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ABSTRACT
In this thesis, we will introduce a time scale transformation
into nonlinear system theory. Wevwill show how a time scale
transformation can aliow us to investigate the intrinsic structure
of nonlinear systems.
The time scale transformation is defined as follows. A new

time scale 1 1is defined using the actual time scale t as
—%{%—= s (x) >0

for some smooth function s(x). Using this time scale, the system

LI (1) +g ) u

can be expressed in the time scale 7 as

LEe s ) F() 45 g u .

This time scale transformation preserves the system’s stability and
the state’s curve in state space.

We will introduce the notion of weakly invariant distribution
in order to study invariant structure in a transformed time scale.
A weakly invariant distribution will allow us to obtain Kalman-1like
decompositions in reachable/unreachable parts and/or obhservable/un-
observable parts in the transformed time scale. Weakly controlled
invariance will also be introduced and used to solve the wide-sense
disturbance decoupling problem. To solve this problem, we must

seek a feedback law such that the disturbance will not effect the



output’s curve in output space.”

We will investigate the input-state linearization problem using
a time scale transformation. We will obtain a class of nonlinear
systems which can be linearized in the transformed time scale. The
time scale in which the system can be linearized will be obtained as
the solution to partial differential equations. Since the time
scale transformation preserves the system’s stability, this method
can be used to design a stabilizing controller.

We will also apply the time scale transformation to controller
design. Even for linear systems, the time scale transformation will
allow us to design a nonlinear controller that will satisfy a needed
specification such as to avoid an excessively high amplitude of
input. We will design both a controller for a robot that will
achieve good performance even in the neighborhood of a singular

point, and also a trajectory tracking controller for a vehicle.
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1 . INTRODUCTION

In this thesis, we will introduce a time scale transformation
and use it to analyze the intrinsic structures of nonlinear systems:
the invariant structure and the linearization problem in a
transformed time scale. We will also use the transformation to

design a nonlinear controller.

1-1. Background

If all physical phenomena ecould be expressed in a linear form,

e.x. in a linear state equation of the form

= Az + Bu

e
|

y =Cx ,

it would not be necessary to study nonlinear systems. Almost all
physical phenomena, however, exhibit some degree of nonlinearity
which we must. overcome in order to control physical systems.

A common method to control nonlinear systems is as follows.
Firstly, one approximates the dynamic model of the system as a
linear system in the neighborhood of an equilibrium point. One
then designs a robust controller for the linear system so that the
resultant system will be stable even though we have neglected the
nonlinearity of the original systém. This strategy is only
successful if it is applied to systems which are only slightly
nonlinear. It has been used to stabilize an inverted pendulum
(Mori et al.[78]), a double inverted pendulum (Furuta et al.[78])
and other problems. It is, however, almost impossible to
successfully apply this strategy to highly nonlinear systems.

Consider a system expressed in bilinear form

x =Ax + uBzx .



This system cannot be efficiently linearized around the equilibrium
point x=0 because the input u will not effect dzx/dt at z=0.

Even though we can linearize the system approgximately, this
method will stabilize it only in a small neighborhood of the
equilibrium point.  Thus, if we need to manipulate a system in a
large area of state space, for example robot control, we cannot use
this method to achieve desirable performance. It is for this reason
that we turn our attention to nonlinear systems theory.

A system’s nonlinearity can be roughly classified inte two
types: smooth and non-smooth nonlinearity. Non-smooth nonlinearity
is of a type which cannot be expressed by a smooth function of the
state; saturation, hysteresis, dead zone , on-off element etc. belong
to this type of nonlinearity. In order to study the stability of
systems having this type of nonlinearity, several methods have been
developed: Lyapnov function[56]1, hyper stability[57], circle
criterion[58), conic sector condition(Zames (591 [60]) and sector
stability criterion(Safonov(61]). If the nonlinearity is memoryless
and the system is configured as in the following diagram, then the
describing function method could also be useful to analyze the

existence and the frequency of the limit cycle.

+ J nonlinear linear
> O > element —> element -
- (memoryless) (low pass)

Fig.1-1 block diagram

The describing function method was introduced during the late

1940’ s[62]. There is, however, no systematic method to analyze and

2



control a system with non-smooth nonlinearity.

On the other hand, smooth nonlinearity is of a type which can be
expressed by a smooth function of state. A system with smooth
nonlinearity can usually be expressed by a differential equation of

the form
¥ = ¢ (x,u)

or

x = f(x) +g(x)u

where ¢, f and g are vectors whose elements are smooth functions
of ¥ (and u). The former system is sometimes called a general
nonlinear system and the latter one an affine nonlinear system.
Mechanical models are usually»expressed in this form. For example,

it is well-known that the dynamics of a robot arm can be described by

a second order differentional equation as
M (@) 0+F (0,06) =u

where €@ represents the angle and u is the input torque. This

differential equation can readily be expressed by

1. 1= A + u
dt 1 1 :
o M((6) ' F (o, 6) M (6)
The analyzing method used for systems with non-smooth nonlinearity
can also be applied to this type of systems. Moreover, it is
possible to use more systematic methods such as a geometric approach
and the variational approach [48] ~ [55] to analyze this kind of
system. |
In the last decade, differential geometry has been successfully
applied to this type of nonlinear Systems. Several useful books

[11[21(3] and [4] were recently published in this area. In this



thesis, we will restrict our attention only to smooth nonlinear
systems and the geometric approach.
Roughly speaking, the geometric approach can enable us to
study the following topics in nonlinear system theory.
1) controllability and observability
9) controlled invariance and disturbance decoupling
3) internal model principle
4) Volterra series and realization theory
5) stabilizing controller and observer design
6) 1ineafization
The first three topics directly follow from the geometric approach
in linear systems theory which has been ezamined in detail by
Wonham[18]. We will review topics 1, 2 and 6 which bear directly
upon our method.
Controllability and observability are fundamental notions in
linear system theory. They are used to ensure the solvability
of the system stabilizing problem and the state estimation problen.
They are also used for model reduction. Therefore, it is natural
to extend these notions to nonlinear system theory. Consider a

nonlinear system of the form
£ = ¢ (x,u)
y = ¢ () .

Hermann[8], Haynes-Hermes[91, Brockett[10], Lobry[1l], Sussman-
Jurdjevic[12] and Krener[13] developed, based on the work of Chow[7],
a nonlinear analog to linear controllability in terms of Lie algebra,
R, generated by the vector fields ¢ (.,u) which correspond to a
constant centrol u. It was shown that if R has a constant
dimension, then any point on the integral manifold through z© can

be reached from =&© by going forward and/or backward along the

4



trajectories of the system. This kind of controllability has been
termed weak controllability by Hermann-Krener[14].  The dual notion
of weak controllability is called weak observability and was also
introduced by Hermann-Krener[14]. Krener refined these notions
in{30].

An approach to the disturbance decoupling problem is to
completely isolate the output from the influence of the disturbance.
This problem can be solved using the notion of controlled
invariance. In linear systems theory, the controlled invariant
subspace (or (A,B) invariant subspace) was independently introduced
by Basile-Marro[18] and Wonham-Morse[17].  Around 1980, there were
several attempts to extend this notion to affine nonlinear systems:
Ishijima[19)[20], Nomura-Furuta[21], Hirschorn[24] and Isidori et al.
[221023]. Nijimeijer[25] also did related work. All of these works
were based on invariant distribution and invariant foliation[30].
Nijimeijer-van der Shaft[26][27] extended this notion of controlled
invariance to general nonlinear systems. Controlled invariance for
discrete-time systems was studied by Monaco et al.[31] and Grizzle[32]
[33].

The linearization problem is significant in nonlinear system
theory because it is possible to apply control strategies which were
perfected in linear system theo}y to linearized systems. One of the
most common linearization methods is first order approximation, as we

have mentioned before. Consider the system
¥ = ¢ (x,u)
where ¢ (0,0)=0. The first order approximation to this system is

£ =Ayx + Bu +0rder(z,u)?

a=2¢ Y

X S u

1=0 =0
u=0 u=0 .

o



We will neglect the second order term in designing the controller.
Alternatively, around 1980, the exact linearization problem attracted
the attention of nonlinear systems reseachers. There are two types
of exact linearization: input-output linearization and input-state
linearization. Input-output linearization was studied using the
decoupling approach by Singh-Rugh[34], Freund[35] and Okutani([36].
Isidori-Ruberti[37] used a structure algorithm to solve the input-
output linearization problem. This'approach relates closely to
zero structure at infinity. Isidori[38] pointed out the
possibility of computing zero structure at infinity using the
coefficients of the formal power series associated with the external
behavior of a nonlinear system. Nijmeijer-Schumacher[39] followed
this with a geometric approach to the definition of zero structure
at infinity. The problem of matching a nonlinear system to a linear
model via dynamic state feedback was studied independently by
Kosuge [40] and Isidoril41].

The other linearization method is input-state linearization.
With this method, we linearize the system using a state
transformation and nonlinear state feedback. The input-state
linearization was proposed and solved for a single-input system by
Brockett[42]. A complete solution for multi-input systems was
found by Jakubczyk-Respondek[43]. Independent work done by Sul44]
and Hunt et al.[45) lead to a slightly weaker formulation, together
with a constructive algorithm for the solution.

An exact linearization method can, however, only be used on
a restricted class of nonlinear systems, thus, some approximate
linearization methods have been proposed. Reboulet-Champetier[46]
proposed a pseudolinearization method which makes the linear tangent

model independent of the operating point using suitable state



transformation and nonlinear state feedback. Krener[47] developed
the necessary and sufficient condition for a nonlinear system to be

approximated to a higher order as a linear system.

1-2. Purpose of the Study

The geometric approach is a powerful tool to analyze nonlinear
systems. It does, however, sometimes require strict geometric
conditions to ensure solvability. For example, in the case of

input-state linearizations on systems of the form

t =T (x) +g(x)u

the set of vector fields {g, adfg,"-,ad¥-2g} is required to be
involutive. This condition is not generally satisfied when n=3.

Consider the system
X3 fi, (x) 0
‘3%— 0 | = f2 (@& {+0]|u
X3 fa (x) 1

According to the linearizability condition, this system can be

linearized if and only if

32f2 = a (‘) 3 f2
] ’ 9 x3? 9 3
[ 8%y ] [ 3 ]
a(x) = { 9 132 4 9 13

This means that the function fo is specified automatically if the
function f, and the initial condition f, (z1 ,%2 ,0) for all =z ,%2
are given. This criteria is generally not satisfied. Thus, we
have to find a method which will relax these conditions.

Here, we will relax the geometric conditions by modifying the
autonomous term f(x). Feedback was thought to be the only way of

manipulating the autonomous term. If we can, however, modify the



autonomous term into s(x)f(x) for a scalar function s(x), then we can
relax some of the geometric conditions for the solvability of a
problem. In the case of the previous esample, the condition for
linearization is actually relaxed by introducing s(x) (we will
examine this in Chapter V).

We achieve a modification of the autonomous term by
introducing a time scale transformation. The transformation is

defined by
{%%—= s(x) >0

for some smooth function s(x). The system can be expressed in the

time scale T as

N IO RIOREION-IORT

The fact that s(x) is positive ensures that the time scale 7 will
not go backwards against the actual time scale t, so the system’s
stability and the state’s curve in state space will not be effected
by the time scale transformation. Therefore, it is possible for us
to make use of the time scale 7 to investigate the system’s
stability and structure.

We will proceed to study invariant structure and the
linearization problem using a transformation of the time scale. We
will also use the transformation to design a nonlinear controller
which will satisfy certain specifications. This thesis is organized
as follows.

In chapter I, we will introduce a time scale tranformation
and investigate its properties.

In chapter I, we will investigate invariant structure using a
time scale transformation. We will also introduce the notion of

weakly invariant distribution and examine its properties. We will



see how the notion of weakly invariant distribution will allow us to
obtain Kalman-like decompositions in reachable/unreachable parts
and/or observable/unobservable parts in the transformed time scale.
e will also introduce weakly controlled invariance and use it to
solve the wide-sense disturbance decoupling problem. To solve this,
we must seek a feedback law so that the disturbance will not affect
the output’s curve in output space.

We will investigate the input-state linearization problem in
chapter W. If we can obtain an exactly linearized model in the
transformed time scale, it will be useful to obtain a stabilizing
controller because a time scale transformation will preserve the
system’s stability. We will show how the linearizability condition
can be relaxed by introducing a transformation of the time scale.

In chapter V, we will take a different perspective on the
time scale transformation; applying it to controller design.
we will show that, even for linear systems, the time scale
transformation can allow us te design a nonlinear controller
satisfying a needed specification such as avoiding a exceedingly
high amplitude of input. We will illustrate possible applications
of our method: we will design a controller for a robot that can
achieve good performance even in a neighborhood of a singular point

and also a trajectory tracking controller for a vehicle.



T . TIME SCALE TRANSFORMATION

In this chapter, we will introduce a time scale transformation
and ezamine the properties of this transformed time scale.

In analyzing a continuous system, the time scale "t’ s
taken to be actual time, for ezample seconds, minutes and hours.
These actual times flow uniformly. When, however, we consider
the stability of the system or the system’s curve which the state of
the system traces in state space, it is possible for us to use any
time scale "7’ as long as 7’ does not reverse upon itself.

Fig.2-1, 2-2 and 2-3 show the vector fields, the state

transitions, and the phase plane trajectories (the curves which the

states trace in state space) of system A

d | %t %9 ]
) W\XQI [—x1—0.5 "

and system B

d [hl l [ x2(1.5 + sin 18 x,) ]
(B) Tt L ry) L Cey -0.5 1) (1.5 + sin 18 )
with the initial condition ( x, , xy )T (0) = ( 0.5,0.5 )7  Although
the vector fields and state transitions of these two systems are
different in appearance, their phase plane trajectories are
identical. This means that these two systems having this initial
condition do not have the same state transitions, but do have the
same curves in state space. In this case, the difference between
the two state transitions is related to the choice of time scale.
The state transition of system B can be represented as shown in
fig.2-5 in time scale = (t) which is defined by fig.2-4. Fig.2-5 is
identical to fig.2-1-a (state transition of system A). As we have

seen above, our choice of time scale can be helpful in analyzing the

10



state’s curve in state space.

Hollerbach([5] has defined a new time scale 1,
r=r1(t)
and Ozaki et al.[6] have defined another time scale t’
dt’ = « (t) dt

which differ from the actual time t. Fach of them have been
effectively used to plan the time trajectory of a manipulator with

a geometric path constraint. Their works, however, were restricted
to planning the time frajectory of a manipulator. The new time
scales which they choose were defined to be functions of the actual
time t. These time scales are not useful for system analysis
because it is necessary for any time scale to be defined for a
particular trajectory which in turn must be analyzed individually in
the new time scale.

In this chapter, we will formulate a time scale transformation
which is dependant on a state. This transformation can be applied
to system analysis. We will show that any system can readily be
rewritten in the transformed time scale.

The time scale transformation is defined as follows. Consider
a system expressed in local coordinates as
(1) Yot + Temu,

i=1 ! !

(1b) y; =h i(x) (i=1,2, «=,1r )

where the n dimensional vector z represents the state; the m
dimensional vector u is the input; and the r dimensional vector y is
the output. We define the new time scale 7 using the continuous

function s(x) > 0 as

11



(2a) L= s

(2b) T t0= T

where 't ' is the actual time. The function s (x) is called the
time scaling function.

[theorem 1]

The system (1) is expressed in the time scalez as

AR oy "
(3) Lo 5 () () + Zg; (0,

i=1

(3b) vy, =h (0 (i=1,2, w,1 )

i
where uji ={1 /s (x)ipi . O
(proof)

Eq.(3a) follows obviously from the relation

dg _ dx dt
(4) i7=dt d7

Also, uj is well-defined because s(x) >0 . ®

The drifting term of the system( f(x) ) usually cannot be
directly manipulated; this theorem will make it possible for us to
directly manipulate it. Consequently, we can now to analyze the
structure of the system more precisely; we will use this to extend
several structural concepts in subsequent chapters.

For ezample, if we set the time scale transformation as

dt _ N 1
dt'_s(“ - 1.5+ sin 16 Ry

then system B can be expressed in the time scale 7 as

: d | 1] _ %9
(B*) dz [ Ko ] a | -xy =0.5 x4 ]°

Obviously, system B expressed in the time scale 7 is equivalent

to system A expresssed in the actual time scale t . Thus, given
any initial condition, the state’s curves of system A and B in state

12



space will be identical.

We must emphasize the importance of the restriction s(x)>0.
This implies that the new time scale = must increase strictly
monotonically with respect to the actual time t . In other words,
the new time 7 must never go ﬂackward against the actual time t.
This guarantees that the input stabilizing the system expressed
in the new time scale = will also stabilize the original system
expressed in the actual time scale t. Using this property in
later chapter, we will propose a nonlinear controller which will
stabilize the system in addition to satisfying a needed requirement.

In order to preserve a vector field's analyticity or smoothness,
the time scaling function s (x) usually needs to be analytic or
smooth with respect to x. Otherwise, it is enough for s (x) to
have a sufficient number (as specified by the proof) of continuous

partial derivatives with respect to x.

13
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(a) system A the actual time scale t
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(b) system B the actual time scale t

Fig.2-2. State transition
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X2

(a) system A

(b) system B

Fig.2-3. Phase plane trajectory
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Fig.2-5. State transition jn the new time scale (system B)
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I . INVARIANT STRUCTURE OF NONLINEAR SYSTEMS

Invariant structure plays an important role in linear system
theory. It is closely related to system controllability and
observability.

Consider the linear system,

¥ =Azx + Bu
y =Cx .
The A-invariant subspace V is a subspace which satisfies
’ AVCV
It is well-known fact that, if we can find a d-dimensional

A-invariant subspace which contains ImB, then we can decompose the

system using the state space transformation as follows,

d il An Am ] [ ﬁl ] IBl ]
—t _ = _ +
dt [ X2 ] [ 0 Axn X2 0 4

v= [C. C, ] [}_(1W
X2

where % =(§¥,ﬁg) is the transformed state defined by x=Tx for a
é‘ nonsingular matrizx T and dim(§1)=d. With this decomposition, one

can easily see that the state x, is not affected by the input u.

Thus, we cannot manipulate the state xp . The minimal A-invariant

subspace which contains ImB is called a controllable subspace.

With a controllable subspace, we are able to decompose the system’s

state into a controllable one and an uncontrollable one.

Similarly, if we can find a d-dimensional A-invariant subspace
contained in KerC, then we can decompose the system, with an

appropriate state transformation as

19



;_g’

d [ X1 ]=[A11A12“- [ %1 ]+le ]u
dt %2 0 Agx X2 B,

y= [0 Cz’][§1W
X2

where dim(§1)=d. This system shows that the state il does not
affect the output of the system.  Thus, the two states (ii,i3) and
(ﬁ%,ig) ate indistinguishable from the output if ﬁé=§%. The maximal
A-invariant subspace contained in Ker C is called an unobservable
subspace.

In nonlinear systems theory, the notion of invariant distribution
under a vector field is analogous to invariant subspace in linear
system theory. The notion of invariant distribution was developed
independently by Hirschorn[24] and Isidori et.al.[22]. A more
general formulation of invariance was given by Sussman([15]. In
sections 3-1 and 3-2, we will extend the notion of invariant
distribution and define weakly invariant distribution. The notion
of weakly invariant distribution will allow us to investigate the
invariant structure of the system in a new time scale. Since a
transformation of the time scale preserves the system’s'stability and
the state’s curve in state space, we are able to investigate the
structure of nonlinear systems in more depth using the notion of
weak invariance.

In section 3-8, we will investigate another important invariant
structure‘—- controlled invariance. The notion of controlled
invariance has been used to solve the disturbance decoupling problem.
In linear systems theory, the disturbance decoupling problem is

formulated as follows. Considgr a system with disturbance w

20



# =Ax +Bu +Duwu

y =Cx .
In the disturbance decoupling problem, we seek the feedback u=Fz+Gv
such that the output of the system will not be influenced by the

disturbance. With the introduction of the feedback, the system

will become

.
v
n

(A+BF) s +BGv +Dw
y =Cx .

Thus, if we can find an (A+BF)-invariant subspace which contains
ImD and is contained in KerC, we will have, after an appropriate

transformation of the state space,

SR I R R
A R ~ SRl I B +
dt[XZ] [0 Ay 12 B, ' 0 !

y=1[0 Cz][h“
X2

From this, it is obvious that the output is not influenced by the
disturbance; the disturbance decoupling problem has been solved.

From this point of view, a subspace V which satisfies
(A+BF) VCV

for an appropriate F will play an important role when we solve the
disturbance decoupling problem. Such a subspace is called a
controlled invariant subspace or an (A,B) invariant subspace.

The notion of controlled invariant distribution was
defined independently by Ishijima[191[20], Nomura et al.[21],
Hirschorn[24] and Isidori et.al.[221[23]. We will extend this
definition and then define weakly controlled invariant distribution

based on weak invariance. We will use weakly controlled invariant

21



distribution to solve the disturbance decoupling problem relating to
the output’s curve --the wide-sense disturbance decoupling problem--

in section 3-3.

3-1. Weakly Invariant Distribution

As we discussed in the iﬁtroduction, invariant subspace plays an
important role in linear system theory. It allows us to investigate
controllability/observability and to decompose the system.  This
concept of invariant distribution under a vector field plays a
similar role in the théory of nonlinear systems. Invariant
distribution was introduced by Hi;schorn[24] and Isidorif22]; there
is a summary in Isidori’s recent textbook[2]. We will proceed to
define weakly invariant distribution under a vector field which
closely relates to invariant structure in a transformed time scale.

We will begin with a discussion of invariant distribution.
Consider the n dimensional smooth manifold M. The distribution A
on M is invariant under a vector field f if the Lie bracket [f, 0]
of f with every vector field 0 &A is a vector field which belongs
to A, i.e. if

The notion of invariant distribution under a vector field is
particularly useful with completely integrable distributions, because
it can provide a way to simplify the local representation of a given
vector field.

[propesition 1-1]

Let A be a nonsingular involutive distribution of dimension d
and assume that A is invariant under the vector field f. Then, at
each point p €M, there exists a coordinate chart (U, §) with

coordinate functions &, , &, , *+, Eqn in which the vector field f

22



is represented by a vector of the form

fl(él’"" Ed’gd*'l’“" 3 )1

fd(gly‘“; éd’gd*'l'“" ?:‘ )

(1-2) f (§) =
Far(Egaps &)

£ 08 ey ) | . o

The proof of this proposition can be found in Isidori’s textbook[2].
We will proceed to define the notion of a weakly invariant
distribution under a vector field as follows.

[definition 1-2]

The distribution A on the smooth manifold M is weakly invariant

under a vector field f if there exists a smooth positive function
s(p) such that the Lie bracket [sf, 0] of sf with every vector field

0 A is a vector field which belongs to A, i.e. if
(1-3) [ sf,A ]l C A . 0

The notion of weakly invariant distribution under a vector field
closely relates to the concept of time scale transformations.
Consider the autonomous system represented in local coordinates

(1-4) —g-*;—: £ (x) .

If the distribution A is weakly invariant under the vector field f,
then there exists a smooth positive function s(x) which satisfies
[sf,A ]CA. With this function s(x), we can define the time
scale = as

a-5) A =swm >o.

The system is represented in the time scale = as follows

il

(1-8) X _ s (x) f(x) .
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This implies that the distributil‘on A is invariant under the vector
field da/d+ which represents the autonomous system dx/dt=f(x) in the
time scale = defined by eq.(1-5).

We will next define a local notion of weak invariance.

[definition 1-3]

The distribution A on the smooth manifold M is locally weakly

invariant under a vector field f, if for each point p €M there is
an open neighborhood U of p where A is weakly invariant under the
vector field f on U. O

The following lemma directly follows from proposition 1-1.

[lemma 1-4]

Let A be a nonsingular involutive distribution of dimeﬁsion d
and assume that A is locally weakrly invariant under the vector
field f. Then, for each point p&M, there exists a coordinate
chart (U, £) with coordinate functions &, , &2 , =, &n
in which the vector field f is represented by a vector of the form
FRE s B Egupers £

FA(E e, B E e, E
- ey =a ey | 4O A "
Fae1(Egepoes 50

fRCEgagers &)

where a( &) is a smooth positive function defined on U. Or,b

equivalently, there exists a smooth function s(&) defined on U

such that
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f"l(él,“', éd’gd*‘l’”.’ én)
fé(gl"", Ed’éd‘*l’“" Sn)

(1-8) s (§) f (§) = :
Fae1(S gerores S p)

f;l(éd"‘l’n.’ g

)

n

If A is a nonsingular weakly invariant distribution, then the

smooth functions a and s can be found on M. O

[remark]
. The previous lemma shows that the autonomous system (1-4) can be
’ decomposed with the coordinate transformation & =¥ (x) as
/;’l(sl’"" & Egupry B

n

_ F(E ., EE v £
R R G T E
d= FaerlEgepsrs )

(1-9)

* ® . .

f;l(gd*'l’”‘, g

)

n
where the time scale is defined-as dt/dv=s(&) and f (£) =
v, f(x).0

° The concept of locally weak invariance leads to a simple
geometric test.
[lemma 1-5]

Suppose that A is an nonsingular involutive distribution and

that dim(A +span{f})-dim(A) is constant on the dense subset M* CM.
Then A is locally weakly invariant under the vector field f if and
only if for each smooth vector field O E A there exist a smooth

function ¢ and a smooth vector field » €A such that
(1-10) [ fT,01 = w»+cft. 0

The condition that dim(A +span{f})-dim(A) is constant on a
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dense subset of M is automatically satisfied in the case of analytic
distribution.
(proof) \

Necessity: Suppose A is locally weakly invariant under the
vector field f. Then for each p&EM, there is a neighborhood
UCM and a smooth positive function s(g) such that for each smooth
vector field O €A there exists a smooth vector field »' €A, and
(1-11) [ sf,01 = »’
From the following property of Lie bracket
(1-12) [sf,6]=s[f,6]-(Lgs)f,
we can easily conclude that

(1-13) [ f,01 = Lrse,00+l (L, )t

vl v~

, 1

Since s(p) is smooth and positive, (1/s)»’ is a smooth vector
field contained in A and (l/s)Les is a smooth function.
Sufficiency: We will show the existence of the smooth positive
function s(g) defined on a neighborhood of p&EM satisfing eq.(1-3).
It is apparent that dim( A+span{f})-dim(A) is 1 or 0.
1f dim(A+span{f}) —dim(A) is 0 on M" then A+span{f}=A on an
open dense subset and AC A+span{f}. Thus, from lemma A-3
(Appendix), A+span{f}=A on M. This implies that [f, A] CA
and that A is a (weakly) invariant distribution under the vector
field f (s(q)=1).
Suppose that dim(A+span{f})-dim(A) is ! on M*. Since A is
involutive, then for each p €M there exist a neighborhood U of p
and a coordinate function x=(x,,-,x ) such that A = span{-2

EIL e,
ng } where d is the dimension of A. For convenience, we will
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use the notation i for —g—x—— - Eq.(1-10) ensures the existence of
i

the smooth functions ¢t 1=i =d defined on U and the smooth

vector fields »1% 1 £i <d such that

(1-14) [ £, 81 1 = »t + ct f

Qince ci is continuous and dim(A+span{f})-dim(A) is 1 on M*,
then ¢t is a unique smooth function. Comparing eq.(1-14) with

eq.(1-13), it is obvious that the function s(x) must satisfy

(1-15) er = L(r,s =4 &2 (1 isd)
. 1
. "~ or, equivalently
(1-16) 25 - 5 ot (1= i<d).
2

The Lie bracket of [f, 8; ] with 3, is
(1-17) [[f,ai],8k1=[vi+cif, 3y |
=[ »i, 9 l1+[ ct f, 9]
=[ vt , gl+ect [ 1, ak]—(Lak ct ) f

k k dct

+ ( ci ct —=)fT.

_ i i
—[v,Bk]+c v Bxk

In this equation, the first and second term is an element of A

. because A is involutive. On the other hand, from a property of Lie

brackets, we have
(1-18) (rf, 9,1, 9 1 =—109;, 98,0, 1 1= 108, 1, 8;]
=[[f , 9,1, 8]
The pext equation follows from eq.(1-17) and eq.(1-18)
(1-19) 0=I[Lf, 81, 9 1-I[[f, 8,1, 3;]
= [ vi, 8k]+ci y K - [ rk, Bi]—ck y |

. i . k
+{(ct ok ———-g;k)—( ck el —88hy ¢
1
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=[ vi, ak]+ ci vk —{ vk, E)i]—ck vi

k i . )
3¢ ik ki
+ { 8”1 Bxk +c¢c' ¢C ct c }f.

Since the first four terms are elements of A and dim( A +span{f})

. % k i
—dim(A) is 1 on the open dense subset M"* of M, then QeX_ 8cl

) ] 9x;  Oxy
+clck—ckcl must equal zero on hd*. From the smoothness of the
functions ci and ck, we have
(1-20) ack el L i ck_ckgiog (1<i,k <d)

axi an ‘ = -
" on M. From theorem A-8 (Appendix), eq.(1-20) will ensure

the ezistence of the smooth solution s(x) for differential
equations(1-16).

Now, we only need to prove that the solution s(g) is positive.
This can be prbven as follows. Without any loss of generality, we
will consider the neighborhood U of p and assume x(p)=0.  Since

eq. (1-18) has solution s(x), we have
Xk :
- k (XX} 4 *o e ’
(1-21) [ . C K0, o, 0,8y B s oaxy) diy

: S(O, .“’O’Xk’xk“’l’ .,',Xn).
® =[ + ds
- S(O’ ""O’O’Xkﬂrly"':xn)

=lIns (0, .“’O’Xk’xk'*l’ e ’Xn)

~1ns (0, ++,0,0,%, 1 %,)

This implies

(1"22) S(O, "'909}{k:xk+1) "'sxn)

ht

k ,
= S (0, "',0,0,Kk+1,°",xn) EXP{ JO Ck dxk }

Thus

d
(1-23) s(x) = 500, =+,0,84, 1, 5%y) k[I exp{ [

k ,
k ’
cK dg, }
0 k
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1f we choose 0 < s(0, "',0,xd+1,~-,xn)<i°0 carefully (for example
s(0, ~',0,xd+1,~',xn) = 1), then the resultant s(x) will be smooth
and positive because exp(a) is positive for a&(-o0, ). N
We will define the concept of weakly invariant codistribution
similarly.

[definition 1-8]

The codistribution © on the smooth manifold M is weakly
invariant under a vector field f if there exists a smooth positive

function s(p) such that the Lie derivative I,SfO' of the covector

’ field o€ Q with sf is dnother covector field which belongs to Q,
i.e. if
(1-24) Lsf Q C Q. ]

Next we will similarly define the notion of locally weakly
invariant codistribution under a vector field.

[definition 1-7]

The codistribution © on the smooth manifold M is locally

weakly invariant under a vector field £ if for each point p EM

there is an open neighborhood U of p with the property that Q is

weakly invariant under the vector field f on Uu. O

We can easily see that this is the dual version of locally
weakly invariant distribution.

[lemma 1-8]

If the smooth distribution A is locally weakly invariant under
the vector field f, then the codistribution Q= A" is locally weakly
invariant under f. - If the smooth codistribution @ is locally
weakly invariant under the vector field f, then the distribution
A=0Q* is locally weakly invariant under f. O

The proof of this lemma is analogous to that in the case of

invariant distribution/codistribution, which is found in [2].
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The following lemma can be useful when we are seeking the
mazimal locally weakly invariant distribution which annihilates a
codistribution or, equivalently, the minimal locally weakly invariant
codistribution which contains a codistribution. This problem
closely relates to system decomposition in a new time scale which we
will discuss latter.

[lemma 1-9]

Suppose that Q is a smooth codistribution which satisfies
(1-25) Lf(span{f}‘ﬂ Q) Cc Q.

Then, on any open subset UCM where span{f}* NQ is smooth, the

following equation will be satisfied
(1-286) [f,Q*] C Q" + span { f1} . 0

Eq.(1-28) is a necessary condition for the distribution Q* to
be locally weakly invariant under f.

(proof)
Let o be a smooth covector field in span{f}* NQ, and @ be a

vector field in @* . We will make use of the identity

Since Lf cc€Q and 6€Q* imply that

(1-28) <Lfa,6> = 0
(1-29) <g, 0> = 0,

we have

(1-30) <o, [f,0]1> = 0.

Since span{f}* N O is smooth on U by assumption, [f, 0]

annihilates every covector field in span{f}* NQ on U, i.e.
(1-31) [f,0] € (Gp{f}*nQo)*

= O*+ spi{f}. | ]
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3-9. Locally Weak Decomposition 'of Nonlinear Systems

The notion of a locally weakly invariant distribution under a
vector field will enable us to decompose a nonlinear system.
Throughout this section we will be dealing with nonlinear systems of
the form

. m
(2-1a) p=1*f(p) + .Zlgi (p) ui
1.“'_"

(2-1b) vi =hi (p) (i=1,2,,1)

The state p of this system is a point on the a smooth n dimensional
manifold M. And p stands for the tangent vector at the point p
to the smooth curve which characterizes the solution of the state
equation. The m components ll=(l11,"', uln) of the input and the

r components v=(y B ylj of the output are real-valued functions

of time, The vector fields f , gi are smooth vector fields
defined on M which we assume to be complete. The output functions
hi are real-valued smooth function defined on M. In a local

coordinate chart (U , 1), the state equation can be represented as

m
(2-2a) & =1 (x) + ,Elgi (x) ui
l:
(2-2b) vi = hyi (x) (i=1,2,~,1) .
We define the smooth distribution G as

(2-3) G = wspan{g ., g, 1.

3-9-1. Locally Weak Decomposition (controllability)

In this section we will investigate in the transformed time
scale a local decomposition which removes the uncontrollable state.
This is closely related to locally weakly invariant distribution.

We will begin with the following proposition.
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[proposition 2-1]

Let A be a nonsingular involutive distribution of dimension d
and assume that A is invariant under the vector fields T, g4, &
Moreover, suppose that the distribution G is contained in A.

Then, for each point pEM it is possible to find an open
neighborhood U of p and a local coordinate £ defined on U such
that the state equation of the system(2-1) can be represented by

equations of the form
. 7 m
(2"43«) §1=f1({§1,§2)+.21811(’31,52)111
1:

(2-4b)  Ep = f,(E2)

where (&, , £, ) 1is a partition of E with dim(&, ) =d. O
A similar decomposition is possible even if the distribution is
locally weakly invariant.

[theorem 2-2]

Let A be a nonsingular involutive distribution of dimension d
and assume that A is locally weakly invariant under the vector fields
f, g 1 B Moreover, suppose that the distribution G is
contained in A. Then, for each point pEM it is poésible to find
an open neighborhood U of p. The time scale 7 can be defined by
a smooth positive function s(q) as dt/dz=s(q) for g €U. The
local coordinates & can be defined on U such that the state
equation of the system(2-1) can be represented by equations of the

form

il

~ m ~
2-5) A5 =F 50 E) ¢ TEy (B0 E2) W
;2

(2-56) 452 =TF,(62)

where (&, , &, ) s a partition of E; dim(§. ) =d; and
?=sf,ﬂ§1=sg‘1.l]
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(proof)

Since the distribution A contains G, and A is locally weakly
invariant under g , there exists an open neighborhood U of p for
each pEM and a smooth positive function sji (q) such that for any

vector field 6 contained in A, the following equation will hold
(2-6) A 2 [ sigi, 0l
=si [ g1, 01— (Lysi) gi

This implies that [gi , 0] €A because the last term is
(2-7) (Lysi)gi € G C A.
Thus we have, for any smooth function A defined on M,
(2-8) [ Agi, 061 =Axlg1, 01— (L,yMN) gi

e A.

This implies that A is invariant under A gi for any A. Since A
is locally weakly invariant under the vector field f, there exist,
for each pEM, an open neighborhood U of p and a smooth positive
function s (q) such that A is invariant under the vector field sf
on U. The previous discussion shows that the distribution A is
also invariant under the vector field s gi on U. Thus, the
system in the transformed time scale =« defined by dt/dz = s can
be written as

m
(2-9) -g——,%= s f(p) + ,Els g1 (p) uyi .
1=

Since the distribution A is locally invariant under the vector
fields s f and s g1 , eq.(2:9) can be represented by eq.(2-5) in
an appropriate coordinate chart (U, £).m

In eq.(2-5), the dynamics of the state §, in the time scale
z is not affected by the system input u. This means that the

curve which the state £, traces in state space will not be
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influenced by the system input. " Thus, we can not manipulate the
the curve of the state &, even though are able to manipulate the
trajectory of the state &, as a function of the actual time scale.
The obvious requirement to follow the previous decomposition
would be to lock for the "minimal” distribution A which is
involutive, contains the distribution G and is locally weakly
invariant under the vector fields f, gy,*, & . If H is a family
of distributions, we can then define the minimal element (when it
exists) which is contained in every other element of H as the
member of H. It is known thatla family of distributions which
is invariant under f, g, =, & and contains G has a mimimal
element. We will show, however, that a family of distributions
which is locally weakly invariant under f, gy,-, g, and contains
G may fail to have a minimal element. In the case where
a distribution is invariant under the vector fields f, g0ty &g
the minimal element can be easiy found by the following algorithm.
This algorithm will allow us to find the mimimal distribution which
is invariant under the vector fields ©0,-, 6 _and contains the

q
distribution A. We denote the minimal element with the symbol

(2-10) <O e Oq | A>.

[algorithm 2-3]

(2-11a) AO = A

q

[proposition 2-4]

If there exists an integer k= such that A x= Ayx, . then

(2-12) Ak*=<01'm' Oq | A>.
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Moreover, if A Cspanf 0 1.0 "Oq} and Akx is nonsingular,
then Ak* is involutive. O

Thus, we can teadily find the distribution <f,g,,.g m| G>.
The following lemma will be helpful in seeking the minimal dimension
of the distribution which contains G and is locally weakly

invariant under f,gl, AL S

[lemma 2-5]

Suppose the distribution A i's locally weakly invariant under
the vector fields f,g, -, and contains G. If A is nonsingular,
then the distribution A+span{f} is invariant under f,g), =,8, in a
neighborhood of a regular point of A+span{f}. O
(proof)

Since A is invariant under f,g;, *,8, and contains G,

we have
(2-13a) [f,A] CA+ span {f}
(2-138b) [gi ,A)l CA+ span {gi } =A.

For each regular point p&€M of A+span{f}, there exists an open
neighborhood U of p such that A+span{f} is nonsingular on U.
Thus, for any smooth vector field 0 contained in A +span{f}, we can
find the smooth vector fields 6 4 €A and 0, =cf where c is a
smooth scalar function (if A= A+span{f}, we may set c=0) such that
= 04,4 + 0, . The Lie brackets [f, 0] and [gi , 0] can be

expressed as

(2-14a) [f,0] =1[f,0: +0,]

| = [f,0,1+ [f,0,]
[f,6,]1+c [f,f] + (L;c) f
A +span { T}

il
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)i

i

(2-14b) [gy , 01 =1lgi , 01 +02]
= [gy ,0:1+ g1, 02]
= [gi , 011 +c [gy ,f]+(LgiC)f
A +span { T} .

These equations imply that A+span{f} is invariant under the vector
fields f,gy,,g, on Uu. m

Thus, if we have a nonsingular distribution A which is locally
weakly invariant under f,gl,"-,gm and contains G, then the
distribution A +span{f} will be invariant under the vector fields
f,gl, gy and contain G +span{f} in a neighborhood of the regular
points of A+span{f}. The minimal element of the distribution

<f,g.a8 | G+span{f}> can be caluculated with algorithm 2-3.

m
From this we can conclude that the minimal dimension (if it exists)
of the locally weakly invariant distribution under f,g;, -,8,
containing G is not less than dim(<f, g2 8y | G+span{f}>)—1
almost everywhere on M.

Even though <f, g,:*.8, | G> fails to be nonsingular, we
may sometimes find the minimal dimensional nonsingular distribution
A which is locally weakly invariant under the vector fields f,
g1, "8y and contains G.
[example]

Consider the system

T, g6 tl

=f () +g) u.

4

1
u
0
The distribution <f, g | span{g}> can be obtained by algorithm 2-3

AO =span {g} .
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Since

XQe
we have
1 1
Al =span{ Ol,l X28x1 ]}
{ la(x) | b(x)=0 where x2=0 |-

b(x) |

This distribution le can readily be found to equal <f, g | span{g}>,

however, it fails to be nonsingular. On the other hand, the
distribution span{g} itself is locally weakly invariant under the

vector fields f,g because, for s(x)=e TX1

“El(1-w
[sf,g]=—le ““1)].

0

If we set dt/d = =s(x), the system in this time scale can be described

by

&

RS X e ¥l
d’l-' w = X? + O u

N

This system has been decomposed in the transformed time scale. O

The following example illustrates that the family of locally

weakly invariant distributions under f,gl,"',gm containing G
may fail to have a minimal element.
[ezamplel

Consider the systenm
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xy %y 1

d |, 3]
It e2 + 10| u
e “¥1 0

54
()
Il

f(x) +g(x) u.

sSince
1
[f.,eg] =- e*l
2 ¢ 2%1
0
[g, - [f,g11 =] el |,
462}{1

<f,g | span{f,g}> corresponds to TM. Thus, the minimal dimension,
if it exists, of the locally weakly invariant distribution under f,g
which contains span{g} is 2. We can find two different
distributions of dimension two which are locally weakly invariant

under f,g and which contain span{g}. If we set s(x)= e “®1. then

-%1
s = 1
el
and the distribution span{ 8, , 9s } is invariant under sf,g.
Thus, span { 8; , 93 } is a minimal dimensional distribution which
is locally weakly invariant under f,g and contains span{g}. The

system with the time transformation dt/d = =s can be represented as

. X xle_xl : e ¥l
T2 | %2 | = 1 + 0 .
XS e}‘l O
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ppparently, the dynamics of the x,-axis in the time scale v is
independent of those of the x and Rg-axes. If, however, we set
S’(x)=e—2’{1, a similar calculation will show that the distribution
span { 91 , 9, } is invariant under s'f,g. This means that the
distribution span{ 8; , 9, } is also a minimal dimensional
distribution which is locally weakly invariant under f,g and contains

¥

span{g}. The system dynamics in the time scale = defined by

dt/d = '=s’, is described by

x| xle_le e—2x1
d X, | = e *l | + 0 u
dz’ 2

g 1 0

The dynamics of the xS—axis in the time scale 7’ is independent of
those of the 1 and Rg-axes. Thus, both span{ 8, , 32 } and
span{ 81 , O3 } are minimal dimensional distributions, locally
weakly invariant under f,g and containing span{g}. This implies
that a system may fail to have a minimal distribution which is

locally weakly invariant under f,g and contains span{g}. O

9-9-2. Locally Weakly Decomposition (Observability)

| ’ In this section, we will investigate another important
decomposition of the control system which can separate the
unobservable states from the observable states. The following
proposition is useful for terating invariant distribution.

[proposition 2-6]

Let A be a nonsingular involutive distribution of dimension d
and assume that A is invariant under the vector fields f,gl, AT S
Moreover, assume that A is contained in the distribution span{dhl,

dhr}’“ . Then, for each pEM it is possible to find an open subset
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U of p and local coordinates § defined on U such that the control

system(2-1) can be represented in the local coordinates & by the

following form.

. m
(2-15a) &, =1 ,(§,8)+ i=zlgil( 180 uy

(2-15b) éQ = f (55 + il}-‘igiQ( §9)uy

(2-15¢) vi =hi (2 (i=1,+,1)

where (£, , &, ) 1is a partition of £ and dim(&, )=d.O
We can readily find the following lemma for a locally weakly
invariant distribution. |

[theorem 2-7]

Let A be a nonsingular involutive distribution of dimension d
and assume that A is locally weakly invariant under the vector
fields f,gl,m,gm. Moreover, assume that A is contained in the
distribution span{ dhy, e,dh bt Then, for each p EM it is
possible to find an open subset.U of p; local coordinates £
defined on U; and a time scale = which is defined by the smooth
positive function s(q) as dt/dz=s(q) such that in the local
coordinates £, the control system(2-1) in the time scale = can be

represented by

(2'16&) —g—%l =,¥1(E1,€2)+ 1%511( {51,52)Vi

mN
(2-160) 42 =T 8+ ZEp( £V,

(2-16¢)  yi =hi (§2) (i=1,0,71)

where (&, , &, ) is a partition of & and dim(&, )=d. And
Y= sf;gi=s5i &i; ui =(si /s) vi fora smooth positive

function s defined on U. O
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(proof)

Since A is locally weakly invariant under f,gl,n-,gm , We can
find for each p €M an open ne{ghhorhood and the smooth positive
functions Sy8q attL Sy such that A‘is’invariant under sf, S181r s
Sp&p OB U. Let 7 bea time scale defined by dt/d = =(s). The

system in this time scale 7 can be represented by

m
(2-17a) —%4% s T(p) + ZX s gi(p)ui
i=1

(2-17b) vi = hi (p) (i=1,e,1) .

~

If we set uy =(si ~s) vi and gi = si gi , then we will have

m
(2-18a) "%_'PE sf(p)+‘_2‘.sgi(p)(si/s) v

i=1
m

=s f(p) + Xs,; g;(Mv,
i=1
m

= T + 2 g.v,
i=1

(2-18b) vi =hi (p) (i=1,e¢,1) .

This theorem directly follows from this system.
=1 -1
This theorem implies that the two states (§.: , &, ) and

(€7, £, ) are indistinguishable in the time scale = if £, and
=2
£, are the same. In other words, the output’s curve in output

space (not the output trajectory as a function of the actual time

scale) is not affected by §. .

From decomposition (2-18), we would like to seek the
"magimal” distribution which is locally weakly invariant under
f,gy, *.&, and contained in span{dhy,--,dh } * .  Since the
annihilator of a nonsingular and locally weakly invariant
distribution is also locally weakly invariant, this problem is the

same as to seek the miminal codistribution which is locally weakly
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invariant under f,gy, *,8, and contains span{dhl,---,dhr}. Such a
minimal codistribution can be found with the following algorithm.

[algorithm 2-8]

(2-18a) ‘QO = span{dhl , dhr}

(2-19b) Qk+1 =Qk +Lf( span{f} * ﬂQk)

MS

+ ng spa\n{g':i}JL ﬂQk). 0

i=1
From lemma 1-9 , if there exists an integer k* such that

Qk*ﬂ:Qk*’ then Qk*" satisfies the following equations on any

open subset UCM where span{f}* ﬂQk* and span{gi} + ﬂQkx are

smooth.
(2-20a) [f, Qk** ] CQk*‘ + span { f}

(2-200)  [g;,@px* 1 CQp* + span {g;

b
The following lemma ensures that, under suitable conditions, Qk**
is the magimal distribution which is locally weakly invariant under
fogq, 8y and involutive.
[lemma 2-9]

Suppose that span{dhl,"-,dhr} and Qux* = A are nonsingular.
Moreover, we will assume that dim(A+span{f}) - dimn(A) and
dim(A +span{gi })- dim(A) are constant on the open dense subset
M* EM. If, for any smooth vector field 06 €A, there exist the

smooth vector fields G’,G’i & A and the smooth functions €,Cp, **

C which satisfy
(2-21a) [f, 0] =¢" +cf
(2-21b) [gi , 61 =0"1 +cCi gi

then the distribution A will be involutive and be the maximal

locally weakly invariant distribution under the vector fields f,gl,
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Y- which is contained in span--{dhl, ---,dhr} .0
(proof)

We will first prove that A is the maximal distribution which
satisfies eq.(2-21). Let A’ be any distribution which satisfies
eq.(2-21) and is contained in span{dhl, ---,dhr} . For any smooth
covector field o&€A’ * N span{f}* and any smooth vector field

@ &A’, we have

(2-22) <Lf0',6>=Lf<<r,0>-—<a, [f, 0] >

Lf<<r,0>—-<o*,0’ +c¢c f>
= 0

where 0' &A’ and ¢ is a smooth function which satisfies eq.(2-21).

Thus, we have

(2-23) Lf (A’ n span{f} *) C A’
Similarly, we have

(2-24) Lgi (A’ n span{g‘i}*) c A’
If for some k 20

(2-25) Q, C At

then

ME

+

ng span{gi}* n Qk)

i=1

c ATt
Since ‘QO = span{dhl, ---,dhr} * CA’, we can deduce that
(2-27) Qk*C ATt

(2-28) A’ C Qk*‘ =A.
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Thus, A is the maximal distribution which satisfies eq.(2-21).

We will show that A is involutive. Since A is nonsingular,
at each point p we may find a neighborhood VU of p and vector fields
6 120 9[1 such that on U,

(2-29) A= span{@l,---, Od}

where d denotes the dimension of A. Consider the following

distribution
(2-30) D= span{Ol,n-, Od}+ span{ [Oi,ej]I 1<i, jsd } .

The nonsingularity of the codistribution span{dhl,m,dhr} ensures

that span{dhl,--',dhr} * is involutive. We have
(2-31) (A, A] C span{dhl,---,dhr} .

Thus,

(2-32) D <  span{dhy,~,dh} .

Therefore, if we can show that D satisfies eq.(2-21), then D must
coincide with A because A is maximal. Consider the neighborhood
V of the point p which is a regular point of D and D +span{f}.

Since D and D +span{f} are nonsingular on V, the relation
(2-33) [f,D] €D+ span{f}

implies that, for any 0 €D, there exist 0’ €D and the smooth
function ¢ which satisfies eq.(2-21a) on V. Every smooth vector

field » €D can be expressed on V as »= » i + v, where 7 €A

and
d d
(2-34) Ve = 2 E'ci-[f?-,f)-]
i=1 j=1 v
for some smooth functions cij' Since
(2-35) [f,A] cA+ span{f} €D+ span{f} ,

it is enough for our purposes to show that
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(2-386) [f, [0i’9j]] CD+ span{f} .
If we set

1=0"+bv. f

(2-37) [T, 0; : ;

1

for O’i & A and a smooth function bi’ then

(2-38) [f, [ei,ej]]=[9i,[f,0j]]-[9j,[f,ei]]
= [0;,0% +b; f]
- [f)J,e’l + b, f]
- (05051 - L0y 0]

eD+A+ span{f} CD+ span{f}

Thus, D satisfies eq.(2-21a) on V. Similarly D will also
satisfy eq.(2-21b) in the neighborhood of a regular point of D and
D+span{gi !}. Since the set of regular points of D, D+span{f}
and D+span{gi } form an open dense subset of M, D coincides
with A in an open dense subset of M. Futhermore, A is
nonsingular; D is.smooth; and ACD by construction.  Thus, we
have D = A on the whole of M using lemma A-3(Appendix). This
means that A is involutive.

Finally, we can conclude that, from lemma 1-5, A is locally
weakly invariant under the vector fields f,gl,-",gm and is contained
in span{dh;,-,dh.} * . Since A is the maximal distribution
contained in span{dhl,"-,dhr} + satisfying eq.(2-21), A is the
mazimal distribution which is locally weakly invariant under the

vector fields f,gy, .8, and is contained in span{dhl, "-,dhr} . m
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3-3. Disturbance Decoupling Problem

Controlled invariant distribution is another important concept
which can be used to analyze the invariant sutrcture of nonlinear
systems. This is the nonlinear version of the (A,B) invariant
subspace from linear system theory. Controlled invariant
distribution was independently introduced by Ishijima[19]1[20],
Isidori et.al.[2211023], Hirschon[24] and Nomura et.al.[21].  Here,
we will extend their formulation using weakly invariant structure and
then define weakly controlled invariant distribution. We will use
weakly controlled invafiant distribution to solve the disturbance
decoupling problem in a new time scale --the wide-sense disturbance
decoupling problem. In the wide-sense disturbance decoupling
problem, we will design a feedback law so that the output as a
function of an appropriate time scale = is independent of the
disturbance. In other words, we aim to design the feedback law
such that the output’s curve in output space (not the output
trajectory as a function of the actual time t) can be separated from
the disturbance.

We will first investigate the weakly invariant structure of a
controlled system (section 3-3-1) and then use it for the disturbance
decoupling problem which isolates the output’s curve from the

disturbance (section 3-3-2).

3-3-1. Weakly Controlled Invariant Distribution

At first we will review the notion of controlled invariant
distribution. We used invariant distribution to decompose the
original system in section 3-2. The notion of controlled invariant
distribution is used in order to decompose a system modified by

feedback.
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Consider the system
d m
(3-1) LP = f(p) + X g.(pu;
dt =1 1 i
and feedback of the form

m

(3-2) u, =a.(p)+ z i

1

where and B i are real-valued smooth functions of the state p

and we assume that the mXm matrix '8=[‘6ij] is nonsingular.
The real-valued function v= ( Vst vm) is new input to the
modified system.

We modify the original dyndmics (8-1) with the feedback (3-2),

and then we obtain the controlled system

R R THOM
in which
Gd) TG - f0) + Tg (e
1=
~ m
(3-4b) gi(p)= zg](p)ﬁjl(p) .
=1

In order to study the invariant structure of this controlled system,
the notion of controlled invariance needs to be introduced.

The distribution A is said to be controlled invariant if
there exists a smooth feedback pair ( «, B) defined on M with the
property that A is invariant undevr the vector fields T , El""’ Em
defined by eq.(3-4), i.e.

(3-5a) [?,A] C A
(3-5b) (81 ., A1l C A.

A local version of controlled invariant distribution was also

defined to study the local invariant structure of the controlled
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system.

The distribution A is said to be locally controlled invariant
if for each p €M there exists a neighborhood U of p with the
property that A is controlled invariant on U. From the previous
definition, this requires the existence of the smooth feedback pair
( o, B) defined on U satisfying eq.(3-5) for all g on U.

Since the notion of controlled invariant distribution allows
us to investigate the invariant st;ucture of the controlled system,
controlled invariant distribution }s used to solve the disturbance
decoupling problenm.

The following proposition gives a simple geometric test for
locally controlled invariant distribution.

[proposition 3-1]

Let A be an involutive distribution. Suppose A, G and
A+ G are nonsingular on M. Then A is locally controlled

invariant if and only if

(3-6a) [f,A]l CA+G

(3-8b) [gi ,A] CA+G. a

We will extend this concept of controlled invariant distribution
and then define weakly controlled invariant distribution. This
notion can be used to investigate the invariant structure of the
controlled system in a new time scale.

[definition 3-2]

Consider system (3-1). A distribution A is said to be
weakly controlled invariant if there exists a smooth feedback pair
(o, B) defined on M with the property that A is weakly
invariant under the vector fields ?I,‘§1,~~,’gn;defined by (3-4). O

This definition requires the existence of the smooth positive
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functions s and sji such that-
(3-7a) [sf,A] < A
(3-7b) [s; g1 ,A] C A.

Since the vector field Ei can be modified by input
transformation B, condition (3-7) corresponds to the existence

of the feedback pair (o, B) such that
(3-8a) [sT,A]l] C A
(3-8b) [2: , Al C A.

[definition 3-3]

The distribution A is said to be locally weakly controlled
invariant if for each p &M there exists a neighborhood U of p
with the property that A is weakly controlled invariant on U. O

The following lemma gives a geometric test for locally weakly
controlled invariant distribution.

[lemma 3-4]

Let A be a nonsingular involutive distribution and assume that
A+ G is nonsingular. Moreover, we will assume that dim(A +span{f})
—dim(A) is constant on the dense subset M* cM. Then A is

locally weakly controlled invariant if and only if
(3-9) [gi , Al CA+G

and, for each smooth vector field 0 &€ A, there exist the smooth

function ¢ and the smooth vector field » & A + G which satisfy
(3-10) [ f,06 1] = w»+cf. a

The proof of this lemma is analogous to that of lemma 1-5, so

we will omit it.
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2-3-2. Wide-Sense Disturbance Decoupling Problem

In this section, we will define the wide-sense disturbance
decoupling problem and solve this problem using the notion of weakly
controlled invariant distribution. In the wide-sense disturbance |
decoupling problem, we aim to design a feedback law such that the
output as a function of the new time scale « will be independent of
the disturbance. In other words, we will design a feedback law such
that the output’s curve (not the output trajectory as a function of
the actual time t) can be separated from the disturbance.

The wide-sense disfurbance decoupling problem can be formulated
as follows. Consider the system

m | m’
(3-11a) 2= f(») + Zg;(u; + Td;()w,
i=1 j=1 ! !

(3-11b) yi = hi (p) (i=1,%,1)

where the additional input w=(w o, w, )T represents an
undesired perturbation which influences the behavior of the system
through the vector fields dl,-n, dm" For simplicity, we will

use the following notation.

(3-12a) G = span{g(p), g,(p), -, & (P)}
(3-12b) D = span{d (p), dy(p), =, d . (p)}.

[definition 3-5]

The wide-sense disturbance decoupling problem involves seeking
the new time scale 7 and a feedback law (3-2) for the system (3-11)
such that the output v of the resultant system expressed in the
time scale = will not beaffected by the disturbance w . 0O

Obviously, in the wide-sense disturbance decoupling problem, we
seek a feedback law which will make the resultant system’s output
curve independent of the disturbance.

The wide-sense disturbance decoupling problem can be solved as
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follows. If we can find the nonsingular, involutive and d dimensional

weakly controlled invariant distributionA which satisfies
(3-13) D C A C spanf dhl,---,dhr Yo,

then we can decouple the output of the system from the disturbance
in a local coordinate (U ,x) using the appropriate time scaling

function s and feedback pair (o, B) in the following way.

dzx1 = mo. m .
dgxo = ‘ mo.
(3-14c) y; =h ; (x9) (i=1, »=,1)

~

(3-152) £(p) = s () f ()

Il

sEIFM + Tg (®a,(p)

i=1

~

(3-150) g ()= s (P E;(®

IO THOLINOR o

J
3-18)  SE=s() >0
where (%, ,%, ) is a partition of x and dim(x, )= d. It is

apparent that the output of the resultant controlled system is not
influenced by the disturbance in the time scale 7.

In this formulation, we are able to reduce the wide-sense
disturbance decoupling problem to a problem requiring a weakly
controlled invariant distribution which contains D and is contained
in span{dhy,, dhr}'L .

The notion of locally weakly controlled invariance is easier to

manage than the global one. This motivates us to consider the local
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version of the wide-sense disturbance decoupling problem. The local
wide-sense disturbance decoupling problem involves finding a locally
weakly controlled invariant distribution which contains D and is
contained in span{dh,-, dh}* .

If we can find the maxzimal locally weakly controlled invariant
distribution which is contained in span{dh1,~°, dhr}JL , then we can
judge whether the local wide-sense disturbance decoupling problem is
solvable or not. The local wide-sense disturbance decoupling
problem is solvable if and only if D is contained in the maximal
locally weakly controlled invariant distibution contained in
span{dhy, -, dh }* .

The following algorithm will enable us to obtain a candidate for
the maximal locally weakly controlled invariant distribution which is
contained in span{dh;,-, dh}* .

[algorithm 3-6]

(3-17a) QO = span{dh1 ETTIN dhr}

(3-17h) Qk+1 =Q’k +Lf( (G+ span{f})* ﬂQk)

]
+ X L (G*NQ) .o
i<l & k

If there exists an integer k* such that Qk*+1=9k*’ then Qk** = A

will satisfy the following equations on any open subset{ where

span{f} * NA and G* NA are smooth.

(3-18a) [f , Al CA+G+' span { f}

(3-18b) [gi , A] CA+G.

[lemma 3-7]
Assume that spam{clhl,m,dhr},A=ka<L and A+ G are nonsingular
and that dim(A +span{f}) - dim(A) is constant on the dense subset

¥ .
M CM. Moreover, we will assume that, for any smooth vector
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field 6 €A, there exist the smooth vector field » EA + G and the

smooth function ¢ which satisfy
(3-19) [f, 0] =v+cfT.

Then A will be the maximal locally weakly controlled invariant
distribution which is contained in span{dhl, n-,dhr} + and A
will also be invelutive.O

The proof of this lemma is analogous to that of lemma 2-9, so it
can be omited.
[example]

Consider the system

——g—%—=f(x) +gu+dw
vi =hi (%) (i=1,2)

where x=(x1 .%o .83 ) " ,E(x)=(x2 e Ll,xs e’ 1, 007 ,g=(0,0,1)7

d=(1,1,1D7 , h, (x)=2%, -x2 -x3 and h, (x) =x; -xs . Obviously,

1
span{dh; ,dh, } * =span {I 1 ] }= span d°
|
£ A.
’ This distribution A is not locally controlled invariant because
i
1 1
(x2+ )e
[f,d] =~ (x3+1)exl &span {d , g }

0

So we are not able to decouple the output from the disturbance in the
actual time scale t, but we will show that the local wide-sense

disturbance decoupling problem is solvable. Since

[f,d]=~eﬂd+eﬁg—f
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-X -% . -¥
and s(x)=ci1 e l+c, e 2+cs e 3  (where ¢, , C2 , Ca are
non-negative constants and some of them must be non-zero) is the

positive solution to the differential equation

_90s ,_0s s, 88
- s=5;d7 8x1+ 632+ 913

From this we see that A is locally weakly controlled invariant.

Using the time scaling function s , we obtain

c ¢, eil‘xhc3 e "1773
[s f,d] =— 8174 X17%3
Cl+02 e +03 e

0
& span{ g.,d }.

Since the dimension of A and A +span g are constant, the

local wide-sense disturbance decoupling problem has been solved.

9-4. Concluding Remarks

In this chapter, we investigated invariant structure using a
time scale transformation. We introduced the notion of weakly
invariant distribution in section 3-1 and showed how it‘can allow us
to study invariant structure in a new time scale. We have proposed
a simple geometric test for weak invariance. In section 3-2, weakly
invariant distribution was used to obtain Kalman-like decompositions
in reachable/unreachable parts and/or observable/uncbservable parts
in the transformed time scale. We have found the minimum dimension
of the locally weakly invariant distribution under the vector fields
f,2 which contains g; this distribution coincides with the
controllable subspace of a linear system. We have also proposed an
algorithm to obtain the locally weakly invariant distribufion under

the vector fields f,g which is contained in the annihilator of the
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output function. This distribution coincides with the unobservable
subspace of the linear system. In section 3-3, we introduced weakly
controlled invariance, and succes;fully used it to solve the
wide-sense disturbance decoupling problenm. In this problem, it is
necessary to seek a feedback law which would prevent the disturbance

from affecting the output’s curve in output space.
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IV . FEEDBACK EQUIVALENCE

The linearization problem is significant in nonlinear system
theory because it is possible to apply control strategies which were
perfected in linear system theory to linearized systems. One of the
most common linearization methods is first order approximation.

With this method, we approximate a nonlinear system as a linear
system in a neighborhood of the equilibrium point. We neglect the
second order term in designing the controller. An alternative
formulation was proposed in 1978 when the exact input-state
linearization problem was solved by Brockett[42]. A slightly
modified version of this prob]eh was solved by Jakubczyk-
Respondek[43], Sul[44] and Hunt et al.[45]. With this method, we
proceed to linearize the system using a state transformation and
nonlinear state feedback.

An exact linearization method can, however, only be used on
a restricted class of nonlinear systems: systems which can be

expressed in appropriate coordinates as

Ry 7 Ry | 0 ]
Xy Xq 0
i =1 : +|:fu
fn-1 n 0
2 a | b |
where a and b are functions of stéte and b= 0. These systems are

almost linear systems. In order to relax this condition, several
approximate linearization methods have been proposed [46] [47].

Here, we will relax the linearizability condition by introducing
a time scale transformation. We will define the notion of
wide-sense feedback equivalence and identify the class of nonlinear

systems which can be linearized in some transformed time scale.
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4-1. Ordinary Feedback Equivalence

In this section, we will review the work of Sul44] and derive
several lemmas concerned with ordinary feedback equivalence.

In this chapter, we consider a single input system expressed in

local coordinates as
a-n AL = fm + 8@ u

where f and g are C° vector fields. We assume x EM=RT f{(0) = 0.

The system (1-1) is feedback equivalent to a linear system if

there exists a C° diffeomorphism

(1-2) Y : MXR——=RN XR
XXu——+y XV

such that the system can be expressed in RI X R

v Vo | 0]

Vo Vg 0
(1-3) 4| = | : + | :]v.

Yn-1 Y 0

vV, U 1]

The following proposition was derived by Suf[d4].
[proposition 1-1]

The system (1-1) is feedback equivalent to a linear system in
a neighborhood of the origin if and only if there exists a

neighborhood U of the origin such that

(1) {g, adeg, -, ad?—lg}(x) span T, M for all €U, and

(2) {g, adeg, -, ad?_gg} is involutive on U. DO
Condition (2) in this proposition requires us to check
(n-1)(n-2)/2 Lie brackets [ad%g, ad%g] (0 i< j€n-2) , but the
following lemma will ensure that it is only necessary to check n-2

Lie brackets.
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[lemma 1-2]

Let U be an open neighborhood of the origin. Suppose that
{g, adfg, ver ad?—lg}(x) span I‘X M for all x €U, then the

following three conditions will be equivalent on U.
(1) {g, adgs, -, ad¥—23} is involutive.

(2) There exist ¢ functions 6 K" 1K) (k=1,2, o n-2;
i=0,1,++k) such that

Mw‘

(1-4) [adlg_"lg, ad¥g]= ng—l’k) adifg

i=0
for k=1,2,+,n-2.

(3) {g, adf g, ad?g} is involutive for k=1,2,++,n-2. O

(proof)
(1)=(3) : This will be proven by induction. For k=n-2,

{g, adfg, see ,ad?—Qg} is involutive from condition (1). Assume that
{g, adfg, "-_,ad¥g} is involutive, then there exist C° functions

7] gj,r) (x) such that

. kKoo : |
(1-5) [ad{g, ad;g]= '20§J’r) ad; g (j, 1€k ) .

1=(0
On the other hand , from a property of Lie brackets, we have

(1-8) [adf;g, ad¥g1=[adf;g, [f, adlf"'lg]]

= —1t, lad} lg, adlel]l - [ad] 'g, [ad}e, f1]

[f, ladls, adl 'ell +[adl™lg, adl*'el.
If j<k-1 and r<k ,then (1-8) can be rewritten using (1-5)

k . .
2 0 gr_l’J"‘l) adl

. k . :
(-7 ladje, adjel =I5, o (o1 qalgy + ]
i= i=

58
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(r-1,j+1) (j,r-1)
{90 4-I,f 0 0 } g
S el L, gt
21 i-1 f i
¢ o (LI i
+ 0 éJ’r—l) ad¥+1g.
Comparing (1-7) with (1-5), we can conclude that 0 ﬁj,r~1) =0
(j€£k-1; r-1<k-1 ) because {g, adgg, -, adk+1g} are independent for
f f
; k<n-2 . This means {g, adfg,on, ad¥—1g} is also involutive .
f" (2)—=>(8) : We will use induction. Obviously {g} is involutive.
: Assume that {g, adfg, cor ad?g } is involutive , then there exist
C” functions © gj,r) which satisfy (1-5). To show that {g, adfg, oo
adk+1g } is involutive, it is sufficient to check [ad%g, ad¥+1g]
for j & k.

(1-8) [ad%g, ad¥+1g]=:[f, [ad%g, ad?g]] *‘[ad¥g, ad%+1g]
_ (i, k)
=Ly 0g g
(21 i-1 f i ads 8

+ Oﬁj’k) ad¥+1g +—[ad¥g, ad%+lg].

Using (1-5) if j<k-1, or (1-4) if j=k, (1-8) will beconme,
(1-9) ladle, adkgl= {agkml) FL, QSJ,R)} .
k . .
ro3 (ol L o (K
i=1
+ o (oirl)y gl

(j,k) (k,j+1) k+1
+ {0y + 0.1 1 oads '8

where 0 K" =0 it j =k So, {g, adsg,, adf g } is also
involutive .

(3)> (1) and (3)—>(2) : Obvious. [
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Condition (3) of lemma 1-2-was used as a condition for
linearizability by Jakubczyk{43]. This lemma yields the following
lemma.

[lemma 1-3]

System (1-1) is feedback equivalent to a linear system in a

neighborhood of the origin if a;d only if there exists a neighborhood

U of the origin such that
(1) {g, adss, o, ad?—}g }(x) span T, M for all x€U, and

(2) there exist C° functions ng_l’k) (k=1,2,¢+,n-2;
i=0,1,++k) which satisfy (1-4). O

4-2. Wide-Sense Feedback Equivalence

Here, we will consider linearization in the new time scale 7

[definition 2-1]

System(1-1) is wide-sense feedback equivalent to a linear

system if there exists a new time scale 7, defined by the C° time
scaling function s(x)>0 as dt/d '§=s(x), such that the system

expressed in the time scale 7:
'® 2-1) EE=s) f() +e@)

is feedback equivalent to a linear system in the time scale = . O
Obviously, a system which is wide-sense feedback equivalent to
a linear system need not be linearizable in the actual time scale t.
The following lemma is obvious from this definition.
[lemma 2-2]
System (1-1) is wide-sense feedback equivalent to a linear
system in a neighborhood of the origin if and only if there exist:
a neighborhood U of the origin; C* functions s(x) > 0 andﬁ‘g(x)
(k=1, 2,-+, n-2; i=0, 1,, k) such that
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(1) {g, adsfg,"~, adg;lé}(x) span T‘x M for all x€ U, and

(2) the following equation is satisfied on U for k=1, 2,:-,
n-2.

k

(2-2) lad¥:le, adk,2l = K ¥ adlg . O
adgp & lgp8l = iz | st® -

The rest of this section will be devoted to finding such s(x).
In order to do this, we must examine these two conditions. First,
we will examine the property of ad;fg.
[lemma 2-3]

There exist & [(x) (j=0, 1, »+, i) and g 1(x) which are

¢ functions consisting of &, s(x), and partial derivatives of s(x),

such that

(2-3) il g = 1251 dlg+ £l ¢
asfg J=0 'afg £ .

Also §§ ={s(x)}' . O

(proof)

Obviously, this condition will be satisfied when i = 0. Assume
that it is also satisfied when i = k , then

(2-4) ad§;1g==[sf, adgfg]

= (sL; D) g
k .
k k ] k _ k+l
+ jj% (s % j-1 TS L, § j) adgg + s & ady g
+IsL, X -t¥L, s

Kk
- > {£k

§20 ] L(ad%g)s } 1 f.

This means that there exist C* functions § ¥+1 (j=0, 1,+, k+1)
and & 51 which satisfy eq.(2-3). W

From the last lemma and condition (1) in lemma 2-2, the
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following lemma can easily be derived.
[lemma 2-4]

If the system (1-1) is wide-sense feedback equivalent to a
linear system, then {f, g, adfg,m, adrfl_lg}(x) span Tx M for all
 €EM. O

From now on, we will assume that {f, g, adfg,m, adrfl_1 g }(x)
span 'I‘X M for all x&EM. The following lgmma ensures that there
does not exist a set of C° functions {EJ , E} } which is different
from {é} , S% } and satisfy

adlfg = JIE(‘)E; adig%—g; f
for i = 0, 1, =, n-2 .
[lemma 2-5]

If the set of vector fields {f, g, adsg, -, ad?-lg}(x) span
Tx M for all &M, then there does not exist an open subset
UCM on which there exist non-zero C” functions tlfi(x) (i=0,1,¢,
n-2 ) and ¥ ¢(x) satisfying

n-})?w.

(2-5) ¥ T+
f i=0 |

i _
adfg— 0. 0O

(proof)
If such a U exists, then there must exist an open subset VCU
and an integer k (0 = k<n-2) such that ¥, = 0 for all x€V

(i.e. w;l is also a C” function on V) and

k .
(2-8) Yo £+ W, ad}fg= 0
i=0 !
on V. Thus, adlég can be rewritten
(2-7) adkg= —w ly, £- kgw‘lw al
£& k Yt it Sh Bl &

where ¢i1¢f and tlfi;lwi are C° functions. Using this relation, we
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find that

(2-8) ad¥+1g= [f, adl; gl

k

== 1f, wilwg f1- ; adjel

1
_ -1 _ -1
okl -1 i
21{ wk d;i‘l +Lf(llfk tlfl)} adfg
1=

- “’1—(1“‘1(—1 adlgg

..1 —1
Il vy v

= {420 ¥ —Ly( e}

e, vy —Lpe ) e
2% e, v, —wily
A A SIS k ¥i-1
-1 i

We can calculate adlif+2

easily find that

g, ad¥+3g,"~, and ad¥_1g similarly, and we will

(2-9) span {f, g, ad; g,, ad}‘_lg}(x)
= span {f, g, ad; g, *-*, ad¥ g} (x)

for all ¥ €V . . This contradicts our assumption that the set of
vector fields {f, g, adfg,'", ad¥_1g}(x) span T‘X M for all xéM. =B

Next we will examine condition (2) in lemma 2-2.

{lemma 2-6]

If system (1-1) is wide-sense feedback equivalent to a
linear system, then there exist unique C° functions = gj’r)(x) and
7 %j’r)(x) (j,r =k; i=0, 1,-+, q) such that
. q . . .
(2-10) ladlg, adlgl= Z'ngj’r) adig+ 7 (i,r) f
f f 27 f f

(2-11) q = k + 1 (
{ (

k)
k 1)

A TA

2
k
6 3



for k = 0, 1, ¢, n-3 (4<n), or k=0, 1,.», n-2 (n<L3). O

Before proving this lemma, we will prove a related lemma.
[lemma 2-7]

If there exist C* functions ngk—l’k)(x) and ngk—l’k)(x)
(k=1, 2,++, n-3; i=0, 1,-+, k+1) such that

’

* kel oy . )
(2-12)  [ad¥lg, adk gl = 'zongk 1,k) ad;g+n§k 1,k) ¢
1=

then there also must exist C° functions v')(Ji"r) (x) and "/)(g’r) (x)
(j,r<k; i=0, 1,-+, k+1) such that

' kel (; . .
(2-13) [ang, adrg]= };nFJ'r) ad1g+n(3’r) ;
f f is0 i f ¢

for k =0, 1,., n-3.0
(proof)

Obviously (2-13) is satisfied in the case of k=1. Assume that
eq.(2-13) is satisfied for k£2z. For j<£z, we have

(2-14)  [adlz, ad?*lgl =1, [adle, adZell + [adZz, ad}*le)

_ (j,2z)
= {L; 7 g
z+1 . . )
S 0D e (0
l:

0 gli®) adfPer (Ly {1}

+ [ade, ad%+lg]
The last term of eq.(2-14) is an element of AL gy j <z, oran
element of AZ*2 it i = z because of eq.(2-12), where AZ is the
set of C€° vector fields which are the linear combination of vector

fields {f, g, adfg,m, ad? g}, Thus, eq.(2-13) is also satisfed
for k £z+1. 1
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(proof of lemma 2-8) ‘
When k=0, the proof is obvious. In the case of where k=1, the

proof is as follows.

(2-15) (g, ad ;gl=1[g, [sf, gll
=lg, s (adpg) = (L,s) f]
—s[g,m%g]+Q(L s) ad;g— (L w f.

Since condition (2) in lemma 2- 2 requlres that [z, ad fg] must be an
element of A! , we have [g, adf gJEAY CAZ . Assume that
eq.(2-10) is satisfied for k<z. In order to show that eq.(2-10)
is also satisfied for k £2+1, it is enough to check the case of

j=z,r=2z+1., From eq.(2-3), we have

(2-18) [ad? . g, adzf gl

: z+t
= [.EOE? adjg+ £ f, 52*1 adjg+ £ 2 1)
1=

j= 0
= &2 21} [ad%s, ad?'lg)
+ zzléz £2t! [adlg, ad?*lel
P20 2+l L@ fg’ aly
z oz
+ 3 3] 2! fadjg, adjs]
i=0 j
2 +1 2+ 1
+ 1363%[{5 L (gl § § ' ad]s
_ z+1 - z i
(6571 L (pig) 85 adpel
z .
2 z+1 1+1 z+1 Z i
+i=20[ {’:1{’: g - (Ef Lféi)adfg
z . z+1
+ {§ i I‘(ad,}g) § f bt
z+]

J

LY

+ 2165 g2 agltev (82 L, 627D adle
| _ z+1 : z
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For 0 <i <z-1, we have

(2-17)

The last five terms of (2-16) are evidently elements of

ladlg, adZ*lel=[f, ladlg, adfel) + ladfs, adj" sl

ea?*? y a2l cp?t?

Az+2

Thus, [ad?g, ad?+1g] must be an element of Zk2+2 because

[adzfg’ adz;lg] EA2+1 (condition (2) of lemma 2-2).

Uniqueness

follows from lemma 2-5. M

Using §&

differential equations which

in lemma 2-3 and 7

in lemma 2-6, we can derive the

s (g) must satisfy. We rewrite

eq.(2-16) using eq.(2-10), and we have

(2-18)

fad¥;le, adfpel

kel k-1 Kk .
s (3 zekl gk, GL0)
r=0 i=0 j=0 ! ) r
k-1 .. ,
+ 1335 i I‘(ad;g) § r
k
_ k . k-
ekl gk ek k-1
§r-1 5¢ — 8¢ Ly &,
k-1 ok k-1 ky _.r
+&p 0§ 8y Ly £} adgs
k"]. k . k . _
LI L(adlg) © 1 jf‘OgJ L (adle) &
ek k-1 k-1 k
e Ly & +65 Ly &y
k-1 k .
+ox ozell gk, iy
i=0 j=0 .
k+1
204:1; adlg+ £ % f
T=
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where & is a € function consisting of x,s, partial derivatives of s
and 7. ( We are assuming that & }=0 for j > i or j < 0.)
On the other hand , condition (2) in lemma 2-2 can be rewritten as
k
k-1 k _ k r
(2-19) (ad g, adgpel = r=208r ad  p8

k r i r
b} . £ i adfg-k b £ £ f

k

r=0 T

5% &7 adlg+ % 5k ET ¢
S R f i f
Compare (2-18) with (2-19) , keeping the uniqueness of % and §

in mind, we can easily conclude that s(x) > 0 and8 are solutions

to the following differential equations

(2-200) L, = 0

- k
(2-200) ¢% = 3 8% ¢! Ci=0, 1,0, k)
i rai r i
(-200) ¥ = 5 % el
’ f - r=0 r t
for k=1,2,+, n-3 (n=

4), or k=1,2, «+, 1-2 (n£3).

Until now , we have been investigating the necessary conditions
for nonlinear systems to be wide-sense feedback equivalent to linear
systems. These conditions will be sufficient if we add some further
conditions.

[theorem 2-8]

System (1-1) is wide-sense feedback equivalent to a linear
system in a neighborhood of the origin if and only if there exists

a neighborhood U of the origin such that
(1) there exist C functions 7 gj,r) and 7 %j,r) (j,r=k;
i=0, 1, *», q ; q is defined in (2-11)) which satisfy
equation (2-10) for k =0, 1,++, n-3 (n=4), or
k=0, 1, «, n-2 (n<3) on U,
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(2) the differential equations (2-20) have C” solutions

s(x) >0, 61; and"fil; for k =1,2, -+, n-3 (n=4) or

k=1, 2, «+, n-2 (n£3) on U,

(3) in the case where n =4,there exist ¢ functions 8?*2

(i=0, 1,--, n-2) which satisfy the following equation

on U
-9 .
n-3 n-2 -, _ n n-2 i
(2-21) [adSf g, adsf gl = iz‘bﬁi ad ;8

where s(x) is a solution to condition (2), and
(4) {g, adsfg,m, adg}lg}(x) span Tx M for all &€ U. O

Obviously n< 3 is a special case. The subsequent corollaries
follow from this theorem.

[corollary 2-9]

System (1-1) (n=8) is wide-sense feedback equivalent to a
linear system in a neighborhood of the origin if and only if there
egists a neighborhood U of the origin such that

(1) there exist C° functions 7}[()0’1),7) §0,1)’ and “f)go’l)
satisfying the following equation on U
(2-22) [g, adegl =70 Vgt 5 (0:D5g 4 47 (0.1
f 0 1 f f
(2) there exists a C° function s (%)>0 which satisfies
- 2.2 2_ . (0,1) _ (0,1) _
(2-23) Lgs S (Lgs) 7 Lgs s ¢ =

and

(3) g, adsfg, adgfg}(x) span Tx M for all x€U . 0O
[corollary 2-10]

System (1-1) (n=2) is wide-sense feedback equivalent to a

linear system in a neighborhood of the origin if and only if there

exist a neighborhood U of the origin and a C° function s(x)>0
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such that {g, adsfg}(x) span ’I‘~x M for all x€U. O
[corollary 2-11]

System (1-1) (n=1) is wide-sense feedback equivalent to a
linear system in a neighborhood of the origin if and only if there
exists a neighborhood U of the origin such that g(x) =0 for all
r €U. O
(proof)

Corellary 2-10, 11 are obvious from lemma 2-2 , so we will prove
only the case where n=3 (corollary 2-9). Since conditions (1) and

(3) in this corollary are equivalent to those of (1) and (4) in

-

theorem 2-8, it is enough to prove that condition (2) in this
corollary is equivalent to that of (2) in theorem 2-8. ¢ in

theorem 2-8 will be calculated as follows. Since
(2-24) (5, ad gl =1[g, s adgg— (L,s) fl
= slg, adsg] +2(L,s) adgg— (LZs) f
= sngo’l) g +{S°7§0’1) + 2Lgs} ad;g
+{s7’)§0’1) - Lzs} f,

we have

(2-25a) b4 é = s7 30’1)
(2-25b) | = (s (01 4 2L s}
(2-25¢)  £1 ={sn "D -L2s .

On the other hand, we have

i el 1
(2-28) [g,_adsfg]— 6y8 +38, ad p8
=6(1)g + sa{ ad ;g — (6% L) f.

Using condition (2) in theorem 2-8, we have
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(2-27a) s §0D =48]

(2-210)  {sm (0D 4 2L sh = 58
} (0,1) _ 2, _ _ sl
(2-27¢c) {s*f}f Lgs} =-08] Lg s .

This yields eq.(2-23).m

4-3, Example

Consider the system

2t —f () +g@ v

where ﬁ=(x1 k2 ,%x3 ) T, T()=(x2 e %3 g4y e %3, 0)7 and
g (x)=(0,0,1) 7 . The Lie bracket [f,g]=adfg is easily calculated

as follows.

N {
o €

adeg= [f, gl=~ (x3+1)ex3
0
In order to know whether this system is feedback equivalent to a
linear system or not, we will examine condition (2) in prosition 1-1.

Since
9
Bo €
[g, adpgl =-— (2q+2) € 3
0
=f + 2 ad;sg & span {g, adfg},

the set of vector fields {g,adfg} is not involutive. Thus, this
system is not feedback equivalent to a linear system. This system,
however, will be found to be wide-sense feedback equivalent to a

linear system. The partial differential equation (2-23) in

corollary 2-9 for this system is expressed as

70



2.2 2 _ T e
Lgs S (LgQ 2L s— s

g
2 2
ol 2[25]To8s -0

Since s(x) =e “%3 5 o satisfies this differential equation, the
system is wide-sense teedback equivalent to a linear system . In
fact, using the time scale « defined by —%{? = s(x) =e %3, the

system can be rewritten as

- %o 0

dd'l.' 32 = }{3 + O v
Rq 0 1
v=¢etdy

and this system is linear in the time scale 7.

4-4. Concluding Remarks

In this chapter, we have investigated the input-state
linearization problem in a transformed time scale. This problem
has been formulated using the notion of wide-sense feedback
equivalence. We have identified the class of nonlinear systems
which can be linearized in the transformed time scale. We have
also shown that there are nonlinear systems which can not be
linearized in the actual time scale t, but it is possible to
linearize in the transformed time scale. The time scale in which
the system can be linearized is obtained as the solution to partial
differential equations. Since the time scale transformation
preserves the systems’s stability, it is possible to use the
linearized model in the transformed time scale to obtain a

stabilizing controller.
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v . CONTROLLER DESIGN

In this chapter, we will take a different perspective on the
time scale transformation by applying it to controller design. We
will propose the following controller design method. Firstly, we
will introduce an appropriate time scaler and express the system
dynamics in the transformed time scale. We will then linearize the
system in the the time scale =. Finally, we will design a linear
controller in the time scale = to stabilize the system. The
controller is linear in the time scale =, but nonlinear in the
actual time scale t. Our choice of the time scale transformation
will enable us to obtain interesting properties in the controlled
system which can not be achieved with conventional methods.

As we saw in the previous chapter, linearizability is not
usually preserved by time scale transformations. In the case,
however, of a system with a controllability index two, almost all
time scale transformations will preserve linearizability. Since
mechanical systems are usually expressed by second order differential
equations, i.e. controllability index is two, the proposed controller
design method is especially appropriate to design controllers for
mechanical systems.

In section 5-1, we will apply this method to design a controller
for a linear system so that we can aveid an exceedingly high
amplitude of input. In section é-z, we will propose a controller
for a robot which can achieve good performance even in the
neighborhood of a singular point. In section 5-3, we will describe
a trajectory tracking controller for a vehicle. This controller
will allow us to analytically evaluate the stability of our path

tracking control.
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5-1. Nonlinear Controller for Linear Systems

As we have seen in the previous chapter, a change in the time
scale will not generally preserve the linearity of the system. In
the case of n=2, however, almost all the time scaling functions s(x)>0
preserve the linearity as far as { 2, adsfg}(x) span T, M ina
neighborhood of the origin. Also s(x) is sufficient to be a C!
function because { g } is always involutive. This is also the case
when we consider multi-input systems with controllability index two.

In this section we consider the linear system

A AN I HE

(1-1b) y = h(x ,x%)

(1-1a) =

where xeR", uERm and ye‘:‘Rp. We will design the
controller in a time scale = , so that the controlled system will
satisfy a desirable property, such as avoiding high amplitude input

or an excessive rate of output.

5-1-1. Controller Design

Consider the following C! time scaling function
dt _ .
(1-2) Ge=s (x %, v ,v.,%x)>0

where v, ERP,XC =R" are a teference value and the state of the

compensator, respectively, which satisfy

o
<

(1-3a) __d_%_,r =Q (7’ )
dz - o° :

(1"3b) d't’ = S (X, X, Y, yr’XC)>O
dXe . :

(1-4) 70 =B (x, X, v, V.%X).

It must be noted that these values can easily be calculated in the
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actual time t, in fact

dyry _dVy dz’ dz_ 40-! -1 ,

(1-5) =g e ae=s s el )
dx d x -1 .

(1-6) e gf=s lm (x, %, v, v . %),

The system (1-1) can be expressed as follows in the time scale =
defined by eq.(1-2).

_ dx _ dx _dt _ 3
(1-7) dr = dt d,t—sx

(1-8) —%—2;2—2}-{—=szii+—g—%>’<
Cowen g gy Hel B
TR AR A
=52 ¥+xX [-%f%s x-+—%§%s pi¢
+25 (LR s+ fhsw)
+—3—§,—r s’g+—3—§{cz~: ]
_ sz I+sk (25428 Emy1w
NPRSETHETN INNT
+~%€%r s’ 52-+—§€%c =]
= [s?2 IT+s5X {324-23 g%}](A1X+A2i+Lﬂ
rx ({25438 By sk
+—@-§—rs’g+—g%ca]
Using the input
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(1-9) u=—A1x—A22¥[SZI+sk{g§+g; g}}.;}]“1
: 95 9s 9h .
9s s as —
+-95 g Q+—== EH}]
Y Xe

the system can be expressed as

. x 0 I %
(1"10) d’C ‘_%2’57_ = 0 0 _g__}_é__ +

9s 8h
Sy 9 x

controller can easily be designed using this state equation in the

0
1|V

} 1 is nonsingular. So the

it [s2 I+sx% {g§+

time scale 7.
[remark]

1f the output v is a linear combination of X and X ,
and the controller is linear in the time scale = , then v is
proportional to | v — ¥ r . This means that the last term of
eq.(1-9) is almost proportional to S—2“ V-V, I in the case
here s >> 1. So, if wechoose s=L (1v-y, I 1!/
(L>0) when | vy -V, I >M1 for some positive number Ml’
then s 2l y-y, I=(/L)? for Ny—vy, I>M, i.e. the
controller will avoid an excessively high input amplitude.
[remark]

If s «s > lwhen |yv—-vy, H:>h42, then = ' will vary
slowly compared to the actual time t when |l v—-1v : i >>h42; This

means if l v—-v r | becomes too large , them ¥ . will change
d

«

I' = constant (this is a

|

mote slowly. Consider the case where

fo= 1

T

ramp type reference), this means that the v ' will increase more
slowly when the error becomes too large.

[remark]

If s >> 1 when | %1 >Mgz then | X || cannot exceedingly
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g0 beyond Mga because —%%% = s %. This means that it is possible

to avoid an excessively high velocity | x| .

5-1-2., Simulation

We will consider the system

[ o o |

y = X

X

_a
dt

HEHE

and design a controller with one integrator in the time scale 7 so

X

that the poles (in the time scale v) of the total system are at
-1, -1, and -2.
(Fig.b-1-1)
In this case, the time scaling function is
s=1+p (y-v_ )

{

p Cy-y,.) = 0 (ly—-v, I<D)

N

0.0 (ly—-v, |- 1)
(1slv-v, I<86.4)

[ 0.5 ( Iy—-v, 1DY2  (otheruise).

Fig.5-1-1 shows the step response for V.= 1, 5 and 10.

This controller obviously aveids an excessively high input amplitude.
(Fig.5-1-2)
In the next, the time scaling funciton is

s=l+p(y—yr)+ﬂ(X)

w (%) ={ 0 (h%1<1)
(%l -1)° (otheruise).

Fig.5-1-2 compares the step responses (yr=10) in the case of
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s=1+p+ m with s=1+p. The time scaling function s=1 +p +=

effectively avoids an excessively high velocity .
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Fig.5-1-2. System response (comparing s= 1+ p and
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Fig.5-1-2. System response (comparing s=1+p and s=1+p+mn)
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5-2. Robot Control in the Neighborhood of Singular Points

The equations of motion of robots are usually expressed in joint
coordinates and the robots are controlled in these coordinates. It
is, however, preferable to control them in Cartesian coordinates
when desirable motions can be best described in these coordinates([63]
~ [851). For instance, if it is necessary for the endeffector to
track a straight line using sensory feedback, it is better to choose
Cartesian coordinates; one of the coordinates should be chosen to
coincide with this line so that the deviation from the line and the

fﬁ" motion in the line can be decoupled(64]. In the case of force

- control, the desired motion with respect to an external sensored
force is usually described in Cartesian coordinates. So it is
difficult to control robots without considering these coordinates(65].

One of the most efficient controller design procedures utilizes
Cartesian coordinates in the following way. With this method, we
first define the transformation of the coordinates and express the
equations of motion in Cartesian coordinates. We then linearize the
system in these coordinates using nonlinear feedback and design a

linear compensator for the resultant linearized system[63]. This

controller design can be implemented by computing the inverse

kinematics[66] and the resolved acceleration control(87]. Although
this controller has many good features, it may also be plagued by
singular points; in the neighborhood of these points, proper control
can not be achieved.

A singular point is a point at which there exists at least one
direction in Cartesian coordinates in which the endeffector is
immobilized. Even in the neighborhood of such a point , the end-
effector’s movement in that particular direction (or directions) is

usually impaired. So the manipulative ability is very poor; it is
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difficult to control robots in that area. This problem has been
the topic of several papers treating manipulative ability which
proposed various means of measuring manipulative ability ([88] ~ [70]
and their references). In these papers, the measure of manipulative
ability has been used in the planning of the endeffector’s
trajectories so as to avoid the area in which manipulation is
impaired , and to design the robot’s structure so that the area of
impaired manipulation will be minimized.. Ours is the first control
strategy which attempts to control a robot by using a measure of
manipulative ability. With this control, we can achieve good
performance in the neighborhood of singular points without reducing
the performance outside the neighborhoods of these point.

If a controller is to achieve good performance in the neighbor-
hood of singular points, it should be designed so that the resultant
controlled system has slow poles only in the neighborhood of these
points. Conventional methods are able to achieve slow poles in the
neighborhood of singular points; however, they also result in slow
poles outside the neighborhoods of these points because they do not
attempt to consider manipulative ability. So that the performance
of the endeffector is improved in the neighborhood of the singular
points, but at the same time, it is impaired outside the neighborhood
of these points. On the other hand, if we choose to construct the
controller with conventional methsds so that good performance is
maintained outside the neighborhoods of the singular points, the
performance will be poor in the neighborhood of the singular points.
The resultant system would have fast poles throughout, necessitating
an excessively high amplitude input in the neighborhood of the
singular points. Our method achieves slow poles only in the

neighborhood of singular points leaving the fast poles outside these
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neighborhoods unchanged.

To achieve this, we propose to design a controller in Cartesian
coordinates by transforming the time scale. A transformation of
the time scale was once used by Hollerbach(5], but his research was
limited to planning trajectories and the transformation he used was
not convenient for the design of a real time controller. It will
be shown that the proposed contro¥1er designed with appropriate time
scales will give proper control with respect to manipulative ability:
the resultant controlled system will have slow poles in the area of
poor manipulative ability and fast poles in that of good manipulative
ability. The robot will be properly controlled even in the
neighborhood of singular points without a reduction in control

outside the neighborhoods of the singular points.

9-2-1. Measure of Manipulative Ability

Several effective measures have been proposed([67] ~ [70] and
their references) to describe the manipulative ability with regard to
positioning and orienting the endeffector. In this section, we will
propose another measure which will be used to design our controller
in the next section.

The equations of articulated robot motion are generally

expressed in joint coordinates as

(2-1) M (0) 6+h (0, 6) +g (0) =u

where 6 = (0, , 0, ,+, 6n) " RN represent the joint angles:
M (&) is the moment of inertia which is always nonsingular; h and

g are inertial force and gravijy respectively; u= (u, , uy, , -,
Un ) T €ERM represent input torques and are assumed to be

restricted
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(2-2) _uimax< Ui <uima‘x.

Assume that the relationship between joint 6 and Cartesian

coordinates x= (X1 , X2 ,**,Xn) T ERN is given by

(2-3) x= f (@) ,
then X and X are expressed as
. of . .
(2-4) $=— 6 £ J (6) 0
ax
(2-5) $=J0+J0

~IM* {u=h(6,0) —g (6)} +30.

In order to normalize the input, we will introduce the diagonal

matriz N (0, é) whose i-i element is
(2-6) 1/{ uig,— 1 hi (0,0) +gi (0) I}

where hi and gi are the i-th elements of h and g, respectively.
With the matriz N and the normalized input v= (v, , vao , ¢,

vn ) T €RN |, we have
(2-7) $=JM* Nv +J ¢
(2-8) b vi 1 <1.

This implies that the maximum acceleration is characterized by an

ellipsoid JM?T Nv, (Il vIi=1) as long as J 0 is relatively
small. This ellipsoid is called the dynamic manipulability
ellipsoid[70]. Kosuge and Furuta have defined a measure of
manipulative ability called "controllability" which is defined by the
ratio of the length of the ellipsoid’s minor axis to that of the
major[69]. VYoshikawa has defined "dynamic manipulability” which is
defined by the volume of the ellipsoid[?O]; Here we will define

another measure of manipulative ability.
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[definition ]

Assume that e is a unit vector in Cartesian coordinates.

Dynamic manipulability in the direction of e at co , é) is defined

as
(2-9) dn(e: 0, 6) =1 /0N (o, 0) M CO) I (o) el .

The dynamic manipulability dm(e; 0, é) can be interpreted as
the length of the axis of the dynamic manipulability ellipsoid which
is parallel to e (fig.5-2-1).

For any unit vector e in Cartesian coordinates, there is a unique

vector v(e; 6, 0 ) in joint coordinates which satisfies
(2-10) IM™* Nv(e; 0, 6) =dn(e; 0, 6) e

and can be specified except at singular points. Premultiplying both

sides by N*TMJ? vyields

(2-11) v(e; 0, é) =dm(e; @, é) e NTMJ e

_ 1 - -
= TN "MIT "o N*TMJe .

The above equation shows that | v(e; 0, é) f =1. It implies that
dm(e; @ , é ) expresses the length of the azxis of the dynamic

manipulability ellipsoid parallel to e.

5-2-2. Controller Design

In this section, we will present a controller design method using
a time scale transformation. With this design method, we first
determine the new time scale =i for each xj axis, then design an
ordinary compensator for each axis in new time scale of each axis.
The proposed controller controls a robot properly with respect to
manipulative ability when the time scales are properly defined.

Define the new time scale =i with the following differential

8 6



equation.

(2-12) 4t = g3 (0) >0,
dri

Suitable choices of the time scaling function sji will be discussed
later in this section, but here we will assume it to be an arbitrary
positive differentiable fuction with respect to 0.

When we differentiate xj with respect to 7i , we obtain the

following equations.

dxi dxi dt .
(2-13) =t - 22 - = % sy
d7i t Ti
d>xi _ 24 s si d0
- = ¥ (2 4
(2 14) d 1_12 Xi Si X i 30 i
CICE
=i si?+ Xi 891 0 si

Since ¥ji is directly manipulated by the input u, we can assume

(2-15) %1 =5l (wi -k §gt 0s1)

which yields
d? X i
d 72

This differential equation is linear and expresses the motion of the

(2-186) Wi .

Xi axis in the new time scale =i . We can design a compensator
for the dynamical system with this differential equation in the new
time scale . For example, a servo compensator with one integrator
could easily be constructed as follows. An integrator in the new
time scale =i is defined as

e xy - xg
Ti

where X ri and vi are the i-th elements of the reference point in
Cartesian coordinates and the state of the i-th integrator,

respectively. This can he impleﬁented in the actual time scale by
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the following equation.

in_ind’l'i_;i(X_x Y

(2-18) dt  dzi dt si i ri

Linear state feedback in the new time scale is calculated as

(2-19) wi=fi1Yi+fi2Xi+fi3g};§

The controlled system including the compensator is expressed as

Vi 0 1 0 Vi X 1
d Xi 0 0 1 Xi
2-2 ——— = -
( 0) dri dxi dxi

fiy fio fyg

dri 1 dzi

This means that arbitrary poles are assignable in the new time scale.

Any kind of compensator can be designed in the new fime scale,
but we will not address the topic, of compensator types here. We are
interested in the features of the controller designed in the new time
scale. Our method can be described as shifting the poles in the
actual time scale with respect to a time scaling function.

Consider the case of a servo compensator with one integrator
again. If the time scaling function is constant,si = a, the

controlled system (2-20) can be expressed in the actual time scale as

avi 0 1 0 avi X
i 0
dt 4 iy, fio fig - 0
i P a2 a Xi

This state equation implies that the poles in the actual time scale
are 1/a of those in the new one. The same thing occurs with any
compensator which is linear in the new time scale. If the time
scaling function sji (6) =1, then the boles in the actual time
scale are identical to those in the new one. On the other hand, if

si (@) >1, then the poles in the actual time scale are much
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slower than those in the new ong.% So, if we are careful to choose
a time scaling function which is large in the poor manipulative
ability area and relatively small in other areas, then we can achieve
a controlled system having slow poles near singular points and fast
poles at other points. This control is preferable because it avoids
high amplitude input in the neighborhood of the singular points
without reducing the performance outside the neighborhoods of these
points. The following discussion describes how to decide the exact
value of the time scaling function.

The equations of motion in the new time scales (2-14) can be

summarized in vector form,

2%, | , ' , ]
i 7.2 S S1 X

4’ x> S 52 S, X

d 7 2?2 2 . z 2 3s
2-22 = X + —
( ) : 50

dQXn
d ’L‘n2

Sn Sn Xn

where s= (s1 , S2 , -, sn,) T, The following equation is

obtained by substituting eq.(2-5) into eq.(2-22).

dgxl'\ s ) ]
1

d ’512

d2X2 2

d’l'22 52

(2-23) = IM? {u-h-g}

d2Xn
d 7n? 5n ]

S1 }.{1 ‘ S12
S }.{2 s - .
+ { -0 + Jot.

Sn Xn S n?



“This implies that the dynamic manipulability ellipsoid in the new

time scales is expressed by

312

S'n2

Consequently, dynamic manipulability in the direction of e in

the time scale z= (7, , 2 , - » Tn) is defined as

-1

,' .. . 822
(2-25) dmz (e; 0, 0) =1, || N MJ™ e ll.
Sn:Z

In particular, the dynamic manipulability in the direction of the Xi

agxis in the new time scale z; dm~T (xi; 0, 6) is the scalar

multiple of that in the actual time scale dm (xi ; 0, 0) :

-

(2-28) dmz (xi ; 6, 0) =si2 dn(xi 5 0, 0) .

~Define the time scaling function

(2-27) S| ':_'c/.l dn (x; ; @, 0)

-
.

where O is the nominal value of @ . Then dmz (xi 5 6, 0)
"becomes nearly equal to ¢ for almost all o, 0) under the
_assumption that 0 effects dmz (xi ;3 0, é) sufficiently less
‘than & does. Dynamic manipulability in the direction of the

Xi axis in the new time scale is almost independent of position

_except at singular points where s i diverges. It must bve emphasized

that the time scaling functions need not be exactly equal to

C/J dm (x4 ; €@, 5) . Eyven if the time scaling functions

b

“do not have the exact form shown above, a controller designed using
these time scales may still provide Proper control with respect to

manipulative ability.
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5-2-3. Simulation

Fig.5-2-2 show step responses using the proposed controller.
Fig.5-2-2-a shows the response outside the neighborhoods of singular
points where the manipulating ability is sufficiently large and
fig.5-2-2-b shows the response near a singular point. Fig.5-2-38
show the step responses using a conventional controller designed in
Cartesian coordinates.

The step response using the proposed controller is almost the
same as that using the conventional controller in the area with good
manipulative abilityr(fig.5-2—2—a and 5-2-3-a); however, the proposed
controller is superior to the conventional one in the area with poor
manipulative ability (fig.5-2-2-b and 5-2-3-b). The step response
using the proposed contraller is much slower than that using the
conventional one. This shows that the proposed controller is able

to control the robot properly with respect to manipulative ability.
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Fig.5-2-1. Dynamic manipulability
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(a) away form the singular point

(b) near the singular point

Fig.5-2-2. Step response of the proposed system
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(a) away form the singular point

(b) near the singular point

Fig.5-2-3. Step response of the conventional system
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5-3. Path Tracking Control of Mobile Robot

Mobile robots are used to perform tasks and collect information

with minimal operator assistance. They are especially useful under
dangerous or inaccessible conditions. Because of this, there have
been many studies on mobile robots; for example on the path planning
problem[711[72] and on methods to measure the position and the
direction of the robot[731174]. In the past, however, little work
has been done on path tracking control. Thus, only intuitive

methods have been used to track the path. " Here, we will propose a

design method for path tracking control which will analytically
ensure stability.

In this section, we will consider the tricycle shown in
fig.5-3-1. We will define the following notations.
: middle point of the rear wheels
: center of rotation

: steering axis

—o e O '

: wheel-base

@ : angle deviation of the mobile robot

o : steering angle

%,y : Cartesian coordinates indicating the position of the
mobile robot

2z : distance along the real path.
The object of this section is to design a controller so that the
robot will track the x-axis.

Komoriya/et al.[75] proposed a methed to track a path using only
feedforward control. In this method, the steering angles are
decided a priori and stored in the memory as a time series. Then
the front wheei is steered according to that time series in the

actual control. Since this control does not use feedback, accurate
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path tracking control is difficult to achieve. They also proposed
another method[78).  This strategy is shown in fig.5-3-2.  Consider
the point A which is L’ ahead of the robot (fig.5-3-2). The steering
angle o is chosen propotional to the deviation of the point A from

the path, i.e.
=—K {y+ (L+L’) sin 6} .

The following method was proposed by Tsumura et al.[77]. The front
wheel is steered to point to the point B which is L'’ ahead along
the desired path(fig.5-3-3). In this case, the steering angle o is

chosen to be

a=___0___ tanq{L,’_L COSG }.

v—L sin0

These methods are intuitive; the stability of these controls is not
evaluated analytically, so a constant tracking error sometimes
occurs.

In this section, we will propose an alternative method to
design a path tracking controller. With this method, the stability
of the resultant controlled system can readily be evaluated
analytically and we can introduce an integrator in order to reduce
the constant tracking error. The controller is designed as follows:
firstly, define a new time scale which is chosen to be identical to
the distance along the desired path, i.e. X. Then, the dynamic
model in this new time scale is linearized with an appropriate state
transformation. Finally, we design a linear controller (servo-
controller if necessary) for the linearized system. We will also
show how to design a controller tbat depends on the velocity of the
robot using a further transformat%on of the time scale.

~If we can assume that there are no side slips, then we can
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express the dynamics of the mobile robot as

(3-1a) %—g= E—Il—:tan o
(3-1b) —3——%= Zsin 0.

We will introduce a new time scale X which is identical to the

position x . The time scale transformation is defined as follows,

. dt _dt dz_ 2y 4 1
(3-2) dx dz dx~ (z) cos 0O

The dynamic model of the robot can be expressed in this time scale as

_ dé _ 1 -
(3-3a) ix =T cos@tan o
(3-3b) L =tan 0.

The linearized system is shown as follows.

y]Oll
tan 61 o o0

In order to simplify the notation, we will define the state variable

0
1

y
tan 0

_tano

d
(3-4) —
d x LcosSB

+

¢ and the input v as follows.

_ & ® 1 VAN y
an o] or]e]L) ]
(3-8) v e tan o

L00536

Then the system(3-4) can be espressed by the following simple linear

state equation.

0 1 0
(3-7a) -4 b + v
: dx 0 0 1

(3-7b) v =[ 1 0 1 ¢

We can readily design any type of linear controller for this
linearized system; for ezxample integrators can be introduced to
achieve robust control. This strategy can allow us to analytically

evaluate the stability of the resultant controlled system because it
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is expressed by a linear state equation. For example, we can define
poles for path tracking control. Since the controller design method
for the system(3-7) is a straightforward application of linear

system theory, it will not be discussed here.

Next, we will describe a method to design a velocity dependent
controller. Since centrifugual force increases as the mobile
robot’s velocity increases, we can use only a small steering angle
while the robot is moving fast. Thus, we need to design a velocity
dependent controller such that the steering angle will become smaller
as the velocity of the robot increases. The controller can be
designed using a further time scale transformation. We define

another time scale & using the function s as follows.
(3-8) —g—%‘-=s>o.
Then the system becomes

0 1
0

0

(3-9a) —g—‘g—=Aw+Bu= 1

Y+

(3-9b) y =Cy=1 1 0 1w

L/ ] N [ é>1 ]
Yo S ¢

(3-11) i %—%—g—m +s? v.

>

(3-10) Y

We can easily design a linear controller for this system, If we
define s to be a function of the velocity of the.robot, then the
controller will depend on the robot’s velocity.

In order to investigate how the function s effects the
performance of the controlled system, we will consider the following
optimal control problem. Here we will design a servo controller,

so we must consider the following augmented system,
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Y
i

l A B}
0 O

(3-12) —d—dg—

We will design the controller so as to minimize the following

performance index,

¥ Q1 ¥ 9
(3-13) T =1 {| %2 ax wo |+ (3]s,
% q3 Y8

The optimizing controller can be expressed in the following form,

iyif:i d | ¥
an (3-10) —gE=10 f: f. fa] [v
Since
d
"d"%" A B |¥:
(3-15) g 2 | = T
c O w ,
we have

(3-18) M= 0 f0 f. fal | jETS
y

(38-11) =f1j(y—yr)ds+f2w1+faw2

= [ f, fa T ]

Q-IQ- Q—-Q-

where vy r is the constant reference position. This feedback law can

be expressed in the original time scale X as
@-18) v =i, 1, [ (v-v ) Ltax+d £ o6l

4'%'f3 ¢ 2 “’%2 ‘%{% ¢ 2
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If s is a constant value, then the feedback(3-18) can be expressed as
(3-19) v ='§“3 flf(Y"Yr) dX‘*‘%‘z fo ¢ +—é‘f3 b2 .

This feedback can be readily shown to minimize the performance index

6. 1 [ an b
(3-20) J=1 {| &2 szcu b2
v s4113 v

2
+ s¢ r (—%%%] }dx
for the following augmented system

RN IME N

This system originates from the system (3-7) and expressed in Xx.

¢

v

)

v
<

|

(3-21) % +

o

The performance index (3-20) shows that the weight of ¢, and Vv
increase as the function s increases. Since ¢ and Vv are defined
by eqs.(3-5) and (3-6), this implies that the weight of the robot’s
angle deviation € and the steering angle « increase as s increases.
In other words, if we choose a large s, then the resultant controlled
system keeps the angle deviation® and the steering angle « small.
Thus, if we choose the function s carefully so that it increases with
an increase in the robot’s velocity; we can achieve the desired
velocity dependent control: the steering angle o will be small when

the robot’s velocity is large. -
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Fig.5-3-1. Tricycle
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desired path

Fig.5-3-2. Conventional method 1
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desired path

Fig.5-3-3. Conventional method 2
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5-4. Concluding Remarks

In this chapter, we have proposed an alternative controller
design method using a time scale transformation.

In section 5-1, we have applied this method to design a
controller for a linear system which will avoid an excessively
high amplitude of input. In section 5-2, we have proposed a
controller for a robot that can achieve good performance even in the
neighborhood of a singular point. In section 5-3, we have described
a trajectory tracking controller for a vehicle. This controller
allows us to analytically evaluaté the stability of the path tracking
control. The simulation results of these controllers showed that
they have good performance.

The proposed controller design method can be applied to almost
all mechanical systems. The choice of the time scaling function
gives many options in designing stabilizing controllers. This

approach is particularly useful to design robot controllers.
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VI . CONCLUSION

In this thesis, we have proposed a time scale transformation
and used it to analyze the intrinsic structure of nonlinear systems,
invariant structure and the linearization problem in a transformed
time scale. We have also used the time scale transformation to
design a nonlinear controller.

We have introduced the time scale transformation with a
differential equation of the form

—%—%= s(g) >0

where 7 is the new time scale and t is the actual time scale. As
we have already shown, this time scale transformation preserves the
system’s stability and the state’s curve in state space.
Furthermore, this transformation Allowes us to express the

original system

g},:=f(x) + g(x) u

in the time scale 7 as

LI s t() +5() g u .

Since this system can also be expressed in a state equation,
conventional methods can be used to analyze this system. Thus, we
can readily use this transformation to investigate the system’s
stability, structure etec. In this thesis, we have applied the
transformation to investigate the invariant structure of nonlinear
systems(chapter M), the linearization problem(chapterW ), and the
nonlinear controller design problem(chapter V).

In chapter M, we investigated invariant structure using the
time scale transformation. We introduced the notion of weakly
invariant distribution in section 3-1 and showed how it can allow us

to study invariant structure in a new time scale. We have proposed
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a simple geometric test for weak invariance. In section 3-2, weakly
invariant distribution was used to obtain Kalman-like decompositions
in reachable/unreachable parts and/or observable/unobservable parts
in the transformed time scale. We have found the minimum dimension
of the locally weakly invariant distribution under the vector fields
f,g which contains g; this distribution coincides with the
controllable subspace of a linear system. We have also proposed an
algorithm to obtain the locally weakly invariant distribution under
the vector fields f,g which is contained in the annihilator of the
output function. This distribution coincides with the unobservable
subspace of the linear system. In section 3-3, we introduced weakly
controlled invariance, and successfully used it to solve the
wide-sense disturbance decoupling problem. In this problem, it is
necessary to seek a feedback law which would prevent the disturbance
from affecting the output’s curve in output space.

We have investigated the input-state linearization problem in
chapter W. We have identified the class of nonlinear systems which
can be linearized in the transformed time scale. We also found
that there are nonlinear systems which can not be linearized in the
actual time scale t, but it is possible to linearize in the
transformed time scale. The time scale in which the system can be
linearized is obtained as the solution to partial differential
equations. Since the time scale transformation preserves the
systems’s stability, it is possible to use the linearized model in
the transformed time scale to obtain a stabilizing controller.

In chapter V, we have proposed an alternative controller
design method for both linear systems and robots. The proposed
controller has been designed as follows: firstly we have introduced

an appropriate time scale 7 and expressed the system dynamics in the
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transformed time scale, we have then linearized the system in the the
time scale <. Finally, we have designed a linear controller in
the time scale 7 to stabilize the system. The controller is
linear in the time scale <, b&t it is nonlinear in the actual time
scale t. In section 5-1, we have applied this method to design a
controller for a linear system which will avoid an excessively

high amplitude of input. In section 5-2, we have proposed a
controller for a robot that can achieve good performance even in the
neighborhood of a singular point. In sectiﬁn 5-3, we have described
a trajectory tracking controller for a vehicle. This controller
allows us to analytically evaluate the stability of the path tracking
control. The simulation results of these controllers showed that
they have good performance.

Studies on controllability/observability and the input-output
linearization problem are still in progress. The controller design
method which we have proposed in this thesis can be applied fo almost
all mechanical systems. The choice of the time scaling function
gives many options in designing stabilizing controllers. This
approach is particularly useful to design robot controllers.

Since the proposed time scale transformation is useful to
analyze the system structure, further research in this area would be

valuable.
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APPENDIX 5
In this appendixz, we will review the basic concepts of
differential geometry and define the notation which is used in this

thesis.

Manifold

The manifold M of dimension n is a Hausdorff space such that,
for each pEM, there exist an open neighborhood U of p and a
homeomorphism(one to one, onto, continuous and open) ¢ mapping U

onto an open set in RI .,

(1) $ : U ——> R
p F x

The pair (U, ¢) is called a coordinate chart on M. Sometimes ¢

is expressed as the set of functions (¢, , vy dn). ¢i : U—->R

is called the i-th coordinate function. If q€ U, the n-tuple of

real numbers (¢ (q),-, én (q) ) 7 is called the set of local

coordinates. Two coordinate charts (U, ¢) and (V , ¥) are

C°-compatible if, whenever UNYV is not empty, the coordinate_

transformation ¥ ¢ ¢ : RN - RN is diffeomorphic, i.e. if ¢ oo
and ¢ ¢« ¢ 1 are both C° maps. The C° atlas on the manifold M

is a collection {( Ui , ¢i )} of pairwise C -compatible
coordinate charts, with the property that {Uji } covers ™.

An atlas is complete if not properly contained in any other atlas.

A smooth manifold (or C” manifold) is a manifold equipped

with a complete C* atlas. Thus, any diffeomorphic coordinate
" transformations can be used on a smooth manifold.
Let M and N be smooth manifolds of dimension n and m,
F:M-N be a mapping, (U, ¢) and (V, ¢ ) be coordinate charts

on M and N respectively. The composed mapping
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(2) F=¢yFét: RP——-R"

is the expression of F in local coordinates. We often use

F to denote ¢ F¢*. A mpping F:M->N isa smooth mapping if

for each pEM there exists coordinate charts (U , qb)‘of M
and (V, ¢) of N with p €U and F(p) €V, such that the
expression of F in local coordinates is C . A smooth mapping

«: M—>R?! is called a smooth function. We often use the same

symbol o to denote an expression of o in the local coordinates

ad™?.

Vector Field

The set of all smooth functions is denoted IF. The tangent
vector v at p is themap v : IF—R with the following properties:

for all a, BEIF and a,bER, v(aa+bB)= av(a)+ bv(B) and

v(aB)=a(p) v(B) + B(p) v(a). The tangent vector is expressed
in the local coordinate chart (U, ¢) as

- 9 9 _
(3) = (Fg, et + o (S5, )

where vy , *+,vn €R . The basis { (_%751 ]p , v, [—%En ]p}
is the natural basis introduced by (U, ). The tangent vector v

acts on the smooth function o« as

@ ete = (B e e (B85 )

The tangent space to M at p is the set of all tangent vectors at p

and is written T pM. TpM forms a vector space over the field
R.

The vector field f on M is a mapping which assigns the tangent

vector f(p) to each point p EM. A vector field f is smooth if for
each pEM there exists a coordinate chart (U, ¢) about p and n

real-valued smooth functions f1 , --+,fn defined on U such that

118



for all q €U ,

_ 3__ 9
(5) =t @ (S5, )+ = +m@ (F5,)q-
Consider the following differential equation expressed in local
coordinates
(8) io= f(x) = (f1 (&), fn () ) 7
where ¥ €ERT ., For each smooth:function o (g), we have
da _ do dx

(7) at = dx dt

———M ) ¥

T dx £ (x)

_ Qo Qa

Since eq.(7) is identical to eq.(4), we can identify a vector field
with a differential equation of the form(6). Thus, we usually
express a vector field in the form of a column vector f(x)= (fy (x),
vo,fn () ) 7 in local coordinates. A vector field f(p) is
egpressed in the local coordinate chart (U, ¢) as ?(X)= fp 1 (x)
= (If\l (x),m,/i;n (¢) ) 7. We often use the symbol_f(x) to denote
f ¢t (x). The solution of differential equation(8) is called
flow and is denoted x(t)= @{xo where %o is the initial value and
f is the vector field. The set of all vector fields is called the
tangent bandle and is written TM.

Let M and N be smooth manifolds. Let F:M-N be a

smooth mapping. The differential of F at p €M 1is the map

F, : T pM_+TF(p)N and is defined as
(8) ( Fyv) ) (&) = v (e F)

for v €T pM and o is a smooth function on N. If F is a
coordinate transformation, F, is the transformation of the vector

space related to F.
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Covector Field

The cotangent space to M at p, written T*pM, is the dual
space of T pM. The elements of the cotangent space are called

tangent covectors. Since the dual space of the n dimensional

column vector space is a n dimensional row vector space, we usually
express the tangent covector in the form of a row vectorw=(w, , *,
wn ) in local coordinates. The inner product is denoted

e, o> T*‘pMXTpM—+R. It satisfies the following equation
for any ai ,bi €R, any vector fields f,g and any tangent covector

w, O
(9) <ajo+ayo, byf + P2g>
= a1b1<w,f>+ a1b2<co,g>+ a2b1<cr,f>+ azb2<<r,f> .

In local coordinates ( U, ¢), if { [—%751 ]p L e, [—%75n ]p}
is the basis of the tangent space, the unique basis { (d¢1 )p, TTIN

, . 3 . :

(dén )p} which satisfies < IR dqu> 3 ij is called the dual
basis. w is represented in this basis as @= @, (d )p+...
+on (dén ).

A covector field @ on M is a mapping which assigns a tangent

covector  (p) to each point p EM. The notion of a smooth covector
field is defined analogously to that of a vector field. The tangent
covector @ (p) is expressed in local coordinates as c;(x)=a) b (x)

=(wq (g) , +, w2 (x)). We often use the symbol @ (z) to denote

w ¢ (x). Let M and N be smooth manifolds and F : M—> N be a
smooth mapping. The mapping F* : T;(p)N—>T*pM is defined as
follows

(10) <F*(co), vw =< w, F,)>

for any wET;(p)N and any v ETPM.
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Lie Derivative

Let f be a smooth vector field on M and « be a smooth real-

valued function on M. The Lie derivative of o along f is the

function M- R, written Lf o and defined by

(1) (Ly «) () = (f(p)) () .

In local coordinates, this is represented by

(12) (L; ) (1) =% t(x).

The following notation is used
(13) Lg o=c¢o and L} oc=Lf(L;,_1 a) .

Let f and g be two smooth vecitor fields on M and let @{ denote

the flow of f. The Lie derivative of g along f is the vector field

on M, written Lfg and defined by

(14) (L) ()= i R C I IC HEONETO N
-

It is expressed in local coordinates as

(15) (L) (0 =35 () - 2L 400 .

Both of the following notations are used recurrently,

(16) ng=g and Lii:g=Lf(L;—1g)

xvf (17) adfg g and ad;g=adf(ad%_1g)ﬂ

Lfg sometimes is denoted by [f,g] which is called the Lie bracket.

The Lie bracket has the following properties.

(186-) [fl ’fl ] =O

(18b) [f, ,f2 1 +{f, ,f1 ] =0

(18c) (f, , [f2 ,f3 11 +[f, , [fs ,fy 1] +[fa , [fy ,f2 1]1=0
(184) lafy By l=aBliy fy ] - BI2& t, + afy3B 1

=af(f, ,f,] - (BL; a)f, +(« L, B )f
1 2 f'2 1 f1 2
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where fi is a smooth vector field and «, B are smooth functions.

The Lie derivative of the covector field « along the vector

field f is a covector field on M, written Lf w and defined by
1 1 fix f _
(19) (L, @)(p)= lin [ (@D o (@,(p) —w(P}.
f =0 t t t

It can be expressed in local coordinates as

(20) (L @)®=( 22Tt +a 5 -

Distribution

A distribution A on M is a mapping which assigns the subspace

A(p) of T 1DM to each p €EM. If each of these subspaces is

of dimension k, it is called a k dimensional distribution.

A distribution A is smooth if, for each point p &M, there exist a
neighborhood U of pand a set of smooth vector fields {»i :i€l }

defined on U having the prope;ty

(21) A(q) = span { 71 (@) : i€l}

for all g €U. A= span{vi : i€l } is the distribution defined
by

(22) (span{zi : i€I }N(p) = span{vi (p) : i E1 } .

If A, and A, are two distributions, then their sum A + A, and

their intersection Aj; N A, are defined by taking
(23) (A, +A,) () =41 (p) +4A2 (p)

(24) (A, NAL) (p) =4, (p) NA2 (p) .

A distribtion A is nonsingular if there exists an integer d such
that dimA (p) = d for all p EM . The point p is a regular point
of the distribution A if there evists a neighborhood U of p with

the property that A is nonsingular on U.
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The codistribution @ on M"is a mapping which assigns a subspace

Q (p) of T*pM to each pEM. - The notions of smooth

codistribution, k dimensional codistribution, span{ wi : i€l },

sum, intersection, nonsingular codistribution, and regular point of

a codistribution are defined analogously to distribution.
Let A be a distribution and € be a codistribution. The
annihilater of A, denoted A* , is the codistribution defined by

the rule
(25) At (p) = {wET*pM: <w, v> =0 for all yEAY .

Conversely, the annihilator of £, denoted Q% , is the distribution
defined by the rule

(286) Q*r (p) = {VETPM: <w, > =0 forall 0€EQ} .
The set of smooth vector fields {Vl,"‘, vr} is involutive if

there exist the smooth functions d)l({i’j)(x) such that for all i,j<r

T ..

z d)(ls.]) ) .

k=1 k k

The distribution A is invelutive if the Lie bracket [», 0] of

(27) [Vi,yj]':

any two smooth vector fields 7, o< A belong to A, i.e. if
[, 0 1€A.

A covector field w is called exact one-form if there egists

a smooth real valued function o: M—R such that

_ A Qo S«
(28) W = da:a P dx, + +8xn dgn .

A nonsingular d-dimensional distribution A on M is completely
integrable if at each p €M there exists a coordinate chart (U, &)

with coordinate functions &, , +-, & n such that

for all g €U.
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Theorems
[lemma 1]

Let A be a smooth distribut‘ion and p be a régula; point of
A Suppose dim A (p) =d. Theln there exist an open neighborhood
U of p and a set { Vot vd} of smooth vector fields defined on
U with the property that every smooth vector field @ belonging to
A can be represented on U as

d
(30) b = 21 ai 7i
1:

where «ji is a real-valued smooth function defined on U. O
[lemma 2]

The set of all regular points of the distribution A 1is an open
and dense submanifold of M. O
[lemma 3]

Let A, and A, be two smooth distributions with the property
that A, is nonsingular, Ay CAp and Ay (p) = A, (p) at each
point p of the denge submanifold of M. Then A; =4, . O
[lemma 4] |

Let p be a regular point of A. Then p is a regular point of
A* and there exists a neighborhood U of p with the property that
A* is smooth on U. O

[theorem 5] (Frobenius)

A nonsingular distribution. is completely integrable if and only
if it is involutive. O

[theorem 6]

Let }I and V be open sets on R" and R™, respectively. Let
By s By denote the coordinates of the point x in R™ and Yooty Yy
denote the coordinates of the point y in R, Let T 1,~-, T™ be

smooth functions
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(31) ri. v - R ™",
Consider the set of partial differential equations

I I ORI 1< i<

axi
where v denotes the function

(33) y : U - V.

Given the point (xo,yo) cUXV there exist a neighborhood U0 of xo

in U and the unique smooth function

(34) y:U0~> v

which satisfies equation(32) such that y(xo) = yo if and only if the

functions T 1,"-, TY satisfy the condition

i ko .
(35) —%’_‘Lk ~ L% yrigpk-rkrl =0 1€ i, k<o
1

for all x €U . O
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