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Abstract

The giant planets (i.e., Jupiter-like planets) are characterized by massive hydrogen-rich
atmospheres (which are often called envelopes). The formation of the envelopes is explained
in the context of the nucleated instability model. According to this model, when an ice-
rich core, which is embedded in a hydrogen-rich nebula, grows to a critical mass owing to
planetesimal accretion, it captures the surrounding nebular gas to form a massive envelope.
The widely accepted value of the critical core mass, more than about 10Mg (Mg: Earth
mass), was based on some nominal values of the parameters involved in this model. This
value is, however, larger than the estimated mass of the core of Jupiter (< 10Mg) and seems
to be too large to be formed within the lifetime of the nebula (~ 107yr). Furthermore, the
existence of the extrasolar giant planets orbiting very close to their central stars implies that
the critical core mass should be smaller than 10Mg, because there would be insuflicient mass
of solid materials around their present locations to produce such massive cores.

The accretion of the envelope is regulated by core accretion rate and grain opacity. Ac-
cording to the planetary accretion theory, the core accretion rate varies considerably, depend-
ing on the stage of planetary growth. In particular, it is suggested that the core accretion
would almost stop before the mass of the core reaches the conventional critical core mass.
The previous works cannot give any answer to how the gas accretion proceeds after the core
_accretion has stopped. The grain opacity of the ancient envelope gas is highly uncertain,
because it depends on the abundance and sizes of the grains that are quite difficult to know.
Furthermore, to explain the formation of a variety of the extrasolar giant planets, we should
take difference in the physical properties of the planet-forming nebulae into consideration.
In this study, we have investigated the accretion time of the envelope as well as the critical
core mass for a wide range of the core accretion rate, the grain opacity, and the density and
temperature of the nebular gas. We have also studied the case in which the core accretion
stops before the onset of rapid gas accretion.

Our main results are as follows. (1) The critical core mass is as small as ~ 0.1Mg for
sufficiently small core accretion rate and/or grain opacity, which indicates even a small core
(2 0.1Mg) can begin to capture the nebular gas, if its growth stops. (2) The accretion
time of the envelope, 7, depends strongly on the critical core mass, moderately on the grain
opacity, and very weakly on the past core accretion process; 7, is expressed approximately
as 75 ~ 1 x 101° f(M./Mg)~3%yr, where M, is the critical core mass and f is the ratio of the
grain opacity in the envelope to that in the interstellar cloud. (3) The critical core mass (and
the accretion time of the envelope) decreases with increasing nebular density and decreasing
nebular temperature. Furthermore, the critical core mass decreases as the distance from the
central star decreases in typical nebula models; for example, it reduces to 2 —~3Mg at 0.05AU
in a dense nebula with surface density about 10 times as large as that of the minimum-mass
solar nebula.

Our results combined with those of the planetary accretion theory suggest the following.
Jupiter could form at its current position within a few 107yr, if f < 0.01 or the initial surface
density of solid materials, £, was a few times larger than that of the minimum-mass solar
nebula, Zg. Furthermore, the mass of the core at the onset time of the gas accretion would
be 2 to 9Mg, which is consistent with the present core mass of Jupiter (< 10Mg). On the
other hand, the extrasolar giant planets orbiting around 0.05AU could form in their current
positions in a period much shorter than 1 X 107yr if g ~ 102" such nebulae have been
detected observationally. For Saturn, Uranus, and Neptune, gravitational effects of Jupiter,
which formed earlier than they, should be considered (for example, outward migration of
protoplanets). In considering such special conditions, our results are useful and can be readily
applied to the problems.
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1 Introduction

From the physical point of view, planets are classified in two major cat-
egories: the terrestrial planets and the giant planets. In the solar system,
Mercury, Venus, the Earth, and Mars belong to the former and Jupiter, Sat-
urn, Uranus, and Neptune to the latter. Roughly speaking, the giant planets
have three different physical properties from those of the terrestrial plan-
ets. First, the giant planets have large masses of 8.68 x 10%g (Uranus) to
1.90 x 103%g (Jupiter), whereas the mass of the largest terrestrial planet, the
Earth, is 5.98 x 10?"g. Next, the giant planets have a large amount of hy-
drogen and helium; by contrast, the terrestrial planets are mainly composed
of rocky and m-etallic materials. Finally, while the terrestrial planets exist in
the inner parts of the solar system, from 0.39 (Mercury) to 1.52 AU (Mars)
(AU is the astronomical unit of distance and equal to the semimajor axis of
the Barth, 1.5 x 10%cm), the giant planets exist in the outer region, from
5.20 (Jupiter) to 30.1 AU (Neptune). It is an interesting issue why the solar
system has two kinds of planets. 7

The recent observations of Keplerian Doppler shifts in solar-type stars
have revealed that there exist planetary systems other than the solar system
(see Marcy and Butler (1998) for a review). To date, about 50 planets have
been detected, since the first discovery of 51 Peg b by Mayor and Queloz
(1995). All of them are comparable in mass to Jupiter. These planets are
called extrasolar planets. What is surprising is that, whereas our giant plan-
ets exist in the outer parts of the solar system, the extrasolar planets have
orbits with very small semimajor axes (from 0.05 to 3 AU). Thus, we are

faced with another intriguing problem, which is how the planetary systems



apparently different from our solar system were formed.

1.1 Formation Processes of the Giant Planets

The formation of the giant planets can be explained within the scenario
of the nucleated instability model, which is predicted by the standard theory
of planetary formation (Safronov 1969; Hayashi et al. 1985). According to
the standard theory, there exists a centrifugally supported, flattened disk
composed of gas and dust (which is hereafter called a nebula) around a
young central star at the starting point of planetary formation. In the neb-
ula, planetesimals with sizes of the order of a kilometer are formed through
gravitational fragmentation of a sedimentary dust-layer (Goldreich and Ward
1973; Sekiya 1983) or through direct sticking of um-size particles (Weiden-
schilling 1980; Cuzzi et al. 1993). Then, a number of planetesimals collide
and coalesce with each other to form relatively massive protoplanets. When
the protoplanet embedded in the nebula grows in mass to about the lunar

“mass (~ 1x10%%g), it can attract the surrounding nebular gas gravitationally,
although the mass of the attracted gas is much smaller than the protoplan-
etary mass. As the protoplanet becomes more massive because of further
accretion of planetesimals, it gathers the nebular gas more and more to form
a dense atmosphere. In such a stage, the accretion of planetesimals plays
a primary role in the structure of the atmosphere in two different manners.
An increase in the protoplanetary mass caused by the accretion of planetes-
imals leads to an increase in gravity force, thereby making the atmosphere
compact. On the other hand, a large amount of the gravitational energy is

released at the bottom of the atmosphere by incoming planetesimals, so that



the protoplanetary atmosphere is warmed and lifted up against the gravity
force. By the balance between these opposite effects, the atmosphere can be
completely in hydrostatic equilibrium.

When the protoplanet grows beyond a certain level of mass, the mass of
the atmosphere occupies a substantial portion of the protoplanetary mass and
acts as a source of the gravity force. That is, the protoplanetary atmosphere
comes to the so-called self-gravitating system, which is essentially different
from the usual physical system in the sense that it has a negative heat capac-
ity as a whole (such a self-gravitating atmosphere and the central solid part
are called the envelope and the core, respectively). Radiative loss from the
surface of the envelope (i.e., the luminosity) inevitably leads to an increase
in the internal energy of the envelope. On the other hand, the gravitational
energy of the envelope must decrease because of the energy conservation. In
other words, the envelope contracts gravitationally, more or less, because of
the radiative loss, so that it is never maintained in hydrostatic equilibrium.

In the case of the protoplanet embedded in the nebula, the system is not
closed but open, because fresh nebular gas can enter the system when the
envelope contracts (e.g., Miki 1982). The contraction of the envelope leads
not only to release of its own gravitational energy, but also to enhancement
of its self-gravity. When the mass of the core reaches a certain critical mass
(which is called the critical core mass), the latter effect dominates the former
one, resulting in acceleration of the gas accretion. In this way, the protoplanet
captures the surrounding nebular gas and becomes a massive gaseous planet.

As understood from the above-mentioned formation process, the condi-

tions for a protoplanet to become a Jupiter-like planet are (1) that the mass



of the protoplanet (i.e., the solid core) reaches the critical core mass and
(2) that the protoplanet captures a significant amount of the nebular gas
within a suitable time. Apparently, the inner planets of the solar system
did not satisfy these two conditions, but those of the extrasolar systems did.
How large cores can be formed will be constrained by the isolation mass (see
§1.2.1 for the definition), which is given by the planetary accretion theory.
Furthermore, as far as the giant planets of the solar system are concerned, the
current masses of the central cores, which are provided by the studies of the
internal structures of Jupiter, Saturn, Uranus, and Neptune, offer additional
constraints (see §1.2.2). On the other hand, ”the suitable time” included in
Condition (2) will be suggested by the observationally inferred lifetime of the
nebula (see §1.2.3). Our main purpose is to show that protoplanets with the
masses given by the studies of planetary accretion and the internal structures
can capture sufficient amounts of the nebular gas within the lifetime of the

nebula.

1.2 Theoretical and Observational Constraints

1.2.1 Theory of Planetary Accretion

Accretion rate of a protoplanet (i.e., a solid core) is quite important to the
formation theory of the giant planets. It gives not only formation time of a
solid core, but also energy input rate to the envelope. Hence, we should know
it in detail. As a result of the recent progresses in the theory of planetary
accretion, the accretion process of protoplanets has been clarified to a great
extent.

Supposing that a protoplanet is surrounded by an assembly of planetesi-



mals, we can write growth rate of the protoplanet, MC, as (Safronov 1969),
M, = pamR?0,v, =~ Sqm R20,0x, (1)

where pg and X4 are, respectively, the spatial density and surface density
of the assembly of planetesimals, R. the radius of the protoplanet, v, the
velocity dispersion (i.e., the sum of random velocities of the protoplanet
and the planetesimals), and Q the Keplerian frequency. In Eq. (1), we
used the relation pg ~ 240k /v, where Qx /v, represents the thickness of the
planetesimal disk (e.g., Hayashi et al. 1985). Furthermore, ©4 (which is
often called the Safronov number) is a factor representing the gravitational

focusing effect and given by (Safronov 1969)

€8C (2)

where ves is the escape velocity from the protoplanet (= m) The
larger ©4 yields the higher M.,

In the early stage of planetary accretion, the random velocity of a pro-
toplanet is suppressed to be lower than that of planetesimals because of a
dynamical friction between the protoplanet and the planetesimals, so that
v, is almost equal to the random velocity of the planetesimals. Especially in
the stage where the mass of the protoplanet is small, the random velocity
of the planetesimals is determined so that a stirring effect between the plan-
etesimals balances with a dissipative effect of gas drag and is maintained to
be very low. In this case, since v, does not depend on the mass of the proto-

planet, the relation between the growth rate and mass of the protoplanet is

given by
M. M M3, (3)
iMc Rgvgsc
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This equation means that a large protoplanet grows more rapidly than smaller
planetesimals. Such a stage is called the runaway growth stage (Greenberg et
al. 1978; Wetherill and Stewart 1989) and the growth rate of the protoplanet
is quite high because of small v, (i.e., large Og).

However, the initial runaway growth of the protoplanet is soon followed
by slow gr'owth (Ida and Makino 1993) when the protoplanet becomes large
enough to enhance the random velocity of neighbor planetesimals almost to
Vese. The protoplanet spends most of its growth period in this stage rather
than in the runaway growth stage. In such a stage, the random velocity of the
planetesimals is determined by the balance between the stirring effect caused
by the protoplanet and the dissipative effect of the gas drag. Asa result, the
growth time, 7., required for a protoplanet located at the semimajor axis, a,

to grdw to the mass, M,, can be estimated as (Tanaka and Ida 1999)

M 1/3 Sy -1 a \31/12 m 1/9
o= 58 x 107 | " = ( ) :
5810 <10M@> <>:§> 5AU omg) W

where m is typical mass of planetesimals (note that the above equation is

valid only for the outer region of the solar system, i.e., a > 2.7AU). Here,
the superscript ¥ means the value prescribed by the so-called minimum-mass
solar nebula model (Hayashi 1981), which has been widely adopted as the
standard model of the initial condition for the solar system formation.

The behavior of planetary accretion in the slow growth stage is qualita-
tively different from that in the runaway growth one. That is, the larger pro-
toplanet grows less rapidly than the smaller one in the slow growth stage (ie.,
M,/ M, o< MF1/3), while the larger one grows more rapidly than the smaller
one in the runaway growth stage (i.e., M,/M, < MZ'/®). Suppose that a

protoplanet has entered the slow growth stage and the other planetesimals
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stay in the runaway growth one. The largest one of the planetesimals grows
faster than the others to become a protoplanet and, furthermore, faster than
the protoplanet which stays in the slow growth stage. This process occurs
successively to form several protoplanets. According to N-body simulations
by Kokubo and Ida (1998), the several protoplanets are formed with the
orbital separat'ions of about 10 times as large as their own tidal radii; the
separation is caused by orbital repulsion. In such a stage, the growth rate of
the protoplanet decreases because of depletion of planetesimals, so that the
growth of the protoplanets no longer proceeds. The protoplanetary mass at
this stage is called the isolation mass, Mis, and given by (Kokubo and Ida

1998)
/2
Ed s a 3/4 ~
0.1 x (aﬁ‘) (m) A[@ for a < 2.1AU,

TN\, g 34
L7XG§> (ﬁﬁ> M for a > 2.7AU.

A’[iso = (5)
As found from this equation, as far as the minimum-mass solar nebula is con-
sidered, at most 2M cores can be formed in Jupiter’s region. Furthermore,
only about 0.01 Mg cores can be formed around the locations of the detected

extrasolar planets (~ 0.1AU).
1.2.2 Current Core Masses of Our Giant Planets

The model of the giant planet formation in the solar system should be
constructed based on the constraints provided by the studies of the internal
structures (especially, the masses of the cores) of Jupiter, Saturn, Uranus, and
Neptune. The estimation of the current core masses involves the calculations
of interior models matching the observed gravitational fields. Each of the four

giant planets is believed to consist of a central dense core and a surrounding

rd
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gaseous envelope composed by hydrogen, helium, and small amounts of heavy
elements. Although relatively large core masses of Jupiter and Saturn (10 —
30Mp) were estimated in the previous works (see Stevenson (1982a) for a
review), the recent studies do not necessarily suggest the existence of such
large cores; the estimated core masses are 0 — 10Mg and 6 —15Mg for Jupiter
and Saturn, respectively (see Wuchter! et al. (2000) for a recent review). The
main reason for the discrepancy is that the determination of the core mass
is very sensitive to changes in the equation of state and presumed chemical
compositions. On the other hand, Uranus and Neptune have large cores with
masses of 70 — 90 % of their total mass. Each value of the core mass offers
an upper limit on the critical core mass for each planet.

It should be noted that the estimated core mass of Jupiter is very small
compared to that estimated by the previous workers. As described in §1.3,
the previous theory of the giant planet formation was constructed in the

belief that Jupiter had a central core with mass of 10 — 30 M.
1.2.3 Lifetime of a Nebula

There is another constraint on the time of the giant planet formation.
All the planets of the solar system must have formed in 4.6 billion years,
i.e., the solar age. In addition, dissipation time of a nebula (which is of-
ten called lifetime of a nebula) places a strict constraint on the formation
of the giant planets. Observations of pre-main-sequence stars based on in-
frared emission in excess of stellar photospheric fluxes (Strom et al. 1993)
or emission at the frequencies of the rotational transitions of CO molecules
(Zuckerman et al. 1995) show that many of them have optically thick disks.

The former observations suggest that such disks evolve from optically thick

8



to optically thin structures in about 1 x 107yr. The latter ones show that
the CO lines are not detected around the stars with ages of more than about
1 x 108yr. From these observations, the typical lifetime of nebulae is inferred
to be 1 x 105 — 1 x 107yr. If this estimation is correct, it follows that the
giant planets had to form within a period of 1 x 107yr after the central star
formed. Howe\'rer, it is a matter of controversy whether these observational
results represent the complete dissipation of the nebulae. The depletion of
the infrared excess indicates only that of dust particles. In addition, the
depletion of CO molecules may represent CO freeze-out onto cold dust par-
ticles. Furthermore, the dissipation processes are theoretically unclear. At
present, it will be sensible to consider that the lifetime of a nebula is of the

order of 107yr (see Thi et al. 2001).
1.2.4 Masses of Nebulae

To explain the formation of a variety of planetary systems, we should
take a variety of planet-forming nebulae, in particular, nebular masses, into
account. The observations of nebulae e;round young stars show that the
nebular masses range from 0.005Mg to 0.2M (e.g., Beckwith and Sargent
1996). On the other hand, the minimum-mass solar nebula model, which we
usually use, were constructed under the assumption that the planets of the
solar system were formed near their present locations through the collection
of all the local solid materials (Hayashi 1981). The mass of the minimum-

mass solar nebula is about 0.01Mg!. Thus, we can consider the formation of

planetary systems in the nebulae whose masses are about 10 times as large

IExactly speaking, the total mass of solid materials is inferred to be about 1 x 1074 My
in the minimum-mass solar nebula model. On the other hand, the mass of gas is estimated
under the assumption that it is about 100 times as large as that of solid materials.

9



as that of the minimum-mass solar nebula. Furthermore, even in the case
of the solar system, we can consider somewhat a larger amount of materials
compared with that of the minimum-mass solar nebula, because not all the
solid materials are considered to have been taken in the planets.

When we consider dense nebulae, we have to keep in mind whether the
nebulae are stable against the gravitational instability of a gaseous disk or
not. If the nebular density is so high that the disk instability occurs, a
giant planet should be formed through the disk instability rather than the
nucleated instability, because the formation time through the disk instability
is much shorter than that through the nucleated instability. The condition for
the gravitational instability of a Keplerian rotating disk is given by Toomre
(1964) as

cslk
Sa >

where ¥, is the surface density of the nebular gas and cg is the sound velocity

of the nebular gas. Writing the above equation in terms of the density, po,

we obtain
disk s 8\ 3
Po > Poer = 9.3 x 10 (m) gem
a \-Ll/A4
~ 78 o, 7
(IAU ) Po )
where pdk is the critical density for the disk instability and pt! is the density

given by the minimum-mass solar nebula model (see Eq. (29)).
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1.3 Review of Previous Works on the Giant Planet
Formation

1.3.1 Pioneering Works

The basic concept of the nucleated instability model is as follows. A
relatively massive solid core grown through planetesimal accretion attracts
the surroundihg nebular gas gravitationally to form a gaseous envelope. The
envelope is defined as a gas inside a sphere with the surface where the gravity
due to the solid core (plus the envelope) balances either with the tidal force
caused by the central star or with a repulsive force originating from thermal
motion of the nebular gas; outside the sphere, the gas cannot be gravitation-
ally bounded because of the Keplerian shear motion or thermal one. The
radius of the sphere is called the planetary radius, at which the envelope fits
smoothly onto the nebula. As the core grows, the planetary radius expands
and, furthermore, the envelope contracts. As a result, there occurs further
gas accretion leading to an increase in the mass of the envelope.

This concept is based on the pioneering work done by Perri and Cameron
(1974). They constructed models of the gaseous envelope assuming that
the envelope was in hydrostatic and thermal equilibrium and was wholly
convective. By integrating the equation of hydrostatic equilibrium inwards
from the planetary radius, which was determined by the planetary mass, to
a radius at which the mean density predicted by the envelope solution was
equal to the presumed core density, they determined the relation between
the core mass and the planetary total mass. They found that there existed a
critical core mass, beyond which no hydrostatic solution could be obtained,

and predicted that the envelope collapsed onto the core to be tightly bounded
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when the core mass exceeded the critical core mass. However, the obtained
values of the critical core mass were very large (60 — 120Mg) compared to
those which had been inferred by the studies of the internal structures of
the four giant planets (10 — 30Mg; see Stevenson 1982a). They also pointed
out that appropriate treatment of the thermal structure of the envelope was
required for explanation of the present core mass, because the value of the
critical core mass was very sensitive to an adopted adiabat and the radiative
transfer became important, at least, in the outer parts of the envelope.
This problem was challenged by Mizuno (1980) following Mizuno et al.
(1978). He took radiative transfer as well as convective one into account ac-
cording to the familiar way for determining stellar structures. Calculations of
radiative transfer require an exact knowledge of the amount of energy flux in
the envelope as well as opacity. Mizuno (1980) considered that the energy was
supplied at the surface of the core by planetesimals that fell onto the core at
a constant rate of 1 x 1078 Mg /yr. On the other hand, he considered gas and
- grains as the opacity sources. The grain opacity depends on the abundance
and sizes of grains, both of which are quite uncertain. Therefore, he treated
the grain opacity as a parameter. Following Perri and Cameron (1974)’s pro-
cedure, he obtained the critical core mass that was smaller (~ 10Mg) than
that by Perri and Cameron (1974). In addition, they found numerically and
explained analytically that the value of the critical core mass scarcely de-
pended on the distance of a planet from the Sun (also see Stevenson 1982b).
However, there remained an important problem, because the planetary total
mass (almost twice as large as the core mass) at the critical point was much

smaller than the current Jupiter's mass and Saturn’s mass. This indicated
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the need for evolutionary calculations beyond the critical core mass.

Bodenheimer and Pollack (1986) first performed the quasi-static evolu-
tionary calculations of the envelope in the similar way to that of evolutionary
simulations of pre-main-sequence and post-main-sequence stars except the
existence and growth of a central incompressible core. That is, they assumed
that the envel(')pe was in hydrostatic equilibrium but not in thermal one. For
the parameters almost the same as those used by Mizuno (1980), they showed
that, beyond the critical core mass obtained by Mizuno (1980), the envelope
increased in mass much more rapidly (but never collapsed) than the core to
the present mass in a negligibly short period compared to that needed for
the arrival at the critical core mass.

The main conclusions of these pioneering works were (1) that the critical
core mass was about 10Mg, (2) that the accretion time of the envelope was
much shorter than that of the core, and (3) that the critical core mass and
the accretion time of the envelope scarcely depend on the distance from the
Sun. These conclusions were widely accepted, because both the value of the
critical core mass itself and the similarity of it among the four giant planets
were consistent with the fact deduced in 1980s by the studies of the internal
structure of the four giant planets that all the four giant planets had cores
with masses of about 10Mg. However, the value of the critical core mass
(Conclusion (1)) is not consistent with the isolation mass (see §1.2.1) and
the present core mass of Jupiter (see §1.2.2). Furthermore, the formation of
a 10Mg core, for example, at 0.05 AU, requires the initial surface density of
solid materials more than 100 times as high as that of the minimum-mass

solar nebula. Such a dense nebula has not been detected yet (see §1.2.4).
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Finally, it may have to be noted that Wuchterl (1991) performed dynam-
ically (i.e., without assuming hydrostatic and thermal equilibrium) evolu-
tionary calculations of the envelope. He obtained a surprising result that a
hydrodynamical instability occurred and a substantial fraction of the enve-
lope mass was ejected on a dynamical timescale just after the mass of the core
exceeded the critical core mass. This instability probably stems from the so-
called k-mechanism (see Kippenhahn and Weigert 1990) in which amplitudes
of oscillation grow because of injection of energy by enhanced absorption of
radiation at maximum compression and enhanced emission at maximum ex-
pansion. The occurrence of this instability is, as a matter of course, very
sensitive to opacity data, in particular, the grain opacity near evaporation
points of grains (Wuchterl 1995). It is difficult to know the grain opacity
exactly, mainly because it requires an exact knowledge of compositions of
grains (cf. Pollack et al. 1985). So, whether such instability really happens
or not is controversial. Actually, Tajima and Nakagawa (1997) carried out a
careful check on the dynamical stability of the envelope during its evolution
using quasi-static calculations, but they could not detect the occurrence of
such instability. Therefore, we will not consider the dynamical instability in

this study.
1.3.2 Recent Progresses

As described in §1.2.1, the growth rate of a solid core (i.e., the core
accretion rate) changes considerably from stage to stage, namely from the
runaway growth stage to the isolation one followed by the slow growth one.
Nevertheless, the pioneering works (Mizuno 1980; Bodenheimer and Pollack

1986) assumed constant core accretion rates. This point was improved by
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Pollack et al. (1996), who simulated the gas accumulation process combined
with a time-dependent core accretion rate based on the numerical calculations
by Greenzweig and Lissauer (1992). They concluded that, if the initial surface
density of solid materials was 3 - 4 times as high as that of the minimum-mass
solar nebula, cores with masses of more than 10Mg could form to capture the
nebular gas comparable in mass to the present envelope within a period of
(1-10) x 10%yr. However, the core accretion rate used by them was debatable.
Especially, the Safronov number, O, was quite large (©g ~ 1 x 10 -1 x 10°%)
because they neglected the stirring effect caused by protoplanets, so that the
cores with masses of more than 10Mg could form in (1 — 10) x 10%yr. As
pointed out by Bryden et al. (2000), such a large ©, cannot be realized unless
any special situations are set up. Although the situation was not realistic
one, it is worth while noting that they found a new dominant phase (called
"Phase 2"} after the isolation, during which both accretion rates of solids
and gas were relatively small and almost constant with time. Such a phase
seems to be consistent with the prediction of the recent theory of planetary
accretion (Kokubo and Ida 1998). This phase is very important, because
it would occupy most of the formation period. However, the mechanism
involved in this phase was not clarified.

All of the above-mentioned previous works focused on the giant planets
of the solar system. Recently, Papaloizou and Terquem (1999) and Boden-
heimer et al. (2000) constructed models of the formation of the extrasolar
planets orbiting close to the central stars. The issue is particularly chal-
lenging, since it is difficult for a core with mass of about 10Mg to form in

such an inner region, as implied in Eq. (5). To overcome this difficulty, Pa-
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paloizou and Terquem (1999) proposed that a protoplanetary core grew in
mass owing to significant core accretion through its inward migration (Lin
and Papaloizou 1993; Ward 1997) and then reached the massive critical core
mass (20 —40Mg) after its journey from 5AU to ~ 0.1AU. However, whether
the migration of protoplanets actually occurred or not is still an unsolved
problem. "I‘he giant planets, including our four ones, orbit at a variety of
semimajor axes ranging from 0.05 AU to 30.1 AU. There is no answer to how
they could stop in their current positions if all of the planets formed through
orbital migration.

In contrast, Bodenheimer et al. (2000) investigated the possibility of the
in situ formation. They assumed a high core accretion rate of 1 x 107> Mg /yr
produced by plenty of solid materials with surface density of about 40 times as
high as that of the minimum-mass solar nebula or maintained by delivery of
planetesimals from the outer region to the formation site. They also showed
that a protoplanetary core could grow to 30—50Mg and then could capture a
large amount of gas in situ. However, the existence of such a dense nebula has
not been observationally ensured (see §1.2.4). In addition, the mechanism
for the delivery of planetesimals such that the high core accretion rate can
be maintained is quite unclear. Whether such an ad hoc assumption is really

needed or not should be investigated.

1.4 The Purpose of This Study

The previous workers (Pollack et al. 1996; Papaloizou and Terquem
1999; Bodenheimer et al. 2000) constructed formation models for some of

the detected giant planets (including our giant planets). They had to set
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some special situations in which massive cores (> 10Mg) could form in short
periods, because they believed that smaller cores were insufficient to capture a
large amount of nebular gas. The recent planetary accretion theory, however,
does not suggest that cores can grow in mass to about 10Mg (see §1.2.1).
The recent study of the internal structure of Jupiter also denies the existence
of such a large core (see §1.2.2). Furthermore, the situations they considered
were not necessarily realistic ones, as pointed out in the previous section.

In this study, we will investigate the formation of the giant planets in
the manner apparently different from that of the previous works. We do not
consider a particular planet for a while, but dedicate ourselves to know the
dependences .of the accretion time of the envelope as well as the critical core
mass on the parameters included in the nucleated instability model. We can
never conclude the need for the special settings introduced by the previous
workers, until we obtain a precise knowledge of the dependences. As a result
of our extensive investigation, we will show that Jupiter can be formed within
the standard context of planetary formation and, furthermore, the small mass
of the core which triggers considerable gas accretion is consistent with that
estimated by the study of the internal structure of Jupiter. We will also
show that the extrasolar planets orbiting close to the central stars can form
at their present locations in a reasonable situation. Although the in situ
formation of Saturn, Uranus, and Neptune is found to be difficult, we can
propose a formation scenario (i.e., outward migration of protoplanets) based
on our obtained information and understanding.

As readily conjectured from the formation processes described in §1.1,

the onset time of the considerable gas accretion depends on the core accre-
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tion rate, which determines the amount of the energy input to the envelope.
The accretion rate changes from stage to stage and ranges widely depend-
ing on distance from the central star. The isolation of protoplanets from
planetesimals would really happen. In that case, the accretion rate would
almost vanish. Furthermore, the opacity is also an important quantity, since
it governs 'the thermal response of the envelope. As mentioned in §1.3.1, the
opacity sources are gas and grains in our problem. In particular, the grain
opacity is poorly understood because we have no precise knowledge of both
the abundance and sizes of grains in the ancient envelope.

We should take into account a wide range of the nebular density and
temperature as well as the position of a protoplanet to explain the formation
of the extrasolar planets. These quantities are the outer boundary conditions
for the envelope. Although the weak dependence of the outer boundary
conditions were shown by several workers (Mizuno 1980; Stevenson 1982b;
Bodenheimer and Pollack 1986), the conclusion does not hold true in general.
As pointed out by Wuchterl (1993), the critical core mass depends on the
outer boundary conditions in the nebula with high density such that the
outer envelope becomes convective (see §4.2.1). Note that Wuchterl (1993)
investigated the dependence of the critical core mass on the nebular density
only at 5.2 AU and found that the critical core mass rapidly decreases with
the increasing density for very large densities. However, the densities he
considered were unrealistically high (i.e., much larger than the critical density
for the disk instability).

In §2, we describe the assumptions, the basic equations, and the param-

eters (i.e., the core accretion rate, the grain opacity and the outer bound-
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ary conditions). In §3, we present our numerical methods to simulate the
accretion and evolution of a protoplanetary envelope. In §4.1, we see the
dependences of the accretion time of the envelope and the critical core mass
on the core accretion rate and the grain opacity. Furthermore, we investigate
the case in which the core accretion rate stops abruptly. In §4.2, we show
the dependence of the critical core mass on the density and temperature of
nebular gas and the distance from the central star. In §5, applying our nu-
merical results, we discuss the formation of the various giant planets, i.e.,

the extrasolar giant planets as well as our giant planets.
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2 Theoretical Model of a Protoplanet
2.1 Assumptions

We consider a double-layered protoplanet (i.e., a protoplanet composed
of a solid core and a gaseous envelope), which is embedded in the nebula. We

make the following assumptions, which are similar to those used by Mizuno

(1980) and Bodenheimer and Pollack (1986).
1. The protoplanet has a spherically symmetric structure.
2. The envelope is always in hydrostatic equilibrium.
3. The core is inert and has a constant density, p., of 5.5g/ cm?.

4. The envelope has a uniform chemical composition with the solar sys-
tem abundances: the mass fractions of hydrogen, helium, and heavy

elements are 0.740, 0.243, and 0.017, respectively.

5. The energy source of the envelope is the kinetic energy of planetesimals
falling onto the core at a rate, M, (see §2.4). All of their kinetic energy
is dissipated only at the bottom of the envelope. The energies due to

radioactive decay and the cooling of the core are not considered.

6. The envelope connects smoothly with the nebula at the presumed plan-
etary radius (see Eq. (9)). The nebular gas exists during the entire
time of our simulation, namely, dissipation of the nebular gas is not

considered.

7. The radiative and convective regions of the envelope are separated com-

pletely by the Schwartzschild criterion (see Eq. (20)).
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We make some comments on the above assumptions. Assumption 1 is
made apparently for simplicity. There will be additional forces, which distort
the envelope from the spherical geometry, such as a tidal force caused by the
central star and the centrifugal force due to rotation of the protoplanet.
The former force influences only a narrow region near to the surface of the
envelope, so its effect is a trivial one for the gravitational stability of the
envelope (Mizuno et al. 1978). The latter force may be more important
than the former one, because it can affect a deep part of the envelope. The
envelope can be considered to have angular momentum more or less, since it
captures the gas orbiting around the central star. Unfortunately, it is highly
uncertain how much angular momentum is carried into the envelope and how
efficiently it is removed from the envelope. We neglect the effect in this study.
This will be our future work.

Assumption 2 can be readily justified because the characteristic time of
the gravitational contraction of the envelope (which is equal to the ther-
mal relaxation time) is of the order of 1 x 10° yr or more, whereas that of
the hydrodynamic change is several hours. By Assumption 3, we are not
concerned with the detailed structure of the core in finding the hydrostatic
structure of the protoplanet. Exactly speaking, the mean density of the core
increases slightly as the core mass (as well as the core radius) increases with
time because of planetesimal accretion. This is not so important because it
is already known that this effect changes the critical core mass only by a few
percents (Mizuno et al. 1978).

One may also be anxious for the justification of the second part of As-

sumption 5. Certainly, planetesimals falling through the envelope would suf-



fer from fragmentation due to dynamical pressure and evaporation because
of the hot environment, so a part of their kinetic energy must deposit in the
envelope. However, it has already been known that, even if we take into
account these processes of the energy deposition, the critical core mass and
the accretion time of the envelope are changed only by at most 10% (Miyoshi
et al. 1996; Pollack et al. 1996). It should be noted here that our math-
ematical formalism includes automatically the energy liberation due to the
gravitational contraction of the envelope and the work done by the growing
core (see §2.2).

Finally, candidates for the planetary radius where the envelope connects
smoothly with the nebula (Assumption 6) are the Hill radius, Ry, and the
Bondi radius, Rg:

M\ GM,
= Rp =
Ry <3M@) a and Rgp Z (8)

where M, and M, are, respectively, the masses of the protoplanet and the
Sun and cg is the sound velocity of the nebular gas. At r > Ry, the tidal
distortion is so effective that the gas cannot be gravitationally bognded by
the planet. On the other hand, at » > Rg, a repulsive force originating in
the thermal motion of gas dominates the gravity force of the planet. Hence,

we should define the planetary radius, R, by the smaller of the two:
R= min[RH, RB] (9)

The Hill radius and the Bondi radius depend on M; in the different ways, so
that Rg exceeds Ry at a certain M;. The total mass when Rg = Ry is given

by

G (2\* 1
-5 (8) =
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_ 1230, 20 3/2( - )3/4 (10)
e TH 1AU/

where Ty and T are the temperatures of the nebula and of the minimum-
mass solar nebula (see Eq. (30); Hayashi 1981), respectively, and we used

the relation, GMg = Q%a®.

2.2 Basic Equations

We use a set of the equations that is similar to that for the calculations
of the quasi-static stellar evolution. In simulating the quasi-static stellar
evolution, we pursue time-variation of various quantities of a mass element.
It, therefore, simplifies matters that we use the Lagrangian coordinate as
an independent variable, which moves with bulk motion of a mass shell. We
define the Lagrangian coordinate, M., by the mass contained within a sphere
with radius r:

T
M, E/O axr'? pdr (11)

where p is the density. In simulating the quasi-static evolution of the pro-
toplanetary envelope, however, situation is somewhat different because the
core mass increases with time, ¢, because of planetesimal accretion. That is,
M, is also a function of ¢t and not purely the Lagrangian coordinate. We do
not know a priori how the radius r of a mass shell changes, but know how

M, increases with time, i.e.,

dM,
dt

= Mc@(r —Te), (12)

where 7. is the core radius and ©(z) is the step function of a variable . Thus,

we also choose (M,, t) rather than (r, t) as a set of independent variables.



Since we have assumed that the protoplanetary envelope is in hydrostatic
equilibrium, we can write the equation describing the mechanical structure

of the envelope as

oP GM,
oM., T 4t (13)

where P is the pressure and 9/0M, is the partial derivative at constant ¢.

By the definition of M, (see Eq. (11)), the equation for 7(M;) is given by

or 1
oM,  4mr?p

(14)

For Egs. (13) and (14), we need a relation between P and p, which is
given by the equation of state. The envelope gas, in particular, near the
surface of the core is highly condensed, so the assumption of an ideal gas is
not valid. In this study, we use the equation of state for a nonideal gas given
by Saumon et al. (1995) interpolated to our presumed composition®. The

equation of state is written symbolically as
p=p(PT), (15)

where T is the temperature. As seen from Eq. (15), we have to know the
temperature as a function of M,.

The temperature distribution is determined by energy transfer in the
envelope. In this study, we consider two kinds of transport mechanisms. One
of them is radiative transfer. Since the protoplanet of interest is embedded
in the relatively dense background gas, the optical depth measured from the

planetary radius is much greater than unity. In this case, the temperature

’Ikoma et al. (1998) and Ikoma et al. (2000) performed the calculations that are the
same as those done in §4.1. They used the ideal equation of state. Their results about the
critical core mass and the accretion time of the envelope are changed by at most 10% if
nonideal one is used.
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distribution is well described by the radiation-conduction (in other words,
diffusion) approximation. The basic concept is as follows. Each mass shell
with radius r is a blackbody and emits photons with energy flux of 4wr?osgT*
(osg: the Stefan-Boltzmann constant). The emitted photons travel over their
mean free paths (= 1/Rp, where & is the cross section per unit mass) freely
and deposit their energy at the point where the photons collide with the gas.
According this concept, the temperature distribution is derived as (see, for

example, Shu (1991) for the derivation)

oT GM, T
oM.  4nri P rad> (16)
where
1 3 L.P
Vo= dinT K (17)

dn P~ 64mospG M, T*
and k is the Rosseland mean opacity and L, the energy flowing outward
through a spherical surface of radius r. The sources of the opacity are gas and
grains. For the gas opacity table, we use one that D. Alexander kindly calcu-
lated by our request (cf. Alexander and Ferguson 1994). On the other hand,
we obtain the grain opacity from Pollack et al. (1985), who presumed dust
grains with an interstellar size distribution and took into account magnetite,
iron, water, and silicate as particulate species. Each species evaporates at
each evaporation temperature and, therefore, the grain opacity decreases
abruptly at several evaporation points (see §2.4 for the detail description).
Another transport mechanism is convection, which is characterized by
upward and downward macroscopic fluid motions. If a fluid element decreases
(or increases) its temperature during the upward (or downward) motion more

slowly than the environment, the temperature of the element is hotter (or
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cooler) than that of the environment. In this case, the element will exchanges
its energy with the environment at its new position, resulting in the outward
energy transfer. A model on the basis of this picture, the mizing length model
(Bohm-Vitense 1958), has been widely accepted by the workers on studies of
stellar evolution and we also use it. In the mixing length model, fluid elements
move over a distance (which is called the mixing length) adiabatically and
then exchange their energy with their surroundings. According to this model,

the temperature distribution is given by

oM,  4rri P

olnT
Vad = (8lnP>S (19)

T GM.T
or _ _ (Voa + 6Vad) | (18)

where

and 6V ,q is the deviation from V,.q and is principally determined by L, (see
Kippenhahn and Weigert (1990) for the detailed description). Hereafter, we
write Vaq + 0Vaq simply as Veony-

The criterion, which separates a radiative region and a convective one
(i.e., the Schwartzschild criterion), is easily derived. Suppose that the tem-
perature gradient with respect to the pressure of the surroundings determined
by radiation, V.4, is smaller than the adiabatic gradient, V,4. As a result of
an infinitesimal, upward displacement of a fluid element, the temperature of
the fluid element is lower than that of its surroundings, namely, the density
of the fluid element is higher than that of the surroundings. In this case, the
fluid element is pushed back to its original position. In the opposite case, the

fluid element can move upwards more and more by the increasing buoyancy
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force. Thus, convection occurs in the case where
Vad < vrad- (20)

In summary, the equation for T'(M,) is written as

oT GM,. T
BM. - 4P (21)
where
_ Vrad for vra,d < vadv
V= { vconv for Vra,d > Vad (22)

If the envelope is in thermal equilibrium in the sense that there is no
energy deposition everywhere in the envelope, the energy flux, L,, is given
only by incoming planetesimals at the bottom of the envelope and is spatially
constant. In this case, a set of the above-mentioned equations is mathemat-
ically closed, if three boundary conditions are given. However, in our case,
the envelope gas liberates its gravitational energy because of its contraction.
From the first principle of thermodynamics, we obtain

5L ds
T — ac _ T -~
oM, ¢ dt’ (23)

where ¢,. is the energy generation rate caused by incoming planetesimals.

From Assumption 5, &, is given by

€ac =

dr'. (24)

5(r — 1) /R GM,
47r2p Jre T2
where § is Dirac’s delta function.
Finally, the equation for the time-variation of the protoplanetary mass,
M,, can be obtained simply from Egs. (11) and (12) (see Ikoma (1998) for

the derivation):

4 dR .
My _ 47 R? py (E{ — V) + M., (25)
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where py and V are the density of the nebular gas and the fluid velocity at
the planetary radius R, respectively. The mass of the protoplanet increases
primarily because of planetesimal accretion, which is denoted by the last term
of the above equation. An increase in the core mass leads to an increase in
the gravity force, so that the planetary envelope contracts and, on the other
hand, the plafletary radius becomes large. The surrounding nebular gas flows
inward to occupy the evacuated volume. This effect is expressed by the first

term of the right hand side of Eq. (25).

2.3 Boundary Conditions

In the previous subsection, we obtained four differential equations, namely,
Egs. (13), (14), (21), and (23). Hence, we need four boundary conditions.
Two of the four are assigned at the inner boundary (i.e., at M, = M.) and

given by

MY
r= (: {C> and L, =0 at M, = M.. (26)
Pc

Note that the energy supplied by planetesimals is included in Eq. (23).
On the other hand, the two outer boundary conditions are readily given by

Assumption 6;
p=py and T =Ty at M,= M, (27)

We give the nebular density, pg, on the basis of that of the minimum-mass

solar nebula, that is,
Po=Cp P(I;Ia (28)

where pfl is given by (Hayashi 1981)

a N\ -11/4
Pl =1.2x 107" (Eﬁ) gem ™2, (29)
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In §4.1, the numerical parameter, ¢,, is always unity, since the results ob-
tained there scarcely depend on c,. In §4.2, we consider a wide range of ¢,
that is, from 0.1 to 100.

On the other hand, we consider two types of temperature distributions,
those given by the minimum-mass solar nebula model (Hayashi 1981) and
Sasselov and Lecar (2000), in §4.2. In the subsection, we are interested in
the dependence of the critical core mass on the nebular temperature. In §4.1,
we consider only the former, because the obtained results there also scarcely
depend on T. In the minimum-mass solar nebula, most of the dust grains
have settled down to the mid-plane of the nebula (i.e., the site of planetary
formation), so the dust grains at the mid-plane can receive the energy directly
from the central star and emit it to warm up the surrounding gas. In the
minimum-mass solar nebula, the temperature distribution is written in the

form of

u a \-1/2 K
TH = 280 (1AU) . (30)

In contrast, a number of dust grains are distributed throughout the nebula
in Sasselov and Lecar (2000)’s model. In this case, a blackbody-surface of the
nebula (which is far from the mid-plane) receives the solar radiation and the
energy is transferred toward the mid-plane of the nebula. The temperature

distribution, T3, is given by (Sasselov and Lecar 2000)

- a -3/7 K
T =10(o) K (31)

Note that T§% < TE in the region of interest (i.e., a < 100AU). We can-

not judge which nebula is appropriate for the planet-forming nebula, until
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we know the abundance of the floating dust grains strongly related to the

dynamical state of the nebula, which is highly uncertain.

2.4 Core Accretion Rate and Grain Opacity

As described in §1.2.1, the core accretion rate changes considerably from
stage to stage. Despite such variation, we use the following simple core

accretion rate taking isolation of a solid core into account:
: : _t=to
M.() = M°min <e e 1) , (32)

where M? = M_(t = 0). Until ¢ = t,, the core grows at a constant rate M?;
after t = ¢y, the accretion rate decays exponentially with a typical decay time
of 74. As shown in §4.1, we can obtain most of the information of interest
even if we use such a simple core accretion rate. In this study, we restrict
ourselves to two extreme cases in which 74 — o0 and 74 — 0. The former
corresponds to the case in which the accretion rate is constant (i.e., M?)
throughout evolution of the envelope and the latter to the case in which the
accretion is halted abfuptly at t = t,.

As shown in the previous studies (Mizuno 1980; Stevenson 1982b), the
grain opacity also plays an important role in our problem. Unfortunately,
we have no knowledge about the amount and size distribution of dust grains
floating in the ancient envelope. The amount of the grains in the envelope
could be much smaller than that in the interstellar cloud, because almost all
of the dust grains had already been in planetesimals and protoplanets. How-
ever, small grains can be replenished through evaporation and fragmentation
of incoming planetesimals. The amount (and also the sizes) of the replen-

ished grains would depend on the internal structure and dynamics of the
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Figure 1: Grain opacity as a function of temperature. The solid, dashed, and
dotted lines are the grain opacity given by Pollack et al. (1985) for densities
of 1 x 1071%/cm?, 1 x 107%g/cm?®, and 1 x 107%g/cm?, respectively. The
dot-dashed line is that given by Mizuno (1980).

incoming planetesimals in a complicated manner. Therefore, we regard the
grain opacity, kg, as a parameter in the form of the grain depletion factor,

f, which is defined by
Kgr (pv T)
kb (p,T)’

where mgr is the grain opacity given by Pollack et al. (1985).

f= (33)

It should be noted that Mizuno (1980), Ikoma et al. (1998), and Ikoma et

M

al. (2000) used a rather simple grain opacity, £,

instead of f{gr that was used

by Bodenheimer and Pollack (1986), Pollack et al. (1996), and Bodenheimer
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et al. (2000);
kg = 0.780(170K — T)em?/g + 0.220(1600K — T)cm? /g, (34)

where the temperatures 170K and 1600K correspond approximately to the

P

evaporation temperatures of ice and rock, respectively. Figure 1 shows «g,

and /-clg\f as functions of temperature. From this figure, we can find that ngr is
larger by a factor of 10 to 20 than s} for temperatures from 200 to ~ 1000K.
Furthermore, while s} does not depend on the density, s, does mainly
because evaporation temperatures become high with increasing density. We
cannot compare the results of the above-mentioned previous works in a simple
way, because of such considerable and complicated differences in the adopted
grain opacity. We have to perform the calculations similar to those done by

Mizuno (1980), lkoma et al. (1998), and Ikoma et al. (2000), using ngpr

P

or 1S better

instead of /igf. The grain opacity given by Pollack et al. (1985),

M

than s,

in the sense that mgr is the Rosseland mean opacity which is required
naturally by the radiation-conduction approximation. Note, however, that
the compositions and sizes of grains assumed by Pollack et al. (1985) are not

necessarily valid for those of the grains in the envelope.
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3 Numerical Method

Our main interest is to know how the mass of a protoplanet increases with
time. For this purpose, we perform two types of numerical calculations: static
and quasi-static calculations. In the static calculation, we need one more
assumption in addition to those mentioned in §2.1, i.e., the assumption that
the envelope is strictly in thermal equilibrium (or , in other terms, TdS/dt =
0 in Eq. (23)) While the quasi-static calculation is time-consuming, the
static one is accomplished in a relatively simple way. Furthermore, as shown
in §4.1, the critical core mass and the luminosity at the critical core mass,
which are found only with the help of the static calculations, give us a great
insight into the evolutionary behavior of the envelope. In this section, we
present the two methods briefly.

The numerical algorithm for the quasi-static calculation is constructed
based on the so-called relazation method or Henyey method, which was origi-
nally developed by Henyey (1957) and improved by Kippenhahn et al. (1967).
On the other hand, the static calculations are done based on the straightfor-

ward integration method.

3.1 Essence of the Relaxation Method

For understanding our numerical method, it is helpful to show a simple
example prior to the detailed description of our method. Let us consider a

differential equation of the form of

d,
é = f(z,y) for z; <z <zy (35)
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with the boundary condition y(z;) = ¥. In order to find solution y(z)
numerically, we first rewrite Eq. (35) in the form of a difference equation;
dividing the z-coordinate into N — 1 zones and labeling their boundaries as

Iy, %9, - Ty in the positive direction of z, we obtain

Yj+1 — Yj fimi+fi/_ f :
= = f =1,.--,N-1. 36
Titi — 2 (=fmy)  for (36)

Introducing functions,

91 y2, - yn) = (Y1 — ¥5) — Fivr2(Tien — ), (37)
our present aim is to find vy, - - -y which satisfy
g](y17y27ayN)=0 for ]=1t0 N - 1. (38)

We suppose that the solution y; is written as a sum of a guessed value y?

and a correction dy;, i.e.,
y; =y, +0y; for j>2. (39)

Inserting Eq. (39) into Eq. (38), expanding g; into a power series of dy;,
and ignoring terms of the second and higher orders of dy;, we obtain a set of

linearized algebraic equations,

N 8g 0
g+ (@i) Syx =0, (40)

where superscript 0 denotes a functional value evaluated in terms of y?. This
linearized equation can be readily solved, for example, by the use of the
matrix-inversion method. Thus, we obtain the first approximate solution to

the difference equation, Eq. (38).
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Replacing y? with newly found y; and repeating the entire process men-
tioned above, we find the second approximate solution. By re-iterating the
same procedure until all of the |0y;| become as small as desired, we finally ob-
tain the solution to the difference equation with a desired accuracy. Based on
the above procedure, which is called the Newton- Raphson method mathemat-
ically, we construct our numerical algorithm for solving the protoplanetary

evolution.

3.2 Application of the Relaxation Method

3.2.1 Forms of the Equations Suitable to Our Calculation

For several numerical reasons, we should transform the basic equations
presented in §2.2 to ones of the forms suitable to our numerical calculation.
First, the variables, P, T, r, and L,, vary by several orders of magnitude
in the envelope. Since we have to approximate the differential equations by
difference equations in order to solve them numerically, we would suffer from
a considerable truncation error, if we used the linear forms of the variables.
To minimize such an error, we prefer logarithmic forms to linear ones. For
example, we rewrite 0P/OM, as P-81n P/OM.,.

Next, to the quasi-static calculation, it is most important to evaluate the
time-derivative of the entropy, dS/dt, exactly. Unfortunately, we have to use
tabular data of § as a function of P and T rather than analytically obtained
one, because the calculation of the thermodynamic quantities is complicated
and very time-consuming. Furthermore, the tabular values given by Saumon
et al. (1995) are limited for digits, resulting in a truncation error. For this

reason, we should re-express the time-derivative of S in terms of P and T
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with the help of a thermodynamically identical equation, namely,

ds dlnT dln P
T—d? = CPT <—d‘t— - Vad7> s

(41)
where Cp is the specific heat at constant pressure. Note that, although we
know other expressions for dS as a function of dP and dT', we should use this
expression including V,q so that Eq. (23) becomes numerically consistent to
Eq. (21) which also involves V4.

Finally, our basic equation of energy transfer, Eq. (21), includes two
kinds of equations (i.e., radiative and convective transfers), the boundary of
which is determined by comparison between V.4 and V,q4. We do not know
a priori where the boundary is. Hence, finding the boundary requires an

iterative procedure. To avoid such a troublesome task, we combine the two

equations using the step function, ©, with respect to Viaq — Va4, that is,
V= Vconv@(vrad - vad) + vrad@(vad - Vl‘ad)' (42}

However, introduction of the discontinuous function © induces a new numer-
ical trouble. Therefore, we replace © with a suitable smooth function:

1

ST (4

F(z)

where

r = de — Vad- (44)

Note that F(z) varies with z smoothly and transits from 1 to 0 abruptly
near = 0: the width of the transition is nearly equal to 3~!. Though the
numerical parameter § cannot be determined theoretically, it is confirmed
that the choice of 3 has no great influence on the results of our calculations

as long as we use G > 1000.
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With the above-mentioned prescriptions, we can transform the basic dif-
ferential equations, Eqs. (13), (14), (21), and (23), to ones suitable to our

numerical calculation as follows:

OlmP GM, 45
oM,  4xriP’ (45)
Olnr 1 16
oM,  4nr3p’ (46)
OlnT GM,
oM, “Zrip Y (47)
and
dln L, dinT dln P
Li—— =¢,. — —— - S
r 8Mr €ac C’PT‘ ( dt vad dt ) . (48)
From Egs. (42) - (44), it follows
V = Ve F () + Viad F(—2). (49)

Equation (48) requires a special comment because it contains time deriva-
tive. Writing Eq. (48) as z = dy/dt for simplicity and designating quantities
at t = t" and t = t" + At(= t"*!) by superscripts n and n + 1, respectively,

we estimate the time derivative of y as

dy _y

n+1 _ yn
dt At '

(50)
On the other hand, we estimate z on the left hand side in a backward differ-
ence scheme, i.e.,

z=2"th (51)

From the viewpoint of numerical accuracy, it is better to adopt a time-
centered scheme rather than the backward difference scheme. However, in

the time-centered scheme, numerical time interval At is restricted absolutely
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by the so-called Courant condition to guarantee the numerical stability. In
our present problem, At has to be less than the time interval within which
the thermal energy is transferred from one to another boundaries of each
mass shell. As a result, At becomes too small (because of optical thinness
near the outer boundary of the envelope) to accomplish numerical simulation
of the protoplanetary evolution over the order of 1 x 107 yr. In the backward
difference scheme, numerical instability never appears even if we adopt an
arbitrarily large At. This is a reason why we adopt the backward difference

scheme rather than the time-centered one.
3.2.2 Linearized Differential Equations

As described in §3.1, our main procedure is to find corrections by solving
a set of linearized algebraic equations like Eq. (40). All the basic equations

(Egs. (45) - (48)) can be expressed in the form of
— = A, (52)

where
Inr

In L,

In P

InT

and _ -
1

4rr3p

dinT dln P
gaC_CPT< L )
GM,

4nriP

B G M,
drri P i
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Following the procedure mentioned in §3.1, we can readily obtain the lin-

earized equation,

1[04’ 95X  8X°
§<axk> T VAR VA (55)

Now, we transform the differential equations (Eq. (55) at present) to

the difference equations. For this purpose, we first divide the protoplanetary
envelope into J — 1 thin shells; the shell boundaries are labeled 1,2,---,J
in the direction from the bottom of the envelope (the core surface) to the
outer boundary. Let M, be the mass contained within a sphere made by the
j-th boundary. The quantity X is defined on the shell boundary and simply
designated by the same subscript, i.e., X;.

Following Eq. (36), we obtain the difference equation for Eq. (55):

0
8A §X i — 06X
6 Xk o1 + 6 Xy p+ 2 3
k=1{<3Xk> kil <an) '”} AM; 1/

14
52

Xn—-X; 1
=——2 — (A + A 56
NV 3 (At 4y) - (56)
forj=1,---,J — 1, where
AMj+1/2 = Mj+1 - M] (57)

As a result, we have 4J — 4 algebraic equations containing 4J unknown vari-
ables. Thus, we have to add 4 boundary conditions to a set of the equations
presented above, according to Egs. (26) and (27). Equation (56) is solved
with the help of the matrix-inversion method. As seen from Eq. (56), each
algebraic equation needs only information of two adjacent shell boundaries.
This makes the problem significantly easy, because the matrix becomes a

simple band-matrix.
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3.3 Gas Accretion Rate

The total mass of the protoplanet, M;, increases with time according to

Eq. (25):

_ 4nR, <%§ - v) LM, (58)

dM;
dt

This equation also has to be transformed into the difference equation in the

similar manner used in the previous subsection. Approximating as

rn-}-l —rn
V = L———J—, 59
A7 (59)
we have the difference form of Eq. (58),
. 2 .
M - MP = 4 (RMY) po (R =15 + MAS, (60)

where we have used the relation, 7 = R". Note that 7*™' is not equal
to R"*!. That is, r7*! is only the radius of the outermost mass shell at
"1 (usually 7+ < r%)) which is calculated in the manner described in the
previous section. On the other hand, R**! is the planetary radius at ¢t"*!
(usually R™*! > %) which is determined by the planetary mass and/or the

sound velocity of the nebular gas (see Egs. (8) and (9)).

Letting
MM = M2 +6M,, R '=R°+6R, and 13t =15+4r,, (61)

substituting Eq. (61) into Eq. (60), and neglecting the second and higher
order terms, we obtain the linearized equation for Eq. (60):

O .
M? + M, — M™ = 4r (30)2 Po {RO -ri+ ( - —> oR — 5m} + M:At.

(62)
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Here, the number of unknown variables is not three but two, because M,
and OR are related by Eq. (9). Putting M equal to be M and solving
the structure equations in the manner described in the previous section, we
obtain the variation é7; of the radius of the previous outermost mass shell.
Substituting it into Eq. (62), we have the increment M of the total mass
of the protoplanet. This process is repeated until the variation 6 R becomes
sufficiently small.

Finally, prior to the numerical simulations of the quasi-static evolution of
the protoplanetary envelope, we have to give an initial model. Initial models
are constructed by the integration method which is identical to that used by

Mizuno (1980). The method is described in the next subsection.

3.4 Method for Finding the Critical Core Mass

As mentioned at the beginning of this section, the critical core mass and
the luminosity at the critical core mass, which are obtained with the help of
the static calculation, give us very important information. In this subsection,
we describe the method for finding the critical core mass.

The static calculation requires the assumption that the envelope is in
thermal equilibrium, that is, the typical evolutionary time of the envelope is
longer than the thermal relaxation time. Under this assumption, we can set

TdS/dt = 0 in Eq. (23), so that we have
L, = L,.(= constant), (63)
where

R 2 ’
Lac =/ Anr'” pesedr’. (64)
0
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If we know the value of L,., we can obtained an equilibrium solution of the
envelope structure for a given core mass by solving Eqgs. (13), (14), and
(21) with the boundary conditions Egs. (26) and (27) excluding that for L.
Certainly, we might be able to find the solutions with the above-mentioned
relaxation method, but more easy way is the inward integration method.
For a giver; planetary mass M,, we can know the planetary radius (see Eq.
(9)) and the density and the temperature at M, = M. Based on these values
and giving a trial value of L,., we integrate Egs. (13), (14), and (21) inwards
with the 4th-order Runge-Kutta method. We continue the integration to the
point where the mean density interior to the point is equal to the presumed
mean density of the core and, as a result, we can obtain the mass of the core.
Then, we calculate L,. using the obtained density distribution and Eq. (64).
The newly obtained L,. does not always coincide with the previously assigned
L. In this case, we select a new L, and perform the same procedure again.
We continue this procedure until we find L,. within the desired accuracy
(Mizuno 1980).
| By performing the above-mentioned procedures for various planetary to-
tal masses, we can obtain the relation between the core mass and the plan-
etary total mass. As shown by Mizuno (1980), the relation has a maximum
value of the core mass, beyond which no equilibrium solution can be found.

This maximum core mass is the critical core mass (see Fig. 9).

42



4 Formation of the Massive Envelope: De-
pendences on Various Parameters

In this section, we investigate the dependence of the accretion time of
the envelope as well as that of the critical core mass on the five parameters
included in the nucleated instability model; the parameters are core accretion
rate, grain opacity (or, the grain depletion factor), density and temperature
of the nebular gas, and distance from the central star. As mentioned in §1.4,
all the parameters are not always important. That is, when the envelope
is radiative (strictly speaking, partially convective), the parameters, which
govern the outer boundary conditions of the envelope, are not important
(Mizuno 1980; Stevenson 1982b). On the other hand, in the case where the
envelope is wholly convective, the core accretion rate and the grain opacity
are not important, because they play a significant role only in the radiative
transfer. Thus, we can classify the parameters into two groups: one includes
the core accretion rate and the grain opacity and the other includes the
density and temperature of the nebular gas and the distance from the central
star.

In §4.1, we investigate the dependences on the core accretion rate and the
grain opacity. In this study, we assume that the protoplanet is located at 5.2
AU in the minimum-mass solar nebula. First, we see the critical core mass
over a wide range of the core accretion rate and the grain depletion factor
(§4.1.1). Next, we present the quasi-static evolution of the envelope in the two
extreme cases, the case where the core accretion is halted abruptly (§4.1.2)
and the case where the core accretion continues steadily (§4.1.3). Finally,

we derive a semi-analytical expression for the accretion time of the envelope
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as a function of the critical core mass and the grain depletion factor, which
agrees well with our results of quasi-static calculations (§4.1.4). Furthermore,
we investigate the dependences of the critical core mass on the boundary
conditions of the envelope in §4.2: the density and temperature of the nebular

gas in §4.2.2 and the distance from the central star in §4.2.3.

4.1 Core Accretion Rate and Grain Opacity - Partially
Convective Envelope -

4.1.1 Critical Core Mass and Critical Luminosity

In Fig. 2a, we show the calculated critical core mass, M& as a function
of the core accretion rate, M., for typical five values of the grain depletion
factor, f. As seen from Fig. 2a, M decreases with decreases both in M,
and in f. Especially, M is as small as 0.3Mg when M, < 1 x 107" Mg /yr
and f < 1 x 1072, Even a very small core has the ability to capture the
nebular gas. Roughly speaking, M depends on M, and f as

)0.2-0.3 (65)

ME (Mc f
Note that our results for M. = 1 x 1078 Mg /yr are larger by a factor of about
2 than those given by Mizuno (1980), mainly because the grain opacity used
here is larger than that he used (see §2.4).

For our later convenience, we introduce the critical luminosity, L, which
is defined as the energy release rate by incoming planetesimals when M, =
ME, In other words, the critical luminosity is the minimum energy input
rate for the envelope to be sustained in hydrostatic equilibrium without the
help of the gravitational energy release caused by contraction of the envelope

itself. It will be seen later that the critical luminosity plays an important
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role in analyzing the quasi-static evolution of the envelope. The critical
luminosity evaluated numerically is shown in Fig. 2b as a function of M
for five f’s. As we can readily understand, L™ is smaller for smaller M

and larger for smaller f. Note that L depends strongly on Mt
Lcrit x (]V[Ccrit)4—6f—l‘ (66)

It should be mentioned that the critical luminosities obtained in this
study are about 10 times as small as those given by Ikoma et al. (2000).
The difference becomes large, as the critical core mass decreases. This is
because our grain opacity is larger by a factor of 10 to 20 than that used
by them and-the critical luminosity is inversely proportional to the grain
opacity (see Eq. (66)). Furthermore, the envelope structure becomes more
centrally condensed one, as the luminosity decreases (thereby, the critical
core mass decreases). In other words, the density at a given temperature
becomes high, as the luminosity decreases. As we can understand from Fig.
1, as the density becomes high, the grain opacity becomes large, because each
evaporation temperature of each species increases. This is why the differences
between Ikoma et al. (2000)’s results and ours become large, as the critical

core mass decrease.
4.1.2 Evolution in the Case of Isolation from Planetesimals

As mentioned in §1.2.1, most of the giant planets may have been isolated
from planetesimals, before their core masses reached the conventional critical
core mass (~ 10Mg). Then, core accretion halted and no energy was supplied
by planetesimals. Afterward, the envelope contracted gravitationally and the

surrounding nebular gas accreted onto the envelope. In this subsubsection,

46



we study how long it takes for the core to capture the surrounding nebular
gas after the core accretion has stopped (i.e., t > to in Eq. (32)).

Figure 3a shows a typical example of evolution of the envelope mass, Mepy,
after core accretion is halted in the case where M. = 5Mg and f = 1 (note
that we have designated M0, simply as M.). Initially, My, = 1.3% 1072 Mg,
A halt of tﬁe core accretion triggers sudden gas accretion, so that M,
increases by a factor of 10 in 2.0 x 10%yr. However, the accretion rate of the
envelope decreases increasingly; a further increase in M,,, by a factor of 10
takes 2.7 x 107yr and the next increase by a factor of 10 requires no less than
1.3x10%yr. Afterward, the gas accretion is rapidly accelerated. The envelope
spends most of its evolutionary time in the intermediate phase, where the
envelope mass increases moderately, after the core accretion has stopped.
The luminosity, L, which is shown in Fig. 3b, evolves correspondingly to
the evolution of M.,,. It is relatively high at the initial stage (L = 3.5 x
10%®erg/sec) but decreases rapidly after the core accretion is stopped and
reaches its minimum value, Ly, (= 1.9 x 10**erg/sec) at t —ty = 5.0 x 107yr.
Afterward, the luminosity increases gradually until ¢ — t5 = 1.3 x 10%yr and
rapidly after t —#; = 1.3 x 108yr. The luminosity stays near the level of Lpn
during the phase corresponding to the intermediate phase above mentioned.

Since the total evolutionary time is almost equal to the duration of the
intermediate phase in which L ~ L;,, the characteristic growth time of the

envelope mass, 7, is given by

Il

1 dMey\ ™
Ty ( ) , (67)

Meny dt Jp_p
where the subscript ;- _, means that the derivative is evaluated at L = Ly

(i.e., t—ty = 5.0x 107yr in the case of Fig. 3a). In Tables 1 and 2, we tabulate
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Table 1: Growth time, 77, in the case of 74 — 0 (f =1)

M (Mg) 72 (yr)

3.2 x 10%
1.3 x 108
6.2 x 107
3.2 x 107
1.0 x 107
4.1 x 108

O 0o O U W

Table 2: Growth time, 72, in the case of 74 — 0 (M, = 5Mg)

f T, (yT)
1 6.2 x 107
1 x 1071 6.0 x 108
1x 1072 5.0 x 10°

Tgo evaluated from our numerical simulations for six values of M, with f =1

and for three values of f with M, = 5Mg, respectively. Table 1 shows that
77 increases rapidly with decreasing M,: for example, 70 = 3.2 x 107yr for
M. = 6Mg, whereas 70 = 3.2 x 10%yr for M, = 3Mg. On the other hand,
as seen from Table 2, Tg depends moderately on f (Tg being almost linearly
proportional to f). Here, we should mention that each value of Tgo is also 10
times as large as that given by Ikoma et al. (2000).

Figure 4 shows L, as a function of M, together with the critical lumi-
nosity multiplied by 2, i.e., 2L, As seen from Fig. 4, L, increases with
increasing M, and decreasing f. Furthermore, it is interesting to note that

Linin is almost equal to 2L¢t. The critical luminosity, L, is the minimum

luminosity to support the envelope around a core with mass of M.. Hence,
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Lt should be ~ Lpi,. The numerical factor (~ 2) arises from the differ-
ence in spatial distribution of energy sources. The energy supply caused by
planetesimals (corresponding to L) is confined very near the bottom of
the envelope, whereas the energy source caused by the contraction (corre-
sponding to Ly, ) is distributed throughout the envelope. Since the former
supports the envelope more efficiently, Lynin > L%, Despite the fact that
the distributions of the two energy sources are very different from each other,

the effect is so small that it yields only small difference (i.e., a factor of 2)
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between Ly, and L%, This is because convection usually occurs in the inner
envelope, the structure of which is determined independently of the distribu-
tion of the energy source and, furthermore, the mass of the convective region

occupies a large fraction of the envelope mass.
4.1.3 Evolution in the Case of Steady Core Accretion

In the previous subsection, we considered the case in which growth of
a core stopped completely because of the isolation from planetesimals (i.e.,
the case of 74 — 0). In the actual planetary formation, however, the growth
of the core would not halt suddenly but its rate would decrease gradually,
that is, 74 would be finite. To know how the growth time of the envelope
mass depends on 74, we consider another extreme case, namely, the case of
T4 — o0 in this subsection.

Figure 5a shows time-variation of M, and My, for M? = 1 x 1078 Mg /yr
and f = 1 (initially M, = 0.1Mg). As seen from this figure, the envelope
mass increases gradually until the core mass reaches about 20Mg, which is
almost equal to the critical core mass obtained by the static ca,lculationi(see
Fig. 2a). After that, the envelope mass increases much more rapidly than the
core mass. Unlike the case of 7y — 0, both the core mass and the envelope
mass grow in the case of 74 — oc, as a matter of course. Since we are now
interested in the phase where the envelope mass increases much more rapidly
than the core mass, we focus particular attention on the latter phase. As we
will show below, the energy release due to contraction of the envelope is
not important compared to that by planetesimals in the former phase and,

therefore, the evolutionary behavior of the protoplanet in the former phase

can be known without the help of quasi-static calculation if M.(t) is given
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by the theory of planetary accretion.

As shown in the previous subsection, we should see the evolutionary be-
havior of the luminosity to understand that of the envelope mass. To define
the transition point from the former phase to the latter one exactly, we in-

troduce the following normalized luminosity:
L=L/L™, (68)

where Lt is the critical luminosity shown in Fig. 2b (note that Fig. 3b does
not change with the use of L instead of L except the scale of the vertical axis).
Figure 5b shows the normalized luminosity as a function of time. In the early
stage, L is very large, which means that the energy supplied by incoming
planetesimals is large enough for the envelope to be maintained in hydrostatic
equilibrium. However, L decreases with time because L™ increases with
increasing M.. When L reaches the minimum value, fzmm(N 1), the envelope
cannot be supported only by the energy supply caused by planetesimals any
more, so the envelope stars to contract in order to supply extra energy. As
a result, L begins to increase rapidly. We are now interested in the growth
time of the envelope mass at L = L., because the growth time at L= Ly,
is longest in the latter phase.

Table 3 shows the core mass, M., at L = ﬂmin and the characteristic

growth time, 7.°, the definition of which is similar to that of Tgo, ie.,

wo_ (1 dMey\™
Tg = (AJenv dt > . (69)

L=Lnin
As seen from this table, M, at L= I:mm is smaller for smaller Mf. Each
of them is almost equal to each M as seen from Fig. 2a. The growth

time of the envelope mass, 79, is larger for smaller Mf, i.e., smaller M,.

o
o
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Table 3: Growth time, 7.°, and core mass, M., when L = L, in the case of
q — 00 (f=1)

MS(M@/yr) M (Mg) Tgo(yl”)

1x107° 4.0 4.5 x 108
1x10°8 6.9 7.4 x 107
1x 1077 11 1.1 x 107
1x107% 18 1.7 x 108

This tendency is the same as that found in the case of 74 — 0. Furthermore,
comparing Tg in Table 1 and 7,° in Table 3 for M, = 4.0Mg, we can find that
both are of the same order of magnitude, although 7.° is somewhat larger

than 'rg .

4.1.4 Growth Time of the Envelope Mass

In this subsection, we derive an expression for the characteristic growth
time of the envelope mass through semi-analytical arguments.

Gas accretion is regulated by contraction of the outer envelope. The
growth time of the envelope mass is, therefore, described by the character-
istic time of the contraction. The characteristic time of the contraction is
determined by the amount of supplied energy and the efficiency of the energy
transfer, i.e., the luminosity. In the absence of planetesimal accretion, the
only energy source is the gravitational energy of the envelope and, hence, the

characteristic time of the contraction should be written as

GMCMGI’[V

L (70)

where R is an effective radius beyond which significant contraction occurs

with an appreciable energy release. From our results in §§4.1.2 and 4.1.3,
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we should take L™ (which is given in Fig. 2b) as the characteristic lumi-
nosity, £, and the critical envelope mass, M (which is the envelope mass
at M, = M&™) as My, in Eq. (70). Furthermore, the radius, R, should
be not the core radius 7. but the radius of the boundary between convective
and radiative regions, Reony, because the envelope is usually composed of an
inner convective region and an outer radiative region and considerable con-
traction occurs in the radiative region. Thus, the growth time, Tg, Which is
an analytical expression for 77 (or 72°) in the case of 74 — 0 (or 74 — o0),

can be written in the form,

GM MK
= O R Lt ()
conv

Tg

A numerical coefficient, o, depends on the detailed structure of the envelope
and is determined by comparison with the numerical results.

In Fig. 6a, we show 7, evaluated by substituting our hydrostatic solutions

into Eq. (71) (with o = 1/3) together with g found by our quasi-static

simulations in the case where 74 — 0. This figure shows that T With o = 1/3

agrees well with Tg. It takes longer time for the smaller core to capture a

massive envelope; roughly speaking, 7, is written as

M.\ "3
e ~ 1 x 101°f (—M[—@) yr. (72)

From this equation, it follows that there exists a minimum core mass to form
the massive envelope within the lifetime of the nebula. The quantitative
discussion will be made in §5.

We should be mentioned that both the absolute value of 7, and its depen-
dence on M, obtained in this study are quite different from those by Ikoma

et al. (2000). In particular, 74 for M, = 1My in this study is more than
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Figure 6: (a) The growth time, 74, as a function of the core mass, M, in the
case of 7y — 0. The solid (for f = 1) and dashed (for f = 0.01) lines represent
T, obtained from Eq. (71) with o = 1/3. Circles show the corresponding
growth times, Tg , found from our quasi-static calculations. (b) 7, for 74 — 0
(solid line) and T4 — oo (dotted line). Circles and squares represent Tg and

T, , respectively. 56



10 times as large as that given by Tkoma et al. (2000). This stems not only
from the fact that our grain opacity is larger by a factor of 10 to 20 than
that used by them, but also that the discrepancy between their results and
ours becomes larger, as the core mass decreases (see §4.1.1).

As shown in Fig. 6b, 7, evaluated by Eq. (71) with a = 3/2 (dotted line)
also agrees well with 72°. The growth time, 74, in the case of 74 — oo is about
4 - 5 times as large as that in the case of 74 — 0. This is because, in the
case of Ty — o0, the energy of the envelope is supplied partly by incoming
planetesimals. The difference is no more than a factor of 4 - 5 even between
the two extreme cases, i.e., 7y — 0 and 74 — oo. Therefore, we can conclude
that 74 depeﬁds on 74 only weakly.

Finally, we make a short comment on the influence of the initial core
accretion rate, Z\}IB, in the case of Ty — 0. Although .MCO directly influences the
evolutionary time in the early stage, during which the luminosity decreases
from the initial value to Ly, this period is much shorter than that of the
‘phase of L ~ Ly, Also, the characteristic growth time of the envelope
mass at L = Ly, is determined completely by the critical luminosity and
the corresponding quantities (without any information of the initial values).

Hence, our results do not depend on the choice of M?.

4.1.5 Summary of Dependences on Core Accretion Rate and Grain
Opacity

In summary, we have obtained the following results in this subsection.

1. Considerable gas accretion necessarily begins, independently of the past
core accretion process, when the luminosity becomes almost equal to

the critical luminosity (which is given in Fig. 2b), whether the lumi-
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nosity originates in incoming planetesimals or the contraction of the
envelope. Even a core with about the Martian mass can start to cap-
ture the surrounding nebular gas if the luminosity and the opacity are

sufficiently small.

. There exists an intermediate phase characterized by a moderate in-
crease in the envelope mass after core accretion is halted. The dura-
tion of this phase occupies a large fraction of the formation time of the

massive envelope.

. The characteristic growth time of the envelope mass, 7, (which is al-
most equal to the duration of the intermediate phase) depends strongly
on the core mass, moderately on the grain opacity, and weakly on the

past core accretion process; roughly speaking, 7 is written in the form

of

M,

-35
g ~1x 10"°f (—A—/fi> yT. (73)

Result 3 suggests that there exists the minimum core mass in the sense that

the core with mass less than this minimum mass is unable to capture a large

amount of the nebular gas within its lifetime.

It may be worthwhile to compare the intermediate phase (Result 2) with

Phase 2, which was found by Pollack et al. (1996). These two phases resemble

each other, but differ from each other because there still exists the energy

supply caused by incoming planetesimals in Phase 2. Pollack et al. (1996)

suggested that a moderate increase in the envelope mass during Phase 2

originated in further accretion of planetesimals because of the extension of the

58



feeding zone of a protoplanet; thus, the elapsed time of Phase 2 was governed
by the later core accretion process. On the other hand, we have shown that
there exists a phase of a moderate increase in the envelope mass even if core
accretion is halted and the characteristic growth time is determined by the
contraction of the envelope. Thus, it is natural to consider that the physical
essence of Phase 2 is the contraction of the envelope partly sustained by the
energy caused by planetesimal accretion. Our obtained elapsed time gives

the minimum elapsed time of Phase 2.

4.2 Properties of the Nebula - Wholly Convective En-
velope -

4.2.1 Possibility of the Convective Envelope

As mentioned in §1.3.1, it is well known that, in the case where the
outer envelope is radiative, the critical core mass scarcely depends on the
outer boundary conditions of the envelope, i.e., distance from the central
star and the density and temperature of the nebular gas. This is because
envelope solutions with different boundary conditions soon converge in the
radiative region near the surface of the envelope (Mizuno 1980; Stevenson
1982b). However, when the envelope is convective, the critical core mass gen-
erally depends on the outer boundary conditions, as pointed out by Wuchterl
(1993).

In a chemically homogeneous hydrostatic envelope, the condition for the

convective instability is given by Eq. (20):

3 kL, P 1
—_— > 1 - — 74
64TFOSBG Mr T4 Fg ( )

where 'y is the second adiabatic exponent and we used the relation V4 =
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1 —T'5!. Since the thermal energy is supplied to the envelope by incoming
planetesimals until the core mass reaches the critical core mass, L,/M; in

Eq. (74) can be approximately written in the form of

L, _ (47rpc>1/3 GM, (75)

M.\ 3 M
By substituting Eq. (75) into Eq. (74) and using the equation of state for

an ideal gas, we can rewrite Eq. (74) in terms of the density, p, as

64mosumu (1 - I3') MY
3k (4mpe/3)"° KM,

p> : (76)

where k, i, and my are the Boltzmann constant, the mean molecular weight,
and the masé of a hydrogen atom, respectively. Substituting typical values
characterizing the surface of the envelope into Eq. (76) and assuming that
p=12.3,Ty=7/5 and p. = 5.5gcm ™3, we obtain the critical nebular density,

pixl, beyond which convection occurs near the surface:

surf
pO‘cr

o5

~5 () (2 UM NP e N T
=°\1au) \7E) \ 200y Tom’g-1) \10-6Mgyr—1)
77)

where pfl is the density given by the minimum-mass solar nebula (see Eq.

(29)). From Eq. (77), we see that, if the nebula is dense and/or cool com-
pared to the minimum mass solar nebula or if the semimajor axis is smaller
than about 1AU, convection can occur near the surface of the envelope. That
is, the critical core mass is expected to depend on the boundary conditions
in the regions where the extrasolar planets exist.

As described in §1.2.4, the recent observations suggest that there exist

dense nebulae that are about 10 times as massive as the minimum-mass solar
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nebula. On the other hand, theoretical models of structure of an optically
thick, passive nebula (Chiang and Goldreich 1997# Sasselov and Lecar 2000
and references therein) indicate that the nebular temperature is lower than
that given by the minimum-mass solar nebula model (see §2.3). Thus, it
is very meaningful to consider a dense and cool nebula as a planet-forming
nebula.

We should mention that Wuchterl (1993) derived an asymptotic expres-
sion for the critical core mass under the assumption of a wholly convective
envelope with a constant adiabatic exponent. However, we cannot evaluate
the precise valpes of the critical core mass from his expression, because the
expression fails in representing his numerical results.

In our numerical calculations, we adopt 1 x 107 Mgyr~! as the core ac-
cretion rate and the interstellar one as the grain opacity for comparison with
Wuchterl (1993). Our nominal values of the nebular density and tempera-
ture are those of the minimum-mass solar nebula model given by Egs. (29)
and (30) and we investigate the critical core mass over a wide range of the
nebular density normalized by pf at several distances from the central star

for some typical temperatures.
4.2.2 Density and Temperature of the Nebular Gas

In Fig. 7, the critical core mass, Mccm, at 0.1AU is illustrated as a function
of the nebular density (normalized by pf) for the case of Ty = 885K, which is
equal to T3 (solid line). For comparison, we also show the result calculated in
the case where we set the envelope wholly convective artificially (dashed line).
When the nebular density is low (i.e., po < 10pf), the solid line lies below the

dashed one and the critical core mass represented by the solid line is nearly
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Figure 7: The critical core mass, M&™, as a function of the nebular density,
po, normalized by that of the minimum mass solar nebula model (Hayashi
1981), pH, for the case of a = 0.1AU (solid line). The nebular temperature
and the core accretion rate used are 885K (given by the minimum mass solar
nebula model) and 1x 1078 Mgyr~!, respectively. The result calculated under
the assumption of a wholly convective envelope is also shown (dashed line).

constant. At py =~ 10pf, the two lines converge and then the critical core
mass decreases as the nebular density increases. At po ~ 150p, the critical
core mass drops suddenly and afterward decreases with po as M « pg Y 2;
such dependence was analytically predicted by Wuchterl (1993). As seen
from this figure, M is not sensitive to an increase in po, until the envelope

becomes wholly convective.

We can understand the relation between the nebular (i.e., boundary) den-
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sity and the critical core mass by comparing two protoplanets with different
boundary densities, both the envelopes of which are wholly convective (i.e.,
the entropy is spatially constant). Suppose that the two protoplanets have
the same core mass and the same boundary temperature and, furthermore,
that the core mass of the protoplanet with the higher density is the critical
core mass. Since the entropy of the envelope is spatially constant, difference
in the boundary density leads directly to difference in the entropy of the
envelope. The entropy of the protoplanet with the lower boundary density
is higher than that of the other protoplanet. Since the higher entropy means
that the structure of the envelope is less condensed, it follows that the proto-
planet with the lower boundary density have the less massive envelope, that
is, its core mass is below the critical core mass. That is the reason why the
critical core mass decreases with increasing boundary density.

Figure 8 shows the structures of the envelope when M, = M for typical
five pg’s. While the outermost region of the envelope is convective even when
po = pil (see Eq. (77)), a radiative region develops near log T(K) = 3.3.
As a result, the p-T lines converge there in the case where py < 5pf. This
temperature corresponds to the evaporation temperature of silicate grains,
Tevap, and the opacity suddenly becomes small at that point. Thus, the
critical nebular density, p§7", beyond which envelopes are wholly convective,
can be found in the following way. The condition for the convective instability
is given by Eq. (76). The density at the evaporation point of silicate grains
and the nebular density are connected by an adiabat, because the outermost
region of the envelope is convective (see Fig. 8):

LN <M>5/2 (78)
Po 1o 7
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Figure 8: Density and temperature structure of the envelope when M, =
M for typical five nebular densities. The abscissa and the ordinate are
the temperature, T, and the density, p, respectively. Each label denotes the
nebular density, pg, normalized by that of the minimum mass solar nebula
model (Hayashi 1981), pH. The nebular temperature and the core accretion
rate are the same as those in Fig. 7.

where the polytropic index is assumed to be 5/2. By substituting Eq. (78)
into Eq. (76), the critical nebular density for a wholly convective envelope is

given by

conv
pO,cr

123

a 3/2 Ty 5/2 M. 1/3 Keovap. -1 Mc -1
:67O<1AU> (T—OH> (20M@) (0.02cm2g—1) (10—6M@yr'1> ’

(79)

where Kevap is the gas opacity at T = Ttyap. This equation gives pg°n”/ Pl ~ 20
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Figure 9: Variation of the core mass (M.) vs. the total mass (M,). Each
label denotes the nebular density, pg, normalized by that of the minimum
mass solar nebula model (Hayashi 1981), pf. The open circle o denotes the
critical core mass, M, and Rp and Ry mean the Bondi radius and the Hill
radius, respectively (see Eq. (8)). The nebular temperature and the core
accretion rate are the same as those in Fig. 7.

at 0.1AU, which is consistent with Fig. 7 within a factor of 2.

The sudden drop of M ™ at py =~ 150pF in Fig. 7 can be understood from
the behavior of a M;-M, curve, which changes with the adopted nebular
density. bAs shown in Fig. 9, the M;-M. curve has only one maximum
when pp = 100pf. Another maximum appears suddenly at lower M (ie.,

M, = 2.2Mg) when p, = 150pf. The total mass of 2.2Mg corresponds to

that at which the Bondi radius coincides with the Hill radius (see Eq. (10)).
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Let us denote the critical core mass and the critical total mass (i.e., the
total mass when M, = M) as M8 and My B respectively, for the case
where we define the planetary radius by the Bondi radius, Rp, instead of
min(Rg, Ryg) and as MH and Mtcrit’H, respectively, for the case where we
define the planetary radius by the Hill radius, Ry. Since the Bondi radius
increases faster than the Hill radius as M; increases (see Eq. (8)), M is
always smaller MTH, When M™P is smaller than the total mass at which
Rp = Ry, the M,-M. curve has two maxima. However, as long as M B
is less than M®H the envelope would settle down to a stable structure
soon after the envelope begins to contract and captures some amount of the
nebular gas, because there exists hydrostatic solutions at the larger AM; where
R = min(Rg, Ry) = Ry. In such a case, we should define the critical core
mass as the second maximum.

However, the above argument may be meaningless practically, because
the nebular density is greater than the critical density for the disk instability
(Eq. (7)), whenever the M;-M, curve has two maxima. This fact can be
analytically proved. As derived by Wuchterl (1993), the critical total mass,

M for a wholly convective envelope with a constant adiabatic exponent,

, 1 3vy—4 (&\*1
Mcrlt — I S o _—
¢ \J 127 (v — 1)* (G) £o (80)

On the other hand, the total mass at which Rg = Ry is given by Eq. (10).

v, is given by

Equating Eq. (80) with Eq. (10), we obtain

V2(3y — 4) esfik

2o H = ,
T - DF 7 G

(81)
where H is the density scale height of the disk (= v/2cs/7Qk) and 2poH
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Figure 10: The critical core mass, M, as a function of the nebular density,
po, normalized by that of the minimum mass solar nebula model (Hayashi
1981), pfl, for typical three nebular temperatures, 885K (solid line), 600K
(dashed line), and 400K (dotted line). The core accretion rate is the same as
that in Fig. 7.

means the surface density of the gaseous disk (= ). Since the first factor
of Eq. (81) gives the order of unity and the last factor means the critical
density for the disk instability (see Eq. (6)), this equation indicates that the
sudden drop in Fig. 7 corresponds to occurrence of the disk instability and,
therefore, the situation expressed by Wuchterl (1993)’s analytical expression
for M can never happen as long as the nebular gas rotates around the

central star.

In Fig. 10, the critical core mass is shown as a function of the nebular
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density at 0.1AU for typical three nebular temperatures. The temperature
of 400K (dotted line) corresponds almost to that given by Sasselov and Lecar
(2000). As seen from this figure, the critical core mass decreases almost in
proportion to the nebular temperature. This is because the lower tempera-
ture corresponds to the lower entropy. We can also see that the critical core
mass begins to decrease at lower pg in case of lower Tg. This fact is related to
the behavior of p§’}" described in Eq. (79). In the case of Ty = 400K, which

is equal to 0.45731 at 0.1AU, P reduces by about one order of magnitude
compared to that for Tp = T¢'. This means that the convective envelope is
readily produced even if pg ~ pfl. As a result, the structure of the envelope as

well as the critical core mass becomes more sensitive to the outer boundary

conditions than those in the case where Ty = 885K, namely Tg{.
4.2.3 Distance from the Central Star

The nebular density, pg, and temperature, Ty, in general, decrease and
the radius of a planet, R, increases with increasing semimajor axis, a (see Eq.
(8)). As described above, smaller py gives larger critical core mass, whereas
smaller T and larger R give smaller critical core mass. Figure 11 shows the
critical core mass as a function of po/pf at four typical a’s. Each nebular
temperature at each semimajor axis is given by Eq. (30). As seen from Fig.
11, when py is low (i.e., pp < o), the critical core mass is almost independent
of a and, when pg 2 pfl, the critical core mass decreases with decreasing
a. This indicates that the effect of an increase in py with decreasing a is
dominant among the above-mentioned three effects in the minimum-mass
solar nebula model, where p§ depends strongly on a compared to TH and

R (see Eqgs. (29), (30), and (8)). Furthermore, it can be understood form
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Figure 11: The critical core mass, M as a function of the nebular density,
po, normalized by that of the minimum mass solar nebula model (Hayashi
1981), pf, for typical four semimajor axes, 0.05AU (solid line), 0.1AU (dashed
line), 0.2AU (dotted line), and 5.2AU (dot-dashed line). The core accretion
rate is the same as that in Fig. 7.

Eq. (79) as well as a brief discussion in the last paragraph of the previous
subsection that the normalized density, po /08, at which the critical core mass
begins to decrease, becomes lower, as a decreases.

As also seen in Fig. 11, the critical core mass scarcely depends on the
nebular density and does not become small at 5.2AU. When Po > phar, the
critical core mass depends on py, while a giant planet should not be formed

through the nucleated instability when py > p@. Therefore, from Egs. (7)

and (79), the region where the critical core mass depends on the nebular
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density is given by

o <0.3AU (ﬁ> o <_Mc_)_4/21 ( evap )4/7 ( M. )4/7.
~ T# 20 Mg 0.02cm?g-1 108 Mgyr-!
(82)
That is, at 5.2AU, the critical nebular density for a wholly convective en-
velope is large;r than that for the disk instability and, thus, the critical core
mass cannot become small within the practically high nebular density.

For future applications, we should show the dependences of the critical
core mass on the boundary conditions of the envelope under the assumption
that the envelope is wholly convective. Figure 12 shows the critical core
mass as a function of the nebular surface density normalized by that of
the minimum-mass solar nebula model, &, for typical five semimajor axes.
Here we adopt two types of the temperature distributions of the nebula, i.e.,
Ty = 280(a/1AU)~1/2K (Hayashi 1981) and Tp = 140(a/1AU) %7K (Sasselov
and Lecar 2000). In the region we consider, the temperature given by the
latter is always lower than that by the former. Therefore, the critical core
mass for the latter is smaller than that for the former. Note that the abscissa
in Fig. 12 is not the density po, but the surface density X, i.e., 2p0H.

Let us illustrate how to know the appropriate value of the critical core
mass from Fig. 12. We substitute M, and Kevsp into Eq. (79) rewriting this
equation in terms of X§%'/ T§, where T80 = 2p8°%% H. Then, we draw the
obtained line supposing that M. = M in Fig. 12. In the domain where
$/ZH is larger than this line, this figure gives the critical core mass to be
requested. On the other hand, in the domain where £y/Zf is smaller than

the line, the critical core mass is almost constant and its value is that at the

crossover point. Note that the nucleated instability model itself is not valid
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Figure 12: The critical core mass, ME®, under the assumption of a wholly
convective envelope as a function of the nebular surface density, ¥y, nor-
malized by that of the minimum mass solar nebula model (Hayashi 1981),

S, for typical five semimajor

axes, 0.05AU (solid line), 0.1AU (short dashed

line), 0.2AU (dotted line), 1.0AU (long dashed line), and 5.2AU (dot-dashed
line). The temperature distribution assumed are of (a) Hayashi (1981) and

(b) Sasselov and Lecar (2000).



beyond the density given by Eq. (7).
4.2.4 Summary of Dependences on Properties of the Nebula

Here, we summarize the dependences of the critical core mass on the

properties of the nebula:

1. The critical core mass depends on the boundary conditions of the en-
velope (i.e., the density and temperature of the nebular gas and the
distance from the central star), only in the case where the envelope is
wholly convective. The envelope does not become wholly convective,

until the nebular density becomes as high as that given by Eq. (79).

2. The critical core mass decreases as the nebular density becomes high,
the nebular temperature becomes low, and the planetary radius in-
creases. For a given nebular density normalized by that of the mini-
mum mass solar nebula model (Hayashi 1981), the critical core mass

decreases as the semimajor axis decreases.

3. For a sufficiently high density, the critical core mass are well expressed
by the analytical expression derived by Wuchterl (1993). However,
such a density is always larger than the critical density for the disk

instability.
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5 Discussion and Conclusions

5.1 Summary of This Study

Based on the nucleated instability model, we have investigated the ac-
cretion time of the envelope as well as the critical core mass for a wide range
of the parametefs involved in the accretion process of the envelope. The
purpose of our extensive study is to obtain sufficient knowledge in order to
discuss quantitatively the formation of the various giant planets (i.e., the
giant planets of extrasolar systems as well as those of our solar system).

The parameters are the core accretion rate, the grain opacity, the nebular
density and temperature, and the location of a forming protoplanet. The core
accretion rate varies considerably depending both on the location and on the
formation stage of a protoplanet (see §1.2.1). The grain opacity of the ancient
envelope gas is highly uncertain, since it is difficult to know the abundance,
sizes, and composition of the grains. In this study, we have used the grain
depletion factor, the definition of which is the ratio of the grain opacity in the
envelope to that in the interstellar cloud (see §2.4). Finally, the orbital radii
of the extrasolar planets range widely from 0.05 to 3 AU. This requires us
to investigate the giant planet formation at various locations. Moreover, the
observations of nebulae existing around young solar-type stars show a wide
range of nebular mass, which we should take into account. The orbital radius
and the nebular density and temperature are related to the outer boundary
conditions for the envelope.

Before we discuss the formation of the existent giant planets, we summa-

rize our important results that are obtained in the present study.
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1. The critical core mass decreases with the core accretion rate and the
grain depletion factor. For the sufficiently small values, the critical core
mass is as small as about 0.1Mg (§4.1.1). Furthermore, the critical core

mass does not depend on the past accretion process of a core (§4.1.2).

2. If the core accretion stops, the considerable accretion of the envelope
begins even in the case of a small core ( 2 0.1Mg). However, the accre-
tion time of the envelope increases rapidly as the core mass decreases.
The approximate expression of the typical accretion time, 74, is written

as (§4.1.4)

M\ 7P
Te ~1x10f <M-e—a> yT, (83)

where f and M. are the grain depletion factor and the core mass,
respectively. The accretion time of the envelope depends very weakly

on the past core accretion process.

3. The critical core mass depends on the outer boundary conditions of the
envelope only when the envelope is wholly convective (§4.2.1). The crit-
ical core mass surrounded by the wholly convective envelope decreases
as the nebular density increases, as the nebular temperature decreases,
and as the distance from the central star decreases (see §§4.2.2 and
4.2.3). Note that, in that case, the critical core mass does not depend

on the core accretion rate and the grain depletion factor.

5.2 Formation of the Giant Planets

We are most interested in the formation time of a giant planet, which

we can estimate by calculating both the accretion times of a core and an
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envelope. Since both the critical core mass and the accretion time of the
envelope beyond the critical core mass scarcely depend on the past core ac-
cretion process (see Results 1 and 2), we can consider the two accretion times
separately. As described in §1.2.1, a protoplanet (i.e., a solid core) spends
most of its formation period in the slow growth stage. We can, therefore,
estimate the formation time of the core, 7, using the equation derived by

Tanaka and Ida (1999);

My 1/3 .\ 7! 31/12
1.8 x 108 (—t—g-> (d> (—1—a—U> yr for a < 2.7AU,

;= Mg s ¥ 1 A
) M e\ a 32
7 trig d
2.7 x ‘10 (_r[@ > <—Ef}> (SAU) yr for a > 2.7AU,

(84)
where Mg is the mass of the core at which the considerable gas accretion
begins (hereafter, called the trigger mass). On the other hand, we can es-
timate the accretion time of the envelope, Tenv, as a function of the trigger
mass using Eq. (71). Note that the accretion time, 7., is about twice as
long as the characteristic growth time of the envelope mass, Tz, Which was
defined in Eq. (67).

If we know the value of the trigger mass, we can calculate both the for-
mation times of the core and the envelope. The trigger mass can be obtained

in the following way. The core accretion rate, Mc, is given by (Tanaka and

Ida 1999)

M, 2/3 -31/12
1.7 % 107° (V) <&> (—a—) Mgyr™! for a < 2.7AU,

c = (M 2/3 Sy a \—31/12 .
1.1 x 10™ < — (——) Mgyr™ for a > 2.7AU.
(2) (&) o

(85)

Giving a and X4 and substituting them into Eq. (85), we overdraw the
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evolutionary path of the core accretion rate on Fig. 2a; the critical core
mass, M, is the core mass at which this evolutionary line and the line of
the critical core mass cross over. Then, comparing M with the isolation
mass, Mis,, which is given by Eq. (5), we obtain the trigger mass, Mg, i.e.,
Mirig = min(M™, Migo).

The validity of the obtained formation time should be checked on the basis
of the observationally inferred lifetime of a nebula, which is of the order of
1x107yr (see §1.2.3). As seen from Eq. (84), the core formation time for the
typical orbital radius of the extrasolar systems (~ 0.1AU) is about 1 x 10*yr
even in the case where the trigger mass is 10Mg; the constraint placed by the
nebular lifetifne can be easily satisfied. On the other hand, the constraint
is a strict one for the giant planeté of the solar system, because 7. is of the
order of 1 x 107yr even in the current position of Jupiter. Furthermore, as
far as the giant planets of the solar system is concerned, the trigger mass
should be in the range of the present core mass inferred by the study of the
planetary internal structure.

Before we combine our results with those of the planetary accretion the-
ory, we can find a lower limit of the core mass by comparing Eq. (83) with
the nebular lifetime. Since the accretion time of the envelope given by Eq.
(83) gives the minimum time required for the giant planet formation, it must
be shorter than the nebular lifetime. Under this condition, the lower limits

are ~ TMg, ~ 4Mg, and ~ 2Mg for f =1, 0.1, and 0.01, respectively.
5.2.1 Giant Planets of the Solar System

Figures 13a and 13b show, respectively, the trigger mass and the forma-

tion time, Tform (= Te + Tenv), of Jupiter (ie., a = 5.2AU) as functions of
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S4/EY§ for five values of the grain depletion factor, f. As seen from Fig.
13a, in the case of relatively low surface density (for example, 34 / Eg < 6
for the case of f = 1), Mg is equal to Mg, which increases with Sq/TH
(i.e., Mg 23/2), and does not depend on f. On the other hand, in the
case of large g, Mg = M. Hence, Mi:ig depends on f but only weakly
on Ty/TF (Mg depending on T4/TF through M,; Mt o M?O3),

As seen from Fig. 13b, in the case of the minimum-mass solar nebula
(ie., £4/Z = 1), Tyorm deceases greatly as f decreases. This is because
Tenv (L.€., T¢) decreases in proportion with decreasing f (see Eq. (83)). The
formation time, Torm, also decreases with increasing £4/ZH. In the case
where X4/38 < 3 and f > 0.1, Tiorm =~ Tenv. In this case, since M, Increases
with Bq/Z¥ and 7oy (ice., Tg) decreases rapidly with increasing M, (see
Eq. (83)), Ttorm decreases rapidly as £4/Z¥ increases. On the other hand,
in the case where 4/Z% >3 or f < 0.01, Tiorm ~ 7. In such case, since the
dependence of 7. on My, is small (see Eq. (84)) compared to that of Tenv
Trorm decreases only slowly with increasing L4/,

From Fig. 13b, we can find that, if f < 0.01, Jupiter can be formed in
the period of the order of 1 x 107yr (i.e., the nebular lifetime) even in the
case of the minimum-mass solar nebula. Even if f is larger than 0.01, Jupiter
can be formed in the nebula with surface density a few times as high as that
of the minimum-mass solar nebula. In those cases, the trigger masses are 2
to 9Mg as seen from Fig. 13a. These values are consistent with the present
core mass of Jupiter inferred from the study of the internal structures of the
giant planets (i.e., 0 — 10Mg).

In the case of Saturn (see Figs. 14a and b), the situation may be severe.
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Figure 13: The trigger mass, My, (Fig. (a)) and the formation time (i.e., the
sum of the accretion times of the core and the envelope), Term, of Jupiter (Fig.
(b)) as functions of the surface density of solid materials, ¥4, normalized by
that of the minimum-mass solar nebula, £, for f =1 (solid line), 1 x 107"
(short dashed line), 1 x 1072 (dotted line), 1 x 1072 (dot-dashed line), 1 x 107*
(long dashed line).
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In the minimum-mass solar nebula, Tiorm is longer than 1 x 108yr even if very
small f (< 1x107%) is considered. Furthermore, even if f is very small, very
large surface densities are required, compared to 3q; for example, ¥4 2 52&1
and f < 1 x 1072 are needed for the formation within 5 x 107yr. In the case
of Neptune and Uranus, the situations are extremely severe, because, even if
the lifetime of the nebula was 1 x 108yr, £4 > 10Z¥ would be required. It
is very difficult to explain how the solar system lost such a large amount of
solid materials.

Such difficulty arises apparently from the quite long accretion time of the
core, namely the strong dependence on the distance from the Sun, a (see
Eq. (84)). It fnay be inevitable to consider that the planetary cores formed
around the current location of Jupiter and then each of them moved outwards
to each present position. After Jupiter had been formed, its gravitational
effect would be important to the protoplanets around it. As described in
§1.2.1, several protoplanets form with the orbital separations of about 10
times as large as their tidal radii owing to orbital repulsion (Kokubo and Ida
1998). That is, several protoplanets with a few Mg would form around 5AU.
A protoplanet, the mass of which reached the isolation mass fastest, could
become Jupiter and other protoplanets with somewhat larger semimajor axes
may be thrown far away by the massive planet. The distance of 10 times as
great as the tidal radius of Jupiter is about 5AU, which is consistent with
the present separation between Jupiter and Saturn. A migrated protoplanet
would capture the nebular gas in the new location. Such a process would
“occur successively to form Uranus and Neptune (also see Thommes et al.

(1999) and Bryden et al. (2000)). The relatively small envelope masses of
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Uranus and Neptune (1 to 4Mg) may be explained if we consider that such
a process occurred on the way of the dissipation of the nebular gas, because
proto-Uranus and Neptune with small cores would experience the phases of
a moderate increase in the envelope mass and could not experience the rapid

gas accretion era, which was also pointed by Pollack et al. (1996).
5.2.2 Giant Planets of Extrasolar Systems

The in situ formation of the extrasolar giant planets, which orbit very
close to their parent stars (0.05 to 3AU), was considered to be very difficult
because of small isolation mass (see Eq. (5)). For this reason, some previous
workers (Papaloizou and Terquem 1999; Bodenheimer et al. 2000) considered
the ways in which large cores (> 10Mg) are formed. In contrast, we propose
the cases in which a 2 — 3Mg core can capture a large amount of the nebular
gas at 0.05AU. The point is to consider the formation in the dense nebula
whose mass is about 10 times as large as that of the minimum-mass solar
nebula; such a nebula has already been detected, as described in §1.2.4.

If a core becomes isolated from planetesimals completely when its mass
becomes larger than 2Mg, it can capture a large amount of the nebular gas
in the period comparable to the nebular lifetime in the case of f < 0.01 (see
Eq. (83)). Even if the core does not become isolated, the critical core mass is
as small as 2 — 3Mg in such a dense nebula, although the nebula have to be
a passive one like that given by Sasselov and Lecar (2000) (see Fig. 12b). In
this case, the condition that grains are highly depleted in the planet-forming
nebula can be eliminated and, nevertheless, the formation time is quite short.
The accretion time of a solid core is very short at 0.05AU mainly because

of the short Keplerian time. For example, the simple estimation by Tanaka
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and Ida (1999) gives about 100yr for a core to grow to 3Mg. Note that
such estimation may be over-optimistic, since the core could vaporize if it
was formed in such a short period. In that case, cooling of the vaporized
gas regulates the formation of the core. The cooling time, 7.0, is given

approximately.by
CT M.

Teool ™ 47TR20'SB(T4 - Té)’

(86)

where C is the heat capacity of the vaporized gas. Putting C = 1 x 10%erg/K
(i.e., a typical value for the perfect gas), M. = 3Mg, R > 1 x 10°cm(~ 1),
T = 2000K (i.e., typical condensation temperature of silicate), and Ty =
1250K (= T,1), we have Teop S 1 x 10%yT.

On the other hand, the gas accretion time is also short, since the con-
siderable luminosity is radiated from the envelope when the core mass is the
critical core mass. The accretion time of the envelope is given by Eq. (71),
which can be written as MS/M, on the order of magnitude with the use
of the relation, L ~ GMS M, /r.. Even if low M, of 1 x 1073 Mgyr= is
assumed, the accretion time of the envelope is ~ 1 x 10%yr for the accretion
time of an gaseous envelope. Thus, the total accretion time is very short
compared to the typical lifetime of the nebula (1 x 107yr).

The isolation mass given by Eq. (5) is about 1M, that is, is somewhat
smaller than the required core mass. We can, however, consider the possi-
bilities that the surface density was somewhat higher than that given by the
surface density distribution of the minimum-mass solar nebula originally or
because of inflow of solid materials on the central star.

To confirm such a formation scenarios of the giant planets close to the

central stars mentioned above, there still remain problems to be solved. The
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most serious problem is how large amount of gas a planet can capture. No
further accretion of gas is considered to occur, when the width of a gap
around a planet becomes larger than the local scale height of a disk (Lin and
Papaloizou 1993). The scale height of the disk is so small around 0.05AU that
the final mass would be very small compared to Joupiter’s mass. However,
the width of the gap depends on the uncertain parameter of the disk, i.e., the
effective viscosity that may be produced by turbulence or a magnetic force.
Thus, the issue of the limiting mass of a giant planet is still controversial. In
this sense, it is still an open problem whether the detected extrasolar planets

very close to the central stars could form in their current positions.
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