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Chapter 1

Tandem Queueing Systems:

Background and Model Description

1.1 Introduction

There are many studies on various queueing models. Above all, tandem queueing systems

are very important both in theory and applications. In the theoretical aspect, tandem

queueing systems are basic models of queueing networks as well as the extension of single

queue models. To understand the complex behaviors of queueing networks, we should know

about tandem queueing systems more as a first step. For applications, tandem queueing

systems themselves have been applied to many practical systems such as production lines

and point-to-point communications.

Recently applications of queueing networks explosively increase as computer and com-
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munication networks are developed and spread in various fields. Hence the understanding

of the queueing networks, and the understanding of the tandem queueing systems as build-

ing blocks, become very important. However, the stationary state probabilities of tandem

queueing systems, or even basic properties of them, are scarcely known except for simple

models which have product-form solutions. This is the reason why the author took interest

in the theory of tandem queueing systems.

On the other hand, analysis of general single queues has been developed greatly by

virtue of the theory of matrix-geometric form solutions [30]. One of the most important

result is the geometric decay property of the tail of the stationary distribution. That is, if a

single queue has a matrix-geometric form solution, its stationary queue-length probability

π(n) is asymptotically of the form as Cηn. This property is very useful, for example, on

the numerical calculation of the stationary state probabilities and on the discussion of

tail probabilities for estimating very small loss probabilities (e.g. less than 10−9) of the

corresponding finite queues.

The aim of this thesis is to extend this result to the tandem queueing systems. In this

chapter we look the background of the research, especially on the tandem queueing systems

and the related topics, and summarize the subsequent chapters.
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1.2 Tandem Queueing Systems

Before introducing our model, we describe the class of tandem queueing systems and cat-

egorize it. The basic model is illustrated in Figure 1.1.

Server 1 Server 2 Server K

Figure 1.1: A tandem queueing system

A tandem queueing system consists of K(≥ 2) queues arranged in series. Each queue

has one or more servers and a buffer. Customers arrive at the first queue to be served

there, proceed through all queues in order where services are done, and then leave the

system after the Kth service. There are some assumptions which are common in most of

the tandem queueing systems.

• The system is operated at steady-state condition. (This includes the case where

there exist an infinite number of customers in the buffer of the first queue. In such

a case, if we observe the behavior of the remaining queues, they are operated under

the steady-state condition.)

• No customers are abandoned.

• Interarrival times and service times at each queue are independent.
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• The transit times between queues are ignored.

Besides them, some general assumptions are seen in many articles:

Arrival process: The Poisson arrival is assumed in many studies. For more complex

arrivals, renewal processes are employed.

Service distributions: Though exponential distribution predominates, phase-type dis-

tributions are also considered in recent studies.

Queueing discipline: All customers are served according to the first-come first-served

(FCFS) discipline in most cases. The last-come first-served (LCFS) and processor-

sharing (PS) disciplines are also considered in some studies.

Buffer capacity: The capacity of the buffer of the first queue is commonly assumed to

be infinite. For the intermediate buffers, finite capacity is often assumed since most

practical systems have only finite room for customers. However, infinite buffer is

sometimes assumed since it offers good approximations to sufficiently large capacity

of buffer, and since it is more suitable for analysis.

Blocking type: With finite buffers, there must be blockings. Usually, either of production

or communication blockings are assumed.

Reliability of Servers: There may be breakdowns of servers, which cause extra block-

ings.
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Since tandem queueing systems applied to practical problems are often very large and

complicated to solve, many approximation methods have been proposed (see Altiok [1] or

Song and Takahashi [41] for example).

Many exact and approximate analyses have been done for the cases with finite buffers.

For details, see a recent nice survey by Papadopoulos and Heavey [34]. Among them, we

have to note that the theory of matrix-geometric form solution is applied to tandem queue-

ing systems with buffers of finite capacity (see Latouche and Neuts [21] for example). This

enables us to evaluate the system performances numerically, or to analyze the asymptotic

properties of its stationary distribution. However, this theory cannot be directly applied

to the cases with infinite-capacity buffers.

1.2.1 Tandem Queueing Systems with Infinite buffer capacity

Though the case with infinite capacity is less popular than that with finite capacity, there

are a number of studies on it. Among others, Jackson networks (see [7] for example) can

be used to evaluate tandem queueing systems with infinite capacity of buffers, a Poisson

arrival and exponential services. This is because tandem queueing systems with these

assumptions have product-form stationary probabilities, and each queue can be analyzed,

in some sense, as if they are statistically independent.

BCMP networks [2] also provide a strong tool to evaluate tandem queueing systems.

BCMP networks can be applied to the tandem queueing systems with multiple types of

customers while Jackson networks only admit a single type. Moreover, if the servers are
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infinite or if the queueing discipline is PS or LCFS with preemptive-resume, BCMP net-

works admit service times subjecting to phase-type distributions. In both Jackson and

BCMP networks, the stationary distributions are of the product form.

There are also many other studies. For example, Boxma [4, 5] considered two queues

in series with the Poisson arrival and customerwise identical service times. He showed the

necessary and sufficient condition for the stationarity of a tandem queueing system, and

obtained explicit expressions for the stationary distributions of the sojourn times and the

waiting times at the second queue, etc. Moreover, asymptotic and numerical results were

obtained from these results.

Le Gall [22] extended it with three or more queues and renewal arrival. An explicit

form of the stationary distribution of overall sojourn time was derived, and many examples

were shown.

Karpelevitch and Kreinin [16] derived the Laplace transform of the stationary joint

waiting time distribution and the generating function of joint queue length distribution at

the arrival epoch of a Jackson-type tandem queueing system with two stages.

Katayama [17] studied on the mean sojourn times in a multi-stage tandem queueing

system with the Poisson arrival and general service times, served by a single server with a

cyclic switching rule. He derived the mean sojourn times, as well as the upper and lower

bounds of the mean sojourn times and mean waiting times at the first queue for workload

conserving switching rules.

Miyazawa [29] considered a two-stage tandem queueing system with stationary inputs
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and general service time distributions. Some formulae on the joint queue-length probabil-

ities and their expectations were presented.

For the two-stage tandem queueing system with exponential servers and renewal ar-

rivals, Ganesh and Anantharam [13] proved that the marginal queue-length distribution of

the second stage has three types of geometric tails.

Despite of these studies, scarcely known are the properties of basic tandem queueing

systems with phase-type service distributions under the FCFS discipline. The analysis of

such a tandem queueing system will give a good insight to more complex queueing networks

and also will provide a good building block for approximate analyses of general queueing

networks.

1.2.2 Model Assumptions

In this thesis, we consider a tandem queueing system with the following assumptions.

• Interarrival times between successive customers are random variables subjecting to

a common phase-type distribution.

• Service times for customers at each server are random variables subjecting to a server-

specific phase-type distribution.

• All the interarrival and service times are mutually independent.

• Queueing discipline is the FCFS.
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• All buffers are of infinite capacity, and then no blockings occur.

• Servers do not break down.

If we denote the number of customers at the kth stage by nk, the phase of the interarrival

time distribution by i0 and the phase of the service time distribution at the kth stage by

ik, then the tandem queueing system can be regarded as a continuous-time Markov chain

whose state is represented as (n1, n2, . . . , nK ; i0, i1, i2, . . . , iK).

If the number of queues K is small (K = 2 or 3) and the traffic intensities at queues are

low, we can get the stationary probabilities and related performance measures by numerical

computations. In fact, we calculated a number of cases as will be reported in Chapters 2

and 6 of this thesis. However, the numerical analysis is not an easy task, and is limited in

size of models. It is desirable to know some basic properties which hold in more general

tandem queueing systems. In this thesis, we focus on the asymptotic properties of the joint

queue-length distribution, and study them both numerically and theoretically.

1.3 Summaries of Subsequent Chapters

In this section, we briefly summarize discussions and results in the subsequent chapters.
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Chapter 2: Numerical Experiments on Tail Behavior of Stationary Distribu-

tions in Two-Stage Tandem Queueing Systems

We rarely have handholds to develop the theorems on the asymptotic form of the station-

ary distributions in our tandem queueing system. So we start with making an extensive

numerical experiments on our model with two queues. We investigate the numerical results

in detail to obtain conjectures on the asymptotic behavior of the stationary distribution.

Then we find that decay rates of the tail of the stationary joint queue-length distribution

are intimately related to the Laplace-Stieltjes transforms of interarrival and service time

distributions.

We conjecture that the stationary probability π(n1, n2; i0, i1, i2) of two-stage tandem

queueing system has geometric tails as follows:

1. For fixed traffic intensity ρ1 of the first server, if the traffic intensity ρ2 of the second

server is less than a certain threshold ρ̃2, there exist constants η1, η2, c0(i0), c1(i1), c2(i2)

and G such that

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 ,

as n1, n2 → ∞ on a line n2 = an1 + b with rational a > 0 and b. This asymptotic

representation is also valid when n1 → ∞ with fixed n2 and when n2 → ∞ with fixed

n1.

2. In the case ρ2 > ρ̃2, there exists a positive constant ã such that the decay rates are

different between the cases 0 < a < ã and a > ã for the slope a of the line on which
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n1 and n2 increase. We denote the two sets of constants corresponding to these two

cases as {η1, η2, c0(i0), c1(i1), c2(i2), G} and {η1, η2, c0(i0), c1(i1), c2(i2), G}.

(a) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that

0 < a < ã,

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n1 → ∞ with fixed n2.

(b) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that a > ã,

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n2 → ∞ with fixed n1.

3. Most of the constants above are determined by equations given in Section 2.5. Un-

fortunately we do not yet have any equations to determine the values of the multi-

plicative coefficients G and G.

Chapter 3: Asymptotic Properties in Quasi-Birth-and-Death Processes with a

Countable Number of Phases

The conjecture in Chapter 2 can be regarded as the extension of the geometric decay

property of the queue length distribution in GI/PH/c queue [33, 45], which was proved

by using Neuts’ theory of matrix-geometric form solution [30]. However, the quasi-birth-

and-death process derived from our two-stage tandem queueing system is not covered by
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Neuts’ theory, since the number of states in each level is countably infinite. Therefore, we

need a new theory.

We give a sufficient condition that the tail of the stationary distribution decays geo-

metrically in a quasi-birth-and-death process with a countable number of states in each

level. This is a sharpened result of the matrix-geometric extension given by Miller [28]

and Ramaswami and Taylor [36]. This result will be applicable to many stochastic models

which have never been analyzed so far because of their complexities.

Chapter 4: Asymptotic Properties of Stationary Distributions in Two-Stage

Tandem Queueing Systems

To apply the theorems proved in Chapter 3, we show that the quasi-birth-and-death pro-

cess derived from our tandem queueing system actually satisfies the assumptions of the

theorems.

We prove the following

Theorem. For fixed n1, i0, i1 and i2, if η1 < η2 then

π(n1, n2; i0, i1, i2) ∼ G1(n1; i0, i1, i2)η
n2
2 (n2 → ∞). (1.1)

In this case, if η1 < 1 then

G1(n1; i0, i1, i2) ∼ G(i0, i1, i2)η
n1
1 (n1 → ∞). (1.2)

Here η1, η1 and η2 are the constants discussed in Chapter 2.
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We also prove a similar theorem for the case in which n1 → ∞ for fixed n2. Though these

theorems cover only some special cases of the conjecture, they will provide us a powerful

tool for further studies and also a powerful tool for fast and accurate computations.

Chapter 5: Numerical Computation for Tandem Queueing Systems on a Par-

allel Computer

Numerical calculations of the stationary probabilities for two-stage models can be executed

on an engineering workstation if the model is in a reasonable size and if a suitable numer-

ical method is used. However, for three-stage models, it is very difficult to make such

calculations on a workstation since the number of states (variables) to be handled becomes

huge, say hundreds times of that in two-stage models. So the numerical experiments for

three-stage models, which will be discussed in Chapter 6, and are planned to be done on

a massive parallel computer.

On a massive parallel computer, data can be divided and allocated to multiple processor

elements and computations can be done in parallel. Data transfers between processor

elements are needed, however, and they cause considerable overhead. For the use of a

massive parallel computer, we need a new theory and a new algorithm to exploit the

strong points of the computer and to avoid the weak points of it. Namely, we have to find

a way to allocate data suitably onto multiple processor elements, so that the computations

can be done within each processor element as much as possible, and that the data transfers

between processor elements become as small as possible.
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In Chapter 5, we discuss such problems occurring in the use of a massive parallel

computer, and propose a variation of the aggregation/disaggregation (A/D) method for

effective calculations of large-scale Markov chains arising from three-stage tandem queueing

models.

Chapter 6: Numerical Experiments on Tail Behavior of Stationary Distribu-

tions in Three-stage Tandem Queueing Systems

In Chapters 2 and 4, we find some tail properties of the stationary distribution in two-stage

tandem queueing systems. They are a great progress, but not sufficient to understand basic

properties of more complex queueing network models. To proceed one more step, we make

experiments for three-stage tandem queueing models by using a massive parallel computer

with a new variation of the A/D method proposed in Chapter 5.

By the limitation of available computation time and the limitation of the performance

of the computer itself, we can do the experiments only for a limited number of models.

However, the numerical results obtained show some asymptotic properties similar to those

in two-stage models. More definitely, the tails of the stationary distribution of the queue

lengths decay geometrically. In some cases with low traffic intensities, there is only one set

of decay parameters, but in other cases there are two sets of decay parameters. We cannot

find cases in which there are three or more sets of parameters. These decay parameters

satisfy similar systems of equations to those appeared in two-stage models.
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1.4 Remaining Problems

As mentioned above, we show some asymptotic properties of two- and three-stage tandem

queueing systems in this thesis. There still remain, however, much more problems to be

studied.

For two-stage models, our theorem does not cover the whole of the conjecture given in

Chapter 2. We should prove the rest of the conjecture theoretically. We are preparing a

theorem which gives upper bounds for decay rates when n2 → ∞ with fixed n1. We should

further study on the cases where n1 and n2 become large along a line n2 = an1 + b with

positive a.

The way to give the values of constants G and G is not given neither theoretically nor

numerically. It is essential for making a quantitative estimation of the tail probability.

For three-stage models, our numerical experiments are not enough to make a sufficiently

reliable conjecture. Especially, we are not much confidential that there exist only two sets

of decay parameters. Then we must make more extensive experiments as soon as possible.

The theoretical consideration must be done, too.

The aim of this study is to have a deep insight on more and comprehensive queueing

networks than BCMP networks and to propose suitable approximate and exact numerical

methods for them. Though the results two- and three-stage tandem queueing systems

are toward the aim, we must make more efforts to extend the results into more general

queueing networks.
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Chapter 2

Numerical Experiments on Tail

Behavior of Stationary Distributions

in Two-Stage Tandem Queueing

Systems

2.1 Introduction

Tandem queueing systems are basic models in the queueing theory and have been studied

for a long time. However, the stationary state probabilities, or even basic properties of

them, are scarcely known except for some simple cases with product form solutions. In this

chapter, we observe the tail behavior of the stationary joint queue-length distribution in a
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two-stage tandem queueing system PH/PH/1 → /PH/1 with buffers of infinite capacity.

In the ordinary one-stage queue PH/PH/c with traffic intensity ρ < 1, it is shown that

the stationary distribution has a geometric tail [45]. Namely, if we let x(n; i0, i1) be the

stationary probability that there are n customers in the system while the states (phases)

of arrival and service processes are i0 and i1 respectively, then

x(n; i0, i1) ∼ Gc0(i0)c1(i1)η
n, n → ∞, (2.1)

and hence

x(n + 1; i0, i1)

x(n; i0, i1)
∼ η, n → ∞, (2.2)

where η, G, c0(i0) and c1(i1) are constants and ∼ indicates that the ratio of both sides tends

to 1.

The decay rate η is given in the following manner. Let T ∗(s) and S∗(s) be the Laplace-

Stieltjes transforms (LSTs) of the interarrival and service time distributions, respectively,

and let ω be the unique positive solution of the equation

T ∗(s)S∗(−cs) = 1. (2.3)

Then η = T ∗(ω).

This geometric decay property is very useful, for example, on the computation of the

stationary state probabilities and on the discussion of tail probabilities for estimating very

small loss probabilities (e.g. less than 10−9) of the corresponding finite queue.

The problem here is to see whether a similar geometric tail property holds or not in

two-stage tandem queueing systems.
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The marginal queue-length distribution of the first stage clearly has a geometric tail,

since the behavior of the first stage is not affected by that of the second stage. Our concern

is the tail property of the joint queue-length distribution of the first and the second stages

or the state probabilities in the steady state.

To see it, we make extensive numerical experiments though the types of models are

limited to simple ones because of the limitation of the sizes of computable models. We

scrutinize the results and find two types of geometric decay depending on the traffic in-

tensities of the first and second stages. To the author’s knowledge, this fact has never

reported so far in the literature. Based on the observations of the numerical results, we

give a conjecture on the geometric decay together with systems of equations which de-

termine the parameters in the conjecture. The author thinks that the property stated in

the conjecture will not only be useful for practical computation or simulation of two stage

tandem queueing systems, but also will provide a key to further theoretical researches for

tandem queueing systems.

This chapter is organized as follows. In Section 2.2, we describe our tandem queueing

model and present our conjecture on geometric tail of the stationary distribution. In

Section 2.3, we explain our numerical experiments briefly. Section 2.4 presents various

numerical results which show the tail properties we conjecture in Section 2.2. We discuss,

in Section 2.5, some equations which determine parameters used in the conjecture.
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2.2 The Model and the Conjecture

Here we introduce our two-stage tandem queueing model and give a conjecture on the

geometric tail. We also show some numerical results which support the conjecture in a

variety of cases.

We denote by PH(a,Φ) a phase-type distribution with initial probability vector a and

transition rate matrix Φ.

2.2.1 Two-Stage Tandem Queueing System PH/PH/1→ /PH/1

We consider an open, two-stage tandem queueing system (Figure 2.1). Customers arrive

at the first stage to be served there, move to the second to be served there again, and then

go out of the system. Customers are served according to first-come first-served (FCFS)

discipline at each stage. The kth stage (k = 1, 2) has a single server and a buffer of infinite

capacity, so that no loss or blocking occurs. Interarrival times of customers are independent

and identically distributed (i.i.d.) random variables subjecting to a phase-type distribution

PH(α,T ). Service times at the kth stage are also i.i.d. variables subjecting to a phase-type

distribution PH(βk,Sk). The interarrival and service times are assumed to be mutually

independent.

The state of the system is represented by a quintuple (n1, n2; i0, i1, i2), where i0 is the

phase of the arrival process, ik is the phase of the service process at the kth stage, and

nk is the number of customers in the kth stage (k = 1, 2). Then the system behaves as a
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Buffers with infinite capacity

Input process
with ( )α , TPH

Second server
with ( )β , SPH 2 2

First server
with ( )β , SPH 1 1

Figure 2.1: Two-stage tandem queueing system

continuous-time Markov chain.

We denote the traffic intensity at the kth stage by ρk = λ/μk where 1/λ is the mean

interarrival time and 1/μk is the mean service time at the kth stage (k = 1, 2). We assume

ρ1, ρ2 < 1 so that the chain is stable and has stationary probabilities x(n1, n2; i0, i1, i2).

2.2.2 Geometric Decay Property from the Numerical Experi-

ments and the Conjecture

The tail properties extracted from the numerical results are roughly summarized as follows.

For a given traffic intensity ρ1 of the first stage, there exists a threshold ρ̃2 for the traffic

intensity ρ2 of the second stage, and if ρ2 < ρ̃2, then the joint queue-length probability

p(n1, n2) is asymptotically of the geometric form

p(n1, n2) ∼ G ηn1
1 ηn2

2 (n1, n2 → ∞). (2.4)
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If ρ2 > ρ̃2, then p(n1, n2) decays in a similar manner, but the coefficient G and the decay

rates η1, η2 are different between the cases with n2 < ãn1 and with n2 > ãn1 for a certain

positive value ã. Moreover, the conditional probability of phases y(i0, i1, i2 | n1, n2) =

x(n1, n2; i0, i1, i2)/p(n1, n2) is asymptotically independent of n1 and n2 in each case, and

hence the stationary distribution has geometric tail.

To describe the geometric decay property more formally, however, we should clarify the

way of making n1 and n2 large in (2.4). Here we consider the case in which n1 and n2

increase on a line n2 = an1 + b. To ensure that there exist infinitely many points (n1, n2)

on the line, the coefficient a should be positive and rational and the constant b rational.

As extreme cases, we also consider the case in which n1 → ∞ with fixed n2 and the case

in which n2 → ∞ with fixed n1.

The conjecture we make is formally stated as follows.

Conjecture For fixed ρ1, there exists a threshold ρ̃2 and the behavior of x(n1, n2; i0, i1, i2)

is different between the cases ρ2 < ρ̃2 and ρ2 > ρ̃2.

1. In the case ρ2 < ρ̃2, there exist constants η1, η2, c0(i0), c1(i1), c2(i2) and G such that

x(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2

as n1, n2 → ∞ on a line n2 = an1 + b with rational a > 0 and b. This asymptotic

representation is also valid when n1 → ∞ with fixed n2 and when n2 → ∞ with fixed

n1.
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2. In the case ρ2 > ρ̃2, there exists a positive constant ã such that the decay rates are

different between the cases 0 < a < ã and a > ã for the slope a of the line on which

n1 and n2 increase. We denote the two sets of constants corresponding to these two

cases as {η1, η2, c0(i0), c1(i1), c2(i2), G} and {η1, η2, c0(i0), c1(i1), c2(i2), G}.

(a) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that

0 < a < ã,

x(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n1 → ∞ with fixed n2.

(b) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that a > ã,

x(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n2 → ∞ with fixed n1.

3. The constants above are determined by equations given in the latter sections as

indicated by the equation numbers:

η1, η2 . . . . . . . . . . . . . . . . . . . . . (2.11)

η1, η2 . . . . . . . . . . . . . . . . . . . . . (2.13)

ρ̃2 . . . . . . . . . . . . . . . . . . . . . . . . (2.14)

ã . . . . . . . . . . . . . . . . . . . (2.8), (2.15)

ck(ik), ck(ik) (k = 0, 1, 2) . . (2.16)
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Unfortunately we do not yet have any equations to determine the values of the multi-

plicative coefficients G and G. On the point, see comments at the end of Section 2.5.

2.2.3 Numerical Test for the Conjecture

To see if the asymptotic properties stated in the conjecture above hold or not, we tabulate

the values of the ratios

g(n1, n2) =
p(n1, n2)

ηn1
1 ηn2

2

and g(n1, n2) =
p(n1, n2)

ηn1
1 ηn2

2

in Tables 2.1 and 2.2 for eight types of models with selected pair of traffic intensities (ρ1, ρ2)

and selected points (n1, n2) lying on lines n2 = 4n1 − 5 and n2 = (n1 + 5)/4. All these

values are extracted from the results of numerical experiments described in Section 2.3.

These tables show that each row certainly converges to a positive limit, even though

the speed of convergence is much slower in a few cases (see Table 2.2(b)). In Table 2.1,

the ratios along two different lines seem to converge to a common limit in each model.

This corresponds to the first statement of the conjecture. In Table 2.2, these ratios seem

to converge to different limits in each model. This agrees with the second statement of

the conjecture. These numerical results support the conjecture on the geometric decay

properties of the joint queue-length distribution. The asymptotic independence of phases

is shown in Tables 2.4 and 2.5 in Section 2.4.3 for a particular model E2/H2/1 → /E2/1

with ρ1 = 0.6 and ρ2 = 0.8.

The author tested the conjecture for more than 1,000 cases. There exist a small number
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Table 2.1: Geometric decay of p(n1, n2): the case ρ2 < ρ̃2

In each model, the upper row represents g(n1, n2) for n1 and n2 such that n2 = (n1 +

5)/4, n1 = 15, 35, . . . , 95, and the lower row represents it for n1 and n2 such that n2 =

4n1 − 5, n1 = 5, 10, . . . , 25. The traffic intensities ρ1 and ρ2 are selected so that ρ2 < ρ̃2.

(n1, n2) (5,15) (10,35) (15,55) (20,75) (25,95)
(15,5) (35,10) (55,15) (75,20) (95,25)

M/E2/1 → /E2/1 1.4659 1.4725 1.4725 1.4725 1.4725
ρ1 = 0.60, ρ2 = 0.35 1.4230 1.4682 1.4722 1.4725 1.4725

M/H2/1 → /E2/1 0.2773 0.2788 0.2788 0.2788 0.2788
ρ1 = 0.60, ρ2 = 0.40 0.2798 0.2788 0.2788 0.2788 0.2788
E2/E2/1 → /E2/1 3.0959 3.1120 3.1121 3.1121 3.1121
ρ1 = 0.60, ρ2 = 0.40 3.1113 3.1122 3.1122 3.1122 3.1122

H2/E2/1 → /E2/1 0.8375 0.8397 0.8397 0.8397 0.8397
ρ1 = 0.60, ρ2 = 0.40 0.7311 0.8042 0.8289 0.8365 0.8387

M/E2/1 → /H2/1 0.7026 0.7026 0.7027 0.7027 0.7027
ρ1 = 0.60, ρ2 = 0.20 0.6883 0.7018 0.7026 0.7027 0.7027
M/H2/1 → /H2/1 0.1538 0.1538 0.1538 0.1538 0.1538
ρ1 = 0.60, ρ2 = 0.40 0.1570 0.1542 0.1538 0.1538 0.1538

E2/H2/1 → /E2/1 0.4521 0.4557 0.4558 0.4558 0.4558
ρ1 = 0.60, ρ2 = 0.40 0.4564 0.4558 0.4558 0.4558 0.4558

E4/M/1 → /H2/1 0.4924 0.4923 0.4923 0.4923 0.4923
ρ1 = 0.60, ρ2 = 0.40 0.4991 0.4923 0.4923 0.4923 0.4923

of cases in which the convergence of g(n1, n2) and/or g(n1, n2) cannot be judged from the

numerical results of p(n1, n2) with n1, n2 ≤ 100. The author thinks that, if we can calculate

p(n1, n2) for larger n1 and n2, we will be able to see the convergence numerically. Except

these slow converging cases, g(n1, n2) and g(n1, n2) do converge numerically to certain

limits in all the cases we tested.
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Table 2.2: Geometric decay of p(n1, n2): the case ρ2 > ρ̃2

a: faster convergence models

In each model, the upper row represents g(n1, n2) for n1 and n2 such that

n2 = (n1 +5)/4, n1 = 15, 35, . . . , 95, and the lower row represents g(n1, n2) for

n1 and n2 such that n2 = 4n1 − 5, n1 = 5, 10, . . . , 25. The traffic intensities ρ1

and ρ2 are selected so that ρ2 > ρ̃2 and ã is near to 1.

(n1, n2) (5,15) (10,35) (15,55) (20,75) (25,95)
(15,5) (35,10) (55,15) (75,20) (95,25)

M/H2/1 → /E2/1 0.1026 0.1029 0.1022 0.1017 0.1014
ρ1 = 0.60, ρ2 = 0.80 0.1140 0.1184 0.1193 0.1193 0.1192

E2/E2/1 → /E2/1 0.9333 0.9351 0.9353 0.9353 0.9353
ρ1 = 0.60, ρ2 = 0.70 0.9141 0.9157 0.9157 0.9156 0.9154

M/H2/1 → /H2/1 0.0790 0.0792 0.0789 0.0786 0.0784
ρ1 = 0.60, ρ2 = 0.75 0.0846 0.0866 0.0869 0.0868 0.0867

E2/H2/1 → /E2/1 0.2162 0.2053 0.2011 0.2002 0.2001
ρ1 = 0.60, ρ2 = 0.85 0.2776 0.2817 0.2804 0.2801 0.2800

E4/M/1 → /H2/1 0.3389 0.3246 0.3235 0.3234 0.3234
ρ1 = 0.60, ρ2 = 0.77 0.4276 0.4203 0.4192 0.4191 0.4191

b: slower convergence models

This table shows cases in which the convergence is much slower. In each model,

the upper row represents g(n1, n2) for n1 and n2 such that n2 = (n1+5)/4, n1 =

115, 135, . . . , 195, and the lower row represents g(n1, n2) for n1 and n2 such that

n2 = 4n1 − 5, n1 = 30, 35, . . . , 50. The traffic intensities ρ1 and ρ2 are selected

so that ρ2 > ρ̃2 and ã is near to 1.

(n1, n2) (115,30) (135,35) (155,40) (175,45) (195,50)
(30,115) (35,155) (40,155) (45,175) (50,195)

M/E2/1 → /E2/1 0.1800 0.1815 0.1829 0.1842 0.1855
ρ1 = 0.60, ρ2 = 0.71 0.0700 0.0671 0.0647 0.0627 0.0609

H2/E2/1 → /E2/1 0.0957 0.0952 0.0948 0.0947 0.0946
ρ1 = 0.60, ρ2 = 0.70 0.0206 0.0180 0.0160 0.0142 0.0128

M/E2/1 → /H2/1 0.1360 0.1301 0.1294 0.1298 0.1305
ρ1 = 0.60, ρ2 = 0.70 0.1043 0.1047 0.1050 0.1052 0.1055
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2.3 Numerical Experiments

To see the tail behavior of the joint queue-length distribution, we made extensive numerical

experiments for a variety of models. Specifically, we calculated the stationary state prob-

abilities and drew graphs to see the characteristics of the tail behavior. We tested various

types of models with various traffic intensities ρ1 and ρ2. Among them, for the 8 types of

models listed below, we tested systematically with ρ1 = .2, .3, . . . , .9 and ρ2 = .2, .3, . . . , .9,

and saw the changes of the tail behaviors by the traffic intensities in detail:

• M/E2/1 → /E2/1

ρ1 ρ2

0.20 0.15 0.18 0.20 0.22

0.30 0.40 0.60 0.80

0.40 0.20 0.40 0.60 0.80

0.60 0.10 0.15 ∗0.20 0.25

0.30 0.35 ∗0.40 0.45

0.50 0.55 ∗0.60 0.65

0.70 0.75 ∗0.80 0.85

0.90

0.80 0.20 0.40 0.60 0.80

• M/H2/1 → /E2/1

ρ1 ρ2

0.60 0.20 0.40 0.60 0.80

• E2/E2/1 → /E2/1

ρ1 ρ2

0.60 0.20 0.40 0.60 0.80

• M/H2/1 → /H2/1

ρ1 ρ2

0.20 0.15 0.18 0.20 0.22

0.25 0.30 0.40 0.60

0.60 0.10 0.15 ∗0.20 0.25

0.30 0.35 ∗0.40 0.45

0.50 0.55 ∗0.60 0.65

0.70 0.75 ∗0.80 0.85

0.90

• M/E2/1 → /H2/1

ρ1 ρ2

0.60 0.20 0.40 0.44 0.46

0.48 0.50 0.52 0.56

0.60 0.70 0.80

• E4/M/1 → /H2/1

ρ1 ρ2

0.60 0.20 0.40 0.60 0.80

The cases with ∗ are calculated with truncations at ν = 150. Other case are calculated with

truncations at ν = 100.
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Here, for the two-phase hyperexponential distribution (H2), we used the one with the

density function of the form

s(x) = 0.2e−4μx + 0.8e−μx, x > 0.

The total number of cases tested exceeds one thousand. For the calculations of the sta-

tionary probabilities, we employed the aggregation/disaggregation method [37, 44]. Since

our model has infinite number of states, we have to truncate the state space for both n1

and n2 in the calculations. However, in an iteration of the aggregation/disaggregation

method, a new value of x(n1, n2; i0, i1, i2) is calculated from the current values of neigh-

boring states x(n1 − 1, n2; i0, i1, i2), x(n1 + 1, n2 − 1; i0, i1, i2) and x(n1, n2 + 1; i0, i1, i2).

Therefore, if we truncate the state space at n1 = ν1 and n2 = ν2, we have to esti-

mate the values of x(ν1 + 1, n2 − 1; i0, i1, i2), 1 ≤ n2 ≤ ν2 and x(n1, ν2 + 1; i0, i1, i2),

0 ≤ n1 ≤ ν1. In our experiments, we estimated those values by assuming the geomet-

ric decay for these variables, namely, e.g., x(ν1 + 1, n2 − 1; i0, i1, i2) was estimated as

{x(ν1, n2 − 1; i0, i1, i2)}2/x(ν1 − 1, n2 − 1; i0, i1, i2). Both of the truncation points ν1 and ν2

were set to 100 in most of the cases. So the number of states to be calculated was 40,000

for the models listed above with Poisson arrivals, and was 80,000 for ones above with other

renewal arrivals. This number 80,000 is quite large and, by the author’s experiences, it is

very near to the limit of the size for the calculation of stationary probabilities of a Markov

chain using today’s engineering workstations.

The program was written in C and ran on a SONY NWS-3860 workstation. The
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computational burden is practically O(N) with N = ν1 × ν2, and it increases rapidly as

ρk → 1. Table 2.3 tabulates the CPU time for the computation of E2/H2/1 → /E2/1 with

ρ1 = .6 and ρ2 = .2, .4, .6 and .8.

Table 2.3: The CPU time for E2/H2/1 → /E2/1 with ρ1 = 0.6 and ν1 = ν2 = 100

ρ2 0.2 0.4 0.6 0.8

CPU time [sec.] 16 23 38 158

2.4 Tail Properties from the Numerical Experiments

The conjecture made in Section 2.2 is based on careful observations of the results of the

numerical experiments explained in Section 2.3. Here we show a few results to indicate

how the author reaches the conjecture. By the limitation of pages, we take the case of

E2/H2/1 → /E2/1 with ρ1 = 0.6 and ρ2 = 0.8 as a typical example, and show its tail prop-

erties in detail. We start with observing the ratios of two neighboring joint probabilities

of numbers of customers in the steady state.

2.4.1 Decay Rates of the Joint Queue-length Probability

Let p(n1, n2) be the joint probability that there exist nk customers in the kth stage

(k = 1, 2) in the steady state. Namely, p(n1, n2) =
∑

i0

∑
i1

∑
i2 x(n1, n2; i0, i1, i2). We
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are interested in the ratios of neighboring p(n1, n2)’s:

r1(n1, n2) =
p(n1 + 1, n2)

p(n1, n2)
and r2(n1, n2) =

p(n1, n2 + 1)

p(n1, n2)
.

Figures 2.2a and 2.2b show graphs of r1(n1, n2) and r2(n1, n2). In each figure, the graph

of rk(n1, n2) is a curved surface represented by a lattice. A dark gray plane indicates a

constant ηk (η1 = 0.543, η2 = 0.593) and a light gray plane indicates another constant

ηk (η1 = 0.457, η2 = 0.640). Both of these constants are given as solutions of systems of

equations which will be presented in Section 2.5.

In Figure 2.2a, we see that r1(n1, n2) is relatively large very near the n2 axis but it is

in between η1 and η1 in most of the region of (n1, n2). Especially r1(n1, n2) is close to η1

in a region in which n1 is relatively larger than n2 and it is close to η1 in a region in which

n2 is relatively larger than n1 though the latter might not be seen clearly from the figure.

Figure 2.3a shows regions of (n1, n2) in which r1(n1, n2) is close to η1 or η1. In the

dark gray region, labeled H1, r1(n1, n2) is close to η1, namely |r1(n1, n2) − η1| < ε1 with

ε1 = 0.1×|η1−η1|, and in the light gray region, labeled H1, r1(n1, n2) is close to η1, namely

|r1(n1, n2) − η1| < ε1. (Here we take the particular value of ε1 for the convenience of the

explanation. We may take a smaller value if we need more accuracy in the subsequent

approximations.) The band B1 between H1 and H1 represents the region where r1(n1, n2)

smoothly changes from η1 − ε1 to η1 + ε1. We note that the region H1 covers the n1 axis

while H2 does not n2 axis.

Similarly, in Figure 2.2b, we see that r2(n1, n2) is relatively large very near the n1 axis
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but it is in between η2 and η2 in most of the region of (n1, n2). Especially r2(n1, n2) is close

to η2 in a region in which n1 is relatively larger than n2 and it is close to η2 in a region in

which n2 is relatively larger than n1.

Figure 2.3b shows a decomposition of the n1-n2 plane by r2(n1, n2). The ratio r2(n1, n2)

is close to η2 in the dark gray region labeled H2, and close to η2 in the light gray region

labeled H2. The band B2 represents the region where r2(n1, n2) smoothly changes from

η2 − ε2 to η2 + ε2 where ε2 = 0.1 × |η2 − η2|. In this case n2-axis is included in H2, but

n1-axis is not in H2.

Figure 2.3a resembles 2.3b in some sense. H1 mostly coincides with H2, and H1 does

with H2. Hence, r1(n1, n2) ≈ η1 and r2(n1, n2) ≈ η2 in the region H1
⋂

H2, and r1(n1, n2) ≈

η1 and r2(n1, n2) ≈ η2 in the region H1
⋂

H2, where “≈” indicates that both sides are

approximately equal. Hence

p(n1 + l1, n2 + l2)

p(n1, n2)
≈
⎧⎨⎩ ηl1

1 ηl2
2 , if (n1, n2), (n1 + l1, n2 + l2) ∈ H1

⋂
H2,

ηl1
1 ηl2

2 , if (n1, n2), (n1 + l1, n2 + l2) ∈ H1
⋂

H2.
(2.5)

The band B2 lies almost on the same position as B1, though the band width is a bit

narrower. In these graphs, the bands B1 and B2 seem to keep their widths constant. More

definitely, they are included in a region {(n1, n2) : ãn1+b < n2 < ãn1+b} bounded by two

parallel lines with a common slope ã = 2.28 and segments b = −48 and b = 26 as shown in

Figure 2.4. The value ã of the slope will be discussed in Section 2.4.4 and in Section 2.5.
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2.4.2 Geometric Form of the Joint Queue-length Probability

It seems that p(n1, n2) is written approximately in a geometric form in the n1-n2 plane:

p(n1, n2) ≈
⎧⎨⎩ G ηn1

1 ηn2
2 , if (n1, n2) ∈ H1

⋂
H2,

G ηn1
1 ηn2

2 , if (n1, n2) ∈ H1
⋂

H2,
(2.6)

where G and G are certain constants independent of n1 and n2.

To justify this from numerical results, we draw graphs of the ratios g(n1, n2) and

g(n1, n2) defined in Section 2.2.2. Figure 2.5a shows that g(n1, n2) almost coincides with
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Figure 2.5: Behaviors of g(n1, n2) and g(n1, n2) in E2/H2/1 → /E2/1 with ρ1 = 0.6, ρ2 =

0.8

a constant G = 5.67× 10−3 when (n1, n2) ∈ H1
⋂

H2, and Figure 2.5b shows that g(n1, n2)

mostly coincides with a constant G = 1.51 × 10−2 ( 	= G) when (n1, n2) ∈ H1
⋂

H2. Note

that, in these graphs, we cut the region where n1 < 5 or n2 < 5 to make the graphs easier

to see the behavior when n1 and n2 are large. Hereafter we will use this convention in all

graphs except Figure 2.9.
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Figure 2.6: Behavior of y(1, 1, 1|n1, n2) in E2/H2/1 → /E2/1 with ρ1 = 0.6, ρ2 = 0.8

2.4.3 Approximate Independence of Phases

The individual state probabilities x(n1, n2; i0, i1, i2) satisfy similar properties to those of

p(n1, n2) above. Hence it is expected that the conditional probability of phases

y(i0, i1, i2|n1, n2) =
x(n1, n2; i0, i1, i2)

p(n1, n2)

almost coincides with a constant in H1
⋂

H2, and with another constant in H1
⋂

H2. In fact,

Figure 2.6 shows that y(1, 1, 1|n1, n2) behaves like rk(n1, n2). That is, y(i0, i1, i2|n1, n2)

coincides with a constant c(i0, i1, i2) in H1
⋂

H2, and with the other constant c(i0, i1, i2) in

H1
⋂

H2. Furthermore, we can see that both c(i0, i1, i2) and c(i0, i1, i2) are decomposed into
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three components:

y(i0, i1, i2|n1, n2) ≈
⎧⎨⎩ c0(i0)c1(i1)c2(i2) if (n1, n2) ∈ H1

⋂
H2,

c0(i0)c1(i1)c2(i2) if (n1, n2) ∈ H1
⋂

H2.
(2.7)

Here c0(i0) or c0(i0) can be regarded as the asymptotic conditional probability of the phase

i0 of the arrival process, and ck(ik) or ck(ik) (k = 1, 2) as the asymptotic conditional

probability of the phase ik of the service process at the kth stage. This property can be

validated by the numerical results of y(i0, i1, i2 | n1, n2) together with the values of ck(ik)’s

and ck(ik)’s given by (2.16) in Section 2.5. The values of them for E2/H2/1 → /E2/1

are listed in Tables 2.4 and 2.5. It is shown that y(i0, i1, i2 | 90, 10) almost coincides with

c0(i0)c1(i1)c2(i2), and that y(i0, i1, i2 | 10, 90) almost coincides with c0(i0)c1(i1)c2(i2) for all

combinations of (i0, i1, i2). Note that (90, 10) ∈ H1 ∩ H2 while (10, 90) ∈ H1 ∩ H2.

Table 2.4: ck(ik) and ck(ik) in E2/H2/1 → /E2/1 with ρ1 = 0.6, ρ2 = 0.8

ik c0(i0) c1(i1) c2(i2) c0(i0) c1(i1) c2(i2)

1 0.0576 0.0546 0.4351 0.5967 0.0440 0.4444

2 0.4243 0.9454 0.5649 0.4033 0.9560 0.5556

2.4.4 Variation of Regions and Bands

Now we shall see how the regions Hk, Hk and the band Bk vary according to the traffic

intensities ρ1 and ρ2.

Figure 2.7 shows the graphs of r1(n1, n2) for the model E2/H2/1 → /E2/1 with fixed

ρ1 = 0.6 and varying ρ2 = 0.4 ∼ 0.9. When ρ2 is small, η1 is far below η1 and r1(n1, n2)

34



Table 2.5: ck(ik) and ck(ik) in E2/H2/1 → /E2/1 with ρ1 = 0.6, ρ2 = 0.8

(i0, i1, i2) c0(i0)c1(i1)c2(i2) y(i0, i1, i2 | 90, 10) c0(i0)c1(i1)c2(i2) y(i0, i1, i2 | 10, 90)

(1, 1, 1) 1.368 × 10−2 1.368 × 10−2 1.166 × 10−2 1.166 × 10−2

(1, 1, 2) 1.776 × 10−2 1.776 × 10−2 1.457 × 10−2 1.458 × 10−2

(1, 2, 1) 2.368 × 10−1 2.368 × 10−1 2.535 × 10−1 2.535 × 10−1

(1, 2, 2) 3.074 × 10−1 3.074 × 10−1 3.169 × 10−1 3.169 × 10−1

(2, 1, 1) 1.008 × 10−2 1.008 × 10−2 7.882 × 10−3 7.886 × 10−3

(2, 1, 2) 1.309 × 10−2 1.309 × 10−2 9.853 × 10−3 9.858 × 10−3

(2, 2, 1) 1.745 × 10−1 1.745 × 10−1 1.714 × 10−1 1.714 × 10−1

(2, 2, 2) 2.266 × 10−1 2.266 × 10−1 2.142 × 10−1 2.142 × 10−1

coincides with η1 almost on the whole n1-n2 plane. This means that H1 covers the whole

n1-n2 plane. The larger ρ2 becomes, the closer η1 comes to η1, and when ρ2 = 0.8 the

region H1 appears. H1 becomes larger than H1 when ρ2 = 0.9.

Figure 2.8 shows the corresponding graphs of r2(n1, n2). In these graphs we also see

that H2 appears only when ρ2 = 0.8 and 0.9. Now we shall see the movement of the planes

η2 and η2. When ρ2 is small, the plane η2 is far below the plane η2. As ρ2 becomes larger

the plane η2 becomes closer to the plane η2, but still below the plane η2 for ρ2 ≤ 0.7. When

ρ2 becomes to 0.8, the plane η2 comes above the plane η2, and at the same time the region

H2 appears. If we denote by ρ̃2 the value of ρ2 at which η2 = η2, this seems to indicate

that the region H2 disappears when ρ2 is less than ρ̃2 and H2 appears when ρ2 exceeds ρ̃2.

H1 seems to appear at the same time as H2. We will see this more in detail. Figure 2.9

shows the movement of the bands B1 and B2. The bands bounded by thin lines indicate
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Figure 2.7: r1 behavior in E2/H2/1 → /E2/1 (ρ1 = 0.6)
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B1 for ρ2 = 0.75 ∼ 0.90, and those bounded by bold lines indicate B2.

It is likely that these behaviors of the bands are related with those of ηk and ηk. In

Figure 2.5, both g(n1, n2) and g(n1, n2) diverge to +∞ when they are outside of H1 ∩ H2

or H1 ∩ H2. This indicates that ηn1
1 ηn2

2 is greater than ηn1
1 ηn2

2 in the region H1 ∩ H2, and

that ηn1
1 ηn2

2 is greater than ηn1
1 ηn2

2 in the region H1 ∩ H2.

Hence we can guess that the bands B1 and B2 lie on the line determined by ηn1
1 ηn2

2 =

ηn1
1 ηn2

2 , or equivalently,

n2 = ãn1 with ã = − log η1/η1

log η2/η2

. (2.8)

Each broken line in Figure 2.9 indicates this line for ρ2 = 0.75 ∼ 0.90. One can see that

the line moves almost together with the bands.

2.5 Equations for ηk, ηk and ρ̃2

The properties discussed in the previous section are for the specific model E2/H2/1 →

/E2/1. We can see similar properties in most of cases.

To the author’s knowledge, there are no papers which investigate such tail properties

theoretically. However, through the study, they have a strong confidence that the values

of ηk and ηk (k = 1, 2) are given as solutions of some simultaneous equations written

with LSTs of interarrival and service time distributions. In this section we present the

equations and summarize some basic properties of ηk and ηk. The assumptions to derive

the equations and a brief explanation of the derivation process are given at the end of this
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section.

Let T ∗(s) be the LST of the interarrival time distribution PH(α,T ). Denoting by

−τ < 0 an abscissa of convergence of T ∗, the function T ∗(s) is then defined, positive and

convex decreasing on the interval (−τ,∞) [31]. Similarly, we denote by S∗
k(s) the LST of

the service time distribution PH(β,Sk) for the k-th stage, and by −σk < 0 an abscissa of

39



convergence of S∗
k . Then S∗

k(s) is defined, positive and convex decreasing on the interval

(−σk,∞). When we mention about roots of an equation, we refer only real roots in the

domain of the equation and count the number of roots by taking the multiplicity into

account. For example, every double root is counted twice.

Consider the simultaneous equations⎧⎪⎪⎨⎪⎪⎩
T ∗(s0)S

∗
1(−s0) = 1,

T ∗(s0)S
∗
1(s1)S

∗
2(s2) = 1,

s0 + s1 + s2 = 0.

(2.9)

Let f(s0) = T ∗(s0)S
∗
1(−s0). Then f(s0) is a convex function of s0 on (−τ, σ1), and f(0) = 1.

Hence the equation f(s0) = 1 has two roots one of which is s0 = 0. The derivative of f(s0)

at s0 = 0 is negative since f ′(0) = T ∗′(0) − S∗′
1 (0) = −1/λ + 1/μ1 = −(1 − ρ1)/λ < 0.

Hence the other root s0 = ω0 is positive.

For the second equation of (2.9), eliminating s1 by the third equation and inserting

s0 = ω0, we have

g(s2) = T ∗(ω0)S
∗
1(−ω0 − s2)S

∗
2(s2) = 1. (2.10)

g(s2) is a convex function of s2 on (−σ2, σ1 − ω0). The equation (2.10) has a trivial root

s2 = 0, and hence it has one more root s2 = ω2. We set ω1 = −ω0 − ω2. This triplet

(ω0, ω1, ω2) is our desired solution of (2.9), and we let

η1 = T ∗(ω0), η2 =
1

S∗
2(ω2)

. (2.11)

Since ω0 is positive, η1 is strictly less than 1. Furthermore, η1 is a monotone increasing

function of ρ1, and η1 ↓ 0 as ρ1 ↓ 0 while η1 ↑ 1 as ρ1 ↑ 1. On the other hand, ω2 is negative
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if ρ2 is small but it may be positive if ρ2 becomes large, and hence η2 may exceed 1. η2 can

be regarded as a function of both ρ1 and ρ2. As a function of ρ2, η2 is monotone increasing

and η2 ↓ 0 as ρ2 ↓ 0.

For ηk’s, consider the simultaneous equations⎧⎪⎪⎨⎪⎪⎩
T ∗(−s2)S

∗
2(s2) = 1,

T ∗(s0)S
∗
1(s1)S

∗
2(s2) = 1,

s0 + s1 + s2 = 0.

(2.12)

A similar argument for the equations (2.9) can be applied to (2.12). The first equation

defined on (−σ2, τ) has two roots, zero and ω2. Since ρ2 < 1, ω2 is strictly negative. By

inserting s2 = ω2 and s1 = −s0 − ω2 into the left hand side of the second equation, we

have an equation for s2 = ω2. The left hand side of this equation is a convex function, and

hence the equation has two roots. One is a trivial root s0 = −ω2, and we denote the other

as ω0. We set ω1 = −ω0 − ω2. This triplet (ω0, ω1, ω2) is the desired solution of (2.12).

For this triplet, we set

η2 =
1

S∗
2(ω2)

, η1 = T ∗(ω0). (2.13)

Since ω2 is negative, η2 is less than 1. Moreover, η2 is a monotone increasing function

of ρ2, and η2 ↓ 0 as ρ2 ↓ 0 while η2 ↑ 1 as ρ2 ↑ 1. ω0 may take positive or negative value,

and hence η1 may be greater than 1. η1 is a function of both ρ1 and ρ2, and η1 → η1 as

ρ1 ↑ 1.

Using ηk and ηk above, the slope ã of bands Bk is given by (2.8) in most of the models.

In Section 2.4.4, we defined ρ̃2 as ρ2 at which η2 = η2. However, this definition is not
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suitable in a general situation since such ρ̃2 may not be unique. We can show that, for

fixed ρ1, there exists a unique ρ2 such that

η1 = η2 = η2. (2.14)

This ρ2 is suitable for ρ̃2. When ã is well-defined for all ρ2 ∈ (0, 1) except for the point

ρ2 = ρ̃2, ã is strictly negative for ρ2 < ρ̃2 and is strictly positive for ρ2 > ρ̃2. Further,

usually ã ↑ +∞ as ρ2 ↓ ρ̃2, and ã ↓ 0 as ρ2 ↑ 1.

Note that ã in (2.8) cannot be defined for Ej/Ej/1 → /Ej/1 with j = 1, 2, . . ., in which

η1 = η1 = ρj
1 and η2 = η2 = ρj

2. In this case, a perturbation analysis indicates that

ρ̃2 = ρ2 and ã =
1 − ρ2

ρ1 − ρ2
(2.15)

are plausible definitions for these models.

For ck(ik), we have the following expressions. Let ck be the stochastic vector whose

ik-th element is ck(ik).

c0 =
ω0

1 − η1
α(ω0I − T )−1,

c1 =
ω1

1 − η2/η1

β1(ω1I − S1)
−1, (2.16)

c2 =
ω2

1 − 1/η2
β2(ω2I − S2)

−1.

For ck(ik), we have similar expressions with ωk and ηk in places of ωk and ηk, respectively.

The derivation process of the equations in (2.9) and (2.12) is rather complicated. Here

we give basic assumptions for the equations and briefly outline the derivation process. The

complete derivation process and related discussions will be given in Chapter 4.

42



For (2.9), we assume a geometric decay property for large n1: There exists a constant

η1 such that

x(n1, n2; i0, i1, i2) = η1x(n1 − 1, n2; i0, i1, i2) for ∀i0, i1, i2 and n2 = 0, 1, 2, . . . . (2.17)

For fixed n1 we consider the balance equation around the state (n1, n2; i0, i1, i2). We can

use (2.17) to eliminate x(n1 −1, ∗; ∗, ∗, ∗)’s and x(n1 +1, ∗; ∗, ∗, ∗)’s in the equation so that

the equation contains only x(n1, ∗; ∗, ∗, ∗)’s. By considering such balance equations for all

i0, i1, i2 and n2 = 0, 1, 2, . . ., we can show that x(n1, n2; i0, i1, i2) takes a matrix-geometric

form. If we use a similar technique to the one in [45], we obtain the relations in (2.9),

(2.11) and (2.16). Thus, roughly speaking, if the stationary distribution has geometric tail

in the direction of n1-axis, the decay parameters are given by (2.11).

On the other hand, to derive the second and the third equations in (2.12) we assume

for large n2 that there exists a constant η2 such that

x(n1, n2; i0, i1, i2) = η2x(n1, n2 − 1; i0, i1, i2) for ∀i0, i1, i2 and n1 = 0, 1, 2, . . . .

Furthermore, to derive the first equation in (2.12), we have to assume that x(n1, n2; i0, i1, i2)

is of the form x1(n1; i0, i1)x2(n2, i2). A similar process to the one above leads us to the

relations in (2.12), (2.13) and ck version of (2.16). In case of (2.9), the assumption of

asymptotic product form is not necessary because instead we can use the fact that the

behavior of the first stage is never affected by the second stage.

Thus, the above equations for the characteristic constants of the tail probabilities are

derived from geometric decay assumptions and some product form assumptions. However,
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the multiplicative constants G and G cannot be obtained in this line of derivation. To get

the values of them, we have to execute some simulations or to solve the balance equations

numerically. In the latter case, if we use the geometric decay property above, we can get

the values of them with much smaller computational burden.
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Chapter 3

Asymptotic Properties in a

Quasi-Birth-and-Death Process with

a Countable Number of Phases

3.1 Introduction

We consider a discrete-time Markov chain {X(n)} on a state space S = {(m, i) |m, i =

0, 1, 2, · · ·} having a transition probability matrix of the block-tridiagonal form

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0

C1 B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)
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after partitioning the state space into levels Lm = {(m, i) | i = 0, 1, 2, · · ·}, m = 0, 1, 2, · · ·.

Such a chain is called a quasi-birth-and-death (QBD) process with a countable number of

phases in each level. We assume that the chain is irreducible and positive recurrent, and

has the stationary probabilities π(m, i), (m, i) ∈ S.

It is known [28] that the stationary probability vector π = (πm, m = 0, 1, 2, . . . ) with

subvectors πm = ( π(m, i), (m, i) ∈ Lm ) has a matrix-geometric form

πm = π1R
m−1, m ≥ 1, (3.2)

where the rate matrix R is given as the minimal nonnegative solution of the matrix-

quadratic equation

R = A+RB +R2C. (3.3)

If the number of phases in each level is finite, various properties on the rate matrix and

stationary probabilities are known [30]. For example, the stationary distribution π has a

geometric tail

πm ∼ c ηmx as m → ∞, (3.4)

where η is the Perron-Frobenius eigenvalue ofR, x is a left eigenvector ofR associated with

η, and c is a multiplicative constant. This asymptotic property was used, for example, to

investigate tail behaviors of the queue-length and waiting-time distributions in a PH/PH/c

queue [45] or more generally in a GI/PH/c queue with versatile service distributions [33].

The purpose of this chapter is to present a sufficient condition for the asymptotic

property (3.4) to hold in the case with a countable number of states in each level. This
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result will be applied to a tandem queueing system PH/PH/1 → /PH/1 to investigate

tail properties of the joint queue-length distribution.

The remainder of this chapter is constructed as follows. We present our main theorems

and prove them in the next section, and apply them to a continuous-time QBD process in

Section 3.3.

3.2 Main Theorems

Before stating our main theorems, we introduce some notations. We denote by 0 and O

a zero vector and a zero matrix, by I an identity matrix, and by e a column vector with

elements all equal to one. Inequalities and limits are applied elementwise. Let Mk =

∪∞
l=k Ll, and

pL
i,j(n) = P{X(n) = (m, j), X(u) ∈ Lm, 0 ≤ u ≤ n | X(0) = (m, i) },

pM
i,j(n) = P{X(n) = (m, j), X(u) ∈ Mm, 0 ≤ u ≤ n | X(0) = (m, i) },

for i, j ∈ Lm, m ≥ 2 and n = 0, 1, 2, . . .. From the QBD structure (3.1) these probabilities

are independent of m. We set

vi,j =
∞∑

n=0

pL
i,j(n) and ui,j =

∞∑
n=0

pM
i,j(n).

These values are interpreted as follows: vi,j is the mean number of visits to state (m, j) of

the chain starting from state (m, i) before it goes out of Lm, and ui,j is the mean number
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of visits to state (m, j) of the chain starting from state (m, i) before it goes down to level

m − 1 (m > 1). Since the chain is positive recurrent, these values are all finite and non-

negative. Let V and U be matrices with elements vij and uij respectively. Then we can

easily see that V B = BV = V − I. Hence the inverse of the infinite matrix I −B exists

and given by V . Hereafter we will write (I −B)−1 instead of V .

The (i, j)th element of R is interpreted as the mean number that the chain which

transits from state (m − 1, i) into somewhere in level m visits state (m, j) before it comes

back to level m − 1. A probabilistic argument shows that R is given by AU .

The so-called G-matrix G is defined by UC. Like R, the matrix G is the minimal

non-negative solution of the matrix-quadratic equation

G = AG2 +BG+C. (3.5)

We can see that Ge = UCe = e from the positive recurrence of the chain.

The followings are our main theorems.

Theorem 3.2.1. Assume that there exist a positive constant η (< 1), a positive row

vector x and a positive column vector y such that

(i) x (η−1A+B + ηC) = x, (3.6)

(ii) (η−1A+B + ηC)y = y, (3.7)

(iii) η−1 xAy 	= η xC y, (3.8)

(iv) xe < ∞. and xy < ∞. (3.9)
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Then,

(a) xR = η x, and

(b) z = A (η−1 I −G)y is a non-zero, non-negative vector satisfying Rz = η z.

Let Lm(A) be the set of states in Lm corresponding to positive elements of the vector

Ae. SinceR = AU , the i-th row ofR is a zero vector if (m, i) 	∈ Lm(A). In order to discuss

asymptotic properties of Rm, we assume that the submatrix R(A) of R corresponding

to the index set Lm(A) × Lm(A) is irreducible. A sufficient condition for R(A) being

irreducible is that the matrix ⎛⎜⎜⎜⎜⎜⎜⎝
B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ (3.10)

formed from P by deleting rows and columns corresponding to states in L0 is irreducible.

In fact, if the matrix (3.10) is irreducible, all the elements of U are positive, and hence the

rows of R(A) are all positive. If R(A) is irreducible and if (a) and (b) in Theorem 3.2.1

hold, then R(A) is η-positive in the sense of Seneta [39] and we have

Rm ∼ ηm z x as m → ∞

assuming vectors x and z are normalized so that xz = 1 (the finiteness of the product xz

is easily proved from (3.6) and (3.9)). Thus the following theorem is a direct consequence

of Theorem 3.2.1 and the matrix-geometric form representation (3.2).
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Theorem 3.2.2. Suppose that the conditions in Theorem 3.2.1 hold. Then, if R(A) is

irreducible and π1 z < ∞, the stationary probability vector π of the Markov chain {X(n)}

has a geometric tail:

πm ∼ c ηmx as m → ∞,

where c is a multiplicative constant. A sufficient condition for the irreducibility of R(A) is

that the matrix (3.10) is irreducible, and a sufficient condition for π1 z to be finite is that

π1 y < ∞.

The statement (a) of Theorem 3.2.1 was first proved in Ramaswami & Taylor [36] as a

special case of a QBD process with level dependent transition probabilities. For reader’s

convenience, here we give a direct proof of it together with a proof of the statement (b).

In the following lemmas, we assume that the conditions of Theorem 3.2.1 hold.

Lemma 3.2.1. Products xR, xG, Ry and Gy are all finite, and

x (η I −R) ≥ 0, (3.11)

(η−1 I −G)y ≥ 0. (3.12)

Proof The rate matrix R is given as the limit of an increasing sequence of matrices

{R(k)} defined by

R(0) = O, R(k) = A+R(k−1)B + {R(k−1)}2C for k = 1, 2, . . . .
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Then an induction using Equation (3.3) proves that xR(k) ≤ η x for all k. Letting k → ∞,

we have (3.11). A similar argument using Equation (3.5) proves (3.12). From (3.11) and

(3.9), xRy ≤ η xy < ∞. Hence products xR and Ry are finite. Similarly we can see

the finiteness of the products xG and Gy from (3.12) and (3.9). �

Lemma 3.2.2.

x (η I −R)C (η−1I −G) = 0, (3.13)

(η I −R) z = (η I −R)A (η−1I −G)y = 0 (3.14)

Proof. From (3.6) we have

0 = x (η−1I − η−2A− η−1B −C), (3.15)

and from (3.5)

0 = x (G−AG2 −BG−C). (3.16)

Note that the production operation in (3.16) of the vector x and a matrix within paren-

theses is legitimate since xG is finite from Lemma 3.2.1. Subtracting the right hand side

of (3.16) from that of (3.15) we have

0 = x (η−1I − η−2A− η−1B −C) − x (G−AG2 −BG−C)

= x {−A (η−2I −G2) + (I −B) (η−1I −G)}
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= x {−A(η−1I +G)(η−1I −G) + (I −B) (η−1I −G)}

= x (−η−1A−AG+ I −B) (η−1I −G)

= x(−η−1A−RC + I −B) (η−1I −G).

Since x (−η−1A+ I −B) = η xC from (3.6), we have (3.13). Similarly, we obtain (3.14)

from (3.5), (3.7) and Lemma 3.2.1.

Lemma 3.2.3. x (η I −R)C = 0.

Proof. Multiplying e to (3.13) from the right, then we have x (ηI −R)C e = 0 since

xe < ∞, Ge = e and η < 1. We know that x (ηI −R)C is non-negative from (3.11) and

e is positive. Hence, x (ηI −R)C must be a zero vector.

Lemma 3.2.4. x (ηI −R) = 0 or, equivalently, xR = η x.

Proof. From (3.6) and (3.3) we have

η x = xA (I −B)−1 + η2 xC (I −B)−1, (3.17)

xR = xA (I −B)−1 + xR2C (I −B)−1. (3.18)
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Products in (3.17) are all finite from Lemma 3.2.1. Subtracting both sides of (3.18) from

those of (3.17) we have

x (η I −R) = x (η2I −R2)C (I −B)−1

= x (η I −R) (η I +R)C (I −B)−1

= η x (η I −R)C (I −B)−1 + x (η I −R)RC(I −B)−1

= x (η I −R)AU C (I −B)−1 (from Lemma 3.2.3)

= x (η I −R)A {U C (I −B)−1A}k−1U C (I −B)−1 (3.19)

for any k ≥ 1. Hence

x (η I −R)Ae = x (η I −R)A {U C (I −B)−1A}ke.

The (i, j)-th element of the matrix U C (I − B)−1A is interpreted as the probability

that the chain starting from state (m, i) once reaches Lm−1 and then returns to Lm at

state (m, j) without going to Lm−2. Therefore, from the positive recurrence of the chain,

{U C (I − B)−1A}k e tends to a zero vector as k → ∞. Hence x (η I − R)Ae = 0.

Since x (η I − R)A is nonnegative and e is positive, the former must be a zero vector.

From (3.19) this implies that x (η I −R) = 0.

Lemma 3.2.5. z = A (η−1I −G)y is non-zero and non-negative.
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Proof. The non-negativity of z is easily seen from (3.12) in Lemma 3.2.1. The non-zero

property of z is derived from (3.8) as

xz = xA (η−1I −G)y = η−1xAy − xRC y = η−1xAy − η xC y 	= 0.

Proof of Theorem 3.2.1. The relation (a) was proved in Lemma 3.2.4. The statement

(b) comes from (3.14) in Lemma 3.2.2 and from Lemma 3.2.5. �

3.3 Continuous-Time Parameter Case

In this section we apply the theorems proved in the preceding section to a continuous-time

Markov chain {X(t), t ≥ 0} on the state space S having transition rate matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0

C1 B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.20)

This type of Markov chain is also called QBD process. We assume that the chain is positive

recurrent and has stationary probabilities π(m, i), (m, i) ∈ Sm. The stationary probability

vector π = (πm, m = 0, 1, 2, . . . ) with subvectors πm = ( π(m, i), i ∈ Lm ) takes a matrix-

geometric form with a rate matrix R. We also write the G-matrix as G. A submatrix

R(A) is similarly defined as R(A).
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We may apply Theorems 3.2.1 and 3.2.2 directly to a discrete-time parameter Markov

chain {X(nh), n = 0, 1, 2, . . .} for some h > 0. However, this approach is not convenient

since the conditions of the theorems are not directly related to the rate matrix (3.20).

Let D and D0 be diagonal matrices such that D ≥ −B and D0 ≥ −B0. Then we

consider a discrete-time Markov chain {X ′(n), n = 0, 1, 2, . . .} with transition probability

matrix

P ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I +D
−1
0 B0 D

−1
0 A0

D
−1
C1 I +D

−1
B D

−1
A

D
−1
C I +D

−1
B D

−1
A

D
−1
C I +D

−1
B

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Vectors and matrices associated with {X ′(n)} are related to those for {X(t)} as

π′
0 = π0D0, π′

m = πmD, m = 1, 2, . . . ,

R′ = D
−1
RD, G′ = G,

x′ = xD, y′ = y, z′ = D
−1
z.

Applying Theorems 3.2.1 and 3.2.2 to the chain {X ′(n)}, we have the following theorems

for the continuous-time Markov chain {X(t)}.

Theorem 3.3.1. For the continuous-time Markov chain {X(t)}, assume that the discrete-

time Markov chain {X ′(n)} defined above is positive recurrent and that there exist a

positive constant η (< 1) and positive vectors x and y such that

(i) x(η−1A+B + ηC) = 0,
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(ii) (η−1A+B + ηC)y = 0,

(iii) η−1xAy 	= ηxCy ,

(iv) xDe < ∞ and xDy < ∞.

Then,

(a) xR = ηx , and

(b) z = A(η−1I −G)y is a non-zero, non-negative vector satisfying Rz = ηz.

Theorem 3.3.2. For the continuous-time Markov cahin {X(t)}, suppose that the con-

ditions in Theorem 3.3.1 hold. Then, if R(A) is irreducible and π1Dz < ∞, then the

stationary probability vector π has a geometric tail:

πm ∼ c ηm x as m → ∞, (3.21)

where c is a multiplicative constant. A sufficient condition for the irreducibility of R(A)

is that the matrix ⎛⎜⎜⎜⎜⎜⎜⎝
B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ (3.22)

formed from (3.20) by deleting rows and columns corresponding states in L0 is irreducible.

And a sufficient condition for π1Dz to be finite is that π1Dy < ∞.

If diagonal elements of −B and −B0 are bounded by d (< ∞) from above, then the

so-called uniformization technique can be applied, and the conditions of these theorems
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become simpler. Let D0 = D = d I. Then the positive recurrence of {X ′(n)} is derived

from that of the original chain {X(t)}, and the theorems are reduced to the following

corollaries.

Corollary 1. For the continuous-time Markov chain {X(t)}, assume that diagonal ele-

ments of −B and −B0 are bounded by d (< ∞) from above and that there exists a positive

constant η (< 1) and positive vectors x and y such that

(i) x(η−1A+B + ηC) = 0,

(ii) (η−1A+B + ηC)y = 0,

(iii) η−1xAy 	= ηxCy ,

(iv) xe < ∞ and xy < ∞.

Then,

(a) xR = ηx , and

(b) z = A(η−1I −G)y is a non-zero, non-negative vector satisfying Rz = ηz.

Corollary 2. For the continuous-time Markov cahin {X(t)}, suppose that the assump-

tion in Corollary 1 holds. Then, if R(A) is irreducible and π1z < ∞, then the stationary

probability vector π has a geometric tail (3.21). A sufficient condition for the irreducibility

of R(A) is that the matrix (3.22) is irreducible, and a sufficient condition for π1z to be

finite is that π1y < ∞.
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Chapter 4

Asymptotic Properties of Stationary

Distributions in Two-Stage Tandem

Queueing Systems

4.1 Introduction

Tandem queueing systems are basic models in the theory of queues and have been studied

for a long time. However, because of complexities of their stochastic structures, their prop-

erties are scarcely known except for cases with product form solutions. They are simplest

models of queueing networks as well as direct extensions of single queueing systems. Hence

the study of them are expected to connect the theory of single queueing systems with that

of queueing networks. In this paper, we prove geometric decays of the stationary state
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probability in a two-stage tandem queueing system PH/PH/1 → /PH/1 with a buffer of

infinite capacity.

In the ordinary one-stage queue PH/PH/c with traffic intensity ρ < 1, it was shown

that the stationary distribution has a geometric tail [45]. Let π(n; i0, i1) be the stationary

probability that there exist n customers in the system while the phases of the arrival and

service processes are i0 and i1, respectively. Then

π(n; i0, i1) ∼ GC0(i0)C1(i1)η
n, n → ∞, (4.1)

where G, C0(i0), C1(i1) and η are some constants and ∼ indicates that the ratio of both

sides tends to 1. These constants other than G can be easily obtained from the phase

type representations of the interarrival and service time distributions. This kind of geo-

metric decay property is very useful, for example, on the computation of the stationary

state probabilities, or on the discussion of tail probabilities for estimating very small loss

probabilities (e.g. less than 10−9) of the corresponding finite queue.

Our main concern here is to prove a similar geometric tail property in the two-stage

tandem queueing system PH/PH/1 → /PH/1.

In Chapter 2, we have made a conjecture on the geometric decay of the stationary

state probability in PH/PH/1 → /PH/1 through an extensive numerical experiment. Let

π(n1, n2; i0, i1, i2) be the stationary probability that there exist n1 customers in the fist

stage and n2 customers in the second stage while the phases of the arrival process and the

two service processes are i0, i1 and i2, respectively. Then the conjecture asserts that the
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stationary state probability decays geometrically as n1 and/or n2 become large but decay

rates and multiplicative constants may be different according to the ratio of n1 and n2:

π(n1, n2; i0, i1, i2) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G C0(i0) C1(i1) C2(i2) ηn1
1 ηn2

2 ,

for large n1 and/or n2 such that n2 < α n1,

G C0(i0) C1(i1) C2(i2) ηn1
1 ηn2

2 ,

for large n1 and/or n2 such that n1 < α−1 n2,

(4.2)

where α = − ln(η1/η1)/ ln(η2/η2) and constants ηk, ηk (k = 1, 2) and ck(ik), ck(ik) (k =

0, 1, 2) are determined from the phase-type representations of the interarrival and service

time distributions.

In this chapter, under a certain condition, we prove (4.2) in two special cases, the case

where n1 → ∞ with n2 being fixed and the case where n2 → ∞ with n1 being fixed.

The proof uses a result on the Matrix-geometric form solution of a quasi-birth-and-death

(QBD) process with a countable number of phases in each level [48].

The reminder of the chapter is constructed as follows. In Section 4.2, we describe our

two-stage tandem queueing model and state our main theorems in Section 4.2.2. Applying

Theorem 3.3.1 in Chapter 3, we prove our theorems in Sections 4.3 and 4.4. In many

places in this paper, we have to use various properties of solutions of four key systems of

equations given in Section 4.2.2. These properties are proved in Appendix.
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4.2 Geometric Decay Property for Two-Stage Tan-

dem Queueing System

4.2.1 Model Description

We denote by PH(a,Φ) a phase-type distribution represented by a continuous-time, finite-

state, absorbing Markov chain with initial probability vector ã = (a, 0) and transition rate

matrix Φ̃ =

⎡⎣ Φ γ

0 0

⎤⎦ (see [30]). We assume that there exist no redundant phases in any

phase-type distributions. More definitely, the phase-type distribution (a,Φ) is assumed to

satisfy

− aΦ−1 > 0. (4.3)

We consider an open, two-stage tandem queueing system (Figure 4.1). Customers arrive

at the first stage to be served there, move to the second to be served there again, and then

go out of the system. The k-th stage (k = 1, 2) has a single server and a buffer of infinite

capacity, so that neither loss nor blocking occurs. Interarrival times of customers are in-

dependent and identically distributed (i.i.d.) random variables subjecting to an irreducible

phase-type distribution PH(α,T ). Service times at the server of the k-th stage are also

i.i.d. variables subjecting to an irreducible phase-type distribution PH(βk,Sk). The inter-

arrival times and the service times are assumed to be mutually independent. Customers

are served according to the first-come first-served (FCFS) discipline at each stage.

The state of the system is represented by a quintuple (n1, n2; i0, i1, i2), where i0 is the
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Buffers with infinite capacity

Input process
with ( )α , TPH

Second server
with ( )β , SPH 2 2

First server
with ( )β , SPH 1 1

Figure 4.1: Two-stage tandem queueing system

phase of the arrival process, ik is the phase of the service process at the k-th stage, and

nk is the number of customers in the k-th stage (k = 1, 2). Then the system behaves as a

continuous-time Markov chain.

We denote the traffic intensity at the k-th stage by ρk = λ/μk where 1/λ is the mean

interarrival time and 1/μk is the mean service time at the k-th stage, and assume ρ1, ρ2 < 1

so that the chain is stable and has stationary probabilities π(n1, n2; i0, i1, i2).

We prepare some notations. Let I0 be the identity matrix with the same dimension as

T , and Ik be the identity matrix with the same dimension as Sk. e0 denotes the column

vector of the same dimension as T with all elements being equal to 1, and ek the column

vector of the same dimension as Sk with all elements being equal to 1 (k = 1, 2).
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4.2.2 Geometric Decay Property of the Stationary Distribution

The marginal queue-length distribution of the first stage clearly has a geometric tail, since

the behavior of the first stage is not affected by that of the second stage. Our concern is

the tail property of the joint queue-length distribution of the first and the second stages

or the asymptotic behavior of the stationary probabilities.

To describe the geometric decay, we introduce decay parameters η1, η2, η1 and η2 given

as follows.

The Laplace-Stieltjes Transforms of the interarrival and service time distributions are

given by

T ∗(s) = α(sI0 − T )−1γ0, S∗
k(s) = βk(sIk − Sk)

−1γk, (4.4)

where

γ0 = −Te0, γk = −Skek.

Note that, for any LSTs F ∗
1 (s) and F ∗

2 (s) for phase-type distributions, f(s) = F ∗
1 (s)F ∗

2 (−s)

is convex and hence f(s) = C has at most two real roots for any constant C. This also

implies that signs of derivatives f ′(s) at two roots are different.

Consider the equation

T ∗(s)S∗
1(−s) = 1. (4.5)

Since the function f1(s) = T ∗(s)S∗
1(−s) is convex, there exist at most two real roots of

(4.5). Since s = 0 is a trivial root, there exist another real root ω0. We set

η1 = T ∗(ω0). (4.6)
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We also consider the equation

T ∗(ω0)S
∗
1(−s − ω0)S

∗
2(s) = 1. (4.7)

The left-hand side is a convex function of s and zero is a trivial root. Let ω2 be the other

root, and set

η2 =
1

S∗
2(ω2)

. (4.8)

In the same manner, we denote by ω2 the root of the equation

T ∗(−s)S∗
2(s) = 1 (4.9)

other than 0, and set

η2 =
1

S∗
2(ω2)

. (4.10)

Let ω0 be the root of the equation

T ∗(s)S∗
1(−s − ω2)S

∗
2(ω2) = 1 (4.11)

other than −ω2, and set

η2 = {S∗
2(ω2)}−1. (4.12)

Remarks.

1. Since ω0 is positive, η1 is strictly less than 1. This also implies that the derivative

of T ∗(s)S∗
1(−s) at ω0 must be positive, and that the derivative at origin must be

negative. Furthermore, it is easily shown that η1 is a monotone increasing function

of ρ1, and η1 ↓ 0 as ρ1 ↓ 0 while η1 ↑ 1 as ρ1 ↑ 1.
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2. ω2 is negative if ρ2 is small but it may be positive if ρ2 becomes large, and hence η2

may exceed 1. η2 can be regarded as a function of both ρ1 and ρ2. For a fixed ρ1, η2

is a monotone increasing function and η2 ↓ 0 as ρ2 ↓ 0.

3. Since ω2 is negative, η2 is less than 1. It is a monotone increasing function of ρ2, and

η2 ↓ 0 as ρ2 ↓ 0 while η2 ↑ 1 as ρ2 ↑ 1.

4. As for η1, it may be greater than 1 since ω0 may take positive or negative value. For

a fixed ρ2, η1 is a monotone increasing function and η1 → η1 as ρ1 ↑ 1.

In Chapter 2, we did extensive numerical experiments and calculated stationary prob-

abilities for a variety of examples of two-stage tandem queueing systems PH/PH/1 →

/PH/1. They observed the results and conjectured some geometric decay properties of the

tails of the stationary distributions as follows:

Conjecture 1. For fixed ρ1, there exists a threshold ρ̃2 and the behavior of x(n1, n2; i0, i1, i2)

is different between the cases ρ2 < ρ̃2 and ρ2 > ρ̃2.

1. In the case ρ2 < ρ̃2, there exist constants η1, η2, c0(i0), c1(i1), c2(i2) and G such that

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2

as n1, n2 → ∞ on a line n2 = an1 + b with rational a > 0 and b. This asymptotic

representation is also valid when n1 → ∞ with fixed n2 and when n2 → ∞ with fixed

n1.
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2. In the case ρ2 > ρ̃2, there exists a positive constant ã such that the decay rates are

different between the cases 0 < a < ã and a > ã for the slope a of the line on which

n1 and n2 increase. We denote the two sets of constants corresponding to these two

cases as {η1, η2, c0(i0), c1(i1), c2(i2), G} and {η1, η2, c0(i0), c1(i1), c2(i2), G}.

(a) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that

0 < a < ã,

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n1 → ∞ with fixed n2.

(b) When n1, n2 → ∞ on a line n2 = an1 + b with rational a and b such that a > ã,

π(n1, n2; i0, i1, i2) ∼ G c0(i0)c1(i1)c2(i2)η
n1
1 ηn2

2 .

This asymptotic representation is also valid when n2 → ∞ with fixed n1.

Decay constants ηk and ηk (k = 1, 2) is given by (4.6), (4.8), (4.10) and (4.12) below.

In this chapter we prove the following two theorems, which justify a part of the conjec-

ture stated above.

Theorem 4.2.1. If η2 < 1,

π(n1, n2; i0, i1, i2) ∼ G1(n2; i0, i1, i2)η
n1
1 (n1 → ∞), (4.13)

where G1(n2; i0, i1, i2) is a constant. Furthermore,

G1(n2; i0, i1, i2) ∼ G2 C0(i0)C1(i1)C2(i2)η
n2
2 (n2 → ∞), (4.14)
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where C0(i0) is the i0-th element of α(ω0I−T )−1, C1(i1) is the i1-th element of β1{−(ω0 +

ω2)I2−S1}−1, and C2(i2) are the i2-th element of β2{ω2I2−S2}−1. The constant G2 does

not depend on state of the system.

Theorem 4.2.2. If η1 < η2 and η1 < η2, then for fixed n1, i0, i1 and i2,

π(n1, n2; i0, i1, i2) ∼ G2(n1; i0, i1, i2)η
n2
2 (n2 → ∞), (4.15)

where G2 is a constant. In this case,

G2(n1; i0, i1, i2) ∼ G1 C0(i0)C1(i1)C2(i2)η
n1
1 (n1 → ∞), (4.16)

where C0(i0) is the i0-th element of α(ω0I0−T )−1, C1(i1) is the i1-th element of β1{−(ω0−

ω2)I1 −S1}−1, and C2(i2) is the i2-th element of β2(ω2I2 −S2)
−1. The constant G1 does

not depend on state of the system.

4.2.3 Quasi-birth-and-death Process with Countable Number of

Phases

To prove the theorems, we use Corollaries 1 and 2 proved in the preceding chapter. These

corollaries are summarized in Proposition 1 below.

Consider a continuous time Markov chain {X(t)} on the state space S = {(m, i); m, i =

0, 1, 2, . . .}. We partition S into subsets Lm = {(m, i); i = 0, 1, 2, . . .}, m = 0, 1, 2, . . .. The

subset Lm is called the m-th level. We assume that the transition rate matrix Q of {X(t)}
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has a block-tridiagonal form

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0

C1 B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.17)

Such a chain is called a quasi-birth-and-death (QBD) process with a countable number of

states in each level. Let π = (π0 π1 · · ·) be the stationary vector of the QBD process

partitioned by Lm’s.

Proposition 1. We assume that diagonal elements of −B and −B0 are bounded by

d(< ∞) from above. Suppose that there exist a positive constant η(< 1) and positive

vectors x and y such that

x

(
1

η
A+B + ηC

)
= 0, (4.18)(

1

η
A+B + ηC

)
y = 0, (4.19)

1

η
xAy 	= ηxCy, (4.20)

xe < ∞, and xy < ∞. (4.21)

If π1y < ∞ and if the matrix

Q′ =

⎛⎜⎜⎜⎜⎜⎜⎝
B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ (4.22)

is irreducible, then π has a geometric tail:

πm ∼ Cηmx. (4.23)
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In the following sections, we show that this proposition holds for two cases of our two-

stage tandem queueing systems. In these cases, the state space is divided into levels by

the number of customers in the first or the second stages.

4.3 Rate Matrix and Its Invariant Vectors for n1-based

Decomposition

First, we arrange the states (n1, n2; i0, i1, i2) of the Markov chain {X(t)} derived from

PH/PH/1 → /PH/1 in lexicographic order. We partition the state space according to

n1, i.e., we let

Lm = {(n1, n2; i0, i1, i2)|n1 = m}, m = 0, 1, 2, . . . . (4.24)

We denote by Q the transition rate matrix of the chain corresponding to the arrangement

above, and by π = (π0 π1 · · ·) the stationary vector partitioned according to Lm’s. Then

Q is of the block-tridiagonal form as (4.17) with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0α⊗ I1

γ0α⊗ I1 ⊗ I2 O

γ0α⊗ I1 ⊗ I2

O γ0α⊗ I1 ⊗ I2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.25)
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T ⊕ S1

I0 ⊗ I1 ⊗ γ2 T ⊕ S1 ⊕ S2

I0 ⊗ I1 ⊗ γ2β2 T ⊕ S1 ⊕ S2

I0 ⊗ I1 ⊗ γ2β2 T ⊕ S1 ⊕ S2

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.26)

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O I0 ⊗ γ1β1 ⊗ β2

O I0 ⊗ γ1β1 ⊗ I2

O I0 ⊗ γ1β1 ⊗ I2

O
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.27)

where we write the Kronecker product of two matrices or vectors as ⊗ and the Kronecker

sum of them as ⊕, respectively. Then {X(t)} is regarded as a QBD process with a countable

number of phases in each level.

We define some vectors. v0 and v1 are column vectors given by

v0 = (ω0I0 − T )−1γ0, v1 = (−ω0I1 − S1)
−1γ1, (4.28)

and u0 and u1 are row vectors defined by

u0 = α(ω0I0 − T )−1, u1 = β1(−ω0I1 − S1)
−1. (4.29)

From (4.3), all elements of these vectors are positive.

We prove Theorem 4.2.1 through a series of lemmas.

Lemma 4.3.1.

u0γ0 = αv0 = T ∗(ω0) = η1, u1γ1 = β1v1 = S∗
1(−ω0) =

1

η1
, (4.30)
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u0

(
1

η1
γ0α+ T

)
= ω0u0, u1 (η1γ1β1 + S1) = −ω0u1, (4.31)(

1

η1
γ0α+ T

)
v0 = ω0v0, (η1γ1β1 + S1)v1 = −ω0v1. (4.32)

Proof. The first two equations are trivial from definitions. From (4.29), we have

u0 (ω0I0 − T ) = α,

ω0u0 = α+ u0T

=
1

η1
u0γ0α+ u0T

= u0

(
1

η1

γ0α+ T

)
.

The reminders can be proved in a similar manner,

Note: Conversely, the vector u0 which satisfies Equation (4.31) in Lemma 4.3.1 must

have a form given by (4.29) up to a multiplicative constant.

Let

K ≡ 1

η1
A+B + η1C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̃0 Ã0

C̃1 B̃ Ã

C̃ B̃ Ã

C̃ B̃
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then by definitions,

Ã0 = η1I0 ⊗ γ1β1 ⊗ β2,
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B̃0 =
1

η1
γ0α⊗ I1 + T ⊕ S1,

C̃1 = I0 ⊗ I1 ⊗ γ2,

Ã = η1I0 ⊗ γ1β1 ⊗ I2, (4.33)

B̃ =
1

η1
γ0α⊗ I1 ⊗ I2 + T ⊕ S1 ⊕ S2,

C̃ = I0 ⊗ I1 ⊗ γ2β2.

We introduce a column vector yη1
by

yη1
=

⎛⎜⎜⎜⎜⎜⎜⎝
v0 ⊗ v1

v0 ⊗ v1 ⊗ e2

v0 ⊗ v1 ⊗ e2

...

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.34)

Lemma 4.3.2. yη1
is positive, and

Kyη1
= 0.

Proof. The positivity of yη1
is clear from the definition. The vector Kyη1

is written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̃0(v0 ⊗ v1) + Ã0(v0 ⊗ v1 ⊗ e2)

C̃1(v0 ⊗ v1) + (B̃ + Ã)(v0 ⊗ v1 ⊗ e2)

(C̃ + B̃ + Ã)(v0 ⊗ v1 ⊗ e2)

(C̃ + B̃ + Ã)(v0 ⊗ v1 ⊗ e2)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The j-th subvector is equal to the zero vector since from Lemma 4.3.1 and (4.33)

(C̃ + B̃ + Ã)(v0 ⊗ v1 ⊗ e2)

=

{(
1

η1
γ0α+ T

)
⊕ (η1γ1β1 + S1) ⊕ (γ2β2 + S2)

}
(v0 ⊗ v1 ⊗ e2)

=

{(
1

η1

γ0α+ T

)
v0

}
⊗ v1 ⊗ e2 + v0 ⊗ {(η1γ1β1 + S1) v1} ⊗ e2 +

v0 ⊗ v1 ⊗ {(γ2β2 + S2) e2}

= ω0v0 ⊗ v1 ⊗ e2 + −v0 ⊗ (−ω0v1) ⊗ e2 + 0 = 0.

The first two subvectors are also equal to the zero vectors. Thus Kyη1
= 0.

Lemma 4.3.3. If η2 < 1, there exists a positive vector xη1 such that

xη1K = 0, xη1e < ∞, xη1yη1
< ∞.

For the proof of this lemma, we define the matrix diag(φ) for an arbitrary column

vector φ = (φ1, φ2, · · ·)t by

diag(φ) =

⎛⎜⎜⎜⎜⎜⎜⎝
φ1

φ2

φ3

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

The operator diag(·) satisfies the following equalities for column vectors φ and ψ:

diag(φ⊗ψ) = diag(φ) ⊗ diag(ψ), diag(φ⊗ψ)−1 = diag(φ)−1 ⊗ diag(ψ)−1.
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Proof. In order to exploit known results for Markov chains, we transform K so that

it becomes a transition rate matrix. Consider a transformation KD of K by the matrix

D = diag(yη1
),

KD ≡D−1KD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D̃
−1

0 B̃0D̃0 D̃
−1

0 Ã0D̃

D̃
−1
C̃1D̃0 D̃

−1
B̃D̃ D̃

−1
ÃD̃

D̃
−1
C̃D̃ D̃

−1
B̃D̃ D̃

−1
ÃD̃

D̃
−1
C̃D̃ D̃

−1
B̃D̃

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where D̃0 = diag(v0 ⊗ v1) and D̃ = diag(v0 ⊗ v1 ⊗ e2). In this case, KD becomes a

transition rate matrix of a QBD process with finite number of phases in each level.

We shall show that the transition rate matrix KD is ergodic if η2 < 1, by using Theo-

rem 3.1.1 in [30]. Since the matrix

D̃
−1
ÃD̃ + D̃

−1
B̃D̃ + D̃

−1
C̃D̃

=

{
diag(v0)

−1

(
1

η1
γ0α+ T

)
diag(v0)

}
⊕ (4.35)

{diag(v1)
−1(η1γ1β1 + S1) diag(v1)} ⊕ (γ2β2 + S2)

is a transition rate matrix of a finite dimension, and also it is irreducible from the assump-

tion (4.3), it has a non-negative invariant vector π̃. Theorem 3.1.1 in [30] says that KD is

ergodic if and only if

π̃(D̃
−1
ÃD̃)ẽ < π̃(D̃

−1
C̃D̃)ẽ, (4.36)

where ẽ is the column vector of the same dimension as D̃ with all elements being equal to

1.
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Since the matrix in (4.35) is the Kronecker sum of three smaller matrices, π̃ is rep-

resented as the Kronecker product of the eigenvectors of these smaller matrices. If we

let

π̃ = {u0 diag(v0)} ⊗ {u1 diag(vv1)} ⊗ {β2(−S2)
−1},

then from (4.35) and Lemma 4.3.1,

π̃
(
D̃

−1
ÃD̃ + D̃

−1
B̃D̃ + D̃

−1
C̃D̃

)
=

{
u0

(
1

η1
γ0α+ T

)
diag(v0)

}
⊗ {u1 diag(v1)} ⊗ {β2(−S2)

−1} +

{u0 diag(v0)} ⊗ {u1 (η1γ1β1 + S1) diag(v1)} ⊗ {β2(−S2)
−1} +

{u0 diag(v0)} ⊗ {u1 diag(v1)} ⊗ {β2(−S2)
−1 (γ2β2 + S2)}

= {ω0u0 diag(v0)} ⊗ {u1 diag(v1)} ⊗ {β2(−S2)
−1} +

{u0 diag(v0)} ⊗ {−ω0u1 diag(v1)} ⊗ {β2(−S2)
−1} +

{u0 diag(v0)} ⊗ {u1 diag(v1)} ⊗ {−β2 + β2} = 0.

Hence π̃ is the invariant vector of the matrix (4.35).

Now we evaluate the both sides of (4.36).

π̃D̃
−1
ÃD̃ẽ =

[
u0 ⊗ u1 ⊗

{
β2(−S2)

−1
}]

× (η1I0 ⊗ γ1β1 ⊗ I2) × (v0 ⊗ v1 ⊗ e2)

= {α(ω0I0 − T )−1v0} ⊗ 1

η1
⊗ {β2(−S2)

−1e2}

=
1

η1
T ∗′(s0)

∣∣∣
s0=ω0

S∗′
2 (s2)

∣∣∣
s2=0

,

where a prime represents a derivative, and

π̃D̃
−1
C̃D̃ẽ =

[{
α (ω0I0 − T )−1

}
⊗
{
β1 (−ω0I1 − S1)

−1
}
⊗
{
β2(−S2)

−1
}]

×
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(I0 ⊗ I1 ⊗ γ2β2) × (v0 ⊗ v1 ⊗ e2)

=
{
α (ω0I0 − T )−1 v0

}
×
{
β1 (−ω0I1 − S1)

−1 v1

}
= T ∗′(s0)

∣∣∣
s0=ω0

S∗′
1 (s1)

∣∣∣
s1=−ω0

= T ∗′(s0)
∣∣∣
s0=ω0

S∗′
1 (−ω0 − s2)

∣∣∣
s2=0

.

Therefore, the difference of both sides in inequality (4.36) is

π̃(D̃
−1
ÃD̃)ẽ− π̃(D̃

−1
C̃D̃)

= T ∗′(s0)
∣∣∣
s0=ω0

{
1

η1
S∗′

2 (s2)
∣∣∣
s2=0

− S∗′
1 (−ω0 − s2)

∣∣∣
s2=0

}

= T ∗′(s0)
∣∣∣
s0=ω0

{
S∗

1(−ω0) S∗′
2 (s2)

∣∣∣
s2=0

− S∗′
1 (−ω0 − s2)

∣∣∣
s2=0

S∗
2(0)

}
(4.37)

= T ∗′(s0)
∣∣∣
s0=ω0

{S∗
1(−ω0 − s2)S

∗
2(s2)}′|s2=0 .

Since the derivative of T ∗(s0) is negative by the monotonicity of LSTs, the inequality (4.36)

holds iff the derivative of the function

f2(s2) = S∗
1(−ω0 − s2)S

∗
2(s2)

at the origin is positive. Remember that f2(s2) is convex, and the equation η1f2(s2) = 1

has two roots, zero and ω2. This means that the inequality f ′
2(0) > 0 holds iff f ′

2(ω2) < 0,

or equivalently, η2 < 1. Thus we have shown that KD is ergodic iff η2 < 1.

Under this condition, we know that there exists a positive vector xD such that

xDKD = 0, xDe = 1.

Then, the positive vector xη1 = xDD satisfies xη1K = 0 and xη1yη1
= 1 < ∞. From the
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definition of yη1
, there exists a positive number d1 such that yη1

< d1e. Hence

xη1e < d1xη1yη1
< d1 < ∞.

Lemma 4.3.4.

η−1
1 xη1Ayη1

	= η1xη1Cyη1
.

Proof. We define a matrix E as

E =

⎛⎜⎜⎜⎜⎜⎜⎝
I0 ⊗ I1

I0 ⊗ I1 ⊗ e2

I0 ⊗ I1 ⊗ e2

...

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is clear that

yη1
= E(v0 ⊗ v1),

KE = E

(
1

η1
γ0α+ T

)
⊕ (η1γ1β1 + S1) , (4.38)

AE = E(γ0α⊗ I1), CE = E(I0 ⊗ γ1β1),

and hence

1

η1
Ayη1

= E(γ0 ⊗ v1), η1Cyη1
= E(v0 ⊗ γ1).
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Postmultiplying E to the equality xη1K = 0 and applying (4.38), we have

xη1E

{(
1

η1

γ0α+ T

)
⊕ (η1γ1β1 + S1)

}
= 0.

From this equation and Lemma 4.3.1, we see that xη1E = u0 ⊗ u1 up to a multiplicative

constant. Again from Lemma 4.3.1, we have

1

η1
xη1Ayη1

− η1xη1Cyη1
= xη1E(γ0 ⊗ v1) − xη1E(v0 ⊗ γ1)

= u0γ0 · u1v1 − u0v0 · u1γ1

= η1u1v1 − 1

η1
u0v0

= α(ω0I0 − T )−1γ0β1(−ω0I1 − S1)
−2γ1

−α(ω0I0 − T )−2γ0β1(−ω0I1 − S1)
−1γ1

= {T ∗(s0)S
∗
1(−s0)}′

∣∣∣
s0=ω0

.

The function f1(s0) = T ∗(s0)S
∗
1(−s0) is convex and f1(0) = f1(ω0) = 1. However, ω0 must

be positive since η1 = T ∗(ω0) < 1. It results that f ′
1(ω0) > 0 and the inequality of the

lemma holds.

Lemma 4.3.5.

π1yη1
< ∞.
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Proof. Since yη1
< d1e,

π1yη1
< d1π1e < ∞.

To prove the asymptotic form of xη1 , we introduce a partition of each Lm:

lk = {(n2; i0, i1, i2)|n2 = k}, k = 0, 1, 2, . . . ,

and denote by xη1 = (xη1(0) xη1(1) · · ·) the row vector xη1 partitioned according to lk’s.

Lemma 4.3.6. If η2 < 1, then

xη1(n2) ∼ G2x0 ⊗ x1 ⊗ x2,

where G2 is a certain constant and

x0 = α(ω0I − T )−1,

x1 = β1{−(ω0 + ω2)I − S1}−1,

x2 = β2(ω2I − S1)
−1.

Proof. The ordinary matrix-geometric theory by Neuts [30] can be applied to a Markov

chain having the transition rate matrix KD, since it is a QBD process with finite number

of phases in each level.
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Let R̃D be the rate matrix of KD. Then R̃D is the minimal non-negative solution to

the matrix equation

D̃
−1
ÃD̃ + R̃DD̃

−1
B̃D̃ + R̃

2

DD̃
−1
C̃D̃ = O.

We denote by η̃ the Perron-Frobenius eigenvalue of R̃D and x̃D be the corresponding left

eigenvector: x̃DR̃D = η̃x̃D. Then we have

0 = x̃D

(
1

η̃
D̃

−1
ÃD̃ + D̃

−1
B̃D̃ + η̃D̃

−1
C̃D̃

)

= x̃D

[{
diag(v0)

−1

(
1

η1

γ0α+ T

)
diag(v0)

}
⊕{

diag(v1)
−1

(
η1

η̃
γ1β1 + S1

)
diag(v1)

}
⊕ (η̃γ2β2 + S2)

]
.

Since the matrix in brackets is the Kronecker sum of three smaller matrices, x̃D can be

represented as the Kronecker products of three eigenvectors of these three matrices. That

is, x̃D = x̃0 ⊗ x̃1 ⊗ x̃2 where x̃0, x̃1 and x̃2 are row vectors satisfying

x̃0

{
diag(v0)

−1

(
1

η1

γ0α+ T

)
diag(v0)

}
= ξ0x̃0,

x̃1

{
diag(v1)

−1

(
η1

η̃
γ1β1 + S1

)
diag(v1)

}
= ξ1x̃1,

x̃2 {(η̃γ2β2 + S2)} = ξ2x̃2,

ξ0 + ξ1 + ξ2 = 0.

Then, as in the proof of Lemma 4.3.1 we can show that

η1 = α(ξ0I0 − T )−1γ0 = T ∗(ξ0), (4.39)

η̃

η1
= β1(ξ1I1 − S1)

−1γ1 = S∗
1(ξ1), (4.40)
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1

η̃
= β2(ξ2I2 − S2)

−1γ2 = S∗
2(ξ2). (4.41)

From the monotonicity of LSTs, we have ξ0 = ω0. Eliminating η̃ and ξ1 from (4.40) and

(4.41), we obtain the equation (4.7) and hence ξ2 must be zero or ω2. Since KD is ergodic,

η̃ should be less than 1. Then we have ξ2 = ω2 and η̃ = η2.

We can also derive explicit forms of x̃k’s as

x̃0 = α(ω0I − T )−1 diag(v0),

x̃1 = β1{−(ω0 + ω2)I − S1}−1 diag(v1),

x̃2 = β2(ω2I − S1)
−1,

up to multiplicative constants. Therefore, x̃ = x̃DD
−1 is an eigenvector of the rate matrix

R̃ of K corresponding to the eigenvalue η̃ = η2.

It results that, if η2 < 1, the vector xη1 = (xη1(0) xη1(1) · · ·) has a geometric tail

xη1(n2) ∼ G2η̃
n2x̃

= G2η
n2
2 α(ω0I − T )−1 ⊗ β1{−(ω0 + ω2)I − S1}−1 ⊗ β2(ω2I − S2)

−1, n2 → ∞.

This is the vector representation of (4.14).

Proof of Theorem 4.2.1 Since there are no redundant phases in PH(α,T ) and PH(βk,Sk)

(k = 1, 2), it is clear that Q′ is irreducible. Then the above lemmas prove the whole of the

theorem. �
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4.4 Rate Matrix and Its Invariant Vectors for n2-based

Decomposition

Next, we rearrange the states (n1, n2; i0, i1, i2) of {X(t)} first in order of n2, and then for

fixed n2 they are arranged lexicographically. We define a new partition of the state space

by

Lm = {(n1, n2; i0, i1, i2)|n2 = m}, m = 0, 1, 2, . . . . (4.42)

We denote by Q the transition rate matrix of the chain corresponding to the arrangement

above, and by π = (π0 π1 · · ·) the stationary vector of {X(t)} partitioned according to

Lm’s. Then Q is of a block-tridiagonal form

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A0

C1 B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.43)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O

I0 ⊗ γ1 ⊗ I2 O

I0 ⊗ γ1β1 ⊗ I2 O

I0 ⊗ γ1β1 ⊗ I2 O
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.44)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T ⊕ S2 γ0α⊗ β1 ⊗ I2

T ⊕ S1 ⊕ S2 γ0α⊗ I1 ⊗ I2

T ⊕ S1 ⊕ S2 γ0α⊗ I1 ⊗ I2

T ⊕ S1 ⊕ S2
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.45)
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C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I0 ⊗ γ2β2

I0 ⊗ I1 ⊗ γ2β2 O

I0 ⊗ I1 ⊗ γ2β2

O I0 ⊗ I1 ⊗ γ2β2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.46)

We define the following vectors:

u0 = α(−ω2I0 − T )−1, u2 = β2(ω2I2 − S2)
−1, (4.47)

v0 = (−ω2I0 − T )−1γ0, v2 = (ω2I2 − S2)
−1γ2. (4.48)

Lemma 4.4.1.

u0γ0 = αv0 = T ∗(−ω2) = η2, u2γ2 = β2v2 = S∗
2(ω2) =

1

η2

, (4.49)

u0

(
1

η2

γ0α+ T

)
= −ω2u0, u2 (η2γ2β2 + S2) = ω2u2, (4.50)(

1

η2

γ0α+ T

)
v0 = −ω2v0, (η2γ2β2 + S2)v2 = ω2v2. (4.51)

Proof. All these equations are easily proved as in Lemma 4.3.1.

First, we define yη2
to satisfy (4.19) in Proposition 1 for η = η2. Let

K ≡
(

1

η2

A+B + η2C

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂0 Â0

Ĉ1 B̂ Â

Ĉ B̂ Â

Ĉ B̂
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where

Â0 = γ0α⊗ β1 ⊗ I2,

B̂0 = T ⊕ S2 + η2I0 ⊗ γ2β2,

Ĉ1 =
1

η2

I0 ⊗ γ1 ⊗ I2,

Â = γ0α⊗ I1 ⊗ I2, (4.52)

B̂ = T ⊕ S1 ⊕ S2 + η2I0 ⊗ I1 ⊗ γ2β2,

Ĉ =
1

η2

I0 ⊗ γ1β1 ⊗ I2.

We define yη2
as

yη2
=

⎛⎜⎜⎜⎜⎜⎜⎝
v0 ⊗ v2

η−1
2 v0 ⊗ e1 ⊗ v2

η−2
2 v0 ⊗ e1 ⊗ v2

...

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 4.4.2.

Kyη2
= 0.

Proof. From Lemma 4.4.1, it is easily checked that Kyη2
= 0 in a similar manner as in

Lemma 4.3.2.
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Lemma 4.4.3. If η1 < η2, then there exists a positive vector xη2
such that

xη2
K = 0, xη2

e < ∞, xη2
yη2

< ∞.

Proof. We consider the transformation KD of K by D = diag(yη2
). That is, we define

KD as

KD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D̂
−1

0 B̂0D̂0 η−1
2 D̂

−1

0 Â0D̂

η2D̂
−1
Ĉ1D̂0 D̂

−1
B̂D̂ η−1

2 D̂
−1
ÂD̂

η2D̂
−1
ĈD̂ D̂

−1
B̂D̂ η−1

2 D̂
−1
ÂD̂

η2D̂
−1
ĈD̂ D̂

−1
B̂D̂

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

where D̂0 = diag(v0 ⊗ v2) and D̂ = diag(v0 ⊗ e1 ⊗ v2). Note that KD is a transition

rate matrix of a Markov chain which is a QBD process with finitely many phases in each

level. We shall show that the Markov chain is ergodic using the matrix-geometric theory

by Neuts.

Since the matrix (η−1
2 Â+ B̂ + η2Ĉ) can be rewritten as

{(η−1
2 γ0α+ T ) ⊕ (γ1β1 + S1) ⊕ (η2γ2β2 + S2)},

we let

π̂ = u0 ⊗ {β1(−S1)
−1} ⊗ u2. (4.53)

Then π̂ satisfies the equation

π̂(η−1
2 Â+ B̂ + η2Ĉ) = 0.
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Thus the vector π̂D̂ satisfies the equation

π̂D̂(η−1
2 D̂

−1
ÂD̂ + D̂

−1
B̂D̂ + η2D̂

−1
ĈD̂) = 0,

Employing Theorem 3.1.1 in [30], KD is ergodic iff

π̂D̂(η−1
2 D̂

−1
ÂD̂)ê < π̂D̂(η−1

2 D̂
−1
ĈD̂)ê, (4.54)

where ê is the column vector of the same dimension as D̂ with all elements being equal to

1. The difference of both sides of the above inequality is rewritten as

π̂D̂(η−1
2 D̂

−1
ÂD̂)ê− π̂D̂(η−1

2 D̂
−1
ĈD̂)ê

= η−1
2 π̂Â(v0 ⊗ e1 ⊗ v2) − η2π̂Ĉ(v0 ⊗ e1 ⊗ v2)

=
{
α(−ω2I0 − T )−1γ0α0v0

}
⊗
{
β1(−S1)

−1e1

}
⊗
{
β2(ω2I2 − S2)

−1v2

}
−

η2

{
α(−ω2I0 − T )−1v0

}
⊗
{
β1(−S1)

−1γ1β1

}
⊗
{
β2(ω2I2 − S2)

−1v2

}
= η2T

∗(−ω2) S∗′
1 (−s0 − ω2)

∣∣∣
s0=−ω2

· {−S∗′
2 (s2)}

∣∣∣
s2=ω2

−

η2 T ∗′(s0)
∣∣∣
s0=−ω2

S∗
1(0) {−S∗′

2 (s2)}
∣∣∣
s2=ω2

= η2 {T ∗(s0)S
∗
1(−s0 − ω2)}′|s0=−ω2

{−S∗′
2 (s2)}

∣∣∣
s2=ω2

. (4.55)

It is easily shown that the function

g(s0) = T ∗(s0)S
∗
1(−s0 − ω2)

is convex, and hence the equation g(s0) = η2 has two roots, −ω2 and ω0. From the

assumption η1 < η2, we have ω0 > −ω2 since η1 = T ∗(ω0) and η2 = T ∗(−ω2). Hence

g′(s0)|s0=−ω2
= {T ∗(s0)S

∗
1(−s0 − ω2)}′|s0=−ω2

< 0,
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and this implies the difference (4.55) is negative. Thus the inequality (4.54) holds, and

the Markov chain with transition rate matrix KD is ergodic. Then there exists a positive

vector xD such that xDKD = 0 and xDe = 1. If we define xη2
= xDD

−1
,

xη2
(Â+ η2B̂ + η2

2Ĉ) = 0, xη2
yη2

= 1 < ∞.

From the definition of yη2
, there exists a positive constant d2 such that e < d2yη2

. Hence

xη2
e < d2xη2

yη2
< ∞.

Lemma 4.4.4.

η−1
2 xη2

Ayη2
< η2xη2

Cyη2
.

Proof. By the definition, we can rewrite KD as

KD = K01 ⊕ (Ŝ2 + η2γ̂2β̂2 − ω2I2), (4.56)

where

K01 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T̂ + ω2I2 η−1
2 γ̂0α̂⊗ β1

I0 ⊗ γ1 T̂ ⊕ S1 + ω2I0 ⊗ I1 η−1
2 γ̂0α̂⊗ I1

I0 ⊗ γ1β1 T̂ ⊕ S1 + ω2I0 ⊗ I1 η−1
2 γ̂0α̂⊗ I1

I0 ⊗ γ1β1 T̂ ⊕ S1 + ω2I0 ⊗ I1
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and

T̂ = diag(v0)
−1T diag(v0), Ŝ2 = diag(v2)

−1S2 diag(v2),

α̂ = αdiag(v0), β̂2 = β2 diag(v2),

γ̂0 = diag(v0)
−1γ0, γ̂2 = diag(v2)

−1γ2.

It is easily checked that K01 is a transition rate matrix of a Markov chain which is a QBD

process with finitely many states in each level. The ergodicity of K01 is shown by virtue

of the Theorem 3.1.1 of Neuts [30] again, and hence there exists the stationary probability

vector x01 of the chain such that

x01K01 = 0, x01e = 1.

From (4.56), xD is written as

xD = (u2v2)
−1x01 ⊗ u2 diag(v2).

Then we have

η2xη2
Cyη2

= η2xDD
−1
Cyη2

= [x01 ⊗ {u2 diag(v2)}]

⎛⎜⎜⎜⎜⎜⎜⎝
e0 ⊗ diag(v2)

−1γ2

e0 ⊗ e1 ⊗ diag(v2)
−1γ2

e0 ⊗ e1 ⊗ diag(v2)
−1γ2

...

⎞⎟⎟⎟⎟⎟⎟⎠
=

1

η2

.
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On the other hand, since

1

η2

D
−1
Ayη2

=

⎛⎜⎜⎜⎜⎜⎜⎝
0

e0 ⊗ γ1 ⊗ e2

e0 ⊗ γ1 ⊗ e2

...

⎞⎟⎟⎟⎟⎟⎟⎠ ,

we have

1

η2

xη2
Ayη2

=
1

η2

xDD
−1
Ayη2

= [x01 ⊗ {u2 diag(v2)}]

⎛⎜⎜⎜⎜⎜⎜⎝
0

e0 ⊗ γ1 ⊗ e2

e0 ⊗ γ1 ⊗ e2

...

⎞⎟⎟⎟⎟⎟⎟⎠

= x01

⎛⎜⎜⎜⎜⎜⎜⎝
0

e0 ⊗ γ1

e0 ⊗ γ1
...

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.57)

Note that e0 ⊗ γ1 = (I0 ⊗ γ1β1)(e0 ⊗ e1). This means that the i-th element of e0 ⊗ γ1

is the rate that the Markov chain K01 at state (n, i) goes down to level (n − 1). Hence

the quantity (4.57) is the rate that the chain K01 goes one level down. From the balance

equation, this rate is equal to the rate that the chain goes one level up:

1

η2

xη2
Ayη2

= x01

⎛⎜⎜⎜⎜⎜⎜⎝
γ̂0

γ̂0 ⊗ e1

γ̂0 ⊗ e1

...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
I0

I0 ⊗ e1

I0 ⊗ e1

...

⎞⎟⎟⎟⎟⎟⎟⎠ γ̂0. (4.58)

Let

E01 =

⎛⎜⎜⎜⎜⎜⎜⎝
I0

I0 ⊗ e1

I0 ⊗ e1

...

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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and postmultiply it to x01K01 = 0. Then we have

0 = x01K01E01 = x01

⎛⎜⎜⎜⎜⎜⎜⎝
T̂ + ω2I2 + η−1

2 γ̂0α

(T̂ + ω2I2 + η−1
2 γ̂0α) ⊗ e1

(T̂ + ω2I2 + η−1
2 γ̂0α) ⊗ e1

...

⎞⎟⎟⎟⎟⎟⎟⎠
= x01E01(T̂ + ω2I2 + η−1

2 γ̂0α).

This indicates that x01E01 can be regarded as the stationary probability vector of a Markov

chain with transition rate matrix T̂ + ω2I2 + η−1
2 γ̂0α, and is given by

x01E01 = (u0v0)
−1u0 diag(v0),

where u0 is defined in (4.48). Thus, from (4.58), we have

1

η2

xη2
Ayη2

= (u0v0)
−1u0 diag(v0)γ̂0 = (u0v0)

−1 · η2.

Therefore,

η2xη2
Cyη2

− 1

η2

xη2
Ayη2

= (u2v2)
−1 1

η2

− η2

u0v0

=
(u2v2)

−1

u0v0

{
1

η2

u0v0 − η2u2v2

}

=
1

(u2v2)(u0v0)
{T ∗(−s)S∗

2(s)}′|s=ω2
< 0.

Lemma 4.4.5. If η1 < η2, then π1yη2
< ∞.
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Proof. Since π1 ≤ ∑∞
m=0 πm, we have

π1yη2
≤

∞∑
m=0

πmyη2
. (4.59)

Since the behavior of the first stage is not affected by the second one, the stationary

probability vector
∑∞

m=0 πm asymptotically behaves similar to the marginal stationary

probability vector of the Markov chain derived from the first stage. That is, it decays

geometrically with rate η1 as n1 → ∞. Since yη2
decays with rate η−1

2 , the inner product

∑∞
m=0 πmyη2

is finite if η1/η2 < 1.

To prove the asymptotic form of xη2
, we consider the partition of each Lm. That is,

we let

lk = {(n1; i0, i1, i2)|n1 = k}, k = 0, 1, 2, . . . ,

and denote by xη2
= (xη1

(0) xη1
(1) cdots) the row vector xη2

partitioned according to

lk’s.

Lemma 4.4.6. If η1 < 1, then

xη2
(n1) ∼ G1η

n1
1 x0 ⊗ x1 ⊗ x2, (n1 → ∞),

where G1 is a certain constant and

x0 = α(ω0I − T )−1,

x1 = β1{−(ω0 + ω2)I − S1}−1,

x2 = β2(ω2I − S1)
−1.
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Proof. The ordinary matrix-geometric theory by Neuts [30] can be applied as well as

the proof of Lemma 4.4.6. Let R̂D be the rate matrix of KD. Then R̂D is the minimal

non-negative solution to the matrix equation

1

η2

D̂
−1
ÂD̂ + R̂DD̂

−1
B̂D̂ + η2R̂

2

DD̂
−1
ĈD̂ = O.

We denote by η̂ an Perron-Frobenius eigenvalue of R̂D and x̂D be the corresponding left

eigenvector, that is, x̂DR̂D = η̂x̂D. Then we have

x̂D

(
1

η̂η2

D̂
−1
ÂD̂ + D̂

−1
B̂D̂ + η̂η2D̂

−1
ĈD̂

)
= 0.

and hence the vector x̂D is the invariant vector of the matrix

(
1

η̂η2

D̂
−1
ÂD̂ + D̂

−1
B̂D̂ + η̂η2D̂

−1
ĈD̂

)

=

{
diag(v0)

−1

(
1

η̂η2

γ0α+ T

)
diag(v0)

}
⊕

{
diag(v1)

−1 (η̂γ1β1 + S1)
}
⊕ {(η2γ2β2 + S2) diag(v2)} .

Then x̂D can be represented as x̂0 ⊗ x̂1 ⊗ x̂2 such that

x̂0

{
diag(v0)

−1

(
1

η̂η2

γ0α+ T

)
diag(v0)

}
= ξ̂0x̃0,

x̃1 {(η̂γ1β1 + S1)} = ξ̂1x̃1,

x̃2

{
diag(v2)

−1(η2γ2β2 + S2) diag(v2)
}

= ξ̂2x̃2,

ξ̂0 + ξ̂1 + ξ̂2 = 0.
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Then we have

η̂η2 = α(ξ̂0I0 − T )−1γ0 = T ∗(ξ̂0), (4.60)

1

η̂
= β1(ξ̂1I1 − S1)

−1γ1 = S∗
1(ξ̂1), (4.61)

1

η2

= β2(ξ̂2I2 − S2)
−1γ2 = S∗

2(ξ̂2). (4.62)

From the monotonicity of LSTs, ξ̂2 = ω2. Eliminating η̂ and ξ̂1 from (4.60) and (4.61),

we obtain the equation (4.11) and ξ̂0 must be −ω2 or ω0. Since KD is ergodic under the

condition of the theorem, however, η̂ must be less than 1. If ξ̂0 = −ω2 then η̂ = η−1
2 exceeds

1 by definition, and hence ξ̂0 = ω0. and η̂ = η1.

We can also derive explicit forms of x̂k’s as

x̂0 = α(ω0I − T )−1 diag(v0),

x̂1 = β1{−(ω0 + ω2)I − S1}−1,

x̂2 = β2(ω2I − S2)
−1 diag(v2),

up to multiplicative constants. Therefore,

x̂ = x̂DD̂
−1

= {α(ω0I − T )−1} ⊗ [β1{−(ω0 + ω2)I −S1}−1]⊗ {β2(ω2I −S2)
−1} (4.63)

is an invariant vector of the rate matrix R̂ of K corresponding to the eigenvalue η̂ = η1.
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Proof of Theorem 4.2.2 Since there are no redundant phases in PH(α,T ) and PH(βk,Sk) (k =

1, 2), it is clear that

Q
′
=

⎛⎜⎜⎜⎜⎜⎜⎝
B A

C B A

C B
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

is irreducible. Since η2 < 1 by definition, the condition η1 < η2 is the sufficient condition

of η1 < 1 in Lemma 4.4.6. Then the above lemmas prove the whole of the theorem. �
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Chapter 5

Numerical Computation for Tandem

Queueing Systems on a Parallel

Computer

5.1 Introduction

The purpose of this chapter is to discuss problems arising when we use the aggregation/dis-

aggregationmethod, a popular numerical method for solving linear equations, on a parallel

computer.

The numerical analysis has been an essential tool not only for applications, but also

for progressing of novel theories. For example, it is often employed to make conjectures on

unresolved problems. We use numerical analyses, in this thesis, for making some conjec-
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tures on the tail behaviors of the stationary distributions in two- and three-stage tandem

queueing systems.

The numerical analysis in the wide sense includes simulation, numerical solutions for

differential equations, and computational approaches by using Markov chain models. We

focus here the last ones. To compute the characteristic values of various stochastic models,

the Markov chain is one of the most popular and strong tools. Once we derive a Markov

chain from the model we are interested, then most of the characteristics of the system can

be derived from the stationary distribution x of the Markov chain which is obtained by

solving balance equations:

xQ = 0, xe = 1. (5.1)

Since the balance equations form a system of linear equations xA = b, we can apply

the ordinary numerical method for linear equations to the computation of the stationary

distribution x. There are a great number of numerical methods for linear equations, some

of which are conscious of the structure of matrices while others are for general matrices.

The LU decomposition method, a variation of the Gauss elimination method, is consid-

ered as the best among direct methods for general linear equations. It can get the solutions

with relatively less computational burdens. However, direct methods sometimes generate

serious errors, especially in the case of very large matrices. Thus the LU decomposition

method, as well as other direct methods, is usually considered to be inappropriate for the

balance equations of large-scale Markov chains.

Many of practical systems need a great amount of states to describe by Markov chains,
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and hence we have to treat vectors and matrices with tremendously large dimensions. To

compute these large-scale problem, iterative methods are commonly used. For example,

we usually use the Jacobi method or the Gauss-Seidel iterative method for non-structured

Markov chains. These methods are sometimes referred as the power methods. With these

iterative methods, however, it often takes a large number of iterations to converge, since

these methods are unconscious of the structure of the Markov chain. In many cases, the

transition rate matrix Q is structured. For example, Q has a block-tridiagonal form in

the case of embedded Markov chains derived from queueing systems such as GI/PH/c or

PH/G/1. It is empirically known that the power method takes much iteration for this

type of matrices.

The block Gauss-Seidel method, a variant of the Gauss-Seidel method, uses the block

structure of matrices to accelerate the speed of convergence. Also the aggregation/dis-

aggregationmethod [37, 44, 49] (often abbreviated to the A/D method) uses the block

structure as well as the property of stochastic vectors and matrices. Nowadays, the A/D

method is considered as one of the most effective methods for computations of stationary

distributions, and there are a varieties of algorithms (See [38] and [42] for example).

Nowadays, the architecture of computer used for computations is coming to a very

important factor to determine which algorithm is faster. A good example is the partitioning

problem, which is the main issue of this chapter, when we implement a numerical method

to a massive parallel computer. A massive parallel computer has a number of (from 128 to
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over 1000) processor elements, called cells, and provide high-speed computing. However,

data transfer called message passing from one cell to another takes a considerable time,

and this might cause a bottleneck of the computation. Therefore, we should organize the

program so that the amount of data transfer becomes as small as possible. The main

issue of this chapter is how to decrease the data transfer in calculation of the stationary

probabilities of tandem queueing systems by the A/D method.

In Section 5.2, we describe the concept of the A/D method for general Markov chains.

The application of the A/D method to the three-stage tandem queueing systems are dis-

cussed in Section 5.3. We introduce Fujitsu AP1000 in Section 5.4 as a typical example of

massive parallel computers. Finally, in Section 5.5, we consider to divide and allocate the

states of the three-stage tandem queueing system to cells in AP1000.

5.2 Aggregation/Disaggregation Method

There are two keywords to express the A/D method; state decomposition and conditional

probabilities.

In a Markov chain derived from a practical problem, transitions from a state are usually

restricted to a small number of states compared with the whole state space. In such a case,

it is convenient to decompose the state space into disjoint subspaces called lumps according

to relations among states.

The state space S of the original Markov chain with N states us decomposed into K
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lumps L0,L1, . . . ,LK−1. We denote the number of states in Li by Ni. Then

S = L0 ∪ L1 ∪ · · · ∪ LK−1,

N =
K−1∑
i=0

Ni,

Li ∩ Lj = φ for all 0 ≤ i, j < K, i 	= j.

We call subscript of the lump Li as a macro state, and each state in S as a micro state.

We divide the stationary probability vector x to K subvectors and the transition rate

matrix Q into K × K submatrices according to the state decomposition above:

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
Q0,0 Q0,1 · · · Q0,K−1

Q1,0 Q1,1 · · · Q1,K−1
...

...
. . .

...

QK−1,0 QK−1,1 · · · QK−1,K−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.2)

x = (x0 x1 · · · xK−1),

where Qi,j is an Ni×Nj-submatrix, and xi is a row vector with Ni elements (0 ≤ i, j < K).

For this decomposition, we introduce two new chains for macro states and micro states.

We denote by x̃ the row vector with

x̃i = xiei (i = 0, 1, . . . , K − 1), (5.3)

in its ith element, where ei is the Ni-dimensional column vector with all elements equal to

1. Here x̃ can be regarded as the stationary probability vector for macro states. We also

define bi as

bi =
1

x̃i

xi (i = 0, 1, . . . , K − 1). (5.4)
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bi is considered as the “conditional” stationary probability vector for micro states in the

lump Li.

We form K × N -matrix B and N × K-matrix E as follows:

B =

⎛⎜⎜⎜⎜⎜⎜⎝
b0 01 · · · 0K−1

00 b1 · · · 0K−1

...
...

. . .
...

00 01 · · · bK−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.5)

E =

⎛⎜⎜⎜⎜⎜⎜⎝
e0 0T

0 · · · 0T
0

0T
1 e1 · · · 0T

1
...

...
. . .

...

0T
K−1 0T

K−1 · · · eK−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.6)

where 0i is the Ni-dimensional row vector with all elements equal to zero (i = 0, 1, . . . , K−

1), and the superscript T represents a transpose.

By the definition of B and E, we have

Eẽ = e, BE = Ĩ, (5.7)

where ẽ is the K-dimensional column vector with all elements equal to 1, and Ĩ is the

K-dimensional identity matrix. We also have by the definition of x̃ and bi’s

x̃ = xE, x̃B = x. (5.8)

From (5.1), (5.7) and (5.8), we have

0 = xQE = x̃BQE. (5.9)

Hence, if we denote Q̃ = BQE, then x̃ and Q̃ satisfy

x̃Q̃ = 0̃, (5.10)
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x̃ẽ = 1,

where 0̃ is the K-dimensional row vector with all elements equal to zero. If we denote the

(i, j)-element of Q̃ by q̃i,j , then

q̃i,j = biQi,jej (0 ≤ i, j < K).

It is easily shown that q̃i,j is the transition rate from lump i to j with a given conditional

stationary probability vector for lump i. Then Q̃ represents the transition rates of the

process on macro states, though it is not a Markov chain.

Note that, if all of bi’s are known, we can calculate the stationary probability vector

x̃ for macro states as a solution of much smaller chain than the original Markov chain.

Since the ith subvector xi of the original stationary probability vector x is given by xi =

x̃ibi(i = 0, 1, . . . , K − 1), we can obtain x from x̃. This is the interpretation of the phase

in which x̃ is obtained from bi’s. This phase will be referred as the aggregation phase.

We proceed to the introduction of the phase where bi for a given i is obtained from x̃

and other bj ’s. This phase will be referred as the disaggregation phase. From (5.1) and

(5.4),

0i =
K−1∑
j=0

xjQj,i (5.11)

=
K−1∑
j=0

x̃jbjQj,i. (5.12)

Hence

x̃ibiQi,i = −∑
j �=i

x̃jbjQj,i, (5.13)
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biei = 1.

Equation (5.13) can be regarded as the balance equation in lump i. If x̃ and all bj ’s (j 	= i)

are given, then we can obtain bi by solving the equations (5.13).

5.2.1 Algorithm of the A/D method

The A/D method applies (5.10) and (5.13) alternately to generate converging sequences of

x̃ and bi’s converged.

Let x̃(n) be the vector corresponding to x̃ in the nth iteration, and b
(n)
i the vector

corresponding to bi in the nth iteration (i = 0, 1, . . . , K − 1). We also define B(n) the

matrix with b
(n)
i in place of bi in B defined in (5.5).

The algorithm is as follows:

Step 1 : Take an appropriate initial values of b
(0)
0 , b

(0)
1 , . . . , b

(0)
K−1, and let n = 1.

Step 2 : Calculate Q̃
(n)

= B(n−1)QE.

Step 3 : Solve the balance equation for x̃(n)

x̃(n)Q̃
(n)

= 0̃, (5.14)

x̃(n)ẽ = 1. (5.15)

Step 4 : For each i = 0, 1, . . . , K − 1, solve the systems of equations

z
(n)
i Qi,i = −∑

j �=i

x̃
(n)
j b

(n−1)
j Qj,i, (5.16)
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for z
(n)
i , and calculate b

(n)
i by

b
(n)
i =

1

z
(n)
i ei

z
(n)
i (i = 0, 1, . . . , K − 1).

Step 5 : Check the convergence: If x̃(n) and b
(n)
i ’s are sufficiently close to x̃(n−1) and b

(n−1)
i ’s,

then stop the iteration. Otherwise, set n = n + 1 and go back to Step 2.

The equations in Step 4 can be replaced with

z
(n)
i Qi,i = −∑

j<i

x̃
(n)
j b

(n)
j Qj,i −

∑
j>i

x̃
(n)
j b

(n−1)
j Qj,i.

to apply the latest values of b
(n)
j ’s (j < i) for the calculation of z

(n)
i .

Note that, in Steps 2 and 3, we have to solve systems of equations. The A/D method

does not offer any specific method to solve these equations. However, since these systems of

equations are usually much smaller than the balance equation of the original Markov chain,

we can easily calculate them with the power method or the LU decomposition method.

Moreover, if Q̃
(n)

andQi,i’s are upper row-triangle, tridiagonal, or of other simple form,

then the calculation of x̃(n) and b
(n)
i ’s may be done with simple substitutions. For example,

a quasi-birth-and-death process has a transition rate matrix of the block-tridiagonal form,

and hence Q̃
(n)

is of a tridiagonal form.

Also note that there is no proof which guarantees the convergence of the A/D method

so far. Empirically, however, we can see the convergences with the A/D method in most

of practical cases.
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5.3 Application of the A/D Method to a Three-stage

Tandem Queueing System

As an example of a Markov chain analyzed by the A/D method on a parallel computer, we

take a continuous-time Markov chain derived from a three-stage tandem queueing system

with phase-type interarrival and service time distributions and with buffers of infinite

capacity.

Buffers with infinite capacity

3rd server
with ( )β , SPH 3 3

2nd server
with ( )β , SPH 2 2

1st server
with ( )β SPH 1 1

Input process
with ( )α, TPH ,

Figure 5.1: Three-stage tandem queueing system

Customers arrive at the first stage to be served there, move to the second and then

the third to be served there again, and eventually go out of the system. Customers are

served according to first-come first-served (FCFS) discipline at each stage. The kth stage

(k = 1, 2, 3) has a single server and a buffer of infinite capacity, so that no loss or blocking

occurs. Interarrival times of customers are independent and identically distributed (i.i.d.)

random variables subjecting to a phase-type distribution PH(α,T ). Service times at the

kth stage are also i.i.d. variables subjecting to a phase-type distribution PH(βk,Sk). The
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interarrival times and the service times are assumed to be mutually independent.

The state of the system is represented by a 7-tuple (n1, n2, n3; i0, i1, i2, i3), where i0 is

the phase of the arrival process, ik is the phase of the service process at the kth stage, and

nk is the number of customers in the kth stage (k = 1, 2, 3). Then the system behaves as

a continuous-time Markov chain. Let D(n1, n2, n3) be the set of states with n1, n2 and n3

in the first three places of the 7-tuple representation.

The transition rate matrix Q can be represented by using matrices and vectors above.

Let Q(n1, n2, n3; n
′
1, n

′
2, n

′
3) be the submatrix of Q consisting of transition rates from states

in D(n1, n2, n3) to states in D(n′
1, n

′
2, n

′
3). Using Kronecker sum and product operations,

it is written as

Q(n1, n2, n3; n1, n2, n3) = T ⊕ S1 ⊕ S2 ⊕ S3,

Q(n1, n2, n3; n1 + 1, n2, n3) = γ0α⊗ I1 ⊗ I2 ⊗ I3,

Q(n1, n2, n3; n1 − 1, n2 + 1, n3) = I0 ⊗ γ1β1 ⊗ I2 ⊗ I3,

Q(n1, n2, n3; n1, n2 − 1, n3 + 1) = I0 ⊗ I1 ⊗ γ2β2 ⊗ I3,

Q(n1, n2, n3; n1, n2, n3 − 1) = I0 ⊗ I1 ⊗ I2 ⊗ γ3β3,

Q(n1, n2, n3; n
′
1, n

′
2, n

′
3) = O, otherwise

for n1, n2, n3 ≥ 2. Q(n1, n2, n3; n
′
1, n

′
2, n

′
3) may take a slightly different form if one of nk’s

or n′
k ’s is equal to 0.

This Markov chain has some special properties which are useful for the application of

the A/D method.
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Property 1: State transitions into D(n1, n2, n3) from outside is possible only from neigh-

boring sets D(n1−1, n2, n3), D(n1+1, n2−1, n3), D(n1, n2+1, n3−1), and D(n1, n2, n3+

1).

Property 2: A non-zero submatrixQ(n1, n2, n3; n
′
1, n

′
2, n

′
3) such that (n1, n2, n3) 	= (n′

1, n
′
2, n

′
3)

is given by a Kronecker product of a matrix of dyadic form γk βk and identity ma-

trices.

Furthermore, from the structure of the model itself, marginal probabilities of the first two

stages can be obtained by solving smaller models:

Property 3: The marginal stationary state probabilities π1(n1; i0, i1) of the first stage can

be obtained by solving a one-stage model consisting of the first stage of the original

model.

Property 4: The marginal stationary state probabilities π2(n1, n2; i0, i1, i2) of the first two

stages can be obtained by solving a two-stage model consisting of the first and the

second stages of the original model.

As stated in section 1, the aim of the authors for analyzing the tandem queueing system

is to know the tail behavior of the stationary state probabilities. The stationary state

probabilities π(n1, n2, n3; i0, i1, i2, i3) have to be calculated over a wide range, for example

in the range 0 ≤ nk ≤ Nk − 1 with sufficiently large Nk’s, say Nk = 100. If all sk’s are

equal to 3, then the total number of states M = s0s1s2s3N1N2N3 to be calculated is about
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81,000,000. Such a huge number of states can be treated only by using the A/D method

on a parallel computer.

In order to analyze the Markov chain introduced above, it seems reasonable to apply

the A/D method successively to the one-stage model, to the two-stage model and then to

the three-stage model.

Let L2(n1, n2; i0, i1, i2) be the set of states having n1 and n2 in the first and the second

places and i0, i1 and i2 in the fourth, fifth and sixth places of the 7-tuple representation, and

let L1(n1; i0, i1) = ∪n2,i2L2(n1, n2; i0, i1, i2). Clearly L1(n1; i0, i1)’s form a decomposition by

the local state of the first stage and L2(n1, n2; i0, i1, i2)’s form a decomposition by the

local states of the first two stages. From Property 3 above, the stationary probabilities

π1(n1; i0, i1) for the lumps L1(n1; i0, i1) are obtained by analyzing the one-stage queue.

This can be effectively done by using the algorithm proposed in [6], a variation of the A/D

method. The stationary probabilities π2(n1, n2; i0, i1, i2) for the sets L2(n1, n2; i0, i1, i2)

are obtained by solving the two-stage model, as stated in Property 4 above, using the

A/D method by considering L1(n1; i0, i1)’s are lumps there. In this case, we don’t need

to perform the aggregation phase since values of π1(n1; i0, i1)’s have already been known.

Note that the two-stage model has M2 = s0s1s2N1N2 = 270, 000 states. Hence it may

be solvable by using a computer with a single processor, but faster if one uses a parallel

computer.

The stationary probabilities π(n1, n2, n3; i0, i1, i2, i3) have to be then calculated by the
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A/D method with lumps L2(n1, n2; i0, i1, i2). Again, in this case, we don’t need to do the

aggregation phase. The problem here is the allocation of the calculation in the disaggrega-

tion phase for these lumps. Since the data transfer between cells of the parallel computer

requires a considerable time, we have to allocate lumps so that the amount of data transfer

becomes as small as possible. We will discuss this problem in the next section.

5.4 Architecture of Parallel Computer

The parallel machine which we implement the A/D method on is the Fujitsu AP1000 highly

parallel computer [15] at Fujitsu Laboratories, Ltd. In this section, we give an overview

of the architecture of the AP1000, and mention its difference from traditional non-parallel

computers in case of the implementation.

5.4.1 System Configuration of AP1000

The AP1000 machine which we use has one host processor and 256 or 512 processor ele-

ments called cells [2]. Each cell consists of a Sparc processor, memory, and a data channel

controller (see Figure 5.2). The main characteristics of the AP1000 are as follows.

MIMD Design MIMD (Multiple Instruction-stream, Multiple Data-stream) means that

each cell can execute its own tasks and has its own data. With this architecture, we can

execute in parallel not only single type of tasks, but also different types of tasks.
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2-dimensional Torus Network

Host Processor
Broadcast Network

Synchronization Network

Cell

Figure 5.2: AP1000 configuration

Two Dimensional Torus Network Cells are connected each other via high-speed data

transfer channels. These channels construct a two dimensional torus topology network, and

each cell is considered as a grid point of the network. Then, the data transfer between

two cells q steps away from each other takes q times as long as the data transfer between

neighboring cells. Each cell-to-cell channel has a transfer rate of 25Mbytes/sec.
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The number of rows and the number of cells on each row can be changed by the user,

and it is realized logically on the two dimensional torus network.

There are two other channels to connect all cells and the host processor; one is for the

one-to-N data transfer referred as broadcast, and another is for the synchronization among

cells.

Distributed Memory Each cell has local memory of 16Mbytes, which is sufficient to

store a million of stationary probabilities as double-precision floating-point numbers.

Message Passing The AP1000 has no shared memory for cells, and a cell cannot access

to the local memory on other cells. When the task on a cell intends to transfer the data

needed by another cell, it sends the data asynchronously through the torus network. This

scheme is known as message passing.

With message passing, cells don’t receive any interrupts for data transfer and hence all

tasks can be executed asynchronously. This also implies that the host processor and cells

cannot explicitly request data transfer to other cells, while cells can passively wait and

receive data.

5.4.2 Differences from Non-Parallel Computers

Because the architecture of parallel computers is quite different from that of non-parallel

ones, we must be careful of how we implement the algorithm on a parallel machine.
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1. The speed of the data transfer through the torus network is much less than the speed

of the data reference on the local memory. We then have to partition the problem into

tasks so that the number of data transfer between tasks can be as small as possible.

2. If a specific task takes much longer time to finish execution than other tasks, paral-

lelization is of no effect. To equalize the load of cells, we should carefully partition

the problem or even dynamically allocate and partition the tasks.

3. In message passing, each task has to know a priori who requires the data transfer.

When we implement the A/D method on a parallel computer, we have to take into account

of these points.

5.5 Allocation of Lumps to Cells

To make our discussion clearer, hereafter we will consider the case where we calculate the

stationary probabilities of the three-stage model with sl = 3 and Nl = 100 for all l by a

parallel computer with 512 cells. We also assume that, for every l, T l is an upper triangular

matrix with positive numbers in all upper off-diagonal entries, and αl and tl have positive

numbers in all their entries. These assumptions are necessary for estimating the amount

of data transfer later.
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Figure 5.3: A naive allocation of lumps to cells

5.5.1 A Naive Allocation

First we consider a naive allocation of lumps to cells. Since there are 512 cells and 900

L1 lumps, it may seem natural to allocate two L1(n1; j0, j1)’s to one cell (see Figure 5.3),

namely six hundreds L2 lumps to one cell. More definitely, we arrange cells C(n, i), n =

0, 1, . . . , 99 and i = 1, 2, . . . , 5, on a two-dimensional plane, and to cell C(n, i) we allocate

lumps L2(n1, n2; j0, j1, j2) such that n1 = n and 3 (j0 − 1) + j1 = 2i − 1 or 2i.

We shall evaluate the amount of data transfer among cells required for one iteration

of the disaggregation phase. We denote by π1(n1; j0, j1) the row vector with entries

π(n1, n2, n3; j0, j1, j2, j3) with n1, j0, j1 in the first, fourth and fifth places of the 7-tuple

representation. The order of the vector is s2s3N2N3 = 90, 000. To perform the disag-

112



gregation phase for lumps in cells C(n, 1) ∼ C(n, 5), we need information about vectors

π1(n − 1; j0, j1)’s and π1(n + 1; j0, j1)’s.

First let us consider data transfer related to transitions associated with arrivals. Let

j1 be fixed to 1. We may send each vector π1(n − 1; j0, 1) to every cell in which the

information of the vector is needed. Then, in our naive allocation, we send π1(n − 1; 1, 1)

from C(n− 1, 1) to three cells C(n, 1), C(n, 2) and C(n, 4), and also vectors π1(n− 1; 2, 1)

and π1(n − 1; 3, 1) from C(n − 1, 2) and C(n − 1, 4) to the same three destination cells.

This requires totally nine transfers of data of size 90,000. This number of transfers can be

decreased by exploiting property 2 in section 4.

We note that for lumps in cells C(n, 1), C(n, 2) and C(n, 4) with j1 = 1 it is sufficient

to receive information on a single vector t =
∑

j t0j π1(n − 1; j, 1) instead of three vectors

π1(n − 1; 1, 1),π1(n − 1; 2, 1) and π1(n− 1; 3, 1). By taking a Kronecker product of t and

α0, they can construct necessary vectors. This can be done in our allocation as follows.

• Send π1(n − 1; 2, 1) from C(n − 1, 2) to C(n − 1, 1).

• Send π1(n − 1; 3, 1) from C(n − 1, 4) to C(n − 1, 1).

• After calculating the sum t at C(n − 1, 1), send t to C(n, 1), C(n, 2) and C(n, 4)

for the computation of the next disaggregation phase of π1(n; 1, 1), π1(n; 2, 1) and

π1(n; 3, 1).

The above process requires data transfer of size 90,000 five times. This amount is for fixed

j1 = 1. For all lumps in C(n, 1) ∼ C(n, 5), we have to transfer data of size 90,000 fifteen
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Figure 5.4: Another naive allocation of lumps to cells

(= 5 × 3 (number of possible j1’s)) times.

Similarly for transitions associated with service completions at the first stage, we have

to transfer data of size 90,000 nine times, and for phase transitions in the arrival process

and the service process at the first stage, we have to transfer data of size 90,000 twelve

times.

Totally we need to transfer 36 times for one calculation of 5 cells C(n, 1) ∼ C(n, 5) in the

disaggregation phase. Hence on the whole we need to transfer data of size 90, 000×36×100

(number of possible n’s) =324,000,000 per one iteration of the disaggregation phase.

If we allocate three L1(n1; j0, j1)’s to one cell as indicated in Figure 5.4, data transfer

is somewhat decreased on the part associated with service completions at the fist stage
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Figure 5.5: An efficient allocation of lumps to cells

and phase transitions in the arrival process and the service process at the first stage. The

total amount of data transfer between cells becomes to 90, 000× 27× 100 = 243, 000, 000.

By increasing the number of lumps allocated to a cell into 3/2 times that of the case of

Figure 5.3 the amount of data transfer decreases into 3/4.

In these cases some data transfer occurs between non-neighboring cells. This may

require additional transfer time. So, we should look for more efficient allocation of lumps.

5.5.2 An Efficient Allocation

We show a more efficient allocation of lumps to cells. In the naive allocations in the

preceding subsection, we allocate L1(n1; 1, j1), L1(n1; 2, j1) and L1(n1; 3, j1) into different
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cells. This requires some data transfer between corresponding cells. This kind of data

transfer can be removed by allocating lumps with the same n1 and n2 into a cell.

Let LA(n1, n2) be the set of states with n1 and n2 in the first and the second places

of the 7-tuple representation. We arrange cells in two dimensional as 25 × 20, and to cell

C(i, k) we allocate lumps contained in the sets LA(n1, n2) such that 4(i− 1) ≤ n1 ≤ 4i− 1

and 5(k − 1) ≤ n2 ≤ 5k − 1, see Figure 5.5. Then for transitions associated with arrivals,

5 vectors of size 8,100 are sent from C(i − 1, k) to C(i, k). For transitions associated with

service completions at first stage, 4 vectors of the same size are sent from C(i + 1, k),

3 vectors are sent from C(i, k − 1), and one vector is sent from C(i + 1, k − 1). For

transitions associated with service completions at the second stage, 4 vectors of the same

size are sent from C(i, k + 1). Hence for the calculation of the disaggregation phase in

C(i, k), totally 17 vectors of size 8,100 should be sent from neighboring cells. On the whole

the amount of data transfer for the next calculation of the disaggregation phase is evaluated

as 8, 100 × 17 × 500 = 68, 850, 000. This is only one fifth of those of naive allocations.

5.5.3 An Allocation with Least Amount of Data Transfer

The allocation proposed in the preceding subsection is not the one with the least amount

of data transfer. Let us consider a set surrounded by the curved line in Figure 5.6 on the

(n1, n2)-plane. If we allocate the lumps contained in the set to one cell, the amount of data

transfer required for the calculation of the disaggregation phase of the cell is evaluated as

follows.
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m 2

m 1

n 2

n 1

Figure 5.6: Diameters of a set

For transitions associated with arrivals, the number of vectors to be sent from the upper

cells is equal to m0, the diameter of the set from above. Similarly, for transitions associated

with service completions at the second stage, the number of vectors to be sent is equal to

m2, the diameter of the set from side. For transitions associated with service completions

at the first stage, we have to see the set from the angle of 45◦. Then the number of lumps

at peripheral is about
√

2 times the diameter m1. Thus the number of vectors to be sent
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n 2

n 1

Figure 5.7: The partition for the most efficient allocation

for the calculation of the cell is equal to

m = m0 +
√

2m1 + m2 .

Note that the amount of data transfer depends only on diameters m0, m1 and m2, and

does not depend on the area of the set. It is easily seen that for given diameters m0, m1

and m2, the set having maximum area is the one designated by the hexagon whose edges

are parallel to the two axes and the 45◦ line.

A trite calculation shows that the ratio of the value m to the square root of the area
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of the hexagon is maximum when m0 = m2 =
√

2m1. Figure 5.7 shows a covering of the

whole (n1, n2)-plane by such hexagons. This is the most efficient allocation of lumps to

cells from the view point of data transfer. The ratio of m to the square root of the area

of the hexagon is 2
√

3. However, this allocation has a weak point that the partition in

Figure 5.7 does not fit for the two dimensional array structure of the cells. Hence, if we use

this allocation we have to send data to non-neighboring cells and this requires additional

overheads for data transfer.

One may consider that it is more natural to cover the plane by squares. Let the square

has edges of length a. Then diameters defined in Figure 5.6. are given as m0 = m2 = a

and m1 =
√

2a. Hence m = 4a and the area is a2. The ratio of m to the square root of

the area is equal to 4. This is not so bad compared with the least data transfer case 2
√

3

stated above. Almost all of the data transfer in this allocation is done between neighboring

cells except one vector to the lump at a lower left corner.

Considering difficulties of allocation of lumps and of treatment of peripheral sets in the

least data transfer allocation, the author thinks that the covering by squares is the best

choice in practice. The efficient allocation in the preceding subsection is almost the best.

5.6 Concluding Remarks

The aggregation/disaggregation method (the A/D method) is a suitable numerical method

for analyzing large scale Markov chains using a parallel computer.
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In this chapter we have discussed application of the A/D method with an example

of a three-stage tandem queueing system, and shown that we have to be careful on the

allocation of lumps in the A/D method to the cells of the parallel computer since data

transfer between cells takes a considerable time. At effective allocations the amount of

data transfer is less than a tenth of that at naive allocations. This great improvement is

realized by matching the structural relationship among lumps to the physical structure of

cells on the computer. Thus without an adequate choice of allocation the A/D method

could not become a powerful tool for calculating the stationary distributions of gigantic

Markov chains.

The author has just started the calculation on a parallel computer. The data on com-

puting times and data transfer times and so on will be reported in an earliest occasion.
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Chapter 6

Numerical Experiments on Tail

Behavior of Stationary Distributions

in Three-stage Tandem Queueing

Systems

6.1 Introduction

In this chapter, we observe geometric decay properties of the joint queue-length probability

p(n1, n2, n3) in the three-stage tandem queueing system PH/PH/1 → /PH/1 → /PH/1

from numerical experiments using a massive parallel computer.

In Chapter 2, from the results of extensive numerical experiments for the two-stage
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tandem queueing system PH/PH/1 → /PH/1, we observed the joint probability p(n1, n2)

that there are nk customers in the kth stage (k = 1, 2) has two types of asymptotic product

form: For large n1 and n2 we have

p(n1, n2) ∼
⎧⎨⎩ Gηn1

1 ηn2
2 if n1 > an2

Gηn1
1 ηn2

2 if n1 < an2

where a = − log η2/η2/ log η1/η1 and decay parameters η1, η2, η1 and η2 are given as so-

lutions of (2.9) and (2.12). However, the numerical experiments for only the “two”-stage

model itself seems to be insufficient to investigate the theoretical aspect of queueing net-

work models. To proceed one more step, we make experiments for three-stage models.

Here we scrutinize numerical results for the three-stage tandem queueing system

PH/PH/1 → /PH/1 → /PH/1 as a typical extension of two-stage tandem queueing

system. We see that p(n1, n2, n3) decays geometrically and find two (not three) types of

geometric decay depending on the traffic intensities of the first, second and third stages:

If we define decay rates

r1(n1, n2, n3) =
p(n1 + 1, n2, n3)

p(n1, n2, n3)
, (6.1)

r2(n1, n2, n3) =
p(n1, n2 + 1, n3)

p(n1, n2, n3)
, (6.2)

r3(n1, n2, n3) =
p(n1, n2, n3 + 1)

p(n1, n2, n3)
, (6.3)

(6.4)

then they approximately coincide with constants {η1, η2, η3} or {η1, η2, η3} given by the
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systems of equations⎧⎪⎪⎨⎪⎪⎩
T ∗(ω0)S

∗
1(−ω0) = 1, η1 = T ∗(ω0),

T ∗(ω0)S
∗
1(ω1)S

∗
2(−ω0 − ω1) = 1, η2 = η1S

∗
1(ω1),

T ∗(ω0)S
∗
1(ω1)S

∗
2(ω2)S

∗
3(−ω0 − ω1 − ω2) = 1, η3 = η2S

∗
2(ω2),

(6.5)

⎧⎪⎪⎨⎪⎪⎩
T ∗(−ω3)S

∗
3(ω3) = 1, η3 = [S∗

3(ω3)]
−1,

T ∗(−ω2 − ω3)S
∗
2(ω2)S

∗
3(ω3) = 1, η2 = η3[S

∗
2(ω2)]

−1,

T ∗(−ω1 − ω2 − ω3)S
∗
1(ω1)S

∗
2(ω2)S

∗
3(ω3) = 1, η1 = η2[S

∗
1(ω1)]

−1.

(6.6)

For the numerical experiments, we use a massive parallel computer. Even with this

ultramodern equipment, the types of models are rather restricted than the experiment

for the PH/PH/1 → /PH/1 models because of the limitation of the sizes of computable

models.

6.2 Three-stage Tandem Queueing System

Here we consider an open, three-stage tandem queueing system (Figure 6.1).

Buffers with infinite capacity

3rd server
with ( )β , SPH 3 3

2nd server
with ( )β , SPH 2 2

1st server
with ( )β SPH 1 1

Input process
with ( )α, TPH ,

Figure 6.1: Three-stage tandem queueing system

Customers arrive at the first stage to be served there, move to the second and then
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the third to be served there again, and eventually go out of the system. Customers are

served according to first-come first-served (FCFS) discipline at each stage. The kth stage

(k = 1, 2, 3) has a single server and a buffer of infinite capacity, so that no loss or blocking

occurs. Interarrival times of customers are independent and identically distributed (i.i.d.)

random variables subjecting to a phase-type distribution PH(α,T ). Service times at the

kth stage are also i.i.d. variables subjecting to a phase-type distribution PH(βk,Sk). The

interarrival times and the service times are assumed to be mutually independent.

The state of the system is represented by a 7-tuple (n1, n2, n3; i0, i1, i2, i3), where i0 is

the phase of the arrival process, ik is the phase of the service process at the kth stage, and

nk is the number of customers in the kth stage (k = 1, 2, 3). Then the system behaves as

a continuous-time Markov chain.

We denote the traffic intensity at the kth stage by ρk = λ/μk where 1/λ is the mean

interarrival time and 1/μk is the mean service time at the kth stage (k = 1, 2, 3). We assume

ρ1, ρ2, ρ3 < 1 so that the chain is stable and has stationary probabilities x(n1, n2; i0, i1, i2).

6.3 Numerical Experiments

To see the tail behavior of the joint queue-length distribution, we made numerical experi-

ments for several models. The number of models we calculated are rather restricted than

that in the case of two-stage models in Chapter 2, because the size of the three-stage

models are around 100 times as large as that of the two-stage models in order to get the
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comparable precision for the numerical results.

For models M/E2/1 → /H2/1 → /E2/1 and E2/H2/1 → /E2/1 → /H2/1, we tested

systematically with ρk = .2, .4, .6, .8(k = 1, 2, 3), and observed changes of the tail behaviors

by the traffic intensities in detail. For the two-phase hyperexponential distribution (H2),

we used the one with the density function of the form

s(x) = 0.2e−4μx + 0.8e−μx, x > 0.

For the calculation of the stationary probabilities, we employed the aggregation/disag-

gregation method described in Chapter 5. Since our model has infinite number of states, we

have to truncate the state space for all of nk(k = 1, 2, 3) in the calculation. However, in an

iteration of the aggregation/disaggregation method, a new value of x(n1, n2, n3; ∗, ∗, ∗, ∗) is

calculated from current values of neighboring states x(n1−1, n2, n3; ∗, ∗, ∗, ∗), x(n1+1, n2−

1, n3; ∗, ∗, ∗, ∗), x(n1, n2 + 1, n3 − 1; ∗, ∗, ∗, ∗), and x(n1, n2, n3 + 1; ∗, ∗, ∗, ∗). Therefore, if

we truncate the state space at nk = νk, we have to estimate the values of

x(ν1 + 1, n2, n3; ∗, ∗, ∗, ∗) for 0 ≤ n2 ≤ ν2, 0 ≤ n3 ≤ ν3,

x(n1, ν2 + 1, n3; ∗, ∗, ∗, ∗) for 0 ≤ n1 ≤ ν1, 0 ≤ n3 ≤ ν3,

x(n1, ν2, n3 + 1; ∗, ∗, ∗, ∗) for 0 ≤ n1 ≤ ν1, 0 ≤ n2 ≤ ν2.

In our experiments, we estimated those values by assuming geometric decay for these vari-

ables, namely, e.g., x(ν1+1, n2, n3; ∗, ∗, ∗, ∗) was estimated as {x(ν1, n2, n3; ∗, ∗, ∗, ∗)}2/x(ν1−

1, n2, n3; ∗, ∗, ∗, ∗).
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The truncation points νk(k = 1, 2, 3) were set to 64 in all the cases. So the number of

states to be calculated was 23 × 643 ≈ 2 × 106 for M/E2/1 → /H2/1 → /E2/1, and was

24×643 ≈ 4×106 for E2/H2/1 → /E2/1 → /H2/1. By the author’s experiences, it is almost

impossible to solve the balance equations with several millions of states by contemporary

workstations, and this time we used a Fujitsu AP-1000 massive parallel computer with 512

processors and 16 megabytes of memory for each processor, thanks to Fujitsu laboratories

Inc. The program was written in C with parallel processing extension.

The computational burden is practically O(N3) with N = ν1 × ν2 × ν3, and it increases

rapidly as ρk → 1. Table 6.1 tabulates the CPU time for the computation of E2/H2/1 →

/E2/1 → /H2/1 with ρ1 = .6, ρ2 = .8 and ρ2 = .2, .4, and .6.

Table 6.1: The CPU time for E2/H2/1 → /E2/1 → /H2/1 with ρ1 = 0.6, ρ2 = 0.8, and

ν1 = ν2 = ν3 = 64

ρ2 0.2 0.4 0.6

CPU time [sec.] 610 1105 2660

6.4 Observation of the Numerical Results

In this section, we observe the results of the numerical experiments explained in the pre-

vious section in order to show some conjectures on the asymptotic behavior of the joint

queue-length probabilities in the three-stage tandem queueing system.
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Here we take the case of E2/H2/1 → /E2/1 → /H2/1 with ρ1 = 0.6, ρ2 = 0.8, ρ3 = 0.4

as a typical example, and see its tail properties in detail. We start with observing ratios

of two neighboring joint probabilities for the numbers of customers in the steady state.

6.4.1 Decay Rates of the Joint Queue-length Probability

Let p(n1, n2, n3) be the joint probability that there exist nk customers in the kth stage (k =

1, 2, 3) in the steady state. Namely, p(n1, n2, n3) =
∑

i0

∑
i1

∑
i2

∑
i3 x(n1, n2, n3; i0, i1, i2, i3).

We are interested in the decay rates of the joint queue-length probability, namely the ratios

of neighboring p(n1, n2, n3)’s:

r1(n1, n2, n3) =
p(n1 + 1, n2, n3)

p(n1, n2, n3)
,

r2(n1, n2, n3) =
p(n1, n2 + 1, n3)

p(n1, n2, n3)
,

r3(n1, n2, n3) =
p(n1, n2, n3 + 1)

p(n1, n2, n3)
.

First we scrutinize the behavior of r1(n1, n2, n3). Figures 6.2a and 6.2b show graphs

of r1(n1, n2, 10) and r1(n1, n2, 60), respectively. Figure 6.2a is similar to Figure 2.2a in

Chapter 2, while Figure 6.2b is not.

In Figure 6.2a, we see that r1(n1, n2, 10) is relatively large very near the n1 axis but it

is in between η1 and η1 in most of the region of (n1, n2). Especially r1(n1, n2, 10) is close

to η1 in a region in which n1 is relatively larger than n2 and it is close to η1 in a region in

which n2 is relatively larger than n1.

In Figure 6.2b, r1(n1, n2, 60) shows the same quality as r1(n1, n2, 10) though the inter-
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mediate region is shifted to right.

Figures 6.2c and 6.2d show the nature similar to Figures 6.2a and 6.2b, respectively.

Also, the difference between Figures 6.2c and Figures 6.2d is almost same as that between

Figures 6.2a and Figures 6.2a.

Figure 6.3a describes regions of (n1, n2) in which r1(n1, n2, 10) is close to η1 or η1. In the

dark gray region, labeled H1, r1(n1, n2, 10) is close to η1, namely |r1(n1, n2, 10) − η1| < ε1

with ε1 = 0.2 × |η1 − η1|, and in the light gray region, labeled H1, r1(n1, n2, 10) is close to

η1, namely |r1(n1, n2, 10)−η1| < ε1. The band B1 between H1 and H1 represents the region

where r1(n1, n2, 10) smoothly changes from η1−ε1 to η1 +ε1. Figure 6.3b describes regions

of (n1, n2) in which r1(n1, n2, 10) is close to η1 or η1 in the same manner as Figure 6.3b.

The band B1 in Figure 6.3b is parallel with that in Figure 6.3a, though it is shifted to

right. The shift will be due to the the sample values of n3. The broken lines in Figure 6.3a

and Figure 6.3b represent ηn1
1 ηn2

2 ηn3
3 = ηn1

1 ηn2
2 ηn3

3 where n3 = 10 and 60, respectively.

Next we observe the behavior of r2(n1, n2, n3). Figure 6.4 shows the graphs of r2(n1, n2, 10)

and r2(n1, n2, 60). In Figure 6.4a, r2(n1, n2, 10) behaves just as r2(n1, n2) in Figure 2.2b.

Figure 6.4b does not resembles Figure 6.4a, but the relationship between these two graphs

are analogous to that between Figures 6.2a and 6.2b.

Figure 6.5 describes regions of (n1, n2) in which r1(n1, n2, N3) (N3 = 10 or 60) are close

to η2 or η2.

Figures 6.4c and 6.4d appear to be quite different from Figure 6.4, but the difference

can be reasonable. In Figure 6.4a, both r2(n1, n2, 10) and r2(n1, n2, 10) are close to η2 in
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which n1 ≈ 10, while they are close to η2 in which n1 ≈ 60. These agree with the behaviors

of r2(10, n2, n3) and r2(60, n2, n3).

r3(n1, n2, n3) is the last to be observed. Figures 6.6a and 6.6b shows the graphs of

r3(n1, 10, n3) and r3(n1, 60, n3), respectively. Though we don’t have any graphs in Chap-

ter 2 which correspond to Figure 6.6, we can see that r3 shows the same behavior as

r1(n1, n2, n3) and r2(n1, n2, n3). That is, both r3(n1, 10, n3) and r3(n1, 60, n3) are near to

η3 where n3 is relatively larger than n3, while they are near to η3 with n3 being relatively

smaller than n2. The difference between Figures 6.6a and 6.6b is similar to that between

Figures 6.4a and Figures 6.4b.

Figures 6.6c and 6.6d shows the graphs of r3(10, n2, n3) and r3(60, n1, n3), respectively.

The behaviors of these graphs are similarly to those in Figures 6.4c and 6.4d respectively.
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Figure 6.2: r1(n1, N2, n3) behavior in E2/H2/1 → /E2/1 → /H2/1 (ρ1 = 0.6, ρ2 = 0.8, ρ3 =

0.4)
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Figure 6.3: Characterization of r1(n1, n2, N3) surface
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Figure 6.4: r2 behavior in E2/H2/1 → /E2/1 → /H2/1 (ρ1 = 0.6, ρ2 = 0.8, ρ3 = 0.4)
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Figure 6.5: Characterization of r2(n1, n2, N3) surface
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Figure 6.6: r3 behavior in E2/H2/1 → /E2/1 → /H2/1 (ρ1 = 0.6, ρ2 = 0.8, ρ3 = 0.4)
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