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Preface

In statistical pattern recognition, data insu�ciency often causes serious degrada-

tion of recognition accuracy. This problem can be avoided by selecting models

whose sizes are optimal for the given amount of data. In this thesis, a structural

approach is proposed in which numerous models are prepared in the form of a

tree structure and the model with the optimal size is selected by using informa-

tion criteria. This approach was applied to two problems of speech recognition:

acoustic modeling and speaker adaptation.

Context-dependent phone units, such as triphones, have recently come to

be used for acoustic modeling in speech recognition systems. While most such

systems cluster the model parameters (e.g., by subword clustering and state clus-

tering) in order to limit the model size and thus avoid poor recognition accuracy

due to a lack of training data, none of them provide e�ective criteria for deter-

mining the optimal number of clusters. This thesis therefore describes a method

in which the minimum description length (MDL) criterion is used to optimize the

number of clusters.

Speaker adaptation based on maximum a posteriori (MAP) estimation has

been studied extensively, and this thesis presents a structural maximum a poste-

riori (SMAP) approach to improve the MAP estimates obtained when the amount

of adaptation data is small. The model parameter space is assumed to be struc-

tured hierarchically and each model parameter is estimated as the weighted sum

of the parameters in more than one tree layer.

These two methods increase the robustness of speech recognition against data
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insu�ciency, and their e�ectiveness was con�rmed in a series of recognition ex-

periments.
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Chapter 1

Introduction

1.1 Data insu�ciency problem

In statistical pattern recognition, a model with a number of parameters is pre-

pared and those model parameters are estimated by using data. This process

is called training and the data used for training is called training data. One

might expect that the larger the number of the parameters is, the more accurate

the recognition, since a model with more parameters can represent more features

necessary for recognition. It is often observed, however, that when the number

of model parameters exceeds a certain value, the recognition accuracy becomes

worse. This is because there are too many parameters to be estimated precisely

from the limited amount of training data. This is called the data insu�ciency

problem and is inevitable in statistical pattern recognition.

Let me explain this problem with a simple example. Consider the problem of

English-letter speech recognition, in which the utterance of an English letter is

assigned to one of the 26 letters in the English alphabet. The pattern recognition

process is roughly divided into two parts: feature extraction and pattern match-

ing. Suppose that the feature-extraction part processes each utterance into one

feature vector with a �xed number of dimensions and that the standard pattern

for each category is represented by a Gaussian-mixture distribution in which each

1



2 CHAPTER 1. INTRODUCTION

Gaussian component is multivariate. Suppose too that the number of mixture

components is the same in all the categories and that the recognition accuracy

is measured using test data di�erent from the training data. When the number

of mixtures is too small, the recognition accuracy may be very low because the

number of mixtures is too small to represent the features of the training data.

The recognition accuracy improves as the number of mixtures increases (i.e., as

the model becomes larger), but after the number of mixtures exceeds a certain

level a further increase results in less accurate recognition. This is because the

model is over-trained: a signi�cant portion of its parameters represent training

data features unnecessary for recognition of the test data and this noise degrades

the recognition accuracy.

This data insu�ciency problem appears in many aspects of statistical pattern

recognition. To avoid this, we need to obtain a model large enough to represent

the features necessary for recognition but smaller than an over-trained model. Of

models with the same performance, the simplest model is the most preferable,

mainly because it requires less computational resources. The belief that the best

model is the simplest has been stated in various ways:

� Pluralitas non est ponenda sine necessitas (plurality should not be posited

without necessity). William of Ockham

� If I had more time I could write a shorter letter. Blaise Pascal

� Make everything as simple as possible but not simpler. Albert Einstein

It is di�cult, however, to acquire such a parsimonious model.

There have been three di�erent approaches to solving this data insu�ciency

problem, and they all utilize the model selection scheme: a number of models of

various sizes are prepared beforehand and the optimal model is selected. These

approaches are the following:

� Tuning to test data
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� Cross validation

� Information criterion

In the �rst one all the prepared models are trained, each is used to recognize data

and the one with the highest accuracy is selected. This approach is implicitly

utilized in most pattern recognition systems since it is simple and needs no extra

information. One signi�cant problem with this approach, however, is that the

amount of test data is usually limited, and tuning to this limited test data might

result in poor recognition in actual use. The second approach, cross validation,

was developed in response to this problem. In this approach the total data is

divided into several portions and one portion is selected as test data. Then the

model is trained using the rest of the data, and a recognition experiment is carried

out using the test data. This process is repeated using each of the portions as the

test data (i.e., the number of repetitions is the same as the number of portions).

Since the amount of test data seemingly increases, it is expected that the selected

model is more robust. The problem of this approach is that its computational

cost is high and there are no established ways to divide the data. The third

approach utilizes an information criterion of model complexity. A number of

such criteria have been proposed and the most widely known are the Akaike

information criterion (AIC) [1], the Bayesian information criterion (BIC) [46],

and the minimum description length (MDL) criterion [43]. There are a number

of applications of these criteria and some have been proved to be e�ective. The

problem with this approach is that it is di�cult to apply those criteria directly.

In most case it is necessary to use a number of approximations which are not

fully justi�ed.

All these approaches based on the model selection scheme share two serious

problems. The �rst is that the selected model may be very di�erent from a

truly optimal model when the number of models prepared is not large enough.

And the second is that they cannot be used in cases for which the amount of

training data often changed or in which the computational cost for estimating



4 CHAPTER 1. INTRODUCTION

the parameters of many models is prohibitively high (examples of these cases

will be shown in the next section). The goal is to provide the optimal model

for the given amount of training data and to do this with a small computational

cost. It may be necessary to prepare a model set comprising numerous models

with di�erent sizes, to estimate the model parameters e�ciently, and to select

the optimal model without evaluating their performance on test data.

1.2 Structural approach to the data insu�ciency

problem

The following structural approach to attack the data insu�ciency problem is

proposed here. First prepare a tree-structured model set in which each layer

in the tree represents a model: to each node in the tree is attached a probabilistic

distribution function (pdf) for data, a node pdf. The root-layer model which

consists only of the root node represents the smallest model, the leaf-layer model

which consists of all the node of the leaf layers represents the largest model, and a

layer closer to the root node represents a simpler model. A node in one layer and

nodes in its subsidiary layer are connected by branches. Each training sample is

associated with a node in the leaf layer. The pdf of each node is estimated by

using the training samples associated with all the leaf nodes the node governs.

After preparing this tree-structured set of models, select one layer by using a

criterion which describes the relationship between the amount of data and the

size of the model.

Let me explain this approach by using an example. One Gaussian distribution

is attached to each node in the tree. The root layer, which consists only of the

root node, represents the simplest model, a single Gaussian distribution. The

leaf layer, comprising all the leaf nodes, represents the most complex model. The

distribution in each node is estimated by using the data associated with the leaf

nodes it governs. In most case, when a certain amount of training data is given,
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cut

Figure 1.1: Tree structure.

the root-layer model is too small and the leaf-layer model is too large; the model

represented by one of the intermediate layers is the optimal model. It is easily

understood that models are not limited to the node sets in which all the nodes

belong to the same layer. Any node sets which divide the tree into an upper part

and a lower part can be used as a model. Such a node set is called a cut (see

Figure 1.1).

As will be shown later, the problem of model selection can be resolved into

many subproblems of node selection in sub-structures embedded in the tree. The

computational cost of solving these subproblems will be shown to be much smaller

than the computational cost of the greedy approach in which all the possible

models have to be trained and evaluated. This subproblem approach is especially

useful in cases where the training cost is high or the amount of training data

changes frequently.

There are three issues important in this approach. First, the root node and

the leaf layer should be designed appropriately. It can be generally assumed that

the lower and upper bounds on the amount of data available are given. The pa-

rameters of the root-layer model can be precisely estimated from the least amount

of data, while those of the leaf-layer model should be estimated from an amount

of data large enough to represent all the features necessary for recognition. The
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second issue is that the way to construct the tree structure should be speci�ed.

The tree structure can be made by clustering the leaf nodes hierarchically. The

pdfs for the nodes nearer the root node should represent more global distributions

in the space of data, while those of the nodes nearer to the leaf layer should rep-

resent more local distributions. Such trees cannot be made unless the measure of

distance between the node pdfs is de�ned appropriately. Finally, the model selec-

tion framework needs to be provided: a framework not only providing a method

to resolve the model selection problem into the node selection problem but also

providing a criterion for selecting one node set.

This thesis is organized as follows. Chapter 2 brie
y reviews speech recog-

nition and describes the data insu�ciency problem in speech recognition. For

acoustic modeling it describes a structural approach using the MDL criterion,

and for speaker adaptation it describes a structural Bayes approach. Chapters

3 and 4 describe these approaches in detail. Finally, Chapter 5 concludes this

thesis.



Chapter 2

Speech Recognition

2.1 Overview

Nowadays there are a lot of commercial products using speech recognition, auto-

matic recognition of human speech by machines. Examples are dictation software,

call center systems, car navigation systems, educational software for learning for-

eign languages, video games, and electrical toys. Although the application areas

of speech recognition are still limited, it is already regarded as one of the major

tools for the man-machine interface.

Speech recognition has had a long history of research and development, and

almost three decades passed before it was used in commercial products for general

use. The recent advances in speech recognition have been sped by the following

two factors.

� A probabilistic model, the hidden Markov model (HMM), was developed

and used for speech recognition.

� A large speech database became available.

Of course, it should be noted that the rapid progress of computational hardware

(CPUs, memories, etc.) also helped. But although speech recognition is already

useful, there are still a lot of problems to be solved. Some of them are the

7
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Recognized
 utterance

 Speaker-
 independent
 pattern

Speaker
adapted
pattern

 Speaker 
adaptation

Speech input
(Signal processing)

Enrollment 
   session

Feature 
extraction

Pattern 
matching

( )
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Figure 2.1: Speech recognition system.

following:

� Its performance is still much inferior to that of real people.

� Speaker-independent systems, which require no enrollment process for users,

are less accurate than speaker-dependent systems, for which users have to

enroll.

� Its performance is degraded under adverse conditions, noisy conditions such

as those provided by telephone lines.

� Its performance is also degraded by changes in speaking style. Speech that

is read is recognized better than spontaneous speech in lectures, meetings,

and conversations.
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Figure 2.1 shows a typical speech recognition system. The process of speech

recognition is roughly divided into two parts: feature extraction and pattern

matching. The input analog signals are �rst transformed into digital signals by

analog-to-digital (AD) conversion. Then the features useful for speech recognition

are extracted from the signals. A time series of extracted features is called an

input pattern. Next, the pattern matching between the input pattern and each

standard pattern is carried out. (One standard pattern for each word in the

recognition vocabulary is prepared ahead of time.) The pattern matching yields

the distance between the input pattern and each standard pattern, and the word

corresponding to the standard pattern closest to the input pattern is selected as

the recognized word.

2.2 Feature extraction

2.2.1 AD conversion

The input analog signals are �rst sampled for digital processing. While the fre-

quency range perceptible to human beings is between 20 and 20 000 Hz, the range

including the sound of human speech is only from 50 to 7000 Hz. A sampling fre-

quency of 14 000 Hz is therefore high enough for speech processing. A frequency

lower than 14 000 Hz, however, is sometimes used because of the limitations of

the transmission channel or to reduce computational costs.

2.2.2 Short-term spectrum

Speech research has proved that pitch and formant are important features for

human perception. In the simplest speech production model, the vocal code

generates excited signals (which correspond the pitch) and the vocal tract (whose

response corresponds the formant) �lters the signals. Although it seems that

speech recognition may be realized by simulating the human speech production

system, for the following two reasons this is not possible with today's technology.
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First, it is di�cult to observe the real-time movement of the vocal organization.

Second, it is not always possible to estimate the pitch and formant frequency

from the acoustic signals observed.

Instead, in most cases the short-term spectrum is used for speech recognition

in most case. Here it is assumed that speech signals are stationary during a short

period, 10-100 ms. Then the spectrum for this period is computed using the fast

Fourier transform (FFT).

2.2.3 Mel scale

The mel scale is de�ned in order to take into consideration the human perception

of pitch. The frequency of 1000 Hz is de�ned as 1000 mel, and the frequency

that people feel to be n times as high as 1000 Hz is de�ned as (n � 1000) mel.

It should be noted that this mel scale is di�erent from the octave scale used in

music.

The mel scale can be well approximated by using the following equation:

f(mel) =
1000

log10 2
log10(

f (Hz)

1000
+ 1): (2:1)

This mel scale transform has been often used in speech recognition, mainly

because it emphasizes the lower frequencies more important for the classi�cation

of phones.

2.2.4 Cepstrum

The cepstrum of a signal is de�ned as a Fourier transform of the logarithm of

the signal's power spectrum. It is especially useful when input signals are the

superposition of excitation signals and linear �lters. Speech signals are one such

superposition: the excitation signals generated from the vocal code are �ltered

by the vocal tract response.

Let y(n) be the speech signal at time n, v(n) be the excited signal from the
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vocal code, and h(n) be the vocal tract response. Then

y(n) = v(n) � h(n); (2.2)

Y (ejw) = V (ejw) �H(ejw); (2.3)

log jY (ejw)j = log jV (ejw)j+ log jH(ejw)j; (2.4)

where Y (�), V (�), H(�) are the Fourier transforms of y(n), v(n), and h(n).

Then the cepstrum c(k) is

c(k) = v(k) + h(k): (2:5)

Although the dimension of cepstrum is the same as that of time, the term

quefrency is used as the dimension of cepstrum. In the cepstrum, the component

v(k) of the vocal tract response is dominant in the lower quefrency, while the

component h(k) of the vocal code has a strong peak at high quefrencies, which

corresponds to the pitch frequency and its harmonics

The in
uence of the pitch is e�ciently removed by liftering (analogous to

�ltering in the spectral domain) the components v(k) in the quefrency domain,

and the components representing the vocal tract response are used as the features

for speech recognition.

2.2.5 LPC cepstrum

The cepstral coe�cients can also be derived by using the linear predictive coding

(LPC) method in which speech is modeled as the output of an all-pole �lter. The

estimate of speech sample s(n) at time n is approximated as a linear combination

of the past p samples:

ŝ(n) =
pX
i=1

ais(n� i); (2:6)

where the coe�cients ai; i = 1; . . . ; p are the prediction coe�cients and are as-

sumed to be constant over the analysis frame.

The prediction error is given by

e(n) = s(n)� ŝ(n) = s(n) �
pX
i=1

ais(n� i): (2:7)
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What needs to be minimized is the mean squared error over a segment of

speech, which is de�ned as follows:

En =
X
m

e2(n+m) (2.8)

=
X
m

[s(n+m)�
pX

k=1

aks(n+m� k)]2: (2.9)

Di�erentiating En with respect to the coe�cients ak and setting it to zero,

�En

�ak
= 0; k = 1; . . . ; p; (2:10)

we obtain

X
m

s(n+m� k)s(n+m) =
pX
i=1

ai
X
m

s(n+m� i)s(n +m� k);

k = 1; . . . ; p: (2.11)

If

�n(i; k) =
X
m

s(n+m� i)s(n+m� k); (2:12)

then

�n(k; 0) =
pX
i=1

ak�n(i; k); k = 1; . . . ; p: (2:13)

The LPC coe�cients ak; k = 1; . . . ; p are obtained by solving this set of equations,

and from these LPC coe�cients can be derived the LPC cepstral coe�cients:

c0 = log �2; (2.14)

cm = am +
m�1X
k=1

k

m
ckam�k; 1 � m � p; (2.15)

cm =
m�1X
k=1

k

m
ckam�k; m � p; (2.16)

where �2 is the gain term in the LPC model.

2.2.6 Dynamic features

Dynamic features of the spectrum play an important role in human speech per-

ception, and the delta cepstrum [16] developed to take these features into consid-

eration is de�ned as follows:
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Figure 2.2: Discrete hidden Markov model (DHMM).

�cn(t) =

PK
k=�K kcn(t+ k)PK

k=�K k2
: (2:17)

This delta cepstrum and the second derivative feature, delta-delta cepstrum,

are often used in many speech recognition systems and are e�ective.

2.3 Hidden Markov models

2.3.1 De�nition

A statistical approach using hidden Markov models (HMMs) has recently been

widely used for speech recognition(e.g., [41]). In this approach the speech signals

are characterized as outputs from Markov sources. In the recognition of words,

for example, a HMM is assigned to each word in the vocabulary, and for each

utterance the recognized word selected is the one whose HMM is most likely to

produce that utterance.

HMMs are classi�ed into three types according to the form of the output

probability density function (pdf) in each state: the discrete HMMs, in which the

output pdf is discrete; the continuous density HMMs, in which the output pdf
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is continuous; and the semi-continuous HMMs which is the combination of the

discrete HMMs and the continuous-density HMMs.

For the simplicity of explanation, the focus is on the discrete HMMs (DHMM)

for a while (see Figure 2.2). Let O = (o1; . . . ;ot; . . . ;oT ) be an observation

sequence. Let S be the number of states, A = faijg be a set of transition

probability distributions, in which aij is the probability of transition from state

i to state j; let B = fbi(ot)g be a set of the output probability distributions,

where bi(ot) be the output probability of the feature vector ot at state i; let

V = fv1; v2; . . . ;vMg be the set of the symbols, where M is the number of

symbols; and let qt be the state at time t; let q = fq1; . . . ; qTg be a state sequence
in which qt is the state at time t. Then

bi(ot) = bi(k) = P (ot = vk; jqt = i); i = 1; . . . ; S; (2:18)

where S is the number of state in the HMM. The initial probability distribution

� = f�ig is also de�ned, where �i is the probability of being state i at time 1:

�i = P (q1 = i); i = 1; . . . ; S: (2:19)

The parameter set � = (A;B; �) is the complete parameter set for the model.

From now on, the focus is on a left-to-right HMM, in which a number of states

form a sequence and from each state only transitions to itself and to the next

state on the right are allowed.

2.3.2 Recognition using HMMs

This subsection shows how the probability of an observation sequence for a given

HMM is calculated. Let O = (o1; . . . ;oT ) be the observation sequence; � =

(A;B; �) be the parameter set of the HMM; and let P (Oj�) be the probability
of O, given the model �. In principle, P (Oj�) is obtained by adding up the

probabilities of all the possible state transitions, each of which can be expressed

as a path in a two-dimensional plane (see Figure 2.3).
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Figure 2.3: Forward algorithm.

There are two algorithms that can be used to calculate the probability: the

Forward algorithm and the Viterbi algorithm. In the Forward algorithm the

forward probability �t(i) is de�ned as

�t(i) = P (o1; . . . ; ot; qt = ij�): (2:20)

The forward probability is calculated as follows:

�1(i) = �ibi(o1); 1 � i � S; (2.21)

�t+1(j) =

 
SX
i=1

�t(i)aij

!
bj(ot+1); 1 � t � T � 1; 1 � j � S; (2.22)

P (Oj�) =
SX
i=1

�T (i): (2.23)

This recursive process �nally yields the probability P (Oj�).
In the Viterbi algorithm (see Figure 2.4) a maximization process is used in-

stead of the summing procedure used in the Forward algorithm:

�1(i) = �ibi(o1); 1 � i � S; (2.24)



16 CHAPTER 2. SPEECH RECOGNITION
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Figure 2.4: Viterbi algorithm.

�t(j) = max
1�i�S

(�t�1(i)aij)bj(ot); 2 � t � T; 1 � j � S; (2.25)

P �(Oj�) = max
1�i�S

�T (i): (2.26)

Strictly speaking, the probability P �(Oj�) obtained by the Viterbi algorithm is

only an approximation of the probability obtained by the Forward algorithm. The

Viterbi algorithm is often used, however, and it has been proved that the recog-

nition accuracy obtained with the Viterbi algorithm is not signi�cantly di�erent

from that obtained with the Forward algorithm. In the following, the Viterbi

algorithm is used in the recognition process.

2.3.3 Estimation of HMM parameters

The ideal model parameter set is the one that maximizes the probability of the

observation sequence. While no straightforward way to obtain the optimal pa-

rameter set is known, the locally optimized parameter set can be obtained by

using the Expectation-Maximization (E-M) algorithm [11]. This parameter esti-

mation using E-M algorithm is often referred to as the maximum likelihood (ML)
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estimation.

Let O = (o1; . . . ;ot; . . . ;oT ) be an observation sequence used for parameter

estimation. As in the previous section, the forward probability �t(i) is calculated

for t = 1; . . . ; T , i = 1; . . . ; S. Additionally, the backward probability needs to

be calculated. In a manner similar to that in which the forward probability is

calculated, the backward probability �t(i) is calculated as follows:

�T (i) = 1; 1 � i � S; (2.27)

�t(i) =
SX
j=1

aijbj(ot+1)�t+1(j);

t = T � 1; T � 2; . . . 1; 1 � i � S; (2.28)

Then let 
t(i) be the probability of being in state i at time t, which is calcu-

lated as


t(i) = P (qt = ijO; �)
=

P (O; qt = ij�)PS
j=1 P (O; qt = jj�)

=
�t(i)�t(i)PS

j=1 �t(j)�t(j)
: (2.29)

Given the model and the observation sequence, let �t(i; j) be the probability

of being in state i at time t and state j at time t+ 1:

�t(i; j) = P (qt = i; qt+1 = jjO; �)
=

P (qt = i; qt+1 = j;Oj�)
P (Oj�)

=
�t(i)aijbj(ot+1)�t+1(j)PS

i=1

PS
j=1 �t(i)aijbj(ot+1)�t+1(j)

: (2.30)

One can easily see that


t(i) =
SX
j=1

�t(i; j): (2:31)

In the E-M algorithm the following auxiliary function Q(�0; �) is maximized

in an iteration process:

Q(�0; �) =
X
q

P (O;qj�0) logP (O;qj�); (2:32)
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where the parameter set �0 is the current estimate for the HMM parameter set,

and � is the new estimate to be calculated. Since we can express P as

P (O; qj�) = �q0
Y

aqt�1qtbqt(ot); (2:33)

we can write Q(�0; �) as

Q(�0; �) = Q�(�
0;�) +

SX
i=1

Qai(�
0;ai) +

SX
i=1

Qbi(�
0;bi); (2:34)

where � = f�1; . . . ; �Sg, ai = fai1; . . . ; aiSg, bi is the parameter vector that

de�nes bi(�), and

Q�(�
0;�) =

SX
i=1

P (O; q0 = ij�0) log �i; (2.35)

Qai(�
0; ai) =

SX
j=1

TX
t=1

P (O; qt�1 = i; qt = jj�0) log aij ; (2.36)

Qbi(�
0;bi) =

TX
t=1

P (O; qt = ij�0) log bi(ot): (2.37)

There are also the following stochastic constraints:

SX
j=1

�j = 1; (2.38)

SX
j=1

aij = 1; 8i (2.39)

KX
k=1

bi(k) = 1; 8i (2.40)

where bi(k) = bi(ot = vk).

Then the maximization leads to the model estimate �� = (��; �A; �B), where

��i =
P (O; q0 = ij�)

P (Oj�) ; (2.41)

�aij =

PT
t=1 P (O; qt�1 = i; qt = jj�)PT

t=1 P (O; qt�1 = ij�) ; (2.42)

�bi =

PT
t=1 P (O; qt = ij�)�(ot; vk)PT

t=1 P (O; qt = ij�) : (2.43)

Here

�(ot;vk) = 1 if ot = vk

= 0 otherwise: (2.44)
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Figure 2.5: Continuous density hidden Markov model (CDHMM).

These re-estimation formulas can be rewritten as follows:

��i = 
0(i); (2.45)

�aij =

PT
t=1 �t�1(i; j)PT
t=1 
t�1(i)

; (2.46)

�bi =

PT
t=1;ot=vk


i(t)PT
t=1 
i(t)

: (2.47)

Then the newly obtained � is set to �0 and this process is repeated. This

iteration process is stopped when the probability P (Oj�) converges.

2.3.4 Continuous-density HMMs

The output pdf of continuous-density HMMs (CDHMMs) is usually a mixture of

the Gaussian distributions (Figure 2.5). In this case, the output probability bj(o)

is

bj(o) =
MX
k=1

cjkN (oj�jk;�jk))

=
1

(2�)n=2j�jkj1=2 (ot � �jk)
T��1

jk (ot � �jk); (2.48)

where �jk is the mean vector and �ik is the covariance for the pdf of mixture k

at state j. The mixture weight cjk for each mixture component has the following
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constraint:
MX
k=1

cjk = 1; 1 � j � S: (2:49)

The parameters cjk, �jk, and �jk are also estimated using the E-M algorithm:

�cjk =

PT
t=1 
t(j; k)PT

t=1

PM
k=1 
t(j; k)

; (2.50)

��jk =

PT
t=1 
t(j; k)otPT
t=1 
t(j; k)

; (2.51)

��jk =

PT
t=1 
t(j; k)(ot � �jk)(ot � �jk)

TPT
t=1 
t(j; k)

; (2.52)

where


t(j; k) = 
t(j)
cjkN (otj�jk;�jk)PM

m=1 cjmN (otj�jm;�jm)
: (2:53)

Since it is generally known that CDHMMs perform better than DHMMs, we focus

on CDHMMs from now on.

2.4 Large-vocabulary continuous-speech recog-

nition

The previous section reviewed isolated-word speech recognition, in which a stan-

dard pattern is prepared for each word in the vocabulary and users utter only

one word at a time. In this type of recognition, it is di�cult to increase the

number of words in the vocabulary because it is necessary to provide training

data for each word. Furthermore, the recognition systems are not easy to use

because it is not natural to speak only one word at a time. People usually utter

phrases (concatenations of words) called continuous speech. This section there-

fore describes large-vocabulary continuous-speech recognition (LVCSR), in which

the recognition vocabulary usually consists of more than 10,000 words.

2.4.1 Subword speech units
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ame

/a/ /m/ /e/

Figure 2.6: A model for \ame" using monophone HMMs.

There are many ways to de�ne a set of subword speech units so that every word can

be represented by their concatenation. Once such a set is given, a model for each

unit can be de�ned and each word model can be represented by a concatenation

of such models. Since it is not necessary to prepare training data for every word

in the recognition vocabulary, large-vocabulary speech recognition becomes much

easier.

A typical example of such a subword unit set is a set of monophones. A model

is prepared for each phone, and every word model is a concatenation of phone

models (Figure 2.6).

The features of a phone di�er greatly from context to context and it is di�cult

to model all these di�erences by using a single monophone model. To overcome

this problem, context-dependent phones, in which nearby (preceding or succeed-

ing) phones are taken into consideration as the context, have come to be used as

the subword units. In a context-dependent phone set, two units that correspond

to the same phone but have di�erent contexts are regarded as di�erent units.

Examples are diphones, in which the immediately right or the immediately left



22 CHAPTER 2. SPEECH RECOGNITION

asahi

#-a+s s-a+ha-s+a a-h+i h-i+#

Figure 2.7: A model for \asahi" using triphone HMMs. For example, the symbol

\s-a+h" stands for phone \a" whose preceding phone is \s" and whose succeeding

phone is \h".

phone is taken into consideration, and triphones, in which both left and right

phones are taken into consideration (see Figure 2.7).

2.4.2 Statistical language modeling

LetX be the observation andW be a word sequence. In the statistical recognition

process, the word sequence which has the largest probability for the given data

is chosen from all the possible word sequences,

Ŵ = argmaxWP (W jX): (2:54)

Using Bayes' theorem, we can write:

P (W jX) =
P (XjW )P (W )

P (X)
: (2:55)

Since P (X) is the same for all W , Eq. (2.55) is rewritten as

Ŵ = argmaxWP (XjW )P (W ): (2:56)

So far in this chapter, we have dealt with isolated word recognition, in which

it is assumed that each utterance consists of only one word and therefore the
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recognition vocabulary fWg is a set of isolated words. Additionally it is implicitly
assumed that all words appear with the same probability; the probability P (W )

in Eq. (2.56) is the same for all words in the vocabulary.

In LVCSR, however, these assumptions are not realistic. First, a word se-

quence consists of more than one word, W = fw1; w2; . . . ; wQg, where Q is the

number of words in W . Second, P (W ) di�ers among word sequences; some se-

quences are more likely to appear than others. The statistical model that gives

P (W ) for each word sequence W is called a language model and its parameters

are estimated from a very large linguistic corpus.

The probability P (W ) can be written as

P (W ) = P (w1w2 . . .wQ)

= P (w1)P (w2jw1) . . .P (wQjwQ�1; . . . ; w2; w1): (2.57)

The probabilities for all the possible word sequences, are almost impossible to

estimate from a limited amount of data. It is therefore often assumed that the

probability of each word is a�ected only by the (n� 1) preceding words:

P (wijw1; w2; . . . ; wi�1) ' Pn(wijwi�1; wi�2; . . . ; wi�n+1): (2:58)

This model is called an n-gram model. Let F (wi; wi+1; . . . ; wi+n�1) be the number

of occurrences of the word sequence wiwi�1 . . .wi�n+1 in the training corpus. Then

the probability Pn(wi) for each word wi is calculated as follows:

Pn(wijwi�1; . . . ; wi�n+1) =
F (wi; wi�1; . . . ; wi�n+1)

F (wi�1; . . . ; wi�n+1)
: (2:59)

Usually, a bigram in which n = 2 or a trigram in which n = 3 is used.

2.5 The data insu�ciency problem in speech

recognition

In speech recognition using CDHMMs, the recognition unit most widely used is

the triphone, in which the right-hand phone and the left-hand phone are taken
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into consideration as the context. The number of triphones is usually very large.

In English, for example, the number of phones is roughly 50, so the number of

triphones is about 503 (some combinations of phones are prohibited by the nature

of the language). The number of states for each triphone HMM is usually three,

and the number of mixture components for each state is about ten. Therefore

the number of mean vectors in all the HMMs is 503 � 3 � 10 ' 4; 000; 000.

On the other hand, the amount of training data available is usually less than

100 hours' worth, which amounts to about forty million data frames when the

frame interval for the short-term spectrum is 10 ms. Then the number of data

samples per mean vector is 40; 000; 000 � 4; 000; 000 = 10. This number seems

very small for precise estimation of the mean vectors. Furthermore, the training

data is phonetically unbalanced; the number of occurrences of each triphone in

the training data usually di�ers greatly from triphone to triphone, and some

triphones do not appear in the training data. From these two reasons, it is clear

that the data insu�ciency problem greatly a�ects the recognition accuracy.

Many clustering methods have been developed in attempts to avoid this data

insu�ciency problem [34, 3, 31, 22, 73, 68, 74, 12, 37]. They reduce the number

of parameters by grouping some of them. The parameters to be clustered are

triphone units, states, and mixture components. These methods will be outlined

in Section.3.1.

The trigram is often used for the language modeling in LVCSR systems. The

trigrams are usually estimated from a large language corpus, typically comprising

108 words. Even if it is assumed that only 104 kinds of words are mainly used

and the other kinds of words are ignored, the number of kinds of trigrams is

104� 104� 104 = 1012. This number is much larger than the number of trigrams

in the language corpus, 108. It is clear that the data insu�ciency problem is also

inevitable in language modeling.

To tackle this problem, investigators have usually taken the following two

approaches:
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� Word clustering

� Smoothing with unigrams and bigrams

The �rst approach, word clustering, corresponds to the clustering approach in

acoustic modeling: it groups similar words into one group and assumes that words

in the same group have the same probability. The similarity measures usually used

are mutual information [5] and Kullback-Leibler divergence (relative entropy)

[39]. Other similarity measures are based on the structure of the language, such

as those using information about parts of speech.

The second approach, smoothing, utilizes bigrams and unigrams, which are

much less numerous and thus can be more precisely estimated from the same

amount of data. Two methods used in this smoothing approach are the deleted

interpolation method [23] and the back-o� smoothing method [28]. The deleted

interpolation method is a kind of cross validation in which the data are divided

into training data and test data; it uses instead of the trigram probability the lin-

ear combination of the probabilities of the trigram, the bigram, and the unigram,

and then these n-gram probabilities are estimated from the training data and the

weighting factors among these n-gram probabilities are estimated so as to max-

imize the likelihood for the test data. The back-o� smoothing method utilizes

Good-Turing estimates [19], which are based on an empirical distribution of the

number of occurrences of words in a natural language, for smoothing n-grams.

In both acoustic modeling and language modeling, the training procedure

requires much computational time, since the amount of data available and the

number of model parameters are both signi�cantly large. We therefore need a

way to obtain a model of optimal size without incurring excessive computational

costs.

The data insu�ciency problem also appears in adaptation, which is a tech-

nique of improving recognition performance by using a small amount of data and

modifying the model parameters under test conditions. A number of utterances

from a new user are used in acoustic model adaptation, and some recent writings
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from a new user are used in language model adaptation. Often taken in both

acoustic and language model adaptation is the Bayesian approach (e.g., [30]) in

which the parameters of the initial model are used as a priori knowledge for the

estimation of new parameters. Also often taken in acoustic model adaptation

has been the transformation approach, in which some global transformations are

employed and their parameters are estimated (e.g., [35]). Some of the acoustic

model adaptation methods will be introduced in Section 4.1. An example of lan-

guage model adaptation is the cache model approach, in which the parameters

of the initial language model and those estimated from the sentences used by a

new user are interpolated [29]. In the Bayesian approach, only the parameters

corresponding to the data for adaptation are re-estimated. Therefore, as the

model size increases, the adaptation tends to be less e�ective. It should also be

noted that the computational cost of the model selection process in adaptation

has to be very small, since the adaptation process should be completed almost

instantaneously in actual applications.

2.6 Structural approach to data insu�ciency

problems in speech recognition

As mentioned in the previous section, context-dependent phone units such as

triphones have recently come to be used to model units in speech recognition

systems based on the use of HMMs. While most such systems cluster the HMM

parameters (e.g., by subword clustering and state clustering) to control the HMM

size and thus avoid poor recognition accuracy due to a lack of training data, none

of them provide e�ective criteria for determining the optimal number of clusters.

This thesis therefore describes a method in which state clustering is accomplished

by using phonetic decision trees and in which the minimum description length

(MDL) criterion is used to optimize the number of clusters. Large-vocabulary

recognition experiments show that this method results in recognition more accu-
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rate than that obtained when the maximum-likelihood estimation is used.

Maximum a posteriori (MAP) estimation is one Baysian approach and has

been used for speaker adaptation in speech recognition systems using hidden

Markov models [30, 18]. When the amount of data is su�ciently large, MAP

estimation yields recognition performance as good as that obtained using the

maximum-likelihood (ML) estimation explained in Subsection 2.3.3. This thesis

describes a structural maximum a posteriori (SMAP) approach to improving the

MAP estimates obtained when the amount of adaptation data is extremely small.

The model parameter space is assumed to be structured hierarchically and the

probability density functions for model parameters at one level are used as priors

for those of the parameters at adjacent levels. Results of supervised adaptation

experiments using non-native speakers' utterances showed that SMAP estimation

reduced the error rate by half using only three utterances for adaptation, and that

it yielded the same accuracy as conventional MAP and ML estimation when the

amount of data was su�ciently large.

The acoustic modeling using the MDL criterion is described in the next chap-

ter, and the SMAP adaptation method is described in Chapter 4.
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Chapter 3

MDL-based Acoustic Modeling

3.1 Motivation

Over the past few years, extensive studies have been carried out on speaker-

independent speech recognition systems that employ continuous density hidden

Markov models. It is well known that in most such systems the use of context-

dependent (CD) phone units (e.g., diphones, triphones) rather than context-

independent (CI) phone units (monophones) provides greater recognition accu-

racy [1-10].

While the large number of CD models employed in a typical system can help

to capture variations in speech data, the amount of available training data is

likely to be insu�cient to support the use of such a large number. Furthermore,

there is great variation in the frequency with which individual CD phone units

can be expected to appear in training data; in most CD phone unit sets, the

frequencies for some units will be so small that they will be unlikely to appear

in training data even when a very large amount of data is provided. Such lack of

data can seriously degrade speech recognition performance and most recognition

systems using CD models cluster the model parameters to try to alleviate the

problem.

Various clustering methods have been developed for this purpose. One varia-

29
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tion among them is the choice of parameter to be clustered: K.F. Lee et al. [34],

for example, use subword clustering, Hwang et al. [22] use state clustering, and

Digalakis et al. [12] cluster the mixture components of the HMMs with Gaussian-

mixture state observation densities. There is also variation in the approach to

selecting the acoustically-similar parameters to be clustered. One approach is

to use only the acoustic characteristics of the data [73, 68, 22, 12, 37]. Another

approach is to utilize a priori knowledge about acoustic similarities (usually rep-

resented in the form of decision trees) between the parameters, in addition to the

acoustic characteristics themselves [34, 3, 31, 74].

However clustering is performed, the accuracy with which the acoustic sim-

ilarities are measured will be extremely important. One of the most successful

approaches in this regard is that based on the maximum-likelihood (ML) criterion

(e.g., [74]). In this approach, a calculation is made for each parameter cluster in

the model to determine the degree to which the splitting of that cluster would

increase the likelihood of the model's outputting the training data; the cluster

giving the greatest increase is then split. (Here, for the sake of simplicity, only the

\splitting" method (i.e., top-down clustering) is considered, but an explanation

of the application of ML to bottom-up clustering would be quite similar.)

The di�culty with the ML approach, however, is determining when to halt the

splitting process, which could be carried on until the model simply consisted of

a full set of individual, unclustered parameters. Most methods limit splitting by

imposing a threshold value on the increase in the likelihood or on the number of

parameter clusters, but the process required to optimize such thresholds (a series

of recognition experiments; cross-validation; etc.) is computationally expensive.

In this chapter a new approach that uses theminimum description length(MDL)

criterion [43] for state splitting [55, 58] is proposed. This MDL approach is e�ec-

tive for deciding when to stop splitting.

The MDL approach is based on an information

This chapter is organized as follows: Section 3.2 brie
y reviews the MDL cri-
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terion; Section 3.3 outlines state splitting using a phonetic decision tree; Sections

3.4 and 3.5 explain in detail how the MDL criterion is applied to state splitting;

Section 3.6 describes the results of an experimental evaluation of the proposed

method of state splitting. Finally, Section 3.7 discusses several issues related to

the proposed method.

3.2 MDL Criterion

The MDL criterion [43] has been proven to be e�ective in selecting the optimal

model from among various probabilistic models. It selects the model with the

minimum description length for given data. When a set of models f1; . . . ; i; . . . ; Ig
is given, the description length li(xN) for data fxN = x1; . . . ; xNg and an under-

lying model i is given by

li(x
N ) = � logP�̂(i)(xN ) +

Ki

2
logN + log I; (3:1)

where Ki is the dimensionality (the number of free parameters) of model i and

�̂
(i) represents the maximum likelihood estimates for the parameters �(i) =

(�
(i)
1 ; . . . ; �

(i)
Ki
) of model i. The �rst term on the right-hand side of (3.1) represents

the code length for data xN when model i is used as a probabilistic model. This

term is identical to the negative of the log likelihood used in the ML criterion.

The second term is related to the complexity of model i and the number of data

samples, N . The third term is the code length required for choosing model i and

is assumed here to be a constant. As a model becomes more complex, the value of

the �rst term decreases and that of the second term increases. The second term

works as a penalty imposed for employing a large model size (see Figure 3.1).

In a comparison among models, the model with the shortest description length

l may be considered the one having the most appropriate size and complexity.

As may be seen in (3.1), the MDL criterion does not need any externally given

parameters; the optimal model for the data is automatically obtained once a set

of models has been speci�ed. The derivation of the description length is brie
y
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Figure 3.1: The MDL criterion.
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summarized in Appendix A.

With complex models of the type used in speech recognition, it is often im-

practical to calculate the description length for all the possible models because

to do so would involve high computational costs. To avoid this, a number of

reasonable assumptions are introduced, which are explained in Section 4.

3.3 Tree-based state clustering

In this section, the outline of the proposed method is described.

For modeling CD phone units, triphones [46] are used, in which a central

phone has left- and right-hand neighbors. Each triphone model is a left-to-right

HMM in which states are placed in a line from the start state to the end state,

and the transitions with respect to a state consist of that to itself and that to the

next state to the right. The output density function for each state is a Gaussian

probability density function (pdf) for which a diagonal covariance is assumed.

All HMMs of triphones whose central phones are the same are assumed to have

the same number of states.

As a clustering scheme, state splitting based on phonetic decision trees [74]

is used. An example of the phonetic decision trees for triphones is shown in

Figure 3.2. In the state splitting, those states at the same position in triphone

HMMs having the same central phone are pooled into one set, and one phonetic

decision tree is constructed for each set. Starting from the root node which

represents the whole set, each node from top to bottom splits o� into two other

nodes representing, respectively, \yes" or \no" answers to such phonetic-context

related questions as: \Is the previous phone unvoiced?" (L-unvoiced?) and \Is

the next phone a fricative?" (R-fricative?) (see Figure 3.3). The MDL criterion

is used to choose the optimal question to be asked at each node and to decide

when to stop splitting. When all splitting has stopped, the pdf parameters of

each leaf node are copied to the pdf parameters of the triphone states in the

corresponding subset and used for recognition.
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R-vowel ?

s-a+e
g-a+om-a+i

t-a+u
r-a+p

o-a+s

d-a+g p-a+d

R- : right-hand context

L- : left-hand context

s-a+e
g-a+o

m-a+i
t-a+u

R-front ? R-unvoiced ?

yes no

r-a+p

o-a+s

p-a+d

d-a+g

L-coronal ? L-dorsal ?
L-stop ?R-fricative ?

d-a+gm-a+i
s-a+e

t-a+u
g-a+o

r-a+p
o-a+s p-a+d

s-a+e
t-a+u r-a+p p-a+dg-a+o

m-a+i
o-a+s d-a+g

yes

yes

yes

yesyes yes

no
no

no
no no

no

Figure 3.2: A phonetic decision tree for triphones. Eight triphones are split by

phonetic-context related questions.
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R-vowel?

R-front?

L-coronal? L-dorsal?

R-unvoiced?

R-end?
R-fricative?
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Figure 3.3: State splitting using phonetic decision trees.
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Figure 3.4: Model (node set) in the decision tree.

3.4 Description length for HMMs

3.4.1 De�nition of a model set

As explained in Section II, the MDL criterion is used to select an optimal model

from among a set of various models. Thus, it is �rst necessary to prepare the

model set from which that optimal model is to be selected. For speech recognition

using CDHMMs, it is impossible to prepare all the possible models because of the

large number of possible structures of CDHMMs; the number of subword units

and/or the number of states in each unit, for example, di�er among recognition

systems. In this study, the focus is on the clustering of the states in CDHMMs

and constant values are given to those parameters unrelated to state clustering,

such as the number of states in a single unit.
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Here a model is de�ned as a node set in a phonetic decision tree in which

a Gaussian pdf is assigned for each node. When the root node S0, which rep-

resents the whole set of the triphone states in the tree, is split into M nodes,

S1; . . . ; SM , as shown in Figure 3.4, one model U(S1; . . . ; SM ) is de�ned for the

node set fS1; . . . ; SMg. Di�erent node sets correspond to di�erent models. The

description length for each node set is calculated and the node set with the min-

imum description length is selected from among various node sets as being the

optimum model.

3.4.2 Calculation of description length

Before clustering is performed, an estimate of each HMM parameter is calculated

by using the Forward-Backward algorithm [41]. Let speech data for training

consist of E examples and each example e be analyzed and represented by a time

series of feature vectors, foe1; . . . ;oet ; . . . ; oeTeg, where Te is the number of data

frames for example e. ML estimates for the Gaussian distribution at state sl can

then be written as:

�l =

PE
e=1

PTe
t=1 
l(e; t)o

e
tPE

e=1

PTe
t=1 
l(e; t)

; (3.2)

�l =

PE
e=1

PTe
t=1 
l(e; t)(o

e
t � �l)(o

e
t � �l)

TPE
e=1

PTe
t=1 
l(e; t)

; (3.3)

where �l is the mean vector and �l is the covariance of the Gaussian distribution

at state sl, (ot��l)
T is the transpose of (ot��l), and 
l(e; t) is the a posteriori

probability of the data being in state sl at the t-th frame of example e, which is

calculated as follows:


l(e; t) =
�l(e; t)�l(e; t)PL

l0=1 �l0(e; t)�l0(e; t)
; (3:4)

where L is the total number of all the triphone states in the HMMs, �l(e; t) is

the forward probability, and �l(e; t) is the backward probability of state sl at the

t-th frame of example e.

The �rst term on the right-hand side of Eq. (3.1) is the negative of the log-

likelihood of a probabilistic model with respect to given data. It is possible to
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Data

HMM 
State

Figure 3.5: Viterbi alignment. Each data sample is assigned to one state.

calculate the log-likelihood of the training data for all the possible node sets, but

to do so involves huge computational costs. To reduce these costs, the following

three assumptions are introduced [74]:

1. The transition probabilities of HMMs can be ignored in the calculation of

the log-likelihood for a node set.

2. State splitting does not change the frame/state alignment between the data

and the model.

3. The log-likelihood of generating the data for each state is the sum of the

log-likelihoods of generating each data frame, with each log-likelihood being

weighted by the a posteriori probability of the data being in the state.

The third assumption is fully justi�ed when the Viterbi algorithm is used for

parameter estimation because in this algorithm the posterior probability is either

one or zero (see Figure 3.5).
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Let us next consider the problem of calculating the description length for the

node set U de�ned in the previous subsection. All the triphone states pooled

into the set corresponding the root node S0 are renumbered as fs11; . . . ; s1L1
, . . . ,

sm1 ; . . . ; s
m
Lm

, . . . , sM1 ; . . . ; s
M
LM
g, where fsm1 ; . . . ; sml ; . . . ; smLmg is the subset of states

that are merged into node Sm, and Lm is the number of states in the subset. Using

Eqs. (3.2) and (3.3), the mean vector and the covariance of state sml are written

as:

�m
l =

PE
e=1

PTe
t=1 


m
l (e; t)o

e
t

�m
l

; (3.5)

�m
l =

PE
e=1

PTe
t=1 


m
l (e; t)(o

e
t � �m

l )(o
e
t � �m

l )
T

�m
l

; (3.6)

�m
l =

EX
e=1

TeX
t=1


ml ; (3.7)

where 
ml (e; t) is the a posteriori probability of the data being in state sml at the

t-th frame of example e. Then, under the �rst and second assumptions, the ML

estimates for the pdf parameters of node Sm are given by [26]

�m =

PLm
l=1

PE
e=1

PT
t=1 


m
l (e; t)o

e
tPLm

l

PE
e=1

PT
t=1 


m
l (e; t)

=

PLm
l=1 �

m
l �

m
lPLm

l �m
l

; (3.8)

�m =

PLm
l=1

PE
e=1

PT
t=1 


m
l (e; t)(o

e
t � �m

l )(o
e
t � �m

l )
TPLm

l=1

PE
e=1

PT
t=1 


m
l (e; t)

=

PLm
l=1 �

m
l (�m

l + (�m
l )(�

m
l )

T )PLm
l=1 �

m
l

� (�m)(�m)
T ; (3.9)


m(e; t) =
LmX
l=1


ml (e; t); (3.10)

where �m is the mean vector and�m is the covariance of the Gaussian distribution

at node Sm. Then, from the third assumption, the approximated log-likelihood

L of node Sm generating data fo1; . . . ;oTg is given by

L(Sm) '
EX
e=1

TeX
t=1


m(e; t) log(
1q

(2�)K j�mj
e�

1
2 (o

e
t��m)t��1

m (oet��m))

= �
EX
e=1

TeX
t=1

1

2

m(e; t)(K log(2�) + log j�mj



40 CHAPTER 3. MDL-BASED ACOUSTIC MODELING

+(oet � �m)
t��1

m (oet � �m))

= �1

2
�m(K +K log(2�) + log j�mj); (3.11)

�m =
TX
t=1


m(t); (3.12)

where K is the dimensionality of the data vector oet , and �m is the total state

occupancy count at node Sm, which is the sum of 
m(e; t) over all data frames of

all the examples. The log-likelihood of the data for all the nodes in set U is:

Lall =
MX
m=1

L(Sm)

' �
MX
m=1

1

2
�m(K +K log(2�) + log j�mj): (3.13)

The second term on the right-hand side of Eq. (3.1) represents the complexity

of a model. In the proposed approach, it is assumed that the covariance of each

Gaussian pdf is diagonal. The number of parameters to be estimated for model U

is 2KM (with model U containingM mean vectors andM diagonal covariances).

The total number of data samples is the sum of � (Sm) over m. With this total,

the second term may be approximated as:

R = KM logW; (3.14)

where W =
PM

m=1 �m. As has been previously noted, the third term on the

right-hand side of (3.1) is �xed at a constant value, C, for all possible models.

Finally, using (3.13) and (3.14), the description length for model U is calcu-

lated as follows:

l(U) = �Lall +R + C

'
MX
m=1

1

2
�m(K +K log(2�) + log j�mj)

+KM logW + C: (3.15)
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3.5 State splitting using the MDL criterion

In order to get an optimal model, it is needed to calculate description lengths for

all possible models, which would involve prohibitively high computational costs.

Instead, an algorithm that obtains only a suboptimal solution is used.

Let us �rst assume that node Sm of model U splits into two nodes Smqy and

Smqn,in response to question q, and then let �m(q) be the di�erence between

the description lengths after the splitting and before it (i.e., l(U 0) � l(U)). The

description length of model U 0 is:

l(U 0) =
MX

m0=1;m0 6=m

1

2
�m0(K +K log(2�) + log j�m0j)

+
1

2
�mqy(K +K log(2�) + log j�mqyj)

+
1

2
�mqn(K +K log(2�) + log j�mqnj)

+K(M + 1) logW + C; (3.16)

where the number of nodes for U 0 is M + 1, �mqy is the state occupancy count

for node Smqy, and �mqn is that for node Smqn. The di�erence �m(q) will then

be given by the following equation:

�m(q) = l(U 0) � l(U)

=
1

2
(�mqy log j �mqy j +�mqn log j �mqn j

��m log j �m j) +K logW: (3.17)

In state splitting, the question q0 which would minimize �0(q0) when used

to split root node S0 is �rst determined. If �0(q0) > 0, then no splitting is

conducted. If �0(q
0) < 0, then node S0 is split into two nodes, Sq0y and Sq0n, and

the same procedure is repeated for each of these two nodes. This node splitting

is carried out until there remain no nodes to be split and is conducted for the

root nodes of all the phonetic decision trees in all the HMMs.

For the purpose of comparison, let us also consider here the ML approach [74].

Letting �m(q) be the increase in the log-likelihood when node Sm is split into two
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in response to using question q,

�m(q) = L(Smqy) + L(Smqn)� L(S)

= �1

2
(�mqy log j �mqy j +�mqn log j �mqn j

��m log j �m j ): (3.18)

In the ML approach, question q0 which would maximize �0(q0) is �rst chosen

from among all the questions, and then it is used to split root node S0 into two

nodes S0q0y and S0q0n. This splitting process will continue until stopped by some

externally given parameters used to control the number of clusters, since the

increase � is positive in all the splitting. Most methods apply a threshold value

to the total occupancy count �m and/or to the log-likelihood increase �m(q).

However, the optimization of these parameters requires a series of recognition

experiments which are computationally expensive and require additional data.

The MDL approach needs no external control parameters; the term K logW

in (3.17) corresponds to the threshold for increase � in (3.18), and this term

is estimated automatically on the basis of the training data. Additionally, the

threshold term K logW is speci�ed for each phone in the MDL approach, while

the threshold delta is shared among all the phones. This indicates that the MDL

approach is more robust against the data imbalance among phones than the ML

approach.

3.6 Experiments

The proposed method was evaluated in experiments testing the recognition of

5000 Japanese words. Each utterance was digitized at a sampling rate of 16

kHz, and analyzed in 10-ms frame periods. The analysis yielded a vector of

21 components (a power derivative, 10 mel-scaled cepstral coe�cients, and 10

corresponding mel-scaled cepstral time derivatives). 37 Japanese CI phones were

used, from which 4309 triphones were derived. The number of states in each

HMM was set to four. A Gaussian output pdf with a diagonal covariance was
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assumed for each state. The number of questions used in the node splitting was

106. Two data sets, Data A and Data B, were prepared for training. Data A

consisted of 250 phonetically-balanced words uttered by each of 46 male speakers.

Data B consisted of 2150 phonetically-balanced words uttered by each of 36 male

speakers. Speech data from �ve other male speakers, none of whom was involved

in the production of Data A or Data B, was used for the evaluation tests. Each of

these test speakers uttered 250 words. None of the words in the test vocabulary

were used in the training vocabulary.

Table 3.1 shows recognition results obtained with the proposed MDL method

(averaged for the �ve test speakers) and those obtained with the ML approach

when Data A was used for training. The various results for the ML approach re-


ect the di�erent values used for two thresholds, D and V , for the state occupancy

count and for the increase in likelihood, respectively.

Let us consider a speci�c instance in the ML approach. For a node, S, the

algorithm determines the set of questions for which neither of the resulting two

response nodes would have a \total occupation count" less than or equal to D,

and for which �(q) would be larger than V . It determines the question among

this set for which � is largest and used it to split node S.

Table 3.1 shows the results of the ML approach for 17 combinations of D

and V (ML 1{17). As shown in Table 3.1, the proposed method achieved higher

recognition accuracy than any using the ML approach. In each instance, the

computational cost required for the proposed method was roughly the same as

that with the ML approach. In order to determine a model of a size optimal

for the amount of training data, however, the ML approach must be performed

repeatedly over a range of parameter values. Therefore, the total computational

cost is much less with the MDL approach proposed here.

Table 3.2 shows the frequency of the questions used, summed over all the

phonetic decision trees of all the HMMs, when the MDL approach was employed.

\L-begin" corresponds to the question, \Is the phone located at the beginning of
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Table 3.1: MDL and ML performance.

D V # of Recog.

nodes rate(%)

MDL { { 2069 80.4

ML 1 60 0 3739 75.4

ML 2 100 0 3000 76.4

ML 3 200 0 2001 76.7

ML 4 300 0 1943 75.4

ML 5 400 0 1200 73.4

ML 6 500 0 1018 71.9

ML 7 1000 0 591 66.6

ML 8 60 200 2777 76.2

ML 9 60 400 2034 77.0

ML 10 60 600 1488 77.8

ML 11 60 800 1248 77.9

ML 12 60 1000 1071 77.4

ML 13 200 200 1782 77.3

ML 14 200 400 1533 77.2

ML 15 200 600 1326 77.0

ML 16 200 800 1142 77.8

ML 17 200 1000 1049 76.5
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Table 3.2: Distributions of questions asked.

Vowel Consonant

L-coronal 67 L-begin 130

L-dorsal 55 L-back 69

L-begin 40 R-a 63

R-coronal 39 R-high 62

L-h 35 L-high 60

L-back 34 L-a 53

L-sonorant 33 L-front 45

R-dorsal 31 R-e 34

L-unvoiced 27 R-back 32

L-n 27 L-e 30

L-fricative 27 L-consonant 28

Total 1110 Total 822
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Table 3.3: Recognition rates (%) for Data A and Data B.

Training set Data A Data B

No. of nodes 2069 6223

Male 1 72.8 84.8

Male 2 76.8 84.4

Male 3 89.2 92.4

Male 4 81.6 83.6

Male 5 81.6 84.8

Average 80.4 86.0

the word?". Questions related to left phones were used more often than those

related to right phones. For a consonant, the question most frequently used was

whether or not it was located at the beginning of a word.

Let us next consider how the optimal model size changes as the amount of

data increases. Table 3.3 shows results for Data A and Data B. Data B, which

is seven times larger than Data A, resulted in roughly a threefold increase in the

number of nodes.

In order to evaluate the optimality of this size, A weight coe�cient c was

added to the second term on the right-hand side of (3.15), which results in:

l00(U) =
1

2

MX
m=1

�m(K +K log(2�) + log j �m j)
+cKM logW + C: (3.19)

As c increases, so does the penalty for a large model size. Table 3.4 shows results

for a range of c values of from 0.1 to 10.0. While the highest recognition accuracy

was achieved for a c value of 2.0, it was only 0.7% higher than that for c = 1 (i.e.,

for the case in which the penalty for increased mode size is the same as that in

(3.15), which expresses the description length in the proposed approach.)

Data B was also used to evaluate the recognition performance when single-
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Table 3.4: Recognition rates (%) as a function of coe�cient c.

c 0.1 0.5 1.0 2.0 4.0 10.0

No. of nodes 13927 9798 6223 3949 2418 1341

Male 1 84.0 84.4 84.8 83.6 82.4 79.6

Male 2 81.6 83.6 84.4 84.4 84.8 80.8

Male 3 92.0 92.0 92.4 92.8 92.4 91.2

Male 4 84.8 85.2 83.6 85.2 84.8 82.0

Male 5 84.4 84.4 84.8 87.6 85.2 86.8

Average 85.4 85.9 86.0 86.7 85.9 84.1

Table 3.5: Recognition rates (%) with mixture-Gaussian output pdfs.

1 Gauss 2 Gauss

Male 1 84.8 86.8

Male 2 84.4 87.6

Male 3 92.4 94.4

Male 4 83.6 88.8

Male 5 84.8 87.2

Average 86.0 89.0
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Gaussian output pdfs were replaced with mixture-Gaussian output pdfs. In this

experiment, the number of Gaussian pdfs assigned to each state was increased to

two, and the model was re-trained using the same training data. The increase in

recognition rates shown in Table 3.5, indicates that further splitting of some of the

nodes in models constructed using the MDL criterion might result in improved

recognition rate if a better set of questions were prepared beforehand. Such a set

might include, for example, questions regarding second-to-left and/or second-to-

right phones, characteristics of individual speakers, recording conditions, etc.

3.7 Discussion and summary

A signi�cantly useful method of optimizing the model size without using any

externally given parameters was proposed. In an evaluation test it resulted in

recognition more accurate than that obtained when a conventional approach was

used and it had a much lower overall computational cost.

In the real-world application of speech recognition, the model size often must

be small enough to operate in real time using limited hardware(CPU, memory).

It would seem that this MDL approach is not applicable to this case because no

hardware limitations are taken into consideration. However, this approach can

be applied to this case by controlling the weight of each data sample in training

data. For example, when the weight is assumed to be halved, the amount of data

for each state is halved. Although one control parameter (the weight of each data

sample) has to be introduced, the advantage of our approach in that the model

size for each phone is controlled individually still remains valid.

A number of problems remain to be solved, however. First, the degree to

which the assumptions implicit in the proposed method a�ect its performance

with regard to the control of model size has to be determined. A second problem

is that the set of models provided beforehand may not include the most optimal

model (\true model") for the given data. A third problem is that, since it is

assumed that the amount of data is su�ciently large in the MDL criterion, it
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may not apply to the case where the amount of data available is small. These

latter two problems are of course true not only for the proposed method but

also for other model selection strategies using the MDL criterion, and further

theoretical research addressing these problems is needed. A fourth problem is

that the minimization of the description length does not necessarily minimize

recognition error. Conventional ML approaches encounter the same problem:

maximization of likelihood does not necessarily minimize recognition error. The

MDL criterion has an advantage over the ML criterion in that it has an e�ective

penalty used for model size control, one that has good theoretical support.

Two other widely known information criteria used for controlling model size

are the Bayesian information criterion (BIC) [45] and the Akaike information

criterion (AIC) [1]. The formula for the BIC is

lBICi (xN ) = � logP�̂(i)(xN ) +
Ki

2
logN: (3:20)

Comparing this criterion with the MDL criterion (Eq.3.1), one can easily see

that the �rst and the second terms are identical and that the only di�erence

is that the MDL criterion has a third term. Since throughout this thesis the

third term is assumed to be constant, the BIC gives exactly the same results

as the MDL criterion here. After the result of our research was �rst published

[55], the approach using the BIC to control the model size in speech recognition

was extensively studied [6, 7, 8, 70]. It has been successfully applied to speaker

clustering [6], Gaussian mixture modeling [7], modeling of mixture of Gaussian

pdf for HMM [8], and segmentation of speech data [70]. Since the BIC gives

exactly the same results as the MDL criterion does, the results of these studies

strongly support the e�ectiveness of our approach. They also proved that our

approach can be applied to many other data insu�ciency problems in speech

recognition.

In the AIC, the second term in (3.1) is replaced by Ki and there is no third

term:

lAICi (xN ) = � logP�̂(i)(xN ) +Ki: (3:21)
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Practically speaking, it is well known that in many applications the results given

by the AIC di�er little from those given by the MDL criterion. The MDL cri-

terion and the AIC are therefore not compared in this thesis. In theory the

di�erence between the MDL criterion and the AIC is still controversial but it is

not discussed here because it is not an important issue here. One typical claim

supporting the MDL criterion is that the AIC tends to overestimate the number

of parameters needed [47]; while the AIC is likely to select the correct model

when the complexity of the true model grows with sample size [48, 49], such a

case is unlikely to happen in actual applications.

Recently a new information criterion was proposed: the subspace information

criterion (SIC) for model selection from the functional analytical viewpoint [64].

Since it was reported to work well even when the number of training examples is

small, it may be promising to apply this criterion to acoustic modeling.



Chapter 4

Structural MAP Approach to

Speaker Adaptation

4.1 Motivation

Automatic speech recognition systems using continuous density hidden Markov

models (HMMs) have been recently used in various applications. Speaker-independent

(SI) systems are typically constructed using speech samples collected from many

speakers. It has been reported, however, that the performance of SI HMMs is

often degraded when there is a mismatch between the training and testing en-

vironments. For example, when the acoustic characteristics of a new speaker

are very di�erent from those of the speakers in the training data, the recognition

accuracy for the new speaker might be far below the average accuracy. Other ma-

jor adverse conditions causing mismatches are those due to di�erent microphones,

channels, and noise environments.

Many techniques compensating the degradation caused by mismatches have

been developed. They are roughly grouped into two categories, namely: (1)

feature compensation (e.g., [32]), in which the process of feature extraction is

modi�ed; and (2) model adaptation (e.g., [18, 35]), in which the parameters of

recognition models are adjusted. Although combining these two techniques has

51
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been shown e�ective (e.g., [44]), the discussion is focused on model adaptation in

the present study . It is desirable that adaptation improves speech recognition

accuracies even when little adaptation data is given and more importantly it yields

performance equal to or better than that obtained using maximum likelihood (ML)

estimation when enough data is available. Few methods, however, achieve both

objectives.

The most popular approach to model adaptation is through Bayesian formu-

lation. For example, maximum a posteriori (MAP) estimation algorithms (e.g.,

[30, 18]) have been widely adopted recently and successfully applied to speaker

adaptation. In this method the model parameters are regarded as random vari-

ables whose joint prior probability density function (pdf) is assumed. The MAP

estimate of the parameter vector is de�ned as the mode of the posterior pdf

given the adaptation data. The improvement obtained with MAP estimation is

signi�cantly larger than that obtained with ML estimation, especially when the

amount of adaptation data is small. It is well known, since MAP estimates are

asymptotically equivalent to ML estimates, that the resulting recognition perfor-

mance is similar to that of speaker-dependent (SD) HMMs when the amount of

data becomes large. A quasi-Bayes approach [20] has also been adopted to handle

on-lineMAP adaptation. In these conventional MAP estimation methods, HMM

parameters of di�erent speech units are often assumed to be independent. There-

fore, each model can be adapted only if the corresponding speech unit has been

observed in the current set of adaptation data. The improvement is consequently

rather small when the amount of adaptation data is extremely limited. The MAP

estimation is brie
y explained in Appendix B.

Another category of adaptation techniques, which do not use the MAP frame-

work, are often referred to as transformation-based approaches, such as cepstrum

mean normalization (CMN) [2], signal bias removal (SBR) [42], maximum like-

lihood linear regression (MLLR) [35], spectral interpolation [50, 51, 52], vector

�eld smoothing (VFS) [36], stochastic matching (SM) [44], nonlinear stochastic
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Figure 4.1: Recognition performance of maximum a posteriori (MAP) adapta-

tion, maximum likelihood linear regression (MLLR), and maximum likelihood

estimation (ML).
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matching [65] and predictive adaptation [66]. This family of techniques limits the

number of free parameters by tying the HMM parameters or by applying some

constraints on the parameters in order to improve recognition accuracies with a

small amount of data. When the amount of adaptation data exceeds a certain

value, however, the recognition accuracy often becomes inferior to that obtained

with ML estimation of the model parameters. This is because a model with a

small number of free parameters could not fully utilize the potential information

embedded in the large amount of data. In Figure 4.1, the di�erence between the

recognition performance of MAP and that of MLLR is shown.

Because the traditional MAP approaches and the transformation-based meth-

ods are not capable of either improving recognition accuracy when little data are

available or exploiting the information in a large amount of data, several algo-

rithms supplementing those techniques have been developed. The extended MAP

(EMAP) method [63, 75], and the quasi-Bayes technique with correlated mean

vectors [21] are extensions of the traditional MAP approaches. They increase the

recognition rates obtained with a small amount of data by taking into account the

a priori knowledge in the correlation between the parameters modeling di�erent

speech units. For example, the pair-wise correlation between the mean vectors

could be used to enhance estimation of the mean parameters of some speech units

even if they are not directly observed in the adaptation data and therefore the

recognition rates are signi�cantly improved [21]. Although these methods are in

theory quite general, they need to impose some approximation in practice because

it is di�cult to estimate such correlations precisely when the amount of training

data is small. In [63, 75], for example, the model parameter space was divided

into several subspaces, the ideal number often depends on the amount of adapta-

tion data available. It is also possible to extend the known ML techniques, such

as MLLR to incorporate the MAP estimation criterion. The recently proposed

maximum a posteriori linear regression (MAPLR) [60] algorithm improves MLLR

in a way similar to MAP enhancement over ML for HMM parameter estimation.
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Combinations of MAP and transformation-based approaches have also been

studied intensively ([13, 9, 67, 69]). Notable examples were in combining MLLR

and MAP [13] and combining MAP and VFS [67, 69]. Chien et al. [9] reported

that signi�cantly better recognition accuracy can be obtained by combining MAP

and SM with an iterative process. The shortcoming of these combined methods is

again the use of �xed structures, i.e. �xed ways of parameter tying, in the acoustic

space. Therefore they have only been shown useful with adaptation data sizes

within a narrow range. To alleviate this problem, a tree structure has been used

in adjusting the number of layers in a tree and the degree of parameter tying

according to the amount of available data (e.g., [53, 54]).

In this study, the nice asymptotic property of MAP estimation for large size

adaptation is taken advantage of and the 
exible parameter tying strategy in a

tree for small sample adaptation and formulate a novel structural Bayes adapta-

tion framework that achieves the two desired objectives mentioned earlier. By

assuming that the prior knowledge in a tree node can be used to construct prior

density needed for MAP estimation of all the parameters in the successive child

nodes, a new structural maximum a posteriori (SMAP) algorithm [56, 57, 59] is

introduced for speaker and environment adaptation.

Three key steps are required in formulating the proposed SMAP approach.

They are described in the next three Sections. First, a tree with a uniform

structure is needed to characterize the acoustic space represented by the HMM

parameters. In this study an information-theoretical criterion is used to clus-

ter all the Gaussian mixture component densities typically used to model state

observation densities in HMM. This procedure is discussed in detail in Section

4.2 Next, given all the density clusters used to characterize nodes in a tree, it is

needed to �nd a Gaussian density to summarize all the Gaussian components in

the cluster so that the likelihood of a sequence of observation vectors representing

the adaptation data can be evaluated at the node level and therefore the MAP

estimate at any node in the tree can be computed. In Section 4.3, a summarizing
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procedure that simpli�es the preparation for SMAP estimation is introduced and

proves to be e�ective for speech recognition. For the third step, the prior density

at each tree node needs to be de�ned. In order to use every observation sample to

estimate all the HMM parameters, a hierarchical prior evolution approximation

is used by assuming that the hyperparameters charactering the prior density at

each node are evaluated based on the knowledge embedded in the prior density

of its parent node. This process is explained in Section 4.4. Once the three key

steps are established, the SMAP estimation algorithm is then derived in Section

4.5.

The proposed SMAP approach was evaluated on the RM (Resource Man-

agement) task [40]. Training/adaptation and testing utterances by non-native

speakers were collected over two di�erent acoustic conditions, a desktop mi-

crophone and a telephone handset through dial-up lines. The e�ectiveness of

the SMAP algorithm was demonstrated in a set of supervised and unsupervised

adaptation experiments. The ways to combine fast supervised adaptation and

on-line unsupervised adaptation to achieve a su�cient recognition accuracy in

real applications were also investigated. The experimental results with di�er-

ent adaptation scenarios in these adverse conditions is reported in Section 4.6.

Finally, the �ndings are summarized in Section 4.7.

4.2 Tree structure

The de�nition of a structure to aid MAP estimation is a key procedure in the

proposed structural Bayes approach. In this study a tree structure is adopted

because it o�ers a natural evolution of prior knowledge embedded in the parent-

child relationship between nodes at di�erent tree layers (see Figure 4.2). There

exists many ways to generate such a tree that models a structure of the acoustic

space of interest.

Given the set of all the mixture Gaussian components in the set of HMMs, it is

needed to �rst de�ne a distance measure, d(m; n), between Gaussian components,
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Figure 4.2: Tree structure for Gaussian pdfs in CDHMMs. For simplicity, the

case when the dimension is one (scalar) is shown.
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gm(�) and gn(�), in order to build a tree. Here the distance is de�ned as the sum

of the Kullback-Leibler divergence from gm(�) to gn(�) and that from gn(�) to gm(�)
[71]. When diagonal covariance matrices are assumed, the distance d(m;n) is

evaluated as follows:

d(m;n) =
Z
gm(x) log

gm(x)

gn(x)
dx+

Z
gn(x) log

gn(x)

gm(x)
dx;

=
X
i

[
�2m(i)� �2n(i) + (�n(i) � �m(i))

2

�2n(i)

+
�2n(i)� �2m(i) + (�n(i)� �m(i))

2

�2m(i)
]; (4.1)

where �m(i) is the i-th element of the mean vector �m and �2m(i) is the i-th

diagonal element of the covariance matrix �m. Next, at each node k in a tree

structure, the collection of Gaussian components belonging to node k, fg(k)m (X) =

N (Xj�(k)
m ;�(k)

m ) : m = 1; . . . ;Mkg, is approximated by a single Gaussian pdf,

where Mk is the number of Gaussian components at node k. This pdf is called a

node pdf. When it is assumed that the number of data samples from each mixture

components are equal, the parameters for the node pdf are calculated as follows:

�k(i) =
1

Mk

MkX
m=1

E(x(k)m (i)) =
1

Mk

MkX
m=1

�(k)m (i); (4.2)

�2k(i) =
1

Mk

MkX
m=1

E((x(k)m (i)� �k(i))
2)

=
1

Mk

2
4MkX
k=1

�2(k)m (i) +
MkX
m=1

�(k)2m (i)�Mk�
2
k(i)

3
5 ; (4.3)

where x(k)m is a data vector from Gaussian pdf g(k)m .

The following clustering algorithm is used to construct a tree structure for the

mixture components in G, where the distance is calculated using Eq. (4.1) and

the node pdf is calculated using Eqs. (4.2) and (4.3).

1. The structure of the tree structure is designed; the number of layers and the

number of branches from a node in each layer are determined. There is no
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clear way to design the structure automatically since the optimal structure

may be changed according to the size of models.

2. Set the root node to be node k and the set G to be set Gnow. Calculate the

node pdf for the root node using Eqs. (4.2) and (4.3).

3. If node k has no child nodes, stop clustering. Otherwise, give the initial pdf

for each child node using the minimax method that is described as follows.

Here g(k)(�) is the node pdf for node k, Pk is the number of child nodes of

node k, and g(cp)(�) is the node pdf for child node cp, p = 1; . . . ; Pk.

(a) Choose among the set Gnow the mixture component m̂ that has the

largest distance to g(k)(�) and set it as node pdf for child c1, i.e.,

g(c1)(�) = gm̂(�).

(b) Choose mixture components for cp successively from p = 2 to p = Pk

and set those to the node pdfs for child nodes as follows:

m̂ = argmaxm min
1�i�p�1

d(m; ci); (4.4)

g(cp)(�) = gm̂(�): (4.5)

In Eq.(4.4), m̂ is chosen from the rest of mixture components, which

belong to parent node k and not yet assigned any child node.

(c) The node pdf for each child node cp and the node pdf for k is interpo-

lated and resulting pdf are set to be the node pdf for cp as follows:

�0cp(i) = (1 � �)�k(i) + ��cp(i) (4.6)

�2
0

cp
(i) = (1 � �)(�2k(i) + �2k(i)) + �(�2cp(i) + �2cp(i))� �

02
cp
(i);

(4.7)

where 0 � � � 1.

4. Repeat the following k-means procedure until the grand sum of distances

converges.
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(a) For each mixture component in Gnow, calculate the distance from it

to each child node pdf by using Eq. (4.1), and assign each mixture

component to the nearest child node.

(b) Recalculate the child node pdf by using Eqs. (4.2) and (4.3).

(c) Using Eq. (4.1), calculate the sum of distances from each child node

to each of its mixture components and then obtain the grand sum of

distances by summing up the sum of distances over all the child nodes.

5. Set each child node to be node k and its corresponding subset of mixture

components Gnow. Go to Step 3.

It is mostly expected that the substantial number of training samples assigned

to each mixture component during the training process is largely di�erent from

component to component. This is because the phonetic distribution of speech is

usually far from uniform. This imbalance is not taken into consideration in this

method; it is assumed that the amount of the training samples for each compo-

nent is the same among all the mixture components. Therefore, this method is

expected to be robust against the imbalance of the number of training samples.

Additionally, it is also applied when the phonetic distribution of training data

and and that of test data are largely di�erent. It should be noted that when the

number of training samples is the same for all mixture components this method

gives the same result as the clustering method based on maximum-likelihood

criterion(e.g., [26]).

4.3 Summarization of Gaussian distributions

In this study, the focus is on adaptation of the parameters of the mixture Gaussian

components in continuous-density HMMs (CDHMMs). Let gm(�) be a normal

density function for mixture component m, N (xj�m;�m), where �m is a mean

vector, �m is a covariance matrix, and x is a D-dimensional observation vector.
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Let G = fgm(�) : m = 1; . . . ;Mg be the whole set of the mixture components in
HMMs, whereM is the total number of mixture components in all the states of all

the speech units. It is assumed that all the parameters of the general CDHMMs

have already been trained by using a su�cient amount of training data from

many speakers. Such models are typically used for speaker independent speech

recognition.

LetX = fx1; . . . ;xTg denote a given set of adaptation data. We are interested

in using X to obtain estimates of the parameter set, �m = (�m;�m). Further-

more, we would like to make use of the tree structure established in Section 4.2 to

construct prior information in each tree node for SMAP adaptation. Since in the

case of CDHMM, we don't know the membership of xt, i.e. we have no precise

knowledge which Gaussian component could have generated the observed vector.

We usually associate with xt a membership function, 
mt, which is the posterior

probability of observing xt in the Gaussian component gm(�) given the param-

eter values �m. 
mt is usually computed with the well-known forward-backward

algorithm (e.g., [41, 18]).

One way to make the problem easier is to go through a summarization process.

As the �rst step of the process, each sample vector xt is transformed into a vector

ymt for each mixture component m as follows:

ymt = ��1=2
m (xt � �m); t = 1; . . . ; T; m = 1; . . . ;M: (4:8)

When there is no mismatch between the training data and the adaptation data,

the pdf for Y m = fym1; . . . ;ymTg is obviously the standard normal distribution

N (Y j~0; I), where ~0 is a zero vector and I is an identity matrix. When there is a

mismatch between them, however, the pdf for Y is di�erent from N (Y j~0; I) for
the adaptation data.

Here the pdf for Y is assumed to be N (Y j�;	), where � 6= ~0 and 	 6= I

represent the shift and rotation needed to compensate for the distortion. It is

expected that this pdf for Y better represents the di�erence between the acous-

tic characteristics of the training data and those of the adaptation data. This
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is called the normalized pdf. It is also assumed that the mismatch can be mod-

eled by models simpler than those used for speech recognition. In other words,

the number of the normalized pdfs required to model the acoustic di�erence is

assumed smaller than M , the number of the mixture components of the HMMs.

Let us consider the case when the whole set of mixture components, G, is di-

vided into subsets fG1; . . . ; GPg, where P is the total number of subsets, which is

less than M , the total number of mixture components. One common normalized

pdf, h(p)(�) = N (Y j�(p);	(p)), is shared by all the mixture components in each

subset Gp. In the following explanation, all the mixture components in subset

Gp are renumbered as g(p)1 (�); . . . ; g(p)m (�); . . . ; g(p)
M(p)(�), where M (p) is the number

of the mixture components in subset Gp. Obviously,
PP

p=1

PM(p)

m=1 1 =M . For the

mixture component, g(p)m (�), the observed vector sequence X = fx1; . . . ;xTg is

normalized to Y = fy(p)m1; . . . ;y
(p)
mTg.

The maximum likelihood (ML) estimates for the parameters of the normalized

pdfs can be calculated using the expectation-maximization (EM) algorithm (e.g.,

[41]). If the transition probabilities and the weight coe�cients are assumed to be

�xed, the auxiliary function Q(�j�) for the HMM parameters [41, 18] is given by

Q(�j��) =
TX
t=1

PX
p=1

M (p)X
m=1



(p)
mt log g

(p)
m (xtj�(p)

m ;�(p)
m ); (4:9)

where � = f�(p)m = (�(p)
m ;�(p)

m ) : m = 1; . . . ;M (p); p = 1; . . . ; Pg is the new esti-

mate of the HMM parameters and �� = f��(p)m = (��(p)
m ; ��(p)

m ) : m = 1; . . . ;M (p); p =

1; . . . ; Pg is the current estimate of the HMM parameters. The parameter 
(p)mt is

the posterior probability of observing mixture component g(p)m (�) at time t. The
relation between the original pdf and the normalized pdf is as follows:

g(xtj�(p)
m ;�(p)

m ) =
h(y(p)mtj�(p);	(p))

jJ(p)m j

=
h(y(p)mtj�(p);	(p))

j( ��(p)
m )1=2j ; (4.10)

where J(p)m = ( ��(p)
m )1=2 is the Jacobian matrix for the normalization transformation
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in Eq. (4.8). This relation can be used to modify the auxiliary function as follows:

Q(�j��) =
TX
t=1

PX
p=1

M(p)X
m=1



(p)
mt log

h(y(p)mtj�(p);	(p))

j( ��(p)
m )1=2j

: (4:11)

The ML estimates of the parameters, (�(p);	(p)) = (~�(p); ~	(p)), are calculated,

by di�erentiating this equation, as follows:

~�(p) =

PT
t=1

PM(p)

m=1 

(p)
mty

(p)
mtPT

t=1

PM(p)

m=1 

(p)
mt

; (4.12)

~	(p) =

PT
t=1

PM(p)

m=1 

(p)
mt (y

(p)
mt � ~�(p))(y

(p)
mt � ~� (p))TPT

t=1

PM(p)

m=1 

(p)
mt

; (4.13)

where (y
(p)
mt� ~�(p))T is the transpose of (y

(p)
mt� ~�(p)). These normalized pdf param-

eters are used to estimate the corresponding HMM parameters by the following

transformations,

~�(p)
m = ��(p)

m + (��(p)
m )1=2~�(p); (4.14)

~�(p)
m = ��(p)1=2

m
~	(p)( ��(p)1=2

m )T ; (4.15)

where ~�(p)
m and ~�(p)

m are the updated ML estimates of the mean and covariance

of the m-th component, respectively.

Let us compare this normalization technique with the stochastic matching

(SM) algorithm [44] for compensating mismatch during speech recognition. As

can be seen from Eqs. (4.14) and (4.15), ( ��(p)
m )1=2~� (p) corresponds to the bias in

SM, where ��(p)
m is the covariance for mixture component g(p)m (�), and ~	(p) corre-

sponds to the scaling factor in SM when the diagonal covariance is used for ~	(p).

In the proposed method, the bias for each mixture component changes according

to the variance. When the variance is large, the bias is also large. Experimental

results to compare the two compensation and normalization approaches will be

given later.

4.4 Hierarchical prior

The tree structure representation of the set of Gaussian mixture components

have been developed in Section 4.2. How to construct a node normalized pdf to



64 CHAPTER 4. SMAP SPEAKER ADAPTATION

approximate a collection of heterogeneous Gaussian pdfs in the node cluster, and

how to obtain maximum likelihood estimate of the mean and the covariance of

the normalized pdf have been also shown in Section 4.3. Next, the framework of

hierarchical priors is established.

As discussed before we are interested in estimating the parameter set, � =

f�m = (�m;�m) : m = 1; . . . ;Mg, based on a small set of adaptation data,

X = fx1; . . . ;xTg. Let the normalized Gaussian pdf, h(p)k (�), at the p-th node of

the k-th layer of the tree, be assigned as the parent node of the m-th mixture

component gm(�) by clustering the set, G = fgm(�)g. Then, the parameters �m

can be estimated with the transformations in Eqs. (4.14) and (4.15) using the

ML estimates shown in Eqs. (4.12) and (4.13).

Since the normalized pdf is only an approximation to gm(�) under mismatch
conditions, we expect a better estimate of �m, which is directly connected to the

K-th layer (or leaf layer), to be obtained with an estimate, ~�(p)K�1 = (~�(p)
K�1;

~	(p)
K�1),

at the immediate parent node of gm(�). To establish a hierarchical prior frame-

work for MAP estimation, we also extend the argument and assume that any

normalized pdf, h
(p)
k (�), at the k-th layer of the tree is better characterized by

some prior information from the immediate parent nodes at the (k � 1)-st layer.

One easy way to accomplish this is to assume the prior density for estimating

�k is based on some knowledge about �k�1. An even stronger constraint is to

assume a prior density of the form p(�kj�̂k�1), i.e. the hyperparameters for the

prior densities are simply derived from some estimate �̂k�1 of �k�1.

Now for each k = 1; . . . ;K, with a given estimate �̂k�1. the MAP estimate

�̂k is evaluated as follows:

�̂k = argmax�kp(�kj�̂k�1;Y )

= argmax�k
p(Y j�k; �̂k�1)p(�kj�̂k�1)

p(Y )
: (4.16)

Note �̂0 = �0 = (~0; I) is the known parameter assumed at the root of the tree.

By further assuming that p(Y j�k; �̂k�1) does not depend on �̂k�1 and since p(Y )
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is not a function of �k, we have

�̂k = argmax�kp(Y j�k) � p(�kj�̂k�1); k = 1; . . . ;K: (4:17)

It has been already assumed in Section 4.3 that p(Y j�k) is a normal density.

To make MAP estimation in Eq. (4.17) more tractable, it is assumed that the

conjugate prior density for the random vector �k, p(�kj�̂k�1), to be a normal-

Wishart density of the form (e.g., [10, 18]),

g(�k;	kj�̂k�1; 	̂k�1; �k; �k) /
j	kj�(�k�D)=2 exp

�
��k
2
(�k � �̂k�1)T	�1

k (�k � �̂k�1)
�
exp

�
�1

2
tr(	̂k�1	

�1
k )

�
;

(4.18)

for k = 1; . . . ;K, with �k > 0 and �k > D � 1 being the control parameters

speci�ed by external constraints with D being the dimension of the observation

vector. We now arrive at a familiar MAP solution [18]. By performing this MAP

estimation sequentially at each layer k, we obtain the MAP estimate �̂
(p)
K , at the

p-th cluster of the leaf layer K. Then the MAP estimate, �̂m, for each Gaussian

mixture component can be solved. This novel estimation formulation is described

in the following.

4.5 SMAP adaptation using hierarchical priors

Consider for the set G of all the Gaussian mixture component, we have available a

tree structure like the one shown in Figure 4.3, whereK is the total number of lay-

ers or the depth of the tree. Each node in the K-th layer (leaf node) corresponds

to one Gaussian mixture component in the set of CDHMMs. The root node (the

�rst layer) corresponds the whole set G of the mixture components. Each inter-

mediate node corresponds to a subset of G, and each of its subordinate leaf nodes

corresponds to an element of a subset. At each node in the tree, a normalized pdf,

which is shared among the mixture components in the corresponding subset of

G, is assigned. For each node N , at the p-th cluster of the k-th layer, Eqs. (4.12)



66 CHAPTER 4. SMAP SPEAKER ADAPTATION

k

K

ν1

ν K

layer

layer

(leaf)

1layer

(root)

ν k

µ

Σm

m

ΨK

Ψk

Ψ1
2
1

2
1

2
1

Figure 4.3: SMAP adaptation for Gaussian pdfs in CDHMMs. For simplicity,

the case when the dimension is one (scalar) is shown.
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and (4.13) are used to calculate the ML estimates of the pdf parameters, ~�(p)
k and

~	
(p)
k (in this case, Gp is the subset related to node N). In the tree structure, one

node sequence from the root to a leaf corresponds to all the predecessor nodes

that must be traversed to reach a particular mixture component. From now on

the focus is on estimation of the parameter set, �m = (�m;�m), for a particular

m-th mixture component in G. The su�x identifying the mixture component

is therefore omitted except when doing so causes confusion. The procedure de-

scribed below is general and can be used to estimate the parameter sets of all the

other mixture components in CDHMMs.

Let the node sequence from the root to the leaf corresponding to the m-th

mixture component be fN1; . . . ; Nk; . . . ; NKg, where N1 is the root node and NK

is the leaf node directly attached to mixture component m. We denote �k =

(�k;	k) as the Gaussian pdf parameters for node Nk. Now consider the problem

of estimating, the parameter set �K that maximizes the posterior probabilities,

after observing a sequence of feature vectorsY . It should be noted that once �K is

obtained, the parameter set � can be obtained immediately by using Eqs. (4.14)

and (4.15). In the proposed approach, a set of priors, fp(�kj�̂k�1)g, are used as

hierarchical priors for estimating �K , where �0 is �xed to be �̂0 = N(~0; I). Based

on the discussion in Section 4.4 the pdf for node Nk, which has the parameter

set, �k, is assumed to have a hyperparameter, �̂k�1, directly extended from its

immediate parent node, Nk�1.

Since p(�kjY ) =
R
p(�kj�k�1;Y )p(�k�1jY ) d�k�1, for k = 1; . . . ;K, the pos-

terior distribution for �K is then expressed as follows:

p(�K jY ) =Z
. . .

Z
p(�K j�K�1;Y ) . . . p(�kj�k�1;Y ) . . .

. . . p(�1j�0;Y )p(�0jY )d�0d�1 . . . d�K�1; (4.19)

with Z
p(�0jY )d�0 = 1; (4:20)



68 CHAPTER 4. SMAP SPEAKER ADAPTATION

because �0 is assumed to be known.

Because Eq. (4.19) is di�cult to maximize directly, a key step here is to

assume

Z
p(�1j�0;Y )p(�0jY )d�0 ' p(�1j�̂0;Y ); (4.21)Z

p(�k+1j�k;Y )p(�kj�̂k�1;Y )d�k ' p(�k+1j�̂k;Y );

k = 1; . . . ;K � 1; (4.22)

where �̂k is the MAP estimate obtained in Eq. (4.17). The posterior distribution

for �K is thus approximated as follows:

p(�K jY ) '
K�1Y
k=0

p(�k+1j�̂k;Y ): (4:23)

Under these assumptions the MAP estimates in Eq. (4.17) for each node Nk

are calculated. First, the ML estimate for each node k is calculated. the auxiliary

function Q(�j�) for solving �̂k is written as follows:

Q(�kj��k) =
TX
t=1

X
m2Gk


mt log
h(ymtj�k)
j( ��m)1=2j + C; (4:24)

where C is the part that is independent of �k, ��m is known and not a function

of �k and Gk is a subset of G corresponding to node Nk. We also de�ne �k =PT
t=1

P
m2Gk


mt, with the membership function 
mt being evaluation at the given

value of ��k. Then by excluding the constant term C, the MAP estimates are

calculated by maximizing the following auxiliary function with respect to �k:

R(�kj��k) = Q(�kj��k) + log g(�k);

=
TX
t=1

X
m2Gk

�

mt(�1

2
log j	kj � 1

2
(ymt � �k)	�1

k (ymt � �k)
T
�
+

[��k �D

2
log j	kj � �k

2
(�k � �̂k�1)	�1

k (�k � �̂k�1)T

�1

2
tr(	̂k�1	

�1
k ))]; (4.25)

where Q(�kj��k) and g(�k) are de�ned in Eq. (4.24) and the relation in Eq. (4.18).
By di�erentiating Eq. (4.25) and setting its result to zero, the MAP estimates,
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(�k;	k) = (�̂k; 	̂k), are calculated as follows: for k = 1; . . . ; K,

�̂k =
�k~�k + �k�̂k�1

�k + �k
; (4.26)

	̂k =
	̂k�1 + �k ~	k +

�k�k
�k+�k

(~�k � �̂k�1)(~�k � �̂k�1)T
(�k �D) + �k

; (4.27)

with �̂0 = ~0 and 	̂0 = I at the root node and ~�k and ~	k are ML estimates shown

in Eqs. (4.12) and (4.13). The mean �̂K and the variance 	̂K for the leaf node

NK are obtained by applying Eqs. (4.26) and (4.27) successively from the root

node to the leaf node. To obtain the approximate MAP estimate, these �̂K and

	̂K values in Eqs. (4.26) and (4.27) are �rst assigned as �̂(p) and 	̂(p) according

to their corresponding cluster membership and then used to replace the ~�(p) and

~	(p) values shown in Eqs. (4.14) and (4.15), i.e.,

�̂(p)
m = ��(p)

m + (��(p)
m )1=2�̂(p); (4.28)

�̂(p)
m = ��(p)1=2

m 	̂(p)( ��(p)1=2
m )T ; (4.29)

where �̂(p)
m and �̂(p)

m are the updated MAP estimates of the mean and covariance

of the m-th component, respectively.

It should be noted that the prior parameters, �k and �k, for all the nodes in the

tree need to be speci�ed. Since the SMAP framework provides no speci�c ways

to calculate these parameters, optimal values should be determined empirically.

One simple way to do this is to use the same � and � for all the nodes and optimize

their values by using preliminary recognition experiments (see Section 4.5.B).

Equation (4.26) can be rewritten for the leaf node as follows:

�̂K =
KX
k=1

wk~�k; (4:30)

where the weighting factor wk is

wk =
�k

�k + �k

KY
i=k+1

�i
�i + �i

: (4:31)

The mean vector estimated using the SMAP method can be considered as a

weighted sum of the ML estimates at the di�erent layers of the tree. Two impor-

tant characteristics of the weight, wk, are highlighted in the following:
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1. The weight wk at node Nk becomes larger as the amount of data at that

node, �k, becomes larger.

2. The weight wk at node Nk decreases as k becomes smaller.

These properties are desirable for adaptation. When the amount of data is small,

the ML-estimated parameters in the upper layers, which represent global trans-

formation, are mainly responsible for the resulting pdf. And when the amount

of data is large, the parameters in the lower layers, which represent localized

transformation, predominate.

It should be noted that Furui [17] has already developed an unsupervised

adaptation method that utilizes a hierarchical structure for vector quantization.

It is also important to note that similar hierarchical structures have already been

used in the acoustic modeling ([3, 31, 74, 54]). Although this SMAP approach is

not the �rst using tree-based adaptation (e.g., [38]), the method described here is

thought to be theoretically well-de�ned in terms of taking advantage of both the

Bayesian framework and the tree construction principle. It demonstrates that

this framework and this principle work well together as will be clear in the next

section.

4.6 Experiments

The proposed method was experimented with the 991-word DARPA resource

management (RM) task [40]. New adaptation and testing data from �ve non-

native male speakers (labeled as A,B,C,D, and E) were recorded simultaneously

under two acoustic conditions: (1) a close-talking microphone (MIC); and (2) a

telephone handset over a dial-up line (TEL). The data for adaptation consisted

of 300 utterances from each speaker in each of the two channels. For testing, 75

utterances from each of the two channels were collected from each speaker. In

the following experiments all the 75 utterances were always used in a particular

condition for testing.
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The speech signal was �rst down-sampled from 16 kHz to 8 kHz and the

analysis frames were 30-ms wide with a 20-ms overlap. For each frame a 38-

dimensional feature vector [31] was extracted by using a tenth-order LPC analy-

sis. The feature vector for each frame consists of a 12-dimensional cepstral vector,

a 12-dimensional delta-cepstrum vector, a 12-dimensional delta-delta-cepstrum

vector, a delta log energy feature and a delta-delta log energy feature. For recog-

nition, a set of 1769 context-dependent phone HMMs [31] was used. All units

except the one for background silence had three states, each with a maximum

of 16 mixture components. This gives a total of about 5,000 states and about

80,000 distinct Gaussian densities. Forty seven context-independent phones were

used to create all the context-dependent units. For all the experiments, the RM

word pair grammar was used, which gives a perplexity of about 60. A diagonal

covariance was assumed for each mixture Gaussian component.

Speaker-independent HMMs were trained using the NIST/RM SI-109 training

set consisting of 3990 utterances from 109 native American talkers (31 females

and 78 males), each providing 30 or 40 utterances. These models were then

adapted, using a MAP adaptation algorithm [18], with the data from the 78

male talkers in order to create speaker-independent male models. These speaker-

independent male models served as initial seed models for further adaptation. The

tree structures used in the experiments were constructed using the parameters of

the speaker-independent male models. The background noise model was excluded

in tree construction.

4.6.1 Summarization

The e�ectiveness of the summarization technique using the normalized pdfs is

examined �rst. In this experiment, one single normalized pdf was applied to all

the mixture components and its covariance was assumed as the identity matrix,

i.e. no mismatch in scaling was considered. This normalization technique was

compared with two other methods: stochastic matching (SM) [44] and a method
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Table 4.1: Recognition rates (%) for MIC data when one utterance was used for

normalization. SI is the result of a speaker-independent recognition experiment.

SI Normalized pdf SM Tied-Shift

75.2 81.2 81.7 81.7

that uses a shift in the feature vector space (Tied-Shift) [50, 51, 36, 52, 54]. In

SM the i-th element of the mean vector for the m-th component is adapted as

follows:

~�m(i) = �m(i) +

PT
t=1

PM
l=1 
lt

xt(i)��l(i)
�2
l
(i)PT

t=1

PM
l=1


lt
�2
l
(i)

: (4:32)

And in Tied-Shift the mean vector for the m-th component is adapted as follows:

~�m(i) = �m(i) +

PT
t=1

PM
l=1 
lt(xt(i)� �l(i))PT
t=1

PM
l=1 
lt

: (4:33)

In contrast, using a single normalized pdf, the mean vector for the m-th compo-

nent is adapted as follows:

~�m(i) = �m(i) + �m(i) �
PT

t=1

PM
l=1 
lt

xt(i)��l(i)
�l(i)PT

t=1

PM
l=1 
lt

: (4:34)

The recognition experiments for the �ve speakers were carried out using the

data collected through the microphone (MIC). Supervised adaptation in which

only one utterance was used for adaptation was carried out. The results of the ex-

periments, averaged over �ve speakers, were listed in Table 4.1. It shows that the

simpli�ed normalization technique gave similar improvement over the SI recogni-

tion accuracy compared with the other two methods. This normalization proce-

dure will be used throughout the rest of this chapter.

4.6.2 Tree clustering

It is di�cult to choose the optimal tree structure for adaptation. To determine a

good experimental condition, several structures were tested in a set of supervised
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Figure 4.4: Recognition results obtained using di�erent tree structures.
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adaptation experiments. In each experiment the number of branches from each

node was �xed to ten, and the depth of the tree was changed from one layer

(K = 2 with only one common normalized pdf) to �ve layers (K = 6 with

11,111 normalized pdfs). The weight � used in tree clustering in Eqs. (4.6) and

(4.7) is �xed at a value of 0.1 for all the experiments. Only the mean vectors

were modi�ed and the variances remained unchanged. Recognition accuracies

obtained in the adaptation recognition experiments (averaged over �ve speakers)

are shown in Figure 4.4 as a function of the amount of adaptation data. The

result obtained with only one normalized pdf (K = 2) was obviously the worst.

The result obtained with the two-layer tree (K = 3) was much better than that

obtained with one normalized pdf (K = 2). The result obtained with the three-

layer tree (K = 4) was better than that obtained with the two-layer tree (K = 3),

and the results were similar for K = 4; 5, and 6. The three-layer (K = 4) tree

was therefore used in the following experiments. In all experiments the control

parameters �k and �k were shared by all the nodes in the tree. Using �k = 2 and

�k = D + 1 gave the best results for the three-layer (K = 4 with 111 clusters)

tree in some preliminary experiments. These control parameters were therefore

used in all the following experiments.

Next, how the weights in Eq. (4.31) changed according to the amount of data

was investigated. Those changes for each layer in the four-layer (K = 5) tree

were examined. Figure 4.5 shows the distribution of the weight among the layers

in the tree for four di�erent numbers of utterances: 1, 5, 25 and 100. When the

amount of data was small, the ML estimates of the upper layers (near the root

node) were the ones mainly used. As the amount of data became larger, those of

the lower layers (near the leaf nodes) predominated.

Next how the acoustic features of the speech units were distributed in the

tree structure was examined . All the units were classi�ed into nine phonemic

classes [15] according to the feature of the central phone label in a triphone unit

and counted the number of mixture components in each node. Only the mixture
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Table 4.2: Phone distribution (%) in the �rst layer (K = 2) of the tree.

Node No. 1 2 3 4 5 6 7 8 9 10

Front vowels 72.4 0.1 20.9 0.9 3.7 0.4 0.6 0.6 0.5

Central vowels 49.7 0.6 6.5 4.1 23.2 0.7 6.8 6.5 1.8

Back vowels 92.2 0.1 1.3 2.5 1.5 2.2 0.3

Diphthongs 98.6 0.7 0.2 0.2 0.2

Fricatives 4.9 2.9 2.7 1.2 0.8 82.6 0.5 1.2 3.3

Stops 2.8 63.2 10.5 4.0 0.5 1.1 12.6 0.9 0.5 3.8

Nasals 51.6 0.1 0.2 2.4 0.1 3.2 0.2 0.4 0.5 41.4

A�ricates 7.0 1.0 92.0

Glides, Semivowels 59.3 3.7 1.8 2.0 21.6 9.2 2.4

Table 4.3: Phone distribution (%) in the second layer (K = 3) of the tree.

Node No. 1 2 3 4 5 6 7 8 9 10

Front vowels 68.6 0.5 7.6 0.1 0.0 0.4 21.7 0.8 0.3

Central vowels 10.4 5.9 44.6 0.1 0.8 5.6 0.1 19.2 10.5 2.9

Back vowels 14.5 0.5 66.8 0.1 7.6 4.2 0.9 0.2 5.2

Diphthongs 0.5 93.7 0.2 0.2 1.2 4.0 0.2

Nasals 29.9 6.7 0.8 1.6 1.1 59.8

Glides, Semivowels 11.5 0.6 18.2 0.2 41.9 0.6 11.8 0.4 10.4 4.4
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components in the middle state of each unit were selected because the other two

may be in
uenced by their nearby phones. The distribution in the nodes in the

second layer (the child nodes of the root-node) is shown by the data listed in Table

4.2. The numbers in each row are the percentage of mixture components that

were classi�ed into the various nodes. For the a�ricates, for example, 92% of the

corresponding mixture components were clustered into node No. 7. It can be seen

that fricatives, a�ricates, and stops were distinguished from the other features,

whereas all the vowels, nasals, glides, and semi-vowels were mostly in the �rst

node (Node No. 1). Therefore, the child nodes of Node No. 1 were examined next.

The results were listed in Table 4.3. This time, front vowels were distinguished

from the other vowels (central vowels, back vowels, and diphthongs), and glides,

semi-vowels, and nasals were separated from vowels. These results show that

the clustering using only the distance in the acoustic space results in a mixture

component grouping that is phonologically meaningful.

4.6.3 Supervised adaptation experiments

To verify the e�ectiveness of the SMAP method, it was compared with conven-

tional MAP estimation (MAP) [18] and with simple bias estimation using a tree

structure without MAP estimation (TREE) [53]. In the experiment labeled as

MAP estimation, no structure in the acoustic space was assumed and each pa-

rameter of HMMs was estimated separately. In the TREE experiment, one node

in the tree was selected for each mixture component by using a threshold data

amount, and the ML estimates for the parameters at that node were used to

modify the parameter of the corresponding mixture component (Figure 4.6).

The recognition results averaged over all �ve non-native speakers, for the two

acoustic conditions, MIC and TEL, are shown in Figures 4.7 and 4.8, respectively.

As can be seen, the baseline performance of SI models is much lower for TEL

than for MIC. This is because the combined microphone and channel distortion

was larger in the TEL data than the situation in the MIC data in which the
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Figure 4.6: Speaker adaptation adaptation using autonomous model complexity

control (TREE adaptation).

microphone di�erence is the main source of distortion on top of the speaker

distortion due to non-native pronunciations and accents. In each �gure two sets

of results are shown for the SMAP method: mean-only adaptation (solid curve)

in which the variances of the normalized pdfs were assumed to be the identity

matrix I and only the means were estimated, and the other with adaptation for

both means and variances (dotted curve). These �gures clearly show that the

SMAP method outperformed the MAP and TREE methods at almost every data

point. The recognition rates for the SMAP method were much higher than those

for MAP when the amount of data was small. With three adaptation utterances

for TEL data, for example, the error rate reduction from the SI performance was

56%. This was much larger than the reduction obtained with the MAP method,

which was only 1.7%. The recognition rates for the SMAP method became the

same as those for the MAP method when the amount of data became large. The

SMAP method also showed better recognition accuracy than that obtained with

the TREE method not only when the amount of data was large but also when

the amount of data was small. This is probably because parameter estimation
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mean-only adaptation (solid curve), and adaptation for both means and variances

(dotted curve).



80 CHAPTER 4. SMAP SPEAKER ADAPTATION

3 5 10 25 50 100 300

80

70

50

1

60

40

R
ec

o
g

n
it

io
n

 a
cc

u
ra

cy
 (

%
)

Number of utterances for adaptation

SMAP

MAP

TREE

SI

90
TEL

Figure 4.8: Recognition rates obtained with supervised adaptation when the TEL

data were used. Two kinds of experiments were done with the SMAP method:

mean-only adaptation (solid curve), and adaptation for both means and variances

(dotted curve).



4.6. EXPERIMENTS 81

Table 4.4: Recognition rates (%) of each speaker obtained when using the SMAP

method on MIC data.

No. of Utter. A B C D E Ave.

SI 74.8 51.2 74.9 85.7 89.3 75.2

1 83.0 68.5 88.6 82.9 88.1 82.2

3 82.9 70.1 89.2 86.8 89.6 83.7

5 84.8 69.7 89.3 88.7 90.1 84.5

10 83.8 72.8 90.8 89.2 90.4 85.4

25 86.2 76.3 88.3 90.5 91.3 86.5

50 88.3 78.4 91.6 92.2 91.7 88.4

100 90.1 84.5 93.2 94.1 91.7 90.7

300 95.0 92.8 96.4 97.6 94.9 95.3

was more robust than that in TREE, since a weighted sum of parameters from

more than one layer was used. The mean-only adaptation result was better than

adaptation of both means and variances when the amount of data was extremely

small, but became worse as the amount of data became larger. This indicates

that when the data amount was insu�cient it is di�cult to estimate both the

mean and the variance as expected.

The results for each speaker, obtained when both means and variances were

adapted are listed in Tables 4.4 and 4.5. The recognition rates were improved for

all sizes of adaptation data and for all the speakers when TEL data were used as

shown in Table 4.5. The improvement was especially more pronounced for those

speakers with lower accuracy when SI models were used. With the MIC data,

the recognition rates for speakers D and E were slightly less than the SI result

when only one utterance was used but they soon became higher when more than

three utterances were used.
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Table 4.5: Recognition rates (%) of each speaker obtained when using the SMAP

method on TEL data.

No. of Utter. A B C D E Ave.

SI 48.8 18.6 50.8 35.6 52.6 41.3

1 67.9 58.9 75.2 77.8 73.7 70.7

3 76.3 58.4 75.2 81.1 78.8 74.0

5 77.6 61.7 75.2 83.6 76.6 74.9

10 80.3 63.2 78.7 83.2 79.4 77.0

25 81.2 65.8 79.3 82.1 80.8 77.8

50 83.2 72.1 80.5 83.8 84.1 80.7

100 84.5 79.7 83.6 87.2 83.6 83.7

300 91.4 90.2 91.7 95.6 90.4 91.9

Table 4.6: Recognition rates (%) obtained with unsupervised adaptation for MIC

data.

A B C D E Ave.

SI 74.8 51.2 74.9 85.7 89.3 75.2

SMAP 81.2 67.3 78.7 88.4 89.0 80.9

4.6.4 Unsupervised adaptation experiments

Unsupervised adaptation, in which no supervising information is available, is

desirable in actual system operation. An on-line unsupervised adaptation sce-

nario incorporating SMAP was therefore designed and evaluated [57, 59]. During

unsupervised adaptation and testing, the parameters were estimated on a per

utterance basis; only one utterance was used for unsupervised adaptation. First

the test utterances were decoded by using the initial HMMs and then the pa-

rameters were estimated assuming this decoded word string is correct. In these
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Table 4.7: Recognition rates (%) obtained with unsupervised adaptation for TEL

data.

A B C D E Ave.

SI 48.8 18.6 50.8 35.6 52.6 41.3

SMAP 67.3 48.5 57.7 43.1 70.1 57.3

experiments, the variances for the normalized pdfs were �xed to be the identity

matrices. The recognition results are listed in Tables 4.6 and 4.7. The error rate

reduction was 23% for MIC and 27% for TEL. It should be noted that the e�ect

of the SMAP method was larger for the speakers with lower SI recognition rates.

For speaker B, for example, the error reduction rate was 33% for MIC and 37%

for TEL.

The recognition rates in Table 4.6 are still rather low for any actual system

usage. In the next experiment, ways to combine batch supervised adaptation

typically used for fast enrollment of new speakers with on-line unsupervised adap-

tation was examined in order to raise recognition rates to a level high enough for

practical usage. This combined adaptation process was carried out in two steps:

Step 1. Supervised adaptation using a set of adaptation data to generate seed

models;

Step 2. Unsupervised adaptation using the test data, based on the above models.

The recognition rates (averaged over the �ve speakers) are listed in Table 4.8. In

this experiment, the number of utterances used in Step 1 varied from 1 to 300.

The supervised adaptation was carried out using the MIC or TEL adaptation

data (labeled as SUP in Table 4.8) and unsupervised adaptation and recognition

were also done for MIC or TEL test data (labeled as TEST in Table 4.8). In

all cases, only one utterance was used for unsupervised adaptation (Step 2). In

this table, the values listed in the column labeled S1 are the recognition rates
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Table 4.8: Recognition rates (%) for combining supervised and unsupervised

adaptation.

SUP MIC TEL

TEST MIC TEL MIC TEL

No. of Utter. S1 S2 S1 S2 S1 S2 S1 S2

0(SI) 75.2 80.9 41.3 57.3 75.2 80.9 41.3 57.3

1 83.0 83.5 41.4 57.8 74.8 81.6 71.5 71.7

3 83.8 83.9 44.3 62.2 77.5 82.8 74.4 75.2

5 83.9 84.2 47.0 63.0 78.9 83.9 76.0 76.3

10 85.7 86.1 51.7 67.2 79.1 84.3 77.3 77.2

25 86.3 86.4 54.0 69.4 80.3 85.1 77.5 78.3

50 87.7 87.8 58.1 73.3 82.2 85.8 80.0 80.0

100 90.4 90.4 62.1 75.5 83.8 87.6 82.6 83.2

300 94.3 94.4 70.8 84.6 87.7 91.0 90.6 90.6
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obtained with Step 1 only and the values listed in the column labeled S2 are the

rates obtained after Step 2. Although this adaptation was only slightly e�ective

when the acoustic conditions for the SUP data and that for the TEST data were

similar, its e�ectiveness when acoustic conditions were di�erent was clearly shown.

For example, when the MIC data set was used for SUP and the TEL data set was

used for TEST, the combined method (Step 1 and Step 2) required only three

utterances for supervised adaptation to achieve 60% recognition accuracy, while

the supervised adaptation (Step 1 only) needed 100 utterances. It was proved

that this combined adaptation is especially e�ective when there are mismatches

other than the speaker di�erences in the current adaptation scenario. It should

also be noted that there was no degradation in the recognition performance of

the combined strategy when the acoustic conditions for SUP and TEST were

identical, i.e., when there was no mismatch between the adaptation data and the

testing data.

4.7 Discussion and summary

The SMAP method for adaptation of HMM parameters enhances the perfor-

mance of the conventional MAP method when the amount of data is small by

utilizing a hierarchical structure in the model parameter space. Its e�ectiveness

was con�rmed in a set of recognition experiments using the speech data from

non-native speakers collected through two di�erent channels (MIC and TEL). In

supervised adaptation, for example, with three utterances for TEL data, the error

rate reduction was 56%. This was much better than the 1.7% reduction obtained

with the MAP method. The SMAP method was also shown to be e�ective in

unsupervised adaptation: with only one utterance for TEL data, the error rate

reduction was 27%. In addition, the combination of supervised adaptation and

on-line unsupervised adaptation greatly reduced the amount of data required for

supervised adaptation. To obtain a recognition accuracy of 60% for the TEL

data when using the MIC data for supervised adaptation, the combined method
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required only three utterances whereas 100 utterances were needed to obtain 60%

accuracy when using supervised adaptation only. It should also be noted that the

SMAP method yields as high a recognition accuracy as the MAP method when

the amount of data is su�ciently large.

Mismatches between training and testing conditions are caused by many dif-

ferences, such as those between speakers, microphones, channels and noise levels.

Many methods of compensating such mismatches have been developed but most

of them focus on one or two di�erences. In an actual operational environment,

however, more than one di�erence often contributes to the mismatch. The signi�-

cance of each di�erence is usually unknown. In such cases, it is almost impossible

to distinguish the contribution of one di�erence from that of another by using only

the speech data. Furthermore, it is di�cult to choose an e�ective combination

of techniques, each of which is designed to compensate the e�ect of a particular

di�erence. The SMAP method, on the other hand, compensates the mismatch

as a whole; there is no need to specify any particular di�erence responsible for

the mismatch. It is therefore more robust than the other methods when these

di�erences are not known.

Recently, the idea of rapid adaptation was studied intensively at the 1998

Johns Hopkins University Summer Workshop and the results obtained were sum-

marized in [14]. Tree structure dependency for speaker adaptation was one of the

techniques explored during the workshop as a means of reducing the requirement

for a large adaptation set [27]. The �ndings also support the proposed SMAP

algorithm, especially in the area of unsupervised speaker adaptation.

This SMAP approach is quite general in its framework and can be easily

applied to other adaptation methods. For example, SMAPLR, in which SMAP

is applied to maximum a posteriori linear regression (MAPLR), was recently

proposed and proved to be signi�cantly better than MAPLR when the amount

of adaptation data is extremely small [61]. The importance and e�ectiveness of

this SMAP approach was also emphasized in recent surveys of speaker adaptation
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studies [72, 33].

The SMAP method described here uses a tree structure in the model parame-

ter space. While many kinds of tree structures can be used for SMAP estimation,

it is important to choose one which represents the similarity of the normalized

pdfs of the mixture components well. Good results were obtained when the

Kullback-Leibler divergence between mixture components was used as a measure

of similarity in constructing the tree structure, but many other similarity mea-

sures can be used. Other structures re
ecting the relationship between acoustic

model parameters are also worth investigating.

-
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Chapter 5

Conclusion

This thesis has proposed a structural approach to robustness against data insu�-

ciency. In this approach, a tree-structured model set is prepared and one node set

(a model) is selected by using information-theoretic criteria. Three key factors

in this approach are the design of the root layer and the leaf layer, the method

of constructing the tree structure, and the node selection framework. This ap-

proach was applied to two problems in speech recognition: acoustic modeling and

speaker adaptation.

For acoustic modeling, a phonetic decision tree, in which the root is a mono-

phone and the leaves are triphones, was constructed and the optimal model was

selected by using the MDL criterion. This approach achieved recognition more

accurate than that obtained when a conventional approach was used and it had

a much lower overall computational cost in an evaluation made through a series

of recognition experiments.

For speaker adaptation, a tree of Gaussian pdfs was constructed by using

Kullback-Leibler divergence. Its leaves correspond to all the mixture components

in CDHMMs and the root node corresponds to the pdf shared among all of them.

The optimal model was selected by using SMAP estimation. It reduced the error

rate by half using only three utterances for adaptation and it yielded the same

accuracy as conventional MAP and ML estimation when the amount of data was

89
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su�ciently large in the evaluational experiments.

5.1 Contribution of the thesis

The contribution of this thesis for speech recognition studies is the following:

� It has proved the importance of the described structural approach in statis-

tical pattern recognition. This approach can be applied to many problems

incurred due to data insu�ciency.

� It has proved that the use of information criteria is an e�ective approach to

dealing with acoustic modeling problems in speech recognition. Among the

information criteria, the MDL criterion was focused on and its e�ectiveness

was extensively explored.

� It has shown several examples of tree-structured models, which performed

well in the structural approach. While many other models may possibly be

used, those described in this thesis demonstated particularly good perfor-

mance.

� It o�ers excellent methods for acoustic modeling and speaker adaptation;

MDL acoustic modeling and SMAP adaptation. Both have been extensively

studied by many researchers since they were �rst published.

5.2 Future research directions

Although I believe the investigations reported in this thesis represent some sig-

ni�cant progress, further research is clearly still needed.

� The MDL-based modeling can be applied not only to the clustering method

using a phonetic decision tree but also to other clustering methods for acous-

tic modeling. It can also be easily applied to the language modeling in
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speech recognition, and some studies relevant to this point have appeared

recently (e.g., [62]).

� The MDL criterion can be used to compare various classes of probabilistic

models, since it utilizes only the model complexity and the likelihood of the

probabilistic model for the data. For example, it can be used to decide what

class of models can best be used for the output pdfs of HMMs. Furthermore,

it can be used to carry out clustering across more than one parameter

set. For example, it enables the similtanuous clustering of parameters for

transtition probabilities and those for output probabilities.

� The SMAP adaptation is quite general in its framework, and can easily be

applied to language adaptation. The n-gram language model, for example,

can be used to construct a tree structure in which each leaf node represents

an n-gram and an (n-1)-gram is assigned to the parent node. In a trigram

model(e.g., [24]), a four-layer tree is constructed; for each word the root

node corresponds to uniform distribution for all the vocabulary, the parent

node in the �rst layer corresponds to the unigram, the parent node in the

second layer corresponds to the bigram, and the leaf node corresponds to

the trigram.

� While this structural approach is not directly aimed at increasing the recog-

nition accuracy under ideal conditions, it will be helpful for research in this

direction. This approach keeps computational costs low because it makes

it possible to easily obtain a model whose size is appropriate for the given

amount of training data.

� It should be noted that noisy data are not dealt with in this thesis. It is

well known that environmental noise and channel distortion can seriously

degrade speech recognition. In such cases, the likelihood of data becomes

more important in model selection. While one method described in this

thesis used the MDL criterion, in which the likelihood is taken into account,
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further evaluation using actual noisy data is still needed.

� This approach utilizes the embedded structure of the parameter space. In

the acoustic modeling, it is assumed that the structure of the parameter

space can be represented by phonetic decision trees. And in the speaker

adaptation, it is assumed that the Kullback-Leibler divergence can be used

as the measure of the distance between the Gaussian pdfs. While these

assumptions were justi�ed by the evaluation, it may be possible to obtain

more accurate representations of the embedded structure.
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Appendix A

Derivation of Description Length

The description length is de�ned as the cord length required for encoding a com-

pound information source [43]. The MDL criterion states that the probabilistic

model which minimizes the description length is the optimal model for given data.

Let us assume a set of models f1; . . . ; i; . . . ; Ig and data xN = fx1; . . . ;xNg are

given. The description length DL(i) for model i is the sum of three parts: the

data description length DL1(i), the parameter description length DL2(i), and

the model description length DL3(i),

DL(i) = DL1(i) +DL2(i) +DL3(i): (A:1)

DL1 is the description length given the data and the model, DL2 is the descrip-

tion length required for coding the parameter set for the model, and DL3 is the

description length for model selection.

In calculating DL3, it is usually assumed that the probability distribution

over the model set is uniform,

P (i) =
1

I
; i = 1; . . . ; I: (A:2)

Then, DL3(i) is simply calculated as follows,

DL3(i) = log I: (A:3)

From now on, we focus on DL for each model. The su�x i identifying the model

is therefore omitted.
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θ1

θ2

θ3

δ2

δ3

δ1

k = 3

Figure A.1: Quantization of parameter space.

Next, let us calculate DL1 for a model with parameter set �. DL1 is the

negative of the log-likelihood of the model with respect to given data, and is

minimum when the maximum likelihood estimate for the parameter set, �̂, is

used.

DL1 = � logP�̂(x
N ): (A:4)

We next consider the minimization of the sum of DL1 and DL2 by choosing

the parameter set. Assuming that the dimension of the parameter space is K,

then � is a vector with K real-valued components:

� = (�1; . . . ; �K)
T : (A:5)
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Since each element of the parameter vector � is a real number, an in�nite cord

length is needed to encode the parameter vector. One possible way to deal with

this di�culty is to discretize the parameter space. The parameter space can be

discretized by de�ning a cell as a k-dimensional rectangular solid having length

�k on the axis �k (see Figure A.1). The parameter vector �̂ is mapped to a

representative ~� in the same cell. If the volume of the parameter space is V , then

we have V=(�i � � � �k) cells. The sum of DL1 and DL2 is then,

DL1 +DL2 = min
�

D(�): (A.6)

D(�) = � logP ~�
(xN) + log

V

�1 � � � �K ; (A.7)

where � = f�1; . . . ; �Kg.
The minimization process of D(�) over � is carried out as follows. We �rst

make Taylor's expansion of the �rst term,

� logP ~�
(xN ) = � logP ^�

(xN) +
@(� logP�(x

N))

@�

����� ^� � � +
1

2
N � �T � IN (�̂) � �

+O(N � �3); (A.8)

IN(�̂) =
@2(� 1

N
logP�(x

N ))

@2�

����� ^� : (A.9)

The second term of (A.8) equals 0 because �̂ is the maximum likelihood estimate.

Under certain suitable conditions, IN (�̂) is converged to a K-dimensional matrix

of constants, I(�̂), known as the Fisher information matrix, when N !1. Then,

D(�) ' � logP ^�
(xN ) +

1

2
� �T � I(�̂) � � + log

V

�1 � � � �K : (A:10)

Di�erentiating this formula with each �k and setting a result equal to 0 for each,

we obtain the following equations,

(N � I(�̂) � �)k � 1

�k
= 0; k = 1; . . . ;K: (A:11)

Suppose that the eigenvalues of I(�̂) are �1; . . . ; �K , and the eigenvectors are

(u1; . . . ; uK). If we only consider the case when the axes of a cell are in parallel
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with the eigenvectors, then (A.11) becomes,

N �

0
BBBBB@
�1 0

. . .

0 �K

1
CCCCCA

0
BBBBB@

�1
...

�K

1
CCCCCA =

0
BBBBB@

1
�1
...

1
�K

1
CCCCCA : (A:12)

Hence, we have

�k =
1p

N � �k ; (A:13)

and then,

N � �T � I(�̂) � � = K: (A:14)

Moreover, since �1 � � ��k = jI(�̂)j, we have
1

�1 � � � �K =
p
N

K �
q
jI(�̂)j: (A:15)

Using (A.10), (A.14), and (A.15), (A.6) becomes,

DL1 +DL2 ' � logP ^�
(xN ) + log(V �pnK �

q
jI(�̂)j) + K

2
+O(

1p
N
)

= � logP ^�
(xN ) +

K

2
logN +O(1): (A.16)

Finally, the total description length is,

DL(i) = DL1(i) +DL2(i) +DL3(i)

' � logP ^�
(i)(xN) +

K(i)

2
logN + log I; (A.17)

where �̂
(i)

is the maximum likelihood estimate of the parameter set of model i,

and K(i) is the dimension of model i.



Appendix B

Maximum A Posteriori

Estimation

We consider the case where the parametric form of the probabilistic density func-

tion (pdf) p(x), where x is a k-component vector-valued random variable, is the

multivariate Gaussian pdf,

N (xj�;�) = (2�)�
k
2 j�j� 1

2 exp
�
�1

2
(x� �)T��1(x� �)

�
; (B:1)

while neither the mean vector � nor the variance � are known. Let X =

fx1; . . . ; xNg be a set of observed samples, which are assumed to be indepen-

dent and identically distributed (i.i.d.). Our goal is to estimate the parameter

set � = f�;�g by using the observation samples X .
Maximum likelihood (ML) estimation is often used for this purpose. In the ML

estimation, the parameter set which maximizes the following likelihood function

is chosen,

f(Xj�) =
NY
n=1

p(xnj�): (B:2)

The resulting maximum likelihood estimate, ~� = f~�; ~�g, is calculated as follows,

~� =
1

N

NX
n=1

xn; (B.3)

~� =
1

N

NX
n=1

(xn � ~�)(xn � ~�)T : (B.4)
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In the maximum a posteriori (MAP) estimation [10, 18], it is assumed that

the parameter set � is a random vector in the parameter space and it has a

prior distribution p(�). Let p(�jX ) be the posterior pdf that is obtained after the

observation of X . Then, using Bayes' rule,

p(�jX ) =
p(X j�)p(�)R
p(Xj�)p(�)d�

= C
NY
n=1

p(xnj�)p(�); (B.5)

where C is a scale factor that depends on X but is independent of �. The MAP

estimate �̂ is de�ned as the mode of the posterior pdf,

�̂ = argmax�p(�jX )

= argmax�

NY
n=1

p(xnj�)p(�): (B.6)

The choice of the prior pdf is a key issue in MAP estimation. Mainly from

the viewpoint of tractability, the conjugate prior pdf is often used; when using

it, the resulting posterior pdf is in the same family as the one that the prior pdf

belongs to. One such pdf for the multivariate Gaussian pdf N (xj�;�) is the
normal-Wishart density of the form,

g(�;�j�0;�0; �; � ) /
j�j���k

2 exp
�
�

2
(�� �0)

T��1(�� �0)
�
exp

�
�1

2
tr(�0�

�1)
�
; (B.7)

where (�0;�0; �; �) are the prior density parameters such that � > k� 1, � > 0,

�0 is a vector of dimension k, and �0 is a k � k positive de�nite matrix.

Then, the MAP estimate �̂ = f�̂; �̂g is the one that maximizes the following
function,

g(�;�jX ) =
NY
n=1

p(xnj�;�)g(�;�): (B:8)

After simple calculations, we get

�̂ =
��0 +

PN
n=1 xn

� +N
; (B.9)

�̂ =
�0 +

PN
n=1(xn � �̂)(xn � �̂)T + � (�0 � �̂)(�0 � �̂)T

(� � k) +N
: (B.10)
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It should be noted that as the number of samples, N , increases, the MAP

estimate �̂ = f�̂; �̂g approaches the ML estimate ~� = f~�; ~�g.
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