momentum transfer
eipected from virtual displacement of fluid particles. Then we can calculate the zonal
toroidal velocity field and derive a zonal toroidal magnetic field from the w-effect.
The magnitude of poloidal velocity fields estimated in this way does not necessarily
coincide with the magnitude of the initially given velocity fields. However, self-
consistent solutions may be derived by an iterative calculation of the whole process.

We can easily realize that it is insufficient to represent differential rotation in
terms of the zonal toroidal motion V[T}] only. More realistically, differential rota-
tion should depend not only on the r-direction but also on the #-direction, as is the
case for the Sun’s convection zone (e.g. Babcock, 1961). Matsushima and Honkura
(1989b; unpublished work), therefore, divided the outer core in the r- and §-directions
and derived differential rotation, again on the basis of the concept of virtual displace-
ment of fluid particles. In this case, they regarded zonal toroidal magnetic fields
B[TP] (1 < 6) as responsible for the generation of non-axisymmetric poloidal magnetic
fields and derived fluid motion in the outer core.

It should be noted that plausible estimation of differential rotation is crucially
important when we try to derive fluid motion in the core on the basis of strong zonal
toroidal magnetic fields. The previous results have relied on a physically very simpli-
fied model; that is, virtual displacement of fluid particles in estimating differential
rotation. Until this concept is justified, the method is by no means reliable and
improvements in this respect are obviously required in order to derive more reliable
fluid motion in the core. The best way to estimate toroidal velocity fields is to solve
the Navier-Stokes equation.

The line along which we proceed is now clear; fluid motion in the Earth’s outer

core is to be derived from geomagnetic field data by solving both the induction and



the Navier-Stokes equations. It is too difficult, however, to take into consideration
the energy source in the Navier-Stokes equation; we must also solve the energy equa-
tion. Furthermore, the energy source for the geodynamo is a problem under debaite;
which type of convection is more likely, a thermal or a compositional one (e.g. Gub-
bins and Roberts, 1987)? Nevertheless, once poloidal velocity fields in the core are
somehow known, it is possible to derive toroidal velocity fields by solving the Navier-
Stokes equation for the toroidal constituent, as will be described in Section 2.

In this sense, the present approach may be considered as an intermediate stage
between kinematic dynamo and magnetohydrodynamic (MHD) dynamo. In the
kinematic dynamo, the velocity field in the core is given and it is examined whether
the magnetic field is sustained with the given velocity field. In the present method,
we assume the radial dependence of poloidal velocity field as in kinematic dynamo,
since we do not consider the energy source. The magnitude is an unknown quantity
to be determined. The toroidal velocity field is derived by solving the Navier-Stokes
equation which includes the Coriolis force and the Lorentz force. This point is essen-
tially different from the kinematic dynamo approach.

Another essential point is that fluid motion in the core is to be derived from
geomagnetic field data; that is, the magnitude of poloidal velocity field is constrained
by the magnetic field observed at the Earth’s surface. Asin our previous approaches
(Matsushima and Honkura, 1989a, b), we do not consider the mechanism by which
the axial dipole magnetic field is generated. For consistency, however, it must also be
shown that the derived velocity field can maintain the axial dipole magnetic field.
Although this is beyond the scope of the present study, the information on the velo-
city field in the core is crucially important in a realistic geodynamo model.

In the actual computation, we consider a large-scale convective motion and

express 1 in terms of toroidal and poloidal velocity fields, each of which is expanded



into a series of spherical surface harmonics of up to degree four. First, we reexamine
the previous unpublished work based on the assumption that non-axisymmetric
poloidal magnetic fields are generéted simply by the interaction between poloidal
velocity fields and zonal toroidal magnetic fields created by the w-effect. The strong-
est poloidal magnetic field is obviously the axial dipole magnetic field B[S?]. It
turned out that there is no reason to exclude the axial dipole constituent as an induc-
ing magnetic field from which non-axisymmetric poloidal magnetic fields are created.
Second then, we try to extend the method so as to include the dipole magnetic field
as one of the inducing magnetic fields. We can also include axisymmetric non-dipole
magnetic fields as inducing magnetic fields, and examine the validity of the assump-
tion that non-dipole magnetic fields as inducing magnetic fields can be neglected.
Third, we try to further improve the second method. As mentioned above, we can
derive toroidal velocity fields by solving the Navier-Stokes equation on the condition
that poloidal velocity fields are known. These non-zonal toroidal velocity fields may
generate strong non-zonal toroidal magnetic fields B[TTY (m # 0). Our final stand-
point is that steady non-axisymmetric poloidal magnetic fields are maintained pri-
marily by the interaction between the poloidal convective motion and the toroidal
magnetic fields.

Velocity fields in the core are thus derived for various cases. However, no solu-
tion is likely to be unique, since we deal with non-linear algebraic simultaneous equa-
tions. We must somehow check the validity of solutions and examine whether the
derived velocity field can maintain the magnetic field even when all the induction
terms are taken into account. One way would to be to examine time-dependent
behavior of the magnetic field with the velocity field fixed. If an assumption made in
the derivation of fluid motion in the core is inappropriate, the magnetic field would

diverge or decay within a short time because of the lack of induction terms which



should have been taken into account in deriving fluid motion in the core; that is,
some other induction terms must ber important in maintaining a steady magnetic
field.

We found after all that the most plausible fluid motion in the Earth’s outer core
is derived when non-zonal toroidal velocity fields are taken into account. It should
also be pointed out that some of the features of the velocity field are in common with
those derived on the frozen-flux approximation. All these results suggest that a
large-scale zonal toroidal motion and a strong zonal toroidal magnetic field are not
necessarily required by the geodynamo; that is, the geodynamo is more likely to be of

a’-type rather than of aw-type.



2. Method

2.1. Fundamental equations and mathematical formulation

In order to derive fluid motion in the Earth’s outer core from geomagnetic field
data, we solve both the induction and the Navier-Stokes equations.

The induction equation is derived from Maxwell’s equations, ignoring the dis-

placement current, as

%fi -V x (V x B) + 1,,V°B, (2.1)

where B is the magnetic field, V the velocity field, and v,, = (uo)™! the magnetic
diffusivity. The magnetic permeability p is taken as that of vacuum p; = 47x 1077
Hm™!. Also for the sake of simplicity the electrical conductivity ¢ is assumed to be
constant throughout the inner and outer cores.

In the Boussinesq approximation (e.g. Chandrasekhar, 1961) and in a frame of
reference rotating with a constant angular velocity €2, corresponding to the angular

velocity of the mantle, the Navier-Stokes equation is written as

—a—K—Vx(VxV)=—VX—-29><V+L(V><B)><B

ot Pho
(2.2)

~ Cg(r)# + vV2V,

where # is the radial unit vector, and v, p and C denote the kinematic viscosity, the
mean density of the core, and the buoyancy parameter, respectively. For example, if
we consider thermal convection, the buoyancy pérameter 1s expressed as C = —q,0,
where a; and O denote the coefficient of volume expansion and the deviation of the

temperature field from the reference. The reduced pressure y is given as



1 1
x=L+ V- =Qxr?
p 2 2

where p is pressure and r is the position vector. Since we consider a spherical shell of

fluid subject to a spherically symmetric radial gravitational field, g(r) is given as
4
g(r) = S mpGr,

where G is the constant of gravitation.

When fluid in the core is assumed to be incompressible, the velocity field is
solenoidal, as verified from the equation of continuity. The magnetic field is also
solenoidal, as verified from one of the Maxwell equations. Solenoidal vectors can be
expressed in terms of toroidal and poloidal vectors (Chandrasekhar, 1961; Backus,

1986) given as
T=Vx(I(r,t)7), §S=V xV x(S(r, t)f), (2.3)

where T is a toroidal vector, S a poloidal vector, T(r, t) a scalar function for the
toroidal vector, S(r, t) a scalar function for the poloidal vector, and ¢ time. We use
the spherical coordinates (r, 6, ¢) to express the velocity field V and the magnetic
field B, and expand their scalar functions into a series of spherical surface harmonics
for 6- and ¢-dependence, since we consider large-scale velocity and large-scale mag-

netic fields. T(r, t), for example, is expressed as
L 1
T(r, ) = 33 3 IT™(r, ) Y7(6, ). (2.4)
l=1m=0

Y7™(8, ¢) represents P*(cos )cosm¢ or P[*(cos §)sinm¢ according to z = ¢ or z = s,
where P[*(cos 6) is an associated Legendre function with degree ! and order m. L
corresponds to the truncation level of degree of spherical harmonics.

The velocity and magnetic fields are now expressed in terms of toroidal and



poloidal vectors as

M =

Vp(r, 6, ¢,t) =V x (

i
: > VITT™(r, ) Y76, ¢)7),
m=0 .

1

L 1
Vs(r, 0, 6, 8) = VXV x (3 5 VIST(r, ) Y76, ¢)7),
I=1m=
o e (2.5)
By(r, 0, ¢, 1) =V x (X ¥ B[T/™|(r, ) Y7(6, ¢)#),
I=1m=0

L 1
By(r,6,6,6) = V x ¥ x (£ 33 BISP(r, 0 ¥{(6, 6)9).
I=1m=0

The orthogonality of toroidal and poloidal vectors and also of spherical surface har-
monics enables one to separate the induction equation and the Navier-Stokes equa-
tion into equations for toroidal or poloidal scalar functions with the set of (1, m, 2).

From the induction equation (2.1), as in Bullard and Gellman (1954), we obtain

OB[T B[T
P _ Vm{rz—# - ’7(7+1)B[T7]}

at
(2.6)
+3 zﬁ) {(VISJB[SAT,) + (V[T B[S T,)
+ (VISJBITAT,) + (V[T,)B[TH T,)},
, 0B[S,) & B[S,
r T = Vm{frZ " - 7(7+1)B[57]]
(2.7)

+ LEA(VISIBISAS,) + (VITW)B[SHS,) + (VIS)B[THS,)}-
a8

From the Navier-Stokes equation (2.2), as in Frazer (1974),



VT,

ot

,,,2

= V{rzﬂ[—;ﬂz]— — q(y+1) V[T7]}

or

_ 292{(v[sa]5{’£;) + (V[Ta]S?Sv)]
. (2.8)

+ %Oz%{[B[salB[sﬁw + [BIT.BIS4S,] + [B[TJB[TASJ}

-uX {[V[Sa] VIS4S,) + [VITL) VISHS,) + [VITJ VIT4S, }
a B

In these equations, Greek letters appearing as a suffix denote the set of (I, m, z) or
otherwise the degree [ of the spherical surface harmonics, as in Bullard and Gellman
(1954). The interaction terms in parentheses are given by Bullard and Gellman
(1954), and those in brackets by Frazer (1974). All the interaction terms are
expressed in terms of Gaunt or Elsasser integrals, «, £, v, scalar functions, and their
partial derivatives with respect to r. The conditions imposed on «, 8 and 7y are
known as the selection rules and shown in Bullard and Gellman (1954).

The scalar function S(r), which is derived from the angular velocity €2, is equal

1 .
to ?rz, since {1 can be expressed as

Q=0z=0V xV x (SHr) ¥, ¢)7), (2.9)

where 2 is the unit vector along the rotation axis.

In numerically solving (2.6), (2.7) and (2.8) to derive fluid motion in the core,
the toroidal and poloidal scalar functions and their partial derivatives with respect to
r must be expressed in terms of finite differences or series of orthogonal functions. In
the present study, we rely on the latter, since derivatives can be accurately evaluated

and a possible numerical instability arising from the finite difference scheme can be

10



avoided. We expand the scalar functions in Chebysev polynomials to describe their
radial dependence, as discussed in Orszag (1980) and Glatzmaier(1984). For exam-
ple, the scalar function for a toroidal velocity field with degree ! and order m is

expressed as
N
VITT|(r, ) = 3" VI T7(2) Ty (=), (2.10)
n=0

where T,(z) is a Chebyshev polynomial of order n defined as

T

n

(z) = cos(ncos™z). (2.11)
N is the truncation level of order of Chebyshev polynomials, and the summation Y7’
means that the n = 0 and n = N terms are multiplied by -;— The radial coordinate r

in the outer core is transformed into coordinate z by

2r— Toc—Tic
e L) (2.12)

Toc ™ Tic

where 7. and r;. denote the radii of the outer and inner cores, respectively.
For simulation of global convection and magnetic field generation with a Che-
byshev collocation method, Glatzmaier (1984) used the Chebyshev mesh-points

defined as
km
Ty = COS [W] k = 0, 1, Tty N. (213)

Then from (2.11)

T,.(z;) = cos [ n]l:;r ], (2.14)

and furthermore, from the orthogonality of Chebyshev polynomials and (2.10),

11



N
kE VT (23, 1) Tolz)- (2.15)
=0

VLI =

Hence fast Fourier transform algorithms are applicable to Chebyshev transforma-

tions, and the calculation of transformation is extremely efficient (Glatzmaier, 1984).

However, we do not use the Chebyshev mesh-points for the reason as follows.

From (2.11), the first-order derivative of a Chebyshev polyncmial with order n is
given as

dT (z)

dz

+1
(1—:::2)1/2’

= ——sin(ncos"'lzz:)n (2.16)

1

where the plus sign is taken if the value of cos™ "z is in the third or fourth quadrant

and the minus sign otherwise. At a Chebyshev mesh-point z; defined in (2.13),

dT,(z;) _ sin nkm n (2.17)
dz N | sin(kr/N)’ '
Then for order n = N,
dTy(z
ATy — (2.18)
dz sin(kx/N)

that is, the value of the first-order derivative of the Chebyshev polynomial with max-
imum order N is always zero except for k = 0 and k = N.

In the present method of deriving fluid motion in the core, the terms associated
with the first-order derivative of Chebyshev polynomials appear in the coefficient
matrix of simultaneous equations to be solved (see Subsection 2.3). Because of (2.18),
it would be inappropriate to use the Chebyshev mesh-points. Instead, we use the

equi-interval mesh-points between the radii of the inner and outer cores; that is,

=~ 1L (2.19)

12



Now, the equations (2.6), (2,7) and (2.8) are satisfied at the mesh-points for
k=1to k= N—-1. At the mesh-points for k = 0 and k = N, corresponding to the
inner core — outer core boundar}lfb (ICB) and the CMB, boundary conditions are
required to specify the problem and solve the second-order differential equations for
each set of (I, m, z). We now have N+1 equations to determine N+1 unknowns for
each set of (I, m, z). Boundary conditions for magnetic and velocity fields will be

described in the next subsection.

2.2. Boundary conditions
Boundary conditions for magnetic fields are such that the normal component of
B and the tangential components of H = B/p must be continuous at boundaries.
The magnetic field outside the Earth is expressed, ignoring magnetic fields of

external origin, in terms of the magnetic potential W given as

+1
W = reé [-E—} 213 [g7(t)cosmep + h(t)sinmle"Pi™(cos 6), (2.20)
=107

m=0
where g/”s and h/™s are the Gauss coefficients and r, denotes the Earth’s mean
radius. The Schmidt spherical function has been used in spherical harmonic analysis
of the Earth’s magnetic field, but we here use associated Legendre functions and
require, in (2.20), €/" defined as

I—m)! M2
a;n=[( l(2—<5m0)} , (2.21)

I+m)!

where §;; is the Kronecker’s delta.
If we assume that the mantle is an insulator, the magnetic field above the core

surface is obtained through downward continuation as

13



B(Tow 9’ ¢> t) = -V W|7'=7‘oc' (222)

This assumption would be reasonable, since we deal with magnetic fluctuations of
long time scale which are unlikely to be affected by the mantle conductivity. Also,
downward continuation is unlikely to give rise to a severe problem as far as spherical
harmonics of low degree are concerned. The boundary conditions for B[S/ at

r = r,., for example, lead to

1+2
l( l-l-l) m Te m m
7 B[S (rpes t) = (I+1) . J a7 (t)e] (2.23)
oc oc

and
¢ 1+2
L OBISPY(r, ) [ )
= - gr(t)er™. (2.24)

TOC ar oc

Eliminating g/"¢;" in (2.23) and (2.24), we obtain
OB[ST™)(7,., t
o2 s, = 0. (229

o¢ or

For B[S[™|(r, t), the same condition is derived at r = r,.. On the other hand,

oc

toroidal magnetic fields vanish at the CMB because of the insulating mantle;
BIT, (7,0, £) = 0. (2.26)

As we mentioned in the previous subsection, the electrical conductivity o is
assumed to be constant throughout the outer and inner cores. Boundary conditions

for poloidal magnetic fields then yield

B[S )(7i: 1)

’ BO[S ](r, 1), (2.27)

OB[S,)(riey 1) 8BS )(ri, ¢) (2.28)
or or , |

14



where the superscript (i) denotes a scalar function for magnetic fields in the inner

core. Boundary conditions for toroidal magnetic fields are given as

B[T ]( Ties ) = [T ]( Ties t), (2'29)

aB[ ](rzc’ ) _ 8B(t)[T]( Tics ) (2 30)
or N or , |

where the latter condition is derived from the condition that the electric current den-
sity must also be continuous at the ICB.
When we consider the steady state, the induction equation which describes the

magnetic field in the solid inner core is written as
v2BW) = 0. (2.31)
The solution of (2.31) is obtained as

BO[T J(r) = ;r"™ + ¢pr 7, (2.32)

B(’)[S 1(r) = cgr"™ 4 ¢, (2.33)

where ¢y, ¢y, c3 and ¢4 are constants. Since magnetic fields must be finite at r = 0,

¢y and ¢4 vanish. From boundary conditions (2.27) to (2.30),

BO[T )(ry,) = eyrZ™* = B[T,)(r.), (2.34)
() r. r.
L)) o ST 035
dr dr
BOIS J(r,) = eyr = BIS,)(r) (2.36)
() r. r.
B (- D -

where partial derivatives are replaced with ordinary derivatives with respect to r
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since we consider the steady state. From (2.34), (2.35), (2.36) and (2.37) we can
express the boundary conditions for magnetic fields at the ICB in the steady state

case as AN

Ticﬂfl;’;]‘_(l'ﬁ - (7+1)B[T7](Tzc) =0, (238)
and
D) (B () = 0 (2:39)

One boundary condition for velocity fields is that the normal component of the
velocity must vanish at boundary surfaces. Two further boundary conditions depend
on the nature of the surface. On a rigid surface, no slip is allowed; that is, not only
the radial but also the tangential components must vanish there. On a free surface,
tangential viscous stresses must vanish (e.g. Chandrasekhar, 1961). Hence the boun-

dary conditions for velocity fields are

avIs.)
VS, = P = V[T7] =0 for a rigid surface, (2.40)
T
2 | VIS viT
V[S.] = z 5 _ 2 ) =0 for a free surface. (2.41)
7 or? r or r2

2.3. Procedure of the derivation of fluid motion in the core

Basically we solve the non-linear simultaneous equations (2.6) for toroidal mag-
netic fields, (2.7) for poloidal magnetic fields, and (2.8) for toroidal velocity fields. If
we take into account all the spherical harmonic modes up to order and degree L and
Chebyshev polynomials up to order N, the total number of equations is

L(L+2)(N+1) for a toroidal or a poloidal field. In the present study, we assume the
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quasi-steady state at various epochs in the sense that the steady state is realized at
respective epochs, even if magnetic fields vary slowly from one epoch to another.
With regard to poloidal velocitﬁﬁelds, radial dependence of the scalar function is
unknown unless the Navier-Stokes and the energy equations are fully solved. It is
extremely difficult and beyond the scope of the resent study, however, to solve all the
equations which describe the physical state in the Earth’s core. In addition, the
energy source for the geodynamo is still controversial (e.g. Gubbins and Roberts,
1987); that is, which mechanism is more probable, thermal convection or composi-
tional convection? We are obliged to assume a scalar function with one of the sim-
plest radial forms which satisfy boundary conditions given in (2.40) or (2.41). Now

we express the scalar function for the poloidal velocity field as

VST (r, t) = ULST(£)ér(r)

N (2.42)
ULST(t) 33 * VIS T (=),

n=0

where V[, 5"*]’s are constants corresponding to the radial dependence ¢]™*(r).
For the rigid CMB and the rigid ICB, we adopt the function as used by
Matsushima and Honkura (1989a) or model 3 of Watanabe and Yukutake (1975)

defined as
&M (r) = €(r) = rP(1-¢")? (2.43)

where y = (r—7;.)/(7oc—7;.). For the free CMB and the rigid ICB, we adopt the

function defined as
E74(r) = &(r) = r*(z+1)%(z—1){(5-37n)z—7+3n}, (2.44)

where 1 = r;./r,. is the ratio of the inner to outer core radii and z is defined in

(2.12). Here the radial dependence of poloidal velocity field is assumed to be
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independent of degree [ and order m of spherical harmonics. The radial dependence
for these functions is shown in Fig. 2.1. For simplicity, we further assume that the
inner core rotates identically with the ina.ntle. In the present study, we do not con-
sider the case of free CMB and free ICB. As will be mentioned in Subsection 3.2, a
problem arises in the case; that is, nearly free body rotation of the outer core is
allowed. If this is the case, strong shear arises at the ICB and generates a strong
toroidal magnetic field, which will in turn work against the shear. This implies that
in practice we may consider the rigid case only.

In the case of poloidal velocity field, the problem is now reduced to the calcula-
tion of magnitude U[S.[(?) for a certain epoch. We need more equations so that the
number of equations is equal to the number of unknowns. We introduce the boundary
condition (2.23) into the simultaneous equation to be solved, since it provides infor-
mation on the strength of poloidal magnetic fields at the CMB and specifies the
radial dependence there if combined with (2.25). Then the magnitude of poloidal
velocity field is constrained by the magnetic field. For the Gauss coefficients in the
right-hand side of (2.23), we use a geomagnetic secular variation model (Matsushima
and Honkura, 1988) which will be described in the next subsection.

Now unknowns are U[S[™|, V[, 17", B[,S™], and B[,T*]] for a certain epoch.
Setting the time derivatives at zero in equations (2.6), (2.7) and (2.8), we can solve
the non-linear simultaneous algebraic equations by a Newton method. In calculating
the corrections to initial values, terms associated with the first-order derivatives of
Chebyshev polynomials appear in the coefficient matrix, as mentioned in Subsection

2.1. For example, the term [B[T,]B[S4]S.] in (2.8) is expressed as
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Fig. 2.1. Radial dependence of scalar function for the poloidal velocity field. Left-hand-side

figures represent the scalar function given in (2.43), and right-hand-side figures the scalar
function given in (2.44); (a) &(r), (b) &(r)/r* and (c) dé(r)/rdr.
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Kaﬂ_f[ 0B[S]
[B[T,)B[S4S,] = ¥ [a(a+1){a(a+1)—ﬂ(ﬁ+1)—7(7+1)}B[Ta]
K Q (2.45)
8B|T,)
+ B(B+1){a(a+1)-B(B+1)+(v+1)} B(S4l |,

as shown in Frazer (1974). Because of (2.18), however, no information is available on
the first-derivative of maximum order N of Chebyshev polynomials. This is the rea-
son why we use the equi-distant mesh-points defined in (2.19) rather than the Che-
byshev mesh-points.

N, appearing in the interaction terms expressed by parenthesis and brackets in

(2.6), (2.7) and (2.8), as in (2.45), is defined as

o 2nl(141) (4m)!
N, = NP'= 146_,), 2.46

and can be calculated directly. With respect to the Gaunt integral K,; and the
Elsasser integral L,s, we use the method proposed by Kono (1990), in which the
Gaunt integral is expressed by simple summation and the Elsasser integral by a com-
bination of Gaunt integrals.

It is convenient to treat the equations in dimensionless form. In actual calcula-
tion, we scale the equations in terms of typical strength of magnetic field B,, typical
magnitude of velocity field V|, and typical length L,. In the present study, we adopt

B,=10"2T, V, = 107" ms™}, and L, = 3.485x10% m (outer core radius).

2.4. Magnetic field data

Secular variations in the geomagnetic field have been investigated in terms of
time variations of Gauss coefficients. In particular, special emphasis has been put on
the westward drift of non-dipole, to be exact, asymmetric with respect to the rotation

axis of the Earth or non-axisymmetric, magnetic fields (Yukutake and Tachinaka,
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1969; Wang and Qi, 1983; Yukutake, 1985; Shimizu and Honkura, 1986; Matsushima
and Honkura, 1988). Yukutake and Tachinaka (1969) pointed out that the non-
axisymmetric magnetic field can be Asepara.ted into standing and drifting parts.
Meanwhile, Matsushima and Honkura (1988) introduced fluctuations in the ampli-
tude of the standing and also the drifting parts, in view of a non-linear nature of geo-
dynamo process, and approximated them by periodic time variations.

Here, for the magnetic field data, we use model C of Matsushima and Honkura
(1988), since <AZ*> values, which are root-mean-square residuals of the vertical
component of the magnetic field, are smaller in general than those for the Yukutake
and Tachinaka model, the Wang and Qi model, models A and B of Matsushima and
Honkura (1988). The total number of variables is different from one model to
another, but the AIC values (Akaike, 1974), a criterion for judging which model is
more significant in the case of uneven variables, are generally the smallest for model
C. For (I, m) = (6, 4) and (6, 5), however, <A Z?> values and AIC values in model
C are larger than the corresponding ones in model B. This indicates that fluctuations
are negligible for these modes of the standing part.

In model C, Gauss coefficients g/" and k" are represented, respectively, as

m m m_: 27r m
g'(t) = {F[" + B R (t—7g") }cos 9;

El
m m.: 27r m m m
+ {K* + D{"sin —(t—7p;") fcos my(t—1"),
Di
(2.47)
m N m.2 271- m . m
hi(t) = —{F[" + E["sin——(t—7p") }sin 1]
El

.2 )
- {K" + D;"sm——Wm (t—7p1") }sin mof(t—11"),
TDI

where F7* and 9" denote the amplitude and the phase angle, EJ* the amplitude of
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periodic variation, Tp™ the period, and 7z the phase in units of time, for the stand-
ing parts. Similarly, K;* and 77" denote the amplitude and the phase in units of time,
D™ the amplitude of periodic variation, T'p" the period, and 7p;" the phase in units of
time, for the drifting parts. A positive value of velocity u" corresponds to the west-
ward drift. The time ¢ is defined here as ¢ = (T—1800)/100 with T indicating the
year (A.D.). Parameter values used in the present study are shown in Table 2.1.

It should be noted that the secular variation model was derived from the
geomagnetic field data spanning only some hundred years, and that the model can be
applied only to non-axisymmetric magnetic fields of up to degree six of spherical har-
monics.

With respect to axisymmetric meridional magnetic fields, we try to newly
analyze secular variations in terms of time variations of Gauss coefficients. We use
the same data as used by Shimizu and Honkura (1986) and Matsushima and Hon-
kura (1988). Since axisymmetric magnetic fields have no longitudinal dependence,
the drifting part is meaningless. In view of the previous analysis, however, in which
fluctuations in the amplitudes of standing and drifting parts are taken into account,

we express the time variation of Gauss coefficients g,o as

.2 . 2w
91(t) = F{ + Epsin——(t—7g) + Dsin . =(t=7p1), (2.48)
El Dl

that is, two periods are considered; one of which is supposed, by analogy, to
correspond to the drifting part. The non-linear inversion scheme which we used to
determine variables is described in Shimizu and Honkura (1986). Parameter values
which yield the smallest <AZ2> values are shown in Table 2.2.

These models are useful when we try to calculate fluid motion in the core from
geomagnetic field data, since the Earth’s magnetic field and its time derivative are

easily computed for any specific epoch. It should be noted, however, that the models
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Table 2.1. Parameter values for the standing and the drifting parts (Matsushima

and Honkura, 1988).

Il m F E Tg T P K D Tp Tp T ]
(T) (@T) (y) (deg) (uT) (nT) (y) (deg/y)

1 1 12418 9141 3991 6.50 -122.5 1546 323 271 -0.53 2.21 0.542
2 1 786 826 519 1.17 33.8 2450 129 176 0.14 0.41 0.268
2 2 1365 822 535 2.04 92.3 2029 71 58 0.12 2.35 0.228
3 1 1528 702 643 0.82 —168.6 752 153 98 0.23 —4.57 0.139
3 2 1592 342 312 —0.75 24.6 914 268 268 —0.85 6.23 0.088
3 3 307 335 454 -2.09 -70.7 672 205 655 0.24 1.51 0.260
4 1 698 662 589 2.89 54.6 693 106 266 1.15 2.16 0.224
4 2 602 385 868 -3.30 49.2 308 88 148 0.60 1.81 0.380
4 3 83 54 153 0.71 145.9 317 61 404 1.34 —2.24 0.158
4 4 213 121 430 0.02 69.0 185 67 137 —0.43 1.86 0.232
5 1 328 170 418 —0.45 29.2 62 144 413 0.72 0.03 1.818
5 2 295 56 196 —-0.28 3.5 35 117 246 1.11 —-1.30 0.420
5 3 73 98 202 —0.46 120.4 77 107 263 —0.76 1.06 0.227
5 4 128 126 248 —-0.90 -79.7 213 119 214 -0.85 —-13.46 0.021
5 5 108 241 380 0.11 —74.0 185 113 247 0.47 —1.00 0.101
6 1 67 39 209 —-0.35 -1.8 19 64 299 0.22 —0.88 1.711
6 2 49 41 242 —-0.29 100.3 99 32 410 0.06 4.56 0.147
6 3 162 9 116 0.04 153.0 51 98 274 1.09 —0.66 0.340
6 4 69 151.5 84 130 773 1.91 —1.44 0.287
6 5 65 -92.5 22 53 495 0.46 0.92 0.243
6 6 55 24 55 0.11 173.8 61 23 47 0.15 0.75 0.339
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Table 2.2. Parameter values for a secular variation model of

meridional magnetic field.

l m F E Tg TR D Ty D
(xT)  (aT) () (aT)  (¥)

1 0 -31275 1307 371 1.09 182 77 0.25
2 0 —1361 1379 483 —-0.93 49 83 0.33
3 0 959 230 271 0.94 42 15 —0.05
4 0 680 261 503 0.45 21 11 —0.06
5 0 —133 118 317 —-0.75 41 59 —-0.20
6 0 59 23 82 0.35 21 11 0.00
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are valid for a time scale comparable to the period for which data are available. For
time variations with short periods, a few decades or so, the present models would be
inappropriate and the Internationalt§Géomagnetic Reference Field (IGRF) and the
definitive IGRF (DGRF) are more suitable. DGRF is available for an interval of five
years from 1945 to 1980. DGRF 1950, DGRF 1965 and DGRF 1980 (IAGA Division
I Working Group 1, 1988) are shown in Table 2.3.

2.5. Physical constants and properties of the Earth and the core

Some physical constants and properties of the Earth and the core must be
known in order for a realistic calculation of fluid motion in the core to be possible.
The magnetic permeability would be taken as that of vacuum, p; The constant of
gravitation is not used in the present study since it is not included in the Navier-
Stokes equation for toroidal velocity field.

Some parameters for properties of the Earth and the core are rather well deter-
mined from direct observations such as seismic observations; for example, the core
radius, the mean density of the core, and the rotation rate of the Earth. Many others,
however, are poorly known.

One unknown parameter is the electrical conductivity of the outer core o, but it
has been deduced in various ways. Elsasser (1946) took the value as ¢ = 10% Sm™?,
inferring from the electrical conductivity of iron under ordinary laboratory conditions,
while Bullard (1949) took the value as 0 = 3x10° Sm™!. Experiments made for core
material at temperatures and pressures far lower than those in the core, indicate that
o = 1x10° ~ 6x10° Sm™' (Gardiner and Stacey, 1971) and ¢ = 2.7x10° Sm™?
(Johnston and Strens, 1973). Jain and Evans (1972) proposed ¢ = 5x10° ~ 1x10°
Sm™! from a model for electrical transport properties of core material. An upper

limit, 10% Sm™!, for the electrical conductivity of the core was imposed by considering
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Table 2.3. The International Geomagnetic Reference Field. DGRF 1950,
DGRF 1965 and DGRF 1980 are shown up to degree four, in nT.

1950 . 1965 1980

I m a h™ a Ay a h"

1 0 —30554 —30334 —29992

1 1 -2250 5815  —2119 5776 ~ —1956 5604
2 0  —1341 ~1662 ~1997

2 1 2098  —1810 2997  —2016 3027 —2129
2 2 1576 381 1594 114 1663  —200
3 0 1297 1297 1281

3 1  —1889  —476  —2038  —404 —2180  —336
3 2 1274 206 1292 240 1251 271
3 3 896 —46 856  —165 833  —252
4 0 954 957 938

4 1 792 136 804 148 782 212
4 2 528  —278 479  —269 398  —257
4 3 —408 —37 —390 13 —419 53
4 4 303 —210 252  —269 199  —297
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the amount of heat transferred from the outer core to the mantle (Stacey, 1972).
Recent high-pressure experiments indicate that the electrical conductivity of the
outer core is close to 1x10% Sm™! (e.é. Knittle el al., 1986).

Honkura and Matsushima (1988a) have estimated a lower limit for the electrical
conductivity of the core, considering the magnetic Reynolds number R, defined as
R, = pooL.V,, where L, and V_ denote the characteristic length and velocity,
respectively. The evaluation of V, relies on the method of estimating fluid motion in
the outer core by Matsushima and Honkura (1989a). The estimation of velocity field
magnitude depends on the value of the electrical conductivity of the core. Honkura
and Matsushima (1988a) then took the value of o as a parameter, derived the charac-
teristic velocity V, as mean magnitude of velocity field in the quasi-steady case, and
examined R, for various values of 0. The magnetic Reynolds number R, provides
information on magnetic field behavior (e.g. Rikitake and Honkura, 1985). If
R, >> 1, the transport of magnetic lines of force dominates and the magnetic field is
possibly maintained as long as the characteristic length for the magnetic field is com-
parable with that for the velocity field (e.g. Moffat, 1978). Then from the viewpoint
of a steady dynamo, Honkura and Matsushima (1988a) claimed that the smallest pos-
sible R,, for dynamo action is the order of ten and concluded that the electrical con-
ductivity of the outer core o must be larger than about 1x10° Sm~!. Thus the
electrical conductivity of the core is supposed to be in the range of 10° ~ 10° Sm~%,
and hence in the present study we adopt ¢ = 3x10° Sm™L.

The kinematic viscosity of the fluid core v seems to be the most uncertain
parameter. For example, Backus (1968) inferred the value as v = 5x1072 m%~L.
Suzuki and Sato (1970) obtained the value as pr = 3x10° ~ 7x10° Nm™2s from
attenuation of seismic waves. Gans (1972) theoretically derived the value as pv =

3.7x107% ~ 18.5x107™% Nm~?%. If we take the mean density of the core as p =
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1.1x10* kgm ™3, the kinematic viscosity of the core is in the range of 1077 ~ 10°
m?s71,

It is probable that smaller values correspond to molecular viscosity and larger
ones to eddy viscosity. In usual description of dynamics of large-scale motions, the
interaction between large-scale and smaller-scale motions is ignored, but it is neces-
sary when the transfer of energy and momentum between the interest scale and the
smaller scale is to be discussed (Pedlosky, 1986). For a meteorological phenomenon,
eddy viscosity is usually used; for example, a cellular structure like Bénard convection
and a vortex street similar to the Kdrman vortex street seen in a photo of cloud pat-
tern are explained in terms of eddy viscosity (Kimura, 1988). In this sense, eddy
viscosity would be relevant to the present study, although it is beyond the present
scope to consider the effect of smaller-scale motions like turbulence on magnetic field
generation. Hence we tentatively take the value of the kinematic viscosity of the
fluid core as v = 1 m%~ 2.

Physical constants and properties of the Earth and the core used in the present

study are summarized in Table 2.4.
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Table 2.4. Physical constants and properties of the Earth and the core.

Physical Constants

Quantity ¥ Symbol Value
Magnetic permeability of vacuum o 47x1077 Hm™!
Constant of gravitation G 6.67x10"1! Nm?kg ™2

Physical Properties of the Earth and the Core

Quantity Symbol Value
Equivolume sphere radius of Earth r, 6.371x10% m
Core radius Toe 3.485x10° m
Inner core radius Tie 1.217%x10% m
Mean density of core p 1.1x10* kgm ™3
Rotation rate of Earth Q 7.29x107° 571
Electrical conductivity o 3%10° Sm™!
Kinematic viscosity v 1 m%!
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3. Results

We derive fluid motion in th‘e? Earth’s outer core from geomagnetic field data
step by step for several cases. In Cases 1 and 2, inducing magnetic fields for the gen-
eration of non-axisymmetric poloidal magnetic fields are assumed to be zonal toroidal
magnetic fields which are expected to be generated by the interaction between the
axial dipole magnetic field and a zonal toroidal motion. It is then assumed that the
non-axisymmetric poloidal magnetic fields are maintained simply by the interaction
between poloidal velocity fields and the zonal toroidal magnetic fields. In Cases 3, 4
and 5, the axisymmetric poloidal magnetic fields are also considered as inducing mag-
netic fields. In Cases 6 and 7, non-zonal toroidal velocity and non-zonal toroidal
magnetic fields are further taken into consideration. The inducing magnetic fields for
the non-axisymmetric poloidal magnetic fields are then assumed to be the toroidal
and the axisymmetric poloidal magnetic fields. In Cases 2, 5 and 7, an axisymmetric
poloidal velocity field, which gives rise to zonal toroidal motions, is added with its
magnitude varied variously. We first summarize the cases, for which fluid motion in
the Earth’s outer core is derived, and the inducing magnetic fields, which are
assumed in the computation for respective cases, in Table 3.1.

As mentioned in Subsection 2.3, we must solve non-linear simultaneous algebraic
equations, which do not generally guarantee the uniqueness of a solution. Therefore,
we must somehow check the validity of solutions. One method would be to examine
time-dependent behavior of the magnetic field with the derived velocity field fixed. If
we derived an unrealistic fluid motion in the core, the magnetic field would diverge or
decay within a short time, because some other induction terms, which should have
been taken into account in deriving velocity field, must also be important in main-

taining a steady magnetic field. The validity of solutions will be checked in Section
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Table 3.1. The cases for which fluid motion in the Earth’s outer core is derived, and

the inducing magnetic fields which are assumed in the computation for respec-

+

tive cases. ®

Case Inducing magnetic field Additional velocity field

1 Zonal toroidal magnetic field B[Tg]
2 Zonal toroidal magnetic field B[Tg] Meridional circulation V[S9]

3 Zonal toroidal magnetic field B[TB]
Axial dipole magnetic field B[S?]

4 Zonal toroidal magnetic field B[TB]
Axisymmetric poloidal magnetic field B [Sg]

5 Zonal toroidal magnetic field B [Tg] Meridional circulation V[S3]
Axisymmetric poloidal magnetic field B[Sg]

6 Toroidal magnetic field B[Tp]
Axisymmetric poloidal magnetic field B [Sg}

7 Toroidal magnetic field B[T] Meridional circulation V[S9]
Axisymmetric poloidal magnetic field B [Sg]
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3.1. Reexamination of prelimina.ry};aiculation
8.1.1. The results of Matsushima and Honkura

As mentioned in Section 1, Matsushima and Honkura (1989a) derived fluid
motion in the core based on the presumption that a strong toroidal magnetic field
B[T9] is generated by the interaction between a differential rotation V[T?] and the
axial dipole magnetic field B[S?] in the core. The factors taken into account in the
calculation are V[T{]x B[S?] (the w-effect), V[S"|x B[TY] as induction processes, and
the balance, in spherical shells, between the electromagnetic torque due to the
Lorentz force (po) Y(VxB[T3])xB[S%] and the effective torque due to the angular
momentum transfer expected from virtual displacement of fluid particles. The torque
balance yielded the differential rotation V[77]. Matsushima and Honkura (1989b)
further expanded the method and took into account the meridional dependence of
differential rotation; that is, V[T7] and B[T}] (1 < 6) were all considered.

We first show the results of Matsushima and Honkura (1989b; unpublished
result) in Fig. 3.1; (a) the distribution of angular velocity, (b) the distribution of
strength of zonal toroidal magnetic field, and (c) the poloidal velocity field on the
equatorial and the two meridional planes at the epoch of 1980 AD. For geomagnetic
field data, model C of Matsushima and Honkura (1988) has been used except for
(I, m) = (6, 4) and (6, 5), as mentioned in Subsection 2.4.

It is clearly seen from Fig. 3.1(a) that the differential rotation cannot be
represented by V[T?], even in an approximate sense, contrary to Matsushima and
Honkura (1989a), and the meridional dependence is striking. The zonal toroidal
motion is westward near the equator and eastward near the poles. This feature is

similar to the result of Olson (1989), although the magnitude of rotation rate is
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generally larger in this case; about 5° year™!

in maximum. The zonal toroidal mag-
netic field generated by the interaction between the axial dipole magnetic field and
the differential rotation mainly comsists of B[T3] and B[TS] with magnitude of the
order of 1072 ~ 1072 T, as seen in Fig. 3.1(b). The magnitude of poloidal velocity
field shown in Fig. 3.1(c) is much smaller than that of Matsushima and Honkura
(1989a). This discrepancy is interpreted as follows.

We may define the magnetic Reynolds number characteristic of the w-effect R

as

R, =wL2v,, (3.1)

c

where w, is a characteristic angular velocity and L, a characteristic length. The
radial motion which induces poloidal magnetic fields from toroidal magnetic fields
tends to become weaker with increasing R, (Roberts and Gubbins, 1987). In
Matsushima and Honkura (1989a), only B[T3] was taken as the inducing magnetic
field and strong toroidal magnetic field regions were located in the deeper parts of the
core. In the case shown in Fig. 3.1, the inducing magnetic fields are B[T}] (I < 6)
and some of the strong toroidal magnetic field regions are located near the CMB. It is
then expected that a poloidal magnetic field is easily induced by a weak poloidal
velocity field in the presence of such a strong toroidal magnetic field. This represents
oné class of typical velocity field in aw-dynamos; that is, a strong w-effect due to a

strong zonal toroidal motion combined with a weak poloidal motion.

3.1.2. Case 1
We here reexamine the results of Matsushima and Honkura (unpublished work)
as Case 1. In the induction equation, we take into account V[TJ]xB[S?] and

VIS x B[T}] as in Matsushima and Honkura (1989b), whereas in the Navier-Stokes
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equation for toroidal motion, the Lorentz force (pg) ' (VxB[T}])xB[S?] and the
advection terms are both considered, since a differential rotation would arise from the
non-linear momentum transport oftx,the convection (Busse, 1970).

No information is available on the radial dependence of the axial dipole magnetic
field B[S(l)] in the core. Here we simply adopt the radial dependence for the longest
free-decay mode as in Matsushima and Honkura (1989a). The free-decay time is
given by uoaro%/w2 (Elsasser, 1946) and amounts to 1.5x10* years for o = 3x10°
Sm™! taken in the present study. This time is much longer than the characteristic
time for non-dipole magnetic fields, and hence the dipole magnetic field is assumed to

be steady. The scalar function is expressed as
B[S?](T) = B510r1/2J3/2(7rT/Toc)’ (3.2)

where J3)5(z) is a Bessel function. Bg) is a constant determined by the boundary
condition at r = 7.

It is assumed that both the CMB and the ICB are rigid boundaries as in
Matsushima and Honkura (1989a), and the radial dependence of poloidal velocity
field given in (2.43) is used. We tentatively set the truncation levels L and N at 4
aﬁd 9, respectively. Unknowns are zonal toroidal velocity fields V[, T,O], non-
axisymmetric poloidal velocity fields U[S[*], zonal toroidal magnetic fields B[, T}),
and non-axisymmetric poloidal magnetic fields B[, S*]. The total number of unk-
nowns in this case is L(L+3)(N+1)+L(L+1) = 300.

The result is completely different from the previous one when we solve both the
induction and the Navier-Stokes equations in order to derive fluid motion in the core.
Figure 3.2 shows an example obtained in the present study; (a) the distribution of
angular velocity and (b) the distribution of zonal toroidal magnetic field at the epoch

of 1980 AD. The pattern of zonal toroidal velocity field is similar to that shown in
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Fig. 3.1(a); that is, the flow is westward near the equator and eastward near the
poles, although we see a strange flow pattern, which is not seen in Fig. 3.1(a), near
the ICB. o

The most notable difference is that the magnitude of zonal toroidal motion is
much smaller than that of zonal toroidal motion shown in Fig. 3.1(a). It has been
supposed that a strong zonal toroidal magnetic field would be generated by the
interaction between the dipole magnetic field and the differential rotation (shear
motion). However a slow zonal toroidal motion results in insufficient shear, and
hence the strength of zonal toroidal magnetic field, generated by the w-effect, shown
in Fig. 3.2(b) is much weaker than that in Fig. 3.1(b). The magnitude of poloidal
velocity field is accordingly much larger than that in Fig. 3.1(c); we should recall the
assumption that non-axisymmetric poloidal magnetic fields are generated only by the
interaction between poloidal convective motions and zonal toroidal magnetic fields.

The overall velocity field is shown in Fig. 3.3; one velocity vector is plotted, in
Fig. 3.3(a), at each point of a regular grid in colatitude § and longitude ¢ on a
cylindrical equidistant projection. The length of each vector is linearly proportional
to the flow speed at the mesh point, and the arrow for scale length is plotted at lower
right of the figure. The outlines of the continents are shown only for reference. In
Fig. 3.3(b), the velocity fields on the equatorial plane (center) and on the meridional
planes passing through ¢ = 0°—180° (left) and ¢ = 90°—-270° (right) are shown.
The arrow for scale length is plotted as in Fig. 3.3(a). It is clearly seen from Fig. 3.3
that the poloidal velocity field is dominant. Judging from the result that zonal
toroidal magnetic fields are not so strong, the presumption that non-axisymmetric
poloidal magnetic fields are generated only by the interaction between zonal toroidal
magnetic fields and poloidal convective motions will fail under the condition we

imposed for Case 1. Thus modification of the method is required.
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Fig. 3.3. (a) Horizontal velocity field at r = 0.95r,_ and (b) the overall velocity fields on the

equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 1. The

arrow for scale length corresponds to 2x1072 ms™™.
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3.2. Introduction of meridional circulation (Case 2)

So far meridional circulation has not been taken into consideration in deriving
fluid motion in the core. The polc;gidal motion can create a zonal toroidal motion
through the interaction term (V[Sa]S?S7) in (2.8). We here add a meridional
poloidal velocity field V[SJ], which is related to V[T9] and V[TY]. This meridional
motion possesses only one convection cell in the Northern and the Southern Hemi-
spheres, respectively. The magnitude U[Sg] is unknown, however, as long as the
derivation of fluid motion in the core is based on the presumption that inducing mag-
netic fields are strong zonal toroidal magnetic fields alone, generated by the w-effect.
This is because the interaction of meridional motion with zonal toroidal magnetic
field V[Sg]xB[Tg] generates no poloidal magnetic field, as verified from one of the
selection rules given in Bullard and Gellman (1954). We put the superscript 0 expli-
citly, to emphasize the field of order m = 0 of spherical harmonics, in spite of our
abbreviation that Greek letters appearing as a subscript denote the set of (I, m, 2).
We here take the magnitude U[S] as a parameter to examine the effect of meridional
circulation. This is Case 2.

In a model considered by Roberts and Stix (1972), for example, the value of
U[S9] is negative when dynamo action occurs most easily. A negative value of U[SJ]
corresponds to a meridional flow in which the fluid rises near the equator and sinks
near the poles. Here we tentatively consider only negative values of U[Sg], although
the above result would depend on models.

For U[S3] = —107° with the radial dependence given in (2.43), we show the dis-
tributions of angular velocity and zonal toroidal magnetic field derived for Case 2 in
Fig. 3.4. Contour intervals in Fig. 3.4 are the same as in Fig. 3.2. It is found that
too slow meridional circulation little affects zonal toroidal motion. The overall velo-

city field shown in Fig. 3.5 is also nearly the same as that shown in Fig. 3.3.
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Fig. 3.5. (a) Horizontal velocity field at r = 0.957,, and (b) the overall velocity fields on the
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Once we take a larger value such as U[S9] = —1073, however, the results are dif-
ferent. Figure 3.6 shows the distributions of angular velocity and zonal toroidal mag-
netic field in the core for the case Q[Sg] = —1073. Contour intervals are five times
larger than those in Fig. 3.4. It is then expected that the magnitude of derived
poloidal velocity field is reduced, since inducing magnetic fields are enhanced than in
Case 1.

Figure 3.7 shows the overall velocity field, the pattern of which is different from
previous results, but the magnitude is not significantly different. This may be a
result of non-linearity of the problem or a slight difference in the zonal toroidal mag-
netic field distribution from the previous ones. Whichever is the case, a problem
remains; that is, even if a meridional poloidal motion is taken into consideration, the
strength of zonal toroidal magnetic field is very weak, of the order of 107* T. Hence
we must not rely on the presumption that strong zonal toroidal magnetic fields, gen-
erated by the w-effect, are the primary inducing magnetic fields, at least under the
condition we imposed in Case 2.

In addition, we must consider another problem. We have so far employed rigid
boundary conditions at the CMB and the ICB. These conditions may not be reason-
able. The Ekman number E, defined as E = Z//QLZ, is of the order of 107° for a
value of kinematic viscosity, v = 1 m% ™!, taken in the present study. If we take the
value as v = 107% m?%™! which would correspond to the molecular viscosity, E
amounts to 10715, This suggests that an Ekman layer 107! ~ 102 m thick would be
set up, and in this layer, fluid flow would adjust itself to the physical boundary con-
dition imposed through the contact with a solid. It is impossible to resolve the boun-
dary layer with the truncation level for Chebyshev polynomials, N = 9 or so. It
would be better to impose stress-free boundary conditions.

If both the CMB and the ICB are stress-free, however, a problem arises for a
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Fig. 3.7. (a) Horizontal velocity field at r = 0.95r,, and (b) the overall velocity fields on the
equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 2. The
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zonal toroidal velocity field V[T?]. We have expressed the radial dependence,
V[T?](r), in Chebyshev polynomials. Alternatively it is possible to expand it into
power series with respect to r. Thegg are equivalent to each other. For the term of 72

in V[T?], the diffusion term vanishes; that is,

Moreover, in the equation governing the boundary condition for free surfaces, the
coefficient for the term of r? is always equal to zero; see equation (2.41). If we do not
take into account meridional circulation and non-zonal toroidal motion, the advection
term [V[T,]V[S4)S,] also vanishes for zonal toroidal motion. Even in this case, the
coefficient matrix, which appears in the equation to be solved by a Newton method,
is not singular, since the matrix elements, corresponding to the w-effect in the induc-
tion equation for zonal toroidal magnetic fields, do not vanish. When we are to con-
sider a steady state, we need some terms to restrict time evolution such as a viscous
force term, but we can find nothing. As a result, a nearly free-body rotation of the
outer core is permitted. This may be allowed at the CMB because the mantle is insu-
lating. By contrast, strong shear at the ICB would generate a strong magnetic field,
which is expected to inhibit the zonal motion. Hence, in the present study, we may
presume that the CMB is free but the ICB is rigid.

From now on we will take the radial dependence of poloidal velocity field given

in (2.44).
3.3. The cases including the dipole magnetic field as an inducing magnetic field

3.8.1. Case 8

In the above, we have found that zonal toroidal magnetic fields are not so strong
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as long as we take into consideration the interactions as considered so far. Here we
direct our attention toward the poloidal magnetic field. The strongest one is obvi-
ously the axial dipole magnetic field. B[S?] For example, Yokoyama and Yukutake
(1990) examined general characteristics of induced magnetic fields in the steady
state, taking the dipole magnetic field B[S}] and the toroidal magnetic field B[T?] as
inducing magnetic fields. As the next step, then, we extend the previous approach so
as to include the dipole magnetic field as one of the inducing magnetic fields.

In this case (Case 3), we add the interaction term V[S,]x B[SY] to the induction
equation for the poloidal magnetic field in order to derive fluid motion in the core.
The scalar function for the axial dipole magnetic field is given in (3.2). The total
number of unknowns is the same as in Cases 1 and 2.

As shown in Fig. 3.6, the strength of zonal toroidal magnetic field may be com-
parable with that of the dipole magnetic field. We therefor include not only the
dipole field but also zonal toroidal magnetic fields as inducing magnetic fields.

We show the distributions of angular velocity and zonal toroidal magnetic field
in Fig. 3.8 and the overall velocity field in Fig. 3.9 at the epoch of 1980 AD in Case
3. The distribution of angular velocity is clearly different from that shown in Fig.
3.2(a), whereas the distribution of zonal toroidal magnetic field is similar to that
shown in Fig. 3.2(b), although the strength in Fig. 3.9(b) is weaker than that shown
in Fig. 3.2(b). These arise from the free CMB condition. In order to confirm this, we
show, in Fig. 3.10, the distributions of angular velocity and zonal toroidal magnetic
field obtained in Case 1 under the free CMB condition. If Fig. 3.10 is compared with
Fig. 3.2, the strength of zonal toroidal magnetic field in Fig. 3.10 is twice that shown
in Fig. 3.2, although the angular velocity in Fig. 3.10 is hundred times larger than
that shown in Fig. 3.2. This implies that the distribution of angular velocity in the

core under the free CMB condition hampers the generation of strong zonal toroidal
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Fig. 3.9. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 3.

The arrow for scale length corresponds to 5x1072 ms .
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magnetic field. On the .other hand, contour intervals in Fig. 3.10 is forty times larger
than those in Fig. 3.8, but characteristics of the distributions are similar to each
other. This implies that the assﬁgni)tion made to derive fluid motion in the core
strongly controls the magnitude of zonal toroidal velocity field and strength of zonal
toroidal magnetic field, but the characteristics of the distributions are little affected
by the assumption. Then it is likely that the weaker zonal toroidal magnetic field is
due not to the assumption made in Case 3 but to the free CMB condition.

For Case 3, we show another solution in Figs. 3.11 and 3.12, where the distribu-
tions of angular velocity and zonal toroidal magnetic field in the core and the overall
velocity field are shown, respectively. So far we have obtained zonal toroidal flow
which is westward near the equator and eastward near the poles. The zonal toroidal
flow shown in Fig. 3.11(a) is opposite; that is, the flow is eastward near the equator,
as is the case for the Sun’s surface. Contour intervals in Fig. 3.11 are hundred times
larger than those in Fig. 3.8. It may be expected then that the magnitude of poloidal
velocity field is smaller than that shown in Fig. 3.9, but this is not the case. This
result arises from competition between dominant inducing magnetic fields. We will

discuss this feature in Section 5.

3.3.2. Case 4

We next take other axisymmetric poloidal magnetic fields as inducing magnetic
fields in order to examine their effect on the solution (Case 4). The radial dependence
of the axisymmetric poloidal magnetic fields in the core is not known, and we again
assume the longest free-decay mode for each degree of spherical harmonics as in the
case of the axial dipole magnetic field. The scalar function of free-decay mode for the

poloidal magnetic field with degree [ is expressed as (Elsasser, 1946)
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Fig. 3.12. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 3.

The arrow for scale length corresponds to 2x107 ms™..
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3/2 I+2 0
BlSfY(r) = == J(H// :g;frm)g’ IRy (83
with the condition It :
Jl—1/2(k17'oc) =0, (3.4)
where k; is defined as
(k)? = Moo (3.5)

if the magnetic field decays as exp[—At]. Then k; should correspond to the smallest
positive solution, since we are to consider the longest free-decay mode. Magnetic
lines of force are shown in Fig. 3.13; for [ = 1 (upper left), for [ = 2 (upper right), for
! = 3 (lower left), for I = 4 (lower right), and for the synthesis (center). It should be
noted here that in the figures of upper left and center, line-intervals are ten times
larger and contours are drawn by thin lines. Assuming that the axisymmetric meri-
dional magnetic fields and the zonal toroidal magnetic fields are the inducing mag-
netic fields for the generation of the non-axisymmetric poloidal magnetic fields, we
make calculations for fluid motion in the outer core.

Figures 3.14 and 3.15 show the distributions of angular velocity and zonal
toroidal magnetic fields in the core and the overall velocity field at the epoch of 1980
AD in Case 4. The distribution of angular velocity shown in Fig. 3.14(a) is different
from that shown in Fig. 3.8(a). However, the distribution of zonal toroidal magnetic
field and the pattern of overall velocity field are similar to those in Figs. 3.8(b) and
3.9, respectively, although the magnitude is smaller. The difference in the magnitude
may be ascribed to either the non-linear nature or the truncation level L for spherical
harmonics, or both.

If we do not introduce meridional circulation, zonal toroidal magnetic fields are

weaker than the axial dipole magnetic field and occasionally than axisymmetric non-
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Fig. 3.15. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 4.
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dipole magnetic fields. If the inducing magnetic field is the axial dipole magnetic field
alone, it is impossible to determine the poloidal velocity field of maximum degree and
order U[S%7, because the induction;t?efm V[SE x B[S?], for example, induces only a
poloidal magnetic field B[Sfj_l], which is truncated. In actual calculations, we could
derive fluid motion in the core, since zonal toroidal magnetic fields are also taken into
consideration. In this sense, we cannot simply conclude that the introduced non-
dipole magnetic fields have a strong effect on the determination of fluid motion in the
core. However, the characteristics of derived flow pattern do not seem to be much

affected by the introduction of axisymmetric non-dipole magnetic fields.

3.3.8. Cased

We further add meridional circulation as in Case 2. This is Case 5. For U[SJ] =
—1075, the distributions of angular velocity and zonal toroidal magnetic field in the
core and the overall velocity field are shown in Figs. 3.16 and 3.17, respectively. It
should be noted that the value of U[SJ] is the same as in Case 2 but the radial
dependence is different. Then the magnitude of corresponding poloidal velocity field

becomes different. If we compare it in terms of the root-mean-square (rms) velocity

defined as
1/2
szd'u»
Vims = : (3.6)
fdv
where the volume integral is performed for the outer core, with U[SS] = —107° the

radial dependence (2.43) leads to V.

rms

[S3] = 3.90x107%° ms™!, while (2.44) leads to
V_.[SY] = 1.54x1078 ms™!; about forty times difference.

As in Case 2, the introduction of meridional circulation enhances the magnitude
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Fig. 3.17. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 5.
The arrow for scale length corresponds to 2x107° ms™>.
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of zonal toroidal motion, and then zonal toroidal magnetic fields are strengthened.
As clearly seen in Fig. 3.17, the zonal toroidal motion is dominant. This may
represent one class of velocity ﬁel(f%iﬁ aw-dynamos, although the strength of zonal
toroidal magnetic field is not strong, of the order of 107* T. The poloidal constituent
of the velocity field is shown in Fig. 3.18. The pattern is similar to that shown in Fig.
3.15, although the magnitude is smaller. This reflects that zonal toroidal magnetic
fields as inducing magnetic fields are stronger than those shown in Fig. 3.14(b),
whereas axisymmetric poloidal magnetic fields as inducing magnetic fields remain
unchanged. In other words, the derived poloidal velocity fields are controlled by the

competition between the dominant inducing magnetic fields.

3.4. Introduction of non-zonal toroidal motion
3.4.1. Case 6

So far we have neglected non-zonal toroidal velocity fields which may be dom-
inant, at least near the CMB, as pointed out by Whaler (1980) and Bloxham (1989).
We here take into account a non-zonal toroidal motion, which is derived by solving
the Navier-Stokes equation under the condition that the poloidal constituent of velo-
city field is known. If the non-zonal toroidal velocity field is dominant, strong non-
zonal toroidal magnetic fields would be generated. We then take the non-zonal
toroidal magnetic fields as inducing magnetic fields. This is Case 6, where unknowns
are toroidal velocity fields V[, 77", non-axisymmetric poloidal velocity fields U[S/,
toroidal magnetic fields B[,T7*], and non-axisymmetric poloidal magnetic fields
B[,5]. The total number of unknowns is L(3L+5)(N+1)+L(L+1) = 700 with the
truncation levels L = 4 and N = 9. We first attempted to include all the interaction
terms and derive fluid motion in the core by solving the induction and the Navier-

Stokes equations. However, we could obtain no converged solutions through the
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iterative calculation based on a Newton method.

In the following we consider some possible reasons. In particular, we examine
the assumed radial dependence for tgo’l‘oida,l velocity field, truncation levels, and non-
linear nature of the problem, respectively. We have arbitrarily assumed the radial
dependence, which satisfies boundary conditions, of scalar function for poloidal velo-
city field, as in a kinematic dynamo problem. The assumed radial dependence would
somehow control the toroidal velocity field, the toroidal and the poloidal magnetic
fields. Non-linear terms are expected to have an effect of feedback to the original
field and the radial dependence for the poloidal velocity field would be altered by
such a feedback effect or the Lorentz force, even when the Navier-Stokes equation for
the poloidal velocity field is not taken into consideration. Nevertheless, however, the
radial dependence has been fixed in the present study. This could be one reason why
no solutions are derived. Another factor would be the truncation level N for Che-
byshev polynomials. However, we could not obtain converged solutions even for N =
19; the number of unknowns for a set of (I, m, z) is twice.

Furthermore, as implied by non-linear equations for a dynamo problem, compli-
cated variations of the Earth’s magnetic field arising from its non-linear nature would
be an essential feature of the geodynamo. Based on coupled-disk dynamo models,
Shimizu and Honkura (1985) claimed that the non-linear nature is essential in polar-
ity reversals of the Earth’s magnetic field. Meanwhile, Honkura and Matsushima
(1988b) examined the Cox model (Cox, 1968, 1969) in order to search for a mechan-
ism of polarity reversals of the Earth’s magnetic field. They represented the Cox
model using a disk dynamo (Bullard, 1955) with external perturbations, and pointed
out that irregularity in fluctuations of the non-dipole field plays an important role in
the Cox model. In this sense, fluctuations of the Earth’s magnetic field would really

be an inherent property, and the constraint of a steady state may be misleading.
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We, therefore, simplify the problem.

As an extension of the previous methods, we tentatively take V[T,] X B[Sg] into
consideration in the induction equation for toroidal magnetic fields, V[S,] x B[Tj|
and V[S,] X B[Sg] in the induction equation for poloidal magnetic fields, and the
advection, the Coriolis force and the Lorentz force terms in the Navier-Stokes equa-
tion for toroidal velocity fields. We consider only the linear terms in Lorentz force;
that is, [B[So] B[S4S,], [B[S,]BIS§]S,) and [B[T,)B[S§]S,] as expressed in (2.8).

Now we examine the magnitude of the Lorentz force term which we neglected in
deriving fluid motion in the core. For non-zonal toroidal velocity fields, the Coriolis
force term is dominant in (2.8). At most of the mesh-points z;, the Coriolis force
term is one to three orders of magnitude larger than the Lorentz force term. At
some mesh-points, the magnitude of the Lorentz force term is comparable, at most,
to that of the Coriolis force term. Therefore, the non-zonal toroidal velocity field
derived on the assumption tentatively made in Case 6 would not change significantly,
even if the Lorentz force terms, which have not been taken into consideration, are
included in the calculation; that is, the derivation of fluid motion in the core is justi-
fied. For zonal toroidal velocity fields, however, the Lorentz force term must be
small at all the mesh-points, since the advection term is small and meridional circula-

tion has not been taken into consideration; that is, from (2.8),

V[T
2 LA 0
VT = Al VITY)

+ — S {[BISJBISASY) + [BITBSHS] + [BITJB(TIS}  (3.7)
0« 8
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= DEAVISIVISAS)] + [VIT VISASI) + [VITL VITHS]} = 0.
B

Y

When all the Lorentz force terms afe included in the calculation, no solution can be
found. Since the viscous and the advection terms are small compared with the

Lorentz force term, (3.7) can be rewritten, for the zonal toroidal velocity fields, as

"LV x B) x Blydg ~ 0, (3.8)
0 puyg

where the integrand is the ¢-component of the Lorentz force. Equation (3.8) is a
more severe condition than Taylor’s condition (Taylor, 1963), which is known as a
dynamical constraint for a steady, slow, and inviscid fluid motion, given as

j(’}(s)ﬂio[(v x B) x BJ,dS = 0, (3.9)

where the surface integral is performed for C(s) which is the side surface of the co-
axial cylinder of radius s and length 2z, = 2(7'36—52)1/2.

Now we assume that the Coriolis force due to the axisymmetric poloidal velocity
field is balanced with the Lorentz force and derive the axisymmetric poloidal velocity
field. It turns out that the axisymmetric poloidal velocity field thus derived is by no
means dominant. The rms velocities before and after taking the axisymmetric
poloidal velocity field into consideration amount to 3.31x107% ms™! and 3.35x107°
ms™!, respectively. We show the two estimates of velocity fields thus derived in Figs.
3.19 and 3.20, respectively, where no significant difference is recognized. Thus we
will consider the axisymmetric poloidal velocity field, which is related to the Coriolis
force balanced with the Lorentz force acting on the zonal toroidal velocity field.

The pattern of the fluid motion shown in Fig. 3.20 is different considerably from

those derived so far. This is a result of the introduction of non-zonal toroidal motion,
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Fig. 3.19. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD, derived

for Case 6 but without considering the balance between the Coriolis and the Lorentz
forces. The arrow for scale length corresponds to 5x10™% ms™,

66



LA‘W‘\\AAM.
Mi 17 v > > ¥ 4

ot
. e AAAAT 77 5 > » ]
vy 7%6}11111... e
1y ;7 4’AA~44>{,_/.51-».
e

4+ ¥, 1b§v§‘$<—eg i b £ £ £ 4
dep . Ry i b & & &
e < Py
€ €

= A S

1 v A

L v A

\AAM

Srrvvy

::.";'D
A g b
1i%4%h,
<Al-i‘
<45
<ﬁ‘_ »
« -
.

P

5.00 x 107* mg™
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on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 6.
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as clearly seen in Fig. 3.20. The main feature of the flow is four vortices; two at
around 90° W are nearly symmetric with respect to the equator, while the other two
at around 30°E antisymmetric. Wetsstv;fard motion prevails largely in a zone near the
equator from around 150°W to 0° in longitude. The fluid flow near the CMB, as
shown in Fig. 3.20, does not coincide with those derived with the frozen-flux approxi-
mation by Le Mouel et al. (1985), Voorhies (1986), Whaler and Clarke (1988), Blox-
ham (1989), Gire and Le Mouél (1990), Hulot el al. (1990), and Lloyd and Gubbins
(1990).

In the present approach, fluid motion in the core is derived under the condition
that non-axisymmetric poloidal magnetic fields at the CMB are maintained in such a
way that the steady state is realized through induction processes within the core. In
the frozen-flux approximation, on the other hand, fluid motion at the core surface is
derived to explain the secular variation of the geomagnetic field, using poloidal mag-
netic fields and their time variations at the CMB. The present approach is entirely
different from that based on the frozen-flux approximation, and it is therefore not
surprising that the velocity shown in Fig. 3.20 is different from those derived for the
frozen-flux approximation. Nevertheless, some common features can be found; the
vortex at around 30°E in the Southern Hemisphere, consisting of currents from near
the South Pole toward the equator at around 90°E, the westward flow under equa-
torial Africa and the Indian Ocean, and the flow from the equator toward the South
Pole.

The toroidal and poloidal constituents of the derived velocity field are shown in
Figs. 3.21(a) and (b), respectively. It should be noticed that the scale length for
arrows in Fig. 3.21(b) is different from that in Fig. 3.21(a). Comparing Fig. 3.21(a)
with Fig. 3.20(a), it is clearly recognized that the toroidal constituent of the derived

velocity field at the CMB is dominant. If we compare the magnitudes of toroidal and
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Fig. 3.21. (a) The toroidal constituent and (b) the poloidal constituent of the velocity field
shown in Fig. 3.20. The arrow for scale length in (b) is different from that in (a).
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poloidal constituents in terms of the rms velocity as defined in (3.6), we obtain
VemslT) = 9.96x107° ms™ and V. [S] = 3.35x107% ms™.. The toroidal velocity is
therefore dominant throughout the o{zgtér core by a factor of 3.

The derived poloidal velocity field shown in Fig. 3.21(b) is characterized by
upwelling flows near the Hawaii Islands and in the east of the Indian Ocean, and also
by a downwelling flow at the Atlantic. It also seems that two columnar convective
motions are composed of the poloidal velocity field; one along 90°W and the other
along the (60°S, 30°E)—(60°N, 90°E) line. In order to clarify this, we show, in Fig.

3.22, the poloidal velocity field on some planes parallel to the equatorial plane. Loca-

tions of the planes are at z = -E-roc, where 7 = 4, 3, 2, 1, and 0 from the upper left to
6

the lower left, and ¢ = 0, —1, —2, —3, and —4 from the upper right to the lower
right. It is clearly seen that the center of one columnar convective motion situated
at around 90°W stays at the same position in longitude, whereas the center of the
other does not. Such columnar motions are also pointed out by Hulot et al. (1990),
who derived fluid motion at the CMB based on the frozen-flux and the tangentially
geostrophic approximations. They claimed that the non-zonal toroidal motion, which
is symmetric with respect to the equator, represents a surface flow within the core
organized into cylindrical pillars as proposed by Busse (1975), although the scale in
their result is also larger.

We here examine the effect of the truncation N. So far we have set the trunca-
tion level at N = 9; that is, Chebyshev polynomials of the order zero to nine have
been employed to express the radial dependence of a scalar function for a toroidal or
a poloidal field. We now increase the truncation level to N = 19 with the total
number of variables for a set of (I, m, z) being twice; that is, the total number of

unknowns is 1380 in this case with the truncation level L = 4. The velocity field
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1.00 x 107 ms™

Fig. 3.22. The poloidal constituent of the velocity field shown in Fig. 3.20 on the planes,
parallel to the equatorial plane, at z = (i/6)r,. (i = 4, 3, 2, 1, and 0, from upper to lower

for the left column; ¢ = 0, =1, —2, —3, and —4, from upper to lower for the right column).
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obtained with the new truncation levels is shown in Fig. 3.23. No significant differ-
ence can be seen between Figs. 3.20 and 3.23. Table 3.2 shows the rms velocities for
the overall, the toroidal and the pfg%loidal velocity fields for N = 9, 13 and 19, respec-
tively, although the figure of the velocity field for N = 13 is not shown. The quanti-
tative difference among them may be recognized in this table. If we wish to discuss
quantitative nature of the derived fluid motion in detail, we should set the truncation
level for Chebyshev polynomials at least at N = 13. As far as qualitative nature is
concerned, however, the truncation level N = 9 would be sufficient. This problem is
obviously related to CPU time for computation, since we must solve a large size
matrix equation iteratively. This is the reason why the truncation level N = 9 is

taken. With regard to the truncation level L, we will discuss in Section 5.

Table 3.2. The root-mean-square velocities for the overall, toroidal and

poloidal velocity fields with the truncation levels N = 9, 13 and 19.

N Vims (ms™) Ves T] (ms™h) V. [S] (ms™h)
9 9.66x107° 9.06x107° 3.35%x107°
13 1.20x107% 1.14x107* 4.16%x107°
19 1.22x107¢ 1.14x10™* 4.29x107°
8.4.2. Case 7

We further add meridional circulation V[SJ] to Case 6; this is Case 7. For U[SJ]
= —107% and U[S9] = —3x1075, the derived overall velocity fields are shown in Figs.
3.24 and 3.25, respectively. The axisymmetric poloidal velocity field, which is related
to the Coriolis force balance with the Lorentz force acting on the zonal toroidal velo-
city field, is to be derived in the same way as in Case 6 after calculating fluid motion

in the core for the additional axisymmetric poloidal velocity field V[S9]. The
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Fig. 3.23. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 6.

The arrow for scale length corresponds to 5x10™* ms™.
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Fig. 3.24. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 7.

The arrow for scale length corresponds to 5x107% ms™.
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Fig. 3.25. (a) Horizontal velocity field at the core surface and (b) the overall velocity fields
on the equatorial plane and on the meridional planes for the epoch of 1980 AD in Case 7.

The arrow for scale length corresponds to 5x10™* ms™.
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westward flow in a zone near the equator is dominant in both figures. The columnar
convective motions in Fig. 3.25 are therefore indistinct. Nevertheless, the vortex
situated at around (60°S, 30°E) ig noticeable. It seems that the additional meri-
dional circulation affects only the zonal toroidal motion. Therefore, the vortex flow

may be an essential one in the Earth’s outer core.
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4. Time-Dependent Behavior of the Magnetic Field

In this section we examine tEg 'fesults obtained so far from a different point of
view. Respective results have been obtained by solving the induction and the Navier-
Stokes equations for the steady-state case on various assumptions made in Cases 1 to
7. Whether the magnetic field is in fact steady under the conditions we imposed can
be tested by examining time-dependent behavior of the magnetic field with the
derived velocity field fixed.

As mentioned in Section 3, we should somehow check the validity of solutions. If
the assumption made in deriving fluid motion in the core is inappropriate, the mag-
netic field would diverge or decay within a short time, because some induction terms,
which are important in maintaining a steady magnetic field, must have been omitted.
Rikitake and Hagiwara (1968), for example, examined time-dependent behavior of
the magnetic field for the Bullard-Gellman dynamo model. Uno (1972) also examined
the Bullard-Gellman-Lilley dynamo model. The steady state is realized for specific
magnetic Reynolds numbers, corresponding to eigenvalues in kinematic dynamo prob-
lems (e.g. Bullard and Gellman, 1954; Lilley, 1970). Since the magnetic Reynolds
number specifies the magnitude of velocity field in kinematic dynamos, we can check

the validity through the magnitude.

4.1. The numerical method

We employ the same mathematical formulation as described in Section 2; the
velocity and magnetic fields are expressed in terms of toroidal and poloidal vector
fields, and the scalar functions are expanded in spherical surface harmonics for the 6-
and ¢-dependence and in Chebyshev polynomials for the r-dependence as given in

(2.5) and (2.10). Equations (2.6) and (2.7) obtained by the orthogonality of toroidal

7



and poloidal fields and of spherical harmonics are satisfied at the mesh-points given
in (2.19) except the boundaries, where boundary conditions given in (2.25) to (2.30)
are imposed. The electrical condué%:i\}ity of the inner core has been assumed to be the
same as that of the outer core. In addition, the magnetic field must be finite at r =

0, and we obtain

BY[T)(0, t) = 0, (4.1)

B[S (0, t) = 0. (4.2)

There is no motion inside the solid inner core, and the induction equation is
reduced to the diffusion equation. The scalar functions for magnetic fields inside the
inner core B(i)[T,Y](r, t) and B(i)[S,y](r, t) are also expanded in spherical harmonics
and Chebyshev polynomials. The radial coordinate r in the inner core is transformed

into coordinate z by
T = — (4.3)

Since we have expanded all the scalar functions B[T|(r, ), B(i)[Ty]('r, t),
B[S.J(r, t), and B(i)[Sv](r, t) in Chebyshev polynomials, the partial differential equa-
tions (2.6) and (2.7) are reduced to ordinary differential equations with respect to ¢
for B[, T/(t), BO[, TM(t), B[,S"(t) and BU[ S7(t). We have then 2(N-1)
variables and 2(N+1) equations for a set of (I, m, z) of toroidal or poloidal magnetic
field; 2(N—1) equations correspond to the induction equations at the mesh-points z,
given in (2.19) and (4.3), for k = 1 to k = N—1, and the other four are the boundary
conditions. The 2(N+1) equations are combined into one matrix equation. The dif-
fusion and induction terms on the right-hand-side of the matrix equation are calcu-
lated at each mesh-point. The matrix, 2(N+1) by 2(N+1), is independent of order m

of spherical harmonics and time ¢, since the matrix for the poloidal magnetic field
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depends only on degree ! of spherical harmonics through the boundary condition.
Then one matrix for each degree [ of toroidal or poloidal magnetic field is subjected
to LU decomposition and stored oﬁgo the memory. We use the fourth-order Runge-
Kutta scheme for time integration. In order to guarantee the stability of numerical

calculation, the time step At should be less than

Ar

V.

T

{L(L+1)(VE+ V2|

, (4.4)

min
where Ar is the distance between mesh-points, V., Vy and V4 denote -, 6- and ¢-
components of velocity field, respectively (e.g. Glatzmaier, 1984); that is, At is the
time during which a fluid particle at a mesh-point does not proceed beyond the next
mesh-point. Furthermore we should pay attention to the limit At originating from
the diffusion term.

In actual calculations, the induction equation is expressed in non-dimensional
form. As mentioned in Section 2, we scale the equation by measuring the magnetic
field B in units of typical strength of magnetic field B,, the velocity field V in units
of typical magnitude of velocity field V,, length in units of typical length L,. Time ¢
is measured in units of the magnetic diffusion time L2/v,_ . Then the induction equa-

tion, in vector form, becomes

%f— =R,V x (V x B) + V2B, (4.5)

where R, is the magnetic Reynolds number defined as R, = V,L,/v,,. We take the
values as B, = 1072 T, V, = 1074 ms~!, and L, =r, = 3.485x10° m. Then one

magnetic diffusion time unit is about 1.45x10° years and R_ ~ 130.
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4.2. Preliminary result

As a preliminary calculation, we attempt to examine time-dependent behavior of
the magnetic field in Case 1; that is, the initial values are given from the result for
Case 1, and only the same induction terms as adopted in Case 1 are considered;
(VITQ)BISEIT,) and (V[S,]B[Tg]S,). The time step At is taken as At = 6.92x10™".
The results of time integration up to 1000A¢ for B[S{*], B[S}, B[S3*], B[S}, B[S%9],
B[S3), B[T?], and B[T?), with the velocity field fixed, are shown in Fig. 4.1, where
the values of scalar function at z = 1.0 (r = r,,) are plotted for the dimensionless
poloidal magnetic field, while those at z = 0.8 (r = 0.93r,.) are plotted for the
toroidal magnetic field. It is obviously seen in Fig. 4.1 that the steady state is actu-
ally realized as long as the same induction terms as adopted in Case 1 are taken into

consideration.

4.3. Application to the results obtained in Cases 1 to 7

We apply the program code to the results obtained so far and examine time-
dependent behavior of the magnetic field; that is, we regard the derived magnetic
field in each case as the initial values, where the steady state has been realized, and
examine a time-dependent kinematic dynamo for the derived velocity field.

In respective cases, we have neglected some interaction terms when we derive
fluid motion in the core. If such terms are actually insignificant as presumed, a
steady state, or a nearly steady state, would be realized in the calculation. If not,
either one of the two following possibilities would be responsible. One is that the
obtained result is not a plausible one; it might have been derived on inappropriate
assumptions. The other is that other interaction terms are also responsible for secu-
lar variations of the Earth’s magnetic field; we have assumed that both the magnetic

and the velocity fields are in a steady state and have not considered the effect on
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Fig. 4.1. Time-dependent behavior of magnetic fields for Case 1 up to 1000A¢ (the time step
At = 6.92x1077). The lines indicate non-dimensional values of radial functions at z = 1
(r = r,) for poloidal fields and at z = 0.8 (r = 0.93r,.) for toroidal fields. In this
kinematic dynamo calculation, only the induction terms assumed in Case 1 are taken into
consideration.
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time variations in the equations to be solved.

We should recall that the present approach to fluid motion in the core from
geomagnetic field data is completely gifferent from the approaches based on the
frozen-flux approximation. Time variations of the magnetic field due to the interac-
tions between surface fluid motion and the magnetic field are taken into considera-
tion in the frozen-flux approximation, but the magnetic diffusion term is neglected,
on the ground that only short time-scale variations, say, some tens of years, are con-
sidered. In the present approach, the magnetic diffusion inside the core is taken into

consideration, but time variations are not considered.

4.83.1. Case 1

First, we examine time evolution of the magnetic field, using the result obtained
in Case 1. The velocity field to be considered in the calculation is shown in Fig. 3.3.
Time integration is performed for a time step At = 6.92x10~7. The result is shown
in Fig. 4.2, which indicates the scalar functions for poloidal and toroidal magnetic
fields at the same r as in Fig. 4.1. The total time 100A¢ corresponds to 10 years, dur-
ing which the magnetic fields vary considerably. It is indeed unreasonable that
within such a short time interval the sectorial dipole magnetic field B[Sllc} becomes
stronger than the axial dipole magnetic field B[S?] and also other magnetic fields
vary rapidly. This would not result from numerical instability, since we have chosen
the time step A¢ so as to guarantee numerical stability. In fact, even for the time
step At = 6.92x107% one tenth of the previous one, we obtained the same result.

This result indicates that the velocity field derived on the assumption in Case 1
is inappropriate. The time-dependent behavior of the magnetic field shown in Fig.
4.2 obviously relies on the assumption that strong zonal toroidal magnetic fields are

generated by the interaction between the axial dipole magnetic field and the zonal
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Fig. 4.2. Time-dependent behavior of magnetic fields for Case 1 up to 100A¢ (the time step
At = 6.92x1077). The lines indicate non-dimensional values of radial functions at z = 1
(r = r,) for poloidal fields and at z = 0.8 (r = 0.937,.) for toroidal fields.
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toroidal motion. However, the calculated zonal toroidal magnetic field turned out to
be much weaker than we have expected, resulting in a too large velocity field. In
actual time evolution of the magnefi,c' field, other magnetic fields must also be pri-
mary inducing magnetic fields. In other words, the reason why magnetic fields vary
considerably with time is that such magnetic fields are neglected. It is concluded,
therefore, that the assumption made in Case 1 is not reasonable.

If the velocity field is also allowed to vary according to the induction, the
Navier-Stokes, and the energy equations, time evolution of the magnetic field would
not tend to diverge. If a strong magnetic field is induced in the core, the Lorentz
force due to the magnetic field would also become stronger and eventually weaken
the velocity field. In this way the non-linear terms effectively suppress the growth of
magnetic field and time evolution is stabilized. It is known, however, that the effect
of such non-linear terms depends on the initial state. A good example of initial value
dependence in the non-linear effect is demonstrated in disk dynamo models (Bullard,
1955; Shimizu and Honkura, 1985). Judging from the time evolution shown in Fig.
4.2, the magnetic and velocity fields derived on the assumption in Case 1 are likely to
be far from the equilibrium state. It is expected, therefore, that even solutions of the
magnetohydrodynamic equations would unrealistically oscillate if the result derived in

Case 1 is adopted as the initial state.

4.3.2. Case 2

Second, time evolution of the magnetic field is examined, using the result derived
on the assumption in Case 2. The velocity field used in the calculation is shown in
Fig. 3.7; that is, the result for U[S?] = —1072 is adopted here, since there is no signi-
ficant difference between the velocity fields derived for U[SI] = 0 and U9 = —10~°

shown in Figs. 3.3 and 3.5, respectively. Time integration is performed up to 200A¢
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with the same time step At = 6.92x1077 as in the previous calculation, and the
result is shown in Fig. 4.3. During the time interval 200At, corresponding to 20
years, the magnetic fields tend to di}ge‘ége in this case. During 20 years, the axial
dipole magnetic field B[SY] grows by three times the initial value. This also indicates
that the velocity field derived on the assumption made in Case 2 is inappropriate.
The reason would be the same as for Case 1. We conclude that the assumption made

in Case 2 is also inappropriate.

4.3.83. Case 8

Third, we examine time evolution of the magnetic field, using the result derived
in Case 3. The velocity field used in the calculation is shown in Fig. 3.9. In this case,
we take the time step as At = 6.92x1078, which is shorter than those taken in the
previous calculations. Time integration is performed up to 200At, corresponding to
only 2 years. The result is shown in Fig. 4.4. During such a very short time span, the
magnetic fields also tend to diverge. Therefore, the velocity field derived on the

assumption made in Case 3 is not plausible.

4.3.4. Case

Next, we examine time-dependent behavior of the magnetic field for Case 4. The
velocity field is shown in Fig. 3.15. Time integration for magnetic fields is performed
up to 200A¢ with the time step At = 6.92x107%. Figure 4.5 shows the result. The
magnetic fields eventually tend to diverge after only 2 years. The velocity field

derived on the assumption made in Case 4 is not plausible.

4.8.5. Case §

Next, we calculate time evolution of the magnetic field, using the result for Case
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Fig. 4.3. Time-dependent behavior of magnetic fields for Case 2 up to 200A¢ (the time step
At = 6.92x1077). The lines indicate non-dimensional values of radial functions at z = 1
(r = r,.) for poloidal fields and at z = 0.8 (r = 0.93r,,) for toroidal fields.
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Fig. 4.4. Time-dependent behavior of magnetic fields for Case 3 up to 200A¢ (the time step
At = 6.92x107°%). The lines indicate non-dimensional values of radial functions at ¢ = 1
(r = r,) for poloidal fields and at z = 0.8 (r = 0.93r,_) for toroidal fields.
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Fig. 4.5. Time-dependent behavior of magnetic fields for Case 4 up to 200A¢ (the time step

At = 6.92x107%). The lines indicate non-dimensional values of radial functions at z = 1
(r = r,.) for poloidal fields and at z = 0.8 (r = 0.93r,.) for toroidal fields.
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5. The velocity field is shown in Fig. 3.17. The result of time integration is shown in
Fig. 4.6, where the calculation was performed up to 500A¢ with the time step At =
6.92x107°. .

In this case, the stability seems to be rather promising, compared with the previ-
ous results, and the fluctuations of the magnetic fields are apparently close to those
near an equilibrium state. If we examine magnetic energy, however, we recognize
magnetic fields growing with time. The magnetic energy in the core is defined as

1
Eg = — Bzdv, 4.6
™ (46)

where volume integral is performed for the whole core. Since fluid motion exists only
in the outer core and the volume of the inner core is very small, about 4 % of the

whole core, we calculate the quantity defined as
E, = [Bdy, (4.7)

where volume integral is performed only for the outer core and dimensionless values
are used. Hereafter we will simply call £, the magnetic energy. We show time-
dependent behavior of F, in Fig. 4.7. The magnetic energy F, turns out to grow
exponentially with time. The value of E, at ¢ = 500A¢ is nearly nineteen times the
value at ¢t = 0.

This type of time-dependent behavior is generally seen in kinematic dynamos for
the given velocity field which is too large to maintain a steady magnetic field. Since
the velocity field is fixed, the equation governing the magnetic field is linear. Assum-
ing that the magnetic fields depend on time as exp[At], the induction equation (4.5) is

written as

AB =R_V x(Vx B)+ V?B. (4.8)
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Fig. 4.6. Time-dependent behavior of magnetic fields for Case 5 up to 500A¢ (the time step
At = 6.92x107%). The lines indicate non-dimensional values of radial functions at z = 1
(r = r,.) for poloidal fields and at z = 0.8 (r = 0.93r,.) for toroidal fields.
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Fig. 4.7. Time-dependent behavior of magnetic energy F,, defined in (4.7), for Case 5.
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In Bullard and Gellman (1954), under the condition A = 0, (4.8) was solved as an
eigenvalue problem for the magnetic Reynolds number R,,. Alternatively, (4.8) can
be solved as an eigenvalue problerr;gfc;r A with R, specified (e.g. Roberts, 1972). The
eigenvalues A’s are generally complex numbers. The eigenvalue A, which has the
largest real part corresponds to the mode showing the maximum growth rate in time.
If Re A, = 0 and Im A_,, = 0, the magnetic field is steady. If Re A, = 0 and

Im A # 0, time-dependent behavior of the magnetic field is oscillatory. Figure 4.7

max
suggests that if we solve the eigenvalue problem with respect to A for the velocity
field derived in Case 5 and R,, taken in the present study, we will obtain

Re A > 0.

max
4.8.6. Case 6

Next, we examine time-dependent behavior of the magnetic field, using the result
derived for Case 6. The velocity field is shown in Fig. 3.20. In this case, the initial
state is different from those in Cases 1 to 5 in the sense that non-zonal toroidal mag-
netic fields and non-zonal toroidal velocity fields are taken into consideration,
whereas there are no non-zonal toroidal magnetic and non-zonal toroidal velocity
fields in Cases 1 to 5; that is, the magnetic and velocity fields up to the truncation
level L of spherical harmonics are all taken into consideration in Case 6. It turns out
then that the result obtained in Case 6 seems to represent a possible state in the
core, at least in that magnetic fields do not diverge during a short time with the velo-
city field fixed. Taking the time step as At = 6.92x107% time integration for the
magnetic field was preformed up to 500A¢, which corresponds to 500 years. The
results of time evolution of poloidal and toroidal magnetic fields are shown in Figs.
4.8 and 4.9, respectively, for some modes.

It is clearly seen from the figures that the magnetic fields are by no means
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invariable even in this case. This is reasonable, since some interaction terms have
been neglected in deriving fluid motion in the core. We have assumed in Case 6 that
the main inducing fields are the ~aﬁ;:cfi”a,l dipole magnetic field and toroidal magnetic
fields inside the core and also, steady magnetic fields are maintained. The other,
neglected induction terms are primarily responsible for secular variations of the
Earth’s magnetic field.

One noticeable characteristic of time variations of the magnetic field shown in
Figs. 4.8 and 4.9 is that zonal toroidal magnetic fields are enhanced considerably.
Various induction terms may contribute to the generation of the zonal toroidal mag-
netic fields. One possibility is as follows. Zonal toroidal motions, which have been
expected to generate strong zonal toroidal magnetic fields (the w-effect), were derived
on the assumption that the motions are in a steady state as a result of the equili-
brium among the inertia, the Lorentz, the Coriolis and the viscous forces in the
Navier-Stokes equation. Eventually angular velocity field seems to adjust itself to the
magnetic lines of force for axisymmetric poloidal fields, for example as shown in Fig.
3.16 for Case 5. The zonal toroidal motions are invariable in the kinematic dynamo
calculation, whereas the axisymmetric poloidal magnetic fields would undergo time
variations. Consequently, the shear in zonal toroidal motions effectively generates
zonal toroidal magnetic fields.

It is also worth noting that axisymmetric poloidal magnetic fields, for example
B[S7], B[S9] and B[S9] as shown in Fig. 4.8, little vary, compared with sectorial
poloidal magnetic fields B[S}¢] and B[S%9, in spite of the fact that in the present
study we have not taken into consideration the induction terms by which the axisym-
metric poloidal magnetic fields are generated. The inductive contribution to the mag-
netic field should consist of two opposite factors; one is the generation and the other

is the destruction of the magnetic field. If those effects are comparable to each other,
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the above feature would be understandable. In a sense, we may claim that even the
fluid motion as derived only from non-axisymmetric poloidal magnetic fields
represents an actually possible typé%o‘f fluid motion in the Earth’s outer core. This
suggests that the characteristics of non-axisymmetric magnetic fields observed at the
Earth’s surface, for example their distribution and strength, are important manifesta-
tions of dynamo processes.

We show time-dependent behavior of magnetic energy E, in Fig. 4.10. The value
of By at t = 500A¢ is only about 1.2 times the initial value. Therefore, if we express
time-dependence of magnetic fields as exp[At], Re A, for Case 6 is positive but
closest to zero among those for Cases 1 to 6.

The above result was obtained for the truncation level N = 9. Although we men-
tioned, in Section 3, that if we wish to discuss quantitative nature of the derived fluid
motion in detail, we should set the truncation level for Chebyshev polynomials at
least at N = 13, time-dependent behavior of the magnetic field for N = 13 is not dif-
ferent significantly from that for N = 9. The value of magnetic energy F, for N = 13
at ¢ = 500At is about 1.3 times the initial value. Therefore, when we check the vali-
dity of solutions and examine the plausibility of the fluid motion derived for respec-
tive cases, the truncation level for Chebyshev polynomials, N, would have only a very

little effect.

4.8.7. Case 7

Finally, we examine time-dependent behavior of the magnetic field, using the
result derived for Case 7. The velocity field is shown in Fig. 3.25 for U[S3] =
—~3x1075. Taking the time step as At = 6.92x107° time integration is performed up
to 500At, corresponding to 500 years. Time-evolution of poloidal and toroidal mag-

netic fields is shown in Figs. 4.11 and 4.12, respectively, for some modes. There

96



t)ﬂ"

6><10_l

Energy Ey

Magnetic

final time step 500

Fig. 4.10. Time-dependent behavior of magnetic energy B, for Case 6.
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Fig. 4.11. Time-dependent behavior of poloidal magnetic fields for Case 7 up to 500A¢ (the
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seems to be no significant difference between the results in Cases 6 and 7.
We show time-dependent behavior of magnetic energy F, in Fig. 4.13. The value
of By at t = 500At is about 1.5 tinfes’ the initial value. Re A, in this case would be

larger that that in Case 6.

4.4. The effect of addition of meridional circulation

It is expected that additional meridional circulation introduced in Case 7 has
some effects on a dynamo process as in some kinematic dynamo models (e.g. Roberts,
1972; Roberts and Stix, 1972). In fact, we derived a different result of time-dependent
behavior of the magnetic field between Cases 4 and 5. As seen in Figs. 3.20 and 3.25,
there is also a noticeable difference between the velocity fields derived in Cases 6 and
7; for instance, the westward flow in a zone near the equator. We may then expect
that some significant differences appear during long time duration, if the mechanism
explained above for the growth of zonal toroidal magnetic fields due to zonal toroidal
motions for Case 6 is operative.

To examine this possibility, we examined time evolution of the magnetic field up
to 5000A¢t with the same time step At = 6.92x107¢; corresponding to 5000 years, ten
times longer than in the previous calculation.

Time-dependent behavior of the magnetic field in Case 6 is shown in Figs. 4.14
and 4.15 for poloidal and toroidal constituents, respectively. Similarly, Figs. 4.16 and
4.17 show time-dependent behavior in Case 7. The most noticeable difference
appears in time-dependent behavior of the axial dipole magnetic field B[S?]. In Fig.
4.14 for Case 6, the absolute value of scalar function at r = r_, for the dipole mag-
netic field oscillates but gradually decreases with an eventual polarity change. In
Fig. 4.16 for Case 7, the absolute value decreases as in Case 6 until around 3000A¢,

but it returns to the initial value, more or less. As for absolute values for the other
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Fig. 4.13. Time-dependent behavior of magnetic energy E, for Case 7.
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Fig. 4.14. Time-dependent behavior of poloidal magnetic fields for Case 6 up to 5000A¢ (the
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at z = 0.8 (r = 0.93r,,).
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modes, there is no significant difference between the two cases except the characteris-
tic time of fluctuation which seems to be shorter in Case 7 than that in Case 6. This
nature of fluctuation may be attrib;ttéd to zonal toroidal motions caused by addi-
tional meridional circulation, since the velocity fields derived on the assumptions
made in Cases 6 and 7 are similar to each other except for zonal toroidal motions.

Comparing the rms velocity for the non-zonal toroidal constituent, we obtain Vims

1)
= 9.06x1075 ms™! for Case 6 and Vo lT] = 9.33%x107° ms™! for Case 7. The rms
toroidal velocity for all the modes in Case 7, however, amounts to 2.13x10™* ms™!.

Among the zonal toroidal motions, the rotation of spherical surfaces V[T?9),
which is caused by an axisymmetric poloidal motion V[Sg] considered in the present
study, can be responsible for the westward drift which is one of the well known
features of the geomagnetic field. Madden and Le Mougl (1982), for example,
regarded the westward drift as a manifestation of the zonal toroidal motion V[T9]
near the CMB. On the other hand, Jault et al. (1988) derived zonal toroidal motions
at the CMB from the apparent drift of the magnetic field observed at the Earth’s
surface based on the frozen-flux and the geostrophic approximations. They pointed
out that the zomal toroidal motion is not expressed by a body rotation but by a
latitude-dependent differential rotation which is symmetric with respect to the equa-
tor, and interpreted the result as indicating the rigid rotation of co-axial cylindrical
annuli.

Zonal toroidal motions V[T?] and V[TJ] are given rise to mainly by additional
meridional circulation V[S] introduced in the present study. Figure 4.18 shows the
distributions of angular velocity in the core derived in Cases 6 and 7. The magnitude
of rotation rate is entirely different; contour intervals in Figs. 4.18(a) and (b) are
1071 571 and 2x1071 s71, respectively. The overall feature, however, is similar to

each other; westward flow near the equator and eastward flow near the rotation axis.
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The distribution of zonal toroidal motion near the CMB is similar to the result of
Jault et al. (1988). Meridional-dependent zonal motions can also be responsible for
the drift of the geomagnetic field as o‘gs‘érved at the Earth’s surface.

The feature of drifting magnetic field is well illustrated in B[S]*]—B[S™] plane,
as pointed out by Yukutake (1985). In the B[S[*|—B[S/™] diagram, the clockwise
trajectory of (B[S]"], B[S[™]) corresponds to westward drift. Figure 4.19 shows the
B[S7™]-B[S[™] diagrams for (I, m) = (1, 1), (2, 1), (2, 2) and (3, 3) taken from Fig.
4.16. In these figures, the westward drift is seen for (I, m) = (1, 1), (2, 2) and (3, 3),
although it is not straightforward to interpret the trajectory for (I, m) = (2, 1).
Thus the nature of fluctuation seen in Figs. 4.16 and 4.17 can be attributed to zonal
toroidal motions, primarily V[T?] and V[T9]. For the magnitude of zonal motion of
5%107* ms™! at the equator, the characteristic drift time is about 1400 years. Time
variation of the magnetic field is by no means purely periodic, but variations covering
three periods for B[S1°] and six periods for B[S2°] are seen during 5000 years as
shown in Fig. 4.16. Thus the period is indeed correlated to the characteristic drift
time associated with the zonal toroidal motion.

In relation to the westward drift of the geomagnetic field, there are some argu-
ments. As mentioned in Section 2, secular variations of the geomagnetic field have
been investigated mostly in terms of time variations of Gauss coefficients. Yukutake
and Tachinaka (1969) further examined the time variations and separated the non-
axisymmetric magnetic fields into standing and drifting parts. Differences are not
negligible, however, between the Gauss coefficients determined from the observed
magnetic field data and those derived from the model of Yukutake and Tachinaka
(1969). In order to improve the model, Yukutake (1985) introduced another drifting
mode, that is an eastward drifting constituent. The non-axisymmetric magnetic field

is then composed of standing, westward drifting and eastward drifting parts.
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According to Yukutake (1985), one possibility of explaining coexistence of these
modes is that the outer core consists of two layers as proposed by Yukutake (1981);
it is the westward rotation of the?gufface layer that is responsible for the westward
drifting mode. Meanwhile, Matsushima and Honkura (1988) introduced fluctuations
in the amplitudes of the standing and the drifting parts, in view of a possible mianifes-
tation of non-linear nature inherent in the geodynamo. As a characteristic of the fluc-
tuations, they pointed out that the relationship between the amplitude and the
period of fluctuations for the standing part is different from that for the drifting part,
and suggested that the fluctuation of the drifting part originates near the core sur-
face.

On the other hand, Bloxham and Gubbins (1985) showed that the secular varia-
tions, including the westward drift, of the geomagnetic field at the CMB are confined
mostly to the Atlantic hemisphere 90° E to 90° W, whereas only slight time variations
are seen in the other hemisphere. This feature in the geomagnetic field is reflected in
the pattern of fluid motion at the core surface derived on the frozen-flux approxima-
tion; that is, the westward flow in a zone near the equator is a common feature in
many models of fluid flow.

It is not clear, however, whether the expression in terms of the standing and the
drifting parts corresponds to the feature at the CMB as pointed out by Bloxham and
Gubbins (1985), such as significant secular variations in the Atlantic hemisphere and
rather static features in the Pacific hemisphere. It has also been unclear whether the
westward drift is a persistent feature or a temporal one, since secular variations of
the geomagnetic field are known only for recent hundreds of years. In this respect,

studies of paleomagnetic secular variations are of great importance.
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4.5. Short time-scale variations of the magnetic field

If non-zonal fluid flow is primarily responsible for secular variations, including
the westward drift of the non-a}fiesyﬁlmetric magnetic field, as in the core surface
flows derived on the frozen-flux approximation, we may expect that the velocity field
which contains less zonal motions as derived on the assumption in Case 6 gives rise
to time variations of the geomagnetic field. In other words, the interaction terms
which are not considered in deriving fluid motion in Case 6, but are considered in the
frozen-flux approximation, are responsible for time variations of the magnetic field.
In order to examine this possibility, we derive fluid motion in the core from geomag-
netic field data, DGRF 1950 and DGRF 1965, shown in Table 2.3. Then we estimate
time variations of the magnetic field for some tens of years. For the initial states
corresponding to DGRF 1950 and DGRF 1965, the velocity fields derived from the
respective DGRF’s are used to perform time integration.

The results are shown in Fig. 4.20. In each figure, the ordinate is normalized
with respect to the interval between maximum and minimum values under considera-
tion. Larger circles denote the values of Gauss coefficients given by DGRF’s; left for
DGRF 1950, center for DGRF 1965, and right for DGRF 1980, while smaller circles
on lines denote the Gauss coefﬁcieﬁts into which the calculated magnetic field is
transformed. In these figures, there are few modes in which the calculated magnetic
field coincides with the observed one. In some modes, for instance (2, 1, s), (3, 2, s)
and (3, 3, s), time variations are opposite. This indicates that the present approach
to fluid motion in the core is by no means sufficient, mainly because we have

assumed a quasi-steady state.
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5. Discussion

o’

5.1. Cases 1 and 2
5.1.1 Case 1

Case 1 is aimed at reexamining Matsushima and Honkura (1989b) in which it is
assumed that strong zonal tcroidal magnetic fields are generated by the interaction
between the axial dipole magnetic field and zonal toroidal motions (the w-effect), and
also that non-axisymmetric poloidal magnetic fields as observed at the Earth’s sur-
face are generated only by the interaction between the zonal toroidal magnetic fields
and poloidal convective motions. The rms velocity, defined by (3.6), for the poloidal
velocity field V._[S] = 3.95x107% ms™! is much larger than that for the toroidal
velocity field V. [T] = 3.01x107° ms™!. Thus the poloidal velocity field derived on
the assumption made in Case 1 is dominant, as also seen in Fig. 3.3.

Noticeable modes of poloidal velocity field are (I, m) = (2, 1) and (4, 3), which
are antisymmetric with respect to the equator. According to the selection rules (Bul-
lard and Gellman, 1954), the interaction between V[Si®] and B[T]], for instance, gen-
erates poloidal magnetic fields B[S}y _os] (k = 0,1, - - -, [I/2]), while the interaction
between V[S3°] and B[T7] does B[Si¢s_ o] (kK = 0,1, -~ -, [l/2]), where the expres-
sion used by Yokoyama and Yukutake (1989) for induced magnetic fields is here
referred to. The strongest zonal toroidal magnetic field is B[Tg]. The result discloses
a simple relationship between the strength of the geomagnetic field and the magni-
tude of velocity fields derived for respective spherical harmonic modes. The induc-

tion term (V[S,]B[T4S,) is written as (Bullard and Gellman, 1954)

ofy

L
(VISJBITAS,) = -2

a(a-+1) V[S,| B[T4. (5.1)

Since inducing magnetic fields are assumed to be zonal toroidal magnetic fields, the
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order m of spherical harmonics for induced magnetic fields is the same as that for the

velocity fields. For example, the induction equations for B[S3¢] and B[S3] are writ-

ten as “5'
dZB[S3c
r2————d 23 | — 12B[S3) + Rm[V[S;;’S}(sB[TIO] — 2B[T3))
T
(5.2)
+visy) |22 pirg) - 222 pg|| - o,
3 33
d’B[S}) ’
2 4 3¢ 3s1| 27 0 04 0
rP———— — 20B[S$3] + R_ | V[S¥]|==B[T9] — 2= B[T
e [S5°] m [3]\35 (T3] = [T4)
(5.3)
' 15 |1
+V[S3][3B[T] + EB[TS] J = 0.

Although B[Tg] is dominant, the radial dependence of B[T9](r) is complicated and in
particular the polarity changes as clearly seen in Fig. 3.2(b). Induction terms are
expressed by the summation of multiplication of scalar functions for velocity and
magnetic fields. Therefore, determination of magnitudes U[S3*] and U[S¥] depends
not only on the strength of inducing magnetic fields but also on their radial depen-
dence. Hence the relationship between the strength of geomagnetic field and the mag-
nitude of derived velocity fields is not so simple. Instead, U[ST‘] and U[S™] are sim-
ply related to B[Sg”] and B[S7¢], respectively, as long as inducing magnetic fields are
assumed to be zonal toroidal magnetic fields.

It has been assumed that non-axisymmetric poloidal magnetic fields are gen-
erated only by the interaction between strong zonal toroidal magnetic fields and
poloidal velocity fields. However, as shown in Fig. 3.2(b), the zonal toroidal magnetic
fields are not so strong, amounting to 10™* T at most. This means that the assump-

tion does not hold. Because of weak zonal toroidal magnetic fields which are

114



supposed to be primary inducing magnetic fields, the magnitude of derived poloidal
velocity ﬁe1d4is too large. This result is reflected in time-dependent behavior of the
magnetic field with the derived vefgc‘ity field fixed. As shown in Fig. 4.2, the mag-
netic fields vary rapidly and tend to diverge. This means that the induction term
(V[Sa]B[Tg]SY), which is assumed to be predominant in the generation of steady
magnetic fields, is not dominant actually; that is, we should take into consideration
other interaction terms as well. In view of the fact that weak zonal toroidal magnetic
fields are due to a weak zonal toroidal motion, we introduced some terms which are
effective in generating zonal toroidal velocity fields. In this way we attempted to

improve the method of deriving fluid motion in the core.

5.1.2. Case 2

We first introduced meridional circulation as Case 2. The assumed induction
processes are the same as those considered in Case 1. We have adopted an axisym-
metric poloidal velocity field V[Sg] as meridional circulation. This possesses one con-
vection cell in the Northern and the Southern Hemispheres, respectively; that is, for a
negative value of U[Sg], fluid in the core moves upward near the equator and down-
ward near the poles. Meridional circulation affects zonal toroidal motion through the
interaction (V[SQ]S?S7) in (2.8); V[53] is related to V[T9] and V[TJ). Zonal toroidal
magnetic fields, which are assumed to be inducing magnetic fields, then become
stronger than in Case 1.

In the present study, the magnitude U[Sg] has been taken as a parameter. We
should examine to what extent the assumed value is valid. In approaches to fluid
motion near the CMB on the basis of the frozen-flux approximation, toroidal flow or
geostrophic flow, for example, is assumed to remove the ambiguity of the solution. In

the toroidal flow constraint, which would be expected in the case that light material
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is concentrated near the CMB (Fearn and Loper, 1981) or sub-adiabatic temperature
gradient at the top of the core is realized as in some models of the Earth’s thermal
history (Gubbins et al., 1982), no poloidal motions are taken into consideration. In

the geostrophic flow constraint, which is equivalent to the condition
Vy(Veos 6) = 0, (5.4)

where V5 is the horizontal divergence operator given as

16 1 a]’ (5.5)

Vg=1|0 )
" [’ r 00 rsin 8 0¢

axisymmetric poloidal motions should vanish (Le Mouél et al., 1985; Backus and Le
Mouél, 1986). Thus it is expected that even if such meridional circulation exists, the
magnitude would be very small.

Meanwhile, Yokoyama (1989) claimed that the magnitude of V[S9] should
amount to 5.0x1077 ms™! in a model for a sixty year variation of the geomagnetic
field. According to Yokoyama (1989), the sixty year variation is due to the magne-
tohydrodynamic (MHD) oscillation in a thin layer beneath the CMB. For example,
the MHD oscillation among B[SY], B[TY], V[S5], and V[TY] occurs in the thin layer
through the Lorentz force, the Coriolis force, and induction processes. For the sixty
year variation of the axial dipole magnetic field, whose amplitude is 9.6x10™" T, the
magnitude of V[S9] amounts to 5.0x10™" ms™! and that of V[T?] to 3.5x10™* ms™"
as long as the fluctuation is caused by the interaction between V[SS] and B[S?].

However, the magnitude of V[T?] amounting to 3.5x10™* ms™' corresponds to
the value derived on the frozen-flux approximation (e.g. Madden and Le Mouél,
1982), that is, thé westward drift rate of the non-dipole magnetic field (about
0.2°year™'). Therefore, oscillation with such a large amplitude of V[TY] is unlikely.

We may accept, however, the magnitude of V[Sg] 5.0x1077 ms™! as the maximum,
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while we consider the balance between the Lorentz force due to zonal toroidal mag-
netic fields and the Coriolis force due to V[S9]. The order of magnitude of V[S]
10~7 ms™! corresponds to U[Sg] ~“'516—3 if the radial dependence of poloidal velocity
is given by (2.43). Then we can accept both the velocity fields, with different values
of U[SY] shown in Figs. 3.5 and 3.7. As long as zonal toroidal magnetic fields are
assumed to be inducing magnetic fields, the ambiguity of U[Sg] remains. This is sim-
ply because the induction term (V[Sg]B[TB] S,) generates no poloidal magnetic field.
There is no way to determine the magnitude U[SJ].

If we consider fluid motion in a steady state and neglect the advection, the

Lorentz force and the viscous terms, we obtain
200-V)V = —g(r)7 x VC, (5.6)

taking the curl of (2.2). The horizontal components of (5.6) are written as

av, V sin 6
20) é _ T _ g(r) 30, (57)
0z T rsin @ O¢
ov
sq ¢ _ _9(r) 9C (5.8)

0z r 00’

which are known as the thermal-wind equations (e.g. Pedlosky, 1986). According to
Olson (1989), even small lateral temperature differences, of the order of 107° Kkm™,
can excite thermal winds, and hence zonal toroidal motions are excited. If the hor-
izontal dependence of C(r, 6, ) is expressed in terms of P,(cos 6), zonal toroidal
motions V[T?) and V[T?] are excited. Furthermore, it is expected from the Navier-
Stokes equation (2.2) that V[S5] motion is excited by the horizontal dependence P,
of C(r, 0, ¢). Although (5.6) restrains axisymmetric convection, other terms
neglected in introducing (5.6) would actually contribute to the momentum equation.

Then such axisymmetric convective motions would exist in the core. In view of this,
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meridional circulation has been introduced.

For U[S9] = —1075, the derived velocity field, shown in Fig. 3.5, is neatly the
same as that in Case 1. For U[Sg] = —1073 however, the derived velocity field,
shown in Fig. 3.7, is affected by the introduction of meridional circulation and the
flow pattern becomes entirely different from the previous ones. This difference is
quantitatively represented by the rms velocity; for U[SY = —107%, V. (5] =

rms

3.43x107° ms™* and V,,[T] = 3.13x107% ms™!, whereas for U[$9] = —1073, VomslS]

T

= 241%x10"2 ms™! and V

rms

[T] = 2.03x107° ms™!. The larger magnitude of zonal
toroidal motions gives rise to stronger zonal toroidal magnetic fields. Indeed contour
intervals in Fig. 3.6 are five times larger than those in Fig. 3.4. The rms velocity for
the toroidal constituent for U[SS] = —107> is about 6.5 times larger than that for
U[S9] = —107°, whereas the rms velocity for the poloidal constituent is reduced to
70 % of that for U[S9] = —1075,

The dominant mode of poloidal motion for U[S3] = —107% is (I, m) = (2, 2),
which is symmetric with respect to the equator and characterized by two upwellings
and two downwellings at the equator. Dominant convective regions seem to be con-
fined to a zone near the equator, bounded by colatitudes § = 45° and 135°. The
difference between the poloidal velocity fields derived for U[Ss] = —107° and U[S8Y] =
~1073 would result from the difference between the distributions of zonal toroidal
magnetic fields in the core as shown in Figs. 3.4(b) and 3.6(b). For U[S5] = —1075,
magnetic energy Ej, defined in (4.7), for B[T9] and B[T}] are derived as E,[TY] =
2.72x107" and E,[T9] = 8.96x1075 whereas for U[S)] = —1073, E,[TY] =
1.58x107* and E,[T9] = 2.55x107* Thus the difference between zonal toroidal
magnetic fields, in particular B[Tg], is clear. It is likely, therefore, that the derived

fluid motion as shown in Fig. 3.5 results from the introduction of meridional circula-

tion V[SJ].
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For the steady and slow motion of an inviscid fluid, Taylor’s condition (Taylor,
1963), given by (3.9), is known as a dynamical constraint. It is known that if there is
no thermal wind, an aw-dynamo {'g&hich satisfies Taylor’s condition will not work
(Roberts and Gubbins, 1987). In this sense, the introduction of meridional circula-
tion would be significant.

As shown in Fig. 3.4(b), however, the zonal toroidal magnetic fields are not
strong enough, either, to be assumed as primary inducing magnetic fields. This indi-
cates that the assumption made in Case 2 does not hold. As in Case 1, the magnitude
of the velocity field derived for Case 2 is also too large. Then, as shown in Fig. 4.3,
the magnetic field grows rapidly with the velocity field fixed. Therefore, we should
improve the approach based on the presumption that strong zonal toroidal magnetic

fields are generated by the w-effect.

5.2. Cases 3,4 and 5
5.2.1. Case 8

In Case 3, we have taken the axial dipole magnetic field as one of the inducing
magnetic fields for the generation of non-axisymmetric poloidal magnetic fields, since
zonal toroidal magnetic fields, which had been expected to be strong, turned out to
be too weak to be significant primary inducing magnetic fields. For the velocity field

[S] = 1.20x1072 ms™! and V.

rms

shown in Fig. 3.9, V. [7] = 2.92x107° ms™!. On

Tms

the other hand, for the velocity field shown in Fig. 3.12 as another solution, V__[9]

rms

= 3.03x10"2 ms~! and V.

rms

[T] = 2.83x1072 ms™ . Since the rms velocity for the
toroidal constituent is larger in the latter solution, it would be expected that the rms
velocity for the poloidal constituent is smaller than in the former solution. Contrary
to our expectation, however, this is not the case. This result arises probably from the

competition between dominant inducing magnetic fields. Among the inducing
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magnetic fields, the strength of the axial dipole magnetic field is fixed, whereas for
the zonal toroidal magnetic fields, the magnetic energy amounts to 2.89x10~% and
2.74x107* in the former and latter (;gs'es, respectively.

For simplicity, we consider inducing magnetic fields B[S?] and B[T?], and
induced magnetic fields B[S3] and B[S2]. The induction equations for B[S%] and

B[S%'] in the steady state are written as

d?B[§3¢
rz-#l — 12B[S¥] + R, _Z V[S3]
dr? 5

dB[S]] 4 dV|{S}
dr 15 dr

BIsY)]

dB[S]] 5 dV[Si
+
dr 3 dr

+ %O—V[SZC] BlS]  (5.9)

50

1
— —V[S3|B[T]] + —
3 [55°] [4]‘*‘11

VISE1BITY]| = o,

d*B[S3’ dB(S] dv|[s3’
7‘2——-—[ s —~ 12B[S¥’] + R, —EV[Sgﬂ————[ 1 + 4 NS 213[59]
dr? 5 dr 15  dr
0 2s
10 2 dB[Si] 5 dV[5¢] 0
—V[sz — B[S
P T e PR (sao)
1 oo 50 - w2
+ —3~V[5§ }B[T4] - HV[SZ |B[T4]| = 0.

Since inducing magnetic fields are assumed to be axisymmetric fields alone, the order
m of spherical harmonics for induced magnetic fields is the same as that for the velo-
city field by which those are generated. If the dipole magnetic field B[S?} is a dom-
inant inducing magnetic field, fluid motion would be determined as shown in Fig. 3.9.
For larger B[Tj], however, the derived fluid motion depends on the strength and the

sign of B[Tg]. Since stronger zonal toroidal magnetic fields are generated by a larger
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zonal motion, which would also arise from the advection terms, the result would
eventually be controlled by non-linear nature of the problem.

In order to check the validity oé the solution, we have examined time-dependent
behavior of the magnetic field with the derived velocity field fixed. As shown in Fig.
4.4, the magnetic fields tend to diverge only in two years. This indicates that the
magnitude of the velocity field derived on the assumption made in Case 3 is too

large; that is, the velocity field is not a plausible one.

5.2.2. Case 4

The same interpretation is applicable to the velocity field derived on the assump-
tion made in Case 4, in which axisymmetric non-dipole magnetic fields are further
taken into consideration as inducing magnetic fields. In other words, the result of
time evolution of the magnetic field with the velocity field fixed indicates that this

velocity field is not a plausible one, either.

5.2.3. Cased
The results for Case 5 were derived by introducing meridional circulation V{[$9]
into Case 4. For U[S9] = 107°, the rms velocity for the toroidal and poloidal consti-

[T] = 6.40x107* ms™ and V,_[S] = 1.22x10™* ms™!, respectively;

tuents are V ms

rms
that is, the zonal toroidal motion is dominant as shown in Fig. 3.17. Although the
growth rate of magnetic field is much smaller than those in Cases 3 and 4, as seen in

Fig. 4.6, the value of magnetic energy Ej, defined in (4.7), becomes nearly nineteen

times larger after 500 years.
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5.3. Cases 6 and 7
5.8.1. Case 6

The results for Case 6 were obi&ined by taking non-zonal toroidal magnetic and
non-zonal toroidal velocity fields into consideration. The main feature of the derived
velocity field shown in Fig. 3.20 is two pairs of vortices; one, seen at around 90° W, is
symmetric with respect to the equator, whereas the other at around 30°E is antisym-
metric. The westward flow is restricted mainly in a zone near the equator from
around 150°W to 0° in longitude. In addition, two columnar convective motions are
seen in Fig. 3.22. The derived fluid motion at the CMB as shown in Fig. 3.20 does
not necessarily coincide with those derived on the basis of the frozen-flux approxima-

tion.

5.8.2. Case 7

The results for Case 7 were obtained by introducing additional meridional circu-
lation into Case 6. The velocity field shown in Fig. 3.25 is characterized by a marked
westward flow in a zone near the equator, due to the additional V[Sg]. However, the
features in non-zonal toroidal motion are similar to those in the velocity field derived
for Case 6. It is likely, therefore, that non-zonal toroidal magnetic fields, which are
assumed to be generated mainly by non-zonal toroidal motions, are more marked
than zonal toroidal magnetic fields. This may imply that non-zonal toroidal motions
are essential in a rotating convective system.

In this sense, velocity fields derived in Cases 6 and 7 are plausible ones. This is
also reflected in time-dependent behavior of the magnetic field. For Case 6, the value
of magnetic energy E, becomes only 1.2 times larger after 500 years, while 1.5 times
larger for Case 7. Although this difference may not be significant, it should be noted

that the axisymmetric poloidal velocity field V[S9] has been added arbitrarily in the
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present study. Estimation of meridional circulation is required, as a future problem,
in order to further improve the approaph.

:5 A
5.4. Comparison with other models

As mentioned above, the fluid motion in the core derived in the present study
does not necessarily coincide with those derived on the frozen-flux approximation.
However, there are some similar features as discussed in the following.

In the frozen-flux approximation, the magnetic diffusion term in the induction
equation is totally neglected for the time scale much shorter than the magnetic diffu-
sion time which is controlled by the electrical conductivity of the core. The core con-
ductivity is so high that the core is treated as a perfect conductor and the magnetic
lines of force move along with the fluid at the core surface. In this case, the induc-

tion equation is written, with the diffusion term neglected, as

%’:;:v x (V xB). (5.11)

Since the radial velocity is zero at the core surface, the radial component of (5.11) at
T = r,, gives

0B
ot

T

+ Vy(VB,) =0, (5.12)

where B denotes the radial component of the magnetic field at the CMB and Vgis
given in (5.5). Fluid motion at the core surface is then derived so as to yield the
observed secular variation of geomagnetic field, using the poloidal magnetic field and
its time derivative at the CMB. Furthermore, according to Barraclough et al. (1989),
the horizontal components of the magnetic field can also be used in determining fluid
motion at the core surface. Lloyd and Gubbins (1990) derived toroidal motion at the

core surface from the three components of the induction equation. In any case, the
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induction process at the CMB is supposed to be primarily responsible for the secular
variation of geomagnetic field in the frozen-flux approximation.

In the present approach, on th‘Qv other hand, fluid motion in the core is derived
on the assumption that non-axisymmetric poloidal magnetic fields are maintained so
as to be in a steady state by the induction processes inside the outer core. The main
interaction term responsible for the observed non-axisymmetric poloidal magnetic
field is expressed in terms of (V[S,)B[T|S,), in contrast to (V[S,]B[S4S,) and
(VIT,)B[S4)S,) in the frozen-flux approximation. Hence it is not surprising that the
velocity field derived in Case 6 is different from those derived on the frozen-flux
approximation.

Nevertheless, some partial similarities can be recognized between the velocity
field shown in Fig. 3.20 and many results derived on the frozen-flux hypothesis. One
similarity is a counterclockwise flow at around 30°E in the Southern Hemisphere.
The vortex consists of currents from the South Pole toward the equator at around
90°E, westward currents near the equator, and return currents from the equator to
the South Pole at around 0° longitude, as shown in Fig. 3.20.

For example, based on the geostrophic approximation, Le Mouél et al. (1985)
derived the westward flow concentrating near the equator from 90°E to 90° W and
the poloidal flow consisting of one upwelling and one downwelling at the equator.
This poloidal flow is expressed by V[Sj]. The westward flow is deflected toward the
poles at around 90° W, turning into the return flow from the poles toward the equa-
tor at around 90°E. Their result includes three dominant modes; V[T7], V[S;i] and
V(T3]

Based on the assumption of steady motion, Voorhies (1986) also derived the vor-
tex beneath the southwest Indian Ocean. Besides, vortex pairs beneath the north

and the south central Pacific Ocean, and the northern Atlantic Ocean and the south
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tip of South America were also derived. Voorhies (1986) claimed that the result sug-
gests a geostrophic flow, since these two vortex pairs seem to represent the tops of
Taylor columns and there is no stfvgng meridional flow at the equator. Some of the
features in the model obtained by Voorhies (1986) are very similar to those of the
velocity field shown in Fig. 3.20; for example, vortices beneath the southwest Indian
Ocean and the south central Pacific Ocean. The noticeable difference is the direction
of fluid flow in a zone near the equator from 0° to 90° W; the flow is westward in the
model of Voorhies (1986), whereas eastward in Fig. 3.20.

Whaler and Clarke (1988) and Whaler (1990) derived the westward flow in a
zone near the equator and the counterclockwise circulation beneath the southern
Indian Ocean. They also pointed out that meridional flow is not significant at the
equator, which suggests a largely geostrophic flow, although ageostrophic flows are
notable beneath South America and Indonesia.

Bloxham (1989) assumed that the fluid flow at the core surface is steady over a
finite time interval and derived the flow on the frozen-flux approximation. Further-
more, the condition that the flow is toroidal was imposed as a constraint, since it
leads to better fit than the geostrophic flow (Bloxham, 1988b). The derived flow is
characterized by a simple pattern which is symmetric with respect to the equator;
currents from the poles toward the equator at around 90°E, westward motion in a
zone near the equator from 90°E to 90°W, and return currents from the equator
toward the poles at around 90° W.

Lloyd and Gubbins (1990) derived the toroidal fluid motion at the core surface.
The flow is characterized by two vortices in the Atlantic hemisphere which are sym-
metric with respect to the equator, characterized by strong westward flow near the
equator and eastward return flow in high-latitudes.

Based on the tangentially geostrophic approximation, Gire and Le Mou&l (1990)
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derived fluid motion at the core surface. The overall feature of the velocity field is
similar to those obtained by Le Moueél et al. (1985). For the poloidal velocity field,
one upwelling beneath the Indian Qc’ean at the equator and one downwelling area
west of Peru are notable. For the toroidal velocity field, one main feature is a strong
westward flow in the equatorial zone from 90°E to 90°W. The flow is deflected
toward the poles at around 100°W. In the total geostrophic flow, shown in Fig. 12
of Gire and Le Moueél (1990), we notice some features similar to those of the velocity
field derived in the present study, as shown in Fig. 3.20; besides the counterclockwise
vortex beneath the southwest Indian Ocean, a clockwise vortex beneath the south of
Australia and a counterclockwise vortex beneath the North America are clearly seen.

Hulot et al. (1990) also derived the tangentially geostrophic flow at the core sur-
face, which is also symmetric with respect to the equator. They suggested that the
non-axisymmetric component of the derived flow would be the surface expression of
the core flow organized in columnar convective motions parallel to the rotation axis,
as proposed by Busse (1975), and two cylinders symmetric with respect to the meri-
dional plane passing through ¢ = 90° —-270° were also pointed out.

Despite variously imposed additional constraints in the frozen-flux approxima-
tion, some common features of velocity fields at the core surface have been noted. In
particular, the counterclockwise vortex beneath the southwest Indian Ocean is in har-
mony with the velocity field derived in the present study, as shown in Fig. 3.20, in
spite of entirely different approaches. The westward flow is concentrated in a zone
near the equator as seen in the models based on the frozen-flux approximation,
although the locations where the westward flow prevails are different from those in
the velocity field shown in Fig. 3.20. These seem to be essential features in fluid
motion at the core surface.

Another entirely different approach was attempted by Kohler and Stevenson
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(1990) to estimate fluid motion at the core surface without geomagnetic field data.
They rely upon the thermal wind equations, in which the Coriolis force, pressure gra-
dients and horizontal density grazﬁents are balanced. Assuming that the Lorentz
force is small near the CMB and the thermal wind is confined to a thin layer, com-

pared with the core radius, they obtained

gae 00 gae 00

V= ——— , V= e
2€2sin Bcos 6 0 28cos 8 06

(5.14)

where ¢ is the ratio of the layer thickness to the core radius. The lateral temperature
variations are assumed to be due to the CMB topography variations. The differences
are taken as 107> Kkm™!, as suggested by Olson (1989) who claimed that zonal
toroidal motion in the core is accounted for partly by thermal wind flow.

Velocity fields were calculated for two models of CMB topography, since the
results highly depend on topography models. One of the common features between
the two results is a counterclockwise vortex beneath the Indian Ocean due to the
CMB topography high there. It is surprising that this also agrees with the result in
the present study, although the vortex location is not exactly the same as that given
by Kohler and Stevenson (1990). Except for the above feature, little correlation can
be seen between the CMB topography and fluid flows at the core surface derived in
the present study and on the frozen-flux approximation. However, it would be worthy
of considering the effect of the CMB topography.

Although Kohler and Stevenson (1990) considered lateral temperature variations
due to the CMB topography, it is also possible that such temperature variations ori-
ginate in the lower mantle itself. The thermal interaction between the core and the
lower mantle is often introduced in order to explain some features in the geomagnetic
field. Bloxham and Gubbins (1985) showed static features in the Earth’s magnetic

field at the CMB and suggested that fluid motion in the core may be coupled to the
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mantle through thermal, electromagnetic and topographic interactions. Bloxham and
Gubbins (1987) also proposed a thermal interaction between the core and the lower
mantle; stationary features in the fﬁagnetic field are ascribed to magnetic flux con-
centration due to downwellings beneath cold regions of the lower mantle, while
upwellings beneath hot regions expel magnetic flux from the core. Gubbins (1988)
suggested thermal core-mantle interactions from paleomagnetic field data. Using a
simple two-dimensional convection model, King and Hager (1989) pointed out that
the thermal boundary conditions strongly affect the fluid flow of convective system
and supported the claim of Bloxham and Gubbins (1987) on the relationship between

hot (cold) regions of the lower mantle and upwellings (downwellings).

5.5. Relation between the velocity and the magnetic fields
5.5.1. Velocity field

If there exist temperature anomalies, or lateral heat flux variations, at the CMB,
fluid flow in the core would be controlled, at least partly, by them. Such mantle tem-
perature anomalies are considered to be stationary for the core, since the viscosity of
the mantle is much greater than that of the core, and the velocity of mantle convec-
tion is much smaller than that of core convection. Provided that static features in
the geomagnetic field are to be reflected in the velocity field derived in the present
study, the convective motion in the core which are responsible for steady magnetic
fields should also remain almost stationary. In this respect, we attempted to derive
fluid motion in the core from geomagnetic field data during the last several hundred
years, in particular from a secular variation model, model C of Matsushima and Hon-
kura (1988).

Figures 5.1(a), (b), (c) and (d) show the horizontal velocity field at the core sur-

face for the epochs of 1600, 1700, 1800 and 1900 AD, respectively. It is clearly seen
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Fig. 5.1. Horizontal velocity fields at the core surface for the epochs of (a) 1600, (b) 1700,
(c) 1800 and (d) 1900 AD. The arrow for scale length corresponds to 5x10™* ms™2.

129



w hAA A
NI N NN
LY
»

1800

) v e << T TN AA A A A 95

\AP"AAAAA"*!
L A > 714 AANMNY Y€ g

WWWVV"vﬂ « 4 4
A > 7 4 4 M b Y ¥ L€ ¥ S v
4 4= v e e o« a4 4 ‘*&A>>77144AA\N\~\~\-:2..

.441111111W
% s e

VV Vb pbreess
¢¢¢¢W‘l’““
¥
4

> A A
> A4 N
o4
A\
»
¥
»
1 d

\
AR
vy
Ky ‘
1

<

5.00 X 107 ms™

[N S, S

MARKN

»

v e
A B A

J
L Y EF Y W

A
A
A
4

,v
«
A ar AMAMY

4

<« € ¥ ¥ ¥F V¥
> 2 A ANy k&£ €T YTZ

S &

S

b > "V\'4¢ VV/W“'WV"' - s A &
R AR YY) VvV MM
-« o “ 4 b4 L g op ‘ §&$§>7717’¢44\ANB\\*¥‘\'\“‘<

B

é‘_j

e/@ageeeéé
cf"%_zzeee
S LR %, 4 4
SN »;141:2 <‘$€<'i\ v x4
\QVVPKK Lk 6$s‘-'"i-{ﬂvy1
wwv¢u%£22é<?:;;;1>smﬂ~\

« < ¥ b 1 v » a o b
Kevyyypyrrs A AAAAAAN L. N L

4

g

I

5.00 x 107* ms™!

Fig. 5.1. (continued).
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in Fig. 5.1 that the overall pattern of fluid motion at the core surface changes little,
although the magnitude of velocity field is different from one epoch to another. In
other words, throughout the epoc?%s,‘ the fluid motion is characterized by a pair of
vortices located along 90°W longitude, counterclockwise vortices beneath the
southwest Indian Ocean and Scandinavian Peninsula, respectively, and westward flow
in a zone near the equator from 150°W to 0° in longitude. Two columnar convec-
tive motions, one along 90° W and the other along (60°S, 30°E)—(60°N, 90°E) line,

also seem to be stationary.

Table 5.1. The rms velocities for the epochs of 1600, 1700, 1800 and 1900 AD.

AD Vrms (ms—l)
1600 8.45%x107°
1700 1.03x1074
1800 7.18x107°
1900 6.57x107°

The rms velocities for respective epochs are shown in Table 5.1. The differences
are noted in the magnitude of velocity vectors drawn in the figures. It seems, how-
ever, that the magnitudes for the counterclockwise vortex flow beneath the southwest
Indian Ocean and a pair of vortices along 90°W in longitude do not change much,
whereas the magnitude for the counterclockwise vortex flow beneath Scandinavian
Peninsula changes considerably. Time variations of the rms velocity seem to be con-

trolled by these vortex flows.

5.5.2. Magnetic field
Since the fluid motion in the outer core was derived from the geomagnetic field

data on some assumptions, the derived velocity field should reflect characteristic
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features of the geomagnetic field. In the present study, it is the magnitude of
poloidal velocity field that was constrained by the geomagnetic field data. It should
be noted, however, that we have :gwlo‘t considered the mechanism by which axisym-
metric poloidal magnetic fields are generated; that is, as the magnetic field data by
which the velocity field is constrained, only non-axisymmetric poloidal magnetic fields
have been considered. We show the distributions of the radial component of non-
axisymmetric poloidal magnetic field, synthesized from spherical harmonics of up to
degree four, at the CMB for the epochs of 1600, 1700, 1800 and 1900 AD in Figs.
5.2(a), (b), (¢) and (d), respectively. Here we used model C of Matsushima and Hon-
kura (1988).

Solid contours represent magnetic flux into the core and broken contours mag-
netic flux out of the core, in units of 50 uT. Time variations of non-axisymmetric
poloidal magnetic field at the CMB are largely characterized as follows. Static
patches of magnetic flux into the core are observed beneath Canada, Siberia, south-
ern Africa, and central Pacific Ocean, while those of magnetic flux out of the core
beneath northern Atlantic Ocean and southern Australia. A magnetic flux patch
beneath Japan at 1600 AD slightly moved eastward. On the other hand, a negative
focus beneath South America observed at 1600 AD disappeared at 1900 AD. A
patch of magnetic flux out of the core observed beneath vicinity of Indonesia at 1600
AD moved westward. Some of the above features Weré also pointed out by Bloxham
and Gubbins (1985). For example, static flux bundles beneath Canada and Siberia
are also observed in their models.

The feature of null flux can be easily recognized if we superpose the radial com-
ponent of the axisymmetric poloidal magnetic field on the maps shown in Fig. 5.2.
The resulting distributions of the radial component of the magnetic field, up to

degree four in spherical harmonics, at the CMB for the epochs of 1600, 1700, 1800
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Fig. 5.2. Distributions of the radial component of the non-axisymmetric magnetic field, syn-
thesized from spherical harmonics of degree up to four, at the CMB for the epochs of (a)
1600, (b) 1700, (c) 1800 and (d) 1900 AD. Model C of Matsushima and Honkura (1988)
was used as the magnetic field data. Contour intervals are 50 uT. Solid contours
represent magnetic flux into the core and broken contours magnetic flux out of the core.

Bold contours represent null radial field lines.
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Fig. 5.2. (continued).
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and 1900 AD are shown in Figs. 5.3(a), (b), (c) and (d), respectively. Contour inter-
vals are 100 uT. Foci beneath Canada and Siberia, respectively, are notable. There
is a region where flux intensity is {!ée‘z;k near the North Pole, which would correspond
to the null flux patch pointed out by Bloxham and Gubbins (1985).

We further show, rather in detail, the distributions of the radial component of
the magnetic field at the CMB for the epoch of 1980 AD. Figures 5.4(a) and (b) show
the distributions for the non-axisymmetric poloidal magnetic field up to degree four
and six, respectively, while Figs. 5.5(a) and (b) show the distributions for the total
radial component up to degree four and six, respectively. Contour intervals are 50
pT in Fig. 5.4 and 100 pT in Fig. 5.5. In Fig. 5.5(b), we see a ‘core spot’ beneath
southern Africa, which Bloxham and Gubbins (1987) first pcinted out and inter-
preted as indicating the expulsion of toroidal magnetic field from the core into the
mantle. In Fig. 5.5(a), however, such a feature is not so clear. This means that the
fluid motion derived in the present study reflects only large-scale features in the
geomagnetic field and small-scale features such as core spots cannot be brought to
light. We should recall that the truncation level L in spherical harmonics is four in

the present study.

5.5.3. The truncation level L

Bloxham (1988a) claimed that the strong flow beneath the Pacific Ocean shown
in the model of Voorhies (1986) would be an apparent one arising from the low trun-
cation level (L = 8). In the present case, we have considered only a large-scale fluid
motion and a large-scale magnetic field from the presumption that a large-scale mag-
netic field, such as the dipole magnetic field, would primarily be generated by a
large-scale fluid motion in the core. For this reason we set the truncation level at L

= 4. If we consider a higher truncation level, for example, L = 5 and N = 9 in Case
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Fig. 5.3. Distributions of the radial component of the magnetic field, synthesized from
spherical harmonics of degree up to four, at the CMB for the epochs of (a) 1600, (b) 1700,
(c) 1800 and (d) 1900 AD. Model C of Matsushima and Honkura (1988) was used as mag-
netic field data. Contour intervals are 100 pT. Solid contours represent magnetic flux
into the core and broken contours magnetic flux out of the core. Bold contours represent

null radial field lines.
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Fig. 5.3. (continued).
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Fig. 5.4. Distributions of the radial component of the non-axisymmetric magnetic field at
the CMB for the epoch of 1980 AD: (a) up to degree four and (b) up to degree six. Model
C of Matsushima and Honkura (1988) was used as the magnetic field data. Contour
intervals are 50 puT. Solid contours represent magnetic flux into the core and broken con-

tours magnetic flux out of the core. Bold contours represent null radial field lines.
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Fig. 5.5. Distributions of the radial component of the magnetic field at the CMB for the
epoch of 1980 AD: (a) up to degree four and (b) up to degree six. Model C of Matsushima
and Honkura (1988) was used as the magnetic field data. Contour intervals are 100 pT.
Solid contours represent magnetic flux into the core and broken contours magnetic flux

out of the core. Bold contours represent null radial field lines.
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6, the total number of unknowns is 1030; for L = 6 and N = 9 it is 1422. The differ-
ence between the distributions of the radial magnetic field at the CMB shown in Figs.
5.5(a) and (b) clearly indicates thagthe fluid motion in the core depends on the trun-
cation level. Since small-scale features in the magnetic field seem to be correlated to
high secular variations, time variations of the geomagnetic field must be fully taken

into consideration if we are to study small-scale fluid motion in the core.

5.5.4. Relation between the velocity and the magnetic fields

Columnar convective motions found along 90°W longitude and (60°S,
30°E)—(60°N, 90°E) line seem to be correlated with the regions of magnetic flux
concentration beneath Canada and Siberia, respectively. In this respect, Gubbins
and Bloxham (1987) suggested that four magnetic flux concentrations, which are
antisymmetric with respect to the equator, seen in their magnetic field model are the
manifestation of two convection rolls parallel to the rotation axis and tangential to
the inner core. Such a geodynamo model in terms of convection rolls has been pro-
posed by Busse (1975). Although the size of rolls in Busse’s model is much smaller, it
depends critically on the Taylor number. Figure 5.6 shows the fluid motion at the
core surface already shown in Fig. 3.20 but seen from the North Pole and the South
Pole, respectively. The inner circle in each figure denotes the size of the inner core.
Although vortices corresponding to the convective rolls are indistinct in the Northern
Hemisphere, the convection rolls seem to be tangential to the inner core (see also Fig.
3.22). One is parallel to the rotation axis, whereas the other is inclined.

These features would also be reflected in the toroidal magnetic fields which are
regarded as primary inducing magnetic fields. We show magnetic lines of force for
the toroidal constituent on spherical surfaces in Fig. 5.7; (a) at 7 = 0.9r,, (b) at r =

0.8r,, (c) at 7 = 0.7r

87, and (d) at r = 0.67,,. The magnetic field is stronger where

oc?
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Fig. 5.6. The horizontal velocity fields at the core surface (shown in Fig. 3.20) as seen from

North Pole and the South Pole. The arrow for scale length corresponds to 2x107% ms™.
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Fig. 5.7. Magnetic lines of force for the toroidal constituent on spherical surfaces (a) at r =
0.97,, (b) at » = 0.87,, (c) at r = 0.7r,,, and (d) at r = 0.6r,, for the epoch of 1980 AD.
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magnetic lines of force are dense. Maximum strength is about 8x10™® T in Fig.
5.7(a), about 1072 T in Fig. 5.7(b), and about 7x107> T in Figs. 5.7(c) and (d).
Magnetic energy E, for the toroida} ‘éonstituent is By[T] = 4.11x1072, while for the
poloidal constituent, E,[S] = 1.87x1072 Strong toroidal magnetic field regions are
located near the CMB. The features in fluid motion in the core, which are persistent
from 1600 to 1980 AD, should be reflected in the toroidal magnetic field as well. We
show magnetic lines of force for the toroidal constituent at r = 0.97,, for the epochs
of 1600, 1700, 1800 and 1900 AD in Figs. 5.8(a), (b), (c) and (d), respectively. As we

expected, the pattern of magnetic lines of force is largely persistent during the period.

5.6. Implications for the geodynamo

From all these results, we speculate some dynamical properties in the core and a
possible geodynamo as follows. The regions where magnetic flux extends from the
mantle into the core are located mainly beneath Canada and Siberia. Some magnetic
flux entering the core beneath Canada shifts toward the northern Atlantic, resulting
in a null flux patch near the North Pole, some sifts southward, and the rest moves
southward directly. Magnetic flux entering the core beneath Siberia moves
southwestward. In the southern Atlantic, where the toroidal magnetic field is very
strong, some flux comes out of the core and returns back into the core, as pointed
out by Bloxham and Gubbins (1985) and Bloxham (1986). In addition, the magnetic
flux moves toward the southern Pacific, and some flux comes out of the core and the
rest moves northward beneath the Pacific, where the toroidal magnetic field is weak.
This may be related to the cause of low secular variations observed in the Pacific
hemisphere.

The fluid motion in the outer core derived in the present study is characterized

by two convection rolls; one is along 90°W and the other along (60°S,
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Fig. 5.8. Magnetic lines of force for the toroidal constituent on a spherical surface at r =

0.97,, for the epochs of (a) 1600, (b) 1700, (c) 1800, and (d) 1900 AD.
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Fig. 5.8. (continued).
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30°E)—(60°N, 90°E) line. The edges of the convection rolls in the Northern Hemi-
sphere correspond to magnetic flux concentration at the CMB. The directions of con-
vection rolls seem to be related to fgagnetic lines of force for the toroidal constituent.

It is well known that the onset of convection in a rotating system is hampered
by the Coriolis force, which tend to rearrange fluid flow into a two-dimensional one;
known as the Taylor-Proudman theorem (Chandrasekhar, 1961). The magnetic field
also hampers, in general, the onset of convection. When both the rotation and the
magnetic field act together, the magnetic field tends to break the Coriolis constraint.
As a simple example, we consider thermal instability in a horizontal fluid layer with
the gravitational force acting in the vertical direction. If the rotation vector is verti-
cal, the vertical fluid motion is hampered by the Taylor-Proudman theorem. If the
rotation vector is horizontal, however, convection can occur, without violating the
Taylor-Proudman theorem, in a roll form with the axis parallel to the rotation vec-
tor. If the magnetic field is horizontal, similar convection can occur. When the hor-
izontal model is generalized to spherical geometry, the existence of convection rolls as
derived in the present study is likely. Such convection rolls effectiirely generate mag-
netic fields, as in Busse’s dynamo model (1975). No strong zonal toroidal motion and
no strong zonal toroidal magnetic field are required. In this sense, the derived fluid
motion implies that the geodynamo is of a®*type rather than of aw-type.

The scale of two convection rolls derived in the present study is larger than that
of Busse’s model. In this respect, Busse (1975) pointed out that the typical
wavenumber of motion is quantitatively influenced by the magnetic field, since in his
model the Lorentz force is assumed to be small compared with the Coriolis force. If
we take into consideration the effect of the Lorentz force in the core, the present two
convection rolls are reasonable. The locations of convection rolls are related to the

magnetic flux concentration beneath Canada and Siberia and also the toroidal
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magnetic field in the core. Since the main features of the derived fluid motion are
persistent at least for the last several hundred years, it is further speculated that the
locations are controlled by thermal‘,énferactions between the core and mantle, as pro-
posed by Bloxham and Gubbins (1987). As regards the thermal interaction, Jones
(1977) suggested that the frequency of magnetic polarity reversals may be controlled
by fluctuations in the temperature at the CMB due to intermittent convection in the
mantle, for example, such as plumes arising from a boundary layer above the CMB.
In order to further clarify the dynamical nature as implied in the present study in
relation to the geodynamo, intensive multidisciplinary researches on the Earth’s core

are strongly required.

5.7. Future problems

So far we have tentatively taken into consideration the induction terms as
assumed in Subsection 3.4, and obtained the results as described in Sections 3, 4 and
5, for Case 6. We here examine the effect of the other induction terms; that is, we
examine the contribution of respective interaction terms from the velocity and the
magnetic fields derived for Case 6.

Comparing the induction terms, given in (2.6) and (2.7), with each other, it
turned out that the magnitude of various interaction terms is comparable to each
other. This indicates that we should not rely on any approximations for dominant
induction terms, but take all the interaction terms into consideration. The problem
then becomes extremely difficult.

If we proceed further with the present basic strategy kept unchanged, that is, by
taking into consideration the induction processes inside the core and solving the
induction and the Navier-Stokes equations, we should loosen the restriction of the

steady state in view of the non-linear nature of the problem. The approach, however,
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is beyond the present study. Even though we can treat the non-steady state, it is
extremely difficult to derive a realistic fluid motion in the sense that the observed
secular variations of the geomagnetjc “ﬁeld are accounted for.

In another aspect, the result that various interaction terms equally contribute
the induction process suggests that the geodynamo would not be of aw-type but
rather of a’type. In order to understand a realistic geodynamo mechanism, for

instance, based on the Earth’s magnetic field, we should aim at studying the geo-

dynamo always with the result as obtained in the present study in mind.
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6. Conclusions

We attempted to derive fluid rh,épt‘ion in the Earth’s outer core from geomagnetic
field data by solving the induction and the Navier-Stokes equations for various cases.
The present approach can be regarded as an inbetween problem, compared with
kinematic dynamo and magnetohydrodynamic dynamo problems, because the magni-
tude of poloidal velocity field is constrained by the observed data but its radial
dependence is assumed, and the toroidal velocity field is derived by solving the
Navier-Stokes equation. We also assumed that the velocity and magnetic fields are
in a quasi-steady state for specified epochs. In order to check the validity of the
derived solutions and examine whether the derived velocity field can maintain the
magnetic field, we examined time-dependent behavior of the magnetic field with the

velocity field fixed for respective cases. The conclusions are summarized as follows.

(1) In Cases 1 and 2, we assumed that zonal toroidal magnetic fields are primary
inducing magnetic fields with (Case 2) and without (Case 1) meridional circula-
tion. The derived fluid motions, however, turned out to be geophysically implau-
sible.

(2) In Cases 3, 4 and 5, we included axisymmetric poloidal magnetic fields in primary
inducing magnetic fields, with (Case 5) and without (Cases 3 and 4) meridional
circulation. The derived fluid motions are again geophysically implausible.

(3) In Cases 6 and 7, we took into consideration non-zonal toroidal velocity and non-
zonal toroidal magnetic fields. The velocity field derived for Case 6 is the most
plausible one in the sense that the condition of quasi-steady state is not violated:
the magnetic energy increases only by 20 % during 500 years in kinematic

dynamo calculation. Some of the features in the velocity field are in common
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(6)

we

with the core surface motion derived on the frozen-flux approximation.

The fluid motion in the core derived for Case 6 is characterized by two convec-
tion rolls; one is along 90°¥V‘ in longitude and the other along (60°S,
30°E)—(60°N, 90°E) line. The edges of convection rolls correspond to two pairs
of vortices at the CMB. One of them is located beneath the southwest Indian
Ocean and is consistent with the fluid motion derived on the frozen-flux approxi-
mation. A westward flow exists in a zone near the equator from around 150°W
to 0° in longitude.

The edges of convection rolls in the Northern Hemisphere are located beneath
Canada and Siberia, where magnetic flux concentrations are also observed at the
CMB. Convection rolls parallel to the Earth’s rotation axis have been proposed
by Busse (1975) as a dynamo model, and their relation to the flux concentrations
has been suggested by Gubbins and Bloxham (1987). In the derived fluid motion,
one convection roll is indeed parallel to the rotation axis, but the other is
inclined. This feature seems to be related to the toroidal magnetic field in the
core. The locations of these convection rolls are rather persistent and hence may
be controlled by the thermal interactions between the core and the mantle, as
proposed by Bloxham and Gubbins (1987).

All these results suggest that the geodynamo is of a®type rather than of aw-type.

We set the truncation level at I = 4 for the degree of spherical harmonics, since

considered a large-scale convective motion which in turn generates a large-scale

magnetic field. If we are requested to increase the truncation level, improvement of

the present approach is required so that time variations of the geomagnetic field can

be included in models, since small-scale features in the geomagnetic field seem to be

subject to rather rapid secular variations.
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