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Abstract

This thesis proposes D, T, SR fuzzy flip-flops and two types of fuzzy memory elements
in order to give a foundation of fuzzy temporal hardware system—fuzzy sequential circuits.

First, D, T, and SR fuzzy flip-flops are defined as basic elements of a fuzzy memory
module. Their characteristics are shown under four operation systems: max-min logical
(1—-,A,V), algebraic (1—-,-,4), bounded (1—-,®, ®), and drastic (1 —-, A, V) operation
systems. And then the inequalities between maxterm-expressed and minterm-expressed
T fuzzy flip-flops, and between set-type and reset-type SR fuzzy flip-flops are analytically
shown. The circuit areas of D, T, and SR fuzzy flip-flops decrease 2/3 to 1/2 of JK’s, and
delay times of them decrease 2/3 of JK’s.

Next, the characteristics of D, T, and SR fuzzy flip-flops are logically analyzed when
the fuzzy logical operation systém (-®@,®, ®) is restricted to max-min logical operation
system (1—:, A, V). Using the theory of B-ternary logic, fuzzy logical characteristics of the
D, T, and SR fuzzy flip-flops are represented in B-ternary truth table, and fuzzy logical
forms of all their characteristic functions are derived. Their structures of the partially
ordered sets are distributive lattices, in particular, they are boolean lattices in the case
of D and T fuzzy flip-flops under two kinds of partially ordered relation.

Finally, two type of fuzzy memory elements suitable for fuzzy inference are proposed.
These fuzzy memory elements are able to memorize any fuzzy logical values [0,1] and
able to execute fuzzy logical operations between a input value and the current value of
a memory. Their circuits are also designed and the circuit areas and the delay times of
these fuzzy memory elements are compared with those of fuzzy flip-flops. From these
results, max-min type fuzzy memory element uses a half of the circuit area of SR fuzzy
flip-flops and its delay time is 2/3 of that of SR fuzzy flip-flops.

This thesis concludes the advantage of proposed fuzzy memory elements for the fuzzy

hardware system from the above-mentioned facts.
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Chapter 1

Introduction

1.1 Background

Since 1980’s, many electronic circuits that deal with fuzzy logical processing have been
proposed. There are 2 streams of the research of fuzzy hardwares. One is fuzzy inference
processors. The first fuzzy inference processor was proposed by Togai and Watanabe
in 1986[29]. It is implemented as 4 bit parallel digital circuit using CMOS logic, and
is able to do the Mamdani inference with 16 rules. Since the fuzzy inference is one of
the most important applications of fuzzy logic, the research of fuzzy inference processor
become a main stream of the research of fuzzy hardwares. Another stream of the fuzzy
hardware research is concerned with analog fuzzy logic circuits. Since the fuzzy logic
is a continuous multiple-valued logic, it can be regarded as an analog logic. Yamakawa
et al. have proposed the fundamental analog fuzzy logic circuits[31][32][33][34]. They
have implemented primitive fuzzy operations, i.e., fuzzy negation, maximum and mini-
mum operations, and other t-norms and s-norms using current-mode analog circuits. In
1990s, more complicated analog mode fuzzy processors have been proposed, e.g., a fuzzy
membership memory and a fuzzy inference processor[35][36][37].

All these fuzzy hardwares and processors are combinatorial circuits, whose output only
depends on their input of the current time, while the past data or the contexts of circuits’

inner states are ignored. This means that these conventional fuzzy circuits cannot realize




Fuzzy Combinatorial
T +
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In::.—+ Out ‘

Fuzzy Memories
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Figure 1: A fuzzy combinatorial and sequential circuits

the temporal functions like a memory (Figure 1).

For these problems, the concept of fuzzy flip-flop, which is a fundamental circuit of
fuzzy memory element, was proposed in 1989{10] and implemented with analog transistor
and TTL digital circuit{11]. Their theoretical consideration from a viewpoint of max-min
fuzzy logic has been studied[21], and some experimental applications of JK fuzzy flip-flop
have been proposed|[4][6][12][14][30]. However, almost all the JK fuzzy flip-flops have been
studied under max-min logical operation system (1 — -, A, V). Furthermore, JK flip-flop,
which is widely used for general purpose in binary logic, requires large circuit resources
when generalized from binary logic {0,1} to multiple—v;cmlued fuzzy logic [0, 1]. |

A fuzzy flip-flop cannot only memorize a fuzzy logical value, but is also able to perform
some fuzzy logical operations—e.g. t-norms and s-norms. This shows that a fuzzy flip-flop
can be considered as a small, simple fuzzy processor with a memory—i.e. a fuzzy logic
in memory. In fact, Ozawa[ll] and other researches of JK fuzzy flip-flops have treated

several fuzzy logical operations between fuzzy sets and fuzzy inferences. However, these

[N
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researches were intended to search effective applications of fuzzy flip-flops, and did not
be discussed from a viewpoint of cost and performance.

Most of the conventional fuzzy processors aim at the application of fuzzy logic control,
and they are designed for fuzzy inference processing. Recently, the application area of
fuzzy information processing has spread widely to, e.g., fuzzy data (knowledge) base, fuzzy
information retrieval, and fuzzy image processing. In these applications, not only fuzzy
inference but also othér types of fuzzy information processing—e.g., fuzzy data matching,
modifying membership functions—are required.

Previous works for these purposes have been realized in the form of software on con-
ventional (binary) computers. But fuzzy set operations treat large data (many elements
of fuzzy membership functions), and the total system performance is often low. Fuzzy set
operations are essentially performed concurrently and parallelly. For these applications,
general-purpose (not only for a fuzzy inference) fuzzy processors have been required. Li

et al. have proposed the high performance general fuzzy processor KAFA(KAist Fuzzy

Accelerator) using a FPGA device. KAFA adopts the SIMD parallel architecture, but

each processing element has the potential of a small computer, and their circuits become
complicated and large. Therefore, it is difficult to réalize the system that treats the large
membership memories using KAFA.

From this reason, the parallel architecture using smaller processing elements (fine

grain) than KAFA is required (Figure 2).
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Figure 2: Parallel architecture of fuzzy hardwares

1.2 Purpose

In this dissertation, D, T, SR fuzzy flip-flops are proposed for the purpose of giving a
foundation to realize fuzzy temporal hardware systems, namely fuzzy sequential circuits.

First, the characteristics of fuzzy flip-flops are shown under four typical fuzzy operation
systems, in particular, they are logically analyzed in detail under max-min fuzzy logical
operation systems (1—-, A, V). These analysis of the characteristics is expected to éupport
the future construction of the design methodology of fuzzy sequential circuits and fuzzy
temporal systems.

In addition to fuzzy flip-flops, for the application of general fuzzy information process-
ing, 2 types of fuzzy memory elements are also proposed. These can be used for the future
fuzzy temporal applications as well as fuzzy flip-flops, furthermore they can also be used

for conventional fuzzy applications existing in the real world. These can be considered to
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belong to fine grain SIMD parallel fuzzy processors. Their circuit performance is shown
to be higher than the conventional general fuzzy processors and fuzzy flip-flops when they
are used for membership memories of fuzzy sets and for simple fuzzy set processors be-
tween the fuzzy sets. And for the purpose proposed in [11], [16]/etc., it is more reasonable

to use fuzzy memory elements proposed in this dissertation.

1.3 Overview

In Chapter 2, D, T, and SR fuzzy flip-flops are proposed as the fuzzy memory elements
in order to treat the problems of the JK fuzzy flip-flop. Their logical characteristics are
clarified in four—max-min (1 - -, A, V), algebraic (1 - -,-,+), bounded (1 — -, ®, @), and
drastic (1 —-, A, ¥)—fuzzy logical operation systems. Their circuits for the four operation
systems are implemented using VHDL and circuit simulator/ synthesizér on a workstation,
and are compared with each other in terms of the circuit area and the delay times. The
results show the circuit areas and the delay times of the proposed fuzzy flip-flops are
improved to 1/2 ~ 1/3 compared with those of the conventional JK fuzzy flip-flop.

In Chapter 3, from the viewpoint of fuzzy state machine, the details of the logical
property of the D, T, and SR fuzzy flip-flops are analyzed using max-min logical operation
system (1 — -, A, V). All their characteristics that are possibly realized in the fuzzy logic
(1—-,A,V) as extensions of the form in the binary logic are shown, and all logical forms
that corresponds to them are derived. It is clarified that for all fuzzy flip-flops, their logical
forms construct distributed lattices both under the partially order by fuzzy values and
under the partially order by ambiguity. Moreover, the lattices constructed by the forms
of D and T fuzzy flip-flops are boolean lattices and so are the lattices of conventional JK
fuzzy flip-flop.

In Chapter 4, 2 types of fuzzy memory elements, which are max-min type and bounded
type, are proposed for the general-purpose parallel fuzzy processors and fuzzy flip-flops.

These fuzzy memory elements are proposed from the aspects of functions required for
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fuzzy memory elements and state transitions to realize the functions. Proposed fuzzy
memory elements can input and output an arbitrary fuzzy value at an arbitrary point
of time and hold their memory values for an arbitrary length of time. In addition to
these functions required for memory elements, fuzzy memory elements can execute the
fuzzy logical operations between fuzzy input and fuzzy memory. Compared with the fuzzy
memory using SR fuzzy flip-flops, the circuit area and the delay times of the max-min
type fuzzy memory element are improved‘to 1./ 2, 2/3, respectively. Those of bounded
type fuzzy memory elements equals to those of the JK fuzzy flip-flop, although it has
4 more fuzzy logical operations than the JK fuzzy flip-flop. From the viewpoint of the
SIMD parallel architecture, max-min type and bounded type fuzzy memory elements
are fine grain SIMD processors which can perform fuzzy logical operations. Therefore,
membership memories using these memory elements can perform fuzzy set operations
(e.g. maximum or minimum) between a input fuzzy set and a fuzzy set in the memory
fast and easily. The number of elements of fuzzy set membership functions is more than

30 times bigger than that of KAFA for a same chip.




Chapter 2

D, T, and SR fuzzy flip-flops

2.1 Introduction

Concept of fuzzy flip-flop, which is a fundamental circuit of fuzzy memory element, was
proposed in 1989[10] and implemented with analog transistor and TTL digital circuit[11].
Although their theoretical consideration from a viewpoint of max-min fuzzy logic has
been studied[21], they dealt with only JK flip-flop and mainly used under max-min logical
operation system (1 — -, A, V). Furthermore, JK flip-flop, which is widely used in binary
logic for general purpose, requires large circuit resources when generalized from binary
logic {0,1} to multiple-valued fuzzy logic [0, 1].

This chapter presents D, T, and SR fuzzy flip-flops, that are less functional but simpler
and faster compared with JK fuzzy flip-flop, with their characteristics. Their FPGA
circuits are also designed on Synopsys Design Compiler and its circuit areas and delay
times are compared with those of conventional JK fuzzy flip-flop.

In Section 2.2, a fundamental definition of D, T, and SR fuzzy flip-flops are given,
and Section 2.3 shows a result of circuit implementation to FPGA device. Finally, their

performances are compared with each other in Section 2.4.



2.2 Definition of D, T, and SR fuzzy flip-flops

This section defines characteristic equations of D, T, and SR fuzzy flip-flops as fuzzification

of their simplest logical forms in binary logic.

2.2.1 D fuzzy flip-flop

Characteristic function of D fuzzy flip-flop is
Q(t+1) = D(t). (1)

Eq.(1) is a natural extension of the irredundant form of binary D flip-fop.

In the case of D fuzzy flip-flop, the output Q(t+ 1) is equal to the input D(t) € [0,1].
It is the one clock delay element.

Figure 3 shows the characteristic of Eq.(1). In the Eq.(1), there is no logical operation,

and the characteristics of all fuzzy logical operation systems are the same.

2.2.2 T fuzzy flip-flop

Characteristic functions of T fuzzy flip-flop are shown in Eq.(2) and Eq.(3), that are the

extension of minterm expression and maxterm expression in binary logic, respectively.

Q(t + Duiy = (TORP)R(TPOQ) | (2)

0ft+1) suns!
ssstiyges!
ustiguatges!
T
[ivansiasaiuest

Figure 3: Characteristic of D fuzzy flip-flop



Q(t+ Duax = (TER)D(TPEQ®) (3)

In the case of T flip-flop, minterm expression and maxterm expression are irredundant
forms and they are not unique. Although Eq. (2) and Eq. (3) are equivalent in binary
logic, they are not in fuzzy logic. Now the differences between them are shown in the case

of max-min, algebraic, bounded, and drastic fuzzy logical operation systems.

Theorem 1 When the fuzzy logical operation system (-@, @), ®) is max-min (1 —
-, A, V), algebraic (1 — -,-,4), bounded (1 — -, ®,®), or drastic (1 — A, V), then the

inequality

Qun(t +1) < Quax(t + 1), (4)
holds. The equality always holds if and only if (-®,®,®) = (1 — -, A, V).

Proof
(i) Case of (1—-, A, V). For a simplified notation, time variable ¢ will be omitted later.
viax(t+1) = (T() vV Q) A (T®(t) v QO¥(t))
= (TAQ®)V(T®AQ)

V(T AT®)V(Q A QP) (5)

Since the value of the third and the fourth terms in the right hand side are at most 1/2,

minimum operations between them and the other terms whose values are greater than or



equal to 1/2 keeps the same value (Kleene’s equality).

(3) = (TAQ®)V(T®AQ)
VT AT®) A (QV QD))
V{I@QAQ®)A (T VT®)}
= (TAQ®)V(T®AQ)
V(T AT® AQ) V (T AT® A QP)
VITAQAQP)V (TP AQAQP)
= (T AQPE) vV (T®(t) A Q(t))

I
= Quin(t+1)

(i) Case of (1 —-,-, +).

M+ DHT(R) - QO@)HTO(t) - Q(2)
T1-Q)+(1-T)Q-T1-T)Q1-Q)
TA-Q+(1-TQ+T(1-T)Q(1 - Q)
=T+Q-TQ)- (T® + Q% - TOQ®)
=(T(6)+Q(1)) - (T®(£)+Q%(t))

iﬁx(tﬂL 1)

(iii) Case of (1 — -, @, ®).
v (¢ + DHT(8) © QO(1) @ (T® (1) @ Q(1))

Qb (t + VAT () © Q(1) © (TO(t) & Q2(1))
[T+@ (T+@<1)
2-T-@ T+0=1)

Since Q¥% (¢ + 1) is less than or equal to QYd, (¢ + 1) in all cases,
N (t +1) < Quiax(t + 1),

10



(iv) Case of (1 ~-, A, V).

Mot + 1

=

T(H)AQ® (1) (T®()AQ(2)

(@ (=0
T Q=0
]_ —
1 —

\ 0

~——

I

I

Q (T=1)
T @=1

Qiiax(t + L=

0<T<1,0<Q<1)

T)vQE)AT®(t)vQ® (1))

From the above results,

|1 0<T<1,0<Q<1

St +1) < QFay(t+1).

More general results, discussed below, are also obtained.

Theorem 2 If (@, @), ®) always satisfies the following semi-distributive law

A®(BEC) z (ADB)®(ADC),
A®(BOC) < (A®B)®(A®C),

then the inequality

Quin(t+ 1) < Quax(t+ 1),

11

(11)

(12)

(13)

Q.E.D.

(14)



holds true.

Proof
Quax(t+1) = (THERW)OT®HER®(®)
> (TOQ®)OT®0Q)
@I OT®)OQ®Q®)

> (TOR®)OTPOQ)

= Qun(t +1) (16)

Figure 4 shows the characteristics of the equation (2) using logical, algebraic, bounded,
and drastic operation systems, respectively, while Figure 5 shows those of equation (3).
These figures show the value of Q(¢t + 1) as a function of Q(t) and T(t).

From these figures, we can see that

N+ 1) < Quin(t+1) < Qixl[%N(t +1)
I log al
< Quin(t+1) = Qufax(t+1) < Qyix(E+ 1)

< Qriax(t +1) < Qfax(t+1) (17)

holds true.

2.2.3 SR fuzzy flip-flop

Binary SR flip-flop which has three functions—bit set, bit reset, and hold—is a basic
element of memory modules. If the set input S = 1, then the next state Q(t +1) = 1. If
the reset input R = 1, then the next state Q(t+1) = 0. If S = R = 0, then the next state
holds the current state, i.e., Q(t+1) = Q(¢). Although the input S = R = 1 is forbidden,
there exist two types of SR fuzzy flip-flop in order to construct the characteristic function
of SR flip-flop. One is set-type, whose Q(t 4+ 1) = 1 when S = R = 1, and another is
reset-type, whose Q(¢ + 1) = 0 when S =R=1

12
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Eq. (18) and Eq.(19) are the characteristic functions of set-type and reset-type SR

fuzzy flip-flop, respectively.

Qs(t+1) = SO(R®®Q) (18)

Qr(t+1) = RO®(SEQ) (19)

Now an order relation between set—tjpe and reset-type SR fuzzy flip-flop is shown
in some cases. Under max-min, algebraic, and bounded operation systems, fuzzy truth
value of set-type SR fuzzy flip-flop is always greater than or equal to that of reset-type.
Needless to say, such a relation stands in binary logic.

Theorem 3 If an operation system (-@, ©), () satisfies inverse semi-distributive law

A®(BEC) < (ADB)R®A®C),
AR(B®C) = (A®B)®(AG®C), | (20)
then it satisfies
Qs(t+1) > Qr(t +1). (21)

Proof

Qs(t+1) = SHEERP(HORAM)
> (RP®S)®(RP®Q)
> RP®(SOQ)

= Qr(t+1) . (22)
Q.ED.

Corollary 3 If (-@,(®), (®) is logical operation system (1 —--,A,V) or algebraic oper-

ation system (1 — -, -, ), then the SR fuzzy flip-flop satisfies Eq.(21).

14



Theorem 4 If the operation system (-®, (), (®) is bounded operation system (1 -

., ®,®), Eq.(21) holds true.

Proof
Qs(t+1) = S()® (R®(t) ©Q(t))

={1 0<1-S<Q-R) (SB)
S (@-R<0) (SC)
Qr(t+1) = R®() o (SEt) @ Q)
S+Q@-R (R<S+Q<1) (RA)
=40 (S+Q<R<1) (RB)
1-R (1<S+Q) (RC)

(24)

(SB) of Eq.(23) is always greater than or equal to all cases of (RA), (RB), and (RC)

of Eq.(24), and (RB) of Eq.(24) is always smaller than or equal to all cases of (SA), (SB),

and (SC) of Eq.(23), and (SA)-(RA) is 0. Therefore,

(SA-(RC) = S+Q-R—(1—R)

= §+Q-1

>0 (“1<S5+Q)
(SC)-(RA) = S—(S+Q-R)

= —(@-BR)

> 0 (“@-R<0)
(5C-(RC) = §—-(1-R)

= R—(1-5)

v

then R >1-29)

Hence Qs(t + 1) > Qr(t + 1) is obtained.

15
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Next the characteristics of SR fuzzy flip-flop when the operation system is logical
operation system (1 ~ -, A, V), algebraic operation system (1 — -, -, +), bounded operation
system (1 —-,®, ®), and drastic operation system (1 —-, A, ¥) are shown. Figure 6 shows
the characteristics of set-type SR fuzzy flip-flop, and Figure 7 shows that of the reset-type
under the max-min logical operation system (1 —-, A, V). Figure 8 and Figure 9 show the
characteristics of set-type and reset-type in the algebraic operation system (1—--4),
respectively. Figure 10 and Figure 11 shov& the}characteristics of set-type and reset-type
in the bounded operation system (1—-,®, ®), respectively. Figure 12 and Figure 13 show
the characteristics of set-type and reset-type in the drastic operation system (1—-,A¥),
respectively. These figures show the value of Q(t + 1) when Q(¢) = 0, Q(t) = 0.5, and

Q(t) = 1, respectively.
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Figure 9: Characteristics of SR fuzzy flip-flop (reset type, algebraic)
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Figure 10: Characteristics of SR fuzzy flip-flop (set type, bounded)
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In the logical operation system (1—-, A, ¥/), there is no uniform inequality between set-

type and reset-type, which can be shown as follows. When S = 0.5, R = 0.1, Q(t) = 0.9

Qs(t+1) = Sv((1- R)AQ(1)) (28)
= 0.5, (29)
Qrt+1) = (1-R)A(SYQE®) - (30)
= 0.9. ‘ (31)
Therefore
Qst+1) < Qr(t+1). (32)

And when § = 0.5, R =0.9,Q(t) = 0.9

Qs(t+1) = Sv((1-R)AQ()) (33)
= 0.5, (34)
Qr(t+1) = (1-R)A(SYQ(?)) (35)
= 0.1. ‘ (36)
Therefore
Qs(t+1) > Qr(t+1). | (37)

2.3 Circuit design of D, T, and SR fuzzy flip-flops
using FPGA

In this section, the results of FPGA circuit design of D, T, and SR fuzzy flip-flop are
shown. Four-bit parallel architecture is used for the quantization of fuzzy value in order
to compare with JK fuzzy flip-flop proposed in [11]. Namely, the value of fuzzy variable 0

is assigned to “0000”(0)10, and 1 to ”1111” (15);. But only in algebraic logical operation
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Figure 14: Circuit of D fuzzy flip-flop

system, one more bit is added and 0 is assigned to ”00000” (0)10, and 1 to ”10000” (16)10
in order to use normal adders and multipliers for convenience of circuit design.

Regarding the design of circuits, first, the behavior model is written using VHDL,
and it is synthesized using Synopsys Design Compiler V1997.8. The library of target
architecture is FLEX8000 which is FPGA of Altera. The computer used for the simulation
is Sun SPARC Station 20, SunOS 4.1.4. |

2.3.1 D fuzzy flip-flop

Figure 14 shows the circuit of D fuzzy flip-flop. It is the parallel connection of four binary
D flip-flops.
Since D fuzzy flip-flop is composed of binary D flip-flops for output latches, the com-

binatorial part of its circuit area is 0. Delay time is 2.8ns for latches.
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Figure 15: Circuit of T fuzzy flip-flop (minterm, max-min operation)

2.3.2 T fuzzy flip-flop

Max-min logical operation system Figure 15 shows the circuit of Eq. (2) in the
logical operation system (1 - wA, V). The logical product and sum are realized as com-

parators.

Algebraic operation system Figure 16 shows the circuit of Eq. (2) in the operation
system (1 —-,-,+). An algebraic product is realized as a multiplier, and an algebraic sum

as a multiplier and an adder.

Bounded operation system Figure 17 shows the circuit of Eq. (2) in the operation
system (1 —-,®,®). A bounded product and sum are composed of comparators and

adders.
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Figure 16: Circuit of T fuzzy flip-flop (minterm, algebraic operation)

Drastic operation system Figure 18 shows the circuit of Eq. (2) in the logical oper-

ation system (1 —-, A, V). A drastic product and sum are composed of comparator with

constants.

2.3.3 SR fuzzy flip-flop

Max-min logical operation system Figure 19 and Figure 20 show the circuit of
set-type and reset-type SR fuzzy flip-flops in the logical operation system (1 — - A, V),

respectively.

Algebraic operation system Figure 21 and Figure 22 show the circuit of set-type and

reset-type SR fuzzy flip-flops in the algebraic operation system (1 — -, -, ), respectively.
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Bounded operation system Figure 23 and Figure 24 show the circuit of set-type and

reset-type SR fuzzy flip-flops in the bounded operation system (1 — -, ®, @), respectively.

Drastic operation system Figure 25 and Figure 26 show the circuit of set-type and
reset-type SR fuzzy flip-flops in the drastic operation system (1 — -, A, V), respectively.
SR fuzzy flip-flop requires 2 inputs while T fuzzy flip-flop requires 1. But its logical
form is simpler than T fuzzy flip-flop, hence its circuit area is smaller than that of T fuzzy
flip-flop. Although set-type and reset-type SR fuzzy flip-flop have the same number of
logical operations, their operation sequences are different. This fact does not affect their
circuit areas but their delay times. In all cases of reset-type SR fuzzy flip-flops, the fuzzy

negation R(t)® and the t-norm S(t)®Q(T) can be performed at the same time, then,
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the total delay time decreases, while all fﬁzzy operations are sequentially performed in
the case of set-type. The processing speed of a fuzzy negation almost equals to that of a
maximum or a minimum operation, and the advantage of the reset-type increases when

the processing speed of t-norm is high—e.g. max-min logical or drastic operation systems.
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Figure 23: Circuit of set-type SR fuzzy flip-flop (bounded)

2.4 Performance of fuzzy flip-flops

Table 1 shows the comparison of functions that can be performed by various fuzzy flip-
flops. The symbol “A” in JK-FFF[10] means that it can input arbitrary ;ra,lue only if
both set-type and reset-type are used together and are configured appropriately.

Figure 27 shows circuit areas of D, T, and SR fuzzy flip-flops and that of unified

form of JK fuzzy flip-flops[11}[21] using logical, algebraic, bounded, and drastic operation
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systems, respectively. Figure 28 shows their delay times. “Area” in Figure 27 indicates

the number of gates, while “Delay” in Figure 28 indicates the time(ns) that the signal

runs from inputs to outputs.

Compared with JK fuzzy flip-flops[11][21], T and SR fuzzy flip-flops use 2/3 and 1/2
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Figure 26: Circuit of reset-type SR fuzzy flip-flop (drastic)

Table 1: Comparison of functions

Input | Hold | Negation
D-FFF ) X times
T-FFF X o X
SR-FFF o o X
JK-FFF[10] A o o
JK-FFF|[11][21] o o o

area of circuit resources respectively, and their delay times are improved to 2/3 of that of
JK’s in every operation system. This fact shows that the circuit area of fuzzy flip-flops is
proportional to the number of t-norm, s-norm, and fuzzy negation. AsD fuzzy flip-flop

is composed of output latches only, both its circuit area and delay time are negligible.
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Figure 29: Quantization bits and circuit area of set-type SR-FFF

These results show that, proposed fuzzy flip-flops are improved with respect to circuit
area and delay time, although their functions are more restricted than those of JK fuzzy
flip-flop. This is because the number of operations, t-norm, s-norm, and fuzzy negation,
is less than that of JK. Therefore, JK fuzzy flip-flop can be used for general purpose,
whereas D, T, and SR fuzzy flip-flops, that are smaller than JK, are suitable for restricted
cases. In particular, as SR fuzzy flip-flop has the functions for a memory, it can also be
used as a fuzzy memory element like JK fuzzy flip-flop, while its circuit area is half of

that of JK.
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Figure 30: Quantization bits and delay time of set-type SR-FFF

2.5 Number of quantization bits

Figure 29 shows the relation between the number of quantization bits and the circuit area,
and Figure 30 shows the relation between the number of quantization bits and the delay
time in the case of set-type SR fuzzy flip-flop.

Under the fuzzy operation system (1 —-,A,V), (1 —-,0,®), and (1 — -, A, V), the
circuit area increases in proportion to the number of quantization bits. The reason of this
is that they are constructed of comparator and adder, whose areas are in proportion to
the quantization bits. Under (1 — -,-,+), the circuit area increases in proportion to the
square of the quantization bits because it requires the multiplier.

Under (1 ~-,A,V), (1 —+-4%), and (1 —-,®,®), the delay time is proportion to

the quantization bits. Under (1 — - A, V), the delay time does not increase with the
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quantization bits because it only performs the comparison with a constant. In another
word, (1 — -, A, V) does not deal with the fuzziness.

The realization under (1 —-,-,4) and (1 — -, ®,®) requires more circuit resources
than under (1 —-, A, V), (1 — -, A, ¥) except the case of only 1 or 2 bits are used for the
quantization of fuzzy values. The fuzzy operation system (1 — -, A, V) hardly handle the
fuzzy medium values and it is uncontinuous. Therefore max-min fuzzy logical operation

(1—-,A,V) is the most useful for the real applications.

2.6 Summary

In this chapter, D, T, and SR fuzzy flip-flop are defined as basic elements of a fuzzy
memory module. Their characteristics are shown under four operation systems: max-min
logical (1 — -, A, V), algebraic (1 —-,-,+), bounded (1 — -, ®, @), and drastic (1 — -, A, v)
operation systems. And then the inequalities between maxterm-expressed and minterm-
expressed T fuzzy flip-flops, and between set-type and reset-type SR fuzzy flip-flops are
analytically shown. The circuit ares of D, T, and SR fuzzy flip-flops decrease 2 /3t01/3
of JK’s, and delay times of them decrease 2/3 to 1/2 of JK’s.
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Chapter 3

Logical analysis using max-min

operation system

3.1 Introduction

In 1993, Mori and Mukaidono studied JK fuzzy flip-flop using max-min operation systems|21].
The methods are based on B-ternary logic[22], which is a model of Kleenean algebra.
When its t-norm and s-norm are restricted to minimum and maximum operations, re-
spectively, the fuzzy logic and B-ternary logic are equivalent|8][23][24][28]. Therefore, it

is sufficient to analyze fuzzy logical functions only when the values of their fuzzy logical
variables are {0,1/2,1}.

Using this property, Mori and Mukaidono made the B-ternary logical truth table
(constituted by the values {0,1/2,1}) of the characteristic function of the JK fuzzy flip-
flop, in which the values of the binary compatible parts are defined strictly, while those
of the other parts are deﬁned with ambiguity. From this result, they obtained 64 types of
fuzzy principal disjunctive canonical equations, and showed that the equations constitute
a distributive lattice.

In this chapter, logical properties of D, T, and SR fuzzy flip-flops, which have defined
in the preceding chapter, are analyzed using the max-min logical operation system. All

logical forms that are fuzzy extensions of binary flip-flops are obtained. Using 2 kinds
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of partially ordered relations between different logical functions, which are equivale
under Boolean algebra (binary logic), partially ordered sets which the fuzzy extend
logical forms of D, T, énd SR fuzzy flip-flop constitute are shown as Hasse diagrams
distributive lattices. In particular, these of D and T fuzzy flip-flops are Boolean lattic
like the case of JK fuzzy flip-flop. |

This result shows that a logical form of a fuzzy flip-flop, which is obtained by maximu
and minimum operations between other 1ogical Iforms of fuzzy flip-flop, is always valid
a fuzzy logical function. In the case of D, T, and JK tuzzy flip-flops, the characteristi
of logical functions as the extensions of binary maxterm and minterm expressions of
flip-flop can be obtained from every other logical form by doing maximum and minimu
operations with their complement. Furthermore, any characteristics of these fuzzy fli
flops can be obtained from any other logical functions of the fuzzy flip-flops by doi
maximum or minimum operation with its relative complement.

Since this chapter treats only max-min logical opération system (1—-, A, V) as a fuz

operation system, A may be omitted for the convenience.
3.2 Preliminaries

Definition Partially ordered relation of ambiguity[22].

Let a,b € [0,1],agbifandonlyifl/QzazborbZQZ 1/2.

Let ,y € [0,1]" be fuzzy vectors of n dimensions {Z1, 22, , 20}, {y1, 92, - 3 Un
méyif and only if:cigyi for every ¢ € {0,--- ,n}. |

Let f(x), g(x) be fuzzy logical functions of n variables, f é g if and only if f(2) >i- a9(s
for all z € [0,1]”

It is clear that 1/2 is the most ambiguous, and 0 and 1 are the least ambiguous. Figu

31 shows the Hasse diagram of the partially ordered relation of ambiguity.

36



Figure 31: Partially ordered relation of ambiguity

O

O

Figure 32: Partially ordered relation of fuzzy values

Definition Partially ordered relation of fuzzy values[22].

Let a,b € [0,1], a = b if and only if a > b.

Let @,y € [0,1]" be fuzzy vectors of n dimensions {z;, s, - - - Tnts 1YL, Y2, Unts
méyifand only ifxiéyi for every i € {0,--- ,n}. |

Let f(x), g(x) be fuzzy logical functions of n variables, f é g if and only if f(x) é g(x)
for all x € [0, 1]

U

This is a natural extension of ordered relation of boolean logic, and is generally consid-
ered as ordinary ordered relation in multiple-valued logic. In fact, this is a totally (linear)

ordered relation. In this order, 0 and 1 are minimum and maximuim, respectively, and

1/2 is the half.
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Theorem 3.1[23] f = g in max-min fuzzy logic if and only if f = ¢ in B-ternary logic.
Using this theorem, 3 important facts for max-min fuzzy logic are obtained.
e There are finite number of fuzzy extensions of a binary logical function.

o It is sufficient that the characteristics of a logical function are considered only when

its fuzzy variables are {0,1/2,1}.

¢ The partially ordered sets of logical functions in B-ternary logic and max-min fuzzy

logic have the same property.

Theorem 3.2[23] Let , y be n-dimensional ternary vector {0,1/2, 1}, and let
f:{0,1/2,1}" — {0,1/2,1} be a fuzzy logical function,

zry=— fz)= f(y).

From this theorem, fuzzy logical functions hold ambiguity. .

A fuzzy logical function f(x) of n variables is called C-type logical function fe(x) if
z € {0,1/2,1}* — {0,1}" = f(x) = 1/2. That is, if there is at least one variable whose
value is 1/2 in f(x) then the value of f(x) is 1/2. The C means “canonical form” in
binary logic. The C-type fuzzy logical functién is the most ambiguous.

A fuzzy logical function f(z) of n variables is called P-type logical function fr(x)
if flz) =1/2 & {f(&)|z' € {0,1}",z > z'} = {0,1}, f(z) < 1/2 & {f(z)|z’ €
{0,1}" 2 = '} = {0}, f(x) > 1/2 & {f(x')]a’ € {0,1}", 2 & '} = {1}. The P means
“prime implicant expansion” in binary logic. P-type fuzzy logical function is the least
ambiguous. |

From now on, for a logical function f(x), fop(z) indicates that f is a principal
disjunctive canonical form in binary logic, and foo(x) indicates that f is a principal

conjunctive canonical form in binary logic.
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1

111} 1] 1

Figure 34: Truth table of D fuzzy flip-flop

3.3 D fuzzy flip-flop
In the boolean logic, D fuzzy flip-flop is defined as
Qit+1)= D(t). (38)

Its truth table is shown in Figure 33.

It can be generalized to B-ternary logic truth table(Figure 34).

The domain of the chéracteristic function is D()xQ(t) € {0,1/2,1}2. When (D(t), Q(t)) =
(1/2,0),(1/2,1/2),(1/2,1), the value of Q(¢ + 1) is uniquely determined as 1/2 because
both 0 and 1 exists as the value of their neighbor boxes. In such a case, the value of
characteristics changes halfway from 0 to 1 or from 1 to 0, and it must take 1/2 as its
value. When (D(t), Q(t)) = (0,1/2), the value of Q(¢+ 1) can take 0 or 1/2, while it can
take 1/2 or 1 in the case (D(¢), Q(¢)) = (1,1/2).

39



Therefore, 4 cases of characteristics of D flip-flop in B-ternary logic are considered
according to the value of Q(¢+1) for (D(¢t), Q(¢)) = (0,1/2),(1,1/2). Principal disjunctive

canonical forms of these characteristics are derived and shown in the following equations.

(D1) Qit+1) = DQVDQ®
(D2) Q(t+1) = DQVDQ®vDPQYQ®
(D3) Qt+1) = D

(D4) Qt+1) = DvDOPQQ®

Eq.(D3), which is the fuzzy extension of the simplest binary form of the D flip-flop’s
logical function (eq.(38)), is also valid as characteristic function of D flip-flop in B-ternary
logic.

These 4 types of D fuzzy flip-flops constitute a boolean lattice 22 of 4 elements in the
partially ordered relation é Figure 35 shows its Hasse diagram. Eq.(D3) is the least
ambiguous and eq.(D2) is the most. Figure 36 shows the Hasse diagram of the relation
é of D fuzzy flip-flops. In the case of D fuzzy flip-flops, the partially ordered sets of the
forms of D fuzzy flip-flops with these 2 relations are {order—, lattice—)isomorphic,' which
constitute boolean lattices 22 containing 4 elements.

In the case of eq.(D2), when Q(t) =1/2, Q(¢t + 1) cannot take any value except 1/2
whatever any value of D(t) is inputted. In general, when Q(t) is an arbitrary value,
Q(t + 1) can only take the value between Q(t) and Q(¢)®. This means, in the case of
eq.(D2), that a set operation cannot be done freely, and particularly when Q(t+1) = 1/2,
any set operation cannot be done at all (cannot change to different value from 1/2).

In the case of Eq.(D1), Q(t + 1) can only take the value less than max{Q(t), Q(t)®}.
In particular, Q(f + 1) can only take the value less than 1/2 when Q(t) = 1 /2. In the
case of eq.(D1), it can be set to the value between 0 and 1/2 freely, but not to the value
larger than 1/2.

The characteristics of Eq.(D4) is dual of that of (D1). It can be set to the value

between 1/2 and 1 freely, but not to the value less than 1/2.
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D2

D4 D1

D3

Figure 35: Partially ordered relation of ambiguity of D fuzzy flip-flops

D4

D2 D3

D1

Figure 36: Partially ordered relation of fuzzy values of D fuzzy flip-flops
In the case of eq.(D2) and eq.(D4), once the value 0 and 1 are set to their D(t),

respectively, their Q(t+1) are 0 and 1, and then, any value can be set to Q(¢+2) = D(t+1).

Therefore, it is controllable, but cannot be directly controlled.
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Figure 37: Characteristics of eq.

Figure 38: Characteristics of eq.(D2)

ip-flop

3.4 T fuzzy fl

In the boolean logic, T fuzzy flip-flop is defined as

(39)

T®AQ)

t+1)=(TAQ®) Vv (

(

Q
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Figure 39: Characteristics of eq.(D3)

Q(t+1)

— e
SuE ..

0.5

Q(t)

- Figure 40: Characteristics of eq.(D4)

QEE+1)=(TVQ)A(T®VQ®) (40)

Eq.(39) is the principal disjunctive canonical form and eq.(40) is the principal conjunctive
canonical form of a characteristic function of T flip-flop.

Its truth table is as follows.
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Figure 41: Truth table of binary T flip-flop

o] 0172] 1
00|12 1
1/2|1/2(1/2/ 172
1] 112] 0

Figure 42: Truth table of T fuzzy flip-flop
It can be generalized to B-ternary logic truth table(Figure 42).

In the case of T fuzzy flip-flop, there exists only one fuzzy extension of binary T

flip-flop. For all {D(t), Q(¢t)} € {0,1/2,1}2, Q(t + 1) is uniquely defined.
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3.5 SR fuzzy flip-flop

Figure 43 shows the truth table of SR flip-flop, where S means set function and R means
reset function. When the set input of the current time S(t) is 1, the output of the next
time Q(t+1) is 1, and when reset input R(t) is 1, Q(t+1) is 0. Both of S(t) and R(t) are
0, then the next output Q(t+1) holds the current output Q(t). If both of S(t) and R(t)
are 1, then the next output Q(t+1) is undefined. This is called “don’t- care term” and
indicated by “*” in the truth table.

In order to realize the SR flip-flop in binary logic, “don’t care term” is necessarily
defined as 0 or 1. The former is called reset (preferred) type, the latter set (preferred)
type. Figure 44 and figure 45 show the truth table of the set type and the reset type,
respectively. Figure 46 and figure 47 show the extension of figure 44 and figure 45 to
B-ternary logic, respectively.

In both of figure 46 and 47, there are 8 points whose values are compatible to that of
binary logic, 11 points whose values are defined as 1 /2 uniquely, and 8 points, from () to
®), undefined, i.e., whose values are able to take one of 2 values. In the 7 points, from )
to (D of 8 undefined points, the values are chosen independently from the values of other
points. However, the value of the point indicated by “*”, ®), depends on the values of

other points. From this reason, the logical forms of SR fuzzy flip-flops do not constitute

1 0 1 0 *

*: Don’t care

Figure 43: Truth table of binary SR flip-flop
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Figure 45: Truth table of reset type SR flip-flop

a boolean lattice.
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0 1 1 1

Q o 0 > > 5 1 1 1
1 1 i

RSO 5 1 0 > 1 0 > 1

| 1 1|1 (14 4t

oo L4 2@/2 1@/2 1

1040 1 VAl 1 |1 VAL L LS/__L

2 1 2 2 2 2 2 1%y 2 2 2 0Oy 2

0 1

1 o | L | 1 1) 1 1 1 1

2 |({2 21:1/2 0 2

Figure 46: Truth table of set type SR fuzzy flip-flop

1| 1|1
Q o 0 O72 > 1 1 | 1
1 1 1
RSO—Z— 1 0 5 1 0 21
1 14|t L
017! 2-2@/21@/21
B AN S T R R S T A T B R R
2 102 2 2 2 2 2 2 2 2
0/1 0/110/110/1 0/1
1 L 115/11°/1 1| o
0@/2016/2@/20 2

Figure 47: Truth table of reset typé SR fuzzy flip-flop
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Figure 48: Hasse diagram of set -type SR fuzzy flip-flop by partial order of ambiguity
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Figure 49: Hasse diagram of set type SR fuzzy flip-flop by partial order of values
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Figure 50: Hasse diagram of reset type SR fuzzy flip-

flop by partial order of values
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Figure 51: Hasse diagram of reset type SR fuzzy flip-



Figure 52: Concatenated structure of a lattice

Figure 48, figure 49, figure 50, figure 51 show the Hasse diagrams of the partial orders
of ambiguity and values for the set type and reset type of SR, fuzzy flip-flops, respectively.
All of them show the distributive but not Boolean lattices. Their common structure is
that each of them constitute the distributive sublattice of the Boolean lattice of order 256
(2°%). They are also concatenation of 27 (Boolean lattice of order 128) and 23 (Boolean
lattice of order 8) which are sublattices of them. Concatenation means 2% and sublattice

2% in 27 are connected as direct product ( Figure 52).
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100 ogeean I0Tins Of set-type SR fuzzy flip-flop are shown in the followings table.

The numbers of “value of undefined points” indicate same meaning as those in the figure

46 and figure 47.

value of undefined points | logical form of Q¢ + 1)
12345678
00111111 SRQVSREQVSROVSROVSEQ
1111111 SRQV SRQV SRQV SRQV SRQ v SRR
oéiﬁﬁl SRQV SRQV SRQV SRQV SRQ V SRQQ
%%%Iﬁﬁ SRQV SRQV SRQV SRQV SRQV SRRQ VvV SRQ)O
00TLrLLL RQV SROV SRO v SRQ
1911111 RQV SEOV SRQV SRQV SRRQ
0512112% RQV SRQV SRQ V SRQV SRQQ
5%1%2%% RQV SRQ Vv SRQ v SRQ v SRRQ vV SRQQ
00411111 SRQVSRQV SOV SRQ
111111 SRQV SEQV SQ v SRQV SRRQ
oéililﬁ SRQV SRQ vV SQ v SRQV SRQQ .
111,111 SRQV SRQV SQ v SRQV SRRO v SRQQ
oou%%f RQ VvV SQV SRQ
%on-;%ﬁ- RQV SQvV SRQV SRRQ
oéui%;l RQV 8QV SRQV SRQQ
%%11%%%% RQV SQV SRQV SRROV SRQO
00111111 SRQV SRV SRQV SRQ
1011,111 SRQV SRV SRQV SRQV SRR
oéfh-ﬁi SRQV SRV SRQV SRQV SRQQ
1111 §RQV SRV SRQ v SRQ v SRRO V SRQO
001£1LL1 RQv SRV SRQV SRQ
50121121 RQV SRV SRQV SRQV SRRO
0111@%; RQV SRV SRQ v SRQ Vv SRQQ
%%1%1%%% RQV SRV SRQ Vv SRQV SRRQ Vv SRQQ
0041114L SRQV SRV SQV SRQ
10iy;111 SRQV SRV SOV SRQV SRR
o%iuﬁl SRQV SRV SQVSRQV SRQQ
111,111 SRQV SRV 5Q Vv SRQ Vv SRRQ v SRQQ
00111111 RQV SRV SQV SRQ :
Loniid RQV SRV SQV SRQV SRRQ
01111332 RQV SRV SQVSRQVSRQQ
11,111 RQV SRV SQV SRQ v SRRQ V SRQ(
001%11ii SRQV SRQV SRQV SR
10111,11 SRQV SROV SRQV SRV SRRQ
oLiif 11 SRQ vV SROV SRQV SRV SRQO
1111111 SRQV SRQV SRQV SRV SRRQ v SRQQ)
0011211121 RQVSRQV SR
%0113121 RQVSRQV SRV SRRQ
0%125112 RQVSRQVSRVSRQQ
111 RQV SRQ Vv SRV SRRQVSRQQ
00%1%215%2 SRQVSRQV SQV SR
1oi1idl SRQvV SRQV SQV SRV SRRQ
olilgﬁé SRQvV SRQV SQV SRV SRQQ
%%%1113% SRQV SRQVSQ VSRV SRRQV SRQQ
0011%21;% RQVSQV SR
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SRQV SRV SQVSQVSRQQ

SRQV SRV SQVSQVSRRQVSRQQ
RQVSRvVSQVSQ
RQVSRVSQvVSQVSRRQ
RQVSRvSQVSQVSRQQ

RQV SRV SQvSQvVSRRQVSRQQ
SRQVSRQVSQVSR
SRQVSRQV SQvV SRV SRR}

SRQ Vv SRQV SQV SRV SRQQ
SRQV SRQV SQVSRVSRRQV SRQQ
RQVSRQVSQV SR

RQV SRQVSQV SRV SRR(Q

RQV SRQV SQV SRV SRQQ
RQVSRQvVv SQV SRV SRRQVSRQQ
SRQVSQvVSQVSR
SRQVSQVSQVSRVSRRQ
SRQVSQvVSQVSRVSRQQ
SRQVSQVSQvVSRVSRRQV SRQQ
RQVSQVSQVSR
RQVvSQVvSQvVvSRVSRRQ
RQVSQVSQVv SRV SRQQ
RQVSQvVSQVSRVSRRQV SRQQ
SRQVSRVSQVSR

SRQV SRV SQVSRVSRRQ
SRQVSRVSQVSRVSRQQ

SRQV SRV SQVSRVSRRQVSRQO
RQVSRvVSQV SR
RQVSRVSQVSRVSRRG

RQ VSRV SQV SRV SRQQ

RQV SRV SQvV SRV SRRQV SRQQ
SRQVSRVSQVSQVSR
SRQVSRVSQVSQVSRVSRRQ
SRQVSRVSQVSQVSRVSRQQ
SRQVSRVSQVSQVSRVSRRQVSRQQ
RQVSRVSQVSQvVSR
RQVSRVSQVSQV SRV SRRQ
RQVSRVSQVSQV SRV SRQQ
RQVSRVSQVSQVSRVSRRQVSRQQ
SRQvV S

SRQV SV SRRQ

SRQ vV SV SRQQ
SRQvVvSVSRRQVSRQQ

RQvVS

RQV SV SRRQ

RQ VSV SRQQ

RQ v SvSRRQ vV SRQQ
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All 136 logical forms of reset-type SR fuzzy flip-flop are shown in the followings table.

value of undefined points | logical form of Q(¢ + 1)
12345678
37000000 SRQVSRQV SRQ
11000000 SRQV SR
11000000 RQV SRQ
11000000 RQV SR
%%%OOOOO ggg v gg@ \g ggg vV SRRQ
1200000 VSRV
ﬁ;ooooo RQV SRQV SRRQ
11£00000 RQVSRVSRRGQ
33000005 SRQV SRQV SRQ V SSRQQ
12000001 SRQV SRV SSRQQ
%100000% RQV SRQV SSRQQ
11000004 RQVSRVSSRQQ
37300003 SRQV SRQV SRQ v SRRQ v SSRQQ
14100001 SRQv SEv SRRQ vV S5RQG
11100001 RQV SRQV SRRQ v SSRQQ
11300001 RQv SRV SRRQ Vv SSRQQ
%%0%000% SRQV SRQV SRQV SSRQ
1503000% SRQV SRV SSRQ
%10%000? RQV SRQ vV SSRQ
110£000% RQVSRVSSRQ
37370003 SRQV SRQV SEQV SRRQV SSRQ
13120001 SRQV SRV SRRQ v SSRQ
311 Zooo! RQV SRQV SRRQV SSRQ
111100 %7 RQV SRV SRRGVSSRQ
%%oo%oo? SRQ v SRQV SRQV SRQQ
1003004 SRQV SRV SRQQ
-;-100%00% gg v ggQ \é ggg@
1100Z00% VSRV
i140k003 SRQV SRQ Vv SRQV SRRQV SRQQ
12202008 SRQV SRV SRRQV SRQQ
1110100 RQV SRQV SRRQV SRQQ
11-250%)0%r RQVSRVSRRQVSRQQ
%%o%?oo% SRQV SRQV SRQ Vv SRQQ Vv SSRQ
150%0()? SRQ Vv SRV SRQQ v SSRQ
11052002 VSRV v
133tto0k SRQV SRQ v SRQV SRRV 5RQG v S5RO
144Llg0l SRQ Vv SRV SRRQ Vv SRQQV SSRQ
gligiool RQV SRQV SRRQ Vv SRQQ v SSRQ
1144 -goo-%f RQv SRV SRRV SRQQV SSRQ
%%ooo%o3 SRQV SRQV SRQV SRQQ
1%000?0—9I SRQV SRV SRQQ
{51000-0% RQVSRQV SRQQ
f100003 RQVSRVSRQQ )
13300304 SRQV SRQ Vv SRQ v SRRQ Vv SRQQ
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SRQ vV SRV SRRQV SRQQ

RQV SRQV SRRQV SRQQ

RQV SRV SRRQV SRQQ

SRQ v SRQV SRQV SSRQ Vv SRQQ
SRQV SRV SSRQ Vv SRQQ

RQ Vv SRQ vV SSRQV SRQQ

RQV SRV SSRQV SRQQ

SRQ vV SRQV SRQ vV SRRQV SSRQ Vv SRQQ
SRQV SRV SRRQ Vv SSRQ Vv SRQQ
RQV SRQV SRRQV SSRQV SRQ(Q
RQV SRV SRRQV SSRQV SRQQ
SRQ vV SRQ vV SRQ Vv SRQQ Vv SRQQ
SRQV SRV SRQQV SRQQ

RQ vV SRQ vV SRQQ VvV SRQQ

RQV SRV SRQQ vV SRQQ

SRQV SRQV SRQV SRRQV SRQQ v SRQQ
SRQV SRV SRRQV SRQQV SRQQ
RQV SRQV SRRQV SRQQV SRQQ
RQ vV SRV SRRQV SRQQV SRQQ
SRQV SRQV SRQV SRQQV SSRQV SRQQ
SRQvV SRV SRQQV SSRQV SRQQ
RQVSRQV SRQQV SSRQV SRQQ
RQ v SRV SRQQ vV SSRQ Vv SRQQ
SRQvV SRQV SRQV SRRQV SRQQV SSRQV SRQQ
SRQvV SRV SRRQ vV SRQQV SSRQV SRQQ
RQVSRQV SRRQVSRQQV SSRQV SRQQ
RQ Vv SRV SRRQ VvV SRQQ vV SSRQ vV SRQQ
SRQV SRV SRQV SSRQ

SRQvV SRV SSRQ

RQV SRQV SSRQ

RQV SRV SSRQ

SRQV SRQV SRQV SRRQ Vv SSRQ

SRQV SRV SRRQV S5RQ

RQV SRQ v SRRQ Vv SSRQ

RQV SRV SRRQV SSRQ

SRQvV SRQV SRQV SSRQV SSRQ

SRQV SRV SSRQV SSRQ

RQvV SRQ vV SSRQ Vv SSRQ

RQV SRV SSRQV SSRQ

SRQ vV SRQV SRQV SRRQV SSRQ Vv SSRQ
SRQV SRV SRRQ v SSRQV SSRQ

RQ vV SRQVSRRQVSSRQV SSRQ

RQ v SRV SRRQVSSRQV SSRQ

SRQV SRQ Vv SRQV SRQQV SSRQ

SRQV SRV SRQQV SSRQ

RQ vV SRQV SRQQV SSRQ
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RQ Vv SRV SRQQV SSRQ

SRQV SRQV SRQV SRRQ Vv SRQQV SSRQ

SRQ Vv SRV SRRQV SRQQV S5RQ

RQV SRQ Vv SRRQ vV SRQQV SSRQ

RQV SRV SRRQV SRQQ Vv SSRQ

SRQV SRQV SRQV SRQQ Vv SSRQ Vv SSRQ

SRQ VSRV SRQQ vV SSRQV SSRQ

RQ Vv SRQ Vv SRQQ vV SSRQV SSRQ

RQV SRV SRQQ Vv SSRQV SSRQ

SRQ v SRQVv SRQV SRRQV SRQQV SSRQV SSRQ
SRQV SRV SRRQ vV SRQQV SSRQV SSRQ

RQV SRQV SRRQV SRQQV SSRO V SSRQ

RQv SRV SRRQV SRQQ Vv SSRO v SSRQ
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RQV SRV SSRQV SSRQV SRQQ
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SRQV SRV SRRQV SSRQV SSRQV SRQQ

RQV SRQ Vv SRRQV SSRQ v SSRQ V SRQQ

RQV SRV SRRQV SSRQ vV SSRQ Vv SRQQ

SRQV SRQV SRQ v SRQQV SSRQ V SRQQ

SRQ Vv SRV SRQQ v SSRQV SRQQ

RQV SRQ Vv SRQQV SSRQ Vv SRQQ

RQV SRV SRQQV SSRQV SRQQ

SRQV SRQV SRQV SRRQV SRQQ v SSRQ V SRQQ
SRQV SRV SRRQ vV SRQQ Vv SSRQ Vv SRQQ

RQV SRQV SRRQV SRQQV SSRQ Vv SRQQ

RQV SRV SRRQVSRQQV SSRQV SRQQ

SRQ v SRQV SRQV SRQQ v SSRO v SSRQ VvV SRQQ
SRQ v SRV SRQQV SSRQ Vv SSRQV SRQQ

RQV SRQV SRQQ vV SSRQ v SSRQ Vv SRQQ

RQV SRV SRQQV SSRQV SSRQ Vv SRQQ

SRQV SRQV SRQV SRRQ Vv SRQQV SSRQ Vv SSRQ v SRQQ
SRQV SRV SRRQV SRQQV SSRQV SSRQV SRQQ
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3.6 Lattice structure of flip-flops

As described in the preceding section, logical forms of all fuzzy flip-flops constitute a
distributive lattice both in partial order of ambiguity and in partial order of values. More

v

generally, the following theorem can be derived.

Theorem 3.3 At every point  in the B-ternary truth table of the fuzzy extension of a
binary logical function using max-min logic (1—, A, V), the value of the function f(x)

can be defined as unique value or one of 2 values.

Proof Suppose f(x) can take any value of {0,1/2,1} at € {0,1/2,1}", 2 must not be
a binary vector {0,1}" (-« € {0,1}" = f(x) € {0,1}). Then, there exist some binary
vectors &’ € {0,1}" s.t. @ é x'. At such a point 2, f(x') takes 0 or 1 uniquely. Since
T é ' = f(x) ﬁ— f(x'), the value of f(x) takes one of the following three cases. f(x)
takes one of {0,1/2}, if f(x') takes 0 at all binary z'. f(z) takes one of {1/2,1}, if f(z')
takes 1 at all binary z'. If there exist both f(2') which takes 0 and f(z') which takes 1,
f(z) takes 1/2 uniquely. O

Fuzzy logical forms as extensions of a binary logical form constitute a parfially ordered
set when the partial order is é or é The structure is essentially defined by the points
whose value is not defined uniquely. Let n be a number of these points, the partially
ordered structure is order-isomorphic to that of a subset V of n-dimensional binary vectors
v. But there may exist a combination of the values that it can not be a B-ternary logical
function, V' may not be a Boolean lattice of 2® order—e.g. SR fuzzy flip-flops. However,
in the cases of D, T, and SR fuzzy flip-flops, fuzzy extensions of a binary logical function

a
using max-min logic (1—, A, V) constitute a distributive lattice under the partial order >.
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Theorem 3.4 Let S be the set of 136 set-type SR fuzzy flip-flops. Any s € S can be
represented as a 8-dimensional ternary vector (sy, sg,- -+ , sg) of undefined points (), - - -,
®, where s1,82 € {0,1/2}, 3,54, ,85 € {1/2,1}. Then (S, é) and (.S, é) are dual

order-isomorphic.

Proof Let ¢ be as a following map.

¢: {0’%} — {0,%

\Y UJ‘
0 — ¢0)=1
L 9 =0

Let ® be a map ®(S) = {¢(s1), ¢(s2), 83, 84, - , 53} Because the values of s; and s,
can be selected independently from other values, the image of ® is S, i.e., ®: S — S.
Clearly, ® is a bijective.

For any a,b € S, if a é b, then a; é b; (¢ =1,2,.--,8). This means a; é b; for
it = 1,2. And then ¢(b;) é #(a;). Fori = 3,4,---,8, a; é b; is equivalent to b; é a;.
Therefore ®(b) = (¢(bl),gb(b2),-b3, by, - ,bg) é (#(a1), ¢(a2), as, a4, -- ,a8) = ®(a).

Hence ® is a dual order-isomorphism from (S, é) to (S, é) O

For example, the minimum set—type SR fuzzy flip-flop under the order of ambiguity
(0,0,1,1,1,1,1,1) is mapped to (1/2,1/2,1,1,1,1,1,1), which is the maximum one under
the order of values. The maximum set-type SR fuzzy flip-flop under the ofder of ambiguity
(1/2,1/2,1/2,1/2,1/2,1/2,1/2,1/2) is mapped to (0,0,1/2,1/2,1/2,1/2,1/2,1/2) which

the minimum one under the order of values.
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Theorem 3.5 Let R be the set of 136 reset-type SR fuzzy flip-flops. Any r € R is
represented as a 8-dimensional ternary vector (r1,7g,- -+ ,7s) of undefined points @), - - -,
®, where 1,75 € {1/2,1}, r3,74,--- , 75 € {0,1/2}. Then (R, ﬁ—) and (R, é) are dual

" order-isomorphic.

Proof Let 9 be as a following map.

v: {51} — {31}

W W
b pl) =1
1 p(1) =1

Let ¥ be a map W(R) = {¢(r1),¥(r2), 73,74, -+ ,78}. Because the values of r; and 7y
can be selected independently from other values, the image of ¥ is R, i.e., U: R — R.
Clearly, W is a bijective.

For any a,b € R, if a é b, then a; Ea_- b; (i =1,2,---,8). This means b; >i- a; for
i = 1,2. And then ¥(a;) é p(b;). Fori = 3,4,---,8, q; é b; is equivalent to a; é b;.
Hence ¥(a) = (Y(a1), ¥(a2), a3, a4, ,ag) é (¥(b1), ¥ (ba), b3, ba, - -+ , bg) = U(D).

¥ is a order isomorphism from (R, i—) to (R, é) O

Corollary 3.6 Let f, and f, be fuzzy extensions of a binary logical function f of D, T,
SR flip-flops, then maximum fpax = f; V 5 and minimum Fmin = f1 A f, are also

a v
fuzzy extension of f under both > and >.

For example, in 1989, Hirota and Ozawa proposed the unified logical form of JK fuzzy
flip-flop, i.e., when J(t) > K(¢), the logical form of the characteristic function is the
maxterm expression, when J(¢) < K(t), the minterm expression. Such a composition is
always valid as a fuzzy extension of the original function.

(JVOQA(KOVQ®)  (J>K)

el = {uw@)vm@w) (J<K)
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From this theorem, such a composition is always valid as a fuzzy logical function.

In the case of D, T, and JK fuzzy flip-flop, the partially ordered relations of their
fuzzy logical forms are Boolean lattices of 4, 1, and 64 elements, respectively. The reason
of this is that the values of their logical functions are defined independently. And the
binary vectors that represent the structure of partially ordered relation always valid as
representations of logical forms.

All elements of a Boolean lattice have a unique complement. This means that all
logical forms of D, T, and JK fuzzy flip-flops have a “unique complement” as a logical
form. Characteristics of binary maxterm and minterm logical forms can be obtained from
every logical form by doing maximum and minimum operations with their complement,
respecti\lfely. Moreover, since a Boolean lattice is also relatively complemented, any char-
acteristics as a fuzzy extension of a binary logical function can be obtained from any

another fuzzy extended logical forms by doing maximum or minimum operation.

3.7 conclusion

The characteristics of D, T, and SR fuzzy flip-flop are logically analyzed when the fuzzy
logical operation system (-®,(®),(®) is max-min logical operation éystem (1= AV).
Using the theory of B-ternary logic, fuzzy logical characteristics of the D, T, and SR
fuzzy flip-flops are represented in B-ternary truth table, and fuzzy logical forms of all
their characteristic functions are proposed. Using 2 kinds of partially ordered relation,
it is shown that their structures of the partially ordered sets are distributive lattices, in |
particular, they are Boolean lattices in the case of D and T fuzzy flip-flops.

From this result, it is proved that the maximum or minimum operations between the
different logical functions provide logical forms of valid logical functions. For example,
Hirota and Ozawa’s composition of set type and reset type JK fuzzy flip-flops produces a

new types of JK fuzzy flip-flop.
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Chapter 4

Fuzzy memory elements

4.1 Introduction

In this chapter, 2 types of fuzzy memory elements are proposed. Fuzzy flip-flops, which
have already been proposed in preceding chapter, are also considered as fuzzy memory
elements. In fact, flip-flops are widely used as memory elements in binary logic. They can
expressed by logical forms, and then, their characteristics can be computed numerically
and shown graphically. In particular, they can be derived analytically under the max-min
logical operation system. Some mathematical properties are also derived and they gives
the foundation of fuzzy sequential system design methodology. However, in order to apply
fuzzy flip-flops to fuzzy application existing in the real world, it has still the redundancy
of the circuit resources.

Since binary flip-flops are widely used as a memory element in conventional binary
computers, fuzzy flip-flops have been proposed as a fuzzy memory element. In binary flip-
flops, 4 types—D, T, SR, and JK type—of flip-flops are available. As a memory element,
SR flip-flop and JK flip-flop can be used. After their circuit implementation using some
transistors (multi vibrator) are proposed, they are logically expressed as boolean logical
forms for their logical analysis. Unfortunately, these kinds of logical forms have not been
proposed so far from the viewpoint of memory elements, conventional fuzzy flip-flops are

not optimized for realizing memory elements. Hence, when they are extended to fuzzy
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logic, the corresponding fuzzy flip-flops expressed by the logical forms are not optimized
for a fuzzy memory element. In binary logic, a memory element ( 1 bit memory ) is
realized by 4 or 6 transistors, and the optimization as the memory elements is not so
important. In fuzzy logic, however, the circuit scale of the memory element is larger (50
or 500 transistors) than that of binary logic, and the optimized fuzzy memory element is
needed.

In this chapter, the functions required for a,pplying to fuzzy applications are proposed.
The main application of fuzzy logic is Mamdani inference, which is widely used, in par-
ticular, in the control area. Based on the fuzzy operations that is needed for Mamdani
inference, the functions for operating on the membership memory are implemented on
a memory element. The behavior model of the fuzzy memory element is described by
VHDL (Very high speed integrated circuit Hardware Description Language), while their
electronic circuit model are designed and simulated by a circuit simulator and a circuit
synthesizer on a work station. For the circuit synthesis, the FPGA (Field Programmable
Gate Array), which is widely used for the trial design of a LSI, libraries are used for the
target architecture. The circuit areas, the delay times (processing speed), and their func-
tions of them are compared with conventional D, T, SR, and JK fuzzy flip-flops. Moreover,
proposed fuzzy memory elements are compared with the KAFA[15][16], a general parallel
fuzzy processor for the Mamdani inference. They are also compafed with Ozawa’s JK
fuzzy flip-flops in terms of a fuzzy membership register, and are compared with Virant’s
T fuzzy memory cells from a viewpoint of a fuzzy temporal inference. In all cases, the
circuit performance of proposed fuzzy memory elements are higher than all of them, and
cardinality of fuzzy membership functions can be increased to 10 or 30 times of these of

them.
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4.2 Fuzzy memory element model

In this section, the functions required for a fuzzy memory are discussed. In binary logic,

the following three functions are needed for a memory element[9).

e Input set data and reset data, i.e. memorize 0 and 1 at any point of time
e Hold a memory data for any length of time

e Output a memory data at any point of time

In multiple-valued logic, these three functions are realized for not only 0 and 1, but
also for any multiple-valued value as a data to input, output, and memorize. As a fuzzy
logical memory is one of the multiple-valued logical memory, a fuzzy memory element
needs to realize these functions. In addition to these functions for a multiple-valued logical
memory, a fuzzy memory element has to operate fuzzy functions which are suitable for
fuzzy information processing.

Mamdani inference is a fuzzy processing which is widely used for real world appli-
cations, particularly in control area. In Mamdani inference, minimum and maximum
operations are used. In general, minimum and maximum operations are most important
and fundamental operations in fuzzy logic and are often used in various scene. First,
these operations must be implemented in a fuzzy memory element. From this reason, the
most fundamental fuzzy memory element is proposed as a figure 54. I € [0,1], Q € [0, 1],
C € {0,1,2,3} indicate a fuzzy input value, a fuzzy memory and output value, and a
control value, respectively. A control value C selects a behavior of a fuzzy memory ele-
ment. When C' = 0, the memory holds the current memory value, C' = 1, a fuzzy value
is inputted as a memory, C' = 2, a minimum operation between a input and a memory is
performed and the result is stored, C' = 3, a maximum operation between a input and a

memory is performed and the result is stored.

As for the other types of fuzzy inference, product-sum inference[13] and simple inference[13]

are known. In these inference, algebraic product and sum (or algebraic sum) are used as
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(== :Dataflow of fuzzy set)
| Input membership

Condition—j

matching(min)

Consequent—j ‘

min

Membership fro
other rules __‘ l

max

Output membership

Figure 53: Dataflow of Mamdani fuzzy inference

7 A Fuzzy
Memory | /. Q

c-4—| Element State Transition
Q(t+1) = Q(1)

| O(t+1) = I(t)
I € 10,1
0€ {0,1% O(t+1) = O(t) AI(1)
CE {0,1

it C=0
it C=1
it C=2
if C=3

{0, 1, 2,3} Q(t+1) = Q(t) V(1)

Figure 54: Max-Min type fuzzy memory element
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t-norm and s-norm, respectively. In order to implement the algebraic product and alge-
braic sum to circuits, the circuit areas have to be more than 5 times larger and the delay
time is more than 5 times longer than those of minimum and maximum circuits. Using
multipliers leads to such results, and including multipliers in memories is not realistic.

Bounded product and bounded sum are also occasionally used as t-norm and s-norm,
respectively. Bounded product and bounded sum are the operations used in classical
multiple-valued logic—Lukasiewicz logic, and they are valuable in terms of not only a
practical viewpoint but also a theoretical viewpoint. Their implementations to the circuits
are not difficult, because comparators and full adders, which are needed by bounded
operations, are simple circuits. Moreover, for the application areas other than fuzzy
inference—e.g. fuzzy expert system or knowledge base—, fuzzy negation is required.
Fuzzy negation is realized by inverters (1 bit NOT circuit) and incrementers (a variation
of adders), which are able to be simply implemented. Therefore, including these operations
in memories is meaningful.

Based on the above discussion, the bounded-type fuzzy memory element is shown
in figure 55 that is an extension of figure 54. As for the control signal C, new signal
C = 4,5,6 are added for three new operations—fuzzy negation, bounded product, and

bounded sum.

4.3 Circuit design

2 types of fuzzy memory element, which are discussed in the preceding section, are im-
plemented to circuits. The behavioral model of their circuits are described using VHDL,
while they are synthesized to real circuits using synthesis tool on a computer. Target
architecture of the synthesis is a FPGA device, which is widely used f0]_r a experimental
circuit design. Input and output fuzzy value [0,1] are expressed in 8 bit discrete value,
0 corresponds to “00000000”5), 1 to “10000000"(5y. It is noted that although the values

larger than “10000000”2) do not appear in the input and the output, they may appear
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/| Fuzzy State Transition

Memory | /. 0 Q(t+1) = Q(t) if C=0

o/~ Element Qt+1) =1(t) if C=1
Qt+1) = Q) NI(t) if C=2

Qit+1) = Q) VIt if C=3

é g {8% Qit+1) = 1- Q1) if C=4
’ (t+1) = Q1) ® I if C=5
C€1{0,1,2,3,4,5, 6} 8@:5 =8{t) @ I(0) if C=6

Figure 55: Bounded type fuzzy memory element

Figure 56: Circuit of max-min type fuzzy memory element

- temporarily in the process.

Figure 56 shows the circuit of the max-min type fuzzy memory element. Figure 57

shows the circuit of the bounded type fuzzy memory element.
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Figure 57: Circuit of bounded type fuzzy memory element

Discussion in terms of circuit areas and delay

times

4.4.1 Comparison with fuzzy flip-flops

The circuit areas and the delay times of the circuits of the fuzzy memory elements designed

in the preceding section are compared with those of the conventional fuzzy flip-flops.

Concerning the max-min type fuzzy memory element and fuzzy flip-flops (realized by

max-min fuzzy logic), figure 58 and figure 59 show the comparison of circuit areas and

delay times, respectively. Concerning the bounded type fuzzy memory element and SR

and JK fuzzy flip-flops (realized by max-min and bounded fuzzy logic), figure 60 and

figure 61 show the comparison of circuit areas and delay times, respectively.

From the figure 58 and figure 59, the max-min type fuzzy memory element uses smaller

circuit area and has faster delay time than those of any other fuzzy flip-flops except the D
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Figure 58: Circuit areas of the max-min type fuzzy memory element and max-min fuzzy Fi
flip-flops
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Figure 59: Delay times of the max-min type fuzzy memory element and max-min fuzzy
flip-flops 2t
fuz
fuzzy flip-flop, which is just a latch. The delay time of the bounded-type fuzzy memory the
element is almost equal to that of max-min SR fuzzy flip-flop and its circuit area is 1.5 or tin
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Figure 60: Circuit areas of the bounded type fuzzy memory element and fuzzy flip-flops
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Figure 61: Delay times of the bounded type fuzzy memory element and fuzzy flip-flops

2 times of that of conventional max-min type fuzzy flip-flops. Compared with bounded
fuzzy flip-flops, the circuit area of the bounded fuzzy memory element is almost equal to

that of bounded SR fuzzy flip-flop and is a half of that of JK fuzzy flip-flop. Its delay

time is a half of SR’s and 1/3 of JK’s.

69




Also the functions realized by fuzzy memory elements and fuzzy flip-flops are com-
pared in the table 2. To input any value and to hold the memory for any length of time
are required as a minirﬁum memory element. D fuzzy flip-flop does not satisfy the hold
function and T fuzzy flip-flop does not satisfy the input function. Therefore, they can not
be used for a fuzzy memory element. Although SR fuzzy flip-flop satisfies the minimum
functions for a memory element, and it can be used for a memory element, it does not
include any other functions, i.e., fuzzy operations; Whiéh is only a multiple-valued logical
memory element. JK fuzzy flip-flop is also used as a memory element and it also includes
the fuzzy negation as an additional fuzzy logical function. Max-min type fuzzy mem-
ory element has minimum memory functions, and minimum and maximum operations
for fuzzy logical operations. Bounded type fuzzy memory element has the functions of
bounded product, bounded sum, and fuzzy negation in addition to the functions of the
max-min type fuzzy memory element.

Including the minimum and maximum operations in the memory element is the ad-
vantage, because these operations often occur for all elements in the fuzzy memberships in
fuzzy information processing, e.g., Mamdani inference. Compared with performing these
operations on the elements of a fuzzy subsets piece by piece sequentially, it is clear that
the operation speed of the proposed approach is much faster. Frofn another viewpoint, it
can be viewed as a variation of SIMD (Single Instruction stream Multiple Data stream)
parallel processing architecture.

Since the bounded type fuzzy memory element includes the fuzzy negation, bounded
product, and bounded sum, it can be applied to fuzzy application area more widely, e.g.

fuzzy database, and fuzzy expert system.

4.4.2 Comparison with Ozawa’s JK fuzzy flip-flop with respect

to the fuzzy membership memory

Fuzzy membership memory (also called as “fuzzy register” in [11]) has been proposed using

JK fuzzy flip-flops[11]. Its fundamental diagram is shown in figure 62. Because a JK fuzzy
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Table 2: Functions of fuzzy memory elements and fuzzy flip-flops

Input | Hold | Min | Max | negation | Bdd pro | Bdd sum
D-FFF o X X X X X X
T-FFTF X o X X X X X
SR-FFF o o X X X X X
JK-FFF o o X X o e X
Maxmin FMEM o ) o ) X X X
Bdd FMEM o) ) o o o o o
P XA SR VRS < e e
T I
iw"“ﬁ“) A T A —————
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Figure 62: Diagram of a Ozawa’s fuzzy register (Ozawa 1989[11])

flip-flop can represent a fuzzy value, the fuzzy membership memory is constituted by n
JK fuzzy flip-flops, where n indicates the cardinal number of the universe of discourse of
the support set. It can set and reset arbitrary shaped fuzzy membership function. Also
it can perform fuzzy (e.g. 'ma,ximum and minimum) composition.

Compared with the case of using JK fuzzy flip-flops, max-min type fuzzy memory
element occupies 18% circuit area of JK’s. On the occasion of constructing a fuzzy
membership memory on a same LSI chip, the number of elements of fuzzy sets can be

increased to 5 times as many as the case of JK fuzzy flip-flops. For example, when a
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Figure 63: The architecture of KAFA (Kim 1997[16])

10000-gate-chip is used to realize the fuzzy membership memory, the maximum number
of the elements of fuzzy membership functions is 588 using max-min type fuzzy memory

elements, while that is 104 using JK fuzzy flip-flops.

4.4.3 Comparison with KAFA with respect to the SIMD parallel

general fuzzy processor

As a general fuzzy processor, KAFA(KAist Fuzzy Accelerator) has been proposed[15][16].
KAFA is composed of a main controller and 128 fuzzy processing elements, and it is con-
nected with a host computer. The main controller accepts some instruction from the host
computer, controls all fuzzy processing elements parallelly. A fuzzy processing element has
some 8bit-registers, a fuzzy arithmetic logical unit, and some 8bit-memories. KAFA can
memorize some membership functions and perform the fuzzy logical operation between
them concurrently. In this viewpoint, KAFA can be considered as a fuzzy membership
memory with a fuzzy logical operators.

The KAFA architecture is shown in Figure 63

KAFA is designed as a general fuzzy information processor, and it has a large ability.
For example, KAFA also has the ability to perform some types of defuzzifications, e.g., the
center of gravity method and the highest grade method. It can perform a fuzzy inference

like other fuzzy controllers only by itself. From this reason, a fuzzy processing element
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— ™ broadcast data bus
€[0,1]
state state € {active, inactive}
—]
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jol [ ] right neighbor
left ne;,}El())orl & [0, 1]
-1 memory [0,1]

peer-to-peer path €[0,1]

Figure 64: The block diagram of modified fuzzy memory element

becomes large and complicated. In fact, a fuzzy processing element has the same ability as
an 8bit micro-processor. One fuzzy processing element uses 3000 gates of its area (using
XC3804 device).

In order to compare with KAFA, some ports and buffers are added to proposed max-
min type fuzzy memory element. Its block diagram is shown in Figure 64 and the ports
are indicated in Figure 65. Its state transition is shown in Figure 66. Its circuit design is
shown in Figure 67. From the result of the circuit synthesis, its circuit area is 103.5 gates
and the minimum delay time is 20.8ns.

Modified max-min type fuzzy memory elements are placed as Figure 68 to memorize
the fuzzy membership functions. The fuzzy membership matching for Mamdani inference
can be performed like in Figure 69, and Mamdani inference can be performed like in
Figure 70.

If the fuzzy processing elements are replaced to max-min type fuzzy memory elements,

the circuit area is reduced to 3.4% of that of KAFA. The number of elements of a fuzzy
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Control(Ctrl) € {input, output, hold, operation}

Operation(Op) € {min, max}
Input Select (IS) € {peer-to-peer, broadcast,

left neighbor, right neighbor}
Output Select(OS) € {peer-to-peer, broadcast,

left neighbor, right neighbor}

State Control (SC) € {all, only active, only inactive}

Figure 65: The ports of modified fuzzy memory element

if SC=‘all’
or (SC=‘only active’ and state=‘active’)
or (SC="‘only inactive’ and state=‘inactive’)
then
1. mem(t+1) « input(t) (Ctrl = input)
mem(t+1) «— mem(t) (Ctrl = output, hold)
mem(t+1) < input(t) A mem(t) (Ctrl = operation, Op=min)
( if mem(t+1) = mem(t) then state < active)
mem(t+1) < input(t) V mem(t) (Ctrl = operation, Op=max)
( if mem(t+1) = mem(t) then state « active)
The input is selected by IS

2. output(t+1) < mem(t) (Ctrl = output) mer
output(t+1) <~ output(t) (Ctrl : otherwise)

onl:

met

Figure 66: State transitions of modified fuzzy memory element to t
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Figure 67: Circuit design of modified fuzzy memory element
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Ctrl ~— Operation
Op ~— min

Ctrit ~— Hold

Figure 68: Fuzzy membership memory using modified fuzzy memory elements

membership function can be increased to 30 times or more of KAFA’s. Therefore, when
only the simple fuzzy operations, e.g., Mamdani inference or max-min operation between
membership functions, are performed, KAFA’s fuzzy processing elements can be replaced

to the proposed fuzzy memory elements, and cardinality of membership functions can be

increased to 30 times of KAFA’s or more.
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Figure 69: Fuzzy membership matching procedure using modified fuzzy memory elements

4.4.4 Comparison with Virant’s T fuzzy memory cell with re-

spect to the temporal fuzzy inference

In 1999, some applications of T fuzzy flip-flop (also called T fuzzy memory cell) were
proposed[30]. Frorﬁ the problem of T fuzzy flip-flop, some types of modified T fuzzy
flip-flops were proposed in [30]. Using the max-min logical operation system, T fuzzy
flip-flop cannot input and memorize any new value when it takes 1/2 as a value of Q(t).
Therefore, in [30], “Set” and “Reset” functions were attached by adding new input porté,
and were called “FTU cell” and “FTD cell”, respectively (Figure 71, 72).

Using these T fuzzy flip-flops, a,pplicatioﬁs to fuzzy temporal inference were proposed.
The architecture is shown in Figure 73.

In [30], however, only the functions and roles were discussed, and circuit implementa-
tion was out of the discussion. For these applications, T fuzzy flip-flops (T fuzzy memory

cells) can also be replaced to proposed fuzzy memory elements. And the circuit area
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Figure 71: The block diagram of FTU cell (Virant 1999 [30])

of each cells can be reduced to 27% and delay time can be reduced to 68% of T fuzzy

memory cells proposed in [30].
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4.5 Conclusion

In this chapter, 2 type of fuzzy memory elements suitable for fuzzy inference are proposed.
These fuzzy memory elements are able to memorize any fuzzy logical values [0,1] and
able to operate fuzzy logical operations between a input value a,nd the current value of a
memory. Max-min type fuzzy memory element is able to operate minimum and maximum
fuzzy logical operation. In addition to them, bounded type fuzzy memory element is able
to operate fuzzy negation, bounded product, and bounded sum. Their behavioral model
are described by VHDL, and their circuit are designed using a circuit design and synthesis
tool. For the library of the target architecture of the circuit synthesis, FPGA library is

used. The circuit areas and the delay times of these fuzzy memory elements and fuzzy
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flip-flops are compared. From these results, max-min type fuzzy memory element uses a
half of the circuit area of SR and JK fuzzy flip-flops (realized by minimum and maximum
operations), which can be used as a memory element. And its delay time is 2 /3 of that
of SR and JK fuzzy flip-flops. Bounded type fuzzy memory element uses 1.5 or 2 times
of the circuit area of JK fuzzy flip-flop (max-min type) and uses 1/2 of that of JK fuzzy
flip-flop (realized by bounded operations). It is almost equal to the circuit area of SR
fuzzy flip-flop realized by bounded operations, while its delay time is almost equal to that
of SR fuzzy flip-flop realized by max-min operations and is 1/2 or 1/3 of SR and JK fuzzy
flip-flops realized by bounded operations.

Fuzzy memory elements are realized in smaller circuit areas and have faster process-
ing speed than the fuzzy flip-flops. Furthermore, additional fuzzy operations are also
implemented. In fuzzy information processing, fuzzy logical operation between member-
ship functions are often used. Since fuzzy memory elements support fuzzy functions,‘
it makes processors’ loads light by processing fuzzy logical operation between member-
ship functions parallelly. It makes total system performances high compared with using

conventional memories and fuzzy inference processors.
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Chapter 5

Conclusions

In this chapter, the research on fuzzy memory elements in this dissertation is concluded.
After summarizing the content of this dissertation, the conclusion of this dissertation is
drawn from the viewpoints of the foundation of fuzzy sequential circuit, the fuzzy logic
theory, and the parallel fuzzy hardware architecture. The future prospects of the research

on fuzzy memories and fuzzy hardwares are discussed at the end of this chapter.

5.1 Summary

In this dissertation, at first, D, T, and SR fuzzy flip-flops were proposed and their char-
acteristics were clarified in four—max-min, algebraic, bounded, drastic—fuzzy logical op-
eration syétems. Their circuits for the four operation systems were designed using VHDL
and circuit simulator/synthesizer on a workstation, and were compared with each other
in terms of the circuit area and the delay times.

Next, the details of the logical property of the D, T, and SR fuzzy flip-flops were
analyzed using max-min logical operation system (1 — -, A, V). All their characteristics
that are possibly realized in the fuzzy logic (1 — -, A,V) as extensions of the form in
the binary logic are shown, and the corresponding logical forms are derived completely.
The number of fuzzy extended logical forms of D, T, and SR flip-flops are 4, 1, and 136

respectively. In the case of SR flip-flops, 2 types of logical characteristics exist in binary
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logic regarding the treatment of “Don’t care”, which are “set preferred type” and “reset
preferred type”. In both case, there are 136 fuzzy logical forms for each type. In all cases
of fuzzy flip-flops, their logical forms construct distributed lattices both in the partial
order by fuzzy values and in the partial order by ambiguity. In particular, the lattices
constructed by the forms of D and T fuzzy flip-flops are boolean lattice as well as that of
JK fuzzy flip-flop.

2 types of fuzzy memory elements were proposed from the viewpoint of the functions
required for memory elements in order to apply them to the fuzzy membership memories.
Fuzzy memory elements can input and output any fuzzy value at any point of time, while
holding their memory value for any length of time. In addition to the functions required
for memory elements, fuzzy logical operations between fuzzy input and fuzzy memory can
be operated. From this reason, membership memories using these memory elements can
perform fuzzy set operations (e.g. maximum and minimum) between input fuzzy set and
fuzzy set in the memory fast aﬁd easily. In most fuzzy applications—e.g. Mamdani fuzzy
inference and fuzzy set matching, these fuzzy set operations occur frequently, whereas

conventional fuzzy processors and memories cannot do them efficiently and flexibly.

5.2 Concluding remarks

Totally, 5 types of fuzzy memory elements were proposed in this dissertation, which are
D, T, SR fuzzy flip-flops, max-min type fuzzy memory element, and bounded type fuzzy
memory elements. These memory elements can be regarded as a kind of fuzzy sequential
circuits. For the use of general purposes—e.g. a memory—, the sequential circuits must
be controllable, in other words, their state diagrams must be strongly connected. The
irredundant form of D fuzzy flip-flop is not a state machine because it does not have
the term including Q(¢) in its right-hand side. All forms of T fuzzy flip-flop are not
controllable because they cannot set any input value except 1/2 when their Q(t) =1/2.

Therefore D and T fuzzy flip-flops cannot be used for the fuzzy memory elements.
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D, T, and SR fuzzy flip-flops can be represented by logical form, and then they can
be analyzed logically in terms of the max-min fuzzy logic(Kleenean Algebra). As opposed
to fuzzy flip-flops, max-min type and bounded type fuzzy memory elements cannot be
represented by fuzzy logical form, but are represented as state transition tables. This
fact leads to that it is difficult to analyze them logically. However, their circuits are
small (1/2 of SR fuzzy flip-flop) and fast (2/3 delay of SR fuzzy flip-flop), and they
also realize some fuzzy operations between input fﬁzzy value and memory. In particular,
when the membership memories of fuzzy sets are constructed by proposed fuzzy memory
elements, these operations make the performance of fuzzy set operation between inputs
and memories can be increased effectively.

These memory elements (including fuzzy flip-flops) can be considered a memory that
has simple logical operation, i.e., “Login In Memory”. For more than 50 years, all gen-
eral computers have been designed as the Neumann architecture. On the other hand,
in application-specific areas, ASICs have been used—e.g. fuzéy logic controller. Pro-
posed memory elements give the foundation of making a general fuzzy hardware (i.e.,
fuzzy computer) that is not a Neumann computer. From the viewpoint of computer
architecture, proposed fuzzy memory elements are SIMD(Single Instruction Stream Mul-
tiple Data Stream) parallel architecture. 'Generally speaking, fuzzy set operations are
essentially SIMD parallel—i.e., a single fuzzy logical operation is performed on multiple
elements in fuzzy sets, and SIMD parallel architecture is well suited to fuzzy set opera-
tion. Moreover, in order to apply them to fuzzy database, a fuzzy set tends to be large,
and a fine grain parallel architecture like a Logic In Memory, compared with a coarse
grain parallel architecture like the KAFA that has difficulty in realizing large membership

memories, is required.
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5.3 Perspective

Two main prospects are considered for proposed fuzzy memory elements, one is SIMD
parallel fuzzy processor, and another is fuzzy temporal circuits, i.e., sequential circuits,
finite state machines, and fuzzy automata.

Applications of a SIMD parallel fuzzy processor are many fuzzy processing proposed
previously including fuzzy logic control using fuzzy inference. Other than fuzzy logic con-
trol that have been studied as its application so far, fuzzy clustering, fuzzy data/knowledge
base and processing, fuzzy image processing, and more applications that have been real-
ized by software and conventional computers are possibly the target of proposed memory
elements, and the performance of these applications is expected to be improved by them.
Furthermore, compared with conventional fuzzy logic controller, proposed fuzzy memory
elements are general purpose and are flexibly used.

Recently, the some experimental applications of the fuzzy tempoi‘al processing have
been proposed[7][18]{20]. Proposed fuzzy memory elements can be used for these appli-
cations. In order to develop the knowledge base, intelligent systems, human-like systems,
and etc., temporal logics are important and some fuzzy temporal logics have been re-
searched experimentally. These research areas are now developing and proposed fuzzy

memory will be useful for making more complicated fuzzy logic circuits in the future.

83




Bibliography

1]

[.Baturone, S.Sanchez-Solano, A.Barriga, J.L.Juertas: “Implementation of CMOS
Fuzzy Controllers as Mixed-Signal Integrated Circuits”, IEEE Transactions on Fuzzy
Systems, Vol.5 No.1, pp.1-19 (1997)

V.Catalina, A.Puliafito, M.Russo, L.Vita: “A VLSI Fuzzy Inference Processor Based
on a Discrete Analog Approach”, IEEE Transactions on Fuzzy Systems, Vol.2 No.2,
pp.-93-106 (1994)

A.Costa, A.D.Gloria, M.Olivieri: “Hardware Design of Asynchronous Fuzzy Con-
trollers”, IEEE Transactions on Fuzzy Systems, Vol.4 No.3, pp.328-338 (1996)

J.Diamond, W.Pedrycz, D.McLeod: “Fuzzy JK Flip-Flop as Computational Struc-
tures Design and Implemantation”, IEEE Transactions on Circuits and Systems

II:Analog and Digital Signal Processing), Vol.41 No.3, pp.215-226 (1994)

H.Eichfeld, T.Kunemund, M.Menke: “A 12b General-Purpose Fuzzy Logic Con-

troller Chip”, IEEE Transactions on Fuzzy Systems, Vol.4 No.4, pp.460-475 (1996)

L.Gniewek, J.Kluska: “Family of Fuzzy J-K Flip-Flops Based on Bounded Product,
Bounded Sum and Complementation” ’, IEEE Transactions on Systems, Man, and

Cybernetics—Part B: Cybernetics, Vol.28 No.6, pp.861-868 (1998)

J.L.Grantner, G.Fodor, D.Driankov: “Application of the fuzzy state fuzzy output

finite state machine to the problem of recovery from violations of ontological assump-

84




tions”, Intelligent Engineering Systems through Artificial Neural Networks ASME,
Vol.6, pp.277-282, Fairfield NJ USA (1996)

[8] Y.Hata, K.Nakashima, K.Yamato: “Some fundamental properties of multiple-valued
Kleenean functions and determination of their logic formulas”, IEEE Transactions

on Computers, Vol.42 No.8, pp.950-961 (1993)

[9] Higuchi, Kameyama: “Multiple-valued information processing—Post-binary elec-

tronics”, pp.50-55, Shokodo Pub. (1989)

[10] K.Hirota, K.Ozawa: “Concept of Fuzzy Flip-Flop” ,JEEE Transactions on Systems,
Man, and Cybernetics, Vol.19 No.5, pp.980-997 (1989)

[11] K.Hirota, K.Ozawa: “Fuzzy Flip-Flop and Fuzzy Registers” ,Fuzzy Sets and Systems
(North-Holland) , Vol.32 No.2, pp.139-148 (1989)

[12] K.Hirota, W.Pedrycz: “Designing sequential systems with fuzzy J-K flip-flops”,
Fuzzy Sets and Systems (North-Holland), Vol.39 No.3,pp.261-278 (1991)

[13] K.Hirota: “Introduction to Fuzzy Expert System”, pp.21-28, Ohm Pub. (1993) (in

Japanese)

[14] K.Hirota, W.Pedrycz: “Design of Fuzzy Systems With Fuzzy Flip-Flops”, IEEE
Transactions on Systems, Man, and Cybernetics, Vol.25 No.1, pp.169-176 (1995)

[15] Y.D.Kim, K.H.Park, H.LeeKwang: “Parallel fuzzy information processing system”,
Fuzzy Sets and Systems, Vol.72, pp.323-329 (1995)

[16] Y.D.Kim, H.LeeKwang: “High Speed Flexible Fuzzy Hardware for Fuzzy Information
Processing”, IEEE Transactions on Systems, Man, and Cybernetics—Part A:Systems
and Humans, Vol.27 No.1, pp.45-56 (1997)

[17] P.Liu: “The fuzzy associative memory of max-min fuzzy neural network with thresh-

old”, Fuzzy Sets and Systems, Vol.107 No.2, pp.147-157 (1999)

85




[18]

[19]

[20]

[21]

[22]

[24]

[26]

D.S.Malik, J.N.Morderson, M.K.Sen: “Products of fuzzy finite state machines”,
Fuzzy Sets and Systems, Vol.92 No.1, pp.95-102 (1997)

G.F.Marshall, S.Collins: “Fuzzy Logic Architecture Using Subthreshold Analogue
Floating-Gate Devices”, IEEE Transactions on Fuzzy Systems, Vol.5 No.1, pp.32-43
(1997)

J.N.Morderson, P.S.Nair: “Successor and source of (fuzzy) finite state machines and

(fuzzy) directed graphs”, Information Sciences, Vol.95 No.1-2, pp.113-124 (1996)

Y.Mori, M.Mukaidono: “Fuzzy Flip-Flop Expressible with logical Expression and
Their Properties”, Jounral of Japan Society for Fuzzy Theory and Systems, Vol.5
No.5, pp.1177-1189 (1993) (in Japanese)

M.Mukaidono: “On the B-ternary Logical Function—A Ternary Logic Considering
Ambiguity—", The transactions of the institute of electronics and communication

engineers, Vol.J55-D No.6, pp.355-362 (1972) (in Japanese)

M.Mukaidono: “On Some Properties of Fuzzy Logic”, The transactions of the insti-
tute of electronics and communication engineers, Vol.J58-D No.3, pp.150-157 (1975)

(in Japanese)

M.Mukaidono: “An Algebraic Structure of Fuzzy Logical Functions and Its Minimal
and Irredundant Form” The transactions of the institute of electronics and commu-

nication engineers, Vol.J58-D No.12, pp.748-755 (1975) (in Japanese)

M.Mukaidono: “Regular Ternary Logic Functions—Ternary Logic Functions Suitable
for Treating Ambiguity” IEEE Transactions on Computers, Vol.C-35 No.2, pp.179-
183 (1986)

M.J.Patyra, J.L.Grantner, K.Koster: “Digital Fuzzy Logic Controller”, IEEE Trans-
actions on Fuzzy Systems, Vol.4 No.4, pp.439-459 (1996)

86

[27]

[28]

[29]

[30]

[34]



[27]

[28]

[29]

[30]

[31]

[34]

M.Sakaki, F.Ueno, T.Inoue: “7.5MFLIPS Fuzzy Micrpprocessor Using SIMD and

Logic-In-Memory Structure”, Proceedings of the International Conference of Fuzzy

Systems

N.Takagi, K.Nakashima, M.Mukaidono: “Identification of incompletely specified
multiple-valued Kleenean functions”, IEEE Transactions on Systems, Man, and Cy-

bernetics Part A: Systems and Humans, Vol.28 No.5, pp.637-647 (1998)

M.Togai, H.-Watanabe: “An Inference Engine for Real-time Approximate Reasoning:

Toward an Expert on a Chip” ,IEEE EXPERT, Vol.1 No.3, pp.55-62 (1986)

J.Virant, N.Zimic, M.Mraz: “T-type fuzzy memory cells”, Fuzzy Sets and Systems,
Vol.102 No.2, pp.175-183 (1999)

T.Yamakawa, T.Inoue, F.Ueno, Y.Shirai: “Implementation of Fuzzy Logic Hardware
Systems——Three Fundamental Arithmetic Circuits—”, The transactions of the insti-
tute of electronics and communication engineers, Vol.J63-C No.10, pp.720-721 (1980)

(in Japanese)

T.Yamakawa, T.Inoue, F.Ueno, Y.Shirai: “Implementation of Fuzzy Logic (Com-
plement, Bounded-Difference, Bounded-Sum and Absolute-Difference) by Current-
Mode Circuits”, The transactions of the institute of electronics and communication

engineers, Vol.J63-C No.10, pp.722-723 (1980) (in Japanese)

T.Yamakawa, T.Inoue, F.Ueno, Y.Shirai: “Construction of a Programmable Multi-
function Voltage Mode Fuzzy Logic Circuits”, The transactions of the institute of
electronics and communication engineers, Vol.J63-C No.10, pp.724-725 (1980) (in

Japanese)

T.Yamakawa, T.Inoue, F.Ueno, Y.Shirai: “Implementation of Fuzzy Logic Hardware
Systems—Three Fundamental Arithmetic Circuits—", The transactions of the insti-
tute of electronics and communication engineers, Vol.J63-C No.10, pp.720-721 (1980)

(in Japanese)

87




[35]

[36]

[37]

[38]

[39]

T.Yamakawa, T.Miki: “The Current Mode Fuzzy Logic Integrated Circuits Fabricated
by the Standard CMOS Process”, IEEE Transactions on Computers, Vol.c-35 No.2,
pp.161-167(1986)

T.Yamakawa, H.Kabuo, T.Miki: “Implementation of Programmable Membership
Function Circuits in the p-MOS Technology”, The transactions of the institute of

electronics and communication engineers, Vol.J69-C No.11, pp.1472-1475 (1986) (in

Japanese)

T.Yamakawa, K.Sasaki: “Fuzzy Memory Device”, Preprints of Second IFSA Congress,
Tokyo, July 20-25, pp.551-555(1987)

Y.Yamamoto, M.Mukaidono: “Meaningful Special Classes of Ternary Logic
Functions—Regular Ternary Logic Functions and Ternary Majority Functions”,

IEEE Transactions on Computers, Vol.37 No.7, pp.799-806 (1988)

S.Yoshida, K.Hirota: “Proposal of D, T, and SR fuzzy flip-flops and their circuits
design using FPGA”, Proceedings of the 14th fuzzy system symposium, pp.353-354,
Nagaragawa International Convention Center, Gifu, Japan, June 3rd-5th 1998 (in

Japanese)

S.Yoshida, K.Hirota: “Fuzzification of D, T, and SR flip-flops uéing binary simplest
form and their application to LSI”, The 30th meeting of intelligent control, Japan
Society of Fuzzy Theory and Systems, Hosei University, Koganei, Tokyo, December
13rd 1997 (in Japanese)

88

P

Jo



Publications (FIF%ER)

Jounal papers

e S.Yoshida, K.Hirota: “Concepts of D, T, SR, Fuzzy Flip Flop and Their Circuit De-
sign Using FPGA”, Jounral of Japan Society for Fuzzy Theory and Systems, Vol.12
No.1, pp.160-168 (2000) (in Japanese)

e S.Yoshida, Y.Takama, K.Hirota: “Fuzzy Flip-Flops and their Applications to Fuzzy
Memory Element and Circuit Design using FPGA”, Jounral of Advanced Compu-
tational Intelligence, Vol.4 No.5, pp.1-7 (2000)

Domestic conference papers

e S.Yoshida, K.Hirota: ‘;Proposa,l of D, T, and SR fuzzy flip-flops and their circuits
design using FPGA”, Proceedings of the 14th fuzzy system symposium, pp.353-354,
Nagaragawa International Convention Center, Gifu, Japan, June 3rd-5th 1998 (in

Japanese)

e S.Yoshida, K.Hirota: “Fuzzification of D, T, and SR flip-flops using binary sirﬁplest
form and their application to LSI”, The 30th meeting of intelligent control, Japan
Society of Fuzzy Theory and Systems, Hosei University, Koganei, Tokyo, December
13rd 1997 (in Japanese)

e 5.Yoshida, K.Hirota: “Proposal of a Fuzzy Memory Element for Fuzzy Inference”,
The 33rd meeting of intelligent control, Japan Society of Fuzzy Theory and Systems,
Oosaki-Kaikan of Meidensha Co., Oosaki, Tokyo, March 9th 1999 (in Japanese)

e 5.Yoshida, K.Hirota: “Proposal of a Fuzzy Memory Modules for Fuzzy Inference”,
The 35th meeting of intelligent control, J apan Society of Fuzzy Theory and Systems,
Tsukuba International Congress Center, Tsukuba, Japan, January 28th 2000 (in

Japasene)

89




e S.Yoshida, K.Hirota: “Concepts of D, T, SR Fuzzy Flip Flop and Their Circuit De-
sign Using FPGA”, The 9th meeting of the research committee of non-linear elec-

tronic circuit technology, Nihon University, Ochanomizu, Tokyo, April 21st 2000 (in

Japanese)

& 3L

b

+

s

g

o EHE—, BHED, T, SR77¥4 77Uy T 70y FDEREFPCGA &HW7>
EEEEREL", BA T 7 2 1 %28, Vol.12 No.1, pp.160-168 (2000)

e S5.Yoshida, Y.Takama, K.Hirota: “Fuzzy Flip-Flops and their Applications to Fuzzy
Memory Element and Circuit Design using FPGA”, Jounral of Advanced Compu-

tational Intelligence, Vol.4 No.5, pp.1-7 (2000)

MASEH

13

HE—, EHE: ““@EEHFX0D, T, SRI7yZ4 7w T70y7TDT 7
VAEELS IANOER?, BERT 7V 4 %2 B30 ET 7 ¥ ¢ BlIHAKS, BBEK
FET2E, /N3, 1997.12.13

e« HHE—, BEHE:“D, T, SRII7Z47Uw 770y 7OREEFPGARHMH
WBIRREREY, HEA TV vy P4 FE B UET 74 VAFAYVRDY LEED
£ pp.353-354, ERJIERESEE, 1998.6.3

o EHE—, BHE: 7y VA HAHDEDDT 74 AEY EARTORE BF
T 74 R 5B 33 EANEEES, HESABAEE 1999.3.9

o HFHE—, BHAK: Ty HROLDDT 7 V4 AEYEY 2V ORE, AF
77 T4 %R 535 BANGERER, SINERSES 2000.1.28

o THE—, BEHE:“D, T, SRY7 47Uy 770y, ORELFPGAZH
W=EIRERET, EXFR FEIEEEHETFRIRRAENATEMNEESR, HAKS
BT #E, 2/ /K, 2000.4.21

90

The
tion:
Eng;

and

a580
of T
Mur

and

disci
for e

to M

pute
The

profe

Joy ¢

Mur



Acknowledgement

The author is indebted to Dr. Kaoru Hirota, a professor of the Department of Computa-
tional Intelligence and Systems Science, Interdisciplinary Graduate School of Science and
Engineering, Tokyo Institute of Technology, for valuable advice, substantial suggestions,
and great patience during my work on this dissertation.

The author is also grateful to Dr. Katsumi Nitta, a professor, Dr. Seiji Yamada, a
associate professor, Dr. Yoshiyuki Kabashima, a associate professor of Tokyo Institute
of Technology, for their valuable comments and discussions. Regarding chapter 3, Dr.
Murofushi, a associate professor of Tokyo Institute of Technology, gave precious comments
and discussions from a theoretical point of view.

The author is also grateful to Dr. Yasufumi Takama, a research associates of the Inter-
disciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
for enlightening suggestions made in the course of discussion. Likewise, gratitude is due
to Ms. Yukiko Nakagawa, who was a research associates of Tokyo Institute of Technology.

In order to perform circuits and systems simulations, the author freely uses the com-
puters and valuable tools in the VLSI Design Center in Tokyo Institute of Technology.
The contribution of the VLSI Design Center was the great support of my research.

The author would like to express his sincere gratitude to Dr. Jinhui Chao, who is a
professor of Faculty of Science and Engineering, Chuo University. He introduced me the
joy of mathematics and research for the first time when I was an undergraduate student.

Finally, the author thanks the colleagues in Hirota Laboratory, Sugeno Laboratory,

Murofushi Laboratory, Utsumi Laboratory, and Chao Laboratory. They discussed our

91




studies and our lives with me, and also shared the patience of our research with me.
At last but not least, my greatest gratitude is due to my parents and my grandparents.
Without their wholehearted support and warm care, this thesis would not have seen the

light of day.

92




