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Abstract

This thesis presents stereo vision based on physical and mathematical modeling. In our
approach, physical phenomena which create 2-D images from the 3-D world are represented
by simple models. Also, stereo methods which, to the contrary, extract 3-D information from
the images are described mathematically. Both of them consequently establish a unified
mathematical foundation. This foundation can explicitly involve many factors relating to
both the imaging process and the stereo method, including intensity and disparity variations,
noise, color, matching windows, and stereo baselines. The mathematical analysis based on
the foundation enables us to understand various properties of stereo vision and gives us
concrete algorithms which can overcome the problems of stereo matching. The further
advantage is that since we know the characteristics of the algorithms, they are far more
predictable and extensible for different situations than the algorithms based on heuristics.

One resultant algorithm is a locally adaptive window for matching. The goodness of
a window depends on intensity change, disparity change, and noise involved in an image.
What makes the problem more difficult is that these factors change from position to position
in the same image and that the disparity is what we want to calculate and embedded in
the intensity patterns. As a solution to the problem, we employ a statistical model that
represents the uncertainty of the disparity of points over the window. This modeling enables
us to compute both a disparity estimate and the uncertainty of the estimate obtained by
using the particular window. So, the algorithm can search for a window that produces the
estimate of disparity with the least uncertainty for each pixel of an image. The method
controls not only the size but also the shape (rectangle) of the window.

Another challenging task in stereo mathcing is to overcome a trade-off problem between
precision and accuracy in matching. That is, the estimated distance with a short baseline is
less precise due to narrow triangulation. On the other hand, with a longer baseline, a larger
disparity range must be searched and, as a result, matching is more difficult and there is
a greater possibility of a false match. The stereo matching method presented in this thesis
uses multiple stereo pairs with different baselines generated by a lateral displacement of a
camera. A new evaluation function called SSSD-in-inverse-distance is defined to exploit the
multiple pairs. We show that this new function exhibits a unique and clear minimum at the
correct matching position even when the underlying intensity patterns of the scene include
ambiguities or repetitive patterns. An advantage of this method is that we can eliminate
false matches and increase precision without any search or sequential filtering.

Another aspect of stereo, the use of color information, is also presented. We analyze the
effect of using color information in stereo matching and propose a color stereo algorithm for
a medical application. In this application, the 3-D shape of optic nerve heads are measured
using stereo fundus images for diagnosing and monitoring glaucoma.

Throughout this thesis, both theoretical and experimental results are presented to demon-
strate the effectiveness of our mathematical analyses and the resultant algorithms.
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Chapter 1

Introduction

Reconstruction of the three-dimensional (3-D) structure of the world from its two-dimensional
(2-D) projections is a major task in computer vision (figure 1.1). Stereo vision is one of the
most promissing methods and many algorithms have been proposed. However, most of these
techniques have started from given images without explicitly considering the fact that they
were created from the real 3-D world through physical phenomena. Consequently, they rely
heavily on empirical rules or heuristics and tend to be ad hoc (figure 1.2). They may give
good results for the images which happen to be used, but there is no guarantee for others.
They don’t have the ability to predict their performance for different situations or domains,
nor do they give understanding about the vision problems.

On the other hand, work that takes account of how images were actually created in
computer vision tasks has been recently done. Kanade and his research group at CMU are one
of the most active forces. He called such an approach physically based vision [Kan91]. This
thesis is on a similar track. Figure 1.3 illustrates our basic approach. In this approach, we
model the physical phenomena that create images with simple equations. Also the methods
which extract 3-D information from 2-D images are described mathematically. These two
constitute a unified formulation which enables us to analyze the characteristics of the task
and establishes a link between resultant distance estimates and various factors that may affect
the performance. Algorithms are obtained as a result of the formulation through stochastic

Images
: 3 (2-D) >
Physical Computer
Phenomena Vision

Figure 1.1: Reconstruction of 3-D structure from 2-D projections
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Images
(2-D) : >
Algorithm
Knowledge
Heuristics Good Result ?

Figure 1.2: Heuristic-based approach

optimization. The important point is that the resultant algorithms are far more extensible,
generalizable, and predictable for different situations than heuristic-based methods.

Now let us begin with a brief explanation of stereo vision and its related techniques. It
is followed by a survey of previous work and main issues in stereo vision. They form the
background for our work. We then summerize the contributions of the thesis. Finally, the
organization of the reminder of this thesis is presented.

1.1 Stereo Vision

Figure 1.4 illustrates the principle of stereo vision. Assuming that the optical axes of the
cameras are parallel to each other, the distance to the object z is computed from:

(1.1)

where B and F are the baseline (the distance between cameras) and focal length, respectively.
d is the disparity, which is the difference in the z coordinate between left and right images
for the same object point,

d:mL—IBR. (12)

That is, stereo’s fundamental principle is triangulation. Once the corresponding points are
found, which are the projections of the same physical point in space onto the left and the
right images, the physical point’s position in 3-D space is easily obtained using equation
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Images
. ) (2-D) )
Physical Methods
Phenomena
 Physically Mathematical

Based Model | Description’

Unified Formulation

Stochastic
| Optimization

Y

Algorithm

Figure 1.3: Our approach based on physical and mathematical modeling
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left image right image
—® < - > [
XL Xr

Figure 1.4: Stereo vision
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active time-of-flight laser
ultrasonic
triangulation spotlight
(structured-light light stripe
projection) 2-D light pattern
Moire pattern
passive stereo vision
(shape from ...) | shading Lambertian reflection
specular reflection
interreflection
motion
geometrical constraint | parallel or perpendicular lines
texture
defocus focus position
aperture

Table 1.1: Noncontact 3-D sensing techniques.

(1.1) and simple geometry. So the most important and challenging task in this method is,
- for each point in one image, finding the corresponding point in another image.

On the other hand, we can regard this method as one of several 3-D sensing techniques
that measure 3-D information of objects or scenes. Table 1.1 shows major noncontact 3-D
sensing techniques. They can be divided into two types, active and passive methods. Active
- methods which cast energy onto objects are, in general, relatively reliable and practically
used in industrial applications. However, there are some drawbacks due to active. They may
affect the objects or the environment, interfere with each other when multiple sensors are
. used simultaneously, or consume relatively more power. On the other hand, passive methods
- are not as reliable as active methods so far. However, they are potentially more flexible and
- generally-applicable as the human visual system demonstrates. A lot of work is being done in
the field of computer vision using various cues for estimating 3-D information, e.g., disparity
caused by different view positions, shading on an object surface, motion, perspective, texture
- gradients, different degrees of defocussing, and so on as shown in table 1.1. Since disparity is
one of the most powerful depth cues, a large amount of work on stereo vision has been done.
We will survey them in the next section. More explanations about 3-D sensing techniques
* can be found in [Kan87][Shi87][San89][Wec90].
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1.2 Previous Work and Main Issues in Stereo Vision

In this section, we survey previous work in stereo vision and depict generally what are the
essential problems of this method.

Stereo vision algorithms are commonly divided into two types, area-based and feature-
based. In area-based stereo matching, windows are set around candidate corresponding
points in the left and right images to assess the likelihood of correspondence. Typically, a
kind of correlation such as normalized cross correlation (the correlation coefficient) [Han74]
[Gop77] [Mor81] [Quad4] [WTK87], covariance [SB76}, and the sum of the squared differences
(SSD) [Gen77] [Ana84] [MSK89] of the intensity values over the windows is computed. The
algorithms are relatively simple and can produce dense depth maps. The major problems of
area-based methods are:

e They tend to be affected by geometric distortions caused by the projection of non-
frontoparallel surfaces onto the image planes, since if it is the case, the pixels over
the window in one image are no longer just the shifted-in-parallel ones in another
image. Quam [Qua84], Gruen [Gru85], and Otto et al. [OC89] warped (basically affine
transformation) their windows to compensate for this distortion.

e An appropriate size of the correlation window has to be used for each application.
Furthermore, one fixed-size window may not produce good measures for all portions of
an image due to the locally different propeties in the image. Levine et al. [LOY73] and
Dowman et al. [DH77] changed their window size using the variance of the intensities
within the window.

e It is difficult to obtain depth measurements for the regions of constant intensity. Al-
though this is often mentioned, it is not a problem peculiar to area-based matching,
since, for example, there is essentially no way to find correspondense for a completely-
constant-intensity region regardless whether area-based or feature-based matching is
used. A possible claim of feature-based matching against area-based is that the un.
favorable regions will be discarded in extracting features and never tried in matching
while area-based methods tend to try to compute disparities for all pixels in the im-
age. So what area-based methods need may be an additional mechanism to indicate
unreliable measurements. Gennery [Gen80], Forstner et al. [FP86], and Matthies e
al. [MSKS89] gave estimates of the reliability of the match based on the statistica
properties of random noise.

o Area-based methods consume relatively more time. Lucas et al. [LK81] and Nishihar:
[Nis87] proposed methods to reduce computational cost in calculating correlation. Alsc
it should be noted that area-based algorithms are in general simple and amenable t
parallel hardware implementations.
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On the other hand, feature-based stereo matching consists of two main stages, i.e. (i)
feature extraction from images and (ii) matching the extracted features between both im-
ages. There have been a wide variety of algorithms proposed depending on the methods
adopted for each step. For example, feature points were extracted by the Hueckel operator
[Arn78], an interest operator [BT80], zero-crossings [Gri85] [DP86], or the Canny edge de-
tector [Pog88]. To reduce ambiguities, higher-order features were extracted such as line seg-
ments [HKK84] [MN85] [AL87], edge-delimited intervals [HMG79] [OK85], skeletons [BK88],
rectangles [MN89], and curves [BB89]. Also many techniques were proposed in the matching
stage including dynamic programming [BB81} [OK85], relaxation techniques [MP76] [BT80]
[KA85], graph description matching [AL87], and simulated annealing [Bar89]. Though the

feature-based algorithms are relatively fast and in general less sensitive to geometric distor-

tions, they have the following drawbacks:

o The points where depths can be obtained are sparse, since only depths on extracted
features can be directly computed. Furthermore, as Jenkin et al. [JJT91] pointed
out: "The constraints on the density and on the ease of eliminating false targets are
in direct opposition. In particular, the number of possible matches in a given region
increases polynomially with the density of a given symbolic feature. Therefore the
problem of finding the correct match can be expected to rapidly become more difficult
as the density grows.” To obtain a dense depth map from the sparse measurements,
an interpolation (smoothing) process is often applied. However, it may degrade the
already-computed depth measurements and add further complexity to the algorithms.
Another direction may be obtaining 3-D structure directly from sparse measurements,
though this needs some additional constraints or knowledge about the object and has
its own difficult problems.

o All information contained in the images is not used. This is because feature extraction
throws away a lot of information, e.g. a gradual change of intensity or shading. More-
over, as Otto et al. [OC89] mentioned, ”small-scale ‘texture’ tends to confuse most
feature detectors, and make their performance worse, whereas it improves that of most
area-based detectors.”

o The algorithms tend to be heuristic, e.g. a heuristic choice of information extracted,
heuristic search for correspondence, and their heuristic combination. This is not nec-
essarily a problem, but it is very difficult to understand the methods or know their
characteristics in various situations.

Another important issue which is common to both area-based and feature-based methods
is the elimination of ambiguities in matching. The major strategies for this are: (a) coarse-to-
fine control strategy in which matching is done at a low resolution first to reduce ambiguities,
and then the result is used to constrain the matching at a higher resolution [MP79)] [Qua84]
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[Gri85] [HA86] [Bar89] [Han89] [CMY0], (b) best-first strategy in which matching for likely-
to-be-good points is performed first which then constrains the matching at less promissing
surrounding points [MKA73] [Han89] [OC89], and (c) using additional images taken from
different view points [Mor79] [Tsa83] [MK85] [XTA85] [PH86] [YKK86] [I186] [AL87] [OWI86]
[MO89] [YH92].

1.3 Owur Approach and Main Contributions of the The-
sis

In the previous sections, we have presented the background for our work. Now we revisit
our approach and summerize the main contributions of the thesis.

The key point of our approach is the development of a mathematical framework in which
both physical and methodological aspects in vision problems can be considered simultane-
ously as shown in figure 1.3. This approach can also be contrasted with that based on
heuristics or that simulating the human vision system. The advantage of our approach is
that we know the characteristics of the problems mathematically, and the resultant algorithm
can be more extensible, generalizable, and predictable under different situations.

The main contributions of this thesis are to establish a mathematical foudation for our
approach and to show that some major problems of stereo vision can be solved in a mathe-
matically well-defined manner based on the same foundation. Throughout this thesis, both
theoretical and experimental results are presented to show the effectiveness of our approach
and the resultant algorithms. Additional details about the contributions are described below.

The mathematical foundation we establish consists of a physically-based model of stereo
images' and a mathematical description of stereo matching?. Our mathematical formulation
is based on statistical models, which consequently produces the most likely estimate of the
disparity (distance) and the uncertainty of the estimate. The uncertainty estimation is very
important, not only because it indicates unreliable measurements, but because it can relate
the performance of stereo matching with various factors. They include those originating
both in physical phenomena such as underling intensity patterns, disparity patterns (3-D
structure of the scene), noise added in the images, and imaging geometry, and in methods
such as matching windows, stereo baselines, the number of images, and colors to be used
for matching. Analyzing these characteristics enables us to understand stereo problems and
leads to concrete stereo algorithms as described below.

1The model is not necessarily a precise description of the real physical phenomena. It is enough as long as
it is a resonable model or approximation of the real conditions which affect the performance of the resultant
algorithm.

2T terms of the classification in the previous section, the matching method we employ is area-based, since
it is much more suitable for our approach in which any ad hoc procedures and heuristics should be removed,
and potentially more general as making use of all information contained in the images than feature-based.
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One central problem in area-based stereo matching lies in selecting an appropriate win-
dow. The window size must be large enough to include enough intensity variation for reliable
matching, but small enough to avoid the effects of projective distortion. If the window is
too small and does not cover enough intensity variation, it gives a poor disparity estimate,
because the signal (intensity variation) to noise ratio is low. If, on the other hand, the
window is too large and covers a region in which the distance of scene points (i.e. disparity)
varies, then the position of maximum correlation or minimum SSD may not represent correct
matching due to different projective distortions in the left and right images. For this reason,
a window size must be selected adaptively depending on local variations of intensity and dis-
parity. The stereo algorithm we present selects a window adaptively by evaluating the local
variation of the intensity and the disparity. We employ a statistical model that represents
uncertainty of disparity of points over the window: the uncertainty is assumed to increase
with the distance of the point from the center point. This modeling enables us to assess how
disparity variation within a window affects the estimation of disparity. As a result, we can
compute the uncertainty of the disparity estimate which takes into account both intensity
and disparity variances. So, the algorithm can search for a window that produces the esti-
mate of disparity with the least uncertainty for each pixel of an image. The method controls
not only the size but also the shape (rectangle) of the window. The algorithm has been
tested on both synthetic and real images, and the quality of the disparity maps obtained
demonstrates the effectiveness of the algorithm.

Another challenging task in stereo vision is to obtain: precise distance estimates without
suffering from ambiguity. In stereo processing, a short baseline means that the estimated
distance will be less precise due to narrow triangulation. For more precise distance estima-
tion, a longer baseline is desired. With a longer baseline, however, a larger disparity range
must be searched to find a match. As a result, matching is more difficult and there is a
greater possibility of a false match. So there is a trade-off between precision and accuracy
in matching. We introduce a stereo matching method that uses multiple stereo pairs with
different baselines generated by a lateral displacement of a camera. Matching is performed
simply by computing the sum of squared-difference (SSD) values. The SSD functions for
individual stereo pairs are represented with respect to the inverse distance (rather than the
disparity, as is usually done), and then are simply added to produce the sum of SSDs. This
resulting function is called the SSSD-in-inverse-distance. We show that the SSSD-in-inverse-
distance function exhibits a unique and clear minimum at the correct matching position
even when the underlying intensity patterns of the scene include ambiguities or repetitive
patterns. An advantage of this method is that we can eliminate false matches and increase
precision without any search or sequential filtering. We show the advantage of the proposed
method by analytical and experimental results.

Color is common information that has been ignored by most past stereo methods. We
analyze the effect of using color information in stereo matching mathematically and exper-
imentally, and propose a color stereo matching algorithm for a medical application. In this
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application, 3-D shapes of optic nerve heads are obtained using color stereo fundus images.
The experimental results using real fundus images are encouraging, and they demonstrate
that the method, together with various means of displaying the results, could give useful
information for diagnosing and monitoring glaucoma, an eye disease which commonly causes
blindness.

1.4 Thesis Overview

Figure 1.5 shows the organization of the following chapters in this thesis.

Chapter 2 presents a mathematical foundation for this thesis on which the following
chapters are also based. We introduce a statistical formulation for stereo matching and
analyze many characteristics mathematically using one-dimensional siganls to simplify the
analysis. These analyses lead to a locally adaptive window which can control the size of
the matching window adaptively for each position. Experimental results using synthesized
signals are shown to demonstrate the effectiveness of the proposed method.

Chapter 3 deals with another important issue of stereo matching, i.e. how ambiguities in
matching can be eliminated. We exploit multiple stereo image pairs with different baselines
generated by a lateral displacement of a camera, and introduce a new evaluation function
called SSSD-in-inverse-distance. It is shown both by analytical and experimental results
that the resultant method can achieve two conflicting requirements in stereo matching, i.e.
removing ambiguity and improving precision.

In chapter 4, the discussion in chaper 2 is extended to two dimension and a two-
dimensional window control strategy is presented, in which the size and the shape (rectangle)
of the window can be controlled. We show a detailed description of our stereo algorithm
with an adaptive window using the multiple-baseline method introduced in chapter 3 as an
initial estimation. The advantages of the method are shown by experimental results using
both synthesized and real stereo images.

Chapter 5 presents color stereo matching. The effect of using color information in
matching is analyzed mathematically and experimentally. Then, a medical application of
the resultant color stereo algorithm is presented. With experiments using real stereo fundus
images, it is shown that the stereo method could give useful information for diagnosing and
monitoring glaucoma.

Chapter 6 summarizes the work of this thesis and presents directions of future research.
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Figure 1.5: Organization of this thesis



Chapter 2

Mathematical Foundation and a
Locally Adaptive Window for Signal

Matching

2.1 Introduction

In this chapter, we present mathematical foundations for our approach to stereo vision and
analysis based on it. As a result, a locally adaptive window for matching is also introduced.
Throughout this chapter, 1-D signals instead of 2-D images are used to facilitate the mathe-
matical analysis and to discuss ideas in a more general manner. Now, let us begin by showing
a typical problem which has not been systematically solved before.

One of the most basic methods for signal matching is calculating the sum of squared
differences (SSD) between two signals over a certain window and locating the position of their
minimum [MSK88] [FP86] [Woo83] [MKAT73] [LOY73]. However, the precise localization of
such minima, 1.e., precise determination of disparity, is difficult and unreliable for two cases.
The first is that when there is not enough signal variation, relative to noise, the SSD values are
noisy and do not exhibit a clear and sharp minimum. The second case is that when there is
too much disparity variation within the window, corresponding positions within the window
are not equally shifted, and the differences are not calculated for the corresponding positions.
As a result, the minimum SSD value may not occur at the correct match position. These
properties pose conflicting requirements on the size of the window. Increasing the window
size alleviates the first difficulty, since it increases the signal to noise ratio, while decreasing
the window size alleviates the second difficulty, since it limits the SSD computation to only
a local, likely relevant portion of the signals. Figure 2.1 illustrates this problem; it shows
results of matching two intensity signals by calculating SSD’s with different window sizes.
The intensity signals are shown in figure 2.1 (a) and the true disparity is shown in figure 2.1

12
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(b). We can observe that for the smaller window the computed disparity is noisy, but the
disparity edges are sharp; while for the larger window the computed disparity is smoother,
but the disparity edges are more blurred or misplaced. Clearly, we want a larger window
for the flat regions (small disparity variation) and a smaller window near the disparity edges
(large disparity variation).

There has been little work on a systematic method for automatically selecting a window
size locally and adaptively for signal matching. In appearance, the problem seems to be
very similar to that of smoothing a signal while detecting and preserving discontinuities, for
which various powerful techniques have been developed including use of Markov Random
Fields [Mar84], continuation methods [Ter86], weak continuity [BZ86], optimal amount of
smoothing [Bou86], and robust M-estimation [BBW8S]. These techniques, however, are for
smoothing a signal itself by observing its properties, such as signal variation. The funda-
mental difference of our problem from smoothing, which makes it difficult, is that we have
to deal with a disparity function which is embedded in the input signals. While the signal
variation is measurable from the input, the disparity variation is not, since disparities are
what we want to calculate.

As a solution to the problem, we propose to introduce a statistical model of the disparity
pattern, which assumes that the disparity values within a window are generated by a random
walk process starting from the value of the center point. Thus at each point within a window,
its disparity is expected to be the same as that of the center point, but its variation is higher
as the point is farther from the center. We employ this model to establish a link between
the window size and the uncertainty of the computed disparity. This allows us to choose the
window size that minimizes uncertainty in the disparity computed at each point.

In section 2.2 we present a mathematical framework necessary to discuss the statistical
properties of disparity calculation based on SSD values in a window. Then in section 2.3,
we generalize the previous formulation considering the disparity variation within a window
and analyze how the disparity variation affects the estimation of disparity at the center
point of the window. This analysis leads to an algorithm for signal matching with a locally
adaptive window. In section 2.4, we analyze the uncertainty of the disparity for a few typical
disparity patterns. Finally, we show experimental results in section 2.5 which demonstrate
the advantages of the proposed method.

2.2 Modeling and Analysis of Signal Matching by Sum-
of-Squared-Differences (SSD)

Signal matching algorithms that compute the sum of squared differences (SSD) of intensity
patterns within a window implicitly assume that all points in the window have equal dis-
parity; that is, all points within the window have been shifted in parallel. In this.section,
we will review the behavior of an iterative matching algorithm, similar to ones in [FP86]
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“and [MO89], that makes this assumption. We will use this analysis to develop the new
‘formulation in the next section.

'2.2.1 Matching by SSD

S Let fi(z) and fa(z) be signals that have a constant disparity d, and that come from the
-~ -same underlying intensity function with additive noise. Then, we can write;

fi(z) — fo(z + d,) = n(z), (2.1)
“where n(z) is Gaussian white noise such that
n(z) ~ N(0,202). (2.2)

~ Here, N(a,b) denotes a Gaussian distribution with mean a and variance b and o2 is the power
. of the noise per image. The reason for 202 is to account for noise added to two images.
If dy is an initial estimate of the disparity, by using the Taylor expansion,

fo(z +d.) = foz + do) + Adfy(z + do), (2.3)

. where Ad = d, — d, is the correction. From (2.1) and (2.3),

| £1(@) = Fa(z + do) — Adfl(z + do) = n(z). (2.4)
L
Yi(z) = fi(z) — falz + do)
a(z) = fole+do), (2.5)
" then
| $1(z) — Adia(z) = n(z). (2.6)

~For simplifying notation, suppose that the point whose disparity we would like to compute
is at £ = 0, and we set a window W around the candidate corresponding points of the two
functions; that is at z = 0 for fi(z) and at z = dj for f(z) as shown in figure 2.2.

‘ Within the window, suppose that we select N sample points, &, &1, ..., Ex_1, with equal

. intervals, and calculate the values of ¥ (&;) and ¢(§;) from the sampled values of the intensity
patterns. (Throughout this thesis, we will use ¢ for a variable within a window and z for a
general variable for functions.) Let us define 7; such that

= 1/11(&') - Ad%bz(fi) 1=0,...,N—1 (2-7)
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Figure 2.2: Signals and window settings

From equations (2.6) and (2.2), the conditional distribution function of n;, given Ad, is

1 (¥1(&) — Adya(&))?
| Ad) = - . 2.8
R | = (25)
Since n(z) is Gaussian white noise, the n;’s are indepeﬁden’c of each other. So we get
N-1
p(mo,m, - - -, v-1|Ad) = ] p(m|Ad).. (2.9)
i=0

From the continuous version of Bayes’ theorem,

(o, m, . .., Mv-1|Ad)p(Ad)

I p(no, My - - - iv—1| Ad)p(Ad)d(Ad)
15 p(mlAd)p(Ad)

I TG p(ni| Ad)p(Ad)d(Ad)

— 0 k3

p(Ad|ne, M1, - -, IN=1)

(2.10)

Assuming no prior information, let p(Ad) = constant. Then we obtain

5" p(m|Ad)
Ad|no, M, - -y TIN—1) = s . 2.11
PUAM 1) = o Tl ad)d(Ad) 1)

Substituting (2.8) into (2.11), we get

1 Ad — Ad)?
p(Adlng, m1, - -+, Mv-1) = Toman, P (—(—————)—) , (2.12)

2
2044
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where
co T (W (E)ee(8)
A= T (6)? (213)
oly = 200 (2.14)
ad Yot (e (&))? '

That is, the conditional probability density function of Ad, glven the observed 1nten81ty pair,
becomes a Gaussian distribution with mean Ad and variance 0%, The Ad and o2 aq derived
here are the same as those obtained from maximum likelihood estimation and standard
error propagation techniques, which have been presented by multiple researchers including

[MO89|[FP86][RGHS0).

2.2.2 Window Size and Uncertainty

Now, let
w
A=

- be the sampling interval, where w is the size of the window. Multiplying the numerators
and the denominators of equations (2.13) and (2.14) by A¢, we obtain

(2.15)

~ (%(&)%(5))&

M TR mierac (219

s 202A¢E
AN 240
;; As N — oo,

J2u (¥2(8))?dE
9 QGZAE
oy = —= — 0. (2.19)
S22 (¥2(€))2dE

~ This result is somewhat counterintuitive. Here, it appears as if the variance of the estimated

Ad could be made arbitrarily small by sampling as many points as we need. This would only

~ be possible if n(x) were actually white. However, in practice it is not, and we must model that

n(z) is band-limited Gaussian white noise. Figures 2.3 (a) and (b) show the power spectral
density function and the autocorrelation function of band-limited white noise. We can see
that points evenly spaced by - are uncorrelated, where w, is the maximum frequency

= of n(z). They are also mdependent of each other, since uncorrelated Gaussian variables
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Figure 2.3: Band-limited white noise

are statistically independent [dC86]. Therefore, the sampling interval A{ that keeps the
samplings independent of each other and makes 03, the smallest is

™

At = —. (2.20)
With this sampling period we can obtain
2
0hy = : (2.21)
on I (0a(E)2dE
Substituting equation (2.5) into equations (2.18) and (2.21), we get
) B (F1(6) = fal€ + do)) f5(€ + do)de
K4 - J2u (fu( )E F2& + do)) f3(€ + do) (2.22)
1%, (F3(E + do))?de
2no? .
OAd = e . (2.23)
on 2 (A€ + do) e

These equations show that, given the signals f;(z) and f>(z) and an initial estimate dy, we
can obtain a disparity correction Ad and its uncertainty 0%, We can revise the disparity
estimate by replacing dy with dy + Ad, and iterate the process. The results shown in figure
2.1 were obtained with this method.

Equation (2.23) indicates two characteristics. First, the larger the absolute value of the
derivative of the signal is, the smaller the uncertainty. Second, the larger the window size is,
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the smaller the uncertainty. The first characteristic is intuitive. That is, the more fluctuation
in the intensity pattern, the more reliable the matching. The second characteristic is also
understandable because a large window can average out the effect of noise. However, this
is true only because we have assumed that the two signals have equal disparity everywhere.
If the disparity varies from position to position, as happens in practice especially near the
disparity edges, a large window is likely to compare intensities which are not actually at
corresponding positions, even when the center point of the window is at the corresponding
position. As a result, a larger window has the effect that disparity edges are blurred and
misplaced, while a smaller window yields sharp but noisy results. This is the phenomena
that we have observed in figure 2.1. Clearly, there should be an appropriate window size for
each position.

2.3 Generalized Formulation Considering Disparity
Variation

In the previous section, we analyzed an iterative matching method with the assumption that
the disparity within the window is constant. If this assumption were true, a larger window
would be better. However, in practice the actual disparity varies from point to point, and
too large a window is actually harmful. An appropriate window size must exist depending
on local intensity and disparity patterns.

2.3.1 Assumption of Non-constant Disparity

In this section, we let the disparity be a function of position, i.e. d.(z). Therefore instead
of equation (2.1), we have

£1(5) = fola + du(2)) = n(2). (2.24)
As before, suppose that we want to compute the disparity at z = 0, i.e., the value d,(0).
Using the Taylor expansion,

fo(§ + dn(€)) = f2(€ + d:(0)) + (d,(€) — d.(0)) f2(€ + d,(0)). (2.25)
Substituting equation (2.25) into equation (2.24), we get
F1(&) — fo(€ +d.(0)) = (d(&) — d,(0)) f5(€ + d..(0)) + n(€). (2.26)
Comparing this with equation (2.1), we observe an additional term e(¢),
e(€) = (d(&) — d.(0)) f3(€ + d..(0)). (2.27)

The interpretation of this term is the following: suppose that we place the center point of
a window at the corresponding points of both signals and compare the intensity values at
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each position ¢ within the window. Then e(£) represents the apparent intensity difference
between the two signals caused not by mismatch, but by the difference between the disparity
d,(¢) at that position and the disparity d,(0) at the center point of the window. Figure 2.4
illustrates this situation. We can see that although the centers of the windows are placed at
the exactly corresponding points (z = 0 and = = d,(0)), other points in the window do not
correspond properly.

2.3.2 A Statistical Model of Disparity

In order to advance our analysis of matching, we must consider the effect of e({) on the
disparity estimate. The difficulty is that e(¢) includes d,(¢), which is what we wish to
calculate. As a solution, we introduce the following statistical model for the disparity d,(§)
within a window:

d,(§) = d.(0) ~ N(0, aal€]), (2.28)

where oy is a constant that represents fluctuation of the disparity. This model assumes
that the difference in disparity between a point £ in the window and the center point of the
window has a zero-mean Gaussian distribution with variance proportional to the distance
between these points. In other words, the farther the point is from the center, the more likely
it is that it will have a different disparity (though the expected value of the disparity is the
same). This statistical model can be shown equivalent to assuming that d.({) is generated
by Brownian motion! (refer to [BN68][Vos87]). We also assume that the intensity derivatives
£3(€) within a window follow a zero-mean Gaussian white distribution®and are independent
of d,(&).

From these assumptions and equation (2.27), we can show (see Appendix A) that e(§)
can be approximated by Gaussian white noise such that

e(€) ~ N(pe,0?), (2.29)
where
pe = Ele()]
= E[d.(¢) — d.(0)]E[f5(£ + d.(0))] ;
=0 (2.30)

o = El(e(¢))’]
= B{(d:(§) — d.(0))*|E[(£5(¢ + dx(0)))*]
= afocdlfl, (231)
'More generally, we can assume d,(€) to be a fractal. This corresponds to choosing a different degree of
|| in the variance in (2.28). The Brownian motion is the simplest case in which the degree is 1. However,

our preliminary experiments have shown no noticeable advantage in using a general fractal assumption.
This is also equivalent to assuming the pattern fa(z) to be the result of Brownian motion.
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and
o = Bl(AE+d0) (232)
From equations (2.26), (2.27), (2.30), and (2.31), we obtain

F1(&) = (6 +d(0)) = e(é) +n(¢)

= n(¢), (2.33)
where 71,(¢) is Gaussian white noise such that
ns(€) ~ N[0,05(8)], (2.34)
and
207 + agaqlé] = o2 (§). (2.35)

Intuitively, n,(£) can be considered as the total noise added to signals, whose variance
is the sum of a constant term and a term proportional to |£|. The first term comes from
the noise added to the signals. The second term comes from an uncertain local support.
That is, while the surrounding points of the center point in the window are used to support
the matching for the center point, the information from these points adds some uncertainty,
too, because of the disparity difference between the center point and the supporting points.
This uncertainty is represented as if additional noise were added whose power is proportional

to the distance from the center point in the window. If the disparity is constant over the

window, i.e. ag = 0, this additional noise is zero. As the disparity varies more in the
window (i.e., larger o), this additional noise becomes larger and the information from the
supporting pomts becomes more uncertain. Also, note that the noise effect of the disparity
variation is amplified by a factor of ay, that is, by the amount of the intensity variation.
This is because wrong correspondences due to disparity variation affect more severely when
the intensity variation is higher.

More discussions about our statistical model of disparity (equation (2.28)) are presented
in section 4.2.2 where we compare it with the assumptions about local support used in stereo
algorithms.

2.3.3 TUncertainty of Estimation as a Function of Signal and Dis-
parity Variations

Now, as we obtained equation (2.4) from equation (2.1) for iterative estimation, we can
obtain from equation (2.33) the following:

f1(€) = fa(€ + do) — Adfy (€ + do) = ns(€)- (2.36)
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Dividing both sides of this equation by ¢,(£),
f1(€) — fal€ + do) — Adfy(€ + do) _ ns(§)

78 = g VO (237
By letting
G (2.38)
f2(€ + do)
me) = Ei, (239)
we have
$1(€) — Adga(§) ~ N(0,1), (2.40)

which corresponds to equation (2.6) for the case of constant disparity within a window. So,
instead of equation (2.18) and (2.21), we obtain

w
2

g - FaB©nE)1E
1%, (#2(6))2de

ok, = — . (2.42)
M w0

Substituting equations (2.38), (2.39), and (2.35), we finally obtain

¥ (f1(8)~fa(E+do)) f3(E+do)
Ad = Iy 202+afad|§r dé
% (£4(£-+do))? de
-3 2024araqlé

2 ' T
Tad = T (jletdo) (2.44)
Wn -2 202 +afad[£|

(2.41)

m]g

(2.43)

These are the equations for the correction of the disparity estimate and uncertainty of the
correction under the assumption of non-constant disparity within a window. If oy = 0, that
is, if all points have the same disparity, then these equations reduce to equations (2.22) and
(2.23) in the previous section. The values of a; and a4 depend on the intensity and disparity
patterns respectively, and they change locally. Since they include d,(z), we cannot obtain
their true values. Instead we calculate their estimates by using the current estimates of
d,(z). From equations (2.32) and (2.28).

w

df = — _2 (£3(€ + d-(0)))dé (2.45)

w

dg = 1 %w l rglro))zdf. (2.46)

2
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These are the key values that furnish a link between the uncertainty of disparity estimate
and the size of a window for matching.

2.3.4 Iterative Algorithm with a Locally Adaptive Window

We introduce the following algorithm that uses a locally adaptive window based on the
preceding analysis:

1. Set d,(z) to an initial estimate do(z).

2. For a window size w, compute d; and dy from the signals fi(z), f(z), and d,(z) by
using equations (2.45) and (2.46).

3. Compute a correction Ad and an uncertainty of the correction ¢%, by using equations
(2.43) and (2.44).

4. Repeat steps 2 and 3 for various window sizes and use the one that provides the
estimate with the smallest uncertainty.

5. Update dﬂ,,(:n) by the amount Ad.

6. Repeat steps 2 through 5 until convergence or up to a certain number of iterations.

2.4 Uncertainty Analysis for Typical Disparity Pat-
terns

In the previous section, we introduced a statistical model for the disparity d,(z). We then
derived equations that relate the disparity estimate and its uncertainty to intensity and
disparity variations within the window. The value 0%, in equation (2.44) is the variance of
the estimated disparity or the uncertainty of the estimation. The adaptive window selection
method proposed in the previous section chooses the window size that minimizes this value.
In this section, we will analyze the behavior of ¢4, for a few typical disparity patterns:
constant, linear, and step. By examining how 0%, changes with the window size, we can tell
how the proposed method will work for those typical cases.

Even when we fix the disparity pattern in the window, the value of ¢4, still depends on a
particular intensity pattern fo(z). Therefore we will instead use the expected values of 0%
over an ensemble of intensity patterns whose derivatives f}(z) follow a zero-mean Gaussian
white distribution such that

f3(x) ~ N(0, ay). (2.47)
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In the following analysis, we assume that oy is constant, i.e. the intensity fluctuates equally
over the whole signal. Then, we have

¢ (Ao +dy)? r 1
IR S, € = —_—d
B\[ an et = Ly wrr g

= Zog (1 + adafw). (2.48)

oy 402

Substituting this into equation (2.44), the expected value of o34, is
g
2w, log (1 + 242’

Eloid = (2.49)

where
vas (2.50)

Tn

P =

Since oy is the variation in the first derivative of the intensity signal, and o2 is the power
of additive noise, r represents the ratio of the intensity fluctuation (i.e. signal) to the noise.
This is an important parameter in matching two intensity patterns.

2.4.1 Constant Disparity

Suppose all points have an equal disparity within a window. That is,

ag=0. | (2.51)
Then, the measure of uncertainty is
. e
Elo%,)] = lim 5
Ad \Jrad—m zwn lOg (1 + Q‘dz_‘ﬁ)
1 /2
Y iy (2.52)
r\ waw

Here, we can see that the uncertainty is inversely proportional to the ratio r and to the
square root of window size y/w. Therefore our adaptive window method will choose the
largest window size allowed. This is consistent with the observation made in section 2.2.

2.4.2 Linear Disparity

Suppose that the disparity changes linearly within a window as shown in figure 2.5; that is,
the window includes a slanted surface:

d,(€) = a€ +b, (2.53)
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Figure 2.5: Linear disparity pattern window size

Figure 2.6: Uncertainty vs. window size w for
a linear disparity pattern (r=8).

where a and b are constants. Then,

a2

Substituting this into equation (2.49), the measure of uncertainty is

JE[o%] = % J = . (2.55)

2wy, log (l + ‘122—26“’2)

Figure 2.6 shows how the uncertainty changes with the window size w for a few values of
the slope a. We observe that for a fixed window size, the steeper the slope is, the larger the
uncertainty. There is a minimum of uncertainty for each slope a. The dotted line connects
those minima. If we denote by w,, the window size that gives the minimum uncertainty,

then
4K

= 2.56
wopt |a|'l" b ( )
where K is a constant that satisfies
' 2K7?
log(1 + K?) — e O (2.57)

We can see that given the ratio r, there is an optimal window size which is inversely propor-
tional to the absolute value of the slope a.
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Figure 2.8: Uncertainty vs. window size w for a
step disparity pattern (p = 5, r = 8).

2.4.3 Step Pattern of Disparity

Suppose that there is a disparity jump within the window, that is, the window includes an
occluding edge. Figure 2.7 shows a step pattern of disparity, where the step of height h is
positioned p away from the window center:

b (<p
d,(¢) { bih £>p (2.58)
Then,
0 Y<p
_ 2
Substituting this into equation (2.49),
W erwen 5 <p
E{O'zAd] = wlog 3% . (260)
P w > p
anwlog(l-’rhz;z log 5‘%) 2 =

Figure 2.8 shows plots of the uncertainty versus the window size w for different step sizes
h. In general, the uncertainty has a local minimum at w = 2p, if h? > 8/r% (in the case of
the figure, A > 0.35). That is, the uncertainty will reach a minimum when the window is
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Figure 2.9: RMS error vs. r (constant disparity pattern).

Just about to cover the step, unless the disparity step is very small relative to the intensity
noise level. Therefore, the proposed adaptive window method will choose the largest window
that doesn’t cross the disparity edge.

2.5 Experimental Results

In this section, we show some experimental results of matching using synthesized signals
and scanlines of real stereo images. The underlying intensity pattern of the synthesized
signals is created by Brownian motion so that its derivatives are Gaussian white noise. The
pattern is then transformed into the two intensity signals by adding Gaussian white noise
and transforming according to an embedded disparity function d,(z). The signals which
have been used in Figure 2.1(a) are examples where the disparity function is a square wave.

First we examine the case where the disparity pattern is constant (d,(z) = 2.5). Figure
2.9 is a plot of the RMS error of the computed disparity vs. the ratio r. Figure 2.10 shows
the RMS error as a function of the window size w. The dotted lines show the theoretical
values from equation (2.52) in the previous section.

Next we look at the case where the disparity changes linearly. In figure 2.11, the solid
curve shows, for various window sizes, the actual RMS errors of the disparity values obtained
by using equation (2.43) in the new formulation in section 2.3. The dashed line shows the
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Figure 2.10: RMS error vs. window size (constant disparity pattern).
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Figure 2.11: RMS error vs. window size (linear disparity pattern).
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Figure 2.12: RMS error vs. window size (linear disparity pattern) by a conventional method.

estimated uncertainty oaq calculated by using equation (2.44). The dotted line shows the
theoretically expected error from equation (2.55). For comparison, figure 2.12 shows the
results from the conventional formulation with the (implicit) constant disparity assumption,
i.e. equation (2.22) in section 2.2: the actual RMS errors are shown by the solid curve,
together with the estimated uncertainty from equation (2.23). First of all, by comparing
the solid curves in figures 2.11 and 2.12 we can see that the computed disparity from the
new formulation has less RMS error than the conventional method over all of the window
sizes. More importantly, the new formulation can give consistently better estimates for the
uncertainty in computed disparity; that is, the estimated uncertainty is closer to the actual
RMS error. This provides a solid foundation for automatic selection of an appropriate
window size. In the conventional formulation, the estimated uncertainty is far from the
actual RMS error as shown in figure 2.12. This is due to the inappropriate assumption of
constant disparity as we mentioned before. Figure 2.13 shows the selected window sizes
that give the minimum uncertainty estimation for each slope a. The dotted line shows the
theoretically optimal window size from equation (2.56).

For the third experiment, figure 2.14 shows the computed disparities for a square-wave
disparity pattern. In figure 2.1, we showed how the window size affects matching results.
Comparing figure 2.14 with figure 2.1, clear improvement can be seen. Figure 2.14 (b) shows
the window size that was actually selected by the algorithm (minimum and maximum sizes
were limited to 3 and 21, respectively). We can observe that in general the method selects
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Figure 2.13: Selected window size vs. slope «.

a small window near disparity edges according to the distance to the edges and a larger
window in the flat regions.

We also tested a more complicated disparity pattern, shown in figure 2.15 (b), which
includes slopes, steps, and a curve. Ten experiments were performed using different but
statistically identical intensity patterns and noise for the same disparity pattern to evaluate
the robustness of the method. One of the ten signal pairs used is shown in figure 2.15
(a). Figure 2.15 (c) shows the computed disparities by the matching algorithm with a
locally adaptive window: results for the ten experiments are overlaid. Again for comparison,
the test signals were also subjected to the conventional matching method with a fixed size
window. Figure 2.16 is a plot of the RMS errors over the whole pattern when various fixed
window sizes are used. All of these RMS errors are larger than the RMS error (0.10 shown

- by the dotted line in the figure) achieved by the locally adaptive window method.

Figure 2.15 (d) shows the selected window sizes (averaged over ten experiments). Note
that the window size is adaptively chosen near the step of disparity (e.g. = 50, 150, 190, 230, 260),
around the round shape of the disparity (i.e. 50 < z < 150), and over the different disparity
slope (i.e. 300 < z < 450).

Figure 2.17 shows a scatter plot of the actual error vs. the estimated uncertainty oaq for
all the points in figure 2.15; the Os indicate the RMS values of actual error. Despite the fact
that they are the mixture of various disparity patterns and various window sizes, the plot
demonstrates that the estimated uncertainty is a good measure of the actual error size, and
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Figure 2.14: Step disparity (a) Computed disparity (b) Selected window size.
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Figure 2.16: RMS errors of computed disparities for figure 2.15 by using various fixed size
windows. The RMS error achieved by the locally adaptive window is 0.1, which is smaller
than the RMS errors with any fixed size window.

that the actual RMS error is linearly related to the estimated uncertainty.

Lastly, we show disparity estimation by using signals from real stereo images. Figure
2.18 (a) shows the stereo images (top down views of a scale model of buildings). Scanlines
marked by black lines are shown in figure 2.18 (b). Figure 2.18 (c) is the computed disparity.
For comparison, the oblique view of the model is shown to the right. The selected window
size is plotted in figure 2.18 (d).

2.6 Conclusions

We have presented a mathematical framework for our approach and mathematical analyses
which enable us to understand many characteristics of stereo vision.

Then, a new signal matching method which can select appropriate window sizes adap-
tively has been proposed. This method is based on a statistical model of disparity distri-
bution within the window. We assume that disparities have the same expected value, but
their variation from that expected value increases with the distance from the center point of
the window. This model has enabled us to correctly evaluate the influence of the disparity
fluctuation within the window on the computation of disparity, so that the estimated un-
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certainty of the computed disparity is close to the real error of the computed disparity. As
a result we can choose the window size that provides the disparity estimate with minimum
uncertainty.

The analytical and experimental results have shown that the method is effective for
various disparity and intensity patterns. The estimated disparities obtained here are better
than those from a conventional method with any fixed window size, and the estimated
uncertainties show good correlation with the actual RMS error of the estimated disparities.
We will extend this idea to the two-dimensional case in chapter 4, where an appropriate size
and shape of a window must be selected for stereo matching.



Chapter 3

A Multiplé—Baseline Stereo

3.1 Introduction

This chapter deals with another important problem of stereo vision relating to the baseline,
i.e. how we can obtain precise distance estimate without suffering from ambiguity?

In stereo matching, we measure the disparity d, which is the difference between the
corresponding points of left and right images. The disparity d is related to the distance z by

d=BFi, (3.1)
VA

where B and F are baseline and focal length, respectively.

This equation indicates that for the same distance the disparity is proportional to the
baseline, or that the baseline length B acts as a magnification factor in measuring d in order
to obtain z. That is, the estimated distance is more precise if we set the two cameras farther
apart from each other, which means a longer baseline. A longer baseline, however, poses its
own problem. Because a longer disparity range must be searched, matching is more difficult
and thus there is a greater possibility of a false match. So there is a trade-off between
precision and accuracy (correctness) in matching.

One of the most common methods to deal with the problem is a coarse-to-fine control
strategy [MP79] [Gri85] [Bar89] [Han89] [CM90]. Matching is done at a low resolution to
reduce false matches, and then the result is used to limit the search range of matching at a
higher resolution, where more precise disparity measurements are calculated. Using a coarse
resolution, however, does not always remove false matches. This is especially true when there
is inherent ambiguity in matching, such as a repeated pattern over a large part of the scene
(e.g. a scene of a picket fence). Another approach to remove false matches and to increase
precision is to use multiple images, especially a sequence of densely sampled images along a
camera path [BBM87] [Yam88] [MSK89] [Hee89]. A short baseline between a pair of consec-
utive images makes the matching or tracking of features easy, while the structure imposed

38
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by the camera motion allows integration of the possibly noisy individual measurements into

a precise estimate. The integration has been performed either by exploiting constraints on
the EPI [BBM87|[Yam88] or by a sequential Kalman filtering technique [MSK89][Hee89).

The stereo matching method presented in this chapter belongs to the second approach:
use of multiple images with different baselines obtained by a lateral displacement of a camera.
The matching technique, however, is based on the idea that global mismatches can be reduced
by adding the sum of squared-difference (SSD) values from multiple stereo pairs. That is, the
SSD values are computed first for each pair of stereo images. We represent the SSD values
with respect to the inverse distance 1/z (rather than the disparity d, as is usually done).
The resulting SSD functions from all stereo pairs are added together to produce the sum of
SSDs, which we call SSSD-in-inverse-distance. We show that the SSSD-in-inverse-distance
function exhibits a unique and clear minimum at the correct matching position even when
the underlying intensity patterns of the scene include ambiguities or repetitive patterns.

There have been stereo techniques that use multiple image pairs taken by cameras which
are arranged along a line [Mor79] [MO89] [YH92], in the form of a triangle [YKK86] [MK85]
[ALS87] (called trinocular stereo), or in other formations [Tsa83]. However, all of these tech-
niques, except [YH92] and [Tsa83], decide candidate points for correspondence in each image
pair and then search for the correct combinations of correspondences among them using the
geometrical consistencies that they must satisfy. Since the intermediate decisions on corre-
spondences are inherently noisy, ambiguous and multiple, finding the correct combinations
requires sophisticated consistency checks and search or filtering. In contrast, our method
does not make any decisions about the correspondences in each stereo image pair; instead, it
simply accumulates the measures of matching (SSDs) from all the stereo pairs into a single
evaluation function, i.e. SSSD-in-inverse-distance, and then obtains one corresponding point
from it. In other words, our method integrates evidence for a final decision, rather than
filtering intermediate decisions. In this sense, Tsai [16] employed a strategy very similar
to ours: he used multiple images to sharpen the peaks of his overall similarity measures,
which he called JMM and WVM. However, the relationship between the improvement of
the similarity measures and the camera baseline arrangement was not analyzed, nor was
the method tested with real imagery. In this chapter we show both mathematical analysis
and experimental results with real indoor and outdoor images. These demonstrate how the
SSSD-in-inverse-distance function based on multiple image pairs from different baselines can
greatly reduce false matches, while improving precision.

In the next section we present the method mathematically and show how ambiguity can
be removed and precision increased by the method. Section 3.3 provides a few experimental
results with real stereo images to demonstrate the effectiveness of the algorithm.
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Figure 3.1: Camera arrangement for stereo

3.2 Mathematical Analysis

The essence of stereo matching is, given a point in one image, find in another image the
corresponding point such that the two points are the projections of the same physical point
in space. This task usually requires some criterion to measure similarity between images. The
sum of squared differences (SSD) of the intensity values (or values of preprocessed images,
such as bandpass filtered images) over a window is the simplest and most effective criterion.
In this section, we define the sum of SSD with respect to the inverse distance (SSSD-in-
inverse-distance) for multiple-baseline stereo, and mathematically show its advantages in
removing ambiguity and increasing precision. For this analysis, we use 1-D stereo intensity
signals, but the extension to two-dimensional images is straightforward. Also, we assume
that the disparity within the window is constant in order to facilitate the analysis relating
to the baseline in this section.

3.2.1 SSD Function

Suppose that we have cameras at positions Py, Py, ..., P, along a line with their optical axes
perpendicular to the line and a resulting set of stereo pairs with baselines By,B,,...,B, as
shown in figure 3.1. Let fy(z) and fi(z) be the image pair at the camera positions Py and P;,
respectively. Imagine a scene point Z whose distance is z. Its disparity d,g; for the image
pair taken from P, and P, is

(3.2)
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We model the image intensity functions fo(z) and f;(z) near the matching positions for Z
- as

folz) = f(z)+ne(z)

assuming constant distance near Z and independent Gaussian white noise such that

no(z), ni(z) ~ N(0,02). (3.4)

The SSD value €4(i) over a window W at a pixel position z of mmage fo(z) for the candidate
- disparity d; is defined as ’

ea) (T, d@) = Y (folz +7) — fi(z + diy + 7))%, (3.5)
jew
. where the > jew Means summation over the window. The d(;) that gives a minimum of
ed(i) (2, d(3)) is determined as the estimate of the disparity at «. Since the SSD measurement
o eaw(z,dgy) is a random variable, we will compute its expected value in order to analyze its
. behavior:

Eleyyy(z,dy)] = E (Z (f(z+3) = fe +dgy — dusy + 7) + nola + ) — ni(x + dg) +J'))2:'
jew

F .
= B> (flz+§)— flz+ diwy — dri) +j))2J

| JEW

+E {Z 2F(x +7) = &+ dy — dusy + 5) (no(x + §) — ny(z + dy +J'))J
JEW

jew
= Y (flz+j)— f(z + diiy = dugsy) + 7))° + 2N,,02, (3.6)
jEW

where N, is the number of the points within the window. For the rest of the chapter, E[]
denotes the expected value of a random variable. Equation (3.6) says that naturally the
SSD function ed(s)(Z, d(;)) is expected to take a minimum when d@ = dy, 1.e., at the right
disparity.

Let us examine how the SSD function ed(i) (%, d(;)) behaves when there is ambiguity in the
underlying intensity function. Suppose that the intensity signal f(z) has the same pattern
around pixel positions z and z + a,

flz+7) =flx+a+j), jew (3.7)
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where a # 0 is a constant. Then, from equation (3.6)
Eleaw)(z, dn»))] = Bleaw(w, dr) + @)] = 2N, 05,. (3.8)

This means that ambiguity is expected in matching in terms of positions of minimum SSD
values. Moreover, the false match at d,) + a appears in exactly the same way for all ¢; it is
separated from the correct match by a for all the stereo pairs. Using multiple baselines does
not help to disambiguate.

3.2.2 Sum of SSDs with respect to Inverse Distance (SSSD-in-
Inverse-Distance)

Now, let us introduce the inverse distance ¢ such that

1
— 3.9
(=1 (5.9)
From equation and (3.2),
d.iy = BiF¢ (3.10)

where (. and ( are the real and the candidate inverse distance, respectively. Substituting
equation (3.11) into (3.5), we have the SSD with respect to the inverse distance,

ecy(z, Q) = D (folz +7) — filz + BiF¢ +5)), (3.12)
JEW
at position z for a candidate inverse distance (. Its expected value is
Blecwy(=, Ol = > (flz +7) — flz + BiF(( ~ () +4))° + 2N,u02. (3.13)
JjEW
Finally, we define a new evaluation function e¢(12..n) (%, ¢), the sum of SSD functions with

respect to the inverse distance (SSSD-in-inverse-distance) for multiple stereo pairs. It is
obtained by adding the SSD functions e¢(;)(z, ) for individual stereo pairs:

ec(1z-n) (€, ) = Zec(z (z, ). (3.14)

Its expected value is

Elecaz.ny(z,Q)] = > Elec(z
=1

.S S (e +4) = e+ BE(C =)+ ) + 2nNaok. (319

i=1j€
In the next three subsections, we will analyze the characteristics of these evaluation functions
to see how ambiguity is removed and precision is improved.
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3.2.3 Elimination of Ambiguity (1)

As before, suppose the underlying intensity pattern f(z) has the same pattern around z and
z + a (equation (3.7)). Then, according to equation (3.13), we have

a

E’[eC(i) (:L.? Cr)] = E{BC(Z) ((L’, C‘r‘ +
We still have an ambiguity; a minimum is expected at a false inverse distance (; = (, + 575-
However, an important point to be observed here is that this minimum for the false inverse
distance (; changes its position as the baseline B; changes, while the minimum for the correct
inverse distance (, does not. This is the property that the new evaluation function, the SSSD-

in-inverse-distance (3.14), exploits to eliminate the ambiguity. For example, suppose we use
two baselines By and By (By # Bz). From equation (3.15)

Elecan(z, Q)] = Y. (flz+7) — flz+BiF((—¢) +4))°

jeEW
+ D (flz+7) = fl+BF(( — () +4))" +4Nyo2  (3.17)
jeEW
We can prove that
Elecay(z,Q)] > 4Nuo, = Elecaz (e, ()] for ¢ # ¢, (3.18)

(refer to appendix B) In words, ec12)(x, {) is ezpected to have the smallest value at the correct
¢~ That is, the ambiguity is likely to be eliminated by use of the new evaluation function
with two different baselines.

We can illustrate this using synthesized data. Suppose the point whose distance we want
to determine is at z = 0 and the underlying function f(z) is given by

_Joeos(Fx)+2 if —d<ax <12
f(’”)"{ P ifz<—4or12<a. (3.19)
Figure 3.2 (a) shows a plot of f(z). Assuming that d,(;) = 5, 02 = 0.2, and the window size
is 5, the expected values of the SSD function eq1)(z,d)) are as shown in figure 3.2 (b). We
see that there is an ambiguity: the minima occur at the correct match d;) = 5 and at the
false match d(;y = 13. Which match will be selected will depend on the noise, search range,
and search strategy. Now suppose we have a longer baseline B, such that —gf = 1.5. From
equations (3.6) and (3.10), we obtain Eley)] as shown in figure 3.2 (c). Again we encounter
an ambiguity, and the separation of the two minima is the same.

Now let us evaluate the SSD values with respect to the inverse distance ( rather than
the disparity d by using equations (3.12) through (3.15). The expected values of the SSD
measurements Elecq)] and Elec(z)] with baselines B; and B, are shown in figures 3.2 (d)
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and (e), respectively (the plot is normalized such that B)F = 1). Note that the minima at
the correct inverse distance (¢ = 5) does not move, while the minima for the false match
changes its position as the baseline changes. When the two functions are added to produce
the SSSD-in-inverse-distance, its expected values Ele¢(13)] are as shown in figure 3.2 (f). We
can see that the ambiguity has been reduced because the SSSD-in-inverse-distance has a
smaller value at the correct match position than at the false match.

3.2.4 Elimination of Ambiguity (2)

An extreme case of ambiguity occurs when the underlying function f(z)is a periodic function,
like a scene of a picket fence. We can show that this ambiguity can also be eliminated.

Let f(z) be a periodic function with period 7. Then, each eci)(z, €) is expected to be a
periodic function of ¢ with the period BT—F ‘This means that there will be multiple minima, of

eci)(z, ) (e, ambiguity in matching) at intervals of B%,- in (. When we use two baselines

and add their SSD values, the resulting ectiz)(z, ¢) will be still a periodic function of ¢, but
its period Ty, is increased to

T T
Ty, = LCM (ETF’ BTF) , (3.20)

where LOM () denotes Least Common Multiple. That is, the period of the expected value
of the new evaluation function can be made longer than that of the individual stereo pairs.
Furthermore, it can be controlled by choosing the baselines B; and B, appropriately so that
the expected value of the evaluation function has only one minimum within the search range.
This means that using multiple-baseline stereo pairs simultaneously can eliminate ambiguity,
although each individual baseline stereo may suffer from ambiguity.

We illustrate this by using real stereo images. Figure 3.3(a) shows an image of a sample
scene. At the top of the scene there is a grid board whose intensity function is nearly
periodic. We took ten images of this scene by shifting the camera vertically as in figure 3.4.
The actual distance between consecutive camera positions is 0.05 inches, Let this distance
be b. Figure 3.3 shows the first and the last images of the sequence. We selected a point x
within the repetitive grid board area in image9. The SSD values ecs) (2, €) over 5-by-5-pixel
windows are plotted for various baseline stereo pairs in figure 3.5. The horizontal axis of
all the plots is the inverse distance, normalized such that 8bF — 1. Figure 3.5 illustrates
the trade-off between precision and ambiguity in terms of baselines. That is, for a shorter
baseline, there are fewer minima (i.e. less ambiguity), but the SSD curve is flatter (i.e. less
precise localization). On the other hand, for a longer baseline, there are more minima (i.e.
more ambiguity), but the curve near the minimum is sharper; that 1s, the estimated distance
1s more precise if we can find the correct one.



3.2. MATHEMATICAL ANALYSIS 45

Blecny1 o7
10

——zeta

Ble¢)]1>
10

—+—zeta

ElecuaP0
251

201

(f) 159
1.0;

5 10 15 opZeta

Figure 3.2: Expected values of evaluation functions: (a) Underlying function; (b) Eleqq));
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(a)

Figure 3.3: "Town” data set:

image0
imagel
image2
image3
image4
image5
image6
image7

image&

image9
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] I

b 2b 3b 4b 5b 6b

(b)

(a) Image0; (b) Image9

7b 8b 9b

Figure 3.4: "Town” data set image sequence
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Now, let us take two stereo image pairs: one with B = 5b and the other with B = 8b.
In figure 3.6, the dashed curve and the dotted curve show the SSD for B = 5b and B = 8b,
respectively. Let us suppose the search range goes from 0 to 20 in the horizontal axis, which
in this case corresponds to 12 to oo inches in distance. Though the SSD values take a
minimum at the correct answer near { = 5, there are also other minima for both cases. The
-solid curve shows the evaluation function for the multiple-baseline stereo, which is the sum
of the dashed curve and the dotted curve. The solid curve shows only one clear minimum,;
that is, the ambiguity is resolved.

So far, we have considered using only two stereo pairs. We can easily extend the idea to
multiple-baseline stereo which uses more than two stereo pairs. Corresponding to equation
(3.20), the period of Ele¢(19..n)(z, ()] becomes

T T T
T n:LCM( L ) 3.21
e (3.21)
where By, Bs, ..., B, are baselines for each stereo pair.

We will demonstrate how the ambiguity can be further reduced by increasing the number
of stereo pairs. From the data of figure 3.4, we first choose imagel and image9 as a long
baseline stereo pair, ie. (1) B = 8b. Then, we increase the number of stereo pairs by dividing
the baseline between imagel and image9, i.e. (2) B = 4b and 8b, (3) B = 2b, 4b, 6b and 8b,
(4) B = b, 2b, 3b, 4b, 5b, 6b, 7b and 8b. Figure 3.7 demonstrates that the SSSDs-in-inverse-
distance shows the minimum at the correct position more CI(?arIy as more stereo pairs are
used.

3.2.5 Increase of Precision

We have shown that ambiguities can be resolved by using the SSSD-in-inverse-distance com-
puted from multiple baseline stereo pairs. The technique also increases precision in estimat-
ing the true inverse distance. We can show this by analyzing the statistical characteristics

of the evaluation functions near the correct match.
From equations (3.3), (3.10), and (3.12), we have

eciy(z,0) = D (Flz+7) = fle+ BiF (=) +7) + (e +7) —ni(z + B;F¢ + 7). (3.22)
jew

By taking the Taylor expansion about { = {, up to the linear terms, we obtain
fla +BF(C—G) +7) = flz+35) + BiF({ ~ §) f'(z + 7). (3.23)
Substituting this into equation (3.22), we can approximate e(;)(z, () near ¢, by a quadratic

form of (: ‘
ecwy(2,0) &~ D (=BiF(C =) (& +7) +no(z+5) — ni(e + BFC+§))*
jew

= BiF%a(z)(( - ()? + 2BiFbi(2) (¢ = &) + ei(2), (3.24)
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Figure 3.5: SSD values vs. inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b;
(e) B = 5b; (f) B = 6b; (g) B =7b; (h) B = 8b. The horizontal axis is normalized such that
8bF = 1.
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Figure 3.6: Combining two stereo pairs with different baselines
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where

a(z) = > (f'(z+7))’ (3.25)

JEW

bi(z) = > f(z+5)(ni(e + BiF( + ) — no(z + 7)) (3.26)
JEW

ci(z) = Z(ni($+BiFC+j)—no($+j))?- (3.27)
JEW

The estimated inverse distance C (i) 1s the value { that makes equation (3.24) minimum;

bi(z)

Cr( _C'r' mv

(3.28)
Since E[b;(x)] = 0, the expected value of the estimate () is the correct value (,, but it
‘varies due to the noise. The variance of this estimate is:

. Var(b;(z))

Var(Gu) PR YSR)

BiF?(a(z))

202

= =" 3.29

B2 F2%a(z) (3:29)
Basically, this equation states that for the same amount of image noise o2, the variance is
smaller (the estimate is more precise) as the baseline B; is longer, or as the variation of
intensity signal, a(z), is larger.

We can follow the same analysis for e(1a...)(z, () of (3.14), the new evaluation function
with multiple baselines. Near (., it is

i=1
The variance of the estimated inverse distance 57.(12...”) that minimizes this function is

2 202
Var((r(m---n)) - ( 7-1,_1 Bz) FZG,(.T)' ) (331)

From equations (3.29) and (3.31), we see that

S N < S (3.32)
Var(Gz.n))  iz1 VCW‘(Cr W)
The inverse of the variance represents the precision of the estimate. Therefore, equation
(3.32) means that by using the SSSD-in-inverse-distance with multiple baseline stereo pairs,
the estimate becomes more precise. We can confirm this characteristic in figures 3.6 and 3.7
by observing that the curve around the correct inverse distance becomes sharper as more
baselines are used.
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(a) =
Figure 3.8: Result with a short baseline, B = 3b: (a) Distance map; (b) Isometric plot of the
distance map from the upper left corner. The matching is mostly correct, but very noisy.

(b)

3.3 Experimental Results

This section presents experimental results of the multiple-baseline stereo based on SSSD-in-
inverse-distance with real 2D images. A complete description of the algorithm is included in
Appendix C.

The first result is for the ”Town” data set that we showed in figure 3.3. Figures 3.8 (a)
and (b) are the distance map and its isometric plot with a short baseline, B = 3b. The
result with a single long baseline, B = 9b, is shown in figure 3.9. Comparing these two
results, we observe that the distance map computed by using the long baseline is smoother
on flat surfaces, i.e., more precise, but has gross errors in matching at the top of the scene
because of the repeated pattern. These results illustrate the trade-off between ambiguity
and precision. Figure 3.10, on the other hand, shows the distance map and its isometric plot
obtained by the new algorithm using three different baselines, 3b, 6b, and 9b. For comparison,
the corresponding oblique view of the scene is shown in figure 3.11. We can note that the
computed distance map is less ambiguous and more precise than those of the single-baseline
stereo.

Figure 3.12 shows another data set used for our experiment. Figures 3.13 and 3.14
compare the distance maps computed from the short baseline stereo and the long baseline
stereo: the longer baseline is five times longer than the short one. For comparison, the actual
oblique view roughly corresponding to the isometric plot is shown in figure 3.15. Though
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correct distancg

/ wrong

distancg
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(a) (b)
Figure 3.9: Result with a long baseline, B = 9b: (a) Distance map; (b) Isometric plot. The
matching is less noisy when it is correct. However, there are many gross mistakes, especially
in the top of the image where, due to a repetitive pattern, the matching is completely wrong.

no repetitive patterns are apparent in the images, we can still observe gross errors in the
distance map obtained with the long baseline due to false matching. In contrast, the result
from the multiple-baseline stereo shown in figure 3.16 demonstrates both the advantage
of unambiguous matching with a short baseline and that of precise matching with a long
baseline, :

Figures 3.17 (a) and (b) show one of the real outdoor scenes to which the multiple-baseline
stereo technique has been applied. The distance to the front object (curb) is roughly 20 m
and it is another 8 m to the building wall. We used a Sony CCD camera with a 50 mm lens,
and captured six images (five stereo image pairs) by moving the camera horizontally. The
baseline between the neighboring camera positions is 1.9 cm, so that the disparity is of the
order of a few pixels (thus less than 15 pixels for the image pair with the longest baseline).
Figure 3.17(c) is the distance map obtained: we used a 9x9 window for SSD computation
and used DOG-filtered images as input rather than the original intensity images in order
to compensate for the change in sunlight during the data collection session. Pebbles on the
road in front of the curb are detectable in the map, and the occlusion edges of the sign board
are very sharp. Naturally, range measurements are noisy along the top edge of the curb,
which is mostly horizontal. Note that the map is the direct output of the stereo algorithm
with no smoothing or postprocessing applied.
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Figure 3.10: Result with multiple baselines, B = 3b, 6b, and 9b: (a) Distance map; (b)
Isometric plot. Compared with figures 3.8(b) and 3.9(b), we see that the distance map is
less noisy and that gross errors have been removed. :

Figure 3.11: Oblique view
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(a) ®)

Figure 3.12: ”Coal mine” data set, long-baseline pair

During the experiments with this and other scenes, we found that we invariably obtained
better results by using relatively short baselines. As seen in figures 3.17 (a) and (b), the
disparity is typically only 10 to 15 pixels even for the closest objects in the image pair with
the largest baseline. This is somewhat surprising since for precision we anticipated that we
would need much longer baselines, at least for one or two pairs. What is happening here
seems to be the following. When the baselines become longer, the effect of photographic
and geometric distortions, as well as occlusions, become severe. Use of the shorter baselines
generally decreases precision, but alleviates these problems, making the SSD functions show
more consistent behavior. Yet, since we accumulate multiple observations, sufficient preci-
sion is still achievable. This is, in fact, an advantage of the method, since it means fewer
occluded parts in the final range map, and less computation as well, since the range of SSD
computation is shorter. Moreover, after finding the unique minimum position of the SSSD
function, we can compute the minimum positions of each individual pair’s SSD functions
near the overall minimum, their curvature at their minimums, and finally their minimum
values. We have found some indication that these can be used to evaluate the uncertainty of
the correctness of the matching, and further to classify the situation into occlusion, terminal
edges, and specular reflections. We are investigating these issues further [KN91] [KON 92].
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(a) | (b)
Figure 3.13: Result with a short baseline: (a) Distance map; (b) Isometric plot of the distance
map viewed from the lower left corner

(a) (b)

Figure 3.14: Result with a long baseline: (a) Distance map; (b) Isometric plot
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Figure 3.15: Oblique view

Figure 3.16: Multiple baselines: (a) Distance map; (b) Isometric plot
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round bush

Figure 3.17: Result with a real outdoor scene: (a)(b) long baseline pair of images; (c)
Isometric plot of the distance map.
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3.4 Conclusions

In this chapter, we have presented a new stereo matching method which uses multiple base-
line stereo pairs. This method can overcome the trade-off between precision and accuracy
(avoidance of false matches) in stereo. The method is rather straightforward: we represent
the SSD values for individual stereo pairs as a function of the inverse distance, and add those
functions. The resulting function, the SSSD-in-inverse-distance, exhibits an unambiguous
and sharper minimum at the correct matching position. As a result there is no need for
search or sequential estimation procedures.

The key idea of the method is to relate SSD values to the inverse distance rather than
the disparity. As an’afterthought, this idea is natural. Whereas disparity is a function of
the baseline, there is only one true (inverse) distance for each pixel position for all of the
stereo pairs. Therefore there must be a single minimum for the SSD values when they are
summed and plotted with respect to the inverse distance. We have shown the advantage
of the proposed method in removing ambiguity and improving precision by analytical and
experimental results.



Chapter 4

A Stereo Matching Algorithm with
an Adaptive Window

4.1 Introduction

A locally adaptive window for signal matching has been introduced in chapter 2. Here, it
is extended into the two-dimensional case, i.e. matching using stereo images. We extend
and summarize the mathematical formulation with 2-D image functions. We also present a
comparison of our statistical model of the disparity distribution with local support models
(assumptions) which has been used by other stereo methods. Then, a detailed description
of our stereo algorithm with 2-D adaptive window control and many experimental results
using real images are presented. Now, we restate an important problem next.

Stereo matching by computing correlation or sum of squared differences (SSD) is a basic
technique for obtaining a dense depth map from images [MSK89] [FP86] [Han89] [Woo083]
[Pan78] [MKAT73]. As Barnard and Fischler [BF87] point out, "a problem with correlation
(or SSD) matching is that the patch (window) size must be large enough to include enough
intensity variation for matching but small enough to avoid the effects of projective distor-
tion.” If the window is too small and does not cover enough intensity variation, it gives a
poor disparity estimate, because the signal (intensity variation) to noise ratio is low. If, on
the other hand, the window is too large and covers a region in which the depth of scene
points (i.e. disparity) varies, then the position of maximum correlation or minimum SSD
may not represent correct matching due to different projective distortions in the left and
right images. For this reason, a window size must be selected adaptively depending on local
variations of intensity and disparity.

However, most correlation- or SSD-based stereo methods in the past have used a window
of a fixed size that is chosen empirically for each application. There has been little research
for adaptive window selection. As a relevant technique, Panton [Pan78] warped the image to
account for predicted terrain relief, but failed to consider the contribution due to intensity
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variation. In their coarse-to-fine stereo technique, Hoff and Ahuja [HA89] discuss the rela-
tionship between window shape and disparity, and argue how integrating the processes o
matching, contour detection and surface interpolation can help reduce the problem. Levine
et al. [LOY73] changed the window size locally depending on the intensity pattern, but
uncertainty in matching due to the variation of unknown disparities was unaccounted for.

The difficulty of a locally adaptive window lies, in fact, in a difficulty in evaluating and
using disparity variances. While the intensity variation is directly measurable from the
image, evaluation of the disparity variation is not easy, since the disparity is what we intend
to calculate as an end product of stereo. To resolve the dilemma, an appropriate model of
disparity variation is required which enables us to assess how disparity variation within a
window affects the estimation of disparity.

The stereo algorithm we propose in this chapter selects a window adaptively by evaluating
the local variation of the intensity and the diks‘parity. We employ a statistical model that
represents the uncertainty of disparity of points over the window: the uncertainty is assumed
to increase with the distance of the point from the center point. This modeling enables us to
compute both a disparity estimate and the uncertainty of the estimate obtained by using the
particular window. So, the algorithm can search for a window that produces the estimate
of disparity with the least uncertainty for each pixel of an image. The method controls not
only the size but also the shape (rectangle) of the window.

In this chapter, we first develop a model of stereo matching in section 4.2. Section
4.3 shows how to estimate the most likely disparity and the uncertainty of the estimate
based on the modeling in section 4.2. These two sections provide theoretical grounds of our
proposed algorithm. In section 4.4, we present a complete description of a stereo algorithm
which selects the appropriate window size and shape adaptively for each pixel. Section 4.5
provides experimental results with real stereo images. The quality of the dlsparlty maps
obtained demonstrates the effectiveness of the algorithm.

4.2 Modeling Stereo Matching

We will first develop a statistical model of the distribution of the difference of intensities
of two images within a window. This is an extension to two dimensions of the disparity
distribution model presented in section 2.3. Then we will compare our model of the disparity
distribution with local support models of other stereo methods.

4.2.1 Distributions of Intensity Differences and Disparities in a
Window

Let the stereo intensity images (or results of some preprocessing) be fi(z,y) and fo(z,y).
Without loss of generality, we can assume that the baseline is parallel to the x-axis. Further
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let us assume fi(z,y) and fao(z,y) come from the same underlying intensity function with a
disparity function d,.(z,y) and additive noise. Then f; and f, are related by

fl(xay) = f2($+dr($7y)ay) +’I’L(33,y), (41)

where n(z,y) is Gaussian white noise
n(z,y) ~ N(0,202). (4.2)

The value o2 is the power of the noise per image.!

To simplify the notation, suppose that we want to compute the disparity at (z,y) = (0, 0),
ie., the value d.(0,0). Also, suppose a window W = {(£,7n)} is placed at the correct
corresponding positions in both images, that is, at (0,0) in image f;(z,y) and at (d,(0,0),0)
in image fo(z,y) (Refer to figure 2.4 for the situation). Then, the value of f, at (£,7) in
the window is f1(£,n), and that of f is fo(€ + d.(0,0),n). These values would be the same,
except for the noise component, if the disparity d,(£,n) were constant and equal to d,(0,0),
but in general they are not. By expanding fo({ + d.(€,7),7n) at £ + d.(0,0) up to the linear
term and using equation (4.1), we see that the difference of intensities between f; and f, at
(¢,71) in the window can be approximated as

fi(&m) — f2(€ + d:(0,0),m)

~ (dr(f,n) - dr(oao))ggfé(g + dr(O,O)aﬂ) + ”(5,77) (43)

At this point, let us introduce the following statistical model for the disparity d,(£,7)
within a window:

do(€,1) — d,(0,0) ~ N (o,ad\/gz + 772) , (4.4)

where g is a constant that represents the amount of fluctuation of the disparity. That is,
this model assumes that the difference in disparity at a point (£,7) in the window from that
of the center point (0,0) has a zero-mean Gaussian distribution with variance proportional
to the distance between these points. In other words, the expected value of the disparity at
(¢,7m) is the same as the center point, but it is expected to fluctuate more as the point is
farther from the center.? Or, in terms of the scene, the small surface corresponding to the
window in the image is statistically expected to be locally flat and parallel to the baseline,

'We use 202 in equation (4.2) as the variance of n(z,y) to indicate that it accounts for noise added to
both f; and fs.

?The statistical model of (4.4) can be shown equivalent to assuming that d,.(€,7) is generated by Brownian
motion (refer to [BN68]|[Vos87]). More generally, we can assume d,(€,7) to be a fractal. This corresponds
to choosing a different degree of ¢2 + #” between (0,1) in the variance in (4.4). Brownian motion is the
simplest case in which the degree is ;} (see Appendix D). However, our preliminary experiments have shown
no noticeable advantage of using a general fractal assumption.
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but the expectation becomes less certain as the window becomes larger. More discussic
on the implication of this assumption are presented in 4.2.2.

In order to facilitate the mathematical derivations to follow, we make an additio
assumption that the image intensity f,(¢,n) within the window is also generated by anotl
Brownian process which is independent of the one that has generated d.(£,n). This me:
that the image intensity at a point within a window is expected to be the same as {
center point, but that expectation is less certain the farther the point is from the cent
In terms of the distribution of image intensity derivatives -6% f2(&,m) within a window, t.
assumption is mathematically equivalent to assuming that they follow a zero-mean Gaussi
white distribution which is independent of the distribution of disparities d,(¢,7n).3

Now we are ready to develop a statistical distribution of the intensity difference (4
between a pair of stereo images. Let us denote the right hand side of equation (4.3)
ne(&,n). First, we compute the mean and variance of ns(&,n):

Blnn)] = Eldy(&,n) — d,(0,0)]F {é%fz(§+dr(0,0)m)]+E[n(€,n)]
_— (4

E(n(&m)?] = E

((dr(ga 77) - d,,.(0,0))a—affz(f + dv‘(ov O)ﬂ?)) :'

1B [2<dr<§, n) = d,(0,0) (%ms 40,0, n>) (e, n>]
E|

= B[(d.(&n) — d,(0,0))*| E (O%fz(f + dr<o,o>,n>) } +E [(n(¢,m)?

= 202 + ajaq\/€2 + 12, (4.

where

<3f2<§ ; dr(o)O),n))zJ - (4.

3Given no prior knowledge of a particular class of images or scenes, this assummption is justifiable on sor
grounds. Brownian motion is the simplest form of fractals which are often used to create natural textu
patterns. In television transmission technologies, it has been known that the image intensity difference sigr
z follows approximately an exponential distribution of the form e~*!?/ where a and 0 depend on the ty
of the image. Also, except along occluding edges where intensity change and disparity change tend to occ
simultaneously, intensity patterns can in general be independent of surface shapes.
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ns(€,n) can be approximated by a Gaussian white distribution with the above mean and
variance (refer to Appendix A). That is,

m(&m) & A6 = fl€+d(0,01m) ~ N (02034 agau/E 7). (48)

The intuitive interpretation of (4.8) is as follows. Referring to figure 2.4, n,(£,n) is the
difference between f; and fo at (£,n) within a window when the window is placed at the
corresponding positions for obtaining the disparity at (0,0). If there is no additive noise
n(z,y) in the image (i.e., 0, = 0) and the disparity is constant within the window (i.e.,
ag = 0), then the two images match exactly, and n,(£,7) must be null. Otherwise, however,
the difference has a value which shows a combined noise characteristic which comes from both
intensity and disparity variations. As derived in (4.8), we can model it by zero-mean Gaussian
noise whose variance (power) is a summation of a constant term and a term proportional to
V€2 + 2. The constant term is from the noise added to the image intensities. The second
term is from uncertain local support. That is, while the points surrounding the center point
in the window are used to support the matching for the center point, it should be noted
that these points may actually increase, rather than decrease, the error in computing the
disparity of the center point. This is because, in general, the disparity of the surrounding
points deviates from that of the center point. This uncertainty is represented as if the
intensity signals have additional noise whose power is proportional to the distance from the
center point in the window. If the disparity is constant ever the window (i.e., the surface
is frontoparallel and ay = 0), the additional noise is zero. If the disparity changes more in
the window (i.e., the larger oy is), its effect becomes larger and the information contributed
by the surrounding points becomes more uncertain. Also, note that the noise effect of the
disparity variation is amplified by a factor of ay, that is, by the amount of the intensity
variation. This is because wrong correspondences due to disparity variation affect more
severely when the intensity variation is higher.

4.2.2 Models of Disparity Distribution and Local Support in
Stereo

Binocular stereo matching is in general ambiguous: there are often multiple equally good
matches if the matching quality is evaluated independently at each point purely by using
image properties, such as area correlation, edge orientation, and slope of Laplacian zero-
crossing. In order to increase the reliability of matching, all the stereo matching algorithms
developed so far examine the candidate matches by calculating how much support they
receive from their local neighborhood. The manner in which this support from the local
neighborhood is calculated varies between algorithms and is related to fundamental assump-
tions the algorithms make about the scene and its surfaces. Some algorithms state such
assumptions very explicitly and others rather implicitly. It is interesting and revealing to
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compare our statistical model of the disparity distribution (equation (4.4)) with the assump-
tions about local support used in other stereo algorithms.

Hakkarainen, Little, Lee and Wyatt [HLLW91] present an excellent comparison of the
three most representative local support assumptions: the surface continuity assumption in
Marr-Poggio stereo [MP76][DP86], the disparity gradient limit by Pollard, Mayhew and
Frisby [PMF85], and the disparity similarity function of Prazdny [Pra85]. The original
cooperative algorithm by Marr and Poggio (MP) [MP76] uses a surface continuity assumption
about the scene, and a match at a point looks for support from the matches in its local
neighborhood which have the same disparity. Following Hakkarainen, Little, Lee and Wyatt
[HLLW91], the diagram shown in figure 4.1 (a) provides a graphical representation of this
local support assumption. A one-dimensional case is shown for simplicity where only a
neighborhood along an epipolar line is considered. The horizontal and vertical axes represent
the pixel position ¢ and the disparity d, respectively, relative to those of the match of concern
indicated by 0. The thick segment on the horizontal axis on both sides of the origin indicates
the region (ie., the combinations of ¢ and d) that can contribute to support the match at £E=0
for d = 0 (relatively speaking): that is, the neighborhood (€] < &maz) Whose matches have
the same disparity (d = 0) provides support. Basically, the MP stereo assumes frontoparallel
surfaces, and disparity changes are discouraged. Grimson [Gri85] relaxes this assumption and
allows neighboring points with disparities within a certain range to provide local support.
Thus, the support assumption of Grimson’s stereo can be represented as a rectangular region
as shown in figure 4.1 (b).

Pollard, Mayhew and Frisby (PMF) [PMF85] place a limit on the disparity gradient
for acceptable matches, where a disparity gradient is defined as the ratio of the disparity
difference between two points to their distance apart; the disparity gradient limit assumption
means |d/¢| < g.,,. This assumption is based on the observation that the disparity gradient
for correct matches is small in most cases of binocular stereo. The gradient limit constrains
the relative ”jaggedness” of surfaces. In its implementation, the PMF stereo computes a
local support in such a way that a match at a point receives support from neighboring
matches that satisfy the disparity gradient limit; the support 1s weighted so that a closer
neighborhood with a better match gives more support. Figure 4.1 (c) shows the region in
the d - £ plane which can provide support to the match at the origin. We see that the MP
assumption corresponds to the case where g,, = 0.

Prazdny [Pra85] argues that the major mechanism in disambiguating disparity assign-
ments is the ” coherence principle”, which states that neighboring disparities, if corresponding
to the same 3D object, should be similar. Two neighboring pixels with similar disparities
should support (or facilitate) each other, while pixels with dissimilar disparities should not
inhibit (or interact) with each other. To incorporate this idea into a stereo algorithm, a
function is needed which specifies the amount of support between neighboring points based
on their disparities. Prazdny set three requirements for the function: it should be inversely
proportional to the difference of disparities; more distant points should exert less influence;
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Figure 4.1: Graphical representation of various local-support assumptions. Each diagram
shows the local support region that provides support to the match of concern O: (a) Marr-
Poggio continuity assumption; (b) Grimson’s neighboring points with disparities within a
certain range; (c) Pollard-Mayhew-Frisby disparity gradient limit assumption; (d) Prazdny’s
support in his similarity function; (e) the disparity distribution model of (4) in this paper.
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and the more distant the two points are, the less seriously should their disparity difference
be considered. As a function which satisfies these requirements, Prazdny chose

o 1 |dj—d;|?
$\GJ) = ==
(i,5) cli — j|V2x

where s(7,j) represents the amount of support that disparity d; at pixel 7 receives from
disparity d; at j, |¢ — j| is the distance between the two pixels, and c is a scaling constant.
Graphically, figure 4.1 (d) shows the region which exerts a support more than a certain
threshold, ie, s(%,7) > sy. Note that dj — d; corresponds to d and ¢ — j to £ in our diagram.

Prazdny’s similarity function (4.9) is exactly the same as our model of disparity distri-
bution (4.4) in that the disparity difference between two pixels d; — d; follows a zero-mean
Gaussian distribution whose variance increases with their distance apart. The only differ-
ence is that in (4.9) the variance is proportional to the square of the distance between the
pixels, instead of the distance itself as in (4.4). In fact, equation (4.9) is the limiting case
of H — 1 in equation (D.1) in Appendix D in which a general fractal surface assumption is
discussed. Figure 4.1 (e) shows the region for which Prob(d,.(§) — d,(0)) > Pr. Note that
in both figures 4.1 (d) and 4.1 (e) the support becomes stronger as the disparitics become
similar (d — 0) and the pixels become closer (¢ — 0).

Prazdny presented several computational and psychophysical arguments to justify his
choice of the support function, including the relationship of the term of the exponent |d; —
di|/|j — i| to the disparity gradient. The function represents the bias toward frontoparallel
planes, but as all the diagrams in figure 4.1 show, it is a graceful mix of the distance and the
disparity difference into a support score. If we view the likelihood of disparity relative to the
neighboring disparity as the support score, our model provides probabilistic justification for
Prazdny’s selection of the support function, and Prazdny’s arguments provide psychophysical
Justification for our model.

All of the above assumptions on local support and disparity distribution emphasize fron-
toparallel planes. As pointed out by many researchers [HLLW91] [MP76] [DP86] [Gri85]
[PMF85] [Pra85], however, this is not necessarily a problem. Acceptable results have been
obtained for a scene which contains slanted surfaces, curved surfaces and even disparity jumps
by stereo algorithms which use these and similar methods for computing local support. The
diagrams in figure 4.1 indicates in fact that, relatively speaking, our model emphasizes (al-
lows) more local variations of disparity than the support function of MP, Grimson, PMF
or Prazdny stereo. Also, it should be noted that any stereo algorithm which involves some
kind of smoothing or averaging over an area does indeed assume or have a bias towards
frontoparallel planes, whether or not the assumption is stated explicitly.

Matching by SSD calculation requires in theory (assumes implicitly) the surface to be
covered by a window to have the same disparity (i.e. a frontoparallel plane) in order for
it to generate an exact estimate of disparity. Otherwise, the estimate becomes uncertain.
The disparity distribution model of (4.4) has been introduced to allow us to evaluate that

T (4.9)
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uncertainty, so that we can choose an appropriate window size which will generate the most
certain estimate of disparity. The model does not necessarily limit the surface types to which
the resultant stereo method will be applicable.

4.3 Estimating Disparity and Its Uncertainty

Now we will show how the disparity and its uncertainty can be estimated based on the
modeling presented in the previous section. Let do(z, y) be an initial estimate of the disparity
d,(z,y). By using the Taylor expansion, the variable n (£, 7) in equation (4.8) is equal to

fl(é‘an) - fl(g + dO(O’O)vn) - Ad%fé(g + d0(010)> 77)7 (410)

where Ad = d,(0,0) — dy(0,0). Note that Ad is an incremental correction of the estimate to
be made. Let us denote

¢1(§?77) = fl(fan)—f‘z(ﬁﬂLdo(O,O)ﬂ?) (411)
baltym) = %fzmczo(o,om (4.12)

Functions ¢; and ¢ are the image differences and image derivatives, respectively, within a
window which is placed according to the initial estimate dy. *Using these notations we can
rewrite equation (4.8) as

n.(&,m) = 1(€&,m) — Adea(&,n) ~ N(0,0%(€,7)), (4.13)

where
o?(€,n) =202 + ayagy/€2 + 02 (4.14)
Now, by sampling image values f; and fs at (&, 7;) in the window W we obtain a sample

()Dij of ns(fﬂ?)
' pi; = ns(&,my) = d1(&imy) — Adea (&, my). (4.15)

From (4.13), the conditional probability density function of ¢;; given Ad is

g _ 1 ox _~(¢1(€i,77j)—Ad¢2(§i,77j)>2
Plealid) = o p-( 202(€, n) )

Since n,(¢,7) is white noise, the ;;’s are mutually independent. So the joint distribution of
¢;;'s for the points in the window is

plpii (i, e W)|Ad) = ] pleslAd), (4.17)

1,jEW

(4.16)



CHAPTER 4. A STEREO MATCHING ALGORITHM WITH AN ADAPTT
68 ~ WINDC

where []; ;e denotes the product over the window.

The task is to estimate Ad given measurements ¢i;'s. Therefore, using the continuo
version of Bayes’ theorem we compute

- Plyii(i,j € W)|Ad)p(Ad)
PAd|pi;(i,j € W)) = — .
Olesod € W) = o ati € WY ADpADTED
Assuming no prior information of Ad (i.e., p(Ad) = constant), substitution of (4.16) ai

(4.17) into (4.18) yields (see Appendix E for derivation):

(4.1

- ! (Ad — Ad)?
p(Ad|pi;(i,5 € W)) = Porond exp (—W) , (4.1
where
~ Ei ‘EW(¢’1(fi»77j)¢2(fz‘,77]')/‘73(51',771‘))
Ad = ] 4.2
S eew (6206, 73) [ Gy (
TAd ! (4.2

Diew (P2(&i,m5)0s(&, ;)2

where 37, ;1 denotes the summation over the window. Or, by substituting equations (4.11
(4.12), and (4.14) into equations (4.20) and (4.21), we obtain

(f1(&im5)— f2 (€ +d0 (0,0),m;)) Z f2(:+do (0,0),7;)
Yijew

Ad = A RATRAL ‘(4 2!
- s GehlEctdo(0,0)m,))" -
MW 202 vasaa [0
1
2 L4
o = . 4.2¢
Ad s BeflEtd (0002 (
SIEW 202 tasag \E+n?

Equation (4.19) says that the conditional probability density function of Ad given the ol
served stereo image intensities over the window becomes a Gaussian probability densit
function. The mean value and the variance of the Gaussian probability are Ad and 0%,
computed with equations (4.22) and (4.23). That is, Ad and 044 provide the maximur
likelihood estimate of the disparity (increment) and the uncertainty of the estimation for th
given window W, respectively. ’

The parameters ay and « s Tepresent the disparity fluctuation and the intensity fluctu
ation, respectively. We estimate them locally within the window from equations (4.4) anc

(47)7

A | (do (& m5) — do(0,0))?

e = N, ijEW \/&2 +n3 .2
) 1 d 2

ay = *]‘V; i,jgw (55]%(& + dy(0,0), 77j)> ) (4.25



4.4, ITERATIVE STEREO ALGORITHM WITH AN ADAPTIVE WINDOW 69

where N,, is the number of the samples within the window. These parameters change as the
shape and size of a window changes.

In summary, given images f; and f,, a window W, and the current estimate of disparities
dy(&,n) within the window, use of equations (4.22) - (4.25) will enable us to calculate a better
estimate of disparity do(0,0) + Ad at the center of the window, as well as the uncertainty
of this estimation. The goal of our stereo algorithm will now become finding the disparity
estimate with the lowest uncertainty.

4.4 Iterative Stereo Algorithm with an Adaptive Win-
dow

In the previous sections we have developed a theory for computing the estimates of the
disparity increment and its uncertainty, which take into account the fact that not only
the intensity but also the disparity varies within a window. We now present a complete
description of our stereo algorithm with an adaptive window:

1. Start with an initial disparity estimate dg(z,y). We obtained this at pixel resolution
by using the multiple-baseline stereo matching method as presented in section C.1 for
better initial estimates without suffering from ambiguity.*

2. For each point (z,y), we want to choose a window that provides the estimate of dis-
parity increment having the lowest uncertainty. For the chosen window, calculate
the disparity increment by (4.22) and update the disparity estimate by di1(z,y) =
di(z,y) + Ad(z,y).

Here we need a strategy to select a window that results in the disparity estimate
having the lowest uncertainty. In the discussions so far, the shape of the window can
be arbitrary. In practice we limit ourselves to a rectangular window, as illustrated in
figure 4.2, whose width and height can be independently controlled in all four directions.
Our strategy is as follows:

(a) Place a small 3 x 3 window centered at the pixel, and compute the uncertainty
by using (4.24), (4.25), and (4.23).

(b) Expand the window by one pixel in one direction, e.g., to the right z+, for trial,
and compute the uncertainty for the expanded window. If the expansion increases
the uncertainty, the direction is prohibited from further expansions. Repeat the

4In the context of the discussion of this chapter, this initial estimate can be obtained by any existing
stereo algorithm. One alternative is a simple SSD-based method, i.e. finding the corresponding point which
gives the minimum SSD over a window at the pixel resolution. We used this method for the following
examination with synthesized images shown in this section.
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Figure 4.2: Window expansion

same process for each of the four directions z+,z—,y+, and y— (excludi
already prohibited ones).

(c) Compare the uncertainties for all the directions tried and choose the dir
which produces the minimum uncertainty.

(d) Expand the window by one pixel in the chosen direction.

(e) Tterate steps (b) to (d) until all directions become prohibited from expan:
until the window size reaches a limit that is previously set.

Thus, our strategy is basically a sequential search for the best window by ma:
descent starting with the smallest window '

3. Iterate the above process until the disparity estimate d;(x,y) converges, or u
certain maximum number of iterations.

Now, by using synthesized data, we will examine how the window is adaptively
the stereo algorithm for each position in an image and demonstrate its advantage. I
4.3 (a) and (b) show the left and the right images of the test data. In generating th
set, a linear ramp in the direction of the baseline is used as the underlying intensity p.
It is deformed according to the disparity pattern in figures 4.3 (c) and (d), and G
noise is added independently to both images. We apply the iterative stereo algorithm
resultant data.

First, we will examine the result of window selection. The four images in figure 4.
the length (increasing brightness corresponds to increasing length) by which the wind
been extended in each of the four directions.® For example, the vertical dark stripes ir

5 Actually these are the average of ten runs with different noises to obtain the general tendency
than an accidental set up.
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(c) (d)
Figure 4.3: Synthesized stereo images, with  Figure 4.4: Extent of window-size expansion
a ramp intensity pattern with Gaussian  for each direction: (a) Left (X-minus) direc-
noise: (a) Left image; (b) Right image; (c)  tion; (b) Right (X-plus) direction; (c) Down
Disparity pattern; (d) An isometric plot of  (Y-minus) direction (d) Up (Y-plus) direc-
the disparity pattern. tion.
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Figure 4.5: Positions for which size and shape of selected windows are examined.

4.4 (a) on the right hand side of the vertical disparity edge show that the windows for
points are not extended to the left so that the windows do not cross the disparity edg
region of different disparity. We observe the same phenomena in the other directions. W
examine the size and shape of the selected windows at several representative positions s
in figure 4.5. The windows selected at those positions are drawn by dashed lines in
4.6 relative to the disparity edges drawn by solid lines. For example, at P0 a windos
been expanded to the limit for all directions, whereas at P1 expansion to the right has
stopped at the disparity edge. At P5, a window is elongated either vertically or horizon
depending on the image noise, but consistently avoids the corner of the disparity jumg

Next, let us examine the computed disparities. For comparison, we also have com;
disparities by an iterative fixed-window-size SSD-based stereo method, that is, by rw
the same iterative algorithm except that in Step 2 of the stereo algorithm a wind
predetermined size is used assuming a constant disparity over the window. We run
three window sizes, 3 x 3, 7 x 7, and 15 x 15. Figures 4.7 (a), (b) and (c) show the 1
produced by fixed window sizes, and (d) by the adaptive-window algorithm. We can cl
see the problem with using a predetermined fixed window size. A larger window is goc
flat surfaces, but it blurs the disparity edges. In contrast, a smaller window gives sh;
disparity edges at the expense of noisy surfaces. The computed disparity by the adaj
window algorithm shown in figure 4.7 (d) shows both smooth flat surfaces and sharp disg
edges. The improvements are further visible by plotting the absolute difference betwee:
computed and true disparities as shown in figure 4.8, with a table that lists their mean
values. The adaptive-window algorithm has the smallest mean error, but more import,
we should observe that the algorithm has reduced two types of errors. A small fixed wis
results in large random error everywhere. A large fixed window removes the random ¢
but introduces systematic errors along the disparity edges. The adaptive-window t
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Figure 4.6: Selected windows for each position
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(c)

Figure 4.7: Isometric plots of the computed disparity by: (a) a 3 x 3 window: (by a7x7
window; (c) a 15 x 15 window; (d) the adaptive window algorithm.

method generates small errors of both types simultaneously.

Figures 4.9 (a) and (b) show another example of synthesized test data. Figure 4.10
presents the computed disparity by the new method in (d), together with the results produced
by fixed window sizes in (a) to (c) for comparison. As with the previous example, we clearly
see better performance with the new method. The behavior of the window-size adaptation
has been analyzed theoretically and tested with synthesized signals for various cases of
disparity patterns including step, linear, and quadratic functions in chapter 2.

4.5 Experimental Results with Real Images

We have applied the adaptive-window based stereo matching algorithm presented in this
paper to real stereo images.

Figure 4.11 shows images of a town model that were taken by vertically-displaced cameras.
The disparity, therefore, is in the vertical direction. To give an idea of the arrangement of
objects in the scene, a picture taken from an oblique angle is given in figure 4.11 (c).

For initial disparity estimates, we have used multiple-baseline stereo matching presented
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Window | Mean Error
Value (pixel)
3x3 0.22
7x7 0.20
15 x 15 0.34
Adaptive
Window 0.08

-.. Figure 4.8: Difference between the true disparity and the computed disparity: (a) by a 3 x 3
- window; (b) by a 7 x 7 window; (c) by a 15 x 15 window; (d) by the adaptive window.
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Figure 4.9: Synthesized stereo images no. 2: (a) Left image; (b) Right image; (c) Dispa:
pattern; (d) Isometric plot of the disparity pattern shown in (¢)
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(a) a fixed 3 x 3 window; (b) a fixed 7 x 7 window;

(c) a fixed 15 x 15 window; (d) the adaptive window.

Figure 4.10: Computed disparities by:
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(c)

Figure 4.11: "Town” stereo data set: (a) Upper image of stereo;(b) Lower image of ster
(c) Oblique view.
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in chapter 3 which can remove matching ambiguities due to repetitive patterns, especially in
the top portion of the image. The number of iterations in step 3 of the algorithm description
was set to 5. Figure 4.12 (a) shows the disparity map computed by the adaptive window
algorithm. In addition, the uncertainty estimate computed by the algorithm is shown in fig-
ure 4.12 (b): increasing brightness corresponds to higher uncertainty. With this uncertainty
estimate we can locate the regions whose computed disparity is not very reliable (very white
regions in figure 4.12 (b)). In this example, they are either due to aliasing caused by the fine
texture of roof tiles of a building (in the middle part of the image) or due to occlusion (the
others). The isometric plot of the disparity map is shown in figure 4.12 (c), which roughly
~ corresponds to the viewing angle of figure 4.11 (c). We can see that each building wall has a
: smooth surface and yet is clearly separated from others, and the shape of the distant bridge

- (on the left) is recovered. For comparison, the resultant isometric plots of the disparity

- maps with fixed window sizes are shown in figures 4.13 (a) 3 x 3, (b) 7 x 7, and (c) 15 x 15.
- We observe noisy surface reconstraction by a small window and over-smoothing of disparity
. edges by a large window. |

Figure 4.14 presents perspective views of the recovered scene by texture mapping the
original intensity image on the constructed disparity map shown in figure 4.12 and generating
views from new positions which are outside of the original stereo views. They can give an
*idea of the quality of reconstruction. This stereo data set is the same one used in [MSKS89].
We can observe a noticeable improvement of the result over the previous result. Also it
should be noted that this is extremely narrow baseline stereo: the baseline is only 1.2 cm
long and the scene is about 1m away from the camera, thus the depth to the baseline ratio
is approximately 80.

Figures 4.15 (a) and (b) show another set of real stereo images which are top views of a
~coal mine model. Figures 4.16 (a) and (c¢) show the isometric plots of the computed disparity.
- For comparison, actual pictures of the model taken from roughly the same angles are given
- in figures 4.16 (b) and (d). The shapes of buildings, a A-shaped roof, a water tank on the
roof, and flat ground have been recovered without blurring the edges.

4.6 Conclusions

In this chapter, we have presented an iterative stereo matching algorithm using an adaptive
- window. The algorithm selects a window adaptively for each pixel so that it produces the
disparity estimate having the least uncertainty. By evaluating both the intensity and the
disparity variations within a window, we can compute both the disparity estimate and its
uncertainty which can then be used for selecting the locally adaptive window.

The key idea for the algorithm is that it employs a statistical model that represents
uncertainty of disparity of points over the window: the uncertainty is assumed to increase
with the distance of the point from the center point. This model has enabled us to assess



CHAPTER 4. A STEREO MATCHING ALGORITHM WITH AN ADAPTI
80 WIND(

Figure 4.12: Disparity and uncertainty computed by the adaptive window algorithm for t

"town” stereo data: (a) Disparity map; (b) Uncertainty; (c) Isometric plot of the dispar:
map.
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Figure 4.13: Isometric plots of the disparity maps computed by fixed-size windows: (a) 3 x 3;
(b) 7x 7; (c) 15 x 15.
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Figure 4.14: Perspective views of the recovered scene: (a) from the original camera positior
(b) from an upper position; (c) from an upper left position; (d) from an upper right positior
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(a) (b)

Figure 4.15: ”Coal mine” stereo data set: (a) Lower image; (b) Upper image.

how disparity variation within a window affects the estimation of disparity.

An important feature of the algorithm is that it is completely local and does not include
any global optimization. Also, the algorithm does not use any post-processing smoothing,
but smooth surfaces are recovered as smooth while sharp disparity edges are retained.

The experimental results have demonstrated a clear advantage of this algorithm over
algorithms with a fixed-size window both on synthetic and on real images.
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Figure 4.16: Isometric plots of the computed disparity map and their corresponding actu:

view: (a) (b) Isometric plot and corresponding view from the lower left corner; (¢) (¢
Isometric plot and corresponding view from the upper right corner.



Chapter 5

Color Stereo Matching and Its
Medical Application

5.1 Introduction

Almost all of the stereo algorithms proposed previously have used only gray-level intensity
information, although the possibility of using color information to improve stereo matching
has been sometimes mentioned, e.g. [DP86]. Recently Jordan et. al [IB91] investigated
edge-based stereo correspondence which uses chromatic information.

In this chapter, we discuss this aspect, i.e. use of color information, in stereo vision. First
we show the effect of using color information mathematically in area-based stereo matching
which is potentially more general than feature-based matching since the former usually uses
all information involved in the images and does not select or reject any information like the
latter. We then describe a stereo algorithm which uses color stereo images.

Next, we show experimental results with synthesized images to illustrate the effect of
using color information in our method. Also, experimental results by applying the method
to real stereo images of ocular funduses are presented. Glaucoma is an eye disease which
is a common cause of blindness. The 3-D shape of the optic nerve head is one of the most
important information in diagnosing the disease at an early stage and for monitoring its
development. As relevant work for this purpose, Lee et. al [LB91] introduced a technique
which integrates stereo and photometric stereo. We have made a system which measures the
3-D shape of the optic nerve head by using the proposed color stereo algorithm and displays
the result in various ways. The experimental results demonstrate the effectiveness of our
method and the possibility of giving useful information about the disease.

85
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5.2 Color Stereo Matching

5.2.1 Effect of Using Color Information

We have described in chapter 3 that ” precision” and "accuracy” in matching should be
considered separately in evaluating stereo matching. Roughly speaking, precision is mainly
related to random noise added to the images and accuracy to the ambiguity inherent in
the underling intensity pattern itself, though they interact with each other. In this section,
we mathematically show that precision will be increased by using color images for stereo
matching. For simplicity, we use one dimensional intensity signals for analysis, but the
extension to two dimensional images is straightforward.

We model the color stereo images fri(z), fei(z), fei(z) and Tra(z), foolz), fra(z) as:

le (.’E) = fR(CE) -+ nr1 (.’E) (51)
fra(z) = fr(z —d,) + npa(x) (5.2)

(same for fg1(z), fea(z), fpi(), and fga(z)),
assuming disparity d, is constant near z and ng, (z) and ngo(z) are independent Gaussian

white noise such that:
nri(z), nra(z) ~ N(0,07) (5.3)

(same for ng(z), ng2(z), npi(z), and npa(z)).

Then, we use the sum of squared differences (SSD) of the intensity values over a window
as a criterion for correspondence between left and right images. For color stereo images, it
is computed such that

eros(td) = Y Y (forlz+ ) — foala+ j + D)2, (5.4)

Q=R,G,B jeW

where 37 ;. means summation over the window. This criterion represents the squared norm
of the difference of two vectors which consist of the intensity values over the windows in the
left and right images. The d in (5.4) which produces the minimum SSD gives the estimate
of the disparity.

Substituting equations (5.1) to (5.3) into equation (5.4),

erop(e,d) = 3, D (fole+7)— fole+j+d—d.) +nolz + 7)), (5.5)
Q=R,G,B jcW

where ng(x) is Gaussian white noise such that
ng(z) ~ N(0,202). (5.6)
By taking the Taylor expansion about d = d, up to the linear term, we obtain

folz +j+d—d.) = fole + )+ (d—d,) foz + ). (5.7)
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Substituting this into equation (5.5), we can approximate ergp(x,d) near d, by a quadratic
form of d:

ercp(z,d) = a(z)(d — d,)? — 2b(z)(d — d,) + c(z), (5.8)
where

a(z) = (fo(z +7))" (5.9)

Q=R,G,B jew
b(z) = fo(z +)ng(= +j) (5.10)

Q=R,G,B jeW
clz) = (no(z + j7))°. (5.11)

Q=R,G,B jeW

The estimated disparity c?r'is the value d which makes equation (5.8) minimum;

. b(zx)
d, =d, + —. 12
[RGB] + a(z) (5.12)

We can see that the expected value of the estimate JT{RG ] 1s the correct value d,., but each
individual estimate varies due to the noise. The variance of the estimate by using color
images is given by

Var(d,res) = Var (g%)
902

= " T Y (falet i)
(EQzR,G,B Zjew(fég(x + j))2)2 jeW |Q=RG.B ¢
+2{prafr(z + j)fo(z + ) + pes fe(z +5) f(z + 5)
+prfp(z + 7) frlz +4)}], (5.13)

where prg is the correlation coeflicient of ng(z) and ng(x) (same for pgp and pgg). As-
suming no correlation among noise added to red, green, and blue images, i.e. prg = pgp =
per = 0, we obtain

- 202
Var(d, = L s 5.14
(i) Y0=rc.B Ljew(folz +7))? (5.14)

On the other hand, we can easily find that the variance of the disparity estimate by using
a single gray image is given by

5 202
verthin) = S e )P (5:19)
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(same for Var((fr[g]) and Var(cf,,[B])).
From equations (5.14) and (5.15), the ratio of the variance of the estimate by using color
images to that by using a single gray image, e.g. red, is

VaT(CipERGB]) _ Yjew (frle + 7)) (5.16)

Var(d.p) B 2 Q=RG,B EjeW(fc’g(w +7))*

We can easily find that this ratio ranges between 0 and 1. Also from equations (5.14) and
(5.15), we obtain the following relation:

1 1 1 1

~ ~

= S + —
Var(dnre) Voar(dyg) Var(dys) Var(dig)

(5.17)

That is, the variance by using color images is smaller, i.e. the precision is higher, than
that by using any single gray image. This is especially important when the original images
contain many colors. In this case, which gives the minimum variance of the estimate among
red, green, and blue varies depending on the position in the image. The estimate by using
color images has always smaller variance than the smallest one in three colors at any position
in the image.

Furthermore, when we use the intensity average of the red, green, and blue intensity values
such that fri(z) = (fri(2) + fer(z) + fei(2))/3 and fra(z) = (fra(z) + fae(z) + fBa())/3,
then the variance of the estimate is given by

. 602
Var(d, ) = n —. 5.18
ar(dn) Yiew(Xo=re,p folz + 7)) (5.18)

From equations (5.14) and (5.18), the ratio of the variance is

Var(cfr[RGB]) _ Yiew(Xo=re.B folz + 7))?
1%

7 - g 5.19
ar(dyn) 3¥0=ra,B Liew (folz + 7)) (5.19)

This also ranges between 0 and 1, where 1 is the case if and only if fr(z) = fo(z) = fa(z).
That is, the variance of the estimate by using color images is always smaller than or at worst
equal to that by using the average of the three images.

In section 5.3.1, it is shown that accuracy in addition to precision can be improved
experimentally by using synthesized color stereo images.

5.2.2 Color Stereo Matching Algorithm

In this section, we describe a color stereo matching algorithm which we propose for a medical
application presented in the next section. This method is based on what we have presented
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in the previous chapters. That is, this method takes into account both the intensity and
the disparity variations within the matching window and estimates the disparity at subpixel
resolution using an iterative procedure. In addition, the method is extended so as to take
advantage of color stereo images.

Let foi(€,m) and fga(€,m) (@ = R, G, B) be the stereo images and suppose that the
point whose disparity we would like to compute is placed at the origin (0,0). The algorithm
is as follows:

1. Compute initial disparity estimates dy at pixel resolution by finding the minimum of
the summation of the SSD values for each color

erae(d) = S (faor(& ;) — foald + &,m1))%, (5.20)
Q=R,G,BijeW

where ¥, oy means summation over the window.

2. Compute the parameters oy and oy which represent the local intensity and disparity
variations within the window respectively.

g = 3—;,— S 5 (el a0.0,m) (5.21)

W Q=R,G,Bi,jeW

o = Ly (o) —do(0,0)” (5.22)

Nw i,jeW vV f? + 77?

where N, is the number of the points within the window.

3. Compute the correction of the disparity Ad and its uncertainty (variance) ok, such

that
~ Yo=ra.B Lijew (Poi(&i,ni)dq2(&irm5))
Ad = : : 5.23
Y 0=rG,B ijew (Pg2(&im;))? (5:23)
1
2 , 5.24
7ad Y o=rc.B Lijew (®02(&,m5))? (5-24)
where

fo1(&m) — fo2(€ + do(0,0),7)

¢1(&,m) = 5.25

Ql( 77) \/20,%+afad\/?-¥ﬁ? ( )
,%f@z(f + dy(0,0),7)

\/50'721 + afad\/m.

4. Compute steps 2 and 3 for all pixels in the image.

po2(6,m) = (5.26)

5. Update the disparity estimates by dy < do + Ad and iterate steps 2 to 4 until the
disparity estimates converge or up to a certain maximum number of iterations.
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ey

-

(d)

Figure 5.1: (a),(b) Synthesized color stereo images. <7 indicates where disparities are
computed. (c),(d) Cross sections of scanlines in (a) and (b), respectively.

5.3 Experimental Results

5.3.1 Experiments Using Synthesized Images

In section 5.2.1, we have presented mathematically that ” precision” can be increased by using
color images for stereo matching. In this section, we show that color stereo matching can
improve not only ”precision” but also ”accuracy” in matching by using synthesized images.
Figures 5.1 (a) and (b) show the synthesized color stereo images with Gaussian white noise
added. The cross sections of scanlines in (a) and (b) are shown in (¢) and (d), respectively.
The actual disparity is constant (20.5 pixels) over the image. Disparities for the red part
(indicated by ) in figure 5.1 (a) were computed.  Figure 5.2 plots the histogram of the
disparities computed by using (a) only the red images, (b) only the green images, (c) only
the blue images, (d) the intensity images which are the averages of the three color images,
and (e) the color images, i.e. all of the red, green, and blue images. First, we can see that
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Figure 5.2: Histogram of the disparities computed by using (a) the red images; (b) the green
images; (c) the blue images; (d) the intensity images which are the averages of the red, green,
and blue images; (e) the color images.

(a)

(b)

(©)

(d)

()

mean 20.48 | 20.54 | 20.48 | 20.52 | 20.50
variance 0.15 | 0.12 | 0.13 | 0.56 | 0.029
theoretical | 0.080 | 0.080 | 0.080 | 0.24 | 0.027

variance

Table 5.1: Variance at the correct disparity.
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- retina

.. optic nerve head
" optic nerve

camera

" Figure 5.3: Section of a human eye

there are false matches, i.e. the matching is not accurate, in (a) to (d), while no false match
in (e). Second, the peak at the correct disparity (20.5) in (e) is sharper, i.e. the matching is
more precise, than any other ones in (a) to (d). Table 5.1 shows the mean and the variance of
the peaks at the correct disparity and the theoretical variance obtained by equations (5.14),
(5.15), and (5.18). These results may look obvious for such peculiar images as shown in
figure 5.1. Still it shows the potential ability of the color stereo matching.

5.3.2 Experiments Using Ocular Fundus Images

This section presents experimental results with real stereo images of ocular funduses. Figure
5.3 shows a section of a human eye. An optic nerve head is where optic nerves and retinal
vessels gather and go out from the eyeball. The 3-D shape of the optic nerve head gives
very important information for diagnosing and monitoring glaucoma, an eye disease which
commonly causes blindness to many people.

Figure 5.4 (a) shows the original stereo fundus images of a patient who suffers from
glaucoma. The round bright parts are optic nerve heads. The images are preprocessed with
a Laplacian of Gaussian (LOG) filter to reduce photometric distortion and noise. Figure
5.4 (b) shows the LOG-filtered pair of green images. The resultant disparity map computed
by our color stereo matching algorithm is presented in figure 5.5 (a). Figure 5.5 (b) is the
isometric plot of the disparity map. We can observe a deep hole at the optic nerve head,
which is a typical phenomenon of glaucoma. Figure 5.5 (c) shows the isometric plot computed
by using only green images for comparison. We can see large errors due to false matching
in (c). Other regions look quite similar between (b) and (c). Since the stereo images were
smoothed by a LOG filter and a relatively large window was used for matching in this case,
the small variation of the computed disparity around the correct disparity is not noticeable,
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(a) (b)
Figure 5.4: Stereo image pair of an optic nerve head suffering from glancoma: (a) original
images; (b) LOG-filtered images.

i.e. no obvious difference of "precision” is apparent between (b) and (c).

Next, we show the change of the shape of an optic nerve head. Figure 5.6 shows the
stereo fundus images of a monkey, where (a) is the stereo image pair of the normal fundus
and (b) of the same fundus but suffering from glaucoma. The isometric plots of the computed
disparities for both stereo images are shown in figure 5.7. We can see a clear difference in
shape between normal (a) and glaucoma (b). Figure 5.8 shows perspective views of the optic
nerve heads produced by using the computed disparity maps and the original color images.

.

5.4 Conclusions

In this chapter, we have presented the effect of using color information in stereo matching
and introduced a color stereo algorithm. In short, the degree of the effectiveness of using
color depends entirely on the images used, as shown by equations (5.16) and (5.19). The
improvement may not be as much as expected in most cases, and it is still an open question
how relatively good in real scenes. However, our mathematical and experimental results
showed that the results obtained by using color information are always better or at least
equal to those by using gray images. So, if robustness is a more important requirement than
the computational cost, color stereo matching should be worth applying.

Qur algorithm was applied to the 3-D measurement of optic nerve heads, and the ex-
perimental results have demonstrated the effectiveness of the method for diagnosing and
monitoring glaucoma. We are currently making more investigation so that slight changes
which may be due to the progress of the disease or due to a treatment can be observed.
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Figure 5.5: Computed disparity: (a) disparity map; (b) isometric plot of the disparity map;
(c) isometric plot obtained by using only green images.

(a) (b)

Figure 5.6: Stereo fundus images of the same monkey: (a) normal fundus; (b) glaucomatous
fundus.
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Chapter 6

Conclusions

6.1 Thesis Summary

In this thesis, we have presented stereo vision based on physical and mathematical modeling.
Our approach can be contrasted with that based on heuristics or that simulating the human
vision system phenomenologically. In this approach, physical phenomena which create 2-D
images from the 3-D world are modeled and stereo methods which, to the contrary, extract
3-D information from the images are described in the same mathematical formulation as
shown in figure 1.3. This enables us to understand various aspects of stereo matching and
leads to stereo algorithms which can adapt beforehand or automatically to the situation.
The important point is that these algorithms are far more predictable and extensible for
different situations than the algorithms based on heuristics.

The statistical formulation we have developed produces both an estimate of disparity and
an uncertainty of the estimation. The uncertainty estimation enables us to analyze many
properties of stereo matching relating to various factors such as intensity variation, disparity
variation, noise, color, window size in matching, and stereo baseline. This anylysis then
results in algorithms which solve problems in stereo vision.

We have developed a locally adaptive window. In general, an appropriate size of the
matching window depends on intensity change, disparity change, and noise involved in an
image. The adaptive window we have proposed can select the appropriate window size
and shape (rectangle) automatically depending on those local properties at each position in
an image in stereo matching. The key idea for the method is that it employs a statistical
model of disparity distribution within the window. We assume that disparities have the same
expected value, but their variation from that expected value increases with the distance from
the center point of the window. This model has enabled us to correctly evaluate the influence
of the disparity fluctuation within the window on the computation of disparity, so that the
estimated uncertainty of the computed disparity is close to the real error of the computed
disparity. As a result we can choose the window that provides the disparity estimate with

96
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minimum uncertainty. Both analytical and experimental results have demonstrated a clear
advantage of the adaptive window over a fixed-size window.

We have also presented a new stereo matching method which uses multiple baseline stereo
pairs. We have shown the trade-off problem relating to the baseline in stereo matching. That
is, with a short baseline, the estimated distance is less precise due to narrow triangulation,
while with a longer baseline, a larger disparity range must be searched to find a match and
consequently matching is more difficult and there is a greater possibility of a false match. The
proposed method can overcome the trade-off between precision and accuracy (avoidance of
false matches) in stereo. The method is rather straightforward: we represent the SSD values
for individual stereo pairs as a function of the inverse distance, and add those functions.
The resulting function, the SSSD-in-inverse-distance, exhibits an unambiguous and sharper
minimum at the correct matching position. Again, both analytical and experimental results
have been provided to show the effectiveness of the proposed method in removing ambiguity
and improving precision. »

The effect of using color information in stereo matching has been also analyzed, and a
color stereo algorithm has been proposed in the thesis. Although the degree of the effective-
ness of using color depends on the images used, the mathematical and experimental results
have shown that the disparity estimated by using color information is better or at least
equal to that by using gray images. The color stereo algorithm has been used for a medical
application: 3-D measurement of optic nerve heads using color stereo fundus images. The
experimental results have demonstrated that the proposed stereo algorithm, together with
various means of displaying the results, could give useful information for diagnosing and
monitoring glaucoma. '

6.2 Future Research

As described above, many aspects concerning stereo vision have been analyzed in this thesis.
We also believe that the mathematical framework established in this thesis can be extended
so that other issues in stereo vision can be dealt with in the same way. In the following, we
briefly summerize several aspects untaken in the thesis and directions of future research.

Occlusion In the experiments with this thesis, we used relatively short baselines, meaning
that occlusion does not cause a severe problem. In fact, these regions are so small that
we can hardly recognize their existance. However, occluding edges often give important
information in interpreting a scene. So detecting explicitly and making active use of
these edges could be fruitful.

Specular reflection This also was not explicitly taken account of in this thesis, since,
if it happens, it generally occurs in a very small portion in an image. Still, there
is an ongoing investigation concerning these issues using the multiple-baseline stereo
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approach, in which we expect several causes of mismatches including occlusions and
specular reflections can be classified by analyzing SSD curves with different baselines
[KN91] [KON92].

Calibration Calibrating cameras will be important for practical use of a stereo vision tech-
nique. The necessity and method of calibration need to be discussed relating to the
equipment to be used in aquiring images and their usage, e.g. using multiple cameras
or a single camera shifting laterally.

Parallel implementation The methods presented in this thesis are relatively simple and
local in the sense that the same computations are iterated independently for each
pixel. So they are amenable to parallel hardware implementaion. For example, the
implementation of the multiple-baseline algorithm has recently been done on MasPar,
a Single Instruction Multiple Data (SIMD) machine with 4096 processors [KON92]. It
should be noted that enormous speedup of the computational time not only gives just
quantitative improvement, but also could lead to qualitative improvement, e.g. a more
sophisticated window control strategy in the adaptive-window stereo method.

Other depth cues The human vision system can reach one consistent and stable interpre-
tation of a scene using many depth (or shape) cues simultaneously such as disparity,
shading, texture, motion, perspective, and defocus. Cooperation with the other vari-
ous cues, or sometimes with other active sensors, is an attractive and challenging task.
Uncertainty estimation could be a key in this work.
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Appendix A

Approximating the Distribution of

e(¢)

We will examine the statistical properties of e(£), i.e. equation (2.27)

| e(€) = (d(¢) — d.(0)) f3(¢ + &,(0)) (A1)
We see that e({) is product of u and v where

u = d,(€) - . (0),
(A2)

Our assumptions are: u is zero-mean Gaussian noise; v is zero-mean Gaussian white noise;
and % and v are statlstlcally independent.

Let pu(u), o2, and R,(7) denote the density function, variance, and autocorrelation
function of u, respectively.

Pu(u) = —=—e

We define notations for v in the same manner. Also since v is white, we have
R,(1) = ad(1),

where §(7) is the delta function and a is a constant.
Since u and v are independent, the autocorrelation function of z is given by (see [dC86]):

R.(r) = Ru(7)Ry(r) = b3(7)

where b is a constant. Therefore, z is also white.
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The density function p,(z) can be calculated as

p(c) = [ capdpe (7) v

u

1 /°° 1 u? 22 p
= — —— - | du
TOuO, JO U P 202 202u?

1
- Ko ( 2 ) ,
TOLOy Tulo

where Ky(z) is the modified Bessel function of order 0

1 oo 22
Ky(z) :5/0 utexp | —u— o du.

The thick curve in Figure A.1 shows this density function. p,(z) is a monomodal distribution
which is symmetrical about the mode at z = 0. For simplicity, it is reasonable to approximate
the distribution by a Gaussian distribution that has the same mean and variance as p.(z),
which are

Elz] = E[u]E[v]

= 0 .
El(z - El2))") = E[(w)’] = E[u|B[v’]
— o252
The faint curve in figure A.1 shows the zero-mean Gaussian distribution N(0,0202). Hence,

equation (2.29).
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Figure A.1: Probability density functions, —L K, (—!ial—) and N(0,0%02). The horizontal
axis is normalized; i.e., 2/ = —2—

TuOy




Appendix B

SSSD-in-inverse-distance for
Ambiguous Pattern

Proposition: Suppose that there are two and only two repetitions of the same pattern

around positions z and = + a where a # 0 is a constant. That is, for j € W
flz+3)=f(+j), ifandonlyifé=zorl{=z+a.
Then, if By # Bs, for V¢, ¢ # .,
Blecan(@,0)] = 3 (f(e+1) = f(z+ BiF(C — ) + )

JEW

+ Y (fle+4) = fle+ BoF(( = G) + 1) + 4Nuoy,

JEW
> 4N,02 = Elecaz(z, )]

Proof: Tentatively suppose that for 3(¢, {5 # ¢,

ST (F+5)— fle+BiF((—G)+3)+ D (Fle+]7)— fla+BeF (Cr— G) +14))

JEW JEW

Then, it must be the case that

fle+j) = flz+a+7)
and f(z+j) = flz+a+7),

for j € W, where

ar = BiF({s—¢)
ay = B2F(<f_4r)'
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(B.1)

(B.2)

=0. (B.3)

(B.4)
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Since By # B, and (. # (s,
ay # as. (B5)

So, we have
flz+7)=f(E+7), for { =z, z + ay, or = + as. (B.6)

Since this contradicts assumption (B.1), equation (B.3) does not hold. Its left hand side
must be positive. Hence (B.2) holds.




Appendix C

Multiple-Baseline Stereo Algorithm

We present a complete description of the stereo algorithm using multiple-baseline stereo
pairs. The task is, given n stereo pairs, find the ¢ that minimizes the SSSD-in-inverse-
distance function,

SSSD(zx Z S (folz +3) — filz + BiFC + )% (C.1)

i=1ljeW

We will perform this task in two steps: one at pixel resolution by minimum detection and
the other at sub-pixel resolution by iterative estimation.

C.1 Minimum of SSSD at Pixel Resolution

For convenience, instead of using the inverse distance, we normalize the disparity values of
individual stereo pairs with different baselines to the corresponding values for the largest
baseline. Suppose By < By < -+ < B,. We define the baseline ratio R; such that

B:
5 (€2)
Then, :
B;F( = R;B,F( = Rid(n), (C.3)

where d,) is the disparity for the stereo pair with baseline B,,. Substituting this into equation
(C.1),

SSSD(x d(n) Z Z fo T +J fz(x + Rid(n) +].))2~ (C4.)

i=1jeW
We compute the SSSD function for a range of disparity values at the pixel resolution and
identify the disparity that gives the minimum. Note that pixel resolution for the image pair
with the longest baseline (B,) requires calculation of SSD values at sub-pixel resolution for
_other shorter baseline stereo pairs.
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C.2 TIterative Estimation at Sub-pixel Resolution

Once we obtain the disparity at pixel resolution for the longest baseline stereo, we improve
the disparity estimate to sub-pixel resolution by an iterative algorithm presented in section
2.2. For this iterative estimation, we use only the image pair fy(z) and f,(z) with the
longest baseline. This is because of a few reasons. First, since the pixel-level estimate was
obtained by using the SSSD-in-inverse-distance, the ambiguity has been eliminated and only
improvement of precision is intended at this stage. Second, using only the longest-baseline
image pair reduces the computational requirement for the SSD calculation by a factor of n,
and yet does not degrade precision too significantly.

In the experiments shown in section 3.3, we used the following algorithm for sub-pixel
estimation: Let dy(,) be the initial disparity estimate obtained at pixel resolution. Then, a
more precise estimate is computed by calculating the following two quantities:

] Liew (folz + 7) — fa(® + domy + 7)) (@ + dog) + 7)
Adey = = : C5
" Yiew (fh(z + dowmy + 7))? (C.5)
9 2
UzAd(n) = U" (06)

C Yjew(fiz 4 dogny + )%

The value AaAl(n) is the estimate of the correction of the disparity to further minimize the
SSD, and UZd(n) is its variance. We iterate this procedure by replacing dy(,) by

do(n) — dg(n) + Ad(n) (07)

until the estimate converges or up to a certain maximum number of iterations.




Appendix D

Assumihg dr(¢,m) to Be Fractal

Here we assume d,(€,7) to be fractal, then instead of equation (4.4), we have

dy(&,m) = d,(0,0) ~ N (0,au(&® +7%)7), (D.1)
where the parameter H has a value 0 < H < 1. When H = % this equation represents the
case that d,.(£,n) is Brownian motion.

Then, instead of the final equations (4.22) and (4.23), we get

5 (F1(&m;)— fF2(&i+do(0,0),m;)) 58? fa (fi(+do (0,0),7;)
~ LjEW 202 +agaq (€ +n7)H

Ad (3¢ f2(€:+do(0,0),m;))
2ijeW 20T raraa@rpT
2 1
Tad 3 .
(3¢ f2(£i+do(0,0),m;))?
2iieW SoTTarai@ )R

Furthermore, instead of equation (4.24), we obtain:

_ dO 61777] —d (070))2
Nw iL,JEW (52 +77])
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Appendix E

Derivation of Equations in Section
4.3

We will show the derivation of equations (4.19) to (4.21). Substituting equations (4.16) and
(4.17) into equation (4.18),

p(Ad|pi;(i,5 € W))

1 __{#1(&in;) - Adsa(&n;))°
B ijew 7o, €XP ( 20 ) )
T eo 1 (#1(Liyn;)—Adga(£in;))?
Fooo Wiiew Zomg, @y &P (- ) d(Ad)

exp (Ei,jew (_ (¢1 (si,ngggéjﬁj )(si,nj))z ))
Joo exp (Ei,jEW (_ (#1 (fi,fl;‘)jgéii:)(gimj))z)) d(Ad)

 Digew ®2(&m)? i iew (@1(Em)da (Een) /o2 (E:m)) | 2
€Xp ( 202 (E,m;5) Ad — D i sew (B2(Ems) oo (&)’

2ivj2 P liiji:j"zi’j 2
= exp (_Zi,jew¢(sn) (Ad_z,,,eww (65115) 2 (im5)/ (En))) )d(Ad)

202 (E:75) e sew B2 Em) [os Em)?

\/Ei,jew(¢2(§i> Uj)/gs(fi, "h’))z ex (_ Ei,jew(¢2(§i, Uj)/Us(fi, "71'))2
o P 2
(Ad _ Ei,jEW(¢1(£i: 77j)¢2(§i7 77])/0-3(51) 77]))) ?
Ei,jew(@(fi,ﬂj)/as(&, ni))? ’
where 3, ;cy denotes the summation over the window. From this equation, we can see that

P(Ad|p;;(t,j € W)) becomes a Gaussian probability density function. Its mean value Ad
and variance 0%, are

Zi,jGW (451 (€i> T’J)¢2(€1a 77])/03(5:» 77]))

N
4 Sosem @2(G, 1) 762
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1
2 _
Tad = o e (@a(Gmy) [0 (&)

Hence, equation (4.19) to (4.21).




