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ABSTRACT OF THE DISSERTATION

Algorithms for Finite Field Arithmetics
and Their applications to Public-Key Cryptosystems

by
Toshiva ITOH
Doctor of Philosophy in Engineering,
Tokyo Institute of Technology, 1988

Professor Shigeo TSUJI1II, Chair

In this dissertation we study severél algorithms, i.e.,
the configuration of parallel type multiplier of GF(2"™), the
fast (sequential and recursive)} algorithm for computing multi-
plicative inverses in GF(2" ), the efficient probabilistic algo-
rithm for solving quadratic equations over GF(p) and GF(2m ) and
the efficient algorithm for deciding quadratic residuosity in
GF(p®) (p:odd prime, m;.Z), and consider their applications to
puBlic—key cryptosystems.

In 1981, Massey and Omura have developed a parallel type
multiplier of GF(2™) which uses the normal basis representation.
Massev-Omura Multiplier has elegant properties such as
regularity and modularity in the structure which are suitable
for VLSI implementation. In this dissertation we propose a
parallel type multiplier in GF{2"™} which uses the canonical
basis representation and has the similaf properties with Massey-
Omura Multiplier, i.e., regularity and modularity in the struc-
ture. To cdnstruct a newly developed parallel type multiplier,
we define Equallf Spaced Polynomial and present the necessary
and sufficient condition that Fgually Spaced Polynomials ére ir-

reducible.



Two types of fast algorithms, sequential and recursive
ones, for computing multiplicative inverses ih GF(2™) are
developed. The sequential type fast algorithm for GF(2n)
iterates multiplications in GF(2" ) to compute multiplicative in-
verses in GF(2%), and>reduces the number of multiplication to
O(log m). The recursive type fast algorithm for GF(27m) {(m=2k)
also iterates multiplications in GF(2®) and in the subfields,
GF(2m/2), GF(2m/4%), ..., GF(2%) to compute multiplicative in-
verses in GF(2m), and reduces the number of multiplications to
two multiplications in GF(2") and in each subfield of GF(2n),
i.e., GF(2m/2), GF(2n/%), ..., GF(2%).

Efficient probabilistic algorithms for solving quadratic
equations over GF(p) and GF(2®) are presented. The efficient
probabilistic algorithm for GF(p) is based on the efficient com~
putation of Legendre’s symbol and that for GF(2m) is based on
the efficient computation of Trace relative to GF(2).

Furthermore an efficient algorithm for deciding guadratic
residuosity in GF(p®) (p:odd prime, m2 2) is developed. This
algorithm efficiently méps the decision problems in GF(p®) to
those in GF(p) by matrix manipulation over GF(p) and outputs the
result by the computatiqn of Legendre’s svmbol. The algorithm
can be applied to derive an efficient probabilistic algorithm
for solving quadratic eqﬁations over GF(pm).

We propose several public-key cryptosystems and study
their security and the applications of the above algorithms to
them. Furthermore we develop an ID-Based cryptosystem, which is
the one of its earliest concrete examples in a strict sense, and

consider the security against the conspiracy of some entities.



CHAPTER 1 :

INTRODUCTION

The theory of finite field is a branch of modern algebra.
In the last 40 years the significance and the diverse applica-
tions have been found in coding theory [Ber68,MST77,McE87]}, crvp-
tography [BKS79,Den82,Kra86,IM85,TKIFM86, TKIFM87], digital sig-

nal processing [RT75] and digital communication [McE87].

A finite field is a field with finite elements in which it
is possible to add, subtract, multiply and divide, except thét
division by 0 is not allowed. A finite field GF{p), where p is
prime, is a finite field with p élements. It is well-known that
every finite field with p elements is isomorphic to Zp, i.e., a
set of integers {0,1,2,...,p-1}. Furthermore for a composite
number N, Zy does not construct a finite field, i.e., for com-
prosite number N, there does not exists a finite field with N
elements. An extension field GF{p®) can be regarded as a vector
space of dimension m over GF(p). Finite field GF{2m) especially
has the diverse applications to error-correcting codes
[Ber68,MS771, cryptography [BKS79,IM85,TKIFM86,TKIFM87], etc.,

because of its tractability by Boolean circuits, e.g., AND-gates

and EOR-gates.

The finite field GF{2™) is a number system containing 2nm
elements., The attractiveness and the availability in practical

applications stem from the fact that each element can be repre-



sented by m—dimensional vector over GF(2). The practical ap-
plication to error-correcting codes makes considerable use of
the arithmetics in GF(2®). Both the encoding and decoding pro-
cedures for Reed-Solomon codes [Ber68,MS77] are carried out by
the arithmetics in GF(2") and the decoding procedure for BCH
codes is also performed by the arithmetics in GF(2m),. Further
applications of finite field arithmetics have been found in data
and communication security, such as encryption and decryption of
digital messages [BSK79,IM85,TKIFM86,TKIFM87] and key-

distribution between two parties [DH76] or among multiparties.

The arithmetics in GF{2™ ) consist of fundamental opera-
"tions, i.e., addition, subtraction, multiplication and division.
Finite field GF(2m) can be defined by m-dimensional vector space

over GF(2), hence additions and subtractions in GF(2") can be

easily implemented in hardware, i.e., digital circuits, by com-
ponentwise addition and subtraction in GF(2), respectively.

(This implies that the implementation of addition and subtrac-
tion in hardware require small circuit size and running cost.)
On the other hand, multiplications and divisions in GF(2"™) are
somewhat complicated operations, hence in general the hardware
implementation fbr multiplications and divisions require large

circuit size or large computation time.

The multiplications in GF(2™), in the usual case, are
carried out by the shift-register type multiplier [McE87]}, thus

they can be realized in small circuit size but with long delay.b



Especially in the case of GF(2") of large order, the computation
time for multiplications is much larger than that for additions
or subtractions, thus the computation time for instruments or
algorithms processing the elements in GF(2mr) is mainly dominated
by the computation of multiplications. The divisions in GF(2®),
a/b (a,be GF(2m)), can be performed by computing the multiplica-
tive inverse b-! and multiplying a and b-!, therefore the divi-
sions in GF(2m) are reducible to the computation of multiplica-
tive inverses in GF(2®),. Euclidean Algorithm [Ber68] is widely
known to be the algorithm for computing multiplicative inverses
in finite fields. The Fuclidean Algorithm runs efficiently,
however it is not suitable for the hardware implementation.
Tﬁus the develobmént of efficient algorithms for computing mul-
tiplicative inverses, which are suitable for the hardware im-

plementation, is considerably useful in a practical sense.

Exponentiations in finite fields can be regarded as itera-
tive multiplications in finite fields, however the techniques of
an efficient algorithm for exponentiations in finite fields
derives an efficient algorithm for powering polynomials in poly-
nomial ring, which are applicable to polynomial factorization
over finite fields and the other practical problems. Thus the
exponentiations in finite fields must be studied as one of the
basic operations, not as the iterative multiplications in finite

~fields.

The other operations in finite fields such as quadratic



residuosity in GF(p) (or GF{p®}} are of somewhat theoretical in-

terest., However, Rabin has pointed out the close relation be-
tween polynomial factorization over GF(p) {(or GF(p™)) and gquad-
ratic residuosity in GF(p) {(or GF{p™)), and has proposed a prob-

abilistic algorithm for factoring polynomials over finite fields
[Ra80a]. The probabilistic algorithm can be applied to the
decryption of public-~key crvptosvstems [Ra79,wWil80,wWil185,KIT87,
KIT88a,KIT88b]}, thus quadratic residuosity in finite fields is
not only of theoretical interest but also of practical impor-

tance.

In this dissertation, we study the several algorithms for
finite fields and their applications to public-key cryptosys-

tems. Thelorganization of this dissertation is as follows:

In CHAPTER ]l , we describe the historical perspective for
public~key cryptosystems and mention the relation between
finite field arithmetics and public-key cryptosyvstems.

CHAPTER [ presents a new configuration of parallel type
multiplier in GF(2m ) [IMT87,IT87b}l. The proposed parallel type
multiplier also has elegant features such as regularity and
modularity, which are suitable for VLSI implementation. We
define a specialized polynomial, called Fqually Spaced Polyno-
mial (ESP), and present the necessary and sufficient condition
for the ESP to be irreducible.

CHAPTER [V provides two types of fast algorithms, sequen-

tial and recursive ones, for computing multiplicative inverses



in GF(2w), The sequential type fastAalgorithm for GF(2n)
[IT88a] iterates multiplications in GF(2®) to compute multi-
plicative inverses in GF(2™), and reduces the number of multi-
plications in GF(2") to O(log m). The recursive type fast algo-
rithm for GF(2") (m=2k) [IT88b,IT88d] also iterates multiplica-
tions in GF(2®) and in the subfields of GF(2m), GF(2m/l2),
GF(2m/4),...,GF(2%9) to compute multiplicative inverses in
GF(2m ), and reduces the number of multiplications to two multi-
plications in GF(2®) and in the subfields of GF)2®), i.e.,
GF(2m/2), GF(2m/4),...,GF(2%).

In CHAPTER V , we propose efficient probabilistic algo-
rithm for solving quadratic equations over GF(p) and GF(2n)
[Ito87,Ito88a]l. The efficienf probabiliStic élgorithm fér GF(p)
is based on the efficient computation of Legendre’s symbol
[8ch86] and that for GF(2®) is based onithe efficient computa-
tion of Trace [McE87] relative to GF(Z)..

CHAPTER VI develops an efficient algorithm for deciding
quadratic residuosity in GF(p®) (m:odd prime, m2 2) [IT88c].
This algorithm efficiently maps the quadratic residuosity
problems in GF(p™) to those in GF(p) by matrix manipulation over
GF(p) and outputs the result by the computation of Legendre’s
symbol. |

In CHAPTFER VI , we present several pﬁﬁlic—key cryptosystems
and consider their security and the appiications of the algo-
rithms proposed in CHAPTER I -VI to the cryptosystems. Section
7.2 analyzes the security of Knapsack Type Public-Key Cryptosys-

tem [IKT84,CR84,KIST87]. Section 7.3 proposes a public-key



cryptosysﬁem based on the difficulty of solving a system of non-
linear equations [TKIFM86,TKIFM87] and considers the security.
In Section 7.4, we present a public-key cryptosystem [KIT87,
KIT88a,KIT88b]l, for which it is proven that inversion of the
ciphertexts is equivalent to factorization of a large composite
number. Furthermore Section 7.5 proposes an ID-Based Cryptosys-
tem [ShaB84] and analyzes the security against the conspiracy of
some entities. The proposed ID-Based Cryptosystem [TIK87,TI88]
is supposed to be one of the earliest concrete examples in a
strict sense.

CHAPTER VI finally describes the conclusions and further-

more mentions the perspective of the related works and fields.



CHAPTER 1II :

MODERN CRYPTOLOGIES AND FINITE FIELD ARITHMETICS

To transmit messages, most of the people usually make use

of some media, e.g., post cards, letters, telephones, electronic
mails, etc. In these media, the messages are not strictly
protected against the third parties, i.e., anyvone can read the

sentences on post cards or in letters and anyone can also hear
the conversation on telephone lines by wiretapping. (The
security of the transmitted messages essentially depends on con-
science and morality of many people of good sense.) If the mes-
sages to be transmitted are of no importance, e.g., "Hello.",
"How are you?";v"Good morning.", "Good-bye.", etc., the protec-
tion of‘the messages is not so crucial, hence such media are
useful and available for those messages. On the other hand, if
the messages to be transmitted are of serious importance, e.g.,
a large amount of transactions or contracts, diplomatic top
secrets, military top secrets, the newest information for stock
prices or exchange rate, etc., the protection of the messages is
considerably crucial, because for diplomats, presidents or
stockbrokers, those messages are as valuable as théir lives and
the disclosure of such information might make their countries,
their companies or themselves seriously disadvantageous! One
method for the transmission of such valuable information is that
a professional courier has the information with him and carfies
it from the senders (e.g., stockbrokers) to the receivers (e.g.,

clients) accompanying well-disciplined guards. However, such a



meihod costs much money and time,; thus the other methods are
required with low costs and high security. For those require-
ments, CRYPTOGRAPHIES are expected to be one of the most power-

ful countermeasures to protect the valuable messages.

Cryptographies have long history from ancient times. In
ancient times, cryptographies are very simple; Each character of
the messages are permuted or rewritten by some rules which are
held in common between the sender and the receiver. In 1976,
Data Encryption Standard (denoted DES) [DES77] was standardized
by the Department of Commerce, and it has been widely used for
the data protection. The structure of DES is essentially the
same<wi£h the cryptcgraphiés in ancient times, i.e., i£ is com-
posed of the combinations of simple transforms such as permuta-
tién or rewriting of input data. On the other hand, in 1976 a
completely different and epoch-making concept for the data
protéction was proposed, which is widely known nowadays to be

PUBLIC-KEY CRYPTOSYSTEM (denoted PKC) [DH76].

SECRET-KEY CRYPTOSYSTEMS (denoted SKC), e.g., DES, must
share the same information between the sender and the receiver,
calléd key, to encrypt the messages and to de&rypt the encrypted
meéséges. (The idea and the éechnique for SKC are extremely
natural for the data protection.) On the other hand, PKC
surprisingly need not to share the same information between the
sender and the receiver, i.e,, the encryption-key is not equal

to the decryption-key. In PKC’s, the receiver can publishes his



encryption-key keeping his decryption-key secret, and any
senders can safely transmit their messages to the receiver by
the receiver’s encryption algorithm even when the receiver’s
encryption-key is made public. To materialize the above scheme,
the existence of the function f, which satisfies the following
conditions, is required:

Cl. For Y xe dom f, f(x) is easily computable;

c2. For almost all ye rang f, to compute f-1(y) is prac-
tically infeasible;

Cc3. There exists some information s, called trapdoor in-
formation, such that for Yye rang f, f-!(y;s) can
be easily computed.

The function satisfying the above conditions Cl. and C2. is
referred to as one way function [DH76], and furthermore the one
way function satisfying the condition C3. is called trapdoor one
way function [DH76]. The first concrete example for PKC,‘the
celebrated RSA [RSA78], was found in 1978. The trapdoor one way
function of RSA is based on the formidability of factorization
of a large composite number. RSA is known to be one of the
most secure PKC’s proposed so far, and is believed tha£ to find
the decryption algorithm of RSA is equivalent to factor a large
composite number, however it is not proven yet. The other PKC’s
[MH78,Ra79,W1180,CR84,GM84,Wil85,E185a,BBS86,KIT87,KIT88a] have
been found so far, and for some of them, it is proven that to
find the decryption algorithm is equivalent to solve the intrac-
table prqblems, e.g., factorization [(Ra79,Wil80,WI185,KIT87,

KiIT88a,KIT88b], gquadratic residuosity [BBS86], etc. Hardware



implementation for RSA caﬁ be found in [Riv80,Mi83,T0C881].

Most of PKC’s are constructed over finite fields, thus the

encryptions and decryptions are performed by finite field arith-

metics, i.e., additions, subtractions, multiplications, divi-
sions, etc. Since PKC’s, in general, make use of finite field
of large order, e.g., GF(2100)  the running time of additions or

subtractions is much larger than that of multiplications or
divisions. Hence for PKC’s, the computation time of encryptions
and decryptions are mainly dominated by the running time of mul-
tiplications and divisions., These facts motivate the studies on
finite field arithmetics especially for multiplications and
divisions. In the field éf érror-correcting codes, the multi-
plications are usually carried out by shift-register type multi-
pliers (denoted SRM) [MCE87] or bit-serial type multiplier
({denoted BSM) [Ber82,McE87]} and the divisions are performed by
table look-up, i.e., access to Read Only Memory (ROM). For
finite field of small order, e.g., GF(28), SRM and BSM require
small circuit size and low running cost, however for finite
field of large order, e.g., GF(2100), the running cost of multi-
plications by SRM or BSM considerably increases, not negligible!
The divisions by table look%up can be implemented with low run-
ning cost and comparativeiy large circuit size for finite field
of small order, e.g., GF(28). On the other hand, the implemen-
tation of divisions by table look-up is practically impossible
for finite field of somewhat larger order, e.g., GF(216), Fur-

thermore divisions can be computed by FEuclidean Algorithm

10



[Ber68] with small running cost, however the divisions by
Euclidean Algorithm are not necessarily suitable for hardware
implementation. Hence for finite field of large order, the
development of the fast (sequential and recursive) algorithm for
multiplications and divisions is of theoretical and practical
use. In addition the design of the (parallel type) multipliers
and dividers is of considerable importance for high performance
cryptographical instruments. The related works for the design
of multipliers can be found in [MO81,WW84,Be85,WISDOR85,BCG86,
STP86,IMT87,1IT87b,MK88] and those for divisions can be found in

[WTSDOR85,1T88a,1T88b,1T88d,MK88].

The further relations bétween PKC’s and finite field
arithmetics are given in [(Ra79,Wil80,CR84,Wil85,E185a,KIT87,
TIK87,KIT88a,KIT88b,TI88]. Especially for the PKC’s [Ra79,
wWil80,Wi1185,KIT87,KIT88a,KIT88b}l, they are provable secure under
the assumption that the factorization is hard. Furthermore the
PKC’s [E185a,TIK87,TI88] and the public-key distribution system
[DH76] are based on Discrete Logarithm Problem, and the related
works for Discrete Logarithm Problem can be found in [PH78,Ad79,

HR82,BFMV84,EL85b].

11
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CHAPTER I :

CONFIGURATION OF PARALLEL TYPE MULTIPLIERS IN GF(2=)

In this Chapter, we develop a new configuration of paral-
lel type multipliers in GF{(2m). The proposed multiplier has

elegant and interesting features as follows:

Fi. The multiplier has regularity and modularity in the
‘structure;
F2. The multiplier can be easily implemented only by

AND-gates and EOR-gates;
F3. The number of gates, AND-gates and EOR-gates, in the
multiplier are proportional to m?2, and the delay
time is.proportional to log m.
Furthermore we define a polynomial over GF(2) of special form,
Fgually Spaced Pdlynomial (denoted FESP), and prove a necessary

and sufficient condition for ESP’s to be irreducible over GF(2).

3.1 INTRODUCTION

This Chapter studies only the multipliers in GF{(2m)., (The
main reason why we concentrate on not general finite field
GF(a™) but GF(2") is of practical use, e.g., error-correcting
codes, cfyptographiés, maximum-length sequences [McE87], etc.
The extension to geﬁeral finiterfields is tri;ial!)

Multiplications in GF{2"™ ) have been usually carried out by
Shift Register Type Multipliers {(denoted SEM). SRM is a multi-
plier in GF(2m) wiﬁh an m-bit shift register, AND-gates and EOR-

gates. The circuit size of SRM for GF(2") is proportional to m

13



and the computation time of SRM for GF(2™) is proportional to m.
In 1982, Berlekamp has developed a new type of multiplier
[Ber82], calléd Bit-Serial Type Multiplier {(denoted BSM), for
Reed-Solomon encoders by introducing dual bases [MS77,McE87] in
GF(2m ), BSM is a multiplier in GF(2) with an m-bit shift
register, AND—gates\and EOR-gates. The circuit size of BSM for
GF(2™) is proportional to m, butvsomewhat larger than that of
SRM. In addition the computation time of BSM for GF(2m) is
proportional to m, but somewhat less than that of SRM. Thus
both SRM and BSM for GF(2") require O(m) circuit size and O(m)
computation time.

In 1981, Massey and Omura, on the other hand, have
developed a complétely different type of multiplier‘[MO8i,
WISDOR85], called Massey-Omura Multiplier (denoted MOM), by in-
troducing normal bases [MS77) in GF(2"). MOM can be implémented
in both parallel and serial type configuration. (Both parallel
and serial type) MOM are multipliers in GF(2") with the follow-

ing features:

Fl. MOM has regularity and modularity in the structure;
F2, MOM is implemented only by AND-gates and EOR-gates;
F3, For VY xe GF(2m), squaring x can be carried out by

cyclic shift of vector representation of x.
Furthermore the circuit size of parallel type (serial typéijOM
for GF(2m), in the general case, is O(m3) (0O(m?)), but in the
special case O(m?) (O(m)), and the computation time of parallel

type (serial type) MOM for GF(2m) is O(log m) (O(mlog m)) in any

case. Thus the parallel type MOM for GF(2®) has high perfor-
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mance from a standpoint of the computation time.

One of the main purposes of this Chapter is to develop a
new parallel type multiplier in GF(2m) with regularity and
modularity and furthermore with the small circuit size (i.e.,

O(m?2)) and the low computation time (i.e., O(log m)).

The organization of this Chapter is as follows:

Section 3.2 is the preliminaries for this Chapter and in-
cludes two subsections. (Subsection 3.2.1 provides several math-
ematical definitions and lemmas and subsection 3.2.2 presents a
skeleton of Massey-Omura Multiplier (denoted MOM) and the re-
lated lemmas. ) Seétién 3.3 proposes a new configuration of mul-
tipliers for GF(2m) based on canonical bases, called Canonical
Bases Multiplier'(denoted CBM) . In Section 3.4, we introduce a
new concept, Equaliy Spaced Polynomial (denoted ESP), and give a
necessary and sufficient condition for ESP’s to be irreducible
over GF(2). Section 3.4, in addition, presents a new parallel
type multiplier in GF{(2®) applying ESP. Section 3.5 finally
summarizes the results in this Chapter and gives conclusions,

some remarks and open problenms.

3.2 PRELIMINARIES

In this Section, we give some mathematical definitions and
lemmas for the subsequent discussions. Furthermore we show the
configuration of (parallel and serial type) Massey-Omura Multi-

plier and give some lemmas for the multipliers.
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3.2.1 MATHEMATICAL PRELIMINARIES

This subsection gives some mathematical definitions and

and lemmas for the subsequent discussions.

DEFINITION 3.1 [MS77] A basis in GF(2™) over GF(2) of the
form, {a,a?,a?’2,.+.,a2°(m-1)}, jg called a normal basis

in GF(27) over GF(2). O

Remark 3.2 The above notation, 272 and 2" {(m-1), implies 22
and 2m-1, respectively. More generally, a"b implies ab,
and the notation will be used in the sequel. 0O

DEFINITIQN 3.3 [ww84] A polynomial p(x) over GF{(2) of the

form, p{x)=xm+xm-1l4+...4x+1, is called All One Polynomial
(denoted AOP) of degree m. O

Remark 3.4 Throughout this Chapter, we restrict AOP’s only

over GF(2). O
LEMMA 3.5 [WwW84] The following two statements,
Sl1. An AOP of degree m is irreducible over GF(2);
S2. (m+1) is a prime and 2 is the generator of GF*(m+1},
where GF*(m+1) is the multiplicative group in
GF(m+1),
are equivalent. 0O
The following table illustrates the examples of m’s satis-
fying S2. in Lemma 3.5.

TABLE 3.6 Example of m’s

2 28 66 138
4 36 82 148
10 52 100 162
12 58 106 172
18 60 130 178
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Irreducible AOP’s are irreducible polynomials of specified
form, hence they have an interesting property as in the follow-
ing lemma:

LEMMA 3.7 [WW84] Let p(x) be an irreducible AOP of degree m.
Then all the roots of p(x)=0, {a,a?,a?2"2,.--,a2 " (m-1)},
where p(az‘i)=0v(0§'i§'m—1), are linearly independent over
GF(2). O
The above Lemma {(LEMMA 3.7) implies that the set of the

roots of p(x)=0 constructs a normal basis [MS77] over GF(2),

where p(x) is an irreducible AOP.

3.2.2 MASSEY~-OMURA MULTIPLIER

This subsection presénts concisely‘tﬁe configuration of
(parallgl and serial type) Massey-Omura Multiplier {(denoted MOM)
and gives some properties of MOM, e.g., tﬁe number of gates in

MOM and its lower bound, etc.

Assume that {a,a?,a2"2,.-.,3a2"(m-1)} jg a normal basis in
GF(2m)., Then Y x,ye GF(2m) can be represeﬁted by the normal
basis as follows:

x=x0atx1a?+x2a? 24+ 4xp-1a2"(0-1) | x;e GF(2) (025 iZ m-1),
y=yoatyirat+yza? 2+ dtypn-1a27tm-1) vy e;‘ GF(2) (02 jS m-1).
The product of x and y, i.e., z=xy, can bé élso represented by
the normal basis such that
Z=XY
=zoatzia2+z2a? 24+ 4zn-1a2"(m-1) | zre GF(2) (0L kS m-1).

Then zx (0f£ k€S m-1) is given by the Boolean function f of xi's
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and yj’'s (0£ i,j€ m-1) [WTSDOR85] as follows:

Zm-1=F(X0 4%, yXm-1;¥0,¥1,"**,¥m=-1),
Zm-2=f(Xm-1,X0,X1,"'* " ;Xm-23Ym-1,Y0,¥1,°"",¥m-2),
zo =f(xX1,X2," " yXm-1,X0;,¥1,¥2,"*"* ,¥n=~1,¥0).

The following figures, FIGURE 3.8 and 3.9, show the parallel and
serial type configuration of MOM.

Here each zx (02 k2 m~1) can be implemented only by AND-
gates and EOR-gates, hence the number of gates of MOM depends on
the number of terms in f(:--;-:-+) defined above. The following

lemma gives the non-trivial lower bound for the number of terms

LEMMA 3.10 [Va87] Let f(++-;+++) be a Boolean function

defined above. Then the number of terms TERMwom 1Iin
f(+++;°++) satisfies Z2m-1=5 TERMwyou =S m?2. 0O

Proof (Sketch): Let {a,a%¢,a2”2,...,a2°(n-1)} be a normal

basis in GF{(2m}. Here define a’=Ba, where a’'={awi+j}?’
(amis+jer=al2”i)+(273) (0L is m-1, 0L jSs m-1)), B is an mZX m
matrix over GF(2) and a={a,a2,a2 2 ,...,2 (m-1)1}7T, It is clear
that each column vector in B has the same Hamming weight s and
the Hamming weight s is equal to TERMwom(m). Here the weight of
the matrix B is definitely ms.

Let bx (15 k€ m?) be row vectors in the matrix B. For
al2” i)+ (27 ) =bpis+js+1-a (02 iS m-1, 05 j< m-1),

{(al278)+(2°§) 312202  (i+1) 1+ {273+ 1) ) zbm(is 1)+ j+2"a,

thus bmi+j+1 and bm(i+1)+j+2 have the same weight. Define the
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matrix C, a"=Ca, where a"={ai}T (ai=al+{2°¢i-1)} (15 i€ m)), and
let the weight of the matrix C, w(C), be t. Then mt=ms(=w(B)),

so we have t=s. This implies that w(C) is equal to TERMwow(m).

Here {a,a?2,a2"2,...,a2°(mr~1)} constructs a normal basis in
GF(2m), thus {alt+l ,al*2 gl+272 ... g1+2°(m-1)} glso constructs a
basis in GF(2m). Hence the matrix C is invertible over GF(2).

Multiplying C-! to both hand sides of a"=Ca, then C-la"=a. Let
the first row of C-1 be d=(di,dz,***,dn), then we have d-a"=a.
Multiplying a-! to both hand sides of d-a"=a, then d-a=1 is
derived. Eventually di=1 (1£ i£ m) by the property of normal
bases. Here assume that ci (12 i£ m) are column vectors of C.

Noting that C-1C=1 and di=1 (1£ i€ m), we have

(111"":1)31:1’
(1111"'s1)02=0’
(1,1,"’,1)Cm=0.

The above equations imply that w(ci) is odd and w(ci) (22 if m)
are even. Recalling that C is invertible, then we have w(ci1)2 1
and w{ci )2 2 (25 i€ m). Hence

| w(C)=% | w(ci)Z 1+42(m-1)=2m-1.

Thus we have TERMnou(m)=w(C); 2m-1.

The upper bound for TERMwom is trivial. O

Remark 3.11 Lemma 3.10 was proven by S.A., Vanstone of the

University of Waterloo. He explained it in Special Lec-
ture at NTT Basic Research Lab. in May 1987. The above

proof is due to author, however, the priority and the
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originality of the proof, needless to say, belong to S.A.

Vanstone. 0O

For the irreducible AOP p(x) of degree m, the set of roots
of p(x)=0 constructs a normal basis (Lemma 3.7). Here we have
the following lemma:

LEMMA 3.12 [wWw84] Let p(x) be an irreducible AOP of degree

m. Then for the normal basis given by the set of roots of
p(x)=0, TERMyow (m)=2m-1. 0O
Lemma 3.10 suggests that TERMwow{(m) is lowerly bounded by

(2m-1) as long as the multipliers in GF(2") are constructed by

normal bases. Lemma 3.12, on the other hand, shows that there
exist normal bases which satisfy the lower bound for
TERMyorn(m). In the next Section, we will develop an new con-

figuration of parallel type multipliers in GF(2"), for which the
circuit size exceeds the lower bound for MOM, by introducing

canonical bases.

3.3 PARALLEL TYPE MULTIPLIERS IN GF(2™) BASED ON CANONICAL BASES

In this Section we propose a parallel type multiplier in
GF(2m ) based on canonical bases,;called Canonical Bases Multi-
plier (denoted CBM). CBM has the following features:

Fl.. CBM has regularity and modularity in the structure;

F2. The number of gates in CBM is less than that in

parallel type MOM;

F3. For Yxe GF(2®), x2 can be computed by permutation

of (extended) vector representation of x.
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3.3.1 CONFIGURATION OF CBM IN GF(2™)

The following simple theorems play an important role in

the configuration of parallel type CBM,

THEOREM 3.13 Let p(x) be an AOP of degree m. Then p(x)
divides xmt1l+], i,e., p(x)| xn+1, QO
THEOREM 3.14 Let D(x) and d{(x) be polynomials over GF(Z2) of

degree m and (m-1), respectively.
D(x)=Do+D1x+Dzx2++++ +Dnx™,
d(x)=do+dix+dzx?++++dn-1x0-1,

Assume that D{(x) and d(x) have the relation such that

D(x)=d(x) (mod p(x)),

where p(x) is an AOP of degree m. Then the coefficients

of d(x) are given by those éf D(x), i.e., di=Di+Dn (mod 2)

(05 ig m-1). O

The following example illustrates the parallel type con-
figuraﬁion of CBM in GF(2m).

EXAMPLE 3.15:

Assume that m=4, then 5(=m+l1) is a prime and 2 is the
generator in GF*(5), i.e., m{(=4) satisfies S2. in Lemma 3.5.
Hence p(x)=x*+x3+x2+x+1 is irreducible. For VY a,be GF(2¢),

a=ao+arxtazx?+a3x3, aie GF(2) (05 ig 3),

b=bo +bi1x+bz2x2+b3x3, bje GF(2) (0L j£ 3),
where {1,x,x?,x3} is a canonical basis, the product of a and b,
i.e., d=ab, is given by

d=do+dix+d2x2+dax3, dke GF(2) (05 kS 3).

Here define A and B such that

A=(Ao ,A1 ,A2 ,A3 ,As )=(a0,a1,az,a3,0),

23



B=(Bo,B1,B2,B3,Bs )=(bo,b1,bz,bs,0).
(We call A an extended vector representation of a.) Furthermore
define D (=AB {(mod x%+1)) such that
D=AB (mod x5+1)
=(Ao +A1x+A2x2 +A3x3 +A4x*? ) (Bo+B1x+B2x2+B3x3 +Bsx? ) (mod x5+1)
=Dg+D1x+D2x2+Dax3 +Ds x?,
where A=Ao+A1x+A2x? +A3x3+As4x?* and B=Bo+Bix+B2x2+4B3x3¥+Bsx*. Here
Di (02 1S 4) are given by Di=2 jik=i(mod 5) AjBk (mod 2), thus
Ds =h(Ao ,A1,A2 ,A3 ,A4 ;Bo,B1,B2,B3 ,Bs)
=A4Bo +A3B1+A2B2 +A1 B3 +tAoBs ,
D3=h(A4 ,A0 ;A1 ,A2 ,A3 ;Bo,B1,B2,B3,Bs)
=A3 Bo +A2B1+A1B2+A0B3+A4 B4,
D2=h(A3,A4,Ao,A1,Az;B0,B1,Bz,B3,B4)
=A2 Bo +A1B1+tA0o B2 +A4 B3 +A3 B4,
Di=h(Az2 ,A3 ,A4 ,A0,A1;Bo,B1,B2,B3,Bs4)
=A1Bo+AoB1+A4B2+A3B3 +A2Bs,
Do =h(A1,A2 ,A3 ,As,A0;Bo,B1,B2,B3,Bs)
=AoBo +A4 B1 +A3 B2 +A2B3 +A1 Ba .
Recalling Theorem 3.13, d{=ab (mod p(x))) and D have the rela-
tion such that d=D (mod p(x)), where p(x)=x%+x3+x?+x+1. Fur-
thermore noting Theorem 3.14, dk=Dxk+Ds (mod 2) (0f£ k£ 3), and
thus we have the configuration of CBM in GF{(2%) in FiGURE 3.16.
In this example, squaring A (an extended vector repre-
sentation of a) can be carried out by
A2 =(Ao+A1x+A2x%? +A3x3 +A4x* )2 (mod x5+1)
=Ao+A1x2 +A2 x* +A3x8 +As4x® (mod x5+1)

=Ao +A3Xx+A1x2 +Aax3 +A2 x4,
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Thus squaring A is given by the following permutation:
(Ao ,A1,A2 ,A3,A4)%2 = (Ao yA3 A1 , A4 ,A2),

and this can be easily implemented by hardwiring. O

3.3.2 NUMBER OF GATES IN MOM AND CBM

The configuration of CBM in GF(2® ) requires an irreducible
AOP of degree m, hence m must satisfy S2. in Lemma 3.5. On the
other hand, m satisfying S2. in Lemma 3.5 realizes the lower
bound for TERMmom(m). In this subsection, we compare the num-
ber of gates (AND-gates and EOR-gates) of CBM with those of
parallel type MOM for m satisfying $2. in Lemma 3.5.

The function f(--+;+++) (See subsection 3.2.2.) of MOM in
GF(2® ) can be materialized by m AND-gates and (2m-2) EOR-gates
for m satisfying S2. in Lemma 3.5 [WW84]. Hence the total
number of AND-gates ANDwow(m) and that of EOR-gates EORyow(m) in

parallel type configuration of MOM are:

ANDyox(m)=m? , (3.1)
EORyor(m)=2m¢ -2m. (3.2)
On the other hand, the function h(---;---) (See Example 3.15.)

of CBM in GF(2®) can be materialized by (m+l) AND-gates and nm

EOR~gates for m satisfying S2. in Lemma 3.5. Observing EXAMPLE

3.15, the total number of AND-gates ANDc¢sm(m) and that of EOR-

gates EORC;M(m) in parallel type configuration are:
ANDceey(m)=(m+1)2=m?+2m+1, : (3.3)
EORcay{m)=m(m+1 )+m=m2 +2m. (3.4)

Thus we can conclude that the total number of AND-gates of CBM

is almost the same with that of MOM, (See Eq.(3.1) and (3.3).)
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and the total number of EOR-gates of CBM is about half of that
of parallel type MOM. {See Eq.{(3.2) and (3.4).)

3.4. PARALLEL TYPE MULTIPLIERS IN GF(2")
BASED ON EQUALLY SPACED POLYNOMIAL

In Section 3.3, we presented a new configuration of paral-
lel type multipliers in GF{2") with small circuit size. This
Section studies the further extension of the multipliers in Sec-
tion 3.3, and develops parallel type multipliers in GF(2m) based

on Fqually Spaced Polynomial.

3.4.1 EQUALLY SPACED POLYNOMIAL

In this subsection, we define polynomials of special form,
FEqually Spaced Polynomial (denoted ESP), and give a necessary
and sufficient condition for ESP’s to be irreducible.

DEFINITION 3.17 [IMT87,1T87b] A polynomial g(x) over GF(Z)

of the form, g{(x)=xsn+xs(n-1)3xs(n-2)4...4x5+]=p(xS),
where p(x) is an AOP of degree n, is called s-Equally
Spaced Polynomial (denoted s—-ESP) of degree sn. O

Remark 3.18 ' Throughout this Chapter, we restrict ESP’'s only

over GF(2). O
Here we show the following theorems to derive a necessary and
sufficient condition for ESP’s to be irreducible.

THEOREM 3.19 [IMT87,IT87b] Let p is a prime number and let k

be a positive integer. If x=y (mod p¥) (k2 1), then xP=yP
(mod p¥+1), 10O

Proof: Since x=y {(mod p¥), x can be represented by some in-



teger n as x=y+npkX. Multiplying both hand sides of x=y+npk by p

times, then we have the following equation:

XP=yP+pCi1yP-lnpk+pCoyP-2n2p2k4. .. ynPpkp
=yp+yp-1npk+1+p02yp—2n2p2k+. . +nppkp
=yp+APk+l y
where A=yP;1n+pCzyp"2n2pk'1+-~~+n9p(k“1)9‘1. The above equation

implies that xP=yP (mod pk*l}, DO

THEOREM 3.20 [IMT87,IT87hb] If an AOP of degree m is ir-

reducible and 27(m+1) (k-2)% | (mod (m+1)¥)}, then we have

ord{(2;(m+1)k )=m(m+1)%-1, where ord(a;n) denotes the least

positive integer 1 satisfying ai=l (mod n). [T
Proof: Let an AOP of degree m be irreducible, then (mtl) is
a prime and 2 is the generator in GF*(m+1). (Seé ﬂémma 3.5.) By
Euler’s Theorem [Sch86], we have 2®0(m+1)"(k-1)=1 (mod (m+1)k).
Here we define S, the set of divisors of m(m+l)k-1! except
m(m+1)k-1 itself, by S={d:d] m(m+1)k¥-1, where d<m(m+1)¥-1}, The
set S can be partitioned into two disjoint sets S1 and S2:

S1={d}| d=m(m+1)! (02 i k-2)},

S2={d| d=s(m+1)J (05 j=£ k-1), where s| m {(s<m)},
because (m+1) is a prime number. In order to sho& that
ord(2;(m+1)Es)=m{m+1)k-1, it is sufficient to show that every d
in S1 satisfies 29% 1 {mod (m+1)%) and every d in S2 satisfies
2d%2 1 {mod (m+1l)k),.

We prove that every d in S1 satisfies 29% 1 (mod (m+l1)k)
by contradiction. Suppose that 29=1 (mod (m+tl)k) for some d in
S1. This implies that there exists some i (0 i£ k-2) such that

2n(m+1) " i=1 (mod (m+1)k),. Multiplying both hand sides of
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gm(m+1) =g (mod (m+1)k) by (m+1)k-2-1i times, then we have
{(2m(m+1) i} (m+1) (k-2-i)=2m(m+1)"(k-2) (mod (m+1)k)
=1(m+1)" (k-2-1) (mod (m+1)k)
=1 {mod (m+1)k),.
This contradicts that 2m(m+1)°(k-2)z 1 (mod (m+1)k), hence every
d in S1 must satisfy 2¢9# 1 (mod (m+1)k},
In the similar way we prove that every d in Sz‘satisfies
24 1 (mod (m+1)k) by contradiction. Assume that for some d in
S2, 29=1 (mod (m+1)¥). This implies that for some j (05 j£ k-1)
and s (s| m, s<m), 2s(m+1)7Ji=1 (mod (m+1)k). By this congruence
and Fermat’'s Theorem [Sch86], we have
2s(m+1)° =28 (mod (m+l1l))
=1 {(mod (m+1)).
The above congruence contradicts that 2 is the generator in
:'GP*(m+1), hence every d in S2 must satisfy 29% 1 (mod (m+1)k),
Thus ord(2;(m+1)k)=m(m+1)k-1, O

THEOREM 3.21 [IMT87,IT87b] Let g(x) be a (m+1)k-1-ESP of

degree m(m+1)k-1, Then g(x) is irreducible if and only if
an AOP of degree m is irreducible and 2m(m+1)"(k-2)x ]
(mod (m+1)¥). O

Proof:

Rroof of if-part: Consider the following identity:
. X(m+1)"k+1:(x(m+l)"(k;1)+1)(xm(m+1)“(k-l)+
x(m=1)(m+1)" (k=1) 4. opx(m+1)  (k-1)47)
=(x(m+ D)7 (k-1 +1)g(x), (3.5)
where g(x) is a (m+1)k-1-ESP of degree m(m+l)k-1, Assume that u

'is one of the roots in x(®*1)°k4+]1=0 and satisfies ord(u)=(m+l)k,
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where ord{(a) denotes the least positive integer i satisfying
ai=1. It is clear from the above identity, Eq.(3.5), that u
satisfies g(u)=0 and every conjugate root of g(x)=0 is given by
u,uz,u2" 2, -+ ,u2 " {m(m+1)"(k-1)-1}, Here the assumption, an AOP
of degree m is irreducible and 2m(m+1)"(k-2)2 1 (mod (m+1)k),
gives ord(2;(m+1)k)=m(m+1)k-1, (See Theorem 3.20.) Recalling
the facts that ord(u)=(m+1)%¥ and ord(2;(m+1)k)=m(m+l)k-1, we
can conclude that every conjugate root of g(x)=0 is distinct
from each other. Hence g(x) is an irreducible (m+1)¥-ESP of
degree m{m+1)k-1,

Proof of only if-part: By contradiction.

Assume that g{(x) is an irreducible (m+i)k—ESP.of degree
m(m+1)k'i, then we have g(x)=p(x(m*1fkg),‘where p(x) is an AOP
of degree m. Furthermore assume that p(x) is reducible, i.e.,
p(x)={a1 (x)}°1{gz(x)}ez...{ac(x)}e¢, Qhere gi(x) (1£ i2t) are
irreducible and e;j2 1 (1£ j£ t). Then we have

g(x)=p(x(n+1)"k)

={qi (x(m+1) k)}e;{qgz(x(m+1) k)}eg. . {qge(x(m+i) K)oy,
The above equation contradicts the assumption that g(x) is ir-
reducible, hence p(x), an AOP of degree m, must be irreducible.

Noting Eq.(3.5), we have ord(u)={m+l)¥, where u is a root
of g(x)=0. Assume that Zm(m+1)"(k'2)=1g(mod (m+1)k), then for
the conjugate roots of g(x)=0, we have ﬁé’{m(m*l)“(k‘z’}=u.

This equation contradicts the irreducibility of g(x),
hence 2m(m+1)°(k-2) 3% 1 (mod (m+l)k). O

COROLLARY 3.22 [IMT87,I1IT87b] Define the ESP’s such that

gi(x)=p(x(m+1)°i ) (05 i r-1), where p(x) is an AOP of
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degree m. Then every gi(x) (05 if£ r-1) is irreducible if
and only 1if an AOP of degree m 1is 1irreducible and

2m(m+1)°(r-2)z 1 (mod (m+1)*). 0O

Proof:
Proof of if-part: If an AOP of degree m is irreducible, then
go(x){=p(x)) is clearly irreducible. Thus we concentrate on

the case for 1£ i£ r-1. By the assumption that an AOP of degree
m is irreducible, we have {m+l) is a prime. (See Lemma 3.5.) By
Theorem 3.19, the assumption, 2m(m+1)°(k-2)z2 1 (mod (m+l)r),
gives 2m(m+1)°(k-3)2£ 1 (mod (m+l1)r-1}), In the similar way, we
have 20(m+1)° (j-1) 2 1 {(mod (m+1)3*1) (1£ j£ r-1) are recursively
derived. By this equation and Theorem 3.21, we can conclude
that evér& gi(x) (0£ i£ r-1) is irreducible.

Proof of only if-part: Every gi({x) (0f£ iL£ r-1) is ir-

reducibie, hence gr-1{x) is an irreducible (m+1)r-1-ESP of
degree m(m+1)r-1., This result gives that an AOP of degree m is
irreducible and 2m(m+1)°(r-2)x 1 (mod (m+1)T*). (See Theorem
3.21). This completes the proof. 0O

EXAMPLE OF COROLLARY 3.22:

Let p(x) be an AOP of degree 2, i.e., pi{x)=x2+x+l. Here
we can easily verify that 22(2+1) 4% 1 (mod (2+41)8%), then we
have irreducible ESP’S, gi{x) (02 i£5), as follows:

go(i)=p(x<2+1)“°)=x2+x+1,

g1 (x)=p(x(2+1)° 1 )=xb4x3 +1,

g2 (x)=p(x(2+1)7°2)=x184x%9+],

g3(x)=p(x(2+1)73 )=x54+x27 41,

g4 (x)=p(x(2+1)74)=xl62 4538147,
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g5 (x)=p(x(2+1)°5)=x9864x243 47,
The irreducibility of the above ESP’s can be confirmed by the
list of irreducible trinomials [Zie68]. O

In the next Section, we will show the configuration of

parallel type multipliers based on ESP.

3.4.2 PARALLEL TYPE MULTIPLIERS BASED ON ESP

In this subsection, we consider the application of ESP to
the configuration of parallel type multipliers. The configura-
tion of parallel type multipliers based on ESP, called Equally
Spaced Polynomial Multipliers (denoted ESPM), is very similar
with that of CBM. Here we have the following two theorems,
which correspond to Theorem 3.13 and 3.14, for the cénfigura—
tion of parallel type ESPM.

THEOREM 3.23 [IMT87,IT87b] Let g(x) be an s-ESP of degree

sn. Then g(x) divides x(n+1)s+], i.e., p(x)| x(r+1)+1, O

THEOREM 3.24 [IMT87,1IT87b] Let D(x) and d(x) be polynomials

over GF(2) of degree s(n+l)-1 and sn-1, respectively.
D($)=D0+D1X+-'-+D(n+1)s-1X("*1)5'1,
d{x)=do+di+++++dns-1x05-1,

Assume that D(x) and d(x) have the relation such that
D(x)=d(x) (mod g(x)),

where g(x) is an s-ESP of degree sn. Then the coeffi-

cients of d(x)} are given by those of D(x), i.e.,

di+js=Di+js+Di+sn (mod 2) (0S5 if s-1,05 j5 n-1). O

The following example illustrates the parallel type configura-

tion of ESPM.

32



EXAMPLE 3.25:

Assume that m=2 and k=2, then 3(=m+l) is a prime, 2 is the
generator in GF*(3) and 22# 1 (mod 32). Hence g(x)=x6+x3+1, 3-
ESP of degree 6, is irreducible over GF(2). (See Theorem 3.21.)
For Ya,be GF(26),

a=ao taix+azx?+---+asx5, aie GF(2) (05 ig 5),

b=bo +b1x+b2x2+:--+bsx5, bje GF(2) (0L j<5),
where {1,x,x%?,x3,x%,x5} is a canonical basis, the product of a
and b, i.e., d=ab, is given by

d=do+dix+dzx?+:--+dsx5, dxe GF(2) (0% kg 5).

Here define A and B such that
A=(Ao ,A1,++-,As)=(a0o,a1, --,a5,0,0,0),
B=(Bo,B1,-++,Bs )=(bo,bi,**,b5,0,0,0),
(We also call A an extended vector representation of a as in EX-
AMPLE 3.15.) Furthermore define D(=AB (mod x9¥1)) such that
D=AB (mod x9%+1)
=(A0+A1X+"*+A8X8)(B0+BIX+";+B8X8) (mod x9+1),
where A=Ao+Aix+--+-+Asx8 and B=Bo+Bix+-+--+Bsx8 . Here Di are
given by Di=3 j+k=i(moda 9) AjBk (mod 2) (0L ig 8), thus we have

Ds=t(Ao,A1,-*+,As;Bo,Bi,++-,Bs)

=A8B0+A7B1+A6Bz+A5B3+A4B4+A3B5+AzBs;A1B7+A0B8,

D7=t(As,A0,A1,*++,A7;B0,B1,---,Bs),

Do=t(A1,A2, -+ ,A8,A0;Bo,B1,-++,Bsg).
Recalling Theorem 3.23, d (=ab mod g(x)) and D {(defined above)

have the relation such that d=D (mod g(x)), where g{x)=x8+x3+1,
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Furthermore noting Theorem 3.24 (s=2 and n=3), dk(0% igL 5} are
given by di+23=Di+2j+Di+6 (mod 2) (0L ig 1, 0% js 2). Thus we
have the configuration of ESPM in GF{(26) as in FIGURE 3.26.
In this example, squaring A can be carried out by
A?=(Ao+Ar1x+A2x%+ - +Asx8)?2 (mod x%+1)

Ao+A1x2+A2x?++ - +Agx!6 {mod x9+1)

Ao +As x+A1x2 +Ae x3 +Az xt +A7 x5 +A3 x6 +As x7 +Asx8 .
Thus squaring A is given by the following permutation:
{Ao ,A1 ,A2 ,A3 ,As ,A5 ,A6 ,A7 ,As )—> (Ao ,A5 ,A1 ,A6 ;A2 ;A7 ,A3 ,As,Aq)

and this can be also easily implemented by hardwiring. [

3.4.3 NUMBER OF GATES IN ESPM

ESPM in GF(21"), where M=m(m+1)k-!, is implemented by a
(m+1)k'1—ESP of degree m{m+1)k-1, Observing EXAMPLE 3.25, the
total number of AND-gates ANDgspy(M) and EOR-gates EOResrpu(M)
in parallel type configuration of ESPM in GF{(2Y) are:

ANDegspy(M)=(m+1 )k (m+1)k¥=(m+1 )2k,

EORespy{M)={{(m+1)k-1}{(m+1 )k +m(m+1)k-1

=(m+1)2k-(m+1)k-1,
where M=m(m+1)k-1, The above equations imply that parallel type
ESPM in GF(2") can be implemented by O(M?2) AND-gates and O(M2)
EOR-gates, where M is the dimension of GF(2") (M=m(m+1l)k-1),
The parallel type MOM for GF(2™), in general, has O(m3) AND-
gates and O(m?®) EOR-gates, however, no condition that parallel
type MOM for GF(2®) has O{(m?) AND-gates and 0O(m?) EOR-gates has
been known yet except for Lemma 3.12. Thus we can conclude

that ESPM for GF(2Y) has small circuit size, because ANDespu(M)
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and EORgspey are 0O(M?2)}, where M=m{m+1)k-1,

3.5. CONCLUSION

In this Chapter, we presented two kinds of parallel type
multipliers in GF(2™), i.e., one is CBM based on canonical bases
and the other is ESPM by introducing a new concept, Fqually
Spaced Polynomial., The features of the proposed multipliers can

be summarized as follows:

F1. CBM and ESPM have regularity and modularity in the
structure;
F2. The number of gates, AND-gates and EOR-gates, in CBM

and ESPM for GF(2m) is O(m?);

F3. The computation time of CBM and ESPM for GF(22) is
O(log m);
F4. For CBM and ESPM, squaring VY ae GF(2®) can be

carried out by permutation of the extended vector
representation of a.

Here we restate the main results obtained in this Chapter.

CBM, Canonical Bases Multipliers, for GF{2®) is defined.

The total number of AND-gates of CBM is almost the same with

that of parallel type MOM and the total number of EOR-gates of

CBM is about half of that of parallel type MOM. (See Eq.(3.1)~

(3.4).) A new concept, Equally Spaced Polynomial (denoted ESP),

is introduced and Theorem 3.21 provides a necessary and suffi-

cient condition for ESP’s to be irreducible. Corollary 3.22, in

addition, gives a simple criterion for producing a sequence of

irreducible ESP’s. Corollary 3.22 is of considerable and prac-
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tical use in designing multipliers of various finite field
GF{(2m ). Furthermore ESPM, Equally Spaced Polynomial Multi-
pliers, for GF(2™) is presented as the application of ESP. ESPM
for GF(2™) can be implemented with O(m2) AND-gates and o(m? )

EOR-gates and furthermore with O{log m) delay time.

CBM and ESPM can not be necessarily constructed for GF(2n)
of arbitrary m, because sone restrictions are imposed on m,
e.g., (m+l) is a prime, 2 is the generator in GF(m+l1), etc.
In general, however, the number of gates for parallel type MOM
is proportional to m3, thus CBM’s or ESPM’'s are advantageous to
MOM in parallel type configuration for m satisfying S2. in Lemma
3.5 or Theorem 3.21,. CBM and ESPM have the similar property
with parallel type MOM, (See F4. in the above.) hence they are
applicable to the fast algorithm for computing multiplicative
inverses in GF(2") [Va87,1IT88al, which requires O(log m) multi-

plications in GF(2") and (m-1) permutations.

Further studies are required to give a constructive method
to design parallel type multipliers in GF(2®), which have
regularity and modularity in the structure and small circuit

size, i.e,, proportional to m2.
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CHAPTER IV :

FAST ALGORITHM FOR MULTIPLICATIVE INVERSES IN FINITE FIELDS

This Chapter develops (sequential and recursive type) fast
algorithms for computing multiplicative inverses in finite
fields. The fast algorithm for GF(2m) developed in this Chapter
iterates multiplications in GF(2" ) to compute multiplicative in-
verses in GF(2™) and requires O(log m) multiplications in GF(2m )

and O(m) cyclic shifts.

4.1 INTRODUCTION

In this Chapter, we study a fast algorithm for computing
multiplicative in§erses in finite fields, especially in GF(2n).
{The extension of the fast algorithm to general finite fields
GF(g® ) is not difficult! Thus we concentrate on the studies of
the fast algorithm for GF(2m).)

Several digital audio instruments, e.g., CD (Compact Disc)
player and DAT (Digital Audio Tape-recorder), make use of Reed-
Solomon codes over GF(28),. In those instruments, table look-up
is applied for deciding multiplicative inverses in the field.
Such a method, however, is not realistic for somewhat larger
finite fields, e.g., GF(216 ), because the table size enormously
grows, EuclideanaAlgorithm [Ber68], on the'other hand, is well-
known as an algorithm for computing multiplicative inverses in
finite fields. Though this algorithm can be efficiently carried
out, it is unfortunately not suitable for hardware implementa-

tion.
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In 1985, Wang et.al developedvan elegant algorithm.for
computing multiplicative inverses in GF(2"), employing normal
bases [WTSDOR85]. The algorithm is suitable for VLSI implemen-
tation and requires (m-2) multiplications in GF(2") and (m-1)
cyclic shifts to compute multiplicative inverses in GF(2m ).
However the running cost of Wang’s Algorithm is somewhat large,
ij.e., the number of multiplications in GF(2®) is proportional to
m, thus the reduction of the number of multiplications is neces-
sary especially for GF(2®) of large order. The studies in this

Chapter are motivated by such a requirement.

This Chapter proposes two kinds of fast algorithms, i.e.,
sequential type and recursive fype, for computing multiplicéti&e
inverses in GF(2™). The sequential type fast algorithm for
GF(2mn) [1IT87a,Va87,IT88al] reqﬁires O(iog m) multiplicationé in
GF(2m), thus the running cost of the sequential type algorithm
is 0{((log m)2) because that of the multiplications in GF(2®) is
O(log m) by parallel type MOM. The recursive type fast algo-
rithm for GF(2m) (m=2k) [IT88b,IT88d], on the other hand,
requires two multiplications in GF(2®) and in each subfield of
GF(2®), i.e., GF(2m/2), GF(2®/%),...,GF(2%) and GF(2%). Fur-
thermore the recursive type fast algorithm is suitable fér

hardware implementation because of its hierarchical structure.
The organization of this Chapter is as follows:
Section 4.2 is the preliminaries for this Chapter and

provides some mathematical preliminaries and the related works.

40



In Section 4.3, we develop a sequential type fast'algorithm for
computing multiplicative inverses in GF(2") [IT87a,Va87,IT88al,
and mention the extension of the algorithm to general fields
GF(g™ ). Furthermore Section 4.4 proposes a recursive type fast
algorithm for multiplicative inverses in GF(2") (m=2k) [IT88b,
IT88d] and considers hardwaré implementation of the recursive
algorithm. Section 4.5 finally summarizes the results in this

Chapter and gives conclusions, some remarks and open problems.

4.2 PRELIMINARIES

This Section provides some mathematical definitions and
lemmas, and furthermore gives the related works for the sub-

sequent discussions.

4.2.1 MATHEMATICAL PRELIMINARIES

In this subsection, we give some mathematical definitions
and lemmas for the subsequent discussions.

DEFINITION 4.1 [MS77] A basis 1in GF(27) over GF(2) of the

form, {a,a?,a?2’2,.:.,32°(m-1)} jig called a normal basis
in GF(2®) over GF(2). 0O

Remark 4.2 The above definition is completely the same with

Definition 3.1 in Chapter 3. O

Remark 4.3 The above notation, 272 and 2" (m-1), similarly

implies 22 and 2tm-1), regpectively. (See Remark 3.2 in
Chapter 3.) 0O
LEMMA 4.4 [WTSDORS85] Let xe GF(2m), If x is represented by

a normal basis such that
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x=xga+x1a+x2a2 2+ 4xp.ga?’ (mn-1)
=[(x0,X1,X2,,***,Xn-1],
then we have x?=[xm-1,X0,x1,***,Xn-2], i.e., x2 can be
computed by a cyclic shift of the above vector repre-
seﬁtation of x. 0O

Remark 4.5 We call the cyclic shift in Lemma 4.4 "cyclic

shift over GF(2)" throughout this Chapter. I
LEMMA 4.6 [MST77] For VYxe GF(2m), we have the identity such
that e2 m=e, [
Lemma 4.6 is the celebrated Fermat’s Theorem [Sch86].
Here we have the following lemma for Y xe GF(2") (x# 0), which
is one of the most essential lemmas in this Chapter.
LEMMA 4.7 [WTSDORS85] For Yxe GF(2n) (x# 0), we have the

identity such that e l=ze(2 m)-2, [

4.2.2 THE WANG'S ALGORITHM

This subsection presents the algorithm proposed by Wang
et.al. [WTSDOR85], which computes multiplicative inverses in
GF(2m ) and is suitable for VLSI implementation. For VY xe GF(2m)
(x#lo), we have the identity such that x-1=x(2"'m)-2, (See Lemma
4,7.) Here 2 "m-2=(2m-2)=2+22+4--:420-1_ thus we have

x-l=(x2)(x272)-- (x2"(m-1)), (4.1)

Assume that multiplications in GF(2" ) are performed by
parallel type MOM. (See Chapter 3.) Note that for Y xe GF(27)
x? can be carried out by a cyclic shift over GF(2) of vector
representation of x. {(See Lemma 4.4.) The running cost of mul-

tiplications in GF(2m) is considerably larger than that of
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cyclic shifts over GF(2), thus we have a systematical procedure
for multiplicative inverses in GF(2" ) employing normal bases
with comparatively low running cost {WTSDORS851]. The algorithm
described below computes multiplicative inverses in GF(2m), fol-
lowing Eq.(4.1).

ALGORITHM 4.8:

Si. y := x

S2. for k := 1 to m-2 do

S3. begin

S4., z 1= y¢ (a cyclic shift over GF(2))
s5. vy := zx (a multiplication in GF(2m))
S6. end

S7. y 1= y? {(a cyclic shift over GF(2))

S8. write y
O

Recalling Lemma 4.4, ALGORITHM 4.8 requires {m-2) multi-
plications in GF(2™) and (m-1) cyclic shifts over GF(2) to com-

pute multiplicative inverses in GF(2n),

4.3 SEQUENTIAL TYPE FAST ALGORITHM FOR MULTIPLICATIVE INVERSES

This Section provides a sequential type fast algorithm for
computing multiplicative inverses in both GF(2m) and GF(gm),

employing normal bases.

4.3.1 SEQUENTIAL TYPE_ FAST ALGORITHM FOR GF(2=)

In this subsection, we develop a sequential type fast al-
gorithm for computing multiplicative inverses in GF(2m )}, employ-
ing normal bases. The central idea to derive the fast algorithm

is very simple and is regarded as an extension of Lemma 4.4,
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LEMMA 4.9 [IT87a,VaB87,1T88a] Let xe GF(2m ). If x is repre-

sented by a normal basis such that

x=xga+xja?+xz2a? 2+ +xp-1a82 (m-1)
=[X0,X1,X2,,°° " yXmn-1],
then we have X2 X =[Xm-k Xm-kt1,***yXm=1,X0,"°" ,Xm-k-11, .

i.e., x2°k (£ kX m-1) can be computed by k cyclic shifts

over GF(2) of the above vector representation of x. [

Here we present a sequential type fast algorithm for mul-
tiplicative inverses in GF(2") in the special case that m=2r+1.
{The algorithm for the special case the m=2r+1 can be regarded
as a sub-algorithm to design a general sequential fast algo-
rithm for computing multiplicative inverses in GF(2"), which
will be pfesented in Theorem 4.13.)

THEOREM 4.10 [IT87a,Va87,1IT88al Let xe GF{2r) (m=2r+1,x# 0).

Then there exists a sequential type algorithm for comput-
ing x-1!, which requires {log (m-1)}=r multiplications in
GF(2m) and (m-1)=2¢ cyclic shifts over GF(Z2). O

Remark 4.11 The above Theorem is suppose to have been found

independently at almost the same time by author
{IT87a,1T88a] énd S.A. Vanstone [Va87] of the University
of Waterloo. 0O
Proof: For simplicity of the notations, the following sym-
bols are defined such that
#t=142422 4. - 42012
%t=1+2+22 ++-- 42027t ) -1
&t=22"1%
and they will be used throughout this Chapter. Let M(t) and
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S{t) be the number of multiplications in GF(2") (m=2r+1) and
that of cyeclic shifts over GF(2), respectively, to compute x*t
(12t r). Since x¥t={x¥(t-1)J&ct-1).x8(t-1) (15 t< r), we have
M(t)=M(t-1)+1 and S{t)=S{t-1)+2t-1, (See Lemnma 4.9,) Here it 1is
clear that M(0)=S{0)=0, thus M(r)=r and S{r)=2r-1, Note that
2m-2=2%(m-1)=2%2r
=2%r=2{%(r-1)-&(r-1)+%(r-1)}.

Hence we have x-1=x(2"m)-2=(x%*r)2  and thus the algorithm
proposed above reqguires r=(log m) multiplications in GF(2m ) and
S(r)+1=2r{=m-1) cyclic shifts over GF(2). O

The fast algorithm for GF(2n) {m=2T+1) proposed in Theorem
4.11 can be described as follows:

ALGORITHM 4.12:

Si. vy := x

S2. for k := 0 to r-1 do

S3. begin

sS4, z := y¥k (2k cyclic shifts over GF(2))
S5, y 1= vz (a multiplication in GF(2m))
S6. end

S7. y 1= y? (a cyclic shift over GF(2))

S8. write vy
O

The following Theorem gives a general sequential type al-
gorithm for computing multiplicative inverses in GF(2™ ), which
has no restrictions such that m=2r+1.

THEOREM 4.13 [IT87a,Va87,IT88al Let xe GF(2m) (x# 0). Then

there exists a general sequential type algorithm for com-
puting x-1, which requires {[log (m-1)]+Hw(m-1)-1} multi-

plications in GF(27) and (m-1) cyclic shifts over GF(2),
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where. [x] denotes maximum a integer X x and Hw{i) denotes

the Hamming weight of binary representation of i. 0O

Remark 4.14 The above Theorem is also suppose to have been

found independently at almost the same time by author
[IT87a,1IT88al and S.A., Vanstone [Va87] of the University
of Waterloo. 1[I
Proof: Note that x-l={x#(m-1)1}2_  Assume that
m-1=2"ki1+2 ke +-°-+2"kn,
where ki>k2>:-+->kn, thus we have
x-l={(x"%k1 )2 el (x"%kz )2 e2...(x"%kn )2 en}2
where e;=2"kj+1+2"kj+2+*+++2"kn and en=0. Reordering the terms
in the above equation, we have
X~ 1=[x"%kn {x " %kn-1-"-(x"%kz (x"%k1 )2 "kK2)2"k3...312%kn )2,
Let M(t) and S(t) be the number of multiplications in GF(2") and
cyclic shifts over GF{2), respectively, to compute x%t, By
Theorem 4.10, we have M(ki)=ki and S(ki)=(2"ki1)~1. Since every
term x"%k; (25 j€£ n) is already computed in the process of com-
puting x"%ki (See the Proof of Theorem 4.10.), the algorithm
proposed above requires {(ki+n-1) multiplications in GF(2") and
{2"k1-14(2"k2+2"ks+'+ "+2"kn+1)}=m-1 cyclic shifts over GF(2).
Noting the facts that [log (m-1)]=ki: and Hw=n, we can
finally conclude that the algorithm presented in this Theorem
requires {{log (m-1)]+Hw(m-1)-1} multiplications in GF{2"™) and
{m-1) cyveclic shifts over GF(2). O
EXAMPLE 4.15:
Let xe GF(2'1) (x# 0). Notice that x-1=x{2"11)-2=x2046

thus we have the following procedure:
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S1. (x)?2=x2 cyclic shift over GF(2)

S2. xZx=x3 multiplication in GF(211)
S3. (x3)272=x12

S4. x12x3=x15

S5, (X15)2‘4:X240
S6. x240x15 =255
S7. (x255)2°2=x1020
S8, x102043=x1023

S9., (x1023)2=,20456

cyclic shifts over GF(2)
multiplication in GF(211)
cyclic shifts over GF(2)
multiplication in GF(211)
cyclic shifts over GF(2)
multiplication in GF(2!1)
cyclic shift over GF(2)

Bt et DN e et DD e

=x-1

O
Observing the above procedure, the number of multiplica-
tions in GF(2'1) is 4 (in S2, S4, S6 and S8) and that of cyclic
shifts over GF(2) is 10 (in S1, S3, S5, S7 and S9). Here we
have [log (11-1)1+Hw(11-1)-1=4 and 11-1=10, thus the above Ix-

ample confirms Theorem 4.13.

4.3.2 SEQUENTIAL TYPE FAST ALGORITHM IN GF(qg®) (g=2n)

This subsection presents a sequential type fast algorithm
for computing multiplicative inverses in GF(q®) (g=2"), employ-
iﬁg normal bases. The central idea to derive the fast algorithm
is also very simple. The following Lemma is a natural extension
of Lemma 4.9,

LEMMA 4.16 [IT87a,IT88a] Let xe GF(gm) (q=2n), If x is rep-

resented by a normal basis such that

x=xoa+x1ad9+xza9 24+ +xp-1a9 (m-1)
={x0,Xx1,x2,,"**,xm-117,
then we have Xq'kz[Xm-k,Xm-k+1,---,Xm-J,Xa,"-,Xm-k-1],

i.e., x9°F (15 kX m-1) can be computed by k cyclic shifts



of the above vector representation of x. [

Remark 4.17 We call the cyclic shifts in Lemma 4.16 "cyclic

shifts over GF(q) (g=2")" in the rest of this Chapter. 0O
Applying the above Lemma, we have a sequential type fast

algorithm for computing multiplicative inverses in GF(q® ){(g=2n).

THEOREM 4.18 [IT87a,1IT88a] Let xe GF(g®) (g=2n,x# 0). Then

there exists an algorithm for computing x-!, which
requires {[log (m-1)]+Hw(m-1))} multiplications in GF(q™),
{[log (n-1)]+Hw(n-1)-1} multiplications in GF(q) (g=2n),
(m-1) cyclic shifts over GF(q) and (n-1) cyclic shifts
over GF(2), where [x] and Hvw (i) denote the same symbols
with Theorem 4.13, respectively. 0O

Proof: Let xe GF(q™) (qg=2n,x# 0).> Notice that x-l=x(e " m)-2

Here g"-2 can be decomposed by

qm_zz(q_z)(qm-l+qm—2+. . .+q+1)+(qm—1+qm—2+. . .+q)

=(q—2)a+b’
where azqm'1¥qm‘2+~~‘+q+1 and b=g®-l4gm-24.-.4q. Thus we have
x~l=y4-2z, where y=x2 and z=xP. Note that y=zx. Applying the

similar procedure in Theorem 4.13 (See Proof of Theorem 4.13.},
{llog (m-1)]+Hw(m-1)} multiplications in GF(gn) énd {m-1) cyclic
shifts over GF(q) are required to compute y and z. Since y is
the Norm of x [LN831, ve GF{(q)=GF(2n), Hence y9-%2=y-1, and by
Theorem 4.13; {[Ilog (n-1)]+Hw({n-1)-1} multiplications in GF(q)=
GF(2n) and (n-1) cyclic shifts over GF(2) are required to com-
pute y-!. This completes the proof. O

This Section has presented the sequential type fast algo-

rithms for computing multiplicative inverses in GF(2" )} and
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GF(q™ )(g=2n),. (See Theorem 4.13 and Theorem 4.18.) Theorem 4.13
is of practical use for error-correcting codes, cryptographies,
etc., while Theorem 4.18 is somewhat of theoretical interest.
(The generalization of the algorithm in Theorem 4.18 to GE(g™)
(g=p", pj;odd prime) is, needless to say, possible in the similar
way with Theorem 4.18.) However, Theorem 4.18 inspires the clue
of the studies on a recursive type fast algorithm for computing
multiplicative inverses in GF(2" )(m=2¥), which will be presented

in the next Section.

4.4 RECURSIVE TYPE FAST ALGORITHM FOR MULTIPLICATIVE INVERSES

In this Section, we develop a recursive type fast algo-
rithm for computing multiplicative iﬁvérses in GF(2m) (m=2k).
The recursive algorithm for GF(2m) (m=2%) requires two multi-
plications in GF(2") and in each subfield of GF(2®» ), i.e.,
GF(2m/2),GF(2m/4),.++ ,GF(2%) and GF(2%), and (m-1) cyclic shifts
over GF(2) to compute multiplicative inverses in GF(2m) {m=2k).
Furthermore the recursive algorithm has an additional advan-
tageous feature that every multiplication in each subfield of
GF(2™ ) can be carried out by the same multiplier‘in GF(2m ), and
is suitable for hardware implementation because of its hierar-

chical structure.

4.4.1 RECURSIVE TYPE FAST ALGORITHM FOR MULTIPLICATIVE INVERSES

This subsection proposes a recursive type fast algorithm
for computing multiplicative inverses in GF(2m) {(m=2k), The

core idea to derive the recursive algorithm is very simple and
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is materialized by the following lemma:
LEMMA 4.19 [Ber68,Sch86] Let x be g non-zero element in a
finite field of characteristic 2. Then xe GF(2m ) if and
only if x2°m-1-7, 0
For xe GF(2n) (m=2§,x¢ 0), the multiplicative inverse x-1
can be computed by x-1=zx2"m-2 (See Lemma 4.7.) Here 2m_g can
be decomposed by 2m~2=(2m/2+1)(2m/2~2)+2m/2, thus
X_lz(xz“(m/2)+1)2"(m/2)-2x X2 (m/2)
=(x2°(m/2) % X)2 (m/2)-2 x2"(m/2)
Squaring x{e GF(2™ )} can be carried out by a cyclic shift over
GF(2) (See Lemma 4.4.), employing normal bases, hence the com-
bPutation of x-1, i.e., Xx"la=(x2 tm/2) x)?“‘m/Z)"ZX x2 (m/2)
requires m/2 ¢yclic shifts over GF(2) and two multiplications in
GF(2m), i.e., the computation of vi(=x2 (m/2) x x) and that of
V12T (m/2)-2y x2°(m/2) -Note that
y12”(m/2)-1:(x2"(m/2)+1)2"(m/2)~1=x2‘m—1=1’

thus yi1 e GF(20/2), (See Lemma 4,19, ) Hence V12"(”/2)‘2*y1‘1.

GF(2" ) includes that in GF(ZN/Z) as a sub-algorithn. Similarly
the computation of vitl=yi2-(m/2)-2 can be carried out by
yi-l=yi2°(ms2)-2
:(y12“(m/4)+1)2"im/4)—2x yi2 m/4)
hence it requires m/4 cyclic shifts over GF(2), two’multiplica~
tions in GF{2m/2) and the computation of yz‘1=y22“(m/4"2, where
Veasy12T(m/da)+1 o GFKZm/4).>(See Lemma 4.19.) This also 1mp11es
that the algorithm for multiplicative 1nxerseb in GF{2m/2) jp-

cludes that in GF(2m/3) a5 g sub-algorithm. Noting that the
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hierarchical structure of the above algorithm, the recursive al-
gorithm for computing multiplicative inverses in GF(2") (m=2k)
can be defined as follows:
yi=(yi-1)2 im/e274)3el (1< ig k),
(¥i-1)"1={(yi-1)2"{m/€275))}+1}2" {n/(2°i)})-2
X (yi-1)2 " (m/(271)}
=yitlX (yi-1)27Im/0274)) (15 ig k),
where k is an integer satisfying m=2% and Yo =X. It requires
m/2% cyclic shifts over GF(2) and two multiplications in
GF(2m/127Ci-1)} ) where 15 i< k, for computing yi and {yi-1)-1.
The above procedure terminates at the step of (yx-1)-Yl=(yx-1)2,
in which requires one cyclic shift over GF(2) but no multiplica-
tions because yk=1. Hence the total number’of cyclic shifts
over GF(2) in the recursive algorithm is m/2+m/4+ -+ 4+4+424+1 =m-1,

where m=2%, Here we have the following Theorem:

THEOREM 4.20 [IT88b,IT88d] There exists a recursive algo-
rithm for computing multiplicative inverses in GF(2m ),
where m=2%, which requires (m-1) cyclic shifts over GF(Z2)
and two multiplications in GF(2%) and in each subfield of
GF(2m}, ji.e,, GF(Zm/Z),GF(Zm/4),"',GF(28) and GF(ZQ). (]

Remark 4.21 Consider the case for computing multiplicative

inverses in GF(218), By the sequential type fast algorithm in
Theorem 4.13, 6 multiplications in GF(216) and 15 cyclic shifts
over GF(2) are required to compute multiplicative inverses in
GF(216) (See Theorem 4.13.) On the other hand, by the recursive
type fast algorithm in Theorem 4.20, 2 multiplications in each

of GF(21%), GF(25) and GF(2¢) and 15 cyelic shifts over GF(2)



are required to compute multiplicative inverses in GF(218), It
is clear that the running cost of multiplications in GF{(21%) is
larger than that in each of GF(28) and GF{(2%), thus the total
running cost of the recursive type fast algorithm is less than
that of the sequential type fast algorithm. In the case of
GF(2m ) of larger order, e.g., GF(232), GF(26%), etc., the dif-
ference of the running cost between the sequential and recursive
type algorithm enormously grows! O

The above recursive algorithm can be described as follows:

ALGORITHM 4.22:

S1. function inv(x,m)};

S2. begin

S3. if m=1 or m=2

S4. then

S5'. if m=1

S6. then inv:=x ,

57, else inv:=one cyclic shift over GF(2) of x
S8. else

S10. begin

S11. a:=m/2 cyclic shifts over GF(2) of x;
s12. br=ax x;

S13. if m=4

S14. then c:=one cyclic shift over GF(2)} of b
S15. else c:=inv(b,m/2};

S16. invi=aX c;
S117. end;

S18. end;

4,4.2 HARDWARE IMPLEMENTATION OF THE RECURSIVE ALGORITHM

The recursive algorithm proposed in Subsection 4.4.1 is

[$)]
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suitable for hardware implementation because of its hierarchical
structure. In this subsection, we demonstrate the availability

of the recursive algorithm in hardware implementation,

LEMMA 4.23 [IT88b,IT88d] Let {a,a?2,a2"2,..., 32 (mn-1)) pe g
normal basis in GF(2m), where m=2k, For Yxe GF(2m/(2°i))

(15 i£ k), x can be represented by the normal basis as
X=[X1,%x2, " ,x2°i],

where xj=[x0,x1,""*,Xm/¢2%i)-1] (1l j£ 21,15 i k). 0O
Proof: For simplicity we prove the special case that i=1.
The general case that 1£ if£ k can be proven in the similar way.
Let xe GF(2m/2), Here x has a vector representation by the
normal basis in GF(2") such that x=[x0,x1,***,Xm-1]. By the as-
sumption that xe GF(2r/2), we havé xi“(m/2)=x. (See Lemma 4.19.)
Notice that x27(m/2Z) can be computed by m/2 cyclic shifts over
GF(2) of x. (See Lemma 4.9.) Hénce we have

[xm/z,Xm/z+1,~~',Xm-1,xo,x1,j~',Xm/z-l]zixo,x1,---,xm-1].
This implies that xi=xis+mns2z (0L i% m/2-1). O

Lemma 4.23 suggests that multiplications in each subfield
of GF(27) (m=2k), i,e., GF(2m/2),GF(20/%),.--+ ,GF(2%) and GF(2%)
can be carried out by the same multiplier for GF(2m ), Thus we
have two types of gonfigurationS'of the recursive algorithm in
hardware as follows:
CONFIGURATION OF TYPE 1:

Prepare a parallel type MOM for GF(2n) {m=2k ), Notice
thaf a parallel type MOM for GF(2™) is constructed by m basic
circuits of the same‘structure, for each of which has 2m inputs

and one output. (See. Subsection 3.2.2.) Multiplications in



GF(2m/¢2"1i}3y) (1% if£ k) can be carried out by only m/2% basic
circuits of the parallel type MOM, (See Lemma 4.23.) The out-
puts of the multiplications in GF(2®/t273)} (15 if k) provides
only m/2% bits, thus the outputs must be transcribed 2! times
and those transcripts must be concatenated to match the basic
circuits of the parallel type MOM.

Let SIZE be the circuit size of the parallel type MOM for
GF(2m ) and let DEPTH be the depth of the parallel type MOM for
GF(2m}, i.e., maximum path of gates from the inputs to the out-
puts. Then the multiplications in GF{2mn/t27 1)) (1% iZ£ k) can be
carried out by the circuit of size SIZE/2i and of depth DEPTH.
On the other hand, transcriptions, concatenations and cyclic
shifts have simplé circuits of size m and of depth 1. The
recursive algorithm for GF(2®) requires two multiplications in
GF{2m) and in each of subfield of GF(2®), i.e., GF{(2m/2),
GF(2n/4 ), .. GF{2%) and GF{2*) and {(m-1) cyclic shifts over
GF(2). Thus the recursive algorithm for GF(2") can be imple-
mented by the circuit of size about 4:-SIZE and of depth about
k- DEPTH, where m=2k, It is known, in general, that SIZE=0(m3)
and DEPTH=0O(log m), thus the recursive algorithm for GF(Z2"™) has
simultaneous size Olm3) and depth O{(log m)¢)). O

The following figure, FIGURE 4.24, illustrates the Con;

figuration of Type 1 for the recursive algorithm in GF(216),

Here we present two technical lemmas [ito88b] on the gen-
eration of normal bases in GF(2™)}) {(m:even) to derive the con-

figuration of type 2 for the recursive algorithm for GF{2m).
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LEMMA 4.25 [Ito88b] Let {a,a?2,a?2"2,..+.,32 (n-1)1 be a normal

basis in GF(2m) (m:even) over GF(2). Define b=a+ta? (m/2),

then {b,b2,b2°2, ... b2°(m/2-1))}) constructs a normal basis

in GF(2m/2) over GF(Z2). 0O
Proof: For simplicity we prove the special case that m=8.
The general case that m is even can be similarly proven. Let -
{a,a?2,a2"2,.-.,a2"7} be a normal basis in GF(28) over GF(2).
Define b=a+al!®, then we have bl6=(a+alb )16=-71647256=3164=]h,
This implies that be GF(24%}). Furthermore define b=z=a+alt |
bZ=a?+a32, bit=zat+af? and bd3=ab+al28, It is easy to show that
{b,b%2,bt*,b%} is linearly independent over GF(2) by noting the
linear independency of [a,a?,a2”2,::.,a2"7} over GF(2). O

LEMMA 4.26 [Ito88b] Let {b,b?2,b27°2,... b2 (8/2-1)}) bhe a nor-

mal basis in GF(2m/2), where m is even, over GF(2). Then
{a,a?2,a2"°2,...22 (m-1)] constructs a normal basis in
GF(2m) over GF(2), where "a'" is oné of the roots of
x2°(m/2)3x=b, 0O

Proof: For simplicity we prove the special case that m=8.

The general case that m is even can be similarly proven. Let

{b,bZ ,b?,b%} be a normal basis in GF(2%). Define x!6+x=b over
GF(2%), Let "a" be one of the roots of x!%+x=b, then we have
alb+a=b, {4.2)

Noting that be GF(2%), a236=(alf )1l6=(ag4+b)l6=3164+hl6=7164h=g,
This implies that ae GF(23). (See Lemma 4.19.) Furthermore we
can easily prove that a¢ GF{2%), because if ae GF(2%) then we
have al®+a=za+a=0=b, and this contradicts the assumption that

{b,b% ,b*,b%} constructs a normal basis in GF(2%).



Here we will show that {a,a?,a2"2,---,a2"7} constructs a

normal basis in GF(28) by contradiction. Assume that there ex-
ists a vector c=(co,ci, **,c7)# 0 over GF(2) such that
coatcra?+czat? 24+ 4cr7a2” 720, (4.3)

Substituting Eq.(4.2) to Eq.(4.3),
coatcira?++cza? 2+ -4c7a2" 7
=coatcta? +czat+czal
+cs (atb)+cs (a2 +b2 )+ce (a +bt J+c7 (aS+bs )
=(co+c4)a+(C1+cs)a2+(c2+cs)a4+(c3+cv)a8
+ca btcs b? +ce bt +c7 b8

=doat+di1a? +dz2a?+dszab+e=0, (4.4)
where e=cab+csb?2+csb?+c7bs, do=co+c4, di=ci+cs5, dz=cz2+cs and
ds=c3+c7. By Eq.(4.4), we have doa+dia?+dzat+dsal=ec GF(24%),

and thus we can show that
elé=(doa+dia?+dza%+dzad )16
=doalb+diad2+dzab%+d3al2s

ze=dop a+d1a? +d2 at +d3 ab .

This equation implies that
do(a+a16)+d1(a2+a32)+dz(a4+a64)+da(a5+a123)
=0
=do b+d1 b2 +dz bt +d3 b3,

(See Eq.(4.2).) Noting ﬁhat {b,b%,b*,b%} is linearly indepen-
dent over GF(2), we have do =d1=d2=d3=0, thus co=csa, cC1=c5, Cz=cCé
and c3=c7. Recalling Eq.(4.4), we have cabt+cs b2 +cebt+crb3=0.
By the assumption that {b,b2,b?,b5} constructs a normal basis in
GF(2%), hence cs=cs=c6=c7=0 and it follows that c=0. {Note that
co=c4, c1=Cc5, cz=cs and c3=c7.) This contradicts the assumption
that c# 0. Hence we can conclude that {a,a?,a272, ... 227} con-
structs a normal basis in GF(2%) over GF(2). The general proof

can be shown in the similar way. a



CONFIGURATION OF TYPE 2:

Prepare a parallel type MOM for GF(2m) {m=2K), which is

designed by a normal basis {a,a2,a2 2 ,+++,a2(m-1)} in GF(Z™).
(See Subsection 3.2.2.) Recalling Lemma 4.25, we can define a
normal basis {b,b2,b2 2, b2 tm/2-12} in GF(2®/2 ), where

b=a+a? (m/2), and can design a parallel type MOM for GF{2m/2)

based on the normal bases 1in GF{2ml2 ), Furthermore we can
analogously design parallel type MOM’'s for GF{2m/#%), GF(2n/%),
.« ,GF(2%), applying the similar methodology. For multiplica-

tions of xe GF(2m/{2°(i-113}) and ye GF(2n/t271)) (1% i< k), the
same techniques with the Configuration of Tvpe 1, i.e., the
transcriptions of outputs and the concatenations of the
transcribed out?uts, etc., are required. Let SIZE{m) be the
circuit size of a parallel type MOM for GF(2™) and let DEPTH(m)
be the depth of the parallel type MOM. Note that SIZE(m)S sm
for some constant sm (See Lemma 3.10.) and DEPTH(m)L dn(log m)
for some constant dam. Furthermore transcriptions, concatena-
tions and cyclic shifts have simple circuits of size O{m) and of
depth 1. Thus the recursive algorithm for GF(2™) can be imple-
mented by the circuit of size

smm3+sn/2(m/2)3+sm/a(m/4)3+- - +81435 sm3
for some constant s and of depth

dn(log m)+dmsz{log (m/2)}+dnss{log (m/4)}+- -

cvvtds (log 4)S5-dllog m)?

~for some constant d. Hence we can conclude that the recursive
algorithm for GF(2®){m=2k) has simultaneous size O{m3) and depth

O((log m))?). O
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FIGURE 4.27 illustrates the Configuration of Type 2 for
the recursive algorithm in GF(2!6). Note that the configuration

of each multiplier in Type 2 is different from that in Type 1.

4.5. CONCLUSION

In this Chapter, we have developed sequential and recur-
sive type fast algorithm for computing multiplicative inverses

in finite fields, employing normal bases.

The sequential type fast algorithm in finite fields, espe-
cially in GF(2m), iterates multiplications in GF(2") and cyclic
shifts over GF{(2) to compute multiplicative inverses in GF(2").
Here we restéte the sequential type fast algorithm for GF(2"),
which is formulated in Theorem 4.13.

THEOREM 4.13 [IT87a,Va87,1T88a] Let xe GF(2m) (x# 0). Then

there exists a sequential type fast algorithm for comput-

ing x-1, which requires {[log (m-1)}+Hv(m-1)-1} multi-

plications in GF(2») and (m-1) cyclic shifts over GF(2),
where [x] denotes a maximum integer X x and Hw (i) denotes
the Hamming weight of binary representation of i. [

Note that {[log (m-1)}+Hw{(m-1)-1}Z 2[log (m-1)}, thus the
sequential typebfast algorithm for GF(2®) requires considerably
less multiplications than the Wang’s algorithm [WTSDOR85], which
requires (m-2) multiplications in GF(2®). The Wang’s algorithm,
in addition, alternatively iterates a multiplication in GF(2")

and a cyclic shift over GF(2), while the sequential type fast

algorithm for GF(2m) alternatively iterates a multiplications in
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GF(2™) and 21 cyclic shifts over GF(2), Thus, if the special
machines are available to perform 2i cyclic shifts over GF(2) in
one machine cycle, then (m-1) cyclic shifts over GF(2) will be
reduced to {[log (m-1)+Hw (m-1)} cyclic shifts over GF(2).

We extended the sequential type fast algorithm for GF(2m )
to that for GF(gm) {gq=2n), Here we also restate the sequential
type fast algorithm for GF(qm) (a=2"), which is formulated in
Theorem 4.18.

THEOREM 4.18 [IT87a,1T88a] Let xe GF(qg") (g=2n,x# 0). Then

there exists an algorithm for computing x-1, which
requires {[log (m—-1)]+Hu (m~1)} multiplications in GF(qg% ),
{[log (n-1)]+Hv (n-1)-1} multiplications in GF(q) (g=2mn),
(m-1) cyclic shifts over GF(q) and (n-1) cyclic shifts
over GF(2), where [x] and Hv (i) denote the same symbols
with Theorem 4.13, respectively. [
The sequential type fast algorithm in Theorem 4.18 also alterna-
tively iterates a multiplications in GF(qm) and 2% cyclic shifts
over GF(q) or a multiplications in GF(q)=GF(2™) and 23 cyclic
shifts over GF(2). Thus, if the special machines are available
to perform 2i cyclic shifts over GF(q) and 2J cyclic shifts over
GF(2) in one machine cycle, then (m-1) cyclic shifts over GF{q)
will be reduced to {[log (m-1)J+Hw (m-1)} cyclic shifts over
GF(q) and (n-1) eyclic shifts over GF(2) will also be reduced to
{{1log (n-1)1+Hw(n-1)} cyclic shifts over GF(2). It is, needless
to say, possible to develop a sequential type fast algorithm for
computing multiplicative inverses in GF(qgq™) (g=p", p:odd‘prime)

applying the similar idea described above.
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We have also shown the recursive type fast algorithm for
computing multiplicative inverses in GF(2") {(m=2k), The studies
on the recursive type fast algorithm is motivated by the reduc-
tion of the running cost for multiplications in GF(27) (m=2k).
(The significance of GF(2m™) {(m=2K) can be found in several digi-
tal audio instruments such as CD (Compact Disc) player and DAT
(Digital Audio Tape-recorder). The recursive type fast algo-
rithm for GF(2") {(m=2k) also iterates multiplications in GF(2")
and cyclic shifts over GF(2), however, it reduces the running
cost of multiplications in GF(2"™) by introducing the subfields
of GF(2m) (m=2k), i.e., GF(2n/2),GF(2mn/4%), -+ ,GF(28%) and GF(2%).

Here we restate the recursive type fast algorithm for com-
puting muitiplicaﬁive inverses in GF(2») (m=2kj, which is formu-
lated in Theorem 4.20.

THEOREM 4.20 [IT88b,IT88d] There exlists a recursive algo-

rithm for computing multiplicative inverses in GF(27)
(m=2k), which requires (m-1) cyclic shifts over GF(Z) and
two multiplications in GF(27) and in each of subfield of
GF(2m), i.e., GF(2m/2),GF(2m/4),.--.-,GF(25) and GF(2%). O
The recursive type fast algorithm for multiplicative in-
verses in GF(2®) {(m=2K) can be regarded as an algorithm defined
constructively as follows: The algorithm for multiplicative in-
verses in GF(2m) (m=2g) includes that in GF{2®/%2}), furthermore
the algorithm for multiplicative inverses in GF(2"/2) includes
that in GF(2m/3 ), .- ,the algorithm for multiplicative inverses
in GF{2%) finally includes that in GF(2%),. Hence the above

hierarchical structure of the recursive type algorithm provides

62



simple circuit configurations of +the algorithm. We have
presented two kinds of configurations of the recursive type al-
gorithm. (See Configuration of Type 1 and Type 2.) Note that
both configurations are essentially the same except that the
configuration of multipliers for the subfields of GF(2m) (m=2k)
in those configurations. (See FIGURE 4.24 and 4,27.) Thus both
configurations of the recursive type fast algorithm for GF{2n)
(m=2k), Configuration of Type 1 and Type 2, have simultaneous

size O{m3) and depth O({log m)2}), The related works for multi-

plicative inverses in finite fields can be found in [MK88].

Further studies are required to give the maximum lower
bound for the number of multiplications for computing multi-
plicatiye inverses in GF(2). 1In addition, for the circuit con-
figurations of the recursive type fast algorithm in GF(2n)
(m=2k ), the constructive methods must be developed to provide

simple circuits of simultaneous O(m? ) and depth O({(log m)2),
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CHAPTER V :
EFFICIENT PROBABILISTIC ALGORITHMS

FOR QUADRATIC EQUATIONS OVER FINITE FIELDS

This Chapter presents efficient probabilistic algorithms
for solving quadratic equations over finite fields, GF(2®) and
GF(p) (p:odd prime) [Ito87,Ito88a]l. The efficient probabilistic
algorithms developed in this Chapter are applicable to the
decryption procedures of some public-key cryptosystems

[Ra79,Wil180,Wil85,KIT87,KIT88a,KIT88b]. The application of the
‘probabilistic algorithm to those public-key cryptosystems will

be considered in CHAPTER VJ .

5.1 INTRODUCTION

In this Chapter, we study efficient probabilistic algo-
rithms for solving quadratic equations over GF{p) (p:odd prime)
and GF(2m) [Ito87,Ito88a]. (The probabilistic algorithm for
GF(p®) {(mZ 2, p:odd prime}) will be studied in CHAPTER VI from

technical reasons.)

A probabilistic algorithm [Ra76] is an algorithm including
procedures of random choice, e.g., coin tosses. More formally,
the probabilistic algorithm can be regarded as a deterministic
algorithm A[:;:] whieh outputs y=Al[x;r], where x is an input to
be solved, r is a randomly chosen input and y is an output for x
and r. Because of its randomness, the probabilistic algorithm

Al+;+] does not necessarily output correct answers, i.e., the
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élgorithm A[+;-] outputs correct and incorrect answers depending
on the choice of random inputs r’'s. If Pa, the probability
that the probabilistic algorithm A[-:;-] outputs correct answers,
is non-negligible, e.g., Paz 1/2, then the probabilistic algo-
rithm gives a correct answer with overwhelming probability by
performing A[l-3+]1 independently for many different random inputs
r's and taking majority of the answers.

A class of problems, which are accepted by such probabil-
istic algorithms in polynomial time, 1is defined by RP or BPP
[Gil77,GJ79] in the Structural Computational Complexity Theory.
Several instances, e.g., primality test [SS78,Ra80bl, factoriza-
“tion of polynomials over finite fields [Ra80a], etc., are known
‘té be in R. More theorétical related works for E oriBPP can be
found in [La831].
| In 1980, Rabin proposed probabilistic algorithms for fac-
toring polynomials over GF(p) (p:odd prime) and GF(2m) [Ra80al.
The remarkable idea of the probabilistic algorithm for GF(p) is
to notice the uniform distribution of quadratic residuous ele-
ment ce GF(p) (p:odd prime) with probability 1/2. In addition,
the central idea of the probabilistic algorithm for GF(2m ) is té
notice the uniform distribution of element ce GF(2™) satisfying
Trﬁc)=1 with probability 1/2. By utilizing the above inherent
féature for GF(p) (GF(2™)), a probabilistic polynomial fac-
torization algorithm over GF(p) (GF(2™)) can be derived, in
which the complete factorization of the given polynomial over
GF(p) (GF(2m)}) is obtained probabilistically in polynomial time.

More precisely, the probabilistic polynomial factorization algo-
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rithm over GF(p) (GF(2™)) iterates the procedure for randomly
chosen inputs r’s, until one of the factors of the given prolyno-
mial over GF(p) (GF(2")) can be obtained. The probabilistic
polynomial factorization algorithm over GF(p) (GF(2")) succeeds
with probability at least 1/2 for each trial, thus the average
number of trials is 2 to output one of the factors of the given
polynomial over GF(p) (GF(2®)). Hence the probabilistic polyno-
mial factorization algorithm over GF(p) (GF(2m)) terminates
probabilistically in polynomial time to output the complete fac-
torization of the given polynomial over GF(p) (GF(2m)). The
above probabilistic polynomial factorization algorithms are
definitely applicable to quadratic equations over GF(p) (p:odd
prime) and GF(2m). |

On the other hand, some researchers have developed public-
key cryptosystems, in which inverting ciphertexts is equivalent
to factoring the product of two large prime numbers N, where
N=pg (p,q:0dd primes) [Ra79,Wil80,Wil85,KIT87,KIT88a,KIT88b].
(Note that Rabin was the first person who had pointed out the
equivalence between factoring a composite number N and solving
quadratic equations over Zy. Those public-key cryptosystems are
not only of theoretical interest but also of practical impor-
tance, because they are provably secure under the assumption
that factoring is hard.) In those public-key cryptosystems, the
encryption procedures are defined by quadratic function over 2y,
where N=pq (p,qg:odd primes), and the decryption procedures are
carried out by solving quadratic equations over GF(p) and GF(q).

Hence it is important in a practical sense to develop ef-
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ficient algorithms for solving quadratic equétions over GF(p)
(p:odd prime). (The development of such algorithms enables us to
establish secure and efficient public-key cryptosystems. ) The
studies in this Chapter are motivated by such a. requirement.
This Chapter develops efficient probabiliétic algorithm
for solving quadratic equations over GF{p) (p:odd prime) and
GF(2») [Ito87,Ito88a). The core idea to derive efficient prob-
abilistic algorithm for GF(p) and GF(2®) is simple, however, it

presents an uniformly efficient probabilistic algorithm

The organization of this Chapter is as follows:

Section 5.2 includes two subsections; Subsection 5.2.1
presents a probabilistic algorithm for quadraﬁic.eqﬁations éver
GF{p) applying the Rabin’s probabilistic polynomial factoriza-
tion algorithm, and Subsection 5.2.2 develops én'efficient ver-
sion for it. Section 5.3 also includes two Subsections; Sub-
section 5.3.1 shows a probabilistic algorithm‘for quadratic
equations over GF(2m) applying the Rabin’s probabilistic polyno-
mial factorization algorithm, and Subsection 5.3.2 proposes an
efficient version for it. Section 5.4 finally summarizes the
results in this Chapter and gives conclusions, remarks and open

problems.

5.2 EFFICIENT PROBABILISTIC ALGORITHM OVER GF(p)

This Section develops an efficient probabilistic algorithm
for solving quadratic equations over GF(p) (p:odd prime) [Ito87,

Tto88a]. The central idea to derive the efficient algorithm is
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very simple, however, it enables us to establish uniformly effi-
cient algorithm embedding a verification step to the Rabin’s

probabilistic polynomial factorization algorithm [Ra80a].

5.2.1 RABIN’S POLYNOMIAL FACTORIZATION ALGORITHM OVER GF(p)

The primary interest in this Section is to solve quadratic
equation over GF(p) (p:odd prime). Thus we concentrate on the
factorization of polynomials of degree 2 over GF(p) by Rabin’s
probabilistic algorithm [Ra80al. To show the Rabin’s probabil-
istic algorithm, we present some mathematical definitions and

lemmas as preliminaries.

DEFINITION 5.1 [Kra88] Call an x quadratic residue (mod m),

if x=y? (mod m) for some y; otherwise x is called quad-

ratic non-residue (mod m). O
Remark 5.2 Throughout this Section, the set of all quadratic
(non) residues (mod .m) is denoted by QRm (QNRm). 0O
DEFINITION 5.3 [Kra86] Let p be an odd prime number and let

x# 0 (mod p). Define the following symbol such that
(x/p)=1, X€ QRp,
(x/p)=-1, xe& QNRp.

Here (x/p) is called Legendre symbol of x mod p. [

DEFINITION 5.4 {[Kra86] Let m=pipz---pr, where pi (i< i r)

are primes, not necessarily distinct. Then Jacobi symbol
(x/m) is defined by (x/m)=(x/p1 )(x/pz ) (x/r)}, whefe
(x/pi) (15 iS r) denote Legendre symbol. [

Here we show the following two fundamental lemmas for the

evaluation of Jacobi symbol.



LEMMA 5.5 [Kra86] Let x and y be coprime to m.
F1. If x=y (mod m), then (x/m)=(y/m)};

F2. (xy/p)=(X/P)(Y/P)'

O
LEMMA 5.6 [Kra86] Let m and n be positive odd integers.
F1. (m/n)=(’1)’”'1)("’1’/4(H/m);
F2. (-1/m)=(-1)(P=1)/%;
F3. (2/m)=(=1)(m 271275,
(08|
Remark 5.7 Notice that Lemma 5.6, especially Fl1, provides an
efficient algorithm for evaluating (x/p). O

The following lemma categorizes guadratic equations over

GF(p) by simple criteria.

LEMMA 5.8 [It087,1t088a] Let f(x)=x2+ax+b be a gquadratic

polynomial over GF(p), i.e.; a,be GF(p). Then we have
1. D=0 (mod p) iff Fix)=(x+a/2)? (mod p);
r2. De @NRp iff f(x) 1is irreducible over GF(p);
r3. De QRp Iff f(x)=(x-u)(x-v), u,ve GF(p) (u# v),
where D=a?-4b (mod p). 0O {
It is very easy to decide whether De QRp or De QNRp by
Lemma 5.5 and 5.6 Hence we concentrate:on the case that De QRp,
i.e., f{(x)=0 has two distinct rootse GF(p). Here we show two
essential lemmas toO derive probabilistic algorithm for solving
quadratic equations over GF(p) {(p:odd prime).

LEMMA 5.9 [Sch86] For Yse GF(p),

se QRp iff sip-11/2-1=0 (mod p).

This implies that <(p-1)/2-1=]] s<qrp (x-s) (mod p).
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On the other hand, for Y te GF(p),
te QNRp iff t(P-1J)/241=0 (mod p}l.

This implies that x'P-1)/2+4]=]] tconrp (x-t) (mod p). 0O

Remark 5.10 The above Lemma is well-known as Fuler'’'s

Criterion in GF{p) [Sch86,Kra86}. [

LEMMA 5.

5,11 [Ra80al For Yae GF(p), define the following two
sets such that

Ra={i| (a-ije QRp, ie GF(p)-{a}},

NRa={j| (a~jle QNRp, Jje GF(pl)-{a}}.
Then we have | Ra| =( NRa | =(p-1)/2, where | A| denotes
the number of elements in a set A. O

Assume that f(x)=x?+ax+b and De QRp, where a,be GF{p) and

D=a?-4b (mod p). Then by noting Lemma 5.8, f(x) can be factored

into the product of two distinct linear factors such that

f{x}=(x-u)(x-v), where u,ve GF(p) {(u# v). Hence for Vce GF(ip),

we have f(x+c)={x~(u-c)l}{x-(v-c)}. TABLE 5.12 classities quad-

ratic residuosity of {(u-c) and (v-c).

TABLE 5.12 Classification of (u-c) and (v-c)

u-c _ v-C probability
C1 @Rp QRp 1/4
ce . QRp . QNRp 1/4
C3 QNRp QRp 1/4
c4 " QNRp QNRp 1/4

It is easy to see that the probability for each class-



ification is 1/4, respectively. (See Lemma 25.11.) Recalling
Lemma 5.9, for each classification, GCD{f(x+c),x‘P‘1>/2—1} gives

the factorization of f{x+c) as in TARBLE 5.13.

TABLE 5.13 VYactorization of f(x+c)

GCD{f(x+c),xtp-11/2-1} | probability
C1 fix+c) 1/74
c2 %-(u-c) | 1/4
C3 x-{v=-c) 1/4
C4 1 % 1/4

Observing TABLE 5.13, one éf the roots bfAf($)=O can be
found by iterating g(x){=GCD{f(x+c),x‘P"1)/2—1}—0} for different
c'se GF(p) until deg gix)=1. Furthermore the ﬁrobability that
deg g({x)=1 is 1/2 for each trial, thus AT will be

AT=Y ks0 K- (1/2)k=2,
where AT is the average number of trials to be required until
deg gi{x)=1. FIGURE 5.14 describes the Rabin’s probabilistic al-

gorithm (denoted RPA) over GFEF(p).

5.2.2 EFFICIENT PROBABILISTIC ALGORITHM OVER GF(Pl'

In this subsection, we develop an efficieng‘probabilistic
algorithm for solving quadratic eguations oOVer GF{p) {(p:odd
prime). The following Theorem provides a necessary and suffi-
cient condition for ce GF(p) to output g(x) of degree 1, where

g{x)=GCD{f(x+C),X‘P’l)/2~l}—c.

-~
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f{x)=x2+ax+b a,be GF(p)
=(x-u){x-v) wu,ve GF(p), (u# v)

Choose at rahdom
ce GF(p)

|

Compute g(x)
GCD{f(x+c),x(P-12/2-1}_¢

|

deg g(x)=1

X-Uu or X-v

FIGURE 5.14 Rabin’s Probabilistic Algorithm RPA OVER GF(p)

THEOREM 5.15 [Ito87,Ito88a] Let f(x) be quadratic polynomial

over GF(p) such that f(x)=x2+ax+b=(x-u)(x-v), u,ve GF(p)
(u# v). For 3ce GF(p), g(x)sGdb{f(X+c),X(P‘1)/2—1}~c:x—u
or x-v iff (f(c)/p)=-1. 0O
Proof: Observing TABLE 5.13, deg g(x)=1 iff C2 or C3. Thus
it follows that ((u-c)/p)((v-c)/p)=((u-c)(v-c)/p)=({c-u)(c-v)/p)
=(f(c)/p)=-1. (See TABLE 5.12 and F2 in Lemma 5.5.) [
It is easy to see that the probébility for VYce GF(p) to
be (f(c)/p)=-1 is 1/2. Furthermore the evaluation of (f(c)/p)
can be efficiently carried out (See Lemma 5.6,), thus we have

the following efficient probabilistic algorithm (denoted EPA)
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for solving quadratic equations over GF(p) as in FIGURE 5.16.

f(x)=x2+ax+b W a,be GF(p)
=(x-u)(x-v) u,ve GF(p),(u# v)

&
A

Y

Choose at random
ce GF(p)

Y
L

Compute g(x)
GCD{f(x+c),x(p-1)/2-1}-c

X=-Uu or X-V

FIGURE 5.16 Efficient Probabilistic Algorithm EPA OVER GF(p)

Compare FIGURE 5.14 and 5.16. The Rabin’'s probabilistic
algorithm RPA (FIGURE 5.14) carries out the procedure F twice on
the average to factor fi(x), while the efficient probabilistic
algorithm EPA (FIGURE 5.16) carries out the procedure C twice on -
the average and F just once to factor f(x). The running time of
the procedure F is much larger than that of the procedure C,
thus the total running time of EPA will be considerably reduced.
In order to show the availability of EPA, we quantatively

analyzes the performance of RPA and EPA in the following.
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Let TF and TC be the ruhning time of the procedure.F and
C, respectively. In addition, let Trrpal(k) and Tera{k) be the

running time of RPA and EPA for the number of trials k, respec-

tively. Then we have
Trrpa(k)=TF-k, ' {5.1)
Terpalk)=TC-k+TF. (5.2)

On the other hand, the probability of success in both RPA and
EPA is 1/2 for each trial, thus it follows that
ATrRpPa=2 k>0 Trpalk) - (1/2)k
=TF+ %2 k>0 k-(1/2)k=2-TF, (5.3)
ATepa=2 k>0 Terpa(k)-(1/2)k
=TF+ 2 k50 (1/2)% + TC-Z ksro0 k-(1/2)k
TF+2-1C, s (5.4)
where ATrpra and ATrps denote the average running time of RPA and
EPA, respectively. By compufer simulation, the relation that
TC=TF/5 is verified. Substitu£ipg this relation to Eq.(5.4), we
have ATrpa=1.4-TF. Thus we can conclude that the average run-
ning time of EPA is about 70% of . that of RERPA. 1In addition, sub-
stituting the relation that TC=TF/5 to Eq.(5.2), we have
Tepa(k)=TF+(TF/5) k. : (5.5)
Observing Eq.(5.1) and (5.5), Trra(k) grows proportionally to k,
while Trrpa(k) grows proportionally to k/5. Hence EPA provides

uniform efficiency for the number of trials k.

Remark 5.17 Let k=5, Then we have Trpa(5)=5-TF and
Tepa(5)=2-TF. Thus Trprpa(5) is about 40% of Trra(5). For
larger k, e.g., k=10, the difference between Trrpa(k) and
Terpa(k) enormously grows! Hence EPA provides uniform ef-
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ficiency for the number of trials k., O

5.3 EFFICIENT PROBABILISTIC ALGORITHM OVER GF(2™)

This Section proposes an efficient probabilistic algorithm
for solving quadratic equations over GF(2m ) [Ito87,Ito88a}. The
core idea to derive the efficient algorithm is very similar with

.2.), and it also

[$3]

that for the case of GF(p) (See Section

enables us to establish uniformly efficient algorithm.

5.3.1 RABIN’S POLYNOMIAL FACTORIZATION ALGORITHM OVER GF(2™)

The primary interest 1in this Section is also to solve
quadratic equations over GF(2™), Thus we concentrate on the
factorization of polynomials of degree 9 over GF(2m) by Rabin's
probabilistic algorithm {Ra80a]. In the case of GF(p), quad-
ratic residuosity presents an useful criterion to derive an ef~-
ficient probabilistic algorithm. In the case of GF{(2m),
however, quadratic residuosity provides no available tools to
derive an efficient probabilistic algorithm, because Vee GF(28)
are quadratic residuous. Here we give some useful lemmas to
show the Rabin’s polynomial factorization algorithm over GF(2™).

LEMMA 5.18 [Ra80al Let f(x)=x2+ax+b be a quadratic polyno-

mial over GF(2m), i.e., a,be GF(2m). Then we have
Ti. a=0 iff f(x)=(x+b2'lm-1l)2;
TZ2. Tr{a-2bl=1 iff f(x) is irreducible over GF(27};

T3, Tr(a-2b)=0 iff f(x)=(x+u}(x+v),
u,ve GF(2m j(u# v,

where Tr(x)=x+x2+x2“2+-"+x2”(“’1). O



By Lemma 5.18, it is clear that T1 and T2 are trifial
cases, Hence we concentrate on the case that Tr(a-2b)=0, i.e.,
f(x)=0 has two distinct rootse GF(2m ), Here we show two essen-
tial lemmas to develop a probabilistic algorithm for solving
quadratic equations over GF(2m).

LEMMA 5.19 [Ra80a] Let Tr(x)=sx+x2+x2 24«4 +4x2 °(m-1), Then

Tr(x)=Il rr(s)-=0 (x-s) and Tr(x)+1=ITrr(t)=1 (x-t). [
LEMMA 5.20 [Ra80a] For Yae GF(2") (a# 0), define the sets

such that So(a)={c| Tr(ca)=0} and Si(a)={c| Tr{(ca)=1}.

Then we have | So(a)| =] Si1(a)| =2m-1, where | Al denotes

the number of elements in a set A. [

Assume that f(x)=x?+ax+b and Tr(a-2b)=0, where a,be GF(2m)
and a% 0. By noting Lemma 5.18, f(x) can be factored intd~the
product of two distinct linear factors by f(x)=(x+u)(x+v), where
u,ve GF(2®) (u# v). Hence for Yce GF(2") (c# 0), it foliows
that fc-!x)=(c-tx+u)(c-lx+v)=c-2(c+cu)(x+cv). The following

table, TABLE 5.21, classifies Tr(cu) and Tr{cv).

TABLE 5.21 Classification of Tr(cu) and Tr(cv)

Tr{cu) Tr{cv) probability
Cl 0 0 1/4
c2 0 1 1/4
C3 1 0 i/4
Cc4 1 1 1/4

Similarly with the case for GF(p) (See Section 5.2.), it
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is easy to see that the probability for each classification is
1/4, respectively. (See Lemma 5.20.) Recalling Lemma 5.19, for
each classification GCD{f(c 'x),Tr(x)} gives the factorization

of f(c-1x) as in TABLE 5.22,

TABLE 5.22 Factorization of f{c 1lx)

GCD{f{c-1x),Tr(x)} probability
Cc1 f(c-1x) 1/4
" C2 x+cu 1/4
Cc3 x+cv 1/4
Cc4 1 1/4

Observing TABLE 5.22, one of the roots of f(x)=0 can be found by
iterating g{x)=GCD{f(c-1x),Tr(x)} for different ce GF{2m) {(c# 0)
until deg g(x)=1. Furthermore the probability that deg g(x)=1
is 1/2 for each trial, thus AT will be AT=2 k>0 k-(1/2)k=2,
where AT is the average number of trials to be reguired until
deg g(x)=1. FIGURE 5.23 describes the Rabin's probabilistic al-

gorithm {denoted RPA’) over GF(2").

5.3.2 EFFICIENT PROBABILISTIC ALGORITHM OVER GF(2®)

In thus subsection, we present an efficient probabilistic
algorithm for solving gquadratic equations over GF(2"). The fol-
lowing Theorem provides a necessary and sufficient condition for

ce GF(2®) to output g(x)={GCD{f(c-1x),Tr{x)}} of degree 1.
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f{x}=x?+ax+h a,be GF(2m)
=(x+ul)(x+v) u,ve GF(27),{u# v)

Choose at random
ce GF(2m)

|

Y

Compute g(x)
GCD{f(c-1x),Tr(x)}

|

FJ

deg gi(x)=1

Y

X+cu or x+cv

FIGURE 5.23 Rabin's Probabilistic Algorithm RPA' OVER GF(2=)

THEOREM 5.24 [1to87,Itc88a] Let f(x) be quadratic polynomial

over GF(2m) such that f(x)=x?+ax+b=(x+u)(x+v), u,ve GF(27 )
(u# v). For VYce GF(27) (c# 0), g(X):GCD{f(c‘ix),Tr(x)}:
X+cu or x+cv iff Tr(ca)=1. 0O
Proof: Observing TABLE 5.22, deg g(x)=1 iff C2 or C3. From
the linearity of Tr(-) [Ber68,LN83,McE87] and the relation that
asu+t+v, we have Tr(ca)=Tr{c{u+v)}=Tr(cutcv)=Tr{cu)+ Tr(cv)=1. 0
It is not difficult tosee that the probability.that for
Vce GF(2") to be Tr(ca)=1 is 1/2. Furthermore thé evaluation
of Tr(ca) can be easily performed, thus we have the following

efficient probabilistic algorithm (denoted EPA’} for solving
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gquadratic equations over GF(2m) as in FIGURE 5.25. (Note that

EPA’ are almost the same with EPA except the procedure c’.)

f(x)=xZ+ax+b a,be GF(2m)
=(x+u)(x+v) u,ve GF(2m ), (uz v)

i]\

Choose at random
ce GF(2mn)

|

cl

Y
v

Compute g(x)
Gep{f(c-1x),Tr(x)}

!

x+cu or x+cv

F!

FIGURE 5.25 Efficient Probabilistic Algorithm EPA’ OVER GF(2m)

Compare FIGURE 5.23 and 5.25. The Rabin’'s probabilistic
algorithm RPA’ (FIGURE 5.23) carries out the procedure F’ twice
on the average to factor f(x), while the efficient probabilistic
algorithm EPA’ (FIGURE 5.25) carries out the procedure C’ twice
and F’ just once £o factor f(x). The running time of the proce-
dufe F’ is larger than that of the procedure C’, thus the total
raning time of EPA’ will be considerably reduced. In order to
show the availability of EPA’, we also guantatively analyzes the

performance of RPA’ and EPA’ in the following.

80



Let TF’ and TC’® be the running time of the procedure F’
and C’, respectively. In addition, let Trrpa' (k) and Trprpa’ (k) be

the running time of RPA’ and EPA’ for the number of trials k,

respectively. Then we have
Trpa’(k)=TF’ -k, (5.6)
Tepa’ (k)=TC’+ - k+TF’. (5.7)

On the other hand, the probability of success in both RPA’ and
EpPA’ is 1/2 for each trial, thus it follows that
ATrpPa =2 k>0 Trra’(k)-(1/2)k
=TF’-3% ks0 k*{(1/2)k=2.TF’, (5.8)
ATepPa’'=2 k>0 Tera’(k)-(1/2)k
=TF’ -2 k>0 {1/2)% + TC’+3 k>0 k- {(1/2)k
=TF’+2-TC’, {(5.9)
where ATrpsa’ and ATepra-’ denote the average running time of RPA’
and EPA’, respectively. By computer simuiation, the relation
that TC’=TF’/4 is verified. (Note that 4m multiplications in
GF(2" ) are required to compute g{x)=GCD{f(c~1x),Tr(x)}, while m
multiplications are required to compute Tr{ca). These facts
theoretically support the result of the computer simulation that
TC’=TF’/4.) Substituting this relation to Eg.(5.9), we have
ATppa+=1.5-TF’, Thus we can conclude that the average running
time of EPA’ is about 75% of that of RPA°’. In addition, sub-
stituting the relation that TC'=TF’/4 to Eq.{(5.7), we have
Tepa’ (k)=TF'+(TF’/4)k. {5.10)
Observing Eq.(5.6) and (5.10), Trpa’ (k) grows proportionally to
k, while Trpra’(k) grows proportionally to k/4. Hence EPA’

provides uniform efficiency for the number of trials k.
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. Remark 5.26 Let k=4. Then we have Trpa’{4)=4-TF’ and

Tepa’ (4)=2-TF’. Thus Tepa’(4) is about 45% of Trra-’(4).
For larger k, e.g., k=10, the difference between Trra’ (k)
and Terpa’{k) enormously grows! Hence FEPA’ also provides

uniform efficiency for the number of trials k. O

5.4 CONCLUSION

This Chapter has proposed efficient probabilistic algo-
rithms for solving quadratic equations over GF(p) (p:odd prime)
and GF(2m) [Ito87,1to88al. The efficient probabilistic algo-
rithm over GF(p) (GF(2")) provides uniform efficiency embedding
a simple verification procedure to the Rabin’'s probabilistic

polyvnomial factorization algorithm over GF(p) (GF(2m)) [Ra80al.

Here we restate the results obtained in this Chapter.

The following Theorem formulates the core idea to derive
an efficient probabilistic algorithm for solving quadratic equa-
tions over GF(p) (p:odd prime).

THEOREM 5.15 [Ito87,Ito88a] Let f(x) be quadratic polynomial

over GF(p) such that f(x)=x?+ax+b=(x-u)(x-v), u,ve GF(p)
(u# v). For 3ce GF(p), g(x)=GCD{f(x+c),x(pP-1)/2-1}-c=x~-u

or x-v iff (f(c)/p)=-1. 0O
" The above Theorem enables us to establish the efficient
- probabilistic algorithm over GF(p) embedding the criterion that
(f(c)/p)=-1 to the Rabin’s probabilistic quadratic polynomial
factorization algorithm over GF(p). Because of the efficient

evaluation of (x/p), the criterion that {f(c)/p)=-1 provides
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uniform efficiency for the number of trials.

The following Theorem similarly formulates the central
idea to derive an efficient probabilistic algorithm for solving
quadratic equations over GF(2m).

THEOREM 5.24 [Ito87,Ito88a] Let f(x) be quadratic polynomial

over GF(2") such that f(x)=x?+ax+b=(x+ul)(x+v), u,ve GF(2m)

(uz v), For Yce GF(2m) (c# 0), S§(x)=GCD{f(c Ix),Tr(x)}=

x+tcu or x+cv iff Tr{ca)=zl. [l

The above Theorem also enables us to establish the effi-
cient probabilistic algorithm over GF(2™ }) embedding the
criterion that Tr{ca)=l1 to the Rabin’'s probabilistic quadratic
polynomial factorization algorithm over GF(2m )}, Because the
running time of Tr{ca) is less than that of GCD{f(c-1x),Tr(x)},
the criterion that Tr(ca)=1 provides uniform éfficiency for the

number of trials.

Here the following natural question arises:
Is it possible in the similar way to develop an efficient
probabilistic algorithm for solving quadratic equations
over GF(p™) (m2 2, p:odd prime)?
The question motivates us to study an efficient decision algo-
rithm for quadratic residuosity in GF(p™) (m2 2, p:odd prime).

The problem will be considered in CHAPTER VI .
The algorithms to solve quadratic equations over GF{p) are
not only of theoretical interest but also of practical use, be-

cause those are applicable toc the decryption procedures of
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several provably secure public-key cryptosystems [Ra79,Wil80,
Wil85,KIT87,KIT88a,KIT88b]. In addition, the algorithms to
solve quadratic equations over GF{2"™) are similarly not only of
theoretical interest but also of practical importance, because
those are supposed to be applicable to the decoding procedures

of Reed-Solomon Codes, etc.

Further studies are necessary to realize those algorithms
by hardwares or softwares with compact size. In addition, the
extension of the algorithms to higher degree equations must be

considered, however, this is somewhat of theoretical interest.
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CHAPTER VI :

DECISION ALGORITHM FOR QUADRATIC RESIDUOSITY IN GF(p*)

This Chapter develops two types of efficient decision al-
gorithm for quadratic residuosity in GF(p®) (m2 2, p:odd prime)
[IT87¢c,IT88¢c], i.e., one is based on canonical bases and the
other is based on normal bases. Both algorithms, the algorithm
based on canonical bases and the one based on normal bases, ef-
ficiently transform a quadratic residuosity problem in GF(p™} to
that in GF(p). Furthermore the transformed problem in GF{(p)

possesses the same quadratic residuosity with the original

problem in GF(p™), then those algorithms output the result by
efficiently evaluating Legendre symbol. The algorithms are

somewhat of theoretical interest, however, they are applicable
to a probabilistic quadratic polynomial factorization over

GF(p™), where m2 2 and p is an odd prime.

6.1 INTRODUCTION

In CHAPTER V , we have developed efficient probabilistic
algorithms for solving quédratic equations over GF(p) {(p:odd
prime) and GF(2m), The studies in CHAPTER V have provides us
the following natural and naive question:

Is it possible to develop an efficient probabilistic algo-

rithm for solving quadratic equations over GF(p® ), where p

is an odd prime and m= 27
The above question is the primary motivation for the study on

quadratic residuosity in GF(p™). (See CHAPTER V .) Furthermore



the secondary motivation for the study on quadratic residuosity
in GF(p®) is as follows:

Quadratic residuosity problems in GF(p) (p:odd prime) can
be efficiently evaluated by Legendre and Jacobi symbol, e.g.,
the law of quadratic recprocity [Sch86] (See Lemma 5.5 and 5.6
in CHAPTER V .), while those in GF(p™) (m2 2, p:odd prime) has
no useful algorithms except Euler’s Criterion [Sch86]. However,
Fuler's Criterion is based on the exponentiation in GF(p™), thus
the running time is somewhat large. From a theoretical point of
view, it is a valuable work to develop a fast decision algorithm
for quadratic residuosity in GF(p™).

The naive gquestion and the theoretical interest strongly
provoke us to develop newkalgorithms for quadratic residuosity

in GF(p™) (m2 2, p:odd prime).

In this Chapter, we present two types of efficient deci-

sion algorithm for quadratic residuosity in GF(p®) (mz 2, p:odd

prime), i.e., one is based on canonical bases and the other is
based on normal bases. The algorithm based on canonical bases
is composed of two parts, i.e., the first part efficiently

transforms a quadratic residuosity problem in GF(p®) to that in
GF(p) and the second part decides the result of the original
problem‘evaluating Legendre symbol. The algorithm based on nor-
mal bases also has the same structure with the above algorithm,
however, it is inspired rather by the algorithm for multiplica-
tive inverses in CHAPTER IV . Because of their efficiency, the

decision algorithms for GF(p™) provide an efficient probabil-
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istic algorithm for solving quadratic equations over GF(pm™ ),
where m2 2 and p is an odd prime, and at the same time present
uniform efficiency for the number of trials. Thus the proposed
decision algorithms for GF(p™) are not only of theoretical in-

terest but also of practical use.

The organization of this Chapter is as follows:

Section 6.2 provides some mathematical definitions and

lemmas as preliminaries. Section 6.3 proposes an efficient
decision algorithm for quadratic residuosity in GF{p™) (mz 2,
p:odd prime) based on canonical bases [IT87c,IT88¢c]. Further-

more Section 6.4 presents an efficient decision algorithm for
quadratic residuosity in GF(p®) based on normal bases {IT87c,
IT88c]. Section 6.5 finally summarizes the results in this

Chapter and gives conclusions, remarks and open problems.

6.2 MATHEMATICAL PRELIMINARIES

This Section provides some mathematical definitions and
lemmas for the subsequent discussions.

DEFINITION 6.1 [IT87C,IT88¢] Let VYce GF(p"), where m2 2,

p is an odd prime and c# 0. If x?=c (mod f(x)) has roots
in GF(p?), ¢ is called quadratic residue; otherwise quad-
ratic non-residue, where f(x) is an irreducible polynomial

of degree m over GF(p). 0O

~Remark 6.2 Throughout this Chapter, we assume that P is an
odd prime and mz 2. O

Remark 6.3 For notational simplicity, the set of all quad-
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ratic (non) residues in GF(p") is denoted by @R ( NR) ,

respectively. O

The following definition is the generalization of Legendre
symbol in GF(p). (See Definition 5.3.)

DEFINITION 6.4 [IT87c¢,1T88c] For VYxe GF(p®) (x# 0}, define

the following symbol such that
(x/GF(p™))= 1, xe @R,
(x/GF(p™))=-1, xe& QNE.
Here (x/GF(pm™)) is called generalized Legendre symbol
(denoted GLS) in GF(pm). 0O
The following lemma, in addition, is the generalization of

Euler’s Criterion in GF(p). (See Lemma 5.9.)

LEMMA 6.5 [iT87c,IT88c] For VYxe GF(p™) (x# 0), we havé the
rela?ion that x(p m-1)/2=(x/GF(p")) (mod f(x)), where f(x)
is an irreducible polynomial of degree m over GF(p). We
fefer to the above relation as generalized Euler’s
Criterion (denoted GEC). D

Remark 6.6 The symbol p"m denotes p®". (See Remark 3.2.) O

6.3 DECISION ALGORITHM FOR QUADRATIC RESIDUOSITY
IN GF(p™®) BASED ON CANONICAL BASES

This Section presents an efficient decision algorithm for
quadratidiresiduosity in GF(p®) based on canonical bases. The
algorithm transforms a quadratic residuosity problem in GF(p®)
to that in GF(p) by manipulating the matrix operations over
GF(p) and outputs the result of the originai problem by evaluat-

ing Legendre symbol.
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Let f(x)=x®+fm-1x2-14+...4f1x+fo be an irreducible polyno-

mial of degree m over GF(p). Assume that r is one of the roots
of f(x)=0, then the set {l,r,r?,:-.,rm-1} spans GF{p™), and is
called a canonical basis over GF(p). Then for VY xe GF(p™), x
can be represented by xo+xir+xzrl+:ccd4xm-1r"-1l, where xje GF(p)
(0L iS m-1), employing the canonical basis. In addition, define
the vector x over GF(p) by x=[x0,x1,X2, " " ,Xmn-1]. Here we

present some significant lemmas to derive the decision algorithm

for quadratic residuosity in GF(p").

LEMMA 6.7 [IT87c,IT88c] Let f(x)=x"+fp-1xm-14+...4f1x+f0 be
an irreducible polynomial of degree m over GF(p), and
define a canonical basis {1,r,r?,-«-,rm-1}, where f(r)=0.
If Yxe GF(p®) has the‘vector representation x by the
canonical basis such that x=[xo0,x1,xz,+*,xn-1]T, then

y=xr (mod f(r)) has the vector representation y such that

y=[y0,51,y2,**,¥yn-1]7=Fx, where
0 0 LR S 0 —-fo
-f1
~fz
F = Im-1 :
~fm-1

b

'Ik denotes kX k identity matrix and "T" denotes the trans-

pose of matrices. ([
Proof: Let f(x)=x"+fpn-1x"-1+-.-4+f1x+f0. For Yxe GF(p™), x
is given by x=xo+x1r+x2r?++--4+xm-11r"-1, where f(r)=0. Then

y=yo+yir+y2zri+:-:-typ-1m-1
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=xr {(mod f(r)) ‘
=(xo+x1r+xzrZ+  +xXmn-17""1)r (mod f{r))
=xor+x1rl+x2r3 4+ c4xm-11r® (mod f(r))
z-xm-1f0+(x0-Xm-1Ff1)r+(x1-xm-1f2 )r2+- "

cevt(xm-2-Xm-1fm-1)rm-1,

Observing the above equation, it follows that

y=[0,X0,X1,"’,Xm—Z]T+Xm—1[“f0,—fl,“fZ,"',-fm—I]T-
Thus we have y=Fx, where xX=[X0,X1,X2,***,xm-1]1T. O
LEMMA 6.8 [IT87c¢,IT88c] Let f(x)=x"+fun-1x"~14.+-+f1x+f0o be

an irreducible polynomial of degree m over GF(p) and let r

be one of the roots of f(x)=0. If r®» (n2 1) is given by

riz=cotcirtczri+ - +cm-212"1,
then we have c:[co,cz,cz,"-,Cm-1]T=F“[1,O,0,--‘,OJT. 0
Proof: | Definitely r“=fX fx ceeX X 1, Recalling Lemma 6.7,
n
we have c=E“[1,0,0,'~°,0]T. 0

Here we will shoﬁ a trivial but significant property on

the matrix F of Lemma 6!7( in the following lemma. .

LEMMA 6.9 [IT87c,IT88c]  For the matrix F in LEMMA 6.7, we
have | F| =(-1)mfo, .where | A| denotes the determinant of
matrix A. 0O

Proof: Notice the definition of the matrix F in Lemma 6.7.

Thus we have | F| =(-1)2*¥(-fo )" | Im-1] =(-1)m*2fg-1=(~-1)"fo. DO
The following lemma;provides a simple property for GLS,

however, it plays one ofAthe most important roles to derive an

efficient algorithm for quadratic residuosity in GF(p").

LEMMA 6.10 [IT87c,IT88c] Let g be a generator of the multi-

plicative group in GF(p®™). For Vxe GF(p?) (x# 0), there

exists some integer n (05 nX p"-2) such that x=g". Then
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we have that if n is even xe€ @QR; otherwise xe @QNE. O
Proof: Assume that n is even. Then there exists an integer
k such that n=2k. Recalling GEC (See Lemma 6.5.), we have

X(p‘m-l)l2:gn(p”m-1)/2
:ng(p”m-l)/Zz{g(p“m-l)}k

=1k =1=(x/GF(p™)).
It follows that xe€ QR. The proof for odd n is quite similar. O
We have enough ingredients to develop an efficient deci-
sion algorithm for quadratic residuosity in GF(pm). Here we

will show the algorithm in the case that f(x) is primitive.

CASE 1: f(x) is a primitive irreducible polynomial.

Let r be one of the roots of f(x)=0. - Since f(x) is a
primitive irreducible polynomial over GF(p), r is a generator of
the multiplicative group in GF(p™ ). Hence f(x) can be factored
over GFTp)vinto the form such that

f(x)zxm+fm-1x2-14- - +Ff1x+f0

=(x—r)(x-rP)(x—rP’2)-"(k—ré“‘m"l))-
This equation definitely implies that
fo=(-1)mrl1+pP+(P 2)4...3p (m-1)}=(-1)aN(r),
where N(r) is Norm of r [LN83]. Here we have the following in-

teresting lemma on the roots of f(x)=0.

LEMMA 6.11;[IT87C,1T88C] Assume that f(x) is a primitive ir-
reducible polynomial of degree m over GF(p) and r is one
of the roots of f(x)=0. Then N(r) is a generator of the
multiplicative group in GF(p). 0O

Proof: -~ Since f(x) is a primitive irreducible polynomial over
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GF(p) and r is one of the roots of f(x)=0, r‘is a generator of

the multiplicative group in GF(p™). Notice that

N(r)zr{1+p+p"2++p“(m—1)}

=ptp " m-1)/(p-1) e GF(p).
Here we will prove by contradiction that N{(r) is a generator of
the multiplicative group in GF(p) . Assume that N(r) is not a
generator of the multiplicative group in GF(p), i.e., there ex-
ists an integer e (15 e= p-2) such that {N(r)}e=1 (mod P). By
the definition of N(r), we have {N(r)}e=re(9"m"1)/(9‘1)=1. This
implies that the order of r is less than p®~-1, however, it con-
tradicts the assumption that r is a generator of the multiplica-
tive grdup in GF(p®). Hence N(r) must be a generator of the
multiplicative group iﬁ GF(p). O
Notice that r, one of the roots of f(x)=0, is a generator
of the mul£iplicative group in GF(p™ ). For Y xe GF(p®) (x# 0),
there exists an integer n (0£ nS p™-2) satisf&ing x=rf, Thus X
has a vector representation such that ‘

x=rt (mod f(r))

=xoo+x1or+xzor2+'-'+Xm—1,orm'1,
and we define the vector X=[X00,X10,X20,“',Xm-l,D]T over GF{p).
Recalling Lemma 6.8, we have x=F“[1,O,O,--',0]T. Furthermore
consider X1=er(m0d f(x)). Then
x1=xo1+x11r+xz1r2+--~+Xm-1,1rm'1

=xr (mod f(x))

=rn .y (mod f{x)).

By Lemma 6.7 and x=Fn[1,0,0,---,0]17, it follows that
X1=[X01,X11,X21,"‘,Xm—l,l]TIFX
=F“[O,1,0,-°',O]T.
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Define the fbllowing vectors xi’'s over GF(p) recursively.
Xi=Fxi-1 (12 i$ m-1),

where xi={xo0i,x1i,%x2i,"**,Xm-1,i17 and x0=x. In addition define

the matrix S=[x0,x1,x2,***,Xn-1}=F0:JI,. Recalling Lemma 6.9 and

fo=(-1)"N(r), we have

' SI =] FI | In] ={(-1)"fo)}n-1
={(~1)m(~-1)N(r)}nr
={N(r)}“,
thus (| S| /p)=(N(r)/p)r. Notice that N(r) is a generator of

the multiplicative group in GF{p"). (See Lemma 6.11.) It fol-
lows that (N(r)/p)=-1, and thus (| S] /p)=(-1)n. In addition
recalling Lemma 6.10, we have (x/GF(p™))=(-1)», Hence we obtain
the relation that (x/GF(p™))=(] S| /p).

Observing the relation that (x/GF(p"))=(| S| /p), the
quadratic residuosity problem in GF(p®™) is reduced to that in
GF(p). Thus we have the following decision algorithm for quad-

ratic residuosity in GF(p").

ALGORITHM 6.12:

S1. Input xe GF(p™) (x# 0);
XZX00+X10r+X20r2+4++ 4+Xm-1,0r"-1,

S2. Define x0=[X00,X10,X20,"°*,Xm-1,0]7
S3. Compute Xi=[x0i,X1i,X2i,***,Xm-1,i JT

: =Fxij-1 (15 i m-1).-
S4. Define S=[x0,X1,X2, " ,xn-1].
S5. Compute (/| S/ /p).

(

The above algorithm, ALGORITHM 6.12, is defined in the

case that f(x) is a primitive irreducible polynomial over GF(p).
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Then we will develop a more general algorithm; which decides
quadratic residuosity in GF(p®™) in the case that f{x) is a non-

primitive irreducible polynomial over GF(p).

CASE 2: f(x) is a non-primitive irreducible polynomial.

Assume that f(X)=Xm+fm—le_l+’"+f1X+f0 is a non-primitive
irreducible polynomial over GF{p}. The following Theorem shows
that under some condition ALGORITHM 6.12 can be applied to
decide quadratic residuosity in GF(p™) even in the case that
f{x) is a non-primitive irreducible polynomial over GF(p).

THEOREM 6.13 [IT87c¢,IT88c] Let f(x):xm+fh—1xm"1+---+f1x+fo

be a non-primitive irredu01ble polynomlal of degree m over

GF(p}. If ((~-1)mfo/p)=-1, then ALGORITHM 6. 12 decides

quadratlc residuosity in GF(p™) (|
Proof': Assume that s is one of the roots of f(x) 0 and g is
a generator of the multiplicative group in GF(p“). Then g is

given by g=go+gls+gzsz+'--+gm-1sm‘1, where gie GF(p)(Oé if m-1).
On the other hand, for Vxe GF(p®) (x# 0) there exists an in-
teger n (05 ns p®-2) such that x=g". Here x has a vector repre-
sentation such that

x=g? (mod f(s))

=x00 +X10S+xX2082 4+ - +Xm-1,08"" 1,
and we have the vector X=[XDO,X10,X20,"',Xm-l,d]% over GF(p).
Define the matrix G such that G= g0 Im+g1F+g2F2 +- - -1Fmn-1, then
x is given by x=@G»[{1,0,0,---,0]7T. Notice that s, one of the

roots of f(x)=0, can be represented by s=gk for some integer k.

Recalling that fo=(-1)®"N(s), we have
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fo=(~-1)"N(s)

=(-1)mgtp " m-1)/(p-1)

=(-1)ngk(p m=-1)/(p-1)

=(-1){N(g)}k.
Observing the above equation, it follows that (-1)mfo={N{g)}k.
Noting the assumption that ({~1)®fo/p)=-1, we have ((-1)"fo/p)=
(N(g)/p)k=-1. This implies that k is odd, because {N(g)/p)=-1.
(See Lemma 6.11.) Furthermore recalling that s=gk, we obtain

F=Gk, and thus we have | F| =(-1)2fo=]| G| k. Hence it follows

that (| F| /p)=(] G| /p)k=((-1)fo/p)=-1. Noting that k is odd,

thus we have (| G| /p)=-1. Define the vectors xi (1f£ if m-1)
over GF(p) recursively by xi=Fxi-1=[x0i,%x14i,%X25, " ,%Xm-1,i17,
where x0=x. Recalling that x=gn,
x1 =Fxo

=FGP[1,0,0,+++,0]7

=F{goIm+g1 F+g2F2+ - - 4gn-1F"-1}n{1,0,0,++:,0]7

={goIn+g1 F+g2F2+ - 4gn-1F"-1}0F[1,0,0, --,0]7

=G [0,1,0,---,0]17,
Here we have the matrix S such that S={x0,x1,X2,' *,Xm-11=GR+ In
and | S| =] G| n, Recalling Lemma'6.10, it follows that
(x/GF(p"))=(-1)». In addition noting that (| G| /p)=—1, thus we
have (| S| /p)=(| G| /p)r=(-1)», ~ Hence we obtain the relation
that (x/GF(p®))=(] s| /p). 0O
Remark 6.14 If f(x)=xm+fm-1xm'1+'~~+f1x+fo is primitive, then

fo always satisfies that ((-1)mfo/p):—1. Hence the assumption
of Theorem 6.13 includes the case thaf f(x) is a primitive ir-

reducible polynomial over GF{(p). O
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Here we give the following examples to demonstrate the

validity and the availability of ALGORITHM 6.12.

EXAMPLE 6.15:

Let f{x)=xZ+x+2 be a polynomial over GF(3). It is easy to
verify that f(x) is a primitive irreducible polynomial over
GF(3)! Noting that m=2, fo=2 and p=3, we have ((~1)22/3)=-1.

Here every quadratic residuee GF(3%?) is as follows:

1 - 12 = 22 (mod f(r)),

(2r)% (mod fi{r)),

142r= 12
(6.1)
2+r ={1l+r)2=(2+2r)? (mod f(r)),
2 =(2+r)2=(1+2r)2 (mod f{r)),
where r satisfies f(r)=r?+r+2=0, Consider x=2+2re GF{(3%2). Ob-

serving Eq,(ﬁ.l), x=2+2re QNR. Define the vectors X0 and x1

over GF(3) such that x0=[2,217 and x1=Fx0=[2,0]}T, where

Here we define the matrix S such that

F=[xo0,x1]=
Recalling Theorem 6.13, (2+2r/GF(32))=(| s| /3)=(2/3)=-1. Hence
ALGORITHM 6.12 confirms that x=2+2re QNR. Furthermore consider
y=2+re GF(3%). Observing Eq.(6.1), it follows that y=2+re QR.

For y=2+re GF(3%), we similarly define the matrix S such that
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By Theorem 6.13, we have (2+r/GF{(32))=(| S| /3)=(1/3)=1. Thus

ALGORITHM 6.12 confirms that y=2+re QR. O

EXAMPLE 6.16:

Let f(x)=x2+3 be a polynomial over GF(5). It is also easy
to verify that f(x) is a non-primitive irreducible rolynomial
over GF(5)! Noting that m=2, fo=3 and p=5, the assumption in
Theorem 6.13 that ((-1)23/5)=-1 is satisfied.

Here every quadratic residuee GF(52) is as follows:

1 = 12 = 42 (mod f(S)),
4 = 22 = 32 {mod f(S)),
2 = 2 = (4s)? (mod f(s)),

3+2s= (1+s)2=(4+4s)2 (mod f(s)),

1+4s= (2+s)2=(3+4s)2 (mod f(s)),

1+s = (3+s8)?2=(2+4s)2 {mod f(s)), ‘
(6.2)

3+3s= (4+s)2=(1+4s)2 (mod f(s)),

3 = (25)2 = (3s)?2 (mod f(s})),
4+44s=(1+25)2=(4+3s)2 (mod f(s)),
2+3s5=(2425)2=(3+3s)2 (mod f(s)),
2+28=(3+25)2 =(2+3s)2 (mod f(s)),
4+s =(4+2s8)2=(1+3s)2 (mod f(s)),

where s satisfies f(s)=s2+3=0. Consider x=1+2se GF(52). Ob-

serving Eq.(6.2), x=1+2se QNR. Define the vectors xo¢ and xi1

over GF(5) such that x0=[1,2]7 and x1=Fx0={4,1]7, where
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Here we define the matrix S such that
S=[x0,x11]=

By Theorem 6.13, we have (1+Zs/GF152))=(| s| /5)=(3/5)=-1. Thus
ALGORITHM 6.12 confirms that x=1l+42se€ QNR. Furthermore consider
y=4+se GF(5%). Observing the Eq.(6.2), we have y=4+se QR. For

y=4+s¢€ GF(5%2), we similarly define the matrix S such that

By Theorem 6.13, we have (4+s/GF{(52))=(]| s| /5)=(4/5)=1. Thus

ALGORITHM 6.12 confirms that y=4+se QR. 0O

6.4 DECISION ALGORITHM FOR QUADRATIC RESIDUOSITY
IN GF(p™) BASED ON NORMAL BASES

In this Section, we pPropose an efficient decision algo-
rithm for quadratic residuosity in GF(p™ ) based on normal bases.
The primary idea to derive the algorithm is quite similar with
that of a fast algorithm for multiplicative inverses in finite
fields in CHAPTER IV .

DEFINITION 6.17 (MS8T717] A basis in GF(pm) over GF(p) of the

form, {a,ap,ap’z,--',ap"(m‘l)}, is called a normal basis

in GF{(p®) over GF(p). O
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The following lemma provides a crucial clue to develop the
efficient algorithm for quadratic residuosity in GF(p®).

LEMMA 6.18 [1IT87c] Let xe GF(pm)., If x is represented by a

normal basis such that

X=X0Ta+x1aP+xz2aP 24+ 4xp_1aP (m-1)
:[XO ,X.l ,XZ’ * ",Xm-l ],
then we have xXxP K =[xXpm-k ,Xm-k+1," " yXm-1,X0,°"*,Xm-k-1],

i.e., xP"k (1< k< m-1) can be computed by k cyclic shifts
over GF(p) of the above vector representation of x. O
Recall the generalized Euler’s Criterion (denoted GEC), i.e.,
for Y xe GF{p™) (x# 0), xt(p " ®m-1)/2=(x/GF(p®)). Hence we can
decide quadratic residucsity for Yxe GF{p®") (x# 0), by comput-
ing x(p m-1)/2 Notice that
(p"-1)/2=(p"-1+p"-2+---+pt+tl)(p-1)/2,
then it follows that

x{(p"m-1)/2=f{x{p " (m-1)+p " (m-2)+...+4p+1}}(p-1)/2

={N(x)}(p-1)/2,
Recalling that FEuler’s Criterion, i.e., for VY xe GF(p) (x# 05,
x(p-1)/2=(x/p) and N(x)e GF(p), thus we have
x(p'm-13/2=(N(x)/p).
Hence a gquadratic residuosity problem in GF(p®™) can be reduced
to that in GF(p). Here the following naive problem arise:
How can we efficiently compute N(x) for Y xe GF(p®) (x# 0)?
The foilowing Theorem presents an answer to the above problem.

THEOREM 6.19 [IT87c] Assume that Vxe GF(pm) (x# 0) and x is

represented by a normal basis such that

x=xpa+xi aP+X28,pA2+' . '+Xm-13pﬂ(m_1)
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=[xo,x1,x2,"-,Xm-1].
Then there exists a fast algorithm for computing N(x),
which requires [log m]+Hw (m)-1 multiplications in GF(p™)
and (m-1) cyclic shifts over GF(p), where [x] denotes a
maximum integer S x and Hw (i) denotes the Hamming weight
of binary representation of 1. O

Proof(Sketch): The proof of the above Theorem is gquite

similar with that of Theorem 4.13. Note that for Y xe GF(p™ ),
N(x) is defined by N(x)zxph(m'l’*P‘(m‘z)*-~-*P*l. Let M{m) and
S{m) be the number of multiplications 1in GF(p™) and that of
cyclic shifts over GF(p), respectively to compute N(x).
Recalling Lemma 6.18 and the proof of Theorem 4,13, we can
easily show that there exists an algorithm,’which requires
M{(m)=[1log m]+Hw(m)—1 and S(m)=m-1 to computé N{x}. {See the
proof of Theorem 4.13 on details.) O
Remark 6.20 If the special machine are available to compute
2k cyclic shifts over GF(p) by one machine cycle, then {m-1)
cyclic shifts over GF(p) will be reduced to [log m]+Hw (m) cyclic
shifts over GF(p). O

Here wé demonstrate the availability of the above algo-~

rithm to compute N(x) in the following example.

EXAMPLE 6.21:

Let xe GF(3'1). Then we have N{x)=x88573., The following
procedure computes N(x)(=x88373) in [log 11]+Hw (11)-1=5 multi-
plications in GF(3'!) and (11-1)=10 cyclic shifts over GF(3).

(See Theorem 6.19.)
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S1. x3 =x3 1 cyclic shift over‘GF(S)
S2. %3 - x=xt 1 multiplication in GF(311)
S3. (x* )37 2=x3¢6 2 cyclic shifts over GF{(3)
S4. x36 .31 =40 1 multiplication in GF(311)
S5. (x*0 )37 4=x3240 4 cyclic shifts over GF{3)
S6. x3246.x40=x3280 1 multiplication in GF{311)
s7. {x3280)3°2=-x29520 2 cyclic shifts over GF(3)
S8. x28520 .34 529524 1 multiplication in GF(311)
S9, (x29524 )3 =x88572 1 cyclic shift over GF(3)
S10. x88572.x=x88573 1 multiplication in GF(311)

=N{x).

It is clear that the above procedure requires 5 multi-
plications in GF(3'!) in S2, S4, S6, S8 and S10 and 10 cyclic
shifts over GF(3) in S1, S3, S5, 87, and $9. Thus the above ex-
ample confirms validity and the availability of the algprithm in

Theorem 6,19, (]

Now we can derive an efficient decision algorithm for
quadratic residuosity in GF(p™) applying Theorem 6.19. The al-
gorithm also has tﬁo parts,Ai.e., for Yxe GF(p™) (x# 0), the
first part computes N{(x) using Theorem 6.19 and the secoéd part
evaluates (N{(x)/p).

Hence the decision algorithm proposed in this Section out-

puts (x/GF(p"))=(N(x)/p). (Note that x(P ®-1)/2=(N(x)/p).)

6.5 CONCLUSION

This Chapter has proposed two types of efficient decision
algorithm for guadratic residuosity in GF(p™) (m2 2, p:odd

prime), i.e., one is based on canonical bases and the other is
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based on normal bases.

The decision algorithm based on canonical bases {denoted
DACB) 1is composed of two parts. The first part of DACB defines
an mX m matrix S and transforms a gquadratic residuosity problem
in GF(p™) to that in GF(p) by computing | s| , where | S| de-
notes the determinant of the matrix S. The second part of DACB
evaluates (| S| /p) and outputs the quadratic residuosity of the
original problem in GF(p™ ).

Here we will study the running cost of DACB. Observing
ALGORITHM 6.12, m multiplications and (m-1) additions 1in GF(p)
are required to compute Xi=Fxi-1. Thus the running cost to
define the matrix S is Oa{(m?2), where OA(') denotes ﬁhe order of
the arithmgtic operations in GF{p) . In addition, the running
cost of a naive method to evaluate | s , e.8., Gaussian
elimination method, 1s Oa{m3), however, further studies have
developed fast algorithms for evaluating the determinant of
matrices [St69,Pan78,Pan81,CW82]. Hence the running cost of the
evaluation of | S| 1is Os (m¥ ), where k< 2.495548 [cwg2l. Even-
tually the total running cost of DACB (denoted TRCpacB) is

TRCpAcB=04 {mk )}+LS,
where k< 2.495548 and LS denotes the running cost of the evalua-

tion of Legendre symbol in GF{p).

The decision algorithm based on normal bases {denoted
DANB) is also composed of two parts. The first part of DANB

transforms a guadratic residuosity problem in GF(p™) to that in
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GF(p) by computing N(x), where N(x) is Norm of xe GF{p™) [LN831.
The above transform can be efficiently carried out, because the
fast algorithm given in Theorem 6.19 is applicable to compute
N(x). The second part of DANB evaluates (N(x)/p) and outputs
the quadratic residuosity of the original problem in GF{p").

Here we will also study the running cost of DANB. Note
that in general case the running cost of multiplications in
GF(p™) is Os4{m3®) employing normal bases.

Remark 6.22 It can be shown that f(x), All One Polynomial

(denoted AOP) of degree m over GF(p), is irreducible over GF(p)
iff (m+l) is a prime and p is a generator of the multiplicative
group in GF(p). (The proof of the above statement is completely
the same with that of Lemma 3.5, See [WW84] on details.) Fur-
thermore the roots of f(x)=0 constructs a normal basis in GF(p»)
over GF(p). In this case, the running cost of multiplications
in GF(p™) is Os(m?) employing Massey~-Omura Multiplier in GF{pv).
Unfortunately we have not yet found another conditions for mul-
tiplications in GF(p") to be carried out in Os(m?). I

Hence N(x) can be evaluated in Os(m3 log m) applying the
fast algorithm given in Theorem 6.19. DANB is composed of two
parts, i.e., the evaluation of N(x) and that of (N(x)/p), thus

the total running cost of DANB (denoted TRCpanxp) is given by

TRCpanB=0sa(m? log m)+LS,
We finally consider the running cost of the generalized
Euler’s Criterion (denoted GEC). The GEC decides the quadratic

residuosity in GF(p") by computing x!P "®m-1)/2=(x/GF(p")). Note
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_ that Schonhage’s fast multiplication scﬂeme [Sch77] carries out
a multiplication of polynomials over GF(p) in Os(mlog m}.

Hence (x/GF(p™)) can be evaluated in Oa(m? log m-'log p) by
applying Schonhagé’s fast multiplication scheme and the fast ex-

ponentiation scheme, e.g., binary method [Knu8ll, etc.

Now we will compare the performance of the above algo-
rithms, i.e., DACB, DANB and GEC, The running cost of each al-

gorithm can be summarized as follows:

TRCpacs = Oa(mF)+LS, k< 2.495548,

Oa(m3 log m)+LS, for general case,
TRCpanNB =

O4(m2 log m)+LS, for special case (Remark 6.21),
TRCe¢ec = Os{m?log m-log o).

Observing the above, GEC is the most efficient in three algo-
rithms, i.e., DACB, DANB and GEC. ‘However, GEC is not so
suitable for hardware or software implementation, because of the
complicated structure of Schonhage’s fast multiplication scheme
[Sch77]}. If Schonhage'’s fast multiplication scheme is not ap-—
plied to GEC, then TRCecrc will be TRCerc=0a(m3 log m).

On the other hand, DACB by éaussian elimination method is
fortunately suitable especially for software implementation. In
the above implementation, we have TRCpacs=0a{md3)+LS. However,
DACB's applied the other fast algorithms [St69,Pan78,Pan81,CW82]
are not suitable for hardware or- software implementation, be-
cause of their complicated structure. In addition, DANB is for-
tunately suitable for hardware implementation employing Massey-

Omura Multiplier in GF{p™ ). Furthermore DANB has a remarkable
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feature that it is possible to be partially parallelized. If
DANB is implemented by the parallel type Massey-Omura Multi-
plier in GF(p™), then the computation time of DANB (denoted

CTpane) will be CTpans=0a((log m)?2).

It is easy to see that if the above decision algorithms
are applied to a probabilistic quadratic polynomial factoriza~
tion algorithm over GF(p®), then the efficient version of the
probabilistic algorithm will be derived in the similar way with
those in CHAPTER V . Furthermore, because of the efficiency of
the decision algorithms for GF(p™ ), the efficient version of the
probabilistic algorithm also provides uniform efficiency for the

number of trials. {(See CHAPTER V on details.)

We finally list the open problems related to the above al-
gorithms. Observing ALGORITHM 6.12, we can find that the matrix
S has the specified form that S=[x0,Fx0,F2x0,+++,Fm-1x9]., Hence
we have the following open problem on DACB:

OPl. Develop an efficient algorithm to evaluate the
determinant of S=[x0,Fx0,F?x0,--+-,Fn-1x0], where F
is an mX m companion matrix.

Furthermore we must point out the following significant

open problem on DANB:

OP2. Find the conditions that multiplications in GF(pm™)
can be carried out in Os (m?) employing Massey-Omura

Multiplier for GF(pm).
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The above open problem strongly related to the configura-

tion of Massey-Omura Multiplier in CHAPTER .
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CHAPTER VI :

PUBLIC-KEY CRYPTOSYSTEMS AND FINITE FIELD ARITHMETICS

This Chapter proposes several public-key cryptosystens
and analyvzes their security. In addition, this Chapter applies
the algorithms developed in CHAPTER ar ,v ,V and VI to the

public~key cryptosystems proposed in this Chapter.

7.1 INTRODUCTION

This Chapter presents several public~-key cryptosystems
{denoted PAKRC), e.g., the PKC based on a system of non-linear
equations and the PKC based on the factorization of a large com-
'poéite number, and analyzes the security of the above PKC’s and
Knapsack-Type PKC's. Furthermore this Chapter shows the
évailability of the algorithms developed in CHAPTER i,V ,V and

VI to materialize the PKC’s.

In 1976, Diffie and Hellman pointed out the possibility to
realize the public-key cryptosystems {DH761. The earliest
realization of PKC’s was developed by Rivest, Shamir and Adleman
[RSA78], which is widely known nowadayvs as RSA. The public-keyw
cr?ptosystem has a remarkable feature that the encryption-key is
ﬁoi identical to the decryption-key. The feature enables the
receivers to make public their encryption-kevs while keeping
their decryption-keys secret. This provides considerable advan-
tages for data protectiqn in large scale communication network,

because the kéy management problem will be drastically reduced!
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To materialize the above scheme, the existence of the.

function f satisfying the following conditions 1is required:

Ccl. For Y xe dom f, f(x) is polyvnomially computable;

c?. For almost all ve rang f, f-1(y) is not polynomially
computable;

C3. There exists some information s, called trapdoor in-

formation, such that for vV ve rang f, f-1(y;s) is
polynomially computable.
The function, which satistfies the above conditions Cl and C2, is
referred to as one way function [DH761, and furthermore‘the one
way function satisfying the condition C3 is called trapdcoor one
way function [DH76] .

The candidates of trapdoor one Qay function are factoriza-
tion of a large composite number, discrete logarithm, guadratic
residuosity in Z» and the other-NP—statements. The PKC’s
proposed so far can be classified regarding trapdoor one way
function as follows:

T1. Factorization of a Large Composite Number:

[RSA?S,R&79,W1180,Wi185,KIT87,KIT88a,KIT88b];

T2, Discrete Logarithm:
[El185a];
T3. Quadratic Residuosity in Z&:

[GM84,GHY85a,GHY85b,BBSSG];
T4, Knapsack Problem:

[MH78,CR84,Nie86,MKN86];
T5. The Other NP-Statements:

[McE?S,IM85,TKIFMSG,TKIFM87,TFH88a,TFH88b].
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The security of the above PKC's has been widely studied.
Nowadays RSA is known as one of the most secure PKC's proposed
so far and is believed that inverting RSA is equivalent to fac-
toring a composite moduli, however, it has not been proven yet.
The bomputer scientific approach to the security of RSA can be
found in [GMT82,BCSSS,VV83,CG84,G0184,SA84]. The Knapsack-Type
PKC’s are pessimistically supposed to be not so strong, because
some breaking methods have been developed by {Sha82,BDS82,Ad83,
BLO83,Lag83,1L0831]. For some of the above PKC's, it is proven
that inverting the system is equivalent to solving the intrac-
table problem, e.g., factoring a large composite number [Ra79,
Wil80,Wil85,KIT87, KIT&8a,KIT88b], quadratic residuosity [GM84,
GHY85a,GHY85b,BB886], etc, |

On the other hand, in 1984 A.Shamir suggested the sig-
nificance of ID-Based Systems [Sha84], i.e., ID-Based Cryptosys-
tems and ID-Based Signature Schemes. One of the primary motiva-
tions for ID-Based System is further reduction of key management
problem, because in the conventional PKC’s, the key management
center must have the large public-key file of every subscriber
by physically secure methods. The ID-Based System has been ac-
tively studied since Shamir’s suggestion, while the other new
concept, i.e., ID-Based Key Distribution System [Ta86,Ta87], has
beéﬂ'defined. The concrete egamples of ID-Based Key Distribu-

tion System can be found in [Ta86,K087,MI87,0ka87,Ta87].

In this Chapter, we study the security of Knapsack-Type

PKC’s [IKT84,KIST87] and present two types of PKC, i.e., one is
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based. on a system of non-linear equations [TKIFM86,TKIFM8T,
TFH88a,TFH88b]1 and the other is based on the factorization of a
large composite number [KIT87,K1T88a,KIT88b]. Furthermore we
propose the iD-Based Cryptosystem based on discrete logarithm
problem [TIK87,TI88], which is one of the earliest concrete ex-

amples strictly in Shamir’s sense.

The organization of this Chapter in as follows:

Section 7.2 analyzes the security of Knapsack-Type PKC's
[IKT84,KIST87]. Section 7.3 presents the PKC based on a system
of non-linear egquations and consider the security [TKIFM86,
TKIFM87,TFH88a,TFH88b]. Section 7.4 proposes the PKC based on
the fac£orization of a large éoméosite number and proves that
inverting the system is equivalent to factoring a composite
moduli [KIT87,KIT88a,KIT88b]. Furthermore Section 7.5 provides
the ID-Based Cryptosystem based on discrete logarithm problem
and ahalyze the security against the conspiracy of the entities
[TIK87,TI88]. Section 7.6 finally summarizes the results in
this Chapter, considers the application of the algorithms in
CHAPTER Il ,IV ,V and VI to the above PKC's and in addition gives

conclusions, remarks and open problems.

7.2 ANALYSIS ON KNAPSACK TYPE PUBLIC-KEY CRYPTOSYSTEMS

‘In this Section, we analyze the security of Knapsack Type
PKC’s. This Section is composed of three subsections as
follows: Subsection 7.2.1 considers the security of the general

Knapsack Type PKC's [IKT84] and shows gseveral sufficient condi-
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tions for Knapsack Problems to be solved in linear time. On the
other hand, Subsection 7.2.2 analyzes the Multiplicative Knap-
sack Type PKC [CR84] and shows that there exist many decryption-
keys distinct from the original one designed by the key-maker
[KIST87}. Finally Subsection 7.2.3 summarizes and discusses the

results in this Chapter.

7.2.1 ANALYSIS ON THE GENERAL KNAPSACK TYPE PKC'’s

This subsection analvzes the security of the general Knap-
sack Type PKC’s and shows the sufficient conditions for Knapsack
Problems to be solved in linear time.

Here we define Knapsack Problem in the following:

DEFINITION 7.2.1 [GJ79] Let ai (15 iX k) be arbitrary fixed

positive integers. Then Knapsack Problem is a problem to
find the solution xie {0,1} (15 i k) for M, where M is
given by M=zaixj+azxz+ - +arxk. 0O

Remark 7.2.2 In Knapsack Tyvpe PKC’s, {ai} (15 i< k) cor-

responds to the public-key and . furthermore {xi} (1£ i< k)

and M will be plaintext and ciphertext, respectively. O

Here we present a simple attacking method for the general
Knapsack Type PKC’s. Without loss of generality, we assume that
a1< a2< r++< ar. For each plaintext x={X1,X2,%X3,'**,Xk), define
X such that X=X1+X22+X322+"'+Xk2k”i;' In addition, define the
pairs such that {Xii1,Li} and {Xi2,Ui}, where Xi1=21-1 Lj=a;i,
Xi2=21~1 and Ui=air+az+as+---a; (15 i k). Note that Li and Ui
correspond to Ciphertexts of the plaintexts Xi1 and Xi2, Trespec-

tively., Consider the following two graphs:
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Yi=Li, 2i-1< X< 21 (1 i k),
Yo =Ui, 2i-1-1< X3 2i-1 (12 i k).

It is clear that every pair {plaintext, ciphertext} lies between
two graphs Y1 and Y2 . Here we have the following Theorem:

THEOREM 7.2.3 [IKT84] Let M be a ciphertext. Then

S1. If Ui-1< M< Li+1, then xi=1 and xj=0 (i< j=s k);

S2. If M> Ur-1, then xkx=1.
O

The following example shows the validity of Theorem 7.2.3.
EXAMPLE 7.2.4:

For k=5, a={11,19,29,38,85) and M=78, find the solution X
such that a1x1+a2x2+a3x3+a4X4+a5x5=78. Noting that Usz=59, L3 =85
and Us< M< L3, we have xs=1 and x5=0. {(See 51 of Theorem 7.2.3.)
Thus the original problem can be reduced as follows: For k=3,
a={11,19,29) and M’zM—a4:78-38=40, find the solution x such that
a1x1itazxz2+taszx3z=40. Observing that Uz2=30 and M’> Uz, we have
x3=1. (See S2 of Theoren 7.2.3.) Iterating the similar proce-
dures, we finally obtain xi1=1 and xz2=0. Thus we can find the
plaintext x=(1,0,1,1;0). O

The above attacking method can be described as follows:
ALGORITHM 7.2.5:

begin
s1. Up :=0; ak+17:00 3§ n:=k;
s2., for i:=1 to k do

53, begin xi:=0; Ui:=Ui-1+ai; end

S4. while n> 0 do

S5, begin
S6. if M=U, then begin
S7. for j:=1 to n do xj:=1; n:=0:
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58. end else

S9. if M=an then begin
S10. xXn:=1l; n:=0; else end
S1i1. if M> Ui-1 then
S12. if M< an+1 then begin
S13. Xp:=1; M:=M-an; n:=n-1;
S1i4. end else failure; n:=0;
Si5. else n:=n-1;
S16. end
end
0
Remark 7.2.6 It is easy to see that ALGORITHM 7.2.5 ter-
minates in O(k) steps. O

Here we consider the extension of Theoremn 7.2.3.

THEOREM 7.2.7 [IKT84] : Assume that M be a cipherﬁext. If
Ui-1< M< Lt+1, then Xt+1=Xt+2=- -=xk=0 and there exist at
least one non-zero elements in {xi,Xi+1,***,x¢t}.. 0O

Proof: It is clear that Xt+1=Xt+2=--+2xk=0, because the asg-

sumption that M< Le+1 implies M< ats+1. Furthermore noting the

assumption that M> Ui-i1=ai+az+:+-+ai-1, there exist at least one

non-zero elements in {xi,xi+1,***,x¢}. O

Remark 7.2.8 If we assume that t=i in Theorem 7.2.7, then

Theorem 7.2.7 is reduced to Theorem 7.2.3. Thus Theorem

r

1.2.3, 0

~3

.2.7 is the npatural extension of Theorem
To demonstrate the availability of Theorem 7.2.7,5we show
the following brief example. |
EXAMPLE 7.2.9:
For k=5, a=(11,19,29,38,85) and M=48, find the solution X

such that aixitazx2+a3z+x3+as2x3x4+as5x5=48. Noting that Uz2=30,
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U3=59, Lz2=38, L5=85 and Uz < M< Ls, we have x5=0 and x3+x4# O,
Assume that x4=1. Then it follows that M’=M-as=10< a1, thus
this is clearly incorrect! On the other hand, assume that x3=1.
Then it follows that M?’=M-a3z=19=az, thus we have. x1=0 and x2=1.
Hence we can find the plaintext x={0,1,1,0,0). 0O

The following Theorems provide sufficient conditions for
Knapsack Problems to be solved in linear time. The conditions
are weaker than the conventional one, which is generally known
as super-increasing [MH7817.

THEOREM 7.2.10 [IKT84] If az+az+ - +an-1< an (35 nX k), then

there exists an algorithm which solves the Knapsack
Problems in O(k) steps. U

THEOREM 7.2.11 [IKT84] If ai+az+as+-+an-1< an (3L n= kJ,

then there exists an algorithm which solves the Knapsack
Problems in O(k) steps. DO

Remark 7.2.12 Theorem 7.2.10 and 7.2.11 can be easily proven

observing the attacking method in EXAMPLE 7.2.9. U

7.2.2 ANALYSIS ON MULTIPLICATIVE KNAPSACK TYPE PKGC

This subsection analyzes the security of the Multiplica-
tive Knapsack Type PKC proposed by Chor and Rivest in 1984
[CR84] by demonstrating a concrete attacking method. The at-
tacking method finds the secret-key if the public knapsack vec-
tor includes at least three elements whose values are close to
each other. In addition, this subsection points out that there
exist many decryption-kevs distinct from the original one

designed by the key-maker [KIsST87].
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The following describes the procedﬁres for generating the
Multiplicative Knapsack Type PKC based on the arithmetic in
finite fields [CR84]. '

SYSTEM GENERATION:

SGl. Let GF(p") be a finite field, where p2 h, and assume
that discrete logarithm in GF(ph) is efficiently compu-
table, i.e., (ph-1) can be factored into the product of
small primes [PH78];

SG2. Pick a multiplicative generator ge GF{ph )} at random.

Let G(x) be the minimal polynomial of g, i.e., G(x) is s

primitive irreducible polynomial of degree h over GF{p):

SG3., Pick an irreducible polynomial Mt (y) of degree h
over GF(p), where Mt(y)=mo+miy+ - +mh-1yP-14yh ., Let t be

one of the roots of Mt (y)=0;

SG4. Compute ai=logg(t+i) (02 i< é—l) and define the vec-
tor a=(ao,a1, - ,ap-1);

SG5. Let perm:{O,l,-~-,p~l}~>{O,l,°;',p—1} be a randomly
chosen permutation. Define bizaperm(i);

SGo. Define ci=bi+d {(mod ph-1) for a randomly chosen d,

where (05 dg ph-2};
SGT. Public-Key will be c¢={co,c1,* " ,cp-1), p and h and
Secret-Key will be t, g, perm and d._:D

The encryption and the decryption are defined as follows:

ENCRYPTION:
Let M=(x0,x1,***,%Xp-1) be a p-bit binary messase of weight
h, i.e,, xo+x1+--~+xp_1éh. Then the ciphertext C is defined by
C=E(M)=x0co+x1c1+**+Xp-1Cp-1

115



=xobo+xibz+-*++xp-1bp-1+hd {(mod ph-1).

DECRYPTION:

D1. Compute
gE(ﬂ)-—hd (mod ph_l_):gx0b0+x1bl+. ., +xp-1lbp-1

=(t+i1)(t+iz)'-'(t+ih)

z—eptertt- - ten-1th-1,

Recalling that Mt(t)zmo+m1t+~~-+mh-1th”1+th=0, thus

(t+i1)(t+iz)"'(t+ih)=eo+e1t+~‘~+eh-1th'1
+mo +m1t+- - - +mn-1th-l4th,
D2. Define p({t) such that
p(t)=e0+e1t+'v~+eh-1th'1+mo+m1t+--~+mh—1th"1+th.
Thus - we have p(t)=(t+i1)(t+i2)"'(t+ih). Hence we can

find the roots of p(t)=0, ij’s, by successive substitu-

tion. Applying the permutation perm-1 to ij’s, we can

finally recover the original message vector M having the

bit "1". O

Here we show an Attacking Method for the above Knapsack
Type PKC. The attacking method is composed of two parts; The
first part finds the primitive polynomial G(x) if the public
knapsack vector c includes at least three elements whose values
are close to each other. Furthermore the second part derives
all the rest of secret-key, i.e., t,d and perm, if the primitive
polynomial G(x) is known.

THEOREM 7.2.13 [KIST87] For Yci,cj,cke ¢ and m (12 msS p~-1),

we have G(x)| f(x)=l—x(0k‘0i)—m{1—xlCj'Ci)}. 0
Proof: Recall the construction of the PKC. (See SYSTEM GEN-

ERATION.) Then we have
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gCi :gbi*d:gd(t.}.ni ),

geli=gbitd=gd(t+n;),
where ni,nje GF(p) (ni# nj). This yields gd=(ni-nj)-1(gei-gni),
In the same way, we have g9=(ni-nx)-1(gci-gck), Hence we obtain
(gei-gek)-m(gei-ged)=0, where m=(ni-nj)-!{ni-nkx) (mod p). Thus
l1-gtek-ci)-p{l-gtci-ci)}=0 and this implies that G(x)]| f(x). 0O

Theorem 7.2.13 provides an useful method to find G(x),
however, it may produce several primitive polynomials of degree
h over GF(p). In such a case, the following lemmas are avail-

able to identify G(x).

~1
LEMMA 7.2.14 [KIST87]) Define Sr=% """ ir. If r# 0 (mod p-1)

then Sr=0 (mod p); otherwise Sr=p-1 (mod p). O
Proof: Note that the following two identity:

p-1
2, {(kt1)2-k2}=p2,

p-1

u 3 2_ 2 — p- ( *
Z .o (k+1)2-k2}= 3 (2k+1)
p-1 p~-1
2z k=0 k + 2 - 1
= 281+p.

Then we have 2S1+p=p?. This implies that So0=0 (mod r). In the

similar way with the above, we have

S 070 {{k+1)3-k3 }=352 +3S1 +p=p?,
then, S2=0 (mod p}. Hence we obtain S1=8z2=:+:=8p-2=0 {mod p).
If r=0 (mod p), then Sr= %5 _ ir = %0 1 = p-1 (mod p). 0O
LEMMA 7.2.15 [KIST87] If n=p¥+m (05 kX h-1, 05 nZ p~3), ihen

L p-1 :
we have G(x} | Vo(x)= 2 it xpci, 0

Proof: Substitute g for x in Vni(x). Thus we have
-1 k
Vni{g)= gnrd.3 f:o {t+i)p +m
-1 k
= gnd X DT (tP +i)(teim,
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i . p-1 .p-1 L . - .
1f m=0 we have van{g)=gn¢{Z o Lo+ 20 i}. From Lemma 7.2.14,

it follows that Valg)=0. On the other hand, if 135 m= p~3, then

| S -1 . . -1 o R
T R P C T S LI R A AL A

k
gnd {tp Un{(t)+Wm (T)},

i

where Un(t)= 2 i:; (t+i)" and Wa= 2 ?:1 i{t+i)®. Here we have
Un(t)= 2 0 0 37 mCrotworeir
= ptrt ¥ {mCrotrord L
= z':_l mCr t0-F Sy (mod p).

Recalling Lemma 7.2.14, we have Sr=0 (mod p) (15 1= mi, and thus

Um (£ )=0. Furthermore we have

. . p-1 .
Wam(t)= 2, i(t+i)®

_ Zp-l . Zm m-j .33

= i-0 1 j=0 nCj- b 1
. m . p-1 L

= DRI ot i | yJ+ i
2 j=0 {mCj; ¢ 2 P 1 }

- zm "~ w-J G

= =0 mCj- -t Sjrl.

For 0< j< m= p-3, we have S;+1=0 (mod p) and thus Wa{t)=0. {See
Lemma T7.2.14) Hence we can conclude that Vanilg)=0, and this im-
plies that G(x)] Vailx). O

LEMMA 7.2.16 [KIST87] Assume that p-1X n. Here G(x)] Va(x),

, L, p- - e )
where Vap(x)= 2 0 xpei, iff nCp-1, nC2ip-1),° " synCjcp-1)

(0< j(p-1)% n) are all divisible by p. O

Proof: Note that

i

. bp-1
yii d : 1 yn
g 2 ioo {t+i)

Vn(g)

p-1 _om
= gnd > 3 Cpeth-¥ <3l
=3 i=0 21 _— [ ST &

-1
=0

. .. n ) P .
= gnd{ptn+ pX - nCretn-T2 . 11‘}

- . n -
= ghd 2 a1 n()r'tn_r‘Sr (mod p).

Recalling Lemma 7.2.14, we have
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Vn(g)= gnd nCr-th-T(p-1) (mod p).

HOM

r:'O(m d p-1)
0D<r«

n

Then Va(g)=0 iff for every r such that r=0 (mod p-1) (0< r£ n),
nCr=0 (mod p). O

Note that if the public knapsack vector ¢ includes at
least three elements whose values are close to each other, we
can find the primitive polynomial G(x), which is the fraction of
the secret-key. Here we will show that we can derive the entire

secret-key if the primitive polynomial G(x) is known.

THEOREM 7.2.17 [KIST87] If the primitive polynomial G(x) is
given, then the entire secret-key will be derived. [l
Proof: Define d’ and bi’ as follows:

gd’ =gcex-gey,
bi ’=ci~d’ (02 ig p-1).

Then we have
ghi’=gei-d’=gbi+d-d’ =gbi. (pn,~py )-1

=(t+perm{i))- -n,

where n={nx-ny )-! {(mod p). Recalling the construction of the
cryptosystem, we have gPi=t+perm(i) (12 iZ p-1). Let t be rep-
resented by t=eot+eig+::-+en-1g8b-1, Then
gh® = t+perm(0) = evo + ei1g+---+en-1gh-1,
gbl = t+perm(l) = e10 + erg+---+en-1gh-1,
gbp‘1=t+perm(p—1)=ep:1,o+ ei1g+-+en-1gh-1
where eio=eo+perm(i). Notice that {eoo,eio, :-:,ep-1,0} forms

GF(p) and gPi-eijo (0L iL p-1) are all identical. Recélling the

relation that gPi’=(t+perm(i))'n, then it follows that
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gb0' = {t+perm(0)}-n = c00’ + ei'gHr - ten-1'gh-t,

ghl’ = {t+perm(l)}'n = e10 ' 4+ e1’g+cccten-1'gh-1,

gbp'l'={t+perm(p—1)}-n=ép-1,o’+ e1'g+e - +en-1'gh-1,
where eio'’'=eio'n (mod p) and ei’=e;n (mod p) (02 is p-1). Thus
{eoo’,elo’,"',ep-1,o’} forms GF(p) and gbi’'-eio’ (02 ig p-1)
are all identical. Define t'=gbi’-ejo’ and perm’ (i)=eio. Then

{g,d’,t’,perm’} will be secret-key, because it satisfies the
conditions SG2, SG3, 8G5 and SG6 in SYSTEM GENERATION. O

The secret-key {g,d’,t’,perm’} is not necessarily identi-
cal to the original secret-key {g,d,t, perm}. Thus we have fol-

lowing Theoremn.

THEOREM 7.2.18 [KIST87] Assume that a public knapsack vector
c 1is given. Then there exist some secret-key other than
the original one. 0O
In order to show the validity of the qttacking method, we
demonstrate the following simple example:
EXAMPLE 7.2.19:
Let p=7 and h=3. Define the secrét—key as follows:

Gi{x)=x3+6x+2,

t=g5=5g2+g+5,

d=100,
perm:{0,1,2,3,4,5,6}%-{6,0,1,2,3,4,5}.

Then public-key knapsack vector c will‘bg
c=(34,105,163,80,108,198,232).

Finding the Primitive Polvnomial Gix):

Recalling Theorem 7.2.13, we define ci,cj,ck such that

(ci,cj,ck)=(80,105,108). Then we have f{x)=mx%28-x25+1-m, which
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is divisible by G(x)‘for some m, Since deg f is small enough,
we can apply directly polynomial factorization algorithm [Ber6s,
Ber70,Moe77]. In this case, we can derive only one oprimitive
polynomial G({x)}=x3+6x+2 for m=5.

Derivation for the Rest of Secret-Key:

Choose ({cx,cy )=(80,34), then d’ and b’ are given by d’=43
and b’=(333,62,120,37,65,155,189), respectively. Define the
polynomials such that Ei{g)=gll’'=eio’+ei1’gtei2’g? (0L i£ 6).

The following table gives the coefficients of Ei(g).

TABLE 7.2.20 Coefficients of Ei(g)

i bi ' eio’ eil1’ eiz2’
0 333 6 5 4
1 62 4 5 4
2 . 120 2 5 4
3 37 0 D 4
4 - 165 5 5 4
5 155 3 5 4
6 189 1 5 4

Observing TABLE 7.2.20, we can decide secret-key t’ and

perm’ as follows (See Theorem 7.2.17.);

t’=4g2+5g,
perm’:{0,1,2,3,4,5,6}—>{6,4,2,0,5,3,1}.

Computing cj=b1+d€ {mod 73-1), we have the ﬁublic knapsack
vector ¢ as follows:

co=bo’+d’ (mod 73-1)=333+43 (mod 342)= 34,
c1=b1’+d’ (mod 73-1)= 62+43 (mod 342)=105,
cz=b2’+d’ (mod 73-1)=120+43 (mod 342)=163,
ca=bs ’+d’ (mod 73-1)= 37443 (mod 342)= 80,



ca=bs '+d’ (mod 73-1)= 65+43 (mod 342)=108,

cs=bs '+d’ (mod 73-1)=155+43 (mod 342)=198,
ce=bg ’+d’ (mod 73-1)=189+43 (mod 342)=232.

Thus we have c=(34,105,163,80,108,198,232). This implies
that the secret-key {g,d’,t’,perm’} provides the same public-key
¢, hence the secret-key {g,d’,t*,perm’} is a valid secret-key to

recover the massages. [

7.2.3 DISCUSSION

This Section has analyzed the security of Knapsack Type
PKC's. In subsection 7.2.1, we have studied the security of
general Knapsack Type PKC's and have shown several conditions
for Knapsack Type PKC’s to be solved in linear time [IKT841.
The conditions are somewhat weaker than the conventional one,
which is generally referred to'as super-increasing [MH78]. On
the other hand, in subsection 7.2.2 we have developed an con-—
crete Attacking Method [K1sT87] for the Multiplicative EKnapsack
Type PKC [CR84]. The attacking method is composed of two steps;
The first step is to find the primitive polynomial G(x), the
fraction of the secret-key. We have proven that the primitive
polynomial G{(x) can be obtained if the public knapsack vector ¢
includes at least three elements whose values are close to each
other [KIST87]. The second step is to derive the rest of
secret-key. We have shown that the rest of secret-key can be
derived if the primitive polynomial G(x) 1is known [KIST871]. in
addition, we have proven that there exist some secret-key other

than the original one [KIST8T71}.
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The results in.subsection 7.2.1 implicitly suggests that
the values of all the elements in public knapsack vector must be
uniform for secure PKC’s, On the other hand, the results in
subsection 7.2.2 definitely points out that the public knapsack
vector must not include the elements of close value for secure
PKC. Hence those results are remarkable because of their com-
plementality, however, they will provide the criterion for the

design of secure Knapsack-Type PKC'’s,

7.3 PKC BASED ON A SYSTEM OF NON-LINEAR EQUATIONS

This Section presents a PKC based on the difficulty of
solving a system of non-linear equations over finite fields and

analyzes the security of the PKC against the possible attacks.

7.3.1 PKC BASED ON A-SYSTEM OF NON-LINEAR EQUATIONS

This subsection proposes a PKC based on the difficulty of
solving a system of non-linear equations over finite fields,
especially over GF(2m ). The central idea for the construction
of the PKC is to compose of easily invertible transforms. More

formally, the keyv-maker chooses easily invertible transforms

such as Fi,Fz2,:++,Fx and défines practically non-invertible
transform F such that;F=F1x Fa2X +++X Fk. Here F will be made
public as a public—ke&, while Fi,Fz, -+ ,Fx will be stored as a
secret-key. The above construction of PKC’s, i.e., the composi-

tion of easily invertible transforms, is referred to as OBSCURE
REPRESENTATION {(denoted OR} [IM85]. This subsection will

develop a PKC by OR introducing a new concept, called SEQRUEN-
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TIALLY SOLVABLE (denoted SS) transform [TKIFM86,TKIFM87].

DEFINITION 7.3.1 [ TEIFM86, TKIFM37] Let f:Xr— ¥? be an 1 to 1

transform such that y=(y1,y2,--',yn)rf(x1,xz,"',anzf(x).
Then the transforﬁ is called sequentially solvable
(denoted SS) iff xi is given by xi=f-i(y;x1,%x2,"°"°*,Xi-1)
for 1£ i n. 0O

Applying the above concept SS transform, we construct a PKC

based on a system of non-linear equations as follows:

SYSTEM GENERATION 1:

SG1l. ' Let x,we GF(2®" )2 be a plaintext vector and an inter-
mediate vector, respectively. For an nX n non-singular
matrix A over GF(2F), define w=AX, where GF{2K) is a sub-

field of GF(2m), i.e., kil m;

sSG2, - Define ve GF(2m )0 such that v=F(w)-w, where
fi1{wi1) fizl{wz,*++,wn) Tizlwz," e+ ,wn)r - fin(wz,- " ,wn)
0 f22{w2) fa3{ws, - ,wn) - fan{ws," c e Wa )
Flw)= : 0 : :
0] 0 0 fnn (Wn ) .
L A

fii(Wi)=(aiw1+bi)/w1(01Wi+di),

aijtwt+bij)/(Z "

n
Fijg(Wirl, * ywn)=(2 s=i+1

t=i+l cijswstdij ),
Note that every coefficient of fij'se GF(2%);
SG3. Let ye GF{2m)" be a ciphertext vector and let B be

an nX n non-singular matrix over GF{2%). Define y=Bv;

SG4. Public-Key will be
., T
yi:zg~1 gij (x1,%x2,° *,%Xn)}/di{x1,X2," s yXn ),
where gij,di are polynomials of degree 1 of x1,x2,°'",Xn
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and r=n{n+1)/2, and Secret-Key will be B-1},F(w) and A‘l;D

Remark 7.3.2 From the construction of F(w), it is clear that

F(w)'w is SS. (See S2 in SYSTEM GENERATION 1.) 0O
ENCRYPTION :
For the plaintext xe GF(2m)n, substitute x to the public-

key and compute the ciphertext y. 0O

DECRYPTION:

D1. For the ciphertext y, compute v=B-ly;

D2. Compute w from v. Note that v=F{w)-w is SS;
D3, For w, compute the plaintext x=A-lw. O

Unfortunately Hasegawa and Kaneko have found an efficient
attacking method for the above scheme [HK87]. Here we present a
stronger version of SS PKC introducing the generalized concept,

called partially sequentially solvable (denoted PSS) transform.

DEFINITION 7.3.3 [TFH88a,TFHE8b] Let f:XP-»Y? be 1 to 1
transform such that y:(y1,yz,"',yn)=f(xz,x2,"',Xn)zf(xj.

Then the transform f is called partially sequentially

solvable (denoted PSS) iff for i (15 iX n), (X1 ,x2, - ,xi)
is given by (x1,x2,+,xi)=f~1(y) and for i+15 j5n xj is
given by xj=f-1(y;x1,x2, - ,xi-1). [l

It is clear that the above concept PSS is the generalization of
S5. Here we will show the example of PSS transform as follows:
EXAMPLE 7.38.4:

Let v,we GF{2m)n, Here we define the following relation
between {(wn-1,wn) and {(vn-1,vn):

alwntazzwn-1-+tas

vn =
a4 Wntaswn-1-+as
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biwn+b2zwn-1+b3
b1 wn +bswn-1 +bs

Vn-17=

Then wn-1 and wan can be given by va-1 and vn as follows:

di (Vn—l ,Vn)

do{vn-1 ,Vn)

d2{vn-1,van)

H

Wn-1
do{vn-1,vn)

where di{vn-1,vn) (02 i£ 2) are defined by

| as4vntal as vn +az
do = |
bsvn-1+bi bsvn-1+b2 .
a6 va +a3s as vn taz
di =
bsva-1+b3 bsva-1+b2 ,
asvntai as vn +a3
dz =
bivn-1+b1 bsvn-1+b3 .

Thus we have the equivalent representation as follows:
(Wn-l,Wn)T=K(Vn-1,Vn)(Vn-l,v)T,

where K(vn-1,vn) 1is given by

ki1 kiz2
K(va-1,Vn )=
ke k22

)
(alb6+a3b4)Vn—1+aﬁb4Vn—1Vn+a3b1

ki1= )
vn-1-do{vn-1,Vn)

" (a4b3+asb1)Vn+a4bSVn-1Vn+a1b3
12= s
vn'd() (Vn-l sy Vn )

K (a3b5+azbs)Vn-1+asbsvn-1Vn+azb3
721 = ,
: vn-1-do(vn-1,vVan)

) {asbz+asb3 )vat+tasbevn-1vn+tas b2
<2 2 . .
vn'do(Vn-—l,Vn)

H

Here we refer to the above transform K(+,+) as the Kernel
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PSS transform. O

Here we present the construction of the PSS transform.

Define the following nX n matrix F{w):

- .

fi: 0 +-¢-+ 0
0 f22 0 0
¢ 0 e 0

F{(v)=

K( Vn-1,4Vn ,)

¥

where fii (1% i£ n-2) are functions both of degree 1 of wvi and

of higher degree of vis+1,*++,vn and K is the Kernel of the PSS

transform. For example, define w=F(v):v for w,ve GF{(2® )0, where

. i A2 '\"_+b‘ V)
fig vy 2 tv)virbi(v) ooy
vi-de{vn-1,vn)

ai{v) : linear polynomial of vit+l, **,vn,

bi(v) : qguadratic polynomial of vis+1,***,vn.

It is not difficult to see that the transform w=F{v)'v is PSS.

Then we construct a PKC applving the above PSS transform.

SYSTEM GENERATION 2:

SG1L.

SG2,

SG3.

Let xe GF(2m)n be a plaintext. For an nX n non-
singular matrix A over GF{2%), define intermediate vector
ve GF(2m )» by v=Ax, where GF(2") is a subfield of GF(2m),
i.e., k| m;

Define an intermediate vector w by w=F{v)-v, where
the transform w=F(v)-v is PSS;

For an nX n invertible matrix B over GF{(2F), define

an intermediate vector u=Bw;
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SG4 . Define an intermediate vector z by z=G{u)-u, where
the transform z=G(u)+ u is PSS;
SGH. For an n¥X n invertible matrix C over GF(2k )}, define

the ciphertext y=Cz;

SG6. pPublic~Key will be y=CG(u)BF(V)AX, thus it is given
by vizri(x)/ralx) (12 i€ n), where ri{x) and ra(x) are
polynomials of degree 4 of x1,X2,'" " ,Xn, and Secret-Key

will be A,B,C,F{v) and Glu), O
ENCRYPTION:

For the plaintext Xe€ GF(2m )P, substitute x to the public-

key and compute the ciphertext y. O

DECRYPTION:

D1, For the ciphertexte GF(2n)», computé z=C-1lvy;
D2. Compute u from z, where z=G(u):-u is PSS5;

D3. Compute w by w=B-1u;

D4. Compute v from w, where w=F(v):v is PS35;

D5. Compute the plaintext X by x=A-tv. O

7.3.2 ANALYSIS ON THE PKC

This subsection proposes possible attacks and analyzes the
security of the PKC.

Recalling SYSTEM GENERATION 2, the PKC can be regarded as
the composition of two PSS transforms. Here we develop an at-

tacking method {(denoted AMI)} to find the intermediate vector u

from the ciphertext V. This implies that the AM1 inverts the
first PSS transform. The primary principle of the AM1 can be
simply described as follows: Assume that every coefficient of
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each secret-key 1is an unknown variable and we reconstruct the
PKC from the secret-key with unknown variables. Then we compare
the reconstructed PKC with the given public-kev and evaluate the
coefficients of each secret-kevs.

Here we analyze the running cost of AM1 in the case that
n=5. Then we have the following Theorem.

THEOREM 7.3.4 [TFH88a,TFHB88b] To find the Kernel of PSS

transform z=G(u)-u, AM] requires to solve a svstem of 126

guartic equations of 71 variables and a svstem of 126

quadratic egquations of 14 variables. O
Remark 7.3.5 The proof of Theorem 7.3.4 is not so difficult,
however, somewhat complicated. (See [TFH88al].) 0

Assume that AM1 succeeds to find the Kernel of the PSS
transform z=G(u)-u. Then the focllowing Theorem shows the run-
ning cost to find the coefficients of the PSS transform and C.

THEOREM 7.3.6 [TFH88a,TFH88b] Assume that the Kernel of the

PSS transform z=G{u)-u is known. Then, to find the all
coefficients of the PSS transform that z=G(uj)-u and C, AMI

requires to solve three systems of 126 quadratic equations

of at most 46 variables. [
Remark 7.3.7 The proof of Theorem 7.3.6 is also easy,
however, somewhat complicated. {(See [TFH88al.) 0O

Thus we can conclude that the proposed PKC is secure against the
above attacking method AMIL.

Furthermore we will demonstrate another attacking method
(denoted AMZ). The attacking method AMZ is suggested by Okamoto

and Nakamura [ON86] and the primary principle of AM2 can be
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briefly summarized as follows: Notice the decryption procedure

of the PKC and estimate the degree of the inverse transform of

the PKC. The degree of the inverse transform gives the total
number of terms N of the inverse transform. Represent the in-
verse transform with N unknown variables. Then substitute ar-

bitrary plaintexts to the public-key and compute the ciphertexts
until N linearly independent equations will be obtained. Thus
we have the following Theorem in the case that n=5.

THEOREM 7.3.8 [TFH88a,TFH88Db] To find the inverse transform

of the PKC, AM2 requires to solve a system of linear egqua-

tions of at least 4.225X 1013 unkpown variables. U
Remark 7.3.9 Theorem 7.3.8 can be easily proven by a simple
combinatorial discussion. See [TFH88a] on details. O

Thus we can conclude that the proposed PKC is secure against the

attacking method AMZ.

7.3.3 DISCUSSION

This Section has developed a PKC based on the difficulty
of solving a system of non-linear equations over GF(2mn), In or-
der to realize the PKC, we havé defined a new concepi, called
partially sequentially solvable (denoted PSS) transform. Fur-
thermore we have demonstrated possible attacks for the PKC and
have analyzed the security of the PEKC. Hence we can conclude
that the PKC is supposed to be secure against possible attacks.

~ The proposed PKC has the following preferable features:
Fi. The encryption and the decryption can be carried out

in O(m?) [TAI87], where m=| x| ;
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F2. The public-key size and the secret-key size are com-
paratively small.
The following table illustrates the public-key size

{denoted PKS) and secret-key size (denoted SKS), respectively.

TABLE 7.2.10 PKS and SKS of the PKC

n k PKS [Kbit]| SKS [Kbit]
5 8 6.05 1.48
6 8 11.76 2.18

7.4 PKC BASED ON THE FACTORIZATION

This Section presents a PKC based on the intractability of
factoring the product of two large primes [KIT87,KIT88a,KIT88b].
The PKC has a remarkable property that inverting the PKC is
equivalent to factoring the composite moduli. Thus the PKC is
provable secure under the assumption that factoring is hard.
Furthermore the PKC in this Section has a simple structure and a
preferable feature that the ciphertexts are uniquely decryp-

table. The related works can be found in [Ra79,Wil80,Wil83].

7.4.1 PKC BASED ON THE FACTORIZATION

In this subsection, we present a PKC based on the intrac-
tability of factoring a large composite number. In order to
show the construction of the PKC, we provide some mathematical
definitions, lemmas and the related works.

DEFINITION 7.4.1 [Kra86] Call an x€ Zm quadratic residue
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(mod m), if x=y? (mod m) for some Y; otherwise x& Zm 1S

quadratic non-residue (mod m)}. [
Remark 7.4.2 Throughout this Section, the set of all quad-
ratic (non) residues (mod m) is denoted by @Rm (@NREa). O
DEFINITION 7.4.3 [Kra86] Let p be an odd prime number and

let x# 0 (mod p). Define the following symbol such that
(x/p)=1, x€ QRp,
(x/p)=-1, x€& @NEp.

Here (x/p) is called Legendre symbol of x mod p. D

DEFINITION 7.4.4 [Kra86] Let m=pipz-* pr, where pi (15 i r)

are primes, not necessarily distinct. Then Jacobi symbol
(x/m) is defined by (x/m):(x/pJ){X/pz)-°-(x/pr), where
(x/pi) (15 i< r) denote Légendre symbol. O
Here we describe the Rabin’'s Scheme (denoted RS) [Ra79]

and the Williams Scheme {denoted WS) [Wil80] as follows:

RABIN’s SCHEME (RS):

§gg;et¥Key Two large primes p and 4;

Public-Key N(=pq),d;

Plaintext m (0< m< N)3

Encryption c=m{m+d) {(mod N);

Decrvption Solve the following two guadratic equations:

x2 +dx-c=0 (mod P},

%2 +dx-c=0 (mod a).
Applying Chinese Remainder Theorem_[Kra86], evaluate the
four roots of x?+dx-c=0 (mod N) and find the original
plaintex£ m. O

Rabin has proven that inverting RS is as hard as factoring
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N .|Ra79]. However in RS, the ciphertexts cannot be uniguely
decrypted, because we have no way to identify the original
plaintext m in the four possible roots of x?2+dx-c=0 {mod N).
WILLIAMS’ SCHEME (WS):

Secret-Key Two large primes p and g, where p=q=3 {(mod 4)};

Public~-Key N{=pq)

Plaintext m, where 0< m< N/2 and (m/N)=1;

Encryption c=m? {mod N};

Decryption Solve the following two gquadratic equations:

x¢2-c=0 {(mod p},

x?2-c=0 {(mod q}.
Applying the Chinese Remainder Theorem, evaluate the four
roots of xZ2-c=0 (mod N) and find the original plaintext m
such that 0< m< N/2 and {(m/N)=1. O
Iﬁ can be shown that inverting WS is equivalent to factor-
ing N{=pqg) [Wil80]. In addition, in WS the ciphertexts are
uniguely decryptable [Wil80]. Here we will present a PKC based
on the intractability of factoring a large composite number
[KIT87,KIT88a,KIT88b]. Throughout this Section, we will refer
to the PKC [KIT87,KIT88a,KIT88b] as KIT.
SYSTEM GENERATION:
SG1. Choose arbitrary two large primes p and g and com-
pute the product N(=pg};
SG2. Choose an arbitrary d such that (d/p)=(d/q)=-1;
SG3. Public-Key will be N(=pg) and d, and Secret-Key will
be p and gq. O

ENCRYPTION:
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For the plaintext m, where 0< m< N and GCD(m,N}=1, compute
c=zm+dm-1 (mod N). If (m/N)=1, then s=0; otherwise define s=1.
Furthermore if dm~! (mod N)> m, then t=0; otherwisé define t=1.
Then the ciphertext c is given by c=(c,s,t). ]

DECRYPTION:
D1. Solve the quadratic equation <2 -cm+d=0 (mod N) and
compute the four roots mij {(i,je {+,-}) such that

me+ ={mp+ ,lnq+],
m--=[mp- ,mg-1,
me-={mps+ ,ma- 1,
m-+=[mp-,mg+ },

where m:-=[mp+ ,mq- ] shows that m:-=mp+ (mod p), (mi-/p)=1,

ms - =mg - (mod q) and (ms-/q)=-1. (The other cases are

similarly defined.)

D2. A . Find the original plaintext m in the possible four

roots according to the values of "s" and "t" as follows:

TABLE 7.4.5 Rules of the Decryption of KIT

\\\\<i\ 0 1
s

0 min{ms+ ,m-- ) max(ms+ ym-- )

1 min{ms- ,m-+ ) max(ms- ,m-+)

The validity of the decryption for KIT will be shown
in the following. 0O

THEOREM 7.4.6 [KITST,KITSBa] The decryption procedure

described above identifies the original plaintext m in the
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four possible roots of xZ-cx+d=0 (mod N). O
Proof: Notice that mp+ and mp- are the two possible roots of
x2-cx+d=0 {mod p) while mg+ and mgq- are also the two possible
roots of x?2-cx+d=0 (mod g}). Recalling the assumption that
{c/p)=-1, it follows that (mp+/p){(mp-/pl=(c/pl=-1. Thus we have

{mp+/pl)=1 and (mp-/p)=-1. Similarly recalling that {(c/q)}=-1, it

follows that (mq+/gq)=1 and (mg-/q)=-1. Then we have
{mi+ /N)=(m+s /P (me+ /q)=(mps+ /P){mg+/ql=1-1=1, Furthermore we
have (m--/N)=1 and (m¢-/N)={m-+/N)=-1, Hence the bit "s"

enables us to identify that if s=0, then the original plaintext

m=m++ Or m--; otherwise m=m:+- or m-:. Here we assume that s=0.
Then we have mi+m--={mp+mMp- ,Mg+ Mg- J=[d,d]l=d (mod N}, where
m={x,y] denotes that m=x (méd p) and m=y (mod q). It follows
that m--=d{m:+s+ )-1 (mod N). Hence the bit "t" enables us to

identify that if t=0 then the original plaintext m=min(m:+ ,m-- };
otherwise m=max(m++ ,m-- ). In the case that s=1, the bit "t"
also enables us to identify that if t=0, then m=min{(m¢-,m-:);
otherwise m=max{ms-,m-3+ ). Thus KIT uniguely decrypts the
ciphertexts. O
Here we will show the following éxample to demonstrate the

validity of KIT [KIT87,KIT88a].
EXAMPLE 7.4.7:

| Let that p=11, g=13 and d=2. Then it follows that N=143
and (2/11)=(2/13)=-1.

Encryption: Let m=24. Then c¢=24+2-24-1 {(mod 143)=36. By

noting (24/143)=1 and 2-24-! (mod 143)=12< 24(=m), we have

s=0 and t=1. Thus the ciphertext is ¢={(34,0,1). @O
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Decryvption: Solve %2 ~-36%+2=0 (mod 11). Then we have mii1+=1

and mii-=2. Furthermore the roots of x2-36x+2=0 (mod 13)
are mi3+=12 and mi3-=11. Noting that s=0, it follows that
m=m:+={1,12]=12 or m=m--=[2,11]1=24. In addition, since

t=1, then we have m=max{ms++ ,m--)=24. 0O

7.4.2 ANALYSIS ON _KIT

This subsection proves that inverting KIT 1is intractable
as factoring the composite moduli N [KIT87,KIT88al. To show the
equivalency of inverting KIT and factoring the composite moduli
N(=pq), we must prove the following two statements:

S1. If there exists a polynomial time algorithm

| FACT to fabtbr the composite moduli N(=pg), then
there exists a polynomial time algorithm INV to find
the plainte?t'for any given ciphertext;

S2. If thérg exists a polynomial time algorithm

INV to find the plaintext for any given ciphertext,
then there exists alpolynomial time algorithm FACT
to factor the composite moduli N{=pqg).

It is not so difficult to see that Sl is correct. Thus we
concentrate our interest_on the proof of S2. To prove 82 in the
above, we present the following auxiliary lemma:

LEMMA 7.4.8 [KIT87,KIT88a,KIT88b] Neither x2-cx+d=0 (mod p)

nor x2-cx+d=0 (mod gq) has a multiple root. 0O
Proof: Notice that mp+ and mp-, the two possible roots of
x2 -cx+d=0 (mod p), satisfy (mp+ /p)=1 and (mp-/p)=-1, respec-

tively. Thus it follows that mp:+# mp- . In the similar way, we
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can prove that mg:+# mg-. O

The following Theorem formulates the main result in this
Section, i.e., the equivalency of inverting KIT and factoring
the composite moduli N{=pqg).

THEOREM 7.4.9 ([KIT87,KIT88a] If there exists a polynomial

time algorithm INV to find the plaintext for any cipher-
text of KIT, then there exists a probabilistic polynomial
time algorithm FACT to factor the composite moduli N(=pq)
with probability 1/4. 0O
Proof: Choose at random d {0< d< N}). Note that d satisfies
(d/p)=(d/q)=-1 with probability 1/4. Let (N,d) be a public-key
of KIT. For any plaintext m, evaluate the ciphertext c=(c,s,t).
Define'the ciphertext ¢’=(c,s’,t), where s’;s+1 {mod 2),‘and
compute the plaintext m’ for ¢’ by the polynomial time algorithm
INV, Assume that m={mp+ ,mg+ ]. Since s'=s+l1 (mod 2}, we have
m’=[mp+,mg-] or m'={mp-,mgs+ }. Here we consider the case that
m’={mp+,mq-}. {(For the case that m’={mp- ,mq+ ], the proof is the
same.) Then m-m’=[{mp+,mg+ }J~[mp+ ,mg-1=[0,mg+-mg-1. Recalling
Lemma 7.4.8, we have mg+-mg-# 0 (mod g), and this implies that
m-m’=0 (mod p) and m-m’# 0 (mod q}. Hence it follows that
GCD{m-m’ ,N)=p. Note that randomly chosen d (0< d< N} satisfies
(d/p)=(d/§)=—l with probability 1/4 and the algorithm INV can be
carriedloﬁt in polynomial time, Tgus the above algorithm fac-
tors the composite moduli N(=pq) in polynomial time with prob-
ability 1/4. 0O

Remark 7.4.10 The probability that the above probabilistic

algorithm fails after 100 trials is (3/4)-100z= 10-13,
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which is negligibly small. O
The following Theorem is the stronger version of Theorem 7.4.9.

THEOREM 7.4.11 [KIT87,KIT88al If there exists a polynomial

time algorithm INV to find the plaintext for 1/k of all

the ciphertexts of KIT, then there exists a probabilistic

polynomial time algorithm FACT to factor the composite

moduli N(=pg) with probability 1/4k. O
Proof: Let X be the set of ciphertexts for which the polyno-
mial time algorithm INV can be applied. Choose at random a
plaintext m (0< m< N}). The ciphertext for m belongs to X with
probability 1/k. Thus we can apply the same algorithm in the
proof of Theorem 7.4.9 to the plalntext m. Hence we can con-
struct a polynomial time algorithm FACT to factor the comp051te
moduli N{=pg) with probability 1/4k. DO

The following shows the construction of the algorithm FACT
employing the polynomial time algorithm INV.

ALGORITHM 7.4.12:

Si. Input Nj

s2. Choose at random d (0< d< N);

S3. Choose at random m (0< m< N);

S4. Encrypt m and compute the ciphertext c={c,s,t)};
S5, Define ¢’=(c,s’,t), where s’=s+1 (mod 2);

S6. Decrypt ¢’ and compute the plaintext m’ by INV;
S7. Compute Fact=GCD(m-m’,N); :

sS8. If Fact=1 or N goto S2

S9. Qutput Fact.
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7.4.3 DISCUSSION

This Section has developed a PKC based on the hardness of
factoring a large composite number (denoted KIT) [KIT87,KIT88a,
KIT88b] and in addition has proven that inverting KIT is equiv-
alent to factoring the composite moduli N{(=pq) [KIT87,KIT88al.
The PKC KIT has a simple structure and a preferable feature that

"the ciphertexts are uniquely decryptable.

The encryption of KIT is composed of three parts; The
first part is the computation of the function for the plaintext
m, i.e., c=m+dm-1 (mod N), and the second part is the evaluation
of the bit "s", i.e., the evaluation of (m/N). 1In addition, the

third part is the evaluation of the bit "t", i.e., the com-

parison.of m and dm~! (mod N). The running cost of the first
and third part is Os(m?), respectively, where | N| =m and Os(-)
Qenotes the order of bit operations. Furthermore the running
cost of the second part is also Cm(mZ). Thus the running cost

of the encryption is Os(m?).

On the other hand, the decryption of KIT is composed of
two parts; The first part finds the roots of x%2-cx+d=0 (mod N),
and the second part identifies the original plaintext m in the

L3

four possible roots of x%2-cx+d=0 (mod N) by the bit "s" and "t".
To find the roots of x2~c¥+d=0 {mod N), the first part solves
the two quadratic equations x?-cx+d=0 (mod p), x2-cx+d=0 (mod - q)
by GCD{xtp-1)/2-1 ,x2-cx+d} over GF(p), GCD{xta-1)/2-1 x2-cx+d}

over GF(q), respectively. Then each equation has distinct two

roots mp:,mp- and mq+ ,Mg-, respectively, we can find the four
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distinct roots of x?%-cx+d=0 {mod N} by Cbinese Remainder Theorem
[Kra861]. Note that the running cost of GCD{(-,+) is Os{m3) and
that of Chinese Remainder Theorem igs Os{(m? ). Thus the running
cost of the first part is Op{m? ). It is easy to show that the
running cost of the second part is Oa(mz); thus the running cost
of the decryption is Os(m3).

The following table summarize the running cost of the

encrvption and the decryvption for several PKC's.

TABLE 7.4.13 Running Cost of PEC’s

R Rabin &
KIT Williams RSA

Op{m?) for small e

ot 2 2
Encryption O {(m? ) OB(P ) Os(m?) for large e

Decryption Os{m3) "Op(m3 ) : 03§m3)

7.5 IDENTITY-BASED CRYPTOSYSTEM

" This Section presents an Identity-Based Cryptosystem based
on discrete logarithm problem [TIK87,TI88]. The identity-based
cryptosystem (dehoted IDC}y can be materialiged by employing
ElGamal’s PKC [El85al and is supposed to be one of the earliest
concrete examples of the IDC strictly in $hamir’s sense,

In the recent large-scale telecomﬁuﬁication network,'it is
required that each entity is able to communicate with arbitrary
entities through the network, In the light of the data protec-
tion, cryptography is one of the most promising tools for it in

such a system. In both private-key cryptosystems and public-key
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cryptosystems, however, key managemeht is a serious problem in .
the case ihat the system includes many entities.

In 1984, A.Shamir definitely pointed out the significance
of Identity-Based System (denoted IDS) [Sha84]}, i.e., Identity-
Based Cryptosystem (denoted IDC) and Identity-Based Signature
Scheme (denoted IDSS), as one of the countermeasures for the key
management problem in the large-scale network, and developed a
concrete example for IDSS. On the other hand, in 1984 T.Okamoto
independently proposed a concrete example of the IDSS [Oka84,
Oka86] at almost the same time. Kohnfelder and Blom presented
the similar ideas in [Ko78,B182], however, they did not posi-
tively suggest the importance of IDS. Thus the development of
the IDS can be regarded as a natural réquirement for the reduc-
tion of the key management problem in a large-sc¢ale network.

Then IDC can be categorized suﬁh’as IDC [Ko78,DQ86,TIK87,
T188], IDSS [Oka84,Sha84,FS86,0ka86,FFS87] and ID-Based Key Dis-
tribution System (denoted IDKDS) [Bl82,K087,MI87,0ka87,Ta87].
In IDC, we have already had two concrete examples such as
Kohnfelder’s scheme [Ko78] and Desmedt and Quisquater’s scheme
[DQ86]. In [Ko78]}, the interactive preliminary communications
are necessary in each data transmission, while in [DQ86], each
entity must allow the assumption tha? the tamper-free modules
are available. (This assumption seemé to be too strong in the
light of the modern technologies!)

In this Section, we present Identity-Based Cryptosystem
based on the hardness of discrete logarithm problem [TIK87,TI88]

employing ElGamal’s PKC [El185a)l. The basic idea of the IDC can
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be found in [TIK871. This Section includes the further studies
such as the security of the IDC, the identification for senders,
the reduction of processing cost, etc. Our scheme does not
require any interactive preliminary communications in each mes-
sage transmission and‘any assumptions except the intractability
of discrete logarithm problem., (This assumption seems to be
quite reasonable!) Thus the proposed scheme is one of the ear-
liest realizations for IDC, which satisfies Shamir’s original

concept [Sha84] in a strict sense.

7.5.1 IDC BASED ON DISCRETE LOGARITHM PROBLEM

Here we show the ElGamal’s PKC [E1l85a] in the following:
ElGamal’s PKC:

Public-Key

p : a large prime number;
g : a generator of the multiplicative group in GF(p);
z=gs (mod p) (0= s= p-2).

Secret-Key

s : an arbitrary constant number (0L s=Z p-2).
Encryption Let m (02 mZ p-2) be a plaintext to be trans-
mitted. The Sender chooses a random number r (02 r= p-2)

and computes the ciphertext C={ci,cz2), where ci=g* {mod p)
and cz=mz* {(mod p). O

Decryption The receiver computes

{(c1)s=(gr)s (mod p)
=(gs)r (mod p)
=z {(mod p},

and recovers the message m by
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m={(c1)s}-1cz (mod p)

=(z* )~ 1mz* (mod p).

The above transform can be performed only by the receiver

knowing the secret "s". (The above notations will be used

throughout this Section.) 0O |

By modifying the ElGamal’s PKC, we can develop an IDC
based on discrete logarithm problem. Here we will present the
detailed descriptions for the construction of the IDC.
CONSTRUCTION OF THE IDC:

The construction of the IDC is composed of two parts; The

first part is the preparation of the Trusted Center (denoted TC)

and Fach Entity for the establishment of the IDC. The second
part prescribes the protocol of the protected data transmission.
The TC is located only for the establishment of the IDC, thus
the TC éan be closed after that except for the case of the re-

establishment of the IDC, the state of emergency, etc.

Subscription to the IDC

Each entity generates k dimensional binary vectér for his
identity (denoted ID). Define entity i’'s ID by IDi as follows:

IDi=(xi1,Xi2,""*,Xik), Xije {0,1} (12 jL k).
All entities registers their ID'’s to the TC and the TC stores
them in the public file, The TC publishes an 1 to i one way
function f(-), e.g., RSA, Any entity can evaluate the entity
i’s extended ID, EIDi by

EIDi =f(IDi)=(yi1,yi2,"**,¥in), vije {0,1} (15 j< n).

The extended ID (denoted EID) plays a central role of the
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countermeasure against conspiracy of some entities. Details on

EID will be discussed in Subsection 7.5.2. The TC chooses an
arbitrary large prime number p, e.g., | pl =512, and also gen-
erates an n dimensional vector a such that a={a1,az2,'**,an),

where 1% ai S p-2 (1€ i€ n), and stores it as the TC’s Secret In-
formation. Note that for n dimensional binary vectors I and J,
the vector a must satisfy the following claim:

a'I# a'J (mod p-1}, (7.1)
to avoid the accidental coincidence of some entities’ secret-
key. One of the most simple way to generate the vector a is to
use Merkle and Hellman's Scheme [MH78]. Then the TC chooses a
super-increasing sequence {ai’} (12 i< n) such that

B i '< p-1 | | |

i=1 ai Pp-1.

The TC also chooses w satisfying GCD(w,p-1)=1, and defines a

vector a={a1,az, **,an), where ai=ai’-w (mod p-1) (12 i€ n).

Remark 7.5.1 It is clear that the above vector a satisfies

the claim of Eq.(7.1). Note that the abové scheme is Jjust

the one scheme to generate an n dimensional vector a

satisfying the claim of Eq.(7.1). Here we adopt the above

scheme, however, the other ones might be possible. O

The TC chooses an arbitrary generator g of the multiplica-
tive group in GF(p), and defines a vector h=(h1,hz,**,hn)
employing the generatbf'g and the vector a, where hi=g2i (mod p)
(1£ i€ n). The TC informs each entity of p, g and h as the com-
mon public informations in the network. The TC defines the en-

tity i’s secret-key si by the inner product of a and EIDi,
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.si=a* EID; {mod p-1)
= 2 ;=1 ajyij (mod p-1).
The TC sends entity i’s secret-key si to entity i through
a highly secure channel.

System Parameters:

TC’s Secret Information

a : n dimensional vector over Zp-1;

TC’s Public Information

h : n dimensional vector over Zp;

P a large prime number;

f 1 to 1 one way function, e.g., RSA;

g : a generator of the multiplicative group in GF(p);

Entity i’s Secret-Key

si {(0< si< p-1);

Entity i’s Public Information

Ibi : k dimensional binary vector;
After the establishment of the IDC, each entity exchanges

the protected data by the following protocol:

Protocol of the IDC

Suppose that entity 2 sends his message m to entity 1.
Encryption:

Entity 2 generates the entity 1’s EID by

EID1=f(ID:i )=(yi1,¥12,***,Vin ).

In addition, entity 2 computes z1 by

n .YIi _ n [P O |
z1= [I i1 hi = ]I i1 (gai) {mod p).
Note that 2% 1¢i<n aiy1i=si1, thus we have z1=g5! (mod p). Hence
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Entity 2 can use z1 as z in ElGamal’s PKC. Let m (0=£ m=Z p-1) be
an entity 2’'s message to be transmitted. Entity 2 generates r
(05 r£ p-2) at random and computes the cipher text C=(ci,cz2),
where c1=g* {(mod p) and cz=m(z1)¥ {mod p). Entity 2 sends the
ciphertext C to entity 1. 0O

Decryption:

Entity 1 computes (ci)sl {(mod p)=kgr)51 {mod p) using his
secret~key s1. Recalling the definition of ci1, c¢2 and zi1, en-
tity 1 can recover entity 2’s message by computing

{(c1)s1}-tea={(g")%1} 'm(z1)* (mod p)

={{g*¥ )1} 1m(g%1)r (mod p)
=m (mod p).

The above transform can be carried out only by the entity
knowing ﬁhe secret "s1". O

Here we describe the informal but intuitive explanation
for the structure of the proposed IDC. The TC generates the
Secret-Information a. The TC evaluates the subset sum of a ac-
cording to each entity’s EID and issues the subset sum of a to
each entity as his secret-key. Then we have following two fun-
damental questions:

Q1. If some entities disclose their secret-keys each
other, can they find the TC’s Secret Information?

If possible, how many entities must conspire?
Q2. If- some entities disclose their secret-keys each
other, can they find the other entities’ secret-

keys? If possible, how many entities must conspire?

In the subsequent subsections, we study the above ques-
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tions and provide further practical improvements.

7.5.2 ANALYSIS ON THE 1IDC

This subsection analyzes the security of the proposed IDC
and presents some remarks for secure system. The analyses on
the proposed IDC are classified by the security of the protected
data transmission, that of the TC’s Secret Information, and that
of the arbitrary entity’s secret-key.

Security of the Protected Data Transmission:

The security of the proposed IDC is based on the intrac-
tability of discrete logarithm problem. Hence r must be chosen
large enough, e.g., | p| =512, and {(p-1) must have at least one
large prime factor [PH78]. (If (p-1) is the product of the small
primes, then discrete logarithm problem will be solved in poly-
nomial time [PH78].)

Security of TC’s Secret Information:

Consider the case that m(2 n) entities conspire to derive
the TC’s Secret Information a. For the notational simplicity,
we assume that those entities are numbered as 1,2, ,m. Fach
entity i’s (12 i£ m) has partial information of a in the form
that a-EIDi=si (mod p-1) (15 iz m)., Thus we have the system of

linear congruences as follows:

o S -
EID at F-él
EID:2 az 52

: : = : (mod p-1)=D'a {mod p-1).
EIDn an Sm

If the matrix D involves n linearly independent row vectors
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over Zp-1, then the TC’s Secret Information a can be uniquely
recovered by the m entities’ conspiracy. However, K.Nakamura
et.al. [NOTM87] and D.Coppersmith {Co87a] suggested that even in
the case that matrix D does not involve n linearly independent
row vectors over Zp-1, m entities i’s (12 iS m) can derive a’',
which 1s equivalent to the original TC’s Secret Information.
Here we show the attacking method in the following:

ATTACKE 7.5.2 [NOTM87,Co87al] If m entities disclose their

secret-keys each other, then they can derive an n dimen-
sional vector a’ over Zp-1, which is equivalent to the

TC’s original Secret Information. [

Proof (Sketch): Since the IDC proposed above is based on the
infractability of discrete logarithm problem, {p-1) must have at
least one large prime factor. For simplicity, we assume that
(p-1)=2tq, where t<<| p| and q is an odd prime. Without 1loss
of generality, for some n entities among the m entities, we have

the following matrix D’ such that

EID:
¥1D2
D' = :
EIDn
"“ - s

which satisfies | D’| # 0 {(mod q}. (We assume that the entities
are numbered as 1,2, -,n for the notational simplicity.) Here
we have an n dimensional vector a’={ai1’,a2’, *+,an’) over GFl(q),
where ai’=ai (mod q) (12 iS n). Define an arbitrary entity k's
secret-key sk’ by sk’=EIDk+a’ {mod p). Recalling ai’=ai (mod q)

{1£ iE n), sx' 1is not necessarily identical to the entity k's
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' is some

secret-key sx, however, the difference of sx and sk
constant times of q.

Hence the entity k’s original secret-key sk can be derived
at most in "t" trials, where p-1=2tqg and t<<| p| . O

Thus up to (n-1) entities never can derive the TC’s Secret
Information by ATTACK 7.5.2, while more than n entities can
find an n dimensional vector a’, which is equivalent to the TC's
Secret Information. If m(>n) entities find the a’, they can
efficiently evaluate an arbitrary entity’s secret-key, which im-
plies that the proposed IDC is completely destroved! Further
improvements will described in Subsection 7.5.3.

Security of Each Entity’s Secret-Key:

As discussed above, up to (n-1) entities never can derive
the TC’s Secret Information by the ATTACK 7.5.2 [NOTM87,Co87al,
while more than n entities can compute a’, which is equivalent
to the TC’s Secret Information. Here we consider the security
of each entity’s secret-key si against t{(< n) entities’' con-
spiracy. If t(< n) entities disclose their secret-key each

other, they have the system of linear congruences such that

— oo .
EID: ail sS1
EID:2 az S2
: : =§ {mod p-1)=D"+a (mod p-1),
EID: an Sm
L B I S L.

where for:.the notational simplicity, we assume that the t en-
tities are numbered as 1,2,---,t, If there exists a t dimen-
sional vector c=(ci,cz2,***,¢n) over Zp-1 such that for an entity

k, ¢ D"=% 1¢ic¢t ciEIDi (mod p-1)=EIDx (mod p-1), t(< n) entities
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can compute the k’s secret-key sx by sk=2 1¢i¢t cisi (mod p-1).
Noting that Zp-1 does not construct a field, it is easily shown
that t{< n) entities’ conspiracy can generate at most 2% other
entities’ secret~-key by 2 1c¢ic<t disi (mod p-1) for some di'’'s.

Hence the probability P: that t{< n) entities derive the
other entities’ secret-key is at most 2t/28=2t-n, Thus we have
the following Theorem:

THEOREM 7.5.3 [TIK87,T1I88] If t(< n) entities disclose their

secret-keys each other, then the probability P: that they

can derive the other entities’ secret-key will be bounded

by Pe< 2t-n, OO

Here we consider the necessity of the 1 to 1 one way func-
tion f(+) to define EID’s. Assume fhat t(< n) entities succeeds
to find the entity k's secret-key sk. Then they intend to make
their spy with Ibk infiltrate into the system. By their con-
spiracy, they know the entity k’s extended ID EIDk, however, it
is practically impossible for t entities to evaluate IDk because
EIDk=f{IDx) and f{(+) is one way function. Thus they cannot make
an illegal entity infiltrate into the IDC and at the same time
this implies that t{< n) entities cannot disclose the specified

entity’s secret-key.

7.5.3 PRACTICAL IMPROVEMENTS

This subsection presents some practical improvements such
that the construction of the the IDC over cyclic group Zy, the
identification for senders, the enhancement of the security and

the processing cost, etc. The modification in this subsection
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is of practical importaﬁce rather than of thecretical interest,
Construction of the IDC over Cyclic Group Zi:

The IDC proposed above is based on the intractability of
discrete logarithm over Zp, where p is an odd prime. Here we
consider an IDC based on finding index problem over cyclic group
Zyy, where N=pg. (The factorization of N is known only to the
TC.) By this minor change, the system in subsection 7.5.2 is
slightly modified such that (p-1) is replaced by A (N), where
A (N) is Carmichael function of N, and a generator g of the mul-
tiplicative group in Zp is replaced by that in Zy. For the
modified IDC, D.Coppefsmith showed an attacking method [Co87b],
which derives the TC’s Secret Information by the disclosure of

secret-keys of (n+l) entities.

Attack 7.5.4 [Co87b] If (n+1) entities disclose their
secret-keys each other, then they can derive an n dimen-

sional vector a’ over Zv, which is equivalent to the

original TC’s Secret Information. [I
Proof: For notational simplicity, we assume that (n+l) en-
tities are numbered as 1,2,-::,n+l. When (n+l) entities dis-

close their secret-keys each other, then they have the system of

linear congruences such that

. 4 — A — A
EID: al S1
EID2 az s2

: : =| : {mod A (N)).
EIDn+1 an Sm

Since each EIDi is an n dimensional vector over Zy, there exists

an (n+l) dimensional vector c={ci1,cz2,-**,Cn+1) over integer ring
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satisfying 2 1¢i¢n+1 ciEIDi=0, Thus we have %2 1¢i¢n+1 ciEIDi=0
(mod A (N)) and this implies that 3 1¢i¢n+1 cisi=Ad (N) for soﬁe
integer A. If A# 0, then the (n+l1) entities can have a constant
times of A (N) and can factor the composite moduli N [Mil76].
Then the similar method with ATTACK 7.5.2 is applicable to the
modified scheme, hence the TC’s Secret Information can be
derived by the disclosure of secret-keys of (n+l) entities. @O
Identification for Senders:

The modified IDC in the above has almost the same security
with the original IDC, however, in the modified IDC it is pos-
sible for each receiver to identify the senders introducing fur-
ther modifications.

| The further modified IDC is materiéliéed as follows: Let
e and d be an encryption and decryption-key of RSA for the TC,
respectively. FEach entity i receives ti=(IDi)d {(mod N) from the
TC and stores it secretly. The TC makes public the encryption
key e to all entities. {Note that any entities does not know the
decryption key d.) Furthermore the TC modifies the TC’s Public
Information h to h’=(h1’,h2’,:--,hn’), where hi’=(g2l)® (mod N)
{1 iS n). Assume that entity 2 transmits his meséage m to en-
tity 1. Then encryption and decryption of. the further modified
IDC are defined as follows:

Encryption:

Entity 2 computes zi from EID: and h’ such that

n Yii
z1= II {(hi’) {mod N)=(gsl)e (mod N},

i=1

Then entity 2 computes the ciphertext C=(ci,c2) for message m,
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where ci=t2g® {(mod N) and c2=mzi1* {mod N). Note that t2=(ID2 )4
{mod N} and r is a randomn number. Entity 2 sends the ciphertext
C to entity 1. The above transform can be carried out only by
the entity knowing "tz2". Thus the above scheme enables the en-
tity 1 to identify entity 2. O
Decryption:

Using the secret-key si, entity 1 computes

{(c1)eID2-1}sl=(t2greIDz-1)s! {(mod N)
=(IDz-1lgre)sl (mod N)

=(gre)s!l (mod N)

zz1? (mod N),
Thus entity 1 can recover the message m by computing

{{(c1)eID2-1}s1]-dca=(z17)-tmz1¥ (mod N)

=zm {mod N).

The above transform can be performed only by the entity
knowing "s1". 0O

By attaching some redundancies to the massage, e.g., name,
address, password, etc., the further modified IDC enables the
receivers to identify the senders because the decryption proce-
dure is defined to use the sender’s ID.

Enhancement of Security and Processing Cost:

The TC’s Secret Intformation of the original IDC is derived
by n entities’ conspiracy. {See ATTACK 7.5.2.) Here we consider
the practical counte?measure for the enhancement of the security
of the IDC. For simplicity, assume that n=512 hereafter.

The TC partitions 512Vdimensional binary vector B into

256 segments by every two bitg such that



=(seg1,segz2,°* " ,8eg256 ),
and defines al(ij;jk) (1S5 15 256,j,ke {0,1}). Then for each segi,
the TC computes h{i;jk)=gat¢iiik¥) (mod p) (12 ig 256,j,ke {0,11}),
and publishes the table including every h(i; jk}. Furthermore
the TC computes each entity’s secret-key sk=2 1¢i<256 ali;segki)
{mod p) depending on the EIDi, where segki implies i-th segment
of EIDk. Then the TC distributes it to each entitv through a
highly secure channel. The following table, TABLE 7.5.5, shows

the example of hl(i,Jjk)’s.

TABLE 7.5.5 Example of h{i, jk)

h{1;00})= 5 h(2;00)=21 h(3;00)= 4 h(4;00)=16
h{1;01)=13 h{2;01)=17 h(3;01)=23 hi4;01)= 2
h{1;10)=12 h{2;10})= 7 " h{3;10)=15 h{4;10)= 8
h{(1l1;11)= 9 h{2;11)=11 h{3;11}=18 h{4;11})=22

Suppose that entity 2 sends his message m to entity 1.
Encryption:

Entity 2 computes z1’=ll 1cic<256 hi{i;segii) from EID:i and

(55

the published table. Entity 2 mékes use of z1’' as zi in the
original IDC (in subsection 7.5.2.) to encrypt the message m. [
Decryption:

It canibe carried out exactly in the same way with the
original IDC in subsection 7.5.2.. 0O

Recalling the original 1DC, the TC's Secret Information is
derived by 512 entities’ conspiracy, whefeas in the above 1IDC,
it is derived by 1024(=4X 256) entities’ conspiracy. Further-

more the running cost for the encryption-kev generation of the



above IDC is about half of that in the original IDC, however,
the TC’s Public Information in the above IDC is about twice of
that in the original IDC. Further generalizations, e.g., parti-
tioned of each EIDi into 128 segments by every 4 bits, etc., are
possible and such schemes are regarded as the hybrid system of

the IDC and the conventional PKC,

7.5.4 DISCUSSION

This Section has developed an IDC based on the intrac-
tability of discrete logarithm problem {[TIK87,TI88] employing
ElGamal’s PKC [El85a]. In addition, this Section has analyzed
the security of the IDC and has presented several practical im-
provementé for the secure and efficient systen.

HiTanaka has stated a pessimistic personal opinion on the
establishment of the robust IDC against the conspiracy of en-
tities [Ta88]. His opinion on the IDC is that the establishment
of robust IDC’s is impossible. We personally think that there
exists a Jump of logic in his discussicon, thus we will not give
wholehearted support to his personal view. Under existing cir-
cumstances, we have no robust examples of IDC in Tanaka’s sense
and expect that the establishment of such a scheme is extremely
difficult. Thus the possibility for establishing robust IDC’s

must be theoretically studied.

7.6 CONCLUSION

In this Section, we have proposed several PKC’s and an IDC

and have studied the security against possible attacks. Here we



restate the results in this Section and describe further works.

Subsection 7.2 has analyzed the security of the general
and multiplicative Knapsack—Typg PKC’s. For general Knapsack-
Type PKC's, we have shown some sufficient conditions for Knap-
sack Problems to be solved in linear time [IKT84]. On the other
hand, for the multiplicative Knapsack-Type PKC proposed by Chor
and Rivest [CR841]}, we have developed an attacking method and
have proven that the secret-key can be derived if the Lknapsack
vector ¢ includes at most three elements whose values are close
to each other [KIST87]. Furthermore we have shown that the
secret-key of the PKC is not unique [KIST87].

Subsection 7.3 has presenﬁed‘an PKC baéed on the dif-
ficulty of solving a system of non-linear equations [ TKIFM86,
TKIFM87,TFH88a,TFH88b]. InAordér.to establish secure PKC’s, we
have defined a Partially Sequéntially Solvable (denoted PSS)
transform and a Kernel of the PSS.transform [TFH88a,TFH88b]. We
also have studied the security of the PKC and have shown that
the PKC is secure against possible attacks.

Furthermore Subsection 7.4 has proposed a PKC based on the
intractability of factoring a large composite number [KIT87,
KIT88a,KIT88b]. We have Surveyed;the related works to the PKC,
i.e., Rabin’s scheme and Williamsi.scheme, and have demonstfated
the advantages such as the unigueness of the decryption, low
running cost, etc. In addition, we have proven that inverting
the PKC is hard as factoring the composite moduli. This implies

that the PKC is provably secure under the assumption that fac-
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toring a composite ﬁumber is hard. K.Kurosawa has developed g
cryptographically strong pseudo-random sequence generator [BM84,
BBS86]1 by applying the PKC [Ku87] and he also has extensively
studied the k~th bit security of the PKC [Ku88].

Finally Subsection 7.5 has developed an IDC based on the
difficulty of discrete logarithm problem [TIK87,TI88] emploving
ElGamal’'s PKC [El85al. We have studied the security of the IDC
against the conspiracy of entities and have proven that t(< n)
entities’ conspiracy never derive the TC's Secret Information
while it finds the other entity’s secret-key with probability at
most 2t-n, In addition, we have shown some practical improve-
ments for establishing secure and efficient IDC.

Recent studiés.on IDS have found out that IDC could be
materialized in two ways, i.e., one is the original IDC and the
other is the composition of IDKDS and the private-key cryptosys-
tem. We have already had several realizations for IDKDS [B182,
KO87,M187,0ka87,Ta87]. If a robust and efficient IDKDS would be
developed, then the composed scheme of IDKDS and the private-key
cryptosystem is more advantageous than the original IDC, because
the secure and efficient private-key cryptosystems, e.g., DES
and FEAL {SM87], are available. Okamoto’ scheme [0ka87] is con-
structed by composing;Diffie and Hellman’s Key Distribution Sys-
tem [DH76] and the éignature scheme by RSA, The scheme is not
only efficient but also fairly robust against the conspiracy of
entities under the reasonable assumptions, i.e., RSA is hard to
invert and Diffie and Hellman’s PKDS is secure. Thus it is sup-

posed to be one of the most promising IDKDS’s.



In the development of PKC’'S and IDS’'s, the robustness and
the efficiency are significant factors to be considered. For
the robustness, careful analyses on the proposed schemes must be
required, however, in the light of secure communications, it is
the most preferable to show the equivalency to some intractable
problems. On the other hand, the efficiency of the schemes in
general is donimated by running costs, parallelizability, etc.
Especially for the finite field arithmetics, most of the opera-
tions are composed of the simple ones such as additions, sub-
tractions, multiplications and divisions. Thus the development
of the fast algorithms and the compact configurations for those
operations are guite useful to design high performance cryp-
tographical instruments. |

Hence the algorithms developed in Chapter Il ,IV ,V and VI
are expected to provide considerable efficiency being applied to

the PKC’s and IDS’s.
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CHAPTER Vi :

CONCLUSIONS AND PERSPECTIVES

In this dissertation, we have studied several algorithms
for finite field arithmetics such as multiplications, divisions,
finding roots of gquadratic equations and deciding quadratic
residuosity, and have presented the systematical configurations
of those algorithms.

Here we restate the main results in each Chapter.

In CHAPTER Il , we have presented a parallel type multi-
plier for GF(2m) based on the canonical basis, which has less
circuit size than a parallel type‘Méssey-Omura Multiplier. In
order to generalize the multiplier based on the canonical basis,
we have defined a polynomial of a sbecified form, called Egqually
Spaced Polynomial (denoted ESP), ana'have shown a necessary and
sufficient condition for the ESP’s to be irreducible. Further-
more we have developed a parallel type multiplier based on the
ESP’s, which has the structural regularity and modularity.

In CHAPTER IV, we have proposed two kinds of fast division
algorithms, i.e., one is sequential type and the other is recur-
sive type. 1In addition we have shown several lemmas on the gen-
eration of normal bases and have devéloped the two types of the
configuration for the recursive algorithm in GF(2™ ), both of
which have simultaneous size O(m3) and depth O((log m)),

In CHAPTER V , Wwe have presented an efficient probabil-

istic algorithms for solving quadratic equations over GF(2m™) and



GF({p), and also have shown the advantageous feature, i.e.,vthe
~uniform efficiency for the number of random trials.

In CHAPTER VI, we have developed an efficient decision al-
gorithm for quadratic residuosity in GF(p®), where p is an odd
prime and m2 2. (The study is strongly related to that in CHAP-
TER V .) Furthermore we have compared the performance with that
of the other algorithms and have verified the availability of
the proposed decision algorithm.

In CHAPTER VI , we have analyvzed Knapsack-Type PKC’s and
have shown the conditions for the design of secure PKC's. Fur-
thermore we have presented two types of PKC's, i.e., the PKC
based on a system of non-linear equations and the PKC based on
factorization of a large composite number, and have develoéed
identity-based cryptosystem (denoted IDC) based on the hardness
of discrete logarithm problem. For the PKC based on a systém of
non—-linear equations, we have considered some possible attaqks
and have shown that the PKC is secure against the demonstrated
possible attacks. For the PKC based on factorigation of a large
composite number, we have proven that inverting the PKC is as
hard as factoring the composite moduli. (This implies that the
PKC is provably secure under the assumption that factoring is
hard.) Furthermore forvIDC based on the intractability of dis-
crete logarithm problem, we have analyzed the security agaiﬁst
the conspiracy of some entities and in addition have shown
several practical improvements to establish a secure and effi-
cient 1IDC,. We finally discussed the applications of the algo-

rithms developed in CHAPTER [ ,IV ,V and VI to the PKC’s and
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have pointed out the significance of finite field arithmetics

and the remarks for the development of such algorithms.

Here we will describe the perspective for the studies on
the cryptographies and the related technical areas.

In CHAPTER [l , we have studied the configuration of multi-
pliers in GF(2™), however, we could not vet have provided an
universal method to design multipliers for GF(2") with arbitrary
m. Hence for every m, the constructive method must be developed
to design multipliers for GF{(2"), which have the regularity and
the modularity in the structure and can be implemented with
small circuit size O{m? ). Furthermore as a theoretical inter-
est, we must figure out which cases satisfy the minimum term
condition for MOM by S.A4.Vanstone [Va87]. (See Lemma 3.10.)

In CHAPTER IV, we have presented the recursive division
algorithm and have developed two types of the divider for recur-
sive algorithm. The divider has simultaneous size O({m3) and
depth O((log m)2), however, further studies will be required in
the light of Area and Time Optimality.

We finally refer to the perspective for the studies on
cryptographies. The PKC itself is a fairly attractive and in-
teresting research field, while the concept of the PKC provides
several applications, e.g., identification schemes, signature
schemes, cryptographically strong pseudo-random bit generator
(denoted CSPRBG) [BM84,BBS86], interactive proof system [Ba85,
GMR85], etc. The most significant point is to establish prov-

ably secure systems.
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In 1985, S.Goldwasser, et.al. defined an interactive proof
system, in which the prover proves the correctness of his state-
ment to the verifier with no additional information except for
the correctness of the statement. They named the above system
Zero-Knowledge Proof System (denoted ZKIP). In their defini-
tion, zero-knowledgeness is formulated by polynomial time indis-
tinguishability, which is also emploved in CSPRBG [BM84,BBS861}.
The ZKIP is a considerably useful tool to establish provably
secure systems such as identification schemes [FS86,FFS87] and
signature schemes. In 1986, A.Fiat and A.Shamir presented a
zero-knowledge identification scheme [FS86] and in 1987 U.Feige,
et.al. formulated strict definition for zero-knowledge and es-
tablished a.zero-knowledge identification scheme [FFS387]. {Note
that [FS86] and [FFS87) are needless to say provably secure!)
Further theoretical results for ZKIP are as follows:
R1. [GMWS86] If there exists a secure.probabilistic
encryption, then all NP-statements have the computa-
tional ZKIP. O

R2. [For87] Unless the polynomial time hierarchy
[St77] collapses to the second level, then any NP-
complete language does not have the perfect and the
statistical ZKIFP. O

R3. [SMP87] .Non~interactive zero-knowledge proof sys-
tem exists under the assumption that quadratic
residuosity is hard. O

R4. [BFM88] Non-interactive zero-knowledge proof sys-

tem exists under the assumption that distinguishing
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products of two primes from those product of three

primes is hard. O
As describes above, the analysis for the security of cryp-
tographical schemes requires to prove the security, i.e., to
show that cryptographical schemes are secure against any at-
tacks. In order to establish provably secure systems, theoreti-

cal foundations and strict formulations must be studied.
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