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Chapter 1

Introduction

In the information engineering field, complicated hierarchical models such
as multi-layered perceptrons, gaussian mixtures and graphical models are
mainly used. These models have the wide range of application. For example,
many kinds of gaussian mixtures are employed in pattern recognition, auto-
matic data clustering, discovery of knowledge from data samples. In spite
of these applications, the theoretical properties of these models have not yet
been clarified.

All statistical models fall into two typical categories, identifiable and non-
identifiable. In general, if the parameter of the learning model is uniquely
determined by its behavior, the model is identifiable. If otherwise, non-
identifiable. The learning model is represented by the probability distribu-
tion p(z|w), which has the parameter w. A non-identifiable model has many
true parameters, because its mapping is not one-to-one. When we assume
that the class of functions p(z|-) includes the true distribution g(z), the true
parameters {w; p(xz|w) = ¢(x)} are not one point in its parameter space. In
general, the set has many singular points. At these points, the Fisher infor-
mation matrices are not positive definite. Hence, the log likelihood cannot
be approximated by any quadratic form of the parameter in the neighbor-
hood of these singularities. The method of regular statistical models, which

are identifiable, cannot be applied to these models. That is why there is no
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CHAPTER 1. INTRODUCTION

mathematical foundation for non-identifiable models.

The importance of analysis of non-identifiable models has recently been
pointed out (Hartigan, 1985; Amari & Ozeki, 2001). In some models such
as mixture models, the maximum likelihood estimator often diverges. It has
been proposed that, by choosing a locally conic parameterization, the asymp-
totic behavior of the log likelihood ratio of the maximum likelihood method
can be analyzed based on the theory of empirical processes (Dacunha-Castelle
& Gassiart, 1997). It was proven that the maximum likelihood method pro-
duces very small training errors and very large generalization errors (Hagi-
wara, 2002). It has been made well known by numerous experiments that
the Bayesian estimation is more useful than the maximum likelihood method
(Akaike, 1980; Mackay, 1992).

In order to clarify the behavior of the non-identifiable model, we have
proven the relation between the Bayesian generalization error and the sin-
gularities in the parameter space, by using algebraic geometry (Watanabe,
1999). In the algebraic geometrical method, we assume that the Kullback
information of the non-identifiable model is an analytic function. Then, we
refer to the model as the singular model. We found that the asymptotic ex-
pansion of the stochastic complexity (Rissanen, 1986) depends on the largest
pole of the zeta function of the Kullback information and the a priori distri-
bution. It is well known that the stochastic complexity determines the gen-
eralization error (Levin et. al., 1990). This method provides a mathematical
foundation of Bayesian estimation when the number of training samples is
sufficiently large. Based on the algebraic geometrical method, we clarified
the properties of singular models such as multi-layer perceptrons. In general,
hierarchical learning models with Bayesian estimation achieve the more pre-
cise inference than regular statistical models, even if the true distribution is

not contained in the finite parametric models (Watanabe, 2001b).

In this thesis, we discuss the relationship between some singular models

and the stochastic complexities, which is equal to the minus type 11 likelihood
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CHAPTER 1. INTRODUCTION

or the free energy, is the most important observable in Bayesian statistics.
For example, the increase of the stochastic complexity is equal to the gen-
eralization error. In addition, we can carry out the model selection and the
hyperparameter optimization using the stochastic complexity. This thesis

establishes the following stuffs.

(1) An algorithm to clarify the stochastic complexities in singular learning

machines.

(2) A unified perspective of some singular learning machines in terms of

Bayesian networks.
(3) A mathematical foundation for analysis of singular learning machines.

This thesis consists of nine chapters. In the second chapter, we introduce
the standard framework for Bayesian estimation and summarize the alge-
braic geometrical method and the properties of the stochastic complexity.
In the third chapter, the relationship between the stochastic complexity and
the volume-dimension is stated. Using this relationship, we are able to con-
struct a probabilistic algorithm for calculation of the stochastic complexity.
According to the algorithm, we can obtain the coefficient of the stochastic
complexity in general singular models. However, in terms of the model selec-
tion, the relationship between the increase of the model size and that of its
stochastic complexity is needed. Thus, in the fourth to seventh chapters, we
analyze some concrete singular models such as mixture models, Boltzmann
machines, Bayesian networks and hidden Markov models, and clarify their
stochastic complexities in the mathematical rigorous way. In the eighth and

ninth chapters, we discuss and conclude our results.



Chapter 2

Bayes Estimation

In this chapter, we introduce the standard framework for Bayesian estima-
tion. This is well known in statistical learning theory. Then, we summarize
the algebraic geometrical method and some mathematical properties of the

stochastic complexity.

2.1 Bayesian Learning and Stochastic Com-
plexity

Let X™ = (X3, X5, -+, X,) be a set of training samples. The number of
training samples is n. These and the testing samples are independently
and identically taken from the true probability distribution g(x). Let the
learning machine be p(x|w), which has a parameter w. For example, the
parameter corresponds to the mean vector and the variance when p(x|w)
is a gaussian distribution. In general, we determine the optimal w from a
loss function. This process is referred to as ’learning’. In Bayesian learning,
however, we construct the predictive distribution p(z|X™) from the training
samples, the learning machine and an a priori distribution. The a priori
probability distribution ¢(w) is given on the set of parameters W. Then, the

9



CHAPTER 2. BAYES ESTIMATION

a posteriori probability distribution is defined by

plw|X™) =

s ¢ [T,

where Zg is a normalizing constant. The empirical Kullback information is

given by
Xi)
Z gp(X )

Then, p(w|X™) is rewritten as

p(w|X™) = exp(=nHn(w)) p(w),

1
Z(X")
where the normalizing constant Z(X™) is given by

Z(X*) = [ exp(=nHa(w))p(w)dw
The stochastic complexity is defined by
F(X™) =—log Z(X™).

In Bayesian learning, we must prepare the learning model and the a priori
distribution. Then, it is a problem which sized model or which prior makes
the prediction precise. This is referred to as the model selection problem.
We can select the optimal model and the hyperparameter that determine the
a priori distribution by minimizing —log Zy(X™) because it is a minus log
marginal likelihood of the learning model and the prior. This is equivalent

to minimizing the stochastic complexity, since

—log Zo(X™) = —logZ(X™) + S(X™),
S(x™ = ——glogq(Xa,

where the empirical entropy S(X™) is independent of the learners. The av-

erage stochastic complexity F'(n) is defined by
F(n) = —Ex» [log Z(X™)], (2.1)

10



CHAPTER 2. BAYES ESTIMATION

where Exn stands for the expectation value over all sets of training samples.

The Bayesian predictive distribution p(x|X™) is given by
palX™) = [ plaw)p(w|X™)dw,

In Bayesian learning, we use all parameters w according to p(w|X™). It
is different from other estimations which determine the optimal parameter
such as the maximum likelihood estimation. The generalization error G(n) is
the average Kullback information from the true distribution to the Bayesian

predictive distribution,

G(n) = Exn [/ q(z)log p((a]:gg“)dx]

It is very important to clarify the behavior of G(n), when the number of
training samples is sufficiently large. The relation between G(n) and F(n)
is, ‘

G(n)=F(n+1) — F(n). (2.2)
This relation is well known (Levin et.al., 1990; Yamanishi, 1998; Watanabe,

1999) and allows that the generalization error to be calculated from the

average stochastic complexity. When F'(n) is obtained as
F(n) = Alogn + o(logn),
the model’s generalization error is given by
A 1
G(n)=— =).
() =2 +o()

This X is referred to as the learning coefficient of the machine.
If a learning machine is an identifiable and regular statistical model, it is

proven (Schwarz, 1978) that asymptotically

F(n)= —glog n + const,

11



CHAPTER 2. BAYES ESTIMATION

holds, where d is the dimension of the parameter space W. However, for
models that are non-identifiable and non-regular such as artificial neural
networks, the different results are derived. The asymptotic expansion of
F(n) is
F(n) = Aogn — (m— 1) loglogn + const,

where the rational number (—\) and the natural number m are respectively
the maximum pole and its order of the zeta function of the Kullback infor-
mation and the a priori distribution (Watanabe, 2001a). It is hard to find
the largest pole since the resolution of singularities is needed. According to
this formula, however, the upper bound of the constant A can be derived
in some models such as multi-layer neural networks (Watanabe, 2001b). In
this thesis, first, we construct the probabilistic algorithm for calculation of
A. Next, we evaluate the upper bounds of A in mixture models, Boltzmann
machines, Bayesian networks and hidden Markov models by finding a pole

of the zeta function.

2.2 Algebraic Geometry of the Stochastic
Complexity

We define the Kullback information from the true distribution g(x) to the

learner p(z|w) by

H(w) = /q(x) log ﬁ%}dw' (2.3)

This function is equal to zero iff ¢(z) = p(z|w) and not less than zero for all
w. Thus, it indicates the distance from ¢(x) to p(z|w). However, it does not
satisfy the symmetric law. The asymptotic form of the stochastic complex-
ity greatly relates to the singularities of the parameter set {w; H(w) = 0}.
Note the important and nontrivial relation that was clarified by the algebraic
geometrical method (Watanabe, 2001a; Watanabe,2001b).

First, assume that the Kullback information H(w) is an analytic function

of w in the support of the a priori distribution. If the learner is in a redundant
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CHAPTER 2. BAYES ESTIMATION

state in comparison with the true distribution, the set {w € W; H(w) = 0}
includes quite complicated singularities. The algebraic geometry is the only
means by which we can analyze the effect of singularities. We need the

function J(z) of complex variable z, which is defined by

J(z) = /H(w)zgo(w)dw. (2.4)

This function is called the zeta function of H(w) and the a priori distribution
w(w). It is a holomorphic function in the region Re(z) > 0, and can be ana-
lytically continued to the meromorphic function on the entire complex plane,
whose poles are all real, negative and rational numbers. This continuation is
ensured by the existence of the b-function (Watanabe, 2001a).

Let 0 > —)\; > —\g > --- be the sequence of poles of the zeta function
ordered from the origin to minus infinity, and mi, mo, - -- be the respective
orders of the poles. The inverse Mellin transform of J(z) gives the state

density function (¢ > 0),
V(t) = / §(t — H(w))p(w)duw.

Since J(z) is a meromorphic function, the asymptotic expansion of v(t) is

given by

oo My

v(t) =D > crmt™ T (— logt)™

k=1m=1
for t — 0. It has been proven that F(n) defined by

F(n) = —1og/exp(—nH(w))<,o(w)dw

is the upper bound of F(n) (Watanabe, 2001a). We can apply the asymptotic

expansion of v(t) to F(n); then, this is rewritten by

o t. dt
F(n) = — log/o exp(—t)v(ﬁ)%—
= MAlogn— (m; — 1)loglogn + const., (2.5)

for n — 00. The coefficient of leading term in F(n) is A1, the absolute value of

the largest pole. In fact, we can calculate A1 and m4 by using the resolution of

13



CHAPTER 2. BAYES ESTIMATION

singularities in algebraic geometry (Atiyah, 1970; Hironaka, 1964; Watanabe,
2001a). However, it is generally difficult to find the complete resolution map.
We can alternatively find a partial resolution of singularities. This gives us
a pole —u of zeta function J(z). Then we obtain the upper bounds of the
stochastic complexity, since p is the upper bound of A;. In this thesis, we
present the nontrivial upper bound of stochastic complexity of some singular

models derived by the algebraic geometrical method.

2.3 Basic Properties of Stochastic Complex-
ity

Let us summarize some basic properties of stochastic complexity. These
properties are trivial but very useful in the proofs.
First, define a function F(S,v) by

F(S,4) = ~log [ exp(~nS(w))(w)dw,

where S is a function of w and % is a positive function over all w. This is
well defined even if 1 (w) is not a probability density function.

(Proposition. 1) Using Jensen’s inequality, we can show easily that the
following inequality holds (Opper & Haussler,1995; Watanabe, 1999),

F(n) < F(H,p), (2.6)
where H(w) is the Kullback information defined by the equation (2.3).

(Proposition. 2) If the functions Hi, H2 and the positive function ¢y, @9
satisfy

Hi(w) < Hy(w) (Yw e W),
p1(w) = pa(w) (Yw e W),

then the following inequality immediately holds,

F(Hy, 1) £ F(Hy, p2).

14



CHAPTER 2. BAYES ESTIMATION

This inequality also claims that, if the integrated region in the parameter set
isUDV,

—log/U exp(—nK (w))y(w)dw < -—1og/vexp(——nK(w))¢(w)dw,

holds. From this inequality, we obtain the upper bound of the stochastic com-
plexity. Based on this property, it is sufficient to consider only the restricted

parameter set.

(Proposition. 3) If w = (w1, ws), assume that H and ¢ are separated into

two functions of each other,

H(wl,UJg) = Hl(wl)—l—Hg(wg),
p(w,wz) = pa(wr) wo(wa).

The following equality holds,
F(H,p) = F(Hy, p1) + F(Hz, 2).
Define the zeta functions by
I = [Hw)ew)ds,
K2 = [ Hw)eswddws (i=1,2).

Let —p, —pa, —pe be the largest poles of J, J; and J; respectively. The
property claims that
H= p1 + Ha- (2.7)

15



Chapter 3

Learning Coefficient and
Volume-Dimension

In this chapter, we introduce a relationship between a learning coefficient
and a volume-dimension. Then, using the relationship, we construct a new

probabilistic algorithm to calculate the learning coefficient.

3.1 Volume-dimension

Let the volume of subset of the parameter space V(t) (0 <t < o) be
V(t) = /H e D) (3.1)

This function means the volume of the parameter set according to the prob-
ability measure p(w)dw, where the Kullback information H(w) represented
by (2.3) is not larger than ¢t. We assume that ¢(w) is not equal to zero on

{w*; p(x|w*) = q(x)}. In this section, we prove the following theorem.

Theorem 1 Assume that 0 < « (o # 1) is an arbitrary constant, then

,
+ i eV etV )
t—+0 log o

)

where A is the coefficient of the learning curve.

17



CHAPTER 3. LEARNING COEFFICIENT AND
VOLUME-DIMENSION

(Remark) This X is also the coefficient of the leading term in the stochastic

complexity.
This theorem claims that the learning coefficient is equal to the volume-
dimension in the parameter space. In the field of fractal geometry, this

dimension is referred to as the box counting dimension.

(Proof of Theorem 1) We define the function ©(-) as

_J1 (y=20

Then, V (¢) is rewritten as
V(L) = / Ot — H(w))p(w)dw.
Let &(-) be Dirac’s delta function. According to the relationship of distribu-
tion ©(t) = 4(t),
av
v _ % .
Vi) == / 5(t — H(w))p(w)dw.

Since the number of ¢ where {w; H(w) = t} is an analytic set and has singu-
larities is finite, V/(t) is well-defined. Thus, it follows that

J(z) = / dt / dw §(t — H(w)) ¥ p(w)
- /tzV’(t)dt.

J(2) is the Mellin transform of V'(t). Using a property of Mellin transform
and the fact that the largest pole of J(z) is rational —A, and that its mul-
tiplicity m is counting number, we can derive that V’(t) has the following

asymptotic expansion at t — +0 (Watanabe, 2001b),
V/(t) =t =log t)™ ! + (1), (3.2)
where ¢; > 0 is a constant and r;(t) satisfies

) r1(t) .
thEO r-1(—logt)™1

18



CHAPTER 3. LEARNING COEFFICIENT AND
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Since V(0) = 0,

t
V() = / V'(s)ds.
0
In ge'neral, when a function has the asymptotic expansion, the primitive

function can be asymptotically expanded and calculated by integrating each

term. By using the function
fA,m,t) = /Ot s*H(—log s)™ 1ds,
and the equation(3.2), it follows that |
V(t) = eif (A, m, 1) + 72 (2),

where r2(t) satisfies

Using integration by part, we obtain the recurrence formula of min f(\, m, t),

FOmt) = (- logt)™"

+-"37’—;\“—1f(/\,m— 1,4).

Since m is a counting number and

t)\
f(/\; 17t> = 'X:
f(A,m,t) is finite summation,
Z (m—1)! ok
f()\,m,t) = kz::l mt’\(’— 10gt) k.

Therefore,
V(t) = cot?(—log )™ ! + ra(t),

where ¢y > 0 is a constant and r3(¢) satisfies

. T3(t) _
tl—]}-?o t(—logt)m=1 0

19
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Define
A= t};n_li_lo V(at)/V ().
Then,
Al m—1
A — lim co(at)(—log(at))™ ! + r5(t)
t=+0 ot (—logt)™ 1 + rs(t)
= O[A7

which completes the proof of Theorem 1. (End of Proof)

(Remark) From this result, it is clear that this method calculates A inde-

pendent of m. If m > 2, however, the convergence at t — 0 is weaker.

3.2 Proposed Algorithm

In this section, we present the new algorithm to calculate A based on Theorem
1. The main goal of this algorithm is to approximate the volume V'(¢).
However, it is not easy to build the uniform distribution on the analytic
set {w; H(w) < t} since the set has complex singularities at t — 40. The
algorithm gets over this problem.

Assume the set of the parameter space is W = [—1,1]¢ and it includes
the subset of {w*; p(z|w*) = g(x)}. We define an a priori distribution ¢(w)
is the uniform distribution on W. It is known that A\ does not depend on
w(w) when the prior satisfies p(w) > 0 on {w; H(w) = 0}. Let the Kullback
information H(w) be given. Let 0 <a < 1,0 < T < 1, N >> 1 be constants.
We denote the volume (the number of elements) of the set S as |S|. Let us
obtain the sequence {M\,;n = 1,2,3,...} whose mean value converges to A

from the following algorithm.
Algorithm to calculate the learning coeflicient

Step 1.
Lett=T,n=1

20
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Obtain parameters wi, ws, ..., from the uniform random distribution on W =

[—1,1]¢ till the volume of

Py = {i; H(w;) <t}
is equal to N (|P1|=N). Calculate |Q1| such that
Ql = {7, & Pl,H(’LUz) < Olt}.

From

Viat) o @1

V@) N

IR

and Theorem 1,
o log{|Qil/N)
1= .
log o

Step 2.
Let n:=n-+1 and ¢ := ot.
Select the elements from F,,_; in a random order, and let them be u;. Obtain

w1, We, - - - such that
w; = U; + U4 (7:: 1,2,3,"'),

where v; are random variables on [—4(1 — ), £(1 — @)]?. Continue it till
|B,| = N, where
Py = {i; Hw:) < ).

The elements in P, are samples from the uniform distribution on {w; H(w) <
t}. Calculate |@,| such that

Qn = {i € Py; H(w;) < at}.

From

Viat) . |Qal

VD) N

IR
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and Theorem 1,
_ log{IQul/N}

A log o

Step 3.
Repeat Step 2.

According to Theorem 1, the mean value of the sequence A;, Az, A, ---

converges to .

3.3 Verification of the Algorithm

In this section, we apply the algorithm to tree-layered perceptrons and verify

the effectiveness.

3.3.1 Evaluation: Three-Layered Perceptron

We apply the presented algorithm to tree-layered perceptrons which have one
input unit, one output unit and K hidden units. We can depict the model

as
ploleu) = —s=exp(=5(y— f@u)))
flz,w) = iaktanh(bkx),
k=1

where z,y € R are input and output respectively. The number of the pa-

rameter is 2K and
w={ag, bi; k=1,2,..., K}.

In our experiments, we assume that the input x is taken from the uniform
distribution on [—1, 1] and the true distribution is

y2

1
q(z) = \7‘2‘—; GXP(—‘—Z“)-

22
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This means f(z,w"*) = 0. In other words, Vax = 0 or Vb, = 0. Then,

A = [ 2 [yt w)iog D020

= %/_11 f(z, w)?dz. (3.3)

When we calculate the learning coefficient, we can rewrite the Kullback in-
formation as the algebraic function at the neighborhood of the parameter set
that determines the smallest A by dividing the parameter space (Watanabe,
1998). Define

z{zaj b)Y

k=1 j=

Then, there are constants ¢;, c; > 0 in origin-neighborhood such that
ClHo(’U)) _<_ H(’U}) S CQHO('LU). (34)

In this case, A, m from the zeta function of H(w) is equal to that of Hy(w).
The paper (Watanabe, 1998) shows that

Moreover, the paper (Watanabe, 2001b) shows that A = 1/2, m = 2 when
K=1and A= %, m = 1 when K = 2. Our algorithm is able to calculate

%

A< (3.5)

2

general models. However, we apply it to these models in order to verify its

effectiveness.

3.3.2 Experimental Results: Algebraic Kullback Infor-
mation

We show the results when K = 1,2 (Figure 3.1, 3.2).
The horizontal axis shows the number of iterations (n in the algorithm),
whereas the vertical axis the value of )\,. We apply our algorithm in 100

times changing the seed of random number. We show the mean values and
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Figure 3.1: Convergence of \,(algebraic Kullback information, K = 1)
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Figure 3.2: Convergence of A,(algebraic Kullback information, X = 2)
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standard deviations as “Mean Value & 2xStandard Deviation” in the fig-

ures. The conditions of the experiments are that o = 2/3, T = 0.5 and
N = 1000000. According to the equation (3.4), we use Hp(w) instead of
H(w). The runtimes of Figure 3.1 and 3.2 are about 300 minutes by an
computer on the market (450MHz). The mean value attains the true value
though the standard deviation grows. It is not easy to determine whether
the approximate value converges or not. Then, we show the figures when
N = 4000000 (Figure 3.3, 3.4).

It is clear that the values of standard deviation are a half of the previous
cases. The runtime is quadruple. When we assess the convergence and need
the precise value, it is sufficient to try a large number of samples N. From
our result, the error times 1/+/a when the number of samples times a.

From the Figure 3.3 and 3.4, X is estimated in 0.46 &+ 0.05,0.66 =+ 0.06,
respectively. These results almost consist with the theoretical value 1/2, 2/3.
Though the case when K > 3 is still unknown, our results (Figure 3.5 and
3.6) satisfy the bounds (3.5).

3.3.3 Experimental Results: Analytic Kullback Infor-
mation

In general, we can find the algebraic expression such as the equation (3.4)
when H(w) is an analytic function. However, it is not easy to do it since the
expression depends on the learning machine. Then, we introduce the method
that does not need Hp(w). It is generally hard to integrate the Kullback
information (3.3). By using samples {z,} from the uniform distribution on

the integral region, we construct the function,

1 A
=57 ;f Tq, w)?. (3.6)

We use this function instead of H(w). Although the result is more precise

when the number of {z,} is larger, the runtime is also larger. Theoretically,
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it is sufficient to exist constants cj,c; > 0 such that
a1 Hy(w) < Hw) < coH-(w). (3.7)

In order to satisfy the condition, {z,} is not in specific region and it seems
sufficient that the number of {z,} is larger than the number of parameters.
In our experiments, A = 100. We show the results (Figure 3.7, 3.8 and 3.9).

The values of A is the same as the previous experiments. This means the

method without Hy(w) is also effective.
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Chapter 4

Mixture Models

In this chapter, we introduce the mixture model and derive a theorem of
the stochastic complexity. A learning machine which is a mixture of several
distributions is referred to as a mixture model. When these distributions
are normal distributions, the learning machine is a gaussian mixture. It is
employed not only to estimate the true distribution but also to discriminate
the category to which the datum belongs. Thus, the model is used in a lot
of information processing fields, for example, pattern recognition, automatic
data clustering, data mining, etc. When components of distributions are
neural networks, the machine is called a mixture of experts (Jacobs & Jordan,
1991). The learning algorithms using EM method are developed. In spite of
the wide range of application and learning algorithms, the model selection
and the properties of generalization are not yet clarified. The results of this

chapter construct the mathematical foundation to analyze them.

4.1 Mixtures of Several Learning Machines

Let f(z|b) be a conditional probability density function of z € R with a

given parameter b € RM. The learning machine p(z|w) made of their mixture
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is defined by p
plzlw) = > arf(z|bs), (4.1)
k=1

where {ax € R} is the set of coefficients which satisfy a; > 0 and

K
Z ar = 1.
k=1

The parameter of the machine p(xz|w) is w = {a,bx}. The set of all pa-
rameters is denoted by W = {w}. The probability distribution f(z|bs) and
the integer K are respectively called the component of the mixture and the

number of components.
If each component f(z|bx) is equal to the normal distribution given by

albe) = Gy P~ ), (1.2

then the learning machine p(zjw) is called a gaussian mixture or a nor-
mal mixture. It should be emphasized that, when we study some clustering
methods or a competitive neural network, we implicitly consider the gaussian
mixture. Hence the gaussian mixtures have a lot of applications to informa-
tion processing systems. In some applications, the parameter is restricted to

the averages of each components,

bk = mkERN, (4.3)
or = const. (k=1,2,---,K), (4.4)

whereas in the other applications the parameter consists of both averages

and standard deviations,

by = (mg,or) (k=1,2,---,K), (4.5)
my € RY,op>0 (k=1,2,---,K). (4.6)

In this chapter, we consider a general mixture model which contains both

cases as special cases. The dimension of the parameter by is denoted by M.
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In Theorem 1, we prove the upper bound of the stochastic complexity for
the general mixture represented by the equation (4.1). The upper bounds
of the stochastic complexities of the both gaussian mixtures are obtained as

corollaries of the Theorem 1.

4.2 Stochastic Complexity of Mixture Mod-
els

We assume the three general conditions, (A4.1),(A4.2), and (A4.3).

-

(A4.1) Firstly, we assume that the learning machine can attain the true

model. The learner is given by
K
p(zlw) = > apf(x|br). (4.7)
k=1
The set of parameters in the learning model p(x|w) is defined by
W = {a,{bx};a € A bk € B},

where the set A is defined by

K—1
A= {a' = (a'laa27 "7a'.K——1);a’k- Z O) Z ag S 1}7
k=1
and B is a fixed open subset of RM. Note that ax is not a parameter but a
function of a = (as, as, ..., ag—1) determined by

K-1
ag — 11— Z Q-
k=1
We assume that the true distribution g(z) is given by

H
g(z) = g, arf(z]0y), (4.8)
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where H < K, a3,a},---,a3 >0, Z,{il ap =1, and 03,05, ---,b}; € B.

(A4.2) Secondly, we assume that the a priori probability distribution is pos-
itive on a true parameter. For a constant ¢ > 0, we define the subset of

parameter A(e) C A by

A(ﬁ) = {(a'laa'27"‘>aK—l) EA;
lax —ay] < e (1 <k < H),
0<ar<e (H+1<k<K-1)}

and Br(e) C B (1< k< H) by
By(€) = {b € B;||bx — bi|| < €}.
We assume that there exists a constant ¢ > 0 such that

inf a,by,ba, -+, bg) >0,
A@ o #1@ b1 b2y brc)

where ¢ inf ' denotes the infimum value of ¢(w) in the region,
A(€),Br(e)

a € Ale),
by € Brle) 1<k<H-1),
by € Bule) (H<k<K).

(A4.3) Thirdly, we assume that the distribution of the single component is
analytic function of its parameter. Assume that f(z|b) > 0 for arbitrary
z € RY and b € B, and that the Kullback information

fel)
f(=[b)

is a twice continuously differentiable function of b in a neighborhood of b}
forall 1<k < H.

D(E;lIb) = [ f(alby) log
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Theorem 2 Assume the three conditions (A4.1), (A4.2), and (A4.8). Then,
for an arbitrary natural number n, the stochastic complexity satisfies the

inequality

F(n) £ C+plogn
B (K +H—1)/2 (if M=1)
o= {mﬂH+n+2K—H—mm (M > 2)

where C is a constant independent of n.

In particular, the upper bounds of stochastic complexities of gaussian mix-

tures are immediately obtained as corollaries of Theorem 2.

Corollary 1 If the learning machine is a gaussian mizture given by equa-
tions (4.2), (4.8), and (4.4), and if the true distribution is given by the
equation (4.8), then

F(n) < C+plogn

B (K +H—1)/2 (if N=1)
H= {WUHJH@K—H—&M (N >2)

where N is the dimension of the input space.

Corollary 2 If the learning machine is a normal mizture with standard de-
viations given by equations (4.2), (4.5),and (4.6), and if the true distribution
is given by the equation (4.8), then

F(n) < C+plogn
p = (N+1)(H+1)+2K - H-23)/2.

where N is the dimension of inputs.

Let d be the dimension of the parameter w in the learning machine p(z|w).

Then Theorem 2 claims that the coefficient of logn is smaller than

d K-1+MK
2 2 ‘
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From the equation (2.2) and Theorem 2, if the generalization error G(n) has
an asymptotic expansion, then it should satisfy

G(n) < =

n

Hence the generalization error of the mixture model is smaller than that of
regular statistical model.

Theorem 1 holds under the condition that the true distribution is com-
pletely represented by the mixture of H components (H < K). In practical
applications, since the true distribution can not be represented by any learn-
ing machine with finite components in general, it might seem that the condi-
tions (A4.1), (A4.2), and (A4.3) correspond to a special case. However, even
if the true distribution is not strictly contained in the learning machine with
finite components, Theorem 2 shows the advantage of hierarchical learning
machines than regular statistical models (Watanabe, 2001b), because singu-
larities make the sum of the function approximation errors and statistical

estimation errors.

4.3 Singularities in Mixture Models

Before the proof of the theorem, let us confirm that mixture models are
singular. We illustrate the shape of the true parameters in the parameter
space. According to the equation (4.1), the simplest mixture model is written
as

p(z|w) = a1 f(z[b1) + a2 f (z|b2),

where az = 1 — a;. This learning machine has two components (K = 2). For
simplicity, the dimension of b; is one (Figure 4.1 (a)). Assume that g(z) =
f(z|b*), where b* is a constant. This true distribution has one component

(Figure 4.1 (b)). Then, the set of true parameters is
{a1 = 1,b1 — b*} U {Cl,l = O,bz - b*} U {bl = 62 = b*}
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Figure 4.1: (a) The learning machine, (b) The true distribution, (¢) The
parameter space

This set has singularities (a1, b1,b2) = (1,b%,06%),(0,0%,0%) (Figure 4.1 (c)).
Therefore mixture models are singular even in this simple example.

4.4 Proof of Theorem 2

In this section, we prove Theorem 2.
By the equation (2.6), we have the inequality,

F(n) < —log/exp(—nH(w))cp(w)dw.

The Kullback information H(w) from the true distribution g(z) to the learner

p(z|w) is rewritten as

H
H > apf(z|by)
H(w) = /{Z aZf(x]bZ)}log %L—————-— dz.
k=t > arf(2|be)
k=1
Let us divide the parameter w into w = (wy, wa, ws), where
w = (al)a2> to ,G,H_1),
Wy = (b17b27' o >bH7bK)>
ws = (am,amg41, ", 0x-1,b541," -, 0x-1).
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We introduce three functions.
H-1 *

Hi(w) = >, aklog—a——FaHlog

TH-1
k=1 -3 a
k=1

H
Hy(w) = 3 apD(bgllb) + afz D(blbx),
k~.

Hi(ws) = k; GE—I;D Oz |bx)-
. +1

If K = H + 1, then we define Hs(ws) = 0. At first, we show the following

ay

3

lemma.

Lemma 1 For arbitrary w e W,
H(w) < Hy(wy) + Ha(ws) + Ha(ws).

(Proof of Lemma 1) In general, the following log-sum inequality holds: For
arbitrary sequences of positive numbers {cg, k = 1,2,..., H} and {dy,k =

27 "7H})
H

H Z Ck g
{3 cr}log = H < chlog—c—[—
k=1 Z ds k=1 k

By substituting ci, di by
¢ = apf(zlby) (1<k<H),

de = anflalbs) Q<k<H-1),
K

dn = 3 af(zlbe),

k=H

it follows that

H-1 ¥ *
aw) < X [ a3 (oltp) log EREE do

+/aHf(x]bH)l —aﬂ—i(—xﬂ)i)——dx.
Z ayf (z|bx)

k=H
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Hence, we have an inequality,

H(w) < R(w) + S(w) + T(w),

where
H~1 at
R(w) = a,flog——kaHlog KH ,
k=1 Z ag

. ! * * (xlbk)
Sw) = 3 ai [ #albiog e
T(w) = d}f/f(a:]bfq)logjg—ﬂfﬂ?-@—)——dx.
> owf(xlbr)

k=H

(k=HH+1, -, K).

First, by using K | a, = 1,
R('UJ) = Hl(wl).

Second, by the definition of the Kullback information,
H-1

w) = ]; axD(b"|bx)-

Third, since K 4 ap = 1, we can apply Jensen’s inequality to

T(w) = —aH/f (z)b%) 1og{z (xllé);)) }dz.
It follows that
Tw) < -3 ayon / falt)log 20k,

_ " b /(z|bg)
= k:ZHaHak/f(x[bH) logmdm
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Then, by using

VAN

1, O,'Kgl,

S k=H+1,H+2,- K-1),
ag

g

IN

187°
it follows that
T(w) < ay D(by||br) + ay Dby ||bx) + Hs(ws).
Hence, by summing up the above results, it follows that

Hw) < Rw)+ S(w)+T(w)
< Hi(wr) + Ho(ws) + Hs(ws),

which completes the Lemma 1. (End of Proof)

By using Lemma 1, we can divide the stochastic complexity into three
parts. Let € > 0 be a constant used in the assumption (A4.2). We define

three sets of parameters

Wy = {wylar—ap| <€, (k=1,2,---,H—1)}

Wo = {ws|lbx —bil| <€, (k=1,2,---,H,K)}

Ws = {wslag —ay| <¢,
0<ar<e¢(k=HH+1,- -, K—1),
e — Byl| < e(k=H+1,H+2,--- K —-1)}

Then, since € > 0 is a sufficiently small constant, wi, ws, and ws become free
variables from each others. In other words, they can be determined without
restriction from other variables. According to the division of the parameter
w = (w1, Wy, ws), we define three partial stochastic complexities (§ = 1, 2, 3)
by
Fy(n) = —log | exp(~nH;(w;))du,
5
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where the integrated regions W, Wj, Wi are taken such that W] c Wi,
W,y C Wa, Wi C Wi, and that

Wi x Wy x W§ C supp ¢,

where supp ¢ is the support of the a priori probability distribution. From

the assumption of (A4.2),

n= inf (w) > 0.
WEW; X Wy x Wy

Then the stochastic complexity is bounded by

3
F(n) < —logn—Y_log | exp(—nH(w;))du;
> 1og

J
Therefore,
F(n) £ Fi(n) + Fz(n) + F3(n) + const.,
In order to prove Theorem 2, it is sufficient to bound each F;(n) (j = 1, 2, 3).

It is easy to bound Fj(n) and F»(n), because they can be bounded by the
stochastic complexities of identifiable learning machines.

Lemma 2 Two partial stochastic complexities satisfy the inequalities,

H-1
< 5 logn + Ch,

(H+1)M
2

where Cy and Cq are constants independent of n.

Fl(’IL)

F(n) < logn + Cs,

(Proof of Lemma 2) Let f(s) be a real function of s € R* which satisfies
f(s) < clls — sof?

in some open set U which contains so € RY, where ¢ > 0 is a constant. H;(w)
and Ha(w) respectively satisfies this condition by putting ‘f(s) = Hi(w:),
L=H-1 and ‘f(s) = Ha(ws), L = M(H + 1)". The function

S(n) = ——1og/Uexp(—nf(s))ds
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satisfies
S(n) < —log/Uexp(—cn[[s—-so|]2)ds

L 2
= —2—10gn - log/Un exp(—clly||*)dy (4.10)

where U, = {y;y/v/n + so € U} converges to RY as n tends to infinity. By
using Lebesgue’s convergence theorem, the second term of the right side of

the equation (4.10) converges to the constant. (End of Proof)

On the other hand, the set {ws; Hs(ws) = 0} contains singularities, we

need the algebraic geometrical method.

Lemma 3 The third partial stochastic complexity satisfies the inequality,
. M
F3(n) < (K — H — 1)min{1, —é-}logn+ Cs,
where Cs is a constant independent of n.

(Proof of Lemma 3) When K = H + 1, then H3(ws) = 0. Hence Lemma
3 holds. Thus, we can assume K > H + 2. By the assumption (A4.3),
D(b%|)bx) is a twice continuously differentiable function of bg. Therefore, in
a sufficiently small open set U € RM which contains b%, there exists ¢p > 0

such that for any b, € U,
D(b™[bx) < collbrr — bill*.

Hence, if by € U (k = H+ 1,H + 2,---,K — 1), then, by using ¢; =

coaly/(at — ¢€), if ws € Wi,
Hs(ws) < Hy(ws),

where
K-1

Hy(ws)= ) ciax|by — bef*.
k=H++1
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Based on the algebraic geometrical method given in the equations (2.4), (2.5),

it is sufficient to show that, with a small constant € > 0,

af;+e K-1 €
J(z) = /*H daH[ 11 / dak,]
ay—¢ k=H-+1 0
K-1
X{ H /dbk} H4(w3)z
k=H+17U
has a pole at z = —u which satisfies

p < (K —H—1)min{1, —]g—}
First, a set of parameter S is defined by,
S ={ws;0< agy <€, ar < agqr, b € U}
Then, S is contained in the integrated region of J(z) and the largest pole of
L@:meﬁmg

is smaller than the largest pole of J(z). Let us define a new variable wy and

a mapping

9wy = (o, {ar}ge am, {be T pr) +> ws

by

aGH4+1 = Q,
ap = arae (k=H+2,H+3,---,K—1).

This mapping is a blowing-up in algebraic geometry. Then the function
Hy(g(wys)) divided by « is a constant function of o,

Hs({ax}, am, {bx}) = Ha(g(wa))/cx.
The Jacobian |¢'(wy4)| of the mapping g is
K-H-2

|9 (wa)] =
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Thus we can integrate the variable ¢,

Jl(z) = /€ OJZ+K—H_2j1(Z)dC¥
4]
F—H-1 .
— J
T Ek_g_1®
K-1 K1

M) = [Hs(ow),am, (b)) dan ] dow [] dbe.

k=H+42 k=H+1

If 7z is real and larger than the largest pole of Ji(z), the function Ji(2)
is not equal to zero. Thus the largest pole of Ji(z) is not smaller than
z=—(K — H—1). Hence

pu<K-—-H-L1 (4.11)

Second, using a small constant § > 0, the set of parameters T is defined
by

T ={ws;0 < bij — by < br1,1 —dpyan <6, (k7)) # (H+1,1)}
Then, the largest pole of |
Jg(z) = LH4(w3)ZdW3

is not larger than the largest pole of J(z). A new variable («, {fk;}) and the
mapping ¢ are defined by

g:ws = {{a:},, {Brs}} — ws
where H<i<K—-1, H+1<k<K-1,1<j< M and

b;—[,l“‘bH—H,l = o
b —bri = abr; ((k,7)# (H+1,1))

Then, the function Hz(g(ws)) divided by o? is a constant function of «,

Hs({as}, {Bri}) = Hs(g(ws))/a”.
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The Jacobian is
N M(K-H-1)-1
9 =« :
Hence,

B(z) = /:WdaH{ Iﬁl /Oedak]

*
H™€ k=H-+1

s
x/ do o2 FM(K-H-1)
0

[T [ 48] Holed, (Be)y
X 5,7 iS5 Whj
G ® o

has a pole at z = —M(K — H — 1)/2, resulting that

L < M(I{;H—l)

. (4.12)

By combining the inequalities (4.11) and (4.12), we obtain Lemma 3. (End
of Proof)

Now, Theorem 2 can be proven by Lemma 1, 2, and 3.

(Proof of Theorem 2) By combining the above lemmas,

Fn)y < {(H=1)/2+ (H+1)M/2+min{l, M/2}(K — H—1)}logn
o YH+K-1) (If M =1)
= 8T\ Y(M(H +1)+2K — H—3) (Otherwise)

which completes Theorem 2. (End of Proof).

(Remark) In the proof, we have used the property that the stochastic com-
plexity becomes larger when we restrict the region of the parameter. This
seems to contradict the fact that the more complex learning machine has the
larger stochastic complexity. However, this is not a contradiction. In the

proof, we used the property that, if U D, then
—1og/U exp(—nK (w)) Y (w)dw < -—10g/vexp(—nK(w))¢(w)dw.
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Remark that, in this inequality, even if 1 (w) is a probability density function
on U, it is not a probability density function on V' in general. Therefore, this
inequality does not compare the complexity of the learning machine using the

parameter set U with that of the same learning machine using the parameter

set V.
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Boltzmann Machines

In this chapter, we introduce the Boltzmann machines (Rumellhart & Mec-
Clelland, 1986) and derive a theorem of the stochastic complexity. Boltz-
mann machines were devised as spin systems in statistical physics for a long
time. There are sophisticated learning algorithms using simulated annealing
(Ackley et. al., 1985). The model consists of several hidden and observable
units, which take the values {£1}, and the connections between them. In
general, it has connections between any two units. However, there are a lot of
difficulties to analyze the models because of the connections. In this chapter,
let us consider the model which has no connections between hidden units.

We refer to this structure as complete bipartite graph-type.
5.1 Complete Bipartite Graph-type Boltz-
mann Machines

Let observable units and hidden units be z = {2;}24; € {—1,1}¥ and h =

{h:}, € {—1,1}¥ respectively. The learning machine p(z|w) is defined by

_ pxl(z,w)
plzlw) = Tx(w) (5.1)
K K M
px(@,w) = Z{GXP (Zzwz‘jhﬂj>}> (5.2)
3 i=1 j=1
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(a) (b)

Figure 5.1: Example (K,M)=(3,4). (a) Type I, (b) Type II

Zr(w) = > pxlz,w), (5.3)

where YF stands for Dohg=t1" hg=+1 and >, stands for
D ogg=1 " Sogy=+1 Tespectively, and the parameter w is given by

w = {wy} € RF*M (1<i<K,1<j<M). (5.4)

Boltzmann machines generally have all connections between units. However
we consider models that have all connections between observable units and
hidden units, and no connections between observable units or hidden units.
We call this model Type I (Figure 5.1, a). The graph is called the complete
bipartite one. We also consider a model defined by

_ yx(z,w)
p(rjw) = Yetw) (5.5)
K K M M M
Vi (2, w) = Z{exp ZZwijhi:chrZvawz)}a (5.6)
h i=1 j=1 k=1 k<1
Ye(w) = > yx(z,w), (5.7)

€T

where the parameter w is given by

w= {wij, vy} € RIOCMHMM-DZ (1 < <K 1<j<M1<k<l<M).
(5.8)
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This model has all connections not only between observable units and hidden
units but among observable units. We call this model Type II (Figure 5.1,
b).

We prove the upper bounds of the stochastic complexities for Boltzmann

machines Type I in Theorem 3, and those Type II in Corollary 3.

5.2 Stochastic Complexity of Boltzmann Ma-
chines |

Let us assume two general conditions, (A5.1) and (A5.2).

(A5.1) First, assume that the learning model includes the true distribution.

The learner is given by

plafu) = ZE 25,
where px (z,w) and Zx(w) is defined by

K M M
pi (T, w) = H{e_zjﬂwijm"+ezi=1w"jm".}, (5.10)
i=1
Zg(w) = > px(z,w). (5.11)

The set of parameters in p(x|w) is respectively defined by

which is a fixed open set of RM*X, Also assume that the true distribution
g(z) is given by

(z) = %%U)—) (5.13)

where H < K and w* = {w};} € RM*#.

(A5.2) Second, assume that the a priori probability distribution is positive

on a true parameter. For a constant € > 0, we define the subset of parameter
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Wie) C W by

W)= {{wyteW ; |wy—wj|<e (1<i<H),
g < ¢ (H+1<i<K)}.

Assume that there is a constant ¢ > 0 such that

inf o(w) > 0,
Inf o (w)

where 'infy (o’ denotes the infimum value of p(w) in w € W(e).

Theorem 3 Assume the two conditions (A5.1) and (A5.2). Then, fof arbi-

trary natural number n, the stochastic complexity satisfies the inequality

Fn) < C+ plogn

_ {(I{+3H+1)/4 (if M =2)
o= (K+H)M/4 (M >3),

where C is a constant independent .of n.
Corollary 3 If the learning machine is Type 11, and the true distribution s

given by the equations (5.6), (5.7) and

_ ’YH($>QU*)
q(z) = m,

where H < K and w* = {w};, vjy} € REMMM=-D/2 tpen
F(n) £ C+H+ plogn

{ (K +3H+3)/4 (if M =2)

. (K+H+M-1)M/4 (M>3).

(Remark 1) When the number of observable units is one (M = 1),

(@) = plalw) = 557,
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for all w. Then, F(n)= 0. We will consider M > 2.

(Remark 2) The case M > 3 is actually applicable to M = 2. However, the

upper bound is looser than the case of M = 2 in Theorem 3 and Corollary 3.

Let d be the dimension of the parameter w in the learner p(x|w). It is well
known that the coefficient of logn equals d/2 for regular statistical models. In
these models, coefficients are K M/2 and K M/2+ M (M — 1)/4, respectively.
Theorem 3 and Corollary 3 claim that the coefficient x is smaller than that

of the regular model.

5.3 Singularities in Boltzmann Machines

Before the proof of the theorem, let us confirm that Boltzmann machines
are singular models. We will illustrate the shape of the true parameters of
Boltzmann machines in the parameter space. According to the equations

(5.1)-(5.3), the simplest Boltzmann machine is written as

e—’wx + ewx

Porma (6797 + )

This learning machine has one observable unit x, one hidden unit and one
connection w between them (M = 1, K = 1). Assume that ¢(z) = 1/2. In
this learner, all parameters are true since z € {£1}. Based on this exam-

p(zfw) =

ple, we consider a learning model that has one hidden unit, two observable
units z; and z» and the connections w; and ws between these hidden and
observable units (M = 2, K = 1) (Figure 5.2 (a)). The learning model is

—wWy1T1 w122 wi1x Wi
e~ w1121 122+6111+121

p(xl,lewll,wlz) =

9

— 2" —wi2) z’ 20\
Zm’lz:hl Zmé::i:l (6 w112y 1225 ew11%1+w12r2>

Assume that g(z) = 1/4 (Figure 5.2 (b)). Then, the set of true parameters

{wn == O} U {wlg = O}
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W1 W12 i : Wil

& ® ® @

(a) (b) (c)

Figure 5.2: (a) The learning machine, (b) The true distribution, (c) The
parameter space

This set has a singularity (w11, w12) = (0,0) (Figure 5.2 (c)). Therefore,

Boltzmann machines are singular even in this simple case.

5.4 Proof of Theorem 3

Let the true distribution g(z) and the learner p(z|w) be written as

o(z) = plz, w*)

Z(w*) "’
at) = 52
where
w,w* € RY
plx,w) > 0,
Zw) = > ple,w).

Let us divide the parameter w and the true parameter w* into two parts,

w = (wa,’IUﬁ),

w' = (wg,wp),
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such that dimensions of w, and w}, are the same. Assume the following two
conditions (a5.1) and (a5.2).

(ab.1) First, assume that the function p(z,w) is the product such that

/O(SC, ’U)) = Ua(x,wa)ag(x,wg),

ple,w) = oa(z,wy)os(z, wh),
where o4 (x,ws) > 0 and op(z, wg) > 0.

(ab.2) Second, assume that probability distribution functions defined by

- Ua(x,wa)
Pa(Tlwe) = S ol W)
palolug) = <22

Zm/ O'ﬁ(SC’, wﬂ)
are finite.

Let us define two Kullback informations,

. * pa(xlw;)
Ho(we) = %:Pa(xlwa)logm>
Hp(ws) = ;pm:cm;)log%.

We can derive the following lemma.

Lemma 4 If ||lw — w*|| < §, where § is a sufficiently small constant, there

exists a sufficiently large constant N > 0, such that
H(w) < N{Hy(ws) + Hp(wg)}. .(5.14)
In order to prove Lemma 4, we need to look at Lemmas 5, and 6.

Lemma 5 Let r(z) be a probability distribution function of z € {£1}M

which satisfies
r(z) > 0.
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Let F(x) be a real function of x. Then, there exists a constant C' independent

of z, such that
log 3" 7(z)e"™® <> r(z)F(z) + CY r(z)F(z)>

(Proof of Lemma 5)
Let a function A(y) (y > 0) be

A(y) = logB(y),
B(y) = > r(zx)er ™.

T

Using the mean-value theorem, we obtain
1
Aly) = A(0) +yA'(0) + 5y*A"(v"),
where 0 < y* < y. By substituting y for y = 1, it follows that

_ L BO 1B (B
AW = 94 o) 3| B ‘(Bw*)”
1B"(y)

B(0) ' 2
< Y or(@)F(z)+ 2B

i

However,
B'(y*) _ er(z)F(z)*ey @
By) | T.r@e’®
Yo r(@)e? F® T, F(x)?
- Y r(z)ey FE
< Ciy r(z)F(z)?
where
Cl=_— 1
! min, 7(x)’
Therefore,

long(:c)eF(x) = A1) <> r(@)F(z)+ ﬁZr(x)F(:c)Q,

€T

which completes Lemma 5. (End of Proof)
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Lemma 6 If ||w — w*|| < &, where 0 is a sufficiently small constant and
w,w* € R, there exists a sufficiently large constant L, independent of w,
such that

S ptefor) 1og 220" < 1, St (g 200

T

(Proof of Lemma 6)
Let S(t) be the function defined by

St)y=t+e -1

Using the mean-value theorem, we can easily show that, when |¢| < ¢, where

¢ is a sufficiently small constant,
S(t) > Ct?,

where C is a sufficiently small constant independent of ¢. Here, let us define
the function,

plelw”)

plzlw)

f(z,w) = log
By using the mean-value theorem, it follows that

5]‘

(‘3?1)]

d
Flarw) = o)+ Loy = w5 o0,

where 0 < w; < w;. From f(z,w*) =0 and [|w —w*|| <4,

d
fewl £ Xl il )
d af
< w; — Wil su x, W;
< bl sup 7o)
< ¢

?
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where ¢ is independent of z and w. Therefore, using S(t), we obtain

ol palwt)) " p(zfw")
Ly %:p(x]w ) (log o(z]w) ) = I Z;p(:c[ ) (log p(z|w) >
Zp(foU*) <10g p($lw*)> ’

p(z|w)

v

where L is C~!. (End of Proof)

Second, using Lemmas 5 and 6, we can derive Lemma 4.

(Proof of Lemma 4)
Define some functions as

Po(T|wa)
(T, we) = lo ,

Ja( ) 8 oo (alwr)

pp(z|wg)

z,wg) = lo ,

fo(z, wp) gpﬂ(xlwﬂ)

Y(we,wp) = D pa(z|wa)ps(z|ws).
We can easily obtain the following equation,
Pa(@|wa)ps(lwg) = pa(@ws)ps(x|wp)ef= vt aE0s),

The Kullback information given by the equation (2.3) is rewritten as

Y (w0 wo)pe (02 s (a0
2 (@) lo8 g o (el )pa (alws)

08 (@) pa (lwp) P el Hstws)

Hw) =

Y (e, we)
Y (wk, wh)
= —-Zq ) {falz, wa) + fo(2, wﬂ)}

—I—long JeSa(miwe) +ia(mg) (5.15)

+log
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By applying Lemma 5 to the second term of the equation (5.15), we get

H(w)

IN

Czq ) { fa (@, wa) + fo(z, we)}*
< zc{zq ) (= ooy un))* + T a(0) (=S )Y 5:16)

where C' is a constant independent of z. Since we assumed that p,(z|w,)

and pg(z|wg) are finite (a5.2),

Lopa(z|wy,),
plzlw*) < Lops(zlwg),

=
8
g‘*
A

where Lo is a sufficiently large constant. Thus, we apply these inequalities

and ¢(z) = p(z|w*) to the equation (5.16).

H(w) < 2CL, {;pa(xlwi) {—falz, wa)}" + ;pﬁ(wlwé) {_fﬂ(xa'wﬁ)}g} :
Moreover, by applying Lemma 6 to each term, we can show
Hw) < =200 {14 S po(afut) ol 00) + 1y S ao(olu) e, ) .
This means
H(w) < N[Ha(wa) + Hs(wp)]-

(End of Proof)
=~ Using Lemma 4, we prove Theorem 3.

(Proof of Theorem 3) By the equation (2.6), we have the inequality,

F(n) < —log / exp(—nH(w))p(w)dw.
The Kullback information H(w) from the true distribution ¢(x) to the learner

p(z|w) is rewritten as

Zpﬂxw) Zxc(w) pr (z, w")

Zn(w) ° Za(w)ox (@, w)
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Let us divide the parameter w into w = (wy, ws), where

wy = {ww} (1SZ_<_H, 1<j§]\4),
wy = {wy} (H+1<i<K, 1<j< M),

Let us introduce two functions.
pu(z,w*) Zo(un) pu (z, w*)
H w — IO )
1(w) Zr: Zy(w*) & Zg(w*) pa(z, wr)
Zg(ws)
QMIO,B (:Cr w2) ’

1
HQ(’U)Q) = Z ‘é‘ﬁ lOg
where

H m .
/Oa(a:,wl) = H {6‘23:1 Wi Ty —}—ezj=1 wij.'l‘j}7

i=1
K m .
pﬁ(m,wg) = H {G_ijlwijmj —'}—62j=lwijmj},

i=H+1
Za<w1) = Z pa(x> wl))

Zo(wa) = Y pplx,wa).

By substituting we, ws, w;, and wj in Lemma 4 by

Wa = Wi,
wp = W2,
w, = w,
wg = 0,

it follows that
H(w) £ N [Hi(wy) + Hy(ws)],

where N is a sufficiently large constant. We define two sets of parameters

Wi = {wylwy —wi <6, (1 << H 1< j < M)},
Wo = {ws|wyl <e,(H+1<i<K,1<j< M)},
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where € > 0 is a sufficiently small constant. Then, w; and w, are free variables

from each other. We define partial stochastic complexities by
Fi(n) = —-log/W/ exp(—nHg(we))dwe (k=1,2),
k

where the integrated regions Wy and Wj are taken such that W] C W; and
W, C Wy, and that
W1 x W, C suppy,

where suppy is the support of the a priori probability distribution. From the

assumption (A5.2),

1Z e, #0)> 0

The stochastic complexity is bounded by
2
F(n) < —logn— > log /W exp(—nHg(wy))dwy.
k=1 k

Thus,
F(n) < Fi(n) + F»(n) + const..

In order to prove Theorem 3, it is sufficient to bind each Fi(n) (k=1,2). It
is easy to bind Fj(n), because it can be bound by the stochastic complexity
of identifiable models.

Lemma 7 A partial stochastic complexity satisfies the inequality,

HM
logn + C,

Fi(n) < 5

where Cy 1s a constant independent of n.

(Proof of Lemma 7)
In an open set Wi, which contains w*, it follows that

Hi(wy) < clfwr — w*|?,
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where ¢ > 0 is a constant. Thus, F;(n) satisfies
Fi(n) < -—log/w exp(—cnllw; — w*||?)dw,
1
HM
= —5logn— 10g/W exp(—clly[|*)dy, (5.17)
in

where Wi, = {y;y/+/n +w* € W;} converges to R as n tends to infinity.
By using Lebesgue’s convergence theorem, the second term of the right side
of the equation (5.17) converges to the constant. (End of Proof)

However, as the set {ws; Ha(wsz) = 0} includes singularities, we need the
algebraic geometrical method.

First, let us look at the case of M = 2 and then, general M.

Lemma 8 When the number of observable units is M = 2, a partial stochas-

tic complexity satisfies the inequality,

— 1
Fy(n) < K- H+

< 1 logn + Co,

where Coy is a constant independent of n.

(Proof of Lemma, 8)
We can describe Hy(wz) as

> 10 z—H+1 (e-wi1z'1—wizm'2 + ewilm'1+wi2w’2)

" (w2) T4 ; o8 4Hz——H 1( TWilZ1—Win®2 L @wum-}-wimg) )
—_— Z log 4 H¢=H+1 COSh(wilxl —|— wi2x2)
4 T Eml H{iH+1 COSh(wilxa + wzlez) .
By using

cosh(a £ ) = cosh accosh 3 + sinh e sinh g,

K K
[1 cosh(wizy +winxe) = [[ {coshws coshwi
i=H-1 t=H-+1

+sgn(z122) sinh wy sinhwi, } .
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Let us define some functions,

o; = coshwi coshw;s,
,6¢ = sinh Wi sinh Wiz,
K K
H (a'i + ﬁz) - igodd('wQ) + Geven ('UJZ) + H Qs
i=H+1 i=H+1

where Goaa(ws) is the sum of terms that have odd f; as the factor, and

Jeven,(W2) is the sum of terms that have non-zero even f;. For example,
If K = H+ 2 then
Jodd(W2) = agy1Bu+2 + Brt10H 2.
If K =H+ 3 then
Goad(w2) = agr1agyefutstan1Bui20nts+Par10nio0n 3+ B 1 Bu120H 13-

Substituting +1 for each z, we can rewrite Ha(ws) as

gnum (w‘2)

[H{iH+1 877 + geven(wQ)] ‘

1
Ho(we) = —Zlog
= —llog[l—g(w )?]
2 ¥

2
K
gnum(w2) - li H o; + geven(wZ) -+ godd(wQ)j!

i=H-+1

2

K

X H o + geven(w2) — Godd (w2) »
i=H-+1

Goad(w2)
k . .
Hi—_-H+1 a; + geven (wQ)

glwz) =

Based on the property of the stochastic complexity (Proposition. 2), it is suf-
ficient to consider the neighborhood W,. In this neighborhood, the following
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equations hold,

We can derive

and

Thus,

H2 (’U}2)

lim godd(’LUz) = O,
wg—0

lm_ gepen (w2) = 0.
5-—0 .

odd (W
gluws) = Z2) 1 )
i=H+1 Qi
K _
lim rl(wg)w =0,
wz—0 Goda(w2)

log(l+2) = z+rs(x),

lim r2(z) = 0.
z—0

K
2 \Iligy1

(5.18)

< E (————-Md(wz) >2 + ra(ws)

= % (Poaa(ws))” + r2(ws),

wg—0

. HfiH 1%’)2
lim ra(ws) | == 2 =0,
2(t2) ( Goda (w2)

(5.19)

where hoga(ws) is the sum of terms that have odd tanh w;; tanh w;s as the

factor. Because y = tanh z is one-to-one mapping, its Jacobian is positive

definite. Therefore, we regard tanh z as z,

Let us define

Il (x+1) =

i=H+1

tanhx =z

Vi = WiWie,
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where foaa(ws2) is the sum of terms that have odd < as the factor, and

feven(w2) is the sum of terms that have non-zero even ; as the factor.

For example,

If K = H+2, then

fodd(W2) = YE+1 + Y42

If K= H + 3, then

foaa(wsa) = YH41 + YH42 + YH43 + YHI1VH£2VH+5-

We can rewrite the inequality (5.19) as
1
Hy(ws) < 'é'fodd(w2)2 + ro(wz),

In the neighborhood Ws, there are two constants, ¢i, ce and

1

§(fodd(w2))2+7"2(w2) < Hai(ws),

2
K K
Hy(wz) = ¢ Z WitWs2 |+ C2 Z Z (wile1)2'
=H+1 i=H42 i<j
If K < H + 2, then, the second term can be defined to be equal to zero in

Hgl(’w2>. We obtain
Hy(wa) < Hyy(ws).

According to the property of the stochastic complexity (Proposition. 2),

Fg(n) < Fgl(n),

Foi(n) = ——log/W exp(—nHai (ws))dw,.

In order to clarify the asymptotic expansion of Fbi(n), consider the zeta

function,
Ju(z) :/W Hzl(’wg)zd’wg.

Based on the algebraic geometrical method, it is sufficient to prove that
J11(z) has the pole —(K — H + 1) /4.
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Let us define a new variable ws and a mapping

g:ws = (w, {Wil}f—{_—Hwa {Wz?}fiHﬂ) = Wa

K

2
WH41,1 = W “‘wzwilwz?,
H42

wip = wwy ((=H+2,H+3, -, K),
WH+1,2 — WH+1,2,

Wiz = WH41,2Wi2 (Z:H+2,H+3,,I{)

This mapping is a blowing-up in algebraic geometry. This is a partial reso-
lution of a singularity. Then, the function Ha;(g(ws)) has the factor w*. We

define the function

Hoo({wn}, {wi}) = Har(g(ws)) /w?.
This is a constant function of w. The Jacobian |g’(ws)| of the mapping g is
|9’ (ws)| = *H.

Thus, we can integrate the variable w,

Jia(2) ::‘Aew”+K‘Hjm(@dw

642+K—-H+1 R
= Lrr-mr1e@
K
Ji2(z) = /sz({wil},{wz'z})zde+1,2 H dwiy wia.

= H+2

If z is real and larger than the largest pole of Jis(2), the function Ji5(2) is
not equal to zero (Watanabe, 2001b). Thus, the largest pole of Jj;(z) is not
smaller than z = — (K — H+1)/4, which completes Lemma 8. (End of Proof)

Second, let us look at the case of M > 3 and divide the parameter w,

into wy = (ug+1, Ug4e, - -, UK ), Where

w; = {w;} (1<7<M).
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Define the sets of parameters, the Kullback informations and the stochastic

complexities.
Wa = {ug|wy <e,(1<5 < M)},

| (T g D)
Hoi(u;) = —lo / '
2 ( ) ZE: 2M g 2M <e_2;\il W52 5 + ezj’\il wij%f)

Fy(n) = —log/W exp (—nHoi(w;))du; (H+1<i<K).

By applying Lemma 4 to Hz(ws) recursively, we obtain

i=H41

K
HQ(’wz) S N[ Z ng(u,):l .

Because of the property of the stochastic complexity (Proposition. 2),
K
Fy(n) < Y Fai(n) + const.. (5.21)
i=H+1

Thus, it is sufficient to derive the asymptotic expansion of Fy;(n).

Lemma 9 When the number of observable units is M > 3, partial stochastic

complezities satisfy the inequalities,
M :
Fa(n) < —4—logn+02i (H+1<i<K),
where Co; are constants independent of n.

(Proof of Lemma 9)
Because Fr(n) corresponds to the stochastic complexity of the Boltz-
mann machine with one hidden unit, we can rewrite the parameters {w;;} as

{’U}j} and Hzi(’ui) as

2M cosh (ij\il W;iT; )

lo .
z g > cosh (Zjﬂil szcg)
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By substituting +1 for each z’, we obtain

1 M
Hoi(ug) = ——Q—J-Vflog f(us) +log [ ] coshwy,
7j=1

M
f(us) = J]cosh (Z'wjxj>.

By applying the addition theorems of cosh and sinh to f(u;), we can describe

it as
21\4

+ fl(u’i)>

M
flu) = {H cosh w;

=1

where fi(u;) is a quantic of coshw; and sinhw; with degree 2 M. The
function fi(u;) is the sum of terms that have the even multiplied sinh w; as

the factor. Let us define the function of wu;,
M
7(us) = [ coshw;.
j=1
By using this 7(u;), we can rewrite fi(u;) as

oM.

fi(us) = ; he(us) [ ()],

where hi(u;) is a quantic of coshw; and sinh w; with degree (2% —k)M. The
function hx(u;) is also the sum of terms that have even multiplied sinhw;
as the factor. In the expansion of f(u;), the term that has single sinhw;z;

vanishes because x; = £1. Thus,
th_l('U;i) = 0.

Then, k = 2™ — 2 is the highest degree of hx(u;).

2
M M
hom _o(wi) =com_g D Y. (sinh wgsinhw; [] coshwj> ,

k=H-+1 k<l Jk,l
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where con_s is a constant independent of u;. Because
9\2/ 5 \2
(o) (o) 700

CoM o < 0.

<0,

;=0

we obtain

Thus, there is a constant ¢; > 0 such that

M M 2
flw) > —c > > (sinhwk sinhw; [] cosh wj) 722 ()

k=H+1 k<l ikl

in the neighborhood Wa;. Then, we can rewrite H(u;) as

Holw) = — 537 log f(u) +log7(u)

1 M M M
< —owlos (7’2 (w)—c1 > > gulu)r? "2(%))

k=H+1 k<l

1 M
+2—M— log 72 (us)

1 ' d
- _Wlog (1 —C Z }: (tanh wy tanh wz)2> ,

k=H+1 k<l
M
gu(u) = sinhwgsinhw; [] coshw;.
7k,

By using the same procedures as in (5.18) and (5.20), there is a constant

¢ > 0 such that
Hyi(u;)) < Hsi(us),
M
H3¢(ui) = (2 Z Z(wkwl)Q.

k=H+1 k<l

According to the property of the stochastic complexity (Proposition. 2),

Fa(n) < Fs(n),

Fy(n) = —log/W.exp(——ani(ui))dui.
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In order to obtain the asymptotic expansion of Fy;(n),let us consider the zeta

function,
Joi(z) = /VVZi Hs; (us)?dus;.
It is sufficient to prove that Jy;(2) has the pole p = M/4.

Let us define a new variable v; and a mapping

g:vi= W, {y L) = u

wy = v

w, = vy (j=2,3,---,M).
Then, the function Ha;(u;) divided by v* is a constant function of v,
Hy({vi}) = Hai(g(w)) /v

The Jacobian |¢'(us)| of the mapping g is

lg' (ws)| = vM .

Thus, we can integrate the variable v,

Toi(z) = /O M1V
dz+M-1

£ Jai(2),

4z+ M
. M
JQ.,: = /H@'({I/j})Z HdV]’.
=2

If z is real and larger than the the largest pole of Joi (z), the function jzz(Z) is
not equal to zero. Thus, the largest pole of Jy; is not smaller than z = —M/4.
Therefore, we can obtain Lemma 9. (End of Proof)

Using the equation (5.21) and Lemma 9, we obtain the following lemma,

68



CHAPTER 5. BOLTZMANN MACHINES

Lemma 10 When the number of observable units is M > 3, a partial
stochastic complerity satisfies the inequality,

L - )M

Fz(n) logn -+ CQQ,

where Cay 18 a constant independent of n.

By combining Lemmas 7, 8 and 10 and the proposition of the stochastic

complexity (Proposition. 2), we can consequently show

F(n) < C+upulogn

_ { (K+38H+1)/4 (if M =2)

a (K+H)M/4 (M > 3),

which completes Theorem 3. (End of Proof )

Now let us prove Corollary 3.

(Proof of Corollary 3)
Divide the parameter w into
w = (w, W),
wr = {wy} (1<i<H1<j<M),
we = {wy} (H+1<i<K,1<j<M),
v = {ow} (1<k<I<M),

and the true parameter w* into
w' o= (u",v"),
o= {wy} (1<i<HI1<j<M),
vt = {v} (Q<k<i<M).
Define the subset of parameter W(e) ¢ W by
W(e) = {{wiy,vu} 5 |Jwy—wil<e (1<i<H),
lwijlge (H—FISZSM),
I’Ukl—’l)zll <e (1 <k<I< M)}
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We can rewrite the equation (5.6) as

k(@ w) = pal@,wi)ps(@, w2)om(x, {vi}),
M

om(z,v) = exp szklxkxz ;
k=1 k<l

Zu(v) = ZQM(x,v).
Because the assumptions (al) and (a2) satisfied, it follows that

H(w) = N[Hi(w:)+ Ha(ws) + Ha(v)],
oM (.Z', U*) ZIVI (U)QM(Q:: ’U*)
Z;:‘ Zn (v*) log

H3(v) = v Zy(v*)om(z,v)

We need to clarify a partial stochastic complexity defined by

Fy(n) = —Iog/W exp(—nHs(v))dv,
3
Ws = {owlvm—vg| <e 1<k<I< M)}

Using the same procedures as the proof for Lemma 7, we can immediately
derive

Fs(n) = M(“]%:-ll

where Cs is a constant independent of n, since the number of parameters of
v is equal to M (M — 1)/2. By combining the equation (5.22) and Theorem

logn + Cs, (5.22)

3, we obtain

F(n) < C+ulogn
B (K +3H+3)/4  (ifM=2)
Ho= {(K+H+M—1)M/4 (M > 3).

(End of Proof)
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Chapter 6

Bayesian Networks

In this chapter, we introduce Bayesian networks and derive a theorem of the
stochastic complexity. The graphical model consists of several observable
and hidden nodes and the connections between them. The nodes mean the
random variables and the connections do the correlations or causal relation-
ships. Especially, the models are referred to as Bayesian networks when the
graphs are directed acyclic (Pearl, 1988). They are widely used in the data
mining, the fault diagnosis of a system and software of accessibility options.
There is an algorithm so called belief propagation to calculate the condi-
tional probability among several nodes. However, the computation of the
algorithm is NP hard (Cooper, 1990) except for particular structure models
such as singly connected graphs (Lauritzen & Spiegelhalter, 1988). Thus,
some approximations using the junction tree, the variational method or the
mean field approximation are developed. Despite these learning algorithms,
the properties of the generalization are still unknown. The results in this

chapter provide a theoretical base for it.

6.1 General Naive Bayesian Networks

Let  be observable nodes, and h = {h;}X_, be hidden nodes. Let us assume

each hidden node hj has T} states, and describe that hy € {1,2,---, Tk}
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Then, the learning model is defined by

T Tk
plzlw) = 37 -+ > aw - ki F(@]bigigi ), (6.1)
i1=1 =1

where F(x]bs;... ) is some conditional probability. The parameter w is given
by

w = {a,b},

o = {aw) (1<k<K2<i<T,

b o= {byieig;t (1<j§< M)

Then,
Ty
amm=1-> an (1<k<K). (6.2)
=2
The dimension of w is
K K
> (T —1)+M]] T (6.3)
k=1 kel

We show the upper bounds of the stochastic complexities of the model rep-
resented by equations (6.1) and (6.2).
(Remark 1) If F(x|b;,...x) is given by

N
F(x|biyig.ire) = H (Bigigise,it) 7Y, (6.4)

B 1 (ifn=0)
o(n) = 0 (otherwise),

the model is the Bayesian network, which has observable nodes z = {z,}IL,.
We assume that each observable node z; has Y; states and describe z; €

{1,2,---,Y;} (Figure 6.1). Then,
Y;
biliz"-ix,jl - 1 - Zb’iliz"'ii{,jl (1 S j S N) (65)
1=2

The dimension of the parameter in F(xz|bi..qy ) is
N

M=} (Y;-1). (6.6)

J=1
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Figure 6.1: The Bayesian network.

6.2 Stochastic Complexity of Bayesian Net-
works

We assume the following three conditions, (A6.1), (A6.2) and (A6.3).

(A6.1) First, assume that the learning model attains the true distribution.
The true distribution has H hidden nodes (H < K), and each hidden node hy
has Sy states, where Sy < T}. In other words, there exists the true parameter

w*, such that
q(z)=p(z|w"),

Sy S
plelw) =3 > ay;, - aks, F(alb],ipy)- (6.7)

11=1 tgy=1

Thus
w* = {a*,b'},
¢ = {a,} (1<k<H2<i<5),
bt o= {b;‘:iz-niy,j} (1 <7< M)>
and
S
ap=1-> ay, (1<k<H). (6.8)
i=2
(Remark 2) In the case of Bayesian networks,
N Y
F(xlbzligmig) = H ( :1i2'-~‘iH,jl>5(mj_l)7 (69)
j=11=1
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:17:2"'7.'117:.7'1 zb’tl 1l ]l 1 SJ S N) (610)

(A6.2) Second, assume that the a priori probability distribution is positive
on the true parameter. For a constant € > 0, let us define the subset of
parameter W(e) C W by

W{e)={{a,b} € W;

|aks, — a,’iikl <e (1<k<H,2<i,< Sk,

law:,| < e (otherwise),

|biyineig111,y = Dipigoipg ] €

(1<im < Sm,1<m< H 1< j< M),

|Gigip-rigroie,i — bi1.1,5] < € (otherwise)}.

Suppose that there is a constant € > 0 such that
vié%f) p(w) >0,
where ’infy (¢’ denotes the infimum value of ¢(w) in w € W (e).
(A6.3) Third, let us define the Kullback informations
D(igia- -~ igllivis - inr, 641 - - - %)

b
_/d:cF z|b;,...;, ) log Tz Fal

'Ll 7‘H)
We assume that they are analytic and finite on the support of ¢(w).

]bu -%HZH+1---1K) '

Theorem 4 Assume the conditions, (A6.1), (A6.2) and (A6.8). If the
learning machine is given by equations (6.1) and (6.2), and the true dis-
tribution is given by equations (6.7) and (6.8), then for arbitrary natural
number n, the stochastic complexity satisfies the inequality

F(n )<C’+ulogn
1
:'“MHSL_'Z'ZSL“}' H+2Tk—f{
k=1

where C s a constant independent of n.
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- a1l

rteg,
STA
H a
. S
&

/(. o

0 »b1
@ bl 1
'b 2 R

(a) (b) ()

Figure 6.2: (a) The learning machine, (b) The true distribution, (c¢) The
parameter space

6.3 Singularities in Bayesian Networks

Before the proof of the theorem, let us confirm that Bayesian networks are
singular. We illustrate the shape of the true parameters in the parameter
space. According to the equations (6.1), (6.2), (6.4) and (6.5), the simplest

model is written as
p(zlw) = a1 (b7 (1 = b1)"™%) + axa2(b5(1 — b)),

where aj2 = 1 — aj; and z € {0,1}. This model has one hidden node and

one observable node (Figure 4.1 (a)). Assume that
ale) = (1 — b°)'*.

This true distribution has only one observable node (Figure 6.2 (b)). Then,

the set of the true parameters is
{all = 1,61 = b*} U {CL11 = O,bg = b*} U {bl = bg = b*}

This set has singularities (ai1,b1,b02) = (1,0%,0%),(0,b% 6*). Therefore

Bayesian networks are singular even in this simple example.
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6.4 Proof of Theorem 4

(Remark 3) If the model is the Bayesian network, we replace [dxz with
}: 12,,:2 1 ng___l. The following proof is correctly derived indepen-
dently of this replacing.

The Kullback information (2.3) is rewritten as

k=114p=1
{ =1 sz—l} aiil o a*H'LH (x]bzl zH)
{H Zﬁk =1 a’l’l:l Tt G’KZK (x]bzlzj{)

H S
_/dx {{H Z}ahl a’HzH (x[bzm zH)

x log

)

where
K T T T,
fisl=28. 3
k=1 1=1 t1=1142=1 ig=1

Let us divide the parameter w into w = {ws, wa}, where

wy = {api;1 <k < H2< 4 < Sk,
biyigig,gs L S0 < S, 1 <k < H,
1H+1 = tH42 = - =1 = 1,
1<j< M},

wy = {Gki,biyiy.ig,;; Obherwise},

and define two functions,

H S a’{ PN a*
. kL ak i1 "Higr
wy) = I I Z [aul Qi log ———"4

k=1 1ip=1 Yy ©C YHiyg

H 5
{H Z } aln a’j‘:—[iH

k=11r=1

xD(y - ig|liz---ig, 11+ 1),

H T K T
D=0 D ChiyGkiy * D D ChiyGki,

k=11ip=S,+1 k=H+11ip=1

76



CHAPTER 6. BAYESIAN NETWORKS

+co H CLM {1—\[ Zk } X ’&1, ’i]()

k=1 d4p=1
><D( R R o ) AR RERE S O N

where {cx;, } and ¢y are positive constants and

o a‘lv‘bk (7k # 1)
Vhiy, = 1 — Z"—z aM (Lk — 1) )

0 (apy, € Wi;1 < k< H,

X(ilj...)il{): _Y:H—i-l:"':iK:]‘)
Qi (/c = ming {k; ar;, € Wg})

Let us prove the following lemma,
Lemma 11 For arbitrary w € We),
H(’LU) S Hl(wl) - HQ('U)Q).

(Proof of Lemma 11)
In this proof, we use the notations for summations,

21211

k=11i;= k=H-1 % k=11

M-

2

1

|

.

i

k

> = (i) 2)

Hfis)

In general, the following log-sum inequality holds: For arbitrary sequences
of positive numbers {di, k=1,2,---,1} and {ex, k= 1,2,---, I},

(B ey < St}
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Thus, for arbitrary sequences of positive numbers {dg, k = 1,2,---,I} and
{ex,k=1,2,---,I'}, where I < I', it follows that

(St

1
dr
ERSTN
k=1 k=1 €k
d

+d1 log

{Tho1 — ket + ke b

Using this inequality, we obtain

/dx {Z aygy a’HzH F(z|by,.. zH)

Q4y aHzH (x]bzl %H)

aii; - CLK]LF(:CI()H..@K)

+ay,a5; - - @ F(2]67;..4)

ai1a3; - - afy F(2]b11.4)
Z1 () ’

x log

x log -

where

Zi(z) = Zalila%g o AR F (2| Digigeige )

Let us define two functions,

Rl(w —/d.’L' I:Za'lzl aHzHF(xlbzlm ‘LH)
a’lil a’HZH (xlbzl 'LH)
A4y * aKlF(xlbzl.,.zK)
Fa(w)= do a}say; - aj, F(albly...)

ay105; - af Fx|biy. ;)
Zl (a:)

x log

x log

Then,
H(w) < Ry(w) + Ra(w). (6.11)
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Let us use the following notations,

G4y Qe -t Qe

Pirig-ipg =
: o
g = }: QA14,02i5 * * * OKig-
2

Then pi,45.45 is a probability distribution on the set of suffixes of 3°,. We

can rewrite Ro(w) as
Fa(w) = [ dvapiaf, - ajn F(elbiy..)

v {1og a’ila’;lo'—' “ Qi +log F(;llzil)l) } 7
2

where

Zo(5) = D Piyigerine F(@]bigigevise )
2
Applying Jensen’s inequality to Rp(w), we obtain
Rz(’w) S}:PilmixD(ll s 1||i1 s ’I:H, 7:H+1 s i]()
2

P *
Q11891 Ay

+al1y; -+ ajy log (6.12)
In the region W (e), there is a constant ¢; such that
Piyigeig S D (1 S Vk’ S I{)
o
A los
< (6.13)
C1
We can easily obtain
* Sk 1— Sk_ a¥.
aflog 2 < [1- S af, 1Og__£;k_k~2_’:£&
Qg1 =2 1 =305 Oy
T
fow S i, (6.14)
1 =Sk +1
for w € W{(e) and k < H, where ¢y, is a positive constant, and
1 T
log— < sk D Qi (6.15)
Q1

1p=Sk 1
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for w € Wi(e) and k > H + 1, where cs; is a positive constant. In the
inequality (6.12), each ps..;; have ap;y, € W as the factor. Using 0 <
Piyigix < 1, (6.13),(6.14) and (6.15), we obtain

H Tk K T
Rl ('LU) S Z Z C;c/ikakik + Z Z C;CI'ik a'k’i'k

k=1 43 =S)-+1 k=H+1 43,=2

a’i a* PR a’*H

. ab, .

+ E :aiila;ig T a;ﬁH log —=2 A
1 Yidy Voin © " VHig

+Za;ii"a;ﬁﬂD(il"'iH]lil"'iH,l---l);
1

* ok *
Q31091 """ Gpy

Y117Ye2  * - YH1
K Ty

H T
+Z Z c;cika'kik + Z Z c;cikak’ik

l K T
+C_1{H Z X(ilyi%'“?iK)

k=11i=1

Ro(w) <ajyas; -~ ap;log

XD(ll s 1[]i1i2 vt iH, iH+1 s i[{)
+D(11---1)[11-++1,11--- 1),
where {cj,;, } and {cj; } are positive constants. By combining the above
inequalities, (6.11) and Ry (w)+ Rz (w) < Hi(w1)+ Ha(w2), we obtain Lemma,

11. (End of Proof)
Let us define two sets of the parameters

Wi=A{w; |aki, — o, | S €
(1§_k‘§H,2§’ik§Sk),
Biyigig 1115 = O gyipr ] S €
(1<k<HILZw<S,157< M)},
Wa = {ws; |aki,| < € |biyigeigej — bl11l €
(otherwise)}.

wy € Wi and wo € Wy are free variables from each other. Also define the
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partial stochastic complexities,
Fi(n) = ~log/WI exp(—nH;(w;))dw; (i=1,2),

where the integrated region Wi and W, are taken such that W] C W; and
W4 C W, respectively, and that

W1 x Wy C suppp(w),

where p(w) is the support of the a priori distribution. From the assumption

(A6.2),

n= wg}‘}}i% w(w) > 0.

The stochastic complexity is bounded by
2
F(n) < —logn— > log /W exp(—nH;(w;))dw;.
i=1 :

Thus,
F(n) < Fi(n) + Fa(n) + const.

In order to prove Theorem 4, it is sufficient to bound each Fi(n) (i=1,2). It
is easy to bound F7(n), because it is not larger than the stochastic complexity

of identifiable models.

Lemma 12 A partial stochastic complexity satisfies the inequality,

H H
Fi(n) < % {M T Se+> (Se— 1)}logn+ Ch,

where C is a constant independent of n.

(Proof of Lemma 12)
In an open set Wi, which contains w*, it follows that

Hi(wr) < cllwy — w*|?,
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where ¢ > 0 is a constant. Thus, F1(n) satisfies

Fi(n) < —log /Wl exp(—cnllwy — w*|*)dw,

= Dlogn—1log [ exp(~clyl)dy, (6.16)
2 Win

H H
4 = {MHSk+Z(Sk—1)},
k=1 k=1

where d; is the dimension of Wi and Wy, = {y;y/v/n +w* € W1} converges
to R% as n tends to infinity. By using Lebesgue’s convergence theorem, the
second term of the right side of the equation (6.16) converges to the constant.
(End of Proof)

However, the set {wsq; Ha(we) = 0} includes singularities, we apply the

algebraic geometrical method to Fa(n).

Lemma 13 The second partial stochastic complexity satisfies the inequality,

H K
Fa(n) < {Z(Tk~5'k)+ > (Tk-l)}logvz+02,
k=1  k=H+1

where Cy is a constant independent of n.

(Proof of Lemma 13)
In order to clarify the asymptotic expansion of Fy(n), we consider the

zeta function,

J(z) = / Hy (we)* dws.
We
Based on the algebraic geometrical method, we need to show that this zeta

function has a pole,

Z:—{i(Tk—Sk)“F i (Tk“U}-

k=1 k=H--1

According to the definition of (1,42, -,ix), all the terms of Hy(ws) have

ari, as the factor. Now we define a variable ws and a mapping
9 ws = (W, {wkir. }, {bisig--ixe,5}) > w2
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by

W = OKTk,
Wy, = Gk (1 <k < H Se+1 <4, <Ty),
Wy, = Qi (H—i—l §k§1(~1,2_<_’ikSTk),

WwWie = Okig (2<ix <Tg —1).

This mapping is called a blow-up in algebraic geometry. The function

H(g(ws)) divided w is a constant function of w,
Ha({wrs }, {biri.i}) = Ha(wa) /w.

The Jacobian |¢’(ws)| of the mapping g is

|g'(ws)] = w,
_ H K
= > (Ti-S)+ > (Th—1) -1
k=1 k=H-1

Thus we can integrate the variable w,

J(2) :/06 Wt J(2) dw
€Z+dg j
“rrg a1

J2)=[ Hs({wn}, sss)* 1T donsn ] i

If z is real and larger than the largest pole of J(z), the function J(z) is not
equal to zero. Thus the largest pole of J(z) is not smaller than z = —(dy+1),
which completes the proof of Lemma 13. (End of Proof)

(Proof of Theorem 4)
Combining Lemma 11-13, and the properties of the stochastic complexity

(Proposition. 2, 3), we obtain Theorem 4. (End of Proof)
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Chapter 7
Hidden Markov Models

In this chapter, we introduce hidden Markov models (Rabiner & Juang, 1986)
and derive theorems of the stochastic complexity. Since a sequence of ob-
servations are generated by hidden states of the model, the model is robust
to nonlinear time scaling, and used for learning time series. Thus, it is
used in many areas, such as speech recognition, natural language processing,
bioinformatics, system identification, etc. There are a lot of algorithms to
calculate the probability of the observation given the model, to find the most
likely state trajectory given the model and observations and to adjust the
parameters of the model to maximize the probability of the observations,
for example, the forward-backward algorithm, the Viterbi algorithm and the
Baum-Welch algorithm, respectively. However, the properties of prediction
are not still clarified. The results of this chapter provide a foundation to

analyze them.

7.1 General Hidden Markov Models

Let £ = {y1,92,---,yr} € RT be an observed time sequence. Suppose that
the model has K hidden states. Let us define the transition probabilities by

Ax ={ay} (14,5 <K),
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where a;; is the transition probability from the ith state to the jth state.

Assume that

0<ay; <1 (i#7]),

K

>oa; <1,

I
K

Q34 =1- Za,ij.
i

In an HMM, each state has an observation probability. We use the probability
density function f(i:|b:), where b; € RM, for the observation probability.
This function means the probability of y; in the ith state. b; is its parameter.
Let Bx(t) (t > 2) the matrices such that

annf(yelb)  araf(ylb2) -+ awxf(yelbx)
ao1f(yelb1)  asaf(yelb2) - aoxf(yslbk)

BK (t) = . . L : )
ar1f(yelb1) araf(ylbe) -+ axxf(yelbx)

where a;; f(y:|b;) is the probability of y; in the jth state after transiting from
the ith state. Especially, we assume the initial state (¢ = 1) is the first one.

From the initial state probability, let us define
TK = (f(y1|b1)70) T 70) :

We use the notation,
' 'UK:(lalf"Jl)T)

where (-)T means the transposed matrix. The hidden Markov model is de-
fined by

T
plzlw) = TFKEBK@)@K, (7.1)
ﬁBk(t) = Bk(2)Bk(3)--- Bx(T), (7.2)
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f(xt | b2)

}

Figure 7.1: The hidden Markov model (K = 3).

where the parameter w is given by

w = {a'>b}>
a = {ay} (1<4,j<K,i#7),
b = {bx} (1<Ek<LK)

The dimension of w is
K(K+ M —1).

We show the upper bounds of the stochastic complexities of hidden Markov

models represented by (7.1) (Figure 7.1).

7.2 Stochastic Complexity of HMMs

We assume the following four conditions, (A7.1), (A7.2),(A7.3) and (A7.4).

(A7.1) First, assume that the length of observations is fixed and each sample

observation z is independent and identical. Then, T is a constant.

(A7.2) Second, assume that the learning machine attains the true distribu-

tion. The true distribution has H hidden states, where H < K. By using
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the true parameter w*, it is written as

g(z) = plalw’),

T
pzlw*) = 75 ] By(thva, (7.3)
t=2
’/T;{ = (f(yllb;)70770)>
ajnf (elby) -+ alpf(y:lbk)
By(t) = : s
at f(welbl) - ahmf(velby)

The true parameter is defined by

wt = {a*,b*},
a* = {a’:j} (1SZ)JSH>Z7&3))
ot = {b} (1<k<H).

Then,

(A7.3) Third, assume that the a priori probability distribution is positive
on the true parameter. For a constant ¢ > 0, let us define the subset of
parameter W(e) C W by
Wie)={{a,b} eW ; lay—ajl<e (1<4,5< Hii#j),
laij| < e (otherwise),
lbr —bp| <€ (1< k< H),
|op — 8| <e (H+1<Ek<K)}.
Then, there is a constant € > 0 such that
inf o(w) > 0,
inf o(w)

where "infy ()’ denotes the infimum value of p(w) in w € W e).
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(A7.4) At last, let us define the Kullback informations,

2Jt[b )
o) = [ Fnlbn) dys.
We assume that they are analytic and finite on the support of p(w).
Theorem 5 Assume the conditions from (A7.1) to (A7.4). If the hidden
Markov model (7.1) learns the true distribution (7.8), for arbitrary natural

number n, the stochastic complezity satisfies the inequality

F(n) < C+ plogn,
1
po= 5H{2K~H+M—1},
where C is a constant independent of n.

Let d be the dimension of the parameter w. It is well known that regular
model’s y is equal to d/2. Therefore, the corresponding regular model has

the coefficient of its stochastic complexity,
P %K{K+M— 1}

which is far larger than that of Theorem 5.
If the connections defined by the transition probability (7.1) are sparse,
such as
3(1,7) s a5 = 0,
we can obtain the more tight bound. Let L, be the number of non-zero a;;,
where 1 <14, < H and L, be the number of non-zero a;;, where 1 <{ < H
and H+1 <5< K.

Theorem 6 Assume the conditions from (A7.1) to (A7.4). If the sparse hid-
den Markov model (7.1) learn the sparse true distribution (7.8), for arbitrary
natural number n, the stochastic complexity satisfies the inequality
F(n) < C+plogn,
, HM+ L,

S R
j% 5 +

where C is a constant independent of n.
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an az2 aKK
M Ramwanne b—@
fixt|b1)  f(xt|be2) f{xt | bx)

o l

Figure 7.2: The left-to-right model.

(Remark) From the condition (A7.2), if a;; = 0, where 1 < 4,5 < H, it
follows that aj; = 0.

Let us apply Theorem 6 to a simple left-to-right model, which is used for
speech recognition, bioinformatics and so on (Figure 7.2). This model has
the parameters only a;;y1. Then, Ly = H — 1 and L, = 1. We can easily

derive the following corollary.

Corollary 4 Assume that the learner is a K-state left-to-right model, and
that the true distribution is H-state one. The upper bound of the stochastic
complexity has the coeffictent,

,  HM+H+1
W=

This result clarifies that the upper bound of the stochastic complexity
does not increase when the learner includes the true. Note that the result is

independent of the number of learner’s states K.

7.3 Singularities in HMMs

Before the proof of the theorem, let us confirm that hidden Markov models
are singular. We illustrate the shape of the true parameters in the parameter
space. According to the equation (7.1), The simple hidden Markov model is

written as

plzlw) = fy|bi){a1nf(y2]b1) + arzf(valb2)},
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Figure 7.3: (a) The learning machine, (b) The true distribution, (¢) The
parameter space

where a1; = 1 — a2, the dimension of b; is one and the length of observations
is two T = 2 for simplicity. This model has two hidden states (Figure 7.3
(a)). Assume that

q(z) = f(]b*) f(52]0").
This true distribution has one hidden state (Figure 7.3 (b)). Then, the set

of the true parameters is
{alz = O,bl = b*} U {bl = bz = b*}

This set has a singularity (aiz, b1, b2) = (0, 0%, 0*). Therefore, hidden Markov

models are singular even in this simple example.

7.4 Proof of Theorem 5, 6

We use the following notation,
i = % (e # )
N 1= Sypaiy (8=7)
~;; has the term —a;;, whose suffix j'( 9) is from one to H, not to K. Let

us introduce the following lemma,

Lemma 14 In the region W (e), there exists constants co; > 0 such that

ak a K

* i * 1%

aj;log = < ajlog == +coi ), ai.
Qg ii j=H41
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(Proof of Lemma 5)
Suppose that

H
h = Z Qij,

K
Y2 = Z Qij,
J=H+1,5#i
H
yo= ag;.
=157
It follows that
1-y* 1—y*
1—9y"log ——— =(1-9y"1o +(1-1v")1o
-9 Ty =) 1w =) gl-w/(l’“?/l)

1—y* 1 -9
l—yr 11— ma,xylw'

< (1—vy")log

In the region W (e), there are constants co; > 0 such that

which completes the proof of Lemma 14. (End of Proof)

The Kullback information (2.3) is rewritten as

7 [Ty By (t)ve
7 [T Bx () v’

T
mw=/MﬁJﬁﬁmmbg
t=2
where
T
t=1
Let us divide the parameter w into w = {w;, ws}, where
wy = {a'ij;l < 7'7.7 < H)/I' #.77

wy = {aiy; otherwise,

by H+1< k< K},
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and define two functions,

4 i Bh (v

T
Hy(w) = /dxwLHB}'}(t)leog
t=2

H K K
Ha(wa) = Y. > cja {Cij+ d>oapt Y

I=1,l#] k=H+1 t=1

=1 j=H+1

where {c¢;;} and {C};} are constants (Ve;;, Ci; > 0) and

i [liep By (t)vx’

T
ZDt(lelbk)}>

Yo f (elb1)  af(welb2) -+ mmf(yelbr)

By(t) =

Yorf (Welb1) Yoo f (yelb2) -+ yom f(velbm)

s flb) vmaf @lbe) - e f (uelbs)

Let us prove the following lemma,

Lemma 15 For arbitrary w € W(e),

H(w) § Hl(’w1) -+ HQ(’wz).

(Proof of Lemma 15)
Let Bg(t) divide into two matrices,

' BK(t) = Bq(t) + Br(t) (t 2> 2)7
ainf(yelb) -+ aamf(yelbm)
S : 0
By(t) = | amf(yelbr) -+ ammf(ylbm) )

0 0
al,H+1f(yt!bH+1)
0 z
B.(t) =| agriaf(ylbr) -+ amiraaf(Yelbas)

ax1 f(yt]bl) T aI(,H+1f(yt!bH+1)
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CHAPTER 7. HIDDEN MARKOV MODELS

By using these definitions, the learning model (7.1) is written as

plzlw) = 7r1<H )+ Bo(t)) vk

t=2

= Tk H By(t)vkx + pr(z|w),

where p,(x|w) is the sum of the rest terms.
In general, the following log-sum inequality holds: For arbitrary sequences

of positive numbers {dx,k =1,2,---,1} and {ex, k=1,2,---,I},
Tk
{de}log{ k=1 k} < Z{dklogd }
{Zk_l ek} k=
Hence, for arbitrary sequence of positive numbers {hg;k = 1,2,---,I'},

where I < I,

{Zk—-l ]v} ! { dk} dl
diyl < dilog — » — dy log —
() IS S\ MEe e,
L i
+d; log

S b= h 4Ry

Applying this inequality to H(w), we obtain

T
< 3 [ doat, el S I8 ] et

i1=1 ip=1
iy Ol (a16F) T f (1e03,)
a4y a%T_lsz(yllbl) Ht...Z f(yt]b’&t)
T *T 1
*T—1 " an Ht—l f (y:]b7)
[ el [Lftd6D 108 o o s

*T 1
—{-/dxa“{ Hf (v:|6%) log aii I;tl_(;{(yﬂb ), (7.4)

x log

where

T
Zi(x) = pr(lw) + a3 ! 1]1 / (yelb)-
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We use the following notations of summations,

ZE{_‘E

We rewrite Z;(x) as

T
= E Q1ig " Qip_yip H f(ytlbit)>
2

t=1

where
bil = bl.

Let divide the right side of (7.4) into two functions,

‘ T
* * Ht 1 f(ytl )
Ri(w) = dzal, ---ai. b;,) log —F———"t<
) = 3 [ dea, iy TL7 e log et
a"{":l U a’;kT—liT

.. log ——-—=+
—l-zaln ’T vir 108 Q1iy = " Qi 1iT,
*T 1
* x H— ’l b*
Ro(w) = /da:a T-— I{Hf(?jtlbl)}k’g Ztl(;{(ﬂl ),
=1

where

b;, = b
Then, we can rewrite (7.4) as

H(w) < Ri(w) + Ry(w).

We use the following notations,

Q149 Qinig * a'iT_l’iT
Pigigip = - )

g = Z Qlig =+ Qip_yip-
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We can rewrite Rp(w) as
T *T'—1 N
) = fdeaif {1 s e L 4100 T TR

where

T
= Z Piaig-ip H f(yt[bzt)
1 t=1

Applying Jensen’s inequality to Ry(w), we obtain

*T 1
Ry(w) < aT- log

o T * H;frzl f(?/t}b’{)
+§pm...w/dx {;ﬂ;f 4| b3 }1og —-—————Hg:l lb)’ (7..5)

Because o includes the term a7,

K T—1
o2aiit=q1-> aip
=2

*T 1 *T 1
*T
<ajj log

it follows that

aif " log 2

ai; !
Then, using Lemma 14, we obtain

*T 1 a*T-—l K
T-1
aji 1og < alf- log —+co1 Y. ay, (7.6)
" j=H+1

where co1 is a constant. In the region W (¢), there is a constant €; such that
o> {l—e} .

Thus, there is a constant ¢; such that

Pirigir < %l (1<Vi,j<K)
a’.‘
s = 7.7
T ( )
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Divide the Kullback information into ones of each y,
T T * T
[Timn f(3:]01)
dx f (|07 }log———— =Y D(b3]]bs,). 7.8
fae{ L b fros et T = S pv. 9

As we consider the region W{e), there also exist constants C; > 0 such that
Dy(b3]]b;) < C; (1 <3< H). (7.9)
In the inequality (7.5), each p,..i; have
a; (1<i<HH+1<j<K)

as the factor, because the term is produced by B,(t). Hence, by using from
(7.6) to (7.9), it follows that
*T—1

— i
R2(w) < aiilr 110g T
11

H K K K T
—}—Z Z CiQi5 {Cz/j—i‘ Z a;i + Z ZDt(bﬁchbk)}

i=1 j=H+1 I=1,15£5 k=H+1t=1

+/da: {tI=11 f(yt“’l)} log o= F(Wel01)’

where {Cj;} are constants.
Using Lemma 14, we can rewrite R;(w) as

H K
Ri(w) < > > chias

i=1 j=H+1
T
+ Z/dma’{il RN H f(y]07,)
1 t=1
T
_ b¥
x log ﬂ_gjl_f(yt_l_ﬁ
Ht:l f(ytlbn)
Gy "t a;T—l":T

* *
+ Z P g —
1

Yiiy - Yip_qip

where {cp,;} are constants.
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Combining the inequalities of Ry(w) and Ra(w), we can obtain Lemma
15. (End of Proof)

Let us define two sets of the parameters

Wi = {wl;]aij"’a:jlse (1SZ7JSH>Z7£7)>
br —0pl <e (1<Kk<LH)Y
Wo = {ws;|ay| <e (otherwise),

b — bl <e (H+1<k<K)}

wy € Wi and we € Wy are free variables from each other. Define the partial

stochastic complexities,
Ei(n) = ——log/W/ exp(—nH;(w;))dw; (1=1,2),

where the integrated region W] and Wj are taken such that W] ¢ W) and
W, C Wa, respectively, and that

Wy x Wy C suppp(w),

where ¢(w) is the support of the a priori distribution. From the assumption

(A7.2),

1= el #10) > 0

The stochastic complexity is bound by
2
F < ~—l — l / -~ Hz i 7.
(n) < ~logn E;l og | exp(=nHi(w))dw
Thus,

F(n) < Fi(n) + Fz(n) + const.

In order to prove Theorem 5, it is sufficient to bind each F;(n) (i=1,2). It
is easy to bind Fi(n), because it can be bound by the stochastic complexity

of identifiable models.
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Lemma 16 A partial stochastic complezity satisfies the inequality,
HHA+M-1
Fi(m < T

where C1 is a constant independent of n.

logn + Ch,

(Proof of Lemma 16)
Because Hi(w;) corresponds to the Kullback information between the

regular models, it follows that
Hy(wr) < cflwr — w*||?

in an open set Wi, which contains w*, where c is a constant. From (Propo-

sition 2),

Fi(n) < —log/W exp(—cn|wy — w*||*)dws
1

HH+M-1)

= logn —log | exp(—clly|*)dy,
2 Win

where Wi, = {y;y/v/n + w* € W1} converges to REFE+M=1) a5 n tends to
infinity. By using Lebesgue’s convergence theorem, the second term of the

right side converges to the constant. (End of Proof)
However, the set {ws; Ho(wz) = 0} includes singularities, we apply the

algebraic geometrical method to Fy(n).
Lemma 17 The second partial stochastic complezity satisfies the inequality,
Fy(n) < H(K — H)logn + Cs,

where Cy is a constant independent of n.

(Proof of Lemma 17)
In order to clarify the asymptotic expansion of Fy(n), we consider the

zeta function,

J(z) = /W/ Ha(ws)*dws.

2
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Based on the algebraic geometrical method, we need to show that this zeta

function has a pole,
z=—H(K - H)

Now, we define a variable ws and a mapping

9wz = (w, {wis}, {aiz}, {be}) = w2 (7.10)

W = Qi1K,
wwij = a; (RLI<HHA+1<j<K),
Wwi; = Qij (H—]— 1 _<__] S K - 1)

This mapping is called a blow-up in algebraic geometry. The function

H(g(ws)) divided w is a constant function of w,
Hy({wis}, {ai;}, {be}) = Ha(wz)/w.

The Jacobian |¢'(ws)| of the mapping g is

Igl(wS)l — wH(K—H)—l'

Thus, we can integrate the variable w,

J(z) = /0 W THE=I=1F( ) du
(HH(K—H)-1
= ‘](z)7

z+ H(K — H)
J(z) = /H:S({CUij},{aij}, {bx})* dwijdas;dby.

If z is real and larger than the largest pole of J(z), the function J(z) is
not equal to zero. Thus the largest pole of J(z) is not smaller than z =
—H(K — H), which completes the proof of Lemma 17. (End of Proof)

(Proof of Theorem 5)
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By combining Lemma 15-17, and the properties of the stochastic com-

plexity (Proposition. 2, 3), we can obtain

HQK — H+ M —1)
2 ?

H(H+M—1)

; +H(K — H) =

which completes the proof of Theorem 5. (End of Proof)

(Proof of Theorem 6)

From the proof of Theorem 5, we can immediately obtain Theorem 6.
According to the proof of Lemma 16, when the model is sparse, we can
derive

HM+ L
_g__g log n + const.

Since the blow-up (7.10) depends on the number of non-zero a;;, where 1 <
1< Hand H+1 < j < K, we directly obtain

Fl(n) _<_

EFy(n) < L, logn + const.

Combining these upper bounds, we accomplish the proof. (End of Proof)
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Chapter 8

Discussion

8.1 Model Selection Problem

In this thesis, we assume several conditions in each model such as (A4.1),
(A4.2), ..., (A7.4). They fall into three categories.

(C1) The learning machine p(zjw) can attain the true distribution g(x).
(C2) An a priori distribution ¢(w) is positive on the true parameters.
(C3) Otherwise.

We can rewrite (C1) as that there exist the true parameters w* such that
g(z) = p(x|w*). It might seem particular from the practical point of view,
since there can be some cases when the true distribution is not contained in
any learning models. However, we are able to use a machine which almost
attains the true distribution. Therefore, the case under the condition (C1)
is important. Then, the second one (C2) is necessary to assure the existence
of the true parameters.

Let us discuss the model selection. In the Bayesian estimation, the
stochastic complexity is a criterion to select the optimal model for effective
prediction. In spite of practical application, the mathematical analysis of the

stochastic complexity in singular models were not constructed. Therefore,
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there exist some approximate methods such as the Laplace approximation,
variational Bayes and Markov chain Monte Carlo (MCMC) to calculate it.
Especially, the result of Laplace approximation is same as the BIC (Bayesian
Information Criterion) formula. Our results clarify the theoretical values in
singular models. All theorems claim that the coefficient of the stochastic
complexity, A is far smaller than d/2 (that of BIC), where d is the dimen-
sion of the parameter. This means that BIC does not reflect the effect of
the stochastic complexity in singular models. Our results are mathematical
foundations for the new criterion in the model selection. In addition, A is
also the coefficient of the Bayes generalization error. The smaller coefficient
makes prediction more precise. Thus, our results certify the effectiveness of
singular models compared with the regular statistical model which has the
same dimension of the parameter. The condition (C2) is needed to attain
this ), since it is proven that X is equal to d/2 when we use the Jeffreys’
prior (Watanabe, 2001c). The Jeffreys’ prior is equal to zero on the true

parameters, o(w*) = 0. It does not satisfy (C2).

8.2 A Unified View of Singular Learning Ma-
chines

We obtained a unified view of some singular models. We are able to refer to
mixture models and hidden Markov models as Bayesian networks represent-
ing by (6.1). It is easily to show that the equation of mixture models (4.1) and
that of hidden Markov model (7.1) are the particular cases of (6.1). Figure
8.1 depicts them as Bayesian networks. We refer to the class of these models
as Bayesian network class. Suppose that the hidden node h has K states.
This means that the mixture model has K components and that the hidden
Markov model has K hidden states, respectively. The observable node z; or
15 is continuous. In our analysis of these three models, we used the Jensen’s

inequality, the log-sum inequality and almost the same blow-ups. Therefore,
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(a) | (b)

Figure 8.1: (a) The mixture model, (b) The hidden Markov model

we obtained the algorithm for analysis of the Bayesian network class (Figure
8.2).

Algorithm to calculate the stochastic complexity in Bayesian net-

work class

Step 1. By using the Jensen’s and log-sum inequalities, the Kullback infor-

mation is divided into two parts, Hi(w;) and Ha(ws).

Then, H;(w;) means the Kullback information from the true distribution
to the learning machine which has the same sized parameter space as that
of the true distribution. The original Kullback information H(w) has the
relationship, H(w) < Hi(wq) + Ha(ws), where w = {wy,ws}. Let Ji(2) be
the zeta function of H;(w;), and A; is its pole. From Proposition.2, 3, the
summation of poles pg, uo is an upper bound of the largest pole in the zeta
function of H(w).

Step 2. Calculate the pole ;.

It is easy to find it, since H;i(w;) is equivalent to that of statistical regular

models. Let dy is the dimension of w;. Then, u; = dy/2.

Step 3. Calculate a pole ps.

105



CHAPTER 8. DISCUSSION

H(w)

Jensen’s inequality
Log-sum inequality

[ Hlin)) ( Hz(Wz)]
(5@ ) (3= )
| |

(w=dv2) (_p=R )

Proposition. 2, 3

Figure 8.2: The algorithm for the Bayesian network class

The algebraic geometrical method is needed to find it, since Ha(ws) has
singularities in the parameter space. In the Bayesian network class, Ha(ws)

has the following upper bound.
"R
Hy(we) < }:ai\}[/(w'),
i=1

where w' = wy\{a;} and ¥(w’') is a positive analytic function. Thus, it is

easy to find a blow-up.

o = das,

aa; = a; (1#£1).

Therefore, p; is equal to the number of the terms, R. Actually, the learning
machine p(z|w) is equal to the true distribution g(x) in terms of functions
when {a;} are all zeros. In other words, R is the minimum size of the param-
eters such that p(x|w) attains g(z) when the parameters are equal to zeros.

We can describe R as the following.
po = R=mindim {{a;} Cw ; {a:;} =0 st. plzjw)=q(x)}.
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Step 4. The summation uy + uso is the upper bound of .

This algorithm provides the relationship between the size of the learning
machine and the stochastic complexity. If the other model is represented
by Bayesian network (6.1), its stochastic complexity must be clarified by
using this algorithm. Moreover, remark that we use the similar algorithm for
Boltzmann machines which are not in the Bayesian network class. However,
the inequalities in (Step 1) and the value of us are different. They depend

on the models.

8.3 Future Works

At last, let us discuss the evaluation of the conventional methods. As we
mentioned, we are able to evaluate the Laplace approximation and BIC, since
we obtained the theoretical upper bounds of the stochastic complexity. As a
result, the approximation is not appropriate in singular models. This means
our results provide the mathematical foundation to evaluate the conventional
methods for calculation of the stochastic complexity. It is our future study
to compare our results with the MCMC and the variational Bayes. Then, we
will be able to construct an algorithm to optimize them. Our ultimate goal
is to propose the new algorithm for calculation of the stochastic complexity
whose effectiveness is guaranteed mathematically. This thesis will give the

first step of it.
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Chapter 9

Conclusion

This thesis has established the following stuffs.

(1) A method to clarify the stochastic complexity in some concrete singular

learning machines.

(2) A unified perspective to analyze the singularities in learning machines
such as mixture models and hidden Markov models, in terms of Bayesian

networks.

(3) A mathematical foundation to evaluate a criterion for the model selection,

a method to design the optimal model and a learning algorithm.
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