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ABSTRACT

Since Sekiguchi and Ohta (1977) proposed a soil constitutive model to account for stress-induced
anisotropy and time-dependency, numerous of theoretical works have been geared toward numerical
implementations for engineering practice. The performance of model has been proven to produce predicted
ground responses that are consistent with observed field measurements. However, there are some theoretical
contradictions in which the model and its numerical implementations still cannot cover, commented as the
following.

The singularity found at the corner of the SO (Sekiguci-Ohta) yield surface rules out the normality postulate.
The SO model cannot show a particular relation between K, and ¢’. The consistency condition is always violated
after stress update, that is, yield function f(o’, o’ ,)> 0, e.g. in computer code applicable to the model (DACSAR,
1985-1997). A reference of the model set to initiad yield stresso’,, at t=0 breaks the principle of objectivity
(frame indifferent) at all times. Relative responses mapping between isotropy due to elasticity and anisotropy
due to plasticity are unclearly quantified. In short, there are missing links among stress-induced anisotropy (Ko),
failure property (¢'), associative plastic flow, consistency requirement, objectivity and non-coaxiality.

Based on the recent theoretical principles regarding to the seamlessly-linked mechanics and mathematic
framework rigorously established by Simo et al. (1985-1997), al of these scattered concepts were satisfactorily
corrected and mutually connected within the new generalized concept in this study by the following suggestions,

Koiter's associated flow rule (1953) is applied to the singular corner intersected by upper and lower yield
loci that is selected as candidates of conceivable yield loci passing the discontinuous slope in stress space.
Concepts of mobilized and immobilized K, conditions are employed to a typical normality of individua yield
surface in triaxial stress plane. Implicit time integration algorithm based on return-mapping method is
implemented to enforce plastic consistency for the model, making a methodology accurate, unconditionally
stable and converged to the solution quadratically. The hardening variable of the SO model is modified from
volumetric plastic strain and initial yield stress ¢’,, to the current stress hardening o’.. Therefore, the model is
adapted to f(o’,0’c) without losing the generdity and satisfies the objectivity requirement by the
form-invariance principle. According to the principle of material invariance (Baker & Desai, 1984), the joint
invariants retained in congtitutive model can characterize the relative orientation of the stress and plastic strain
tensors in space. Therefore, a linear mapping quantity between Cartesian and reciprocal basics is associated in
order to clearly characterize non-coaxial response between stress and strain in Euclidean vector space.

In addition to its in-depth examination in fundamental concepts to practical computer implementations,
major theoretical developments contributed by the study include the stiffness matrix considering plastic flow at
the corner of the SO model, Ky-value in regard to the SO model, the consistent tangential moduli in regard to
anisotropic models and finally the inversion techniques of forth-order tensors based on reciprocal tensor basics.

As a consequence, an integrated viewpoint is settled for the SO model while providing a comprehensive
background and a short-cut technique in calculation for further advanced development. The study may share the
potential descriptions of implicit finite element method for non-smooth anisotropic models to researchers
working in similar fields and modern soil mechanics.
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1-1 Pur poses

The objectives of thisthesis can be itemized as followed,
1. To break the limitation confined by normality when involving non-smooth yield surfaces (plastic potentials)
in Geomechanics
2. To describe the vertex singularity in the model proposed by Sekiguchi and Ohta (1977) [1] as the unique
point of material memory on yield surface in stress space
To implement the mathematical treatment to deal with the singular vertex based on Koiter’'s associative
flow rule (1953) [2]
To evaluate the relation between K, and M in regard to the SO model
To extend the FEM code by considering the singular vertex in the SO model
To generalize aform of the SO model to satisfy a principle of objectivity
To develop the implicit stress update algorithms based on CPPM (Closest Point Projection Method)
To provide basis descriptions of implicit FEM procedures of an anisotropic soil model based on
return-mapping methods
9. To express the non-coaxiality between stress and plastic strain increment found in the SO model by a
reciprocal basis
10. To advance atechnique in numerical computation with high efficiency and accuracy
Briefly, the overal purposes of this study is to connect missing links existed in the numerical

implementation of the SO plasticity as outlined in Figure 1.1.
Non-coaxiality

w
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Anisotropy Ko

< ure property >

( Associative plastic flow )
Figure 1.1 Missing linksin SO plasticity numerical implementation

1-2 Methodology

1-2-1 Methodology for handling the cor ner in the SO model
It is our first step to show that a geometric representation of the SO has a corner in stress space. We found
that this corner in the yield surface moves along the anisotropic K, consolidation line during a hardening process.
Therefore, we looked into a relation between the virgin K, consolidated and the corner. Then, we found that the
corner keeps this virgin K, consolidated stress as a stress hardening parameter of the model. We named this
corner as a singular hardening vertex due to its property. It is known that associated flow rule cannot apply to
non-smooth yield surface. In order to evaluate a plastic flow at the singular hardening vertex, we extended the
concept of associated flow rule by referring to Koiter’'s associated flow rule, which can handle a non-smooth
yield surface. It is a Koiter’s condition to specify all discontinuous yield surfaces at the point or edge of
intersection of yield surfaces. Since, there are many individual yield surfaces passing the conical vertex and it is
impossible to include all of these countless yield loci. Only two of yield loci, which are mutually conjugate of
each other, were chosen as our candidates. One is referred to triaxial K, compression and another one is K,
extension loci. The reason why we used these candidates is because we found that the hardening vertex can be
found only in axisymmetric triaxial stress plane or Rendulic’s stress plane. And a section of the SO yield surface
with this plane resulted in two individual yield loci, namely, upper and lower yield loci. The corner is the
intersection point of both yield loci.
We evaluated the plastic flow at the corner by a sum of two plastic flows, which are normal to upper yield and
lower yield loci respectively. A consistency requirement is enforced on both yield loci and we obtained two
consistency parameters in corresponding to upper and lower yield loci. Information of these consistency



parameters can give a magnitude of plastic flow at corner and tell us whether the subsequent stress would be
placed at or escape from the corner. Moreover, we examined conditions for loading/unloading using upper and
lower yield loci’s loading parameters. We also considered the conditions to check whether a current stress is
located at the corner or not. If a current stress is located out of corner, then the regular method for smooth yield
surface is employed, if not, our particular method developed have to be employed. So, under K,-condition, we
can obtain calculation results that are consistent with e-log(p’) curves during loading/unloading.

1-2-2 Methodology for evaluating the theoretical K, in regard to the SO model

Next step, we tried to explore the initial anisotropy or K, value governed by the SO model. We can evaluate
the incremental stress under K,-condition where plastic flow is evaluated at the corner. According to the result,
K, is depended on Poisson’s ratio similar to arelation found in elastic behavior, which contradicts to the fact that
K, is related internal friction angle or Critical state parameter. We employed a more flexible condition by
allowing some variation of stress along K,-line. Then, we named this condition as mobilized K, while a state
kept dtrictly at the corner, which is named as immobilized K, we had determined its value already as Poisson’s
ratio function. We expected that in real experiments for finding K, on triaxial apparatus, we start from K,
compression/extension test and reverse back by extension/compression test in order to correct lateral strain to
zero repeatedly. That is, a mobilized K, state is gradually approached immobilized K, state. We can evaluate a
mobilized K, vaue from individual plastic flow of upper and lower yield loci (in implicit form) while a
immobilized K, value is evaluated from a coupled plastic flow of upper and lower yield loci. The K, value
obtained by each method gave different functions. By the assumption that the mobilized K, would eventually
approach to immobilized K, condition, we equated these two K, values and found that the relation can be
reduced to an expression for K, depended solely on critical state parameter M. Then we compared the relation
obtained with famous empirical relations to convince our theoretical K.

1-2-3 Methodology for formulating FEM considering the cor ner in the SO model

After we knew the plastic strain rate evaluated at the corner for a given strain increment, a corresponding
elastic strain increment can be obtained as well as incrementa stress. A ratio of incremental stress to incremental
strain gives a tangential elasto-plastic stiffness tensor. At firgt, this forth-order tensor was complicated due to the
coupled effect of upper and lower yield loci, but after the condition of stress at the corner was employed. Many
of terms can be vanished because of mutual conjugates in the expression. Then we determined a compacted form
of tangential stiffness forth-order tensor and formulated it with standard FEM procedure. In FEM code we had
modified from a standard one, we made a switch to let program consider whether a stress is on hardening vertex
or not. If so, a standard tangential stiffness tensor and its loading/unloading judgment are activated. If not, our
special tangential stiffness and its loading/unloading judgment are activated instead. Finaly, we verified the
program with simple K, consolidation problems and discussed cal culation results.

1-2-4 Methodology for adapting the SO model to satisfy the principle of objectivity

In the original version of the SO model, a strain-hardening parameter is employed but we changed to use a
stress-hardening parameter and changed generalized stress ratio to generalized relative stress ratio instead. As a
result, we can remove a reference to initial yield stress at t=0 in the model. After doing stress invariance study,
we can show that first and second invariance of stress tensor, first and second invariance of stress-hardening
tensor and joint invariance between first invariance of both stress tensor and stress-hardening tensor, totally 5
individual invariants, are included in the SO model. We found that the model can characterize anisotropy due to
its joint invariance. As a conseguence, we can propose the new form of the SO model that satisfies the principle
of objectivity. Not only isotropic hardening stress is considered but also deviatoric hardening stressisincluded in
generalized relative stress ratio of the model. Providing that a rotational hardening is frozen, the resulted
response can be reduced to the original version of the SO model without losing the generality in infinitessimal
problem.

1-2-5 Methodology for enforcing a consistency requirement to the SO model

In previous numerical implementation of the SO model, we update a stress forwardly. A consistency
requirement is satisfied providing that a very small incrementation is imposed. So the solution is said to be stable
conditionally. If we update a stress backwardly and consider the consistency requirement simultaneoudly, a
solution is said to be stable unconditionally. This technique has been well developed and it is called
return-mapping agorithm. There are many types of stress update algorithm under return-mapping algorithm but
we selected to develop one that is called Closest Point Projection Method (CPPM) because it is the most general
and rigorous algorithm. Actually, the return-mapping method needs hyperelastic rule (path-independent) in its
formulation. However, elasticity in soil mechanics usually refers to hypoelastic rule (path-independent) in which
bulk and shear moduli are depended on isotropic pressure, [K(p'),G(p’)]. A class of lenient hyperelasticity is also
considered in which bulk modulus is depended on isotropic pressure while shear modulus is depended on a
virgin consolidated stress, [K(p'), G(p' ¢)]. Inside yield surface, hyperelasticity is satisfied but if the yield surface



is expanded its size, a response of stress on the yield surface will become hypoelasticity. A damage effect of
strain-energy is considered during expanding/contracting of yield surface. Both classes of elastic rule were
employed in this study. There is no problem to use hypoeasticity in monotonic loading problem but
hyperelagticity is suited for repeated loading problem because energy can be conserved within a loop of
stress-path. However, we will focus on hypoelasticity more than hyperelasticity in our study because many of
past researches in SO model have referred to this class of elastic model, therefore, it is convenient to compare
one another.

1-2-6 Methodology for formulating stress update algorithm for the SO model

A set of rate congtitutive equations is composed of six governing equations. There are decomposition of
elastic-plastic strain rate, nonlinear elastic stiffness, stress-strain relationship, associated flow rule, evolution law
of hardening stress and yield function. Loading/unloading criteria are governed by Kuhn-Tucker
complementarity condition. We obtained incremental forms of these six equations using backward-Euler
differential scheme. In order to solve such a non-linear equation system, we employed a Newton method to
search for solution iteratively. To start the iteration, we determined the feasible value of stress for the first step by
mapping incremental strain to stress using purely elastic stiffness tensor. The relaxation of plastic strain is
iteratively determined in Newton loop until the convergence of solution is reached. A Jacobian matrix of Newton
method would be large if we consider all six equations in the system; therefore, we reduced the number of
equations by substituted one other and obtained two equations. These are a tensorial expression for strain and a
scalar equation for consistency parameter. A corresponding Jacobian matrix was obtained by tensoria
manipulation. As a result, updated form of elastic strain and consistency parameter can be determined. Other
state variables like those of incremental stress and hardening stress will be substituted later. Finally, all of
updated processes will be stopped if the criteriafor convergence are met by a specific tolerance.

1-2-7 Methodology for forming consistent tangential stiffness tensor

According to the incremental form of governing equations obtained in previous section, we differentiated
these equations to obtain the variational forms. By tensorial manipulation of high order tensor, we reduced six
variational equations into one variational form of stress strain relation.

A consistent tangential stiffness tensor is different from a continuum tangential stiffness tensor. A consistent
tangential stiffness tensor is agradient of updated stress tensor to updated strain tensor based on backward-Euler.
There is a consistency parameter contained in the expression to enforce consistency requirement. A continuum
tangentia stiffness tensor is a gradient of updated stress tensor to updated strain tensor based on forward-Euler.
There is no consistency parameter contained in the expression. Evaluation of consistent tangent modulus is far
complicated than that of continuum tangent modulus. Consequently, a higher degree of non-linearity can be
obtained in consistent tangent modulus. According to Simo and Taylor (1985) [3], it is able to show that
asymptotic rate of convergence reaches a solution quadratically in a way that is faster than that of continuum
tangential modulus can do.

However, we accepted that it is quite difficult to obtain the exactly backward-Euler-based consistent
tangentia tensor because a rank of tensor as high as sixth order is required when we differentiate an elastic
stiffness tensor, which is depended on stress tensor, in respect to stress tensor. To soften the difficulty of
high-order tensor, the semi-backward Euler is practiced instead. We ignored this sixth-degree order of stiffness
terms in order to simplify the formulation. We simplified it by using forward Euler for elastic stiffness tensor
referred to previoudly iterated stress point. A determination of consistent tangential tensor for anisotropic models
is more difficult and complex than that of isotropic model (Borja et a. 1990, 1991 [4, 5]). Expression of
elastoplastic tangential tensor is expected to expand more and more due to non-coaxiality if a complicated form
of consistent elastic tensor is used. Therefore, we primarily froze the determination up to forth-order degree in
this study and wish to develop for higher degree in further step of algorithm devel opment.

Our consistent tangential tensor is numerically obtained rather than algebraicaly. The exactly
backward-Euler-based consistent tangential tensor would be achieved when state variables converge to a solution.
An error due to adisregard of sixth-order degree can be lenient when a solution is nearly approached. The same
accuracy can be obtained at the end of iteration but the rate of convergence and stability may not be as good as
the performance gained by that of exact backward-Euler. However, we can get the smpler form of consistent
stiffness tensor by semi-backward Euler.

1-2-8 Methodology for finding an inver se of forth-order unsymmetrical tensor

We had applied the reciprocal basis to characterize stress and stress increment from previous section. We
showed that in stress space, 3 individual tensor bases, which are isotropic, anisotropic and deviatoric
second-order tensor bases could represent a state of stress. Later, we proved that the same 3 individual tensor
bases could indicate a state of strain in strain space as well. Therefore, aforth-order tensor mapping a particular
stress in stress space to the corresponding strain in strain space is existed. The spectral composition of this
forth-order tensor is the summation of mapping forth-order tensor among reciprocal basis. As aresult, there are 9



combinations of mapping reciprocal basis plus one deviatoric forth-order tensor. These 10 tensor bases are
obviously served to map incremental stress-strain and strain-stress relations, which are stiffness tensor and
compliance tensor respectively. Therefore, both stiffness and compliance tensors share the same tensor bases in
their representation. The difference is the corresponding coefficients derived from the congtitutive equations. We
named them as constitutive coefficients.

If we refer to the consistent stiffness tensor derived in previous section. We found that it is inevitable to
obtain the consistent stiffness tensor in implicit form, that is, in terms of its own inversion. We obtain the exact
form of consistent compliance tensor from the constitutive equations. In order to exactly obtain the consistent
stiffness tensor, we need to inverse the consistent compliance tensor. From the knowledge we had known that
both tensor share the same tensor bases, we can write the spectral representation of the consistent stiffness tensor
in terms of reciprocal tensor bases and their own respective unknown constitutive coefficient. The identity
forth-order tensor is preserved on both space no matter Cartesian basis or reciprocal basis are applied. As a
consequence, the double product of consistent stiffness tensor with compliance tensor would result in the identity
tensor, which has its representation given by isotropic and deviatoric forth-order tensors. We performed the
double product, which resulted in 10 by 10 multiple pairs of double product of each basis, and represented in
terms of reciprocal basis of forth-order tensor. Then, we equated the double product to identity forth-order tensor.
By comparison of the coefficients of each forth-order tensor bases, we obtain a linear system of 10 unknown
variables. After solving these 10 unknown variables, we obtained the constitutive coefficients for the consistent
tangential stiffness tensor. To ensure our solution, we verified the solution with a closed-form obtained by
isotropic consistent stiffness tensor by reducing its anisotropic property.

1-2-9 Methodology for formulating implicit FEM based on the SO model

In fact, our algorithm can be applied to other anisotropic models but herein, we focused on the SO model.
According to the return-mapping algorithm, there are two levels of Newton's method. First is global level for
internal force update on whole nodes and second is local level for stress update on each element. A notion of
elastic-split-plastic-corrector scheme based on CPPM was applied in local Newton's loop. The consistent
tangential tensor was employed in global Newton's loop by casting into global stiffness matrix of FEM. A local
Newton's loop is called to correct a trial stress determined by nodal displacement in global Newton's loop. An
updated stress and other state parameters will be employed to compute internal forces and check whether the
unbalanced force and unbalanced energy norm meet convergent criteria. If not, the updated stress and other state
parameters will be used to determine the updated tangential stiffness tensor of each element and subsequently
form the updated global stiffness matrix. Later, nodal displacement is recomputed repeatedly until a solution
reaches convergence criteria.

4-noded rectangular with 4 Gauss points was used for spatial integration. A higher non-linearity with pore
pressure node 9u-1p is subjected to develop in the future. CPPM applicable to the SO model was checked by
simple problems such as drained/undrained compression tests, Kq-consolidation test, drained/undrained simple
shear tests. In global level, an example of IBVP (initial-boundary-value-problem) using 4 elements uni-axial
compression simulation was investigated. A more complicated soil/water coupling IBVP is subjected to test
when full implementation of the method is coded to computer program.

1-3 Structure of the dissertation

Chapter 1:Introduction
State of purposes and introductory outline are noted. The notations, definitions and symbols used all over athesis
are defined. Finally, aflow of study and guideline for reader are presented.

Chapter 2: Theoretical background

This section provides the mathematical foundation used throughout the study. The theoretical backgrounds
include mathematical preliminary, tensor theory ranging from first, second, third, forth and high order tensor,
tensor analyses, theory of stress and strain, constitutive models, numerical methods, Newton method and Central
limit theorem.

Chapter 3: Convex Analysis

The fundamental implementation to deal with multiple non-smooth yield criteria is developed based on the
associated flow rule extended by Koiter (1953, 1960). The condition of discontinuity in the SO model is
explored. Numerical implementation of plastic flow at the corner is developed.

Chapter 4: Soil Initial Anisotropy

The derivations of Ko-value based on constitutive models are carried out. According to Koiter's associated flow
rule and a concept of immobilized/mobilized plastic flow at the corner, relation between Ko-value, Poisson’'s
ratio and internal friction angle is found. The same relation can be obtained from Central limit theorem by




interpreting Koiter's condition by a view that a plastic flow at the corner lies within a fan of equal possibility.
Comparisons with empirical relations are performed to ensure the applicability of Koiter's associated flow rule
to the hardening vertex of the SO model.

Chapter 5: Singular Hardening Vertex

A format of the SO model is modified in consistent with the modern theory of plasticity and current devel opment
in computational mechanics. Useful information about numerical implementation of this kind of particular
constitutive model is contributed. A geometric representation of the model points out that there is only one point
of singularity located in a virgin Ky-consolidation stress in axisymmetric triaxia plane of stress. This particular
stress is also referred to the material memory of the model. A state of reference connected to the initial yield
stress in the model is changed to the current yield stress in order to satisfy the principle of objectivity. The
non-coaxiality between stress and strain can be clearly characterized by relative mapping quantity based on a
reciprocal basis defined in replace of Cartesian tensor.

Chapter 6: Stress Update Algorithm

For primary study, a simple return-mapping method based on two stress invariants is applied to the SO model in
triaxial stress plane. In order to evaluate the rate of convergence and solution accuracy generated by the
algorithm, numerical simulations are carried out by unconsolidated undrained test and K,-consolidation test.

Chapter 7: Closest Point Projection Method

A rigorous framework for nonlinear analysis for stress-strain-strength of clays by return-mapping algorithm
based on CPPM is arranged in line with hyperelasticity considering damage process. An elastic model of
pressure-dependent bulk modulus and virgin-consolidated stress-dependent shear modulus is examined. The
complete stress-update algorithm for the SO in generalized space is provided.

Chapter 8: Consistent Tangential Stiffness Tensor

Generalized concept of implicit integration algorithm formulated for anisotropic soil models is developed.
Semi-backward Euler for pressure-dependent hypoelasticity is employed to simplify the complexity of
elastoplastic responses. Algorithmic moduli are derived from the nonlinear backward-Euler incremental system
of governing equations. The consistent tangential moduli in regard to the anisotropic models and the SO model
in particular are derived.

Chapter 9: Tensorial Inversion Technique

In order to raise the performance of algorithms, the mathematical technique for forth-order tensor inversion is
introduced. Instead of computing the consistent tangential moduli implicitly, the exactly closed form can be
obtained, giving a by-passed step in computations.

Chapter 10: Implicit Finite Element Method

The global and local solution schemes are processed by Newton method. Iteration in local Newton loop updates
the stress by enforcing to yield surface while global Newton loop searches for a solution to lessen the residuals
of unbalanced force and energy norms. Implicit FEM procedures are developed using 4 Gauss-point
iso-parametric 2D-elelement. A program is applied to initial-boundary-value-problem to test a performance.
Consolidated drained test under plane strain condition is calculated using convergence criteria by specific
tolerance. An asymptotic quadratic rate of convergence is obtained for both force and energy norms of residual.
It is found that the algorithm is independent of sub-incrementation. A high accuracy of a method can be obtained
even asingle step.

Chapter 11: Numerical Analysis

This section is devoted to the illustrations and examples generated by numerical methodology. Step-by-step
procedures and detailed calculations are provided. The accuracy assessment of the stress update algorithms is
evauated by isoerror maps. The verification of semi-consistent tangential stiffness tensor is achieved via
numerical differentiation.

Chapter 12: Discussion and Summary
Discussions and summaries drawn from all of chapter are collected. Prospect research plans are left for further
development. The study is believed to pave away for large-scale computation platform in the future.

Appendix A: Tensor analysis
Manipulation of tensorial expressions and proofs are assembled.

Appendix B: Sekiguchi-Ohta plasticity
A complete reference for equation manipulations concerned with the Sekiguchi-Ohta plasticity is contributed.




Appendix C: Ohta-Hata plasticity
Coupled equations of upper and lower yield loci in the notion of Ohta-Hata plasticity are handled.

Appendix D: Ko-value
Ko-values obtained by congtitutive equations are derived in details and compare one another with that of
original-Cam clay and modified-Cam clay.

Appendix E: Soil elagticity
Elastic tangential moduli of soil models based on linear, non-linear and secant moduli for both hypoelasticity and
hyperelasticity are derived.

Appendix F: Linearization
A systematic nonlinear equations and its solution pertaining to implicit integration algorithms is compiled for
comprehensive reference.

Appendix G: Form-invariance principle
A pool of invariant form of stress retained in constitutive equations is devoted. A proof for objectivity of
congtitutive model is supplemented.

1-4 Inter dependence of chapters

It may be worthwhile to pursue the reading paths, which indicate the interdependence of the chapters shown
in Figure 1.3. According to Figure 1.2, abasic guidance is required to prepare the theoretical comprehension and
motivation to the concepts. An advanced guidance is suited for those who have a sufficient background;
therefore, the suggested reading paths may be bypassed. For those who are interested only return-mapping
methods, the sections involved corner treatment can be exempted. In the opposite way, the sections involved
return-mapping algorithm can be ignored for those who are mainly focused in the corner treatment in yield
surface.

Basic reader for return-mapping method Basic reader for corner treatment
Ch.1: Introduction Ch.1: Introduction
Ch.2: Theoretical Background Ch.2: Theoretical Background
Ch.6: Stress Update Algorithm Ch.3: Convex Analysis

Ch.4: Sail Initial Anisotropy

Advanced reader for return-mapping method

Advanced reader for corner treatment
Ch.7: Closest Point Projection Method

. . . Ch.3: Convex Analysis
Ch.8: Consistent Tangential Stiffness Tensor

Ch.5: Singular Hardening Vertex

Ch.9: Tensorial Inversion Technique
Ch.10: Implicit Finite Element Method
Ch.11: Numerical Analysis

Figure 1.2 Suggestions for basis and advanced reader
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Ch.2: Theoretical Background
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Return-mapping method Corner treatment
Ch.6: Stress Update Algorithm Ch.3: Convex Analysis

Ch.7: Closest Point Projection Method

Ch.4: Soil Initial Anisotropy

A

Ch.8: Consistent Tangential Stiffness Tensor Ch.5: Singular Hardening Vertex

v

Numerical implementation

Ch.9: Tensorid Inversion Technique
Ch.10: Implicit Finite Element Method

Ch.11: Numerical Analysis

v

Closure

Ch.12: Discussion and Summary

AppendicesA to G

Figure 1.3 Reading paths

1-5 Notational conventions

A unified style and notation are used as much as possible throughout this thesis. Principal notations are
summarized in abrief glossary.

%2

= Cauchy stress tensor
= effective Cauchy stress tensor
= effectiveinitial consolidated stress tensor

= effective virgin consolidated stress tensor

trial effective stress

= ¢' atstepn

= stress deviator

initial K-consolidated stress deviator

»waa a aaa
1

virgin K,-consolidated stress deviator

relative stress deviator
preconsolidation overburden pressure

overburden pressure

QA wnl W
(<J (e}
11l

Q
<.
I

stress on plane x in direction of y-axis

&

= axial stress

QD

radial stress
= shear stress

<9 9 9
1]
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axial effective stress

radial effective stress

vertical effective stress

horizontal effective stress

major principal stress

intermediate principal stress

minor principal stress

first invariant of stress

second invariant of stress

third invariant of stress

second invariant of stress deviator

second invariant of stress hardening

second anisotropic invariant of relative stress deviator
mean effective stress

mean effective initial stress

mean effective stress right after the completion of consolidation

mean effective virgin consolidated stress

trial mean effective stress
deviatoric stress

trial deviatoric stress

stressratio; g/p’

stressratio at Ky-condition; qJ/p’o
stressratio at initial-condition; gi/p’;

s s
generalized stress ratio; g[i - ﬂj (i - i}

Po P AP Py
generalized relative stress rétio; E[i - ﬁj [i —ij
2\p" p )P P

normalized stress deviator by mean effective stress

normalized stress deviator by mean effective stress (initial yielding)

normalized stress deviator by mean effective stress (current yielding)

unit normal of stress deviator

infinitesimal strain tensor (compression positive)
elastic strain tensor

plastic strain tensor

trial strain tensor

volumetric strain

volumetric elastic strain

volumetric plastic strain
distortional strain
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elastic distortional strain

plastic distortional strain
deviatoric strain

deviatoric elastic strain
deviatoric plastic strain
axial strain

radial strain

axia elastic strain
radial elastic strain
axial plastic strain
radial plastic strain

Stress-strain relations

e

C
de

c®
dee

o
3

mmo

S5 ® » @

+1

0O O O
8

n+l

Material parameters

A AUZQOR

ORISR > S XX

O

w

® O

D

elastic stiffness forth-order tensor

elastic compliance forth-order tensor
elastoplastic stiffness forth-order tensor
elastoplastic compliance forth-order tensor

elastoplastic stiffness forth-order tensor for the corner
stiffness 2x2 matrix

compliance of stiffness 2x2 matrix

algorithmic tensor

secant elastic stiffness forth-order tensor
consistent elastic stiffness forth-order tensor

consistent elastoplastic stiffness forth-order tensor

bulk modulus of soil skeleton
shear modulus of soil skeleton

secant shear modulus of soil skeleton

critical state parameter

coefficient of dilatancy

coefficient of lateral earth pressure at rest (virgin)
coefficient of earth pressure at rest (in-situ)
Poisson’sratio of soil skeleton

aconstant ratio of shear modulus to bulk modulus; G/K
effective internal friction angle

irreversibility ratio

virgin compression index (In-scal€)

swelling index (In-scale)

compressibility index (In-scale)

recompressibility index (In-scale)

compression index (logg-scale)

swelling index (logy-scale)

void ratio

voidratioat o',
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plasticity index

plastic dissipation energy
yield function

upper yield function/locus

lower yield function/locus

hardening potential
strain hardening parameter

selective isotropic hardening parameter
rate consistency parameter

consistency parameter; yAt

scalar elastic modulus

scalar plastic modulus

rate consistency parameter for upper yield surface

rate consistency parameter for lower yield surface

set of hardening parameters

vector of loading parameters (upper-lower yield surfaces)
loading parameter in corresponding to upper yield surface
loading parameter in corresponding to lower yield surface

matrix of coupled-hardening plasticity (upper-lower yield surfaces)

matrix of decoupled-hardening plasticity (upper-lower yield surfaces)
inversionof X

angle of dilation
angle of third invariant in deviatoric plane

= spatia coordinates
xlylz-axis of Cartesian coordinates
spatial indices

Kronecker delta

orthonormal basis

proper orthogona second-order tensor

second-order identity tensor

second-order unit normal of stress deviator
second-order unit normal of relative stress deviator
forth -order isotropic tensor

forth-order deviatoric tensor
forth-order anisotropic tensor

rate of x

X increment, delta x
variation of x

X at iteration number k
X at step n
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the derivative of F with respect to x

the second derivative of F with respect to x

time derivative of F

divergence of F

X+|X

ramp function;
2

norm of tensor x

strain-displacment matrix, kinematic matrix
nodal displacement

element tangent stiffness matrix

global stiffness matrix

interpolation function

derivative of interpolation function

external force vector

internal force vector
problem boundary
problem domain

“is a member of”
“is a subset of

real numbers
vector space of symmetric second-order tensor

controlled-step of convergence
tolerance
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2-1 Tensors

Due to the heavily mathematical subject matter, the basic preliminary is necessary to include in the beginning of
this thesis. Other eminent text books (Bird, R.B. et a, 1960 [1], Ogden, R.W., 1984 [2], Bonet, J. et al, 1997 [3])
are suggested for additional references. The main conceptsto cover are vector and tensor algebra, directional

derivative, linearization of nonlinear quantities and Newton method.

2-1-1 First-order tensors

The basic concepts that will be used throughout the thesis are introduced and summarized. Boldface symbols
denote tensors. Italic symbols denote scalar components. Three unit vectors in rectangular Cartesian coordinate
systems are denoted by e, & and e;. Any given vector v can be expressed as a linear combination of these

orthonormal vectors as,

3
V=2 Ve
i=1

Components of v can be presented by,

Vi=Vv-§
The unit base vector {e, } in the direction of three coordinate axes are expressed by
1 0 0
e =:0p6,=<1;65=40
0 0 1
The scalar or dot product of these two vectors can be given by,
&€ =g
Actually, scalar can be regarded as zero-order tensor, vectors as first-order tensor.
Where &; = {1 I_f I, - J_ is Kronecker delta
0 if i=#]j
Scalar product (simple product) of two vectors is defined as,
u-v=_u\

Norm of vector v is,

1
IVl = (v-v)2
Unit vector in direction of v is marked by,
=
vl
A tensor product is defined by operator ® in such away that,
u®v=uve ®e; or (u®v)ij =WV,
The product becomes a second-order tensor. Consequently,
T
(u®v) =veu
Theresult in above equations can be viewed smply as,
uv=u-v'
The distribution property can be observed,
UR(V+W)=u®v+u®w
A mapping from vector w to u can be presented by,
(U®v)-w=(w-v)u
A mapping from tensor x ® y to u ® v can be presented by,
(U®V)-(x®y)=(v-x)u®y or ((u@v)-(x@y))ij = UV % Yj

The multiplication signs may be interpreted as,

Multiplication signs Product Order of result
® tensor product )
x vector product 21
dot product -2
double dot product >4

where X represents the su

m of the orders of the quantities being multiplied.

(2.1)

(2.2)

(2.3)

(2.9

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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2-1-2 Second-order tensors
A second-order tensor T on Euclidean space E in respect to an orthonormal basis {e,} are shown by,

T=T,e ®¢ (2.14)
Several kinds of multiplication are possible for vectors and tensors. Single dot is used to indicate simple product
defined asfollowing,

T-v=Tyv (e ®¢ )-e

=Tyv& (ej ‘ek) (2.15)
=Te&
A second-order tensor T isalinear mapping that associates a given vector u with a second vector v as,
v=T-u (2.16)
A resulting linear transformation can be shown in such that
(aT+BS)-u=aT-u+pS-u (2.17)
T-(au+ fV)=aT-u+ BT v (2.18)
The zero second-order tensor maps every vector to zero vector.
0-u=0 (2.19)
A second-order tensor that maps any given vector onto itself isthe identity tensor
l.u=u (2.20)
The identity second-order tensor is shown by,
100 , ,
1=/0 1 0(=) 65,e®¢e =) e0®¢ (2.21)
00 1 ij=1 i=1
Components of second-order tensor T can be identified by,
T, =6-T-g (2.22)

A single product of second-order tensor T and tensor Sis expressed by,
T-S=T,;S, (e ®¢ )-(e ®e)

=T,S (e ®¢)(e &) (2.23)
=Ty S (ei e )
The result shown in Eq.(2.23) isasecond-order tensor where components can be expressed as,
(T-S); =TSy (2.24)
(T-S)-u=T-(S-u) (2.25)
A transpose of T can be defined by,
u-Th-v=T-u-v (2.26)
A transpose of a second-order tensor T can be shown by,
T =T,e, ®e =T,e e, (2.27)
Corollary,
(T) =7 (2.28)
(aT+pS) =aT’ + g’ (2.29)
(T-S-R) =R"-.§"-.T" (2.30)
(T7) =(17) =77 (2.31)
S (U®V)=S-u®v (2.32)
(UBV)-S=u®S"-v (2.33)

IfTT =T, then T issymmetrictensor. If T' =—T, then T is skew-symmetric tensor.
An arbitrary tensor can be expressed uniquely as the sum of symmetric and skew-symmetric parts as shown,
T=%(T+TT)+%(T—TT) (2.34)

(symmetric) (skew—symmetric)
Double dot are used to indicate double product (contraction) defined as following,



17

T:S=T,;S,(e ®e ):(e ®e)

=T;S (e 'ek)(ej € ) (2.35)
=TS
Theresult shown in Eq.(2.35) isscalar. Magnitude of a second-order tensor T can be defined by,
1

ITl=(T:T)2 (2.36)
According to Eq.(2.35), for S=1, adouble product is atrace of second-order tensor which can be shown by,

T::L:Tijé‘ij =T, =tr (T) (2.37)
Corollary,

tr(u®v)=u-v (2.38)

tr(T")=tr (T) (2.39)

tr(aT+BS)=atrT + BtrS (2.40)

tr(T-S)=tr(S-T) (2.41)

tr(T-S:R)=tr(R-T-S)=tr(S-R-T) (2.42)
The relation between double dot product and trace can be presented by,

S:T=tr(S-T)=tr(T-S')=tr(S:T")=tr(T"-S)=§T, (2.43)
For S=T, adouble product is atrace of second-order tensor which can be shown by,

T:T=tr(T"-T)=T,T, (2.44)
Further useful properties of the double product are,

T:(u®V)=Tuy, =uTv, =(T-v)-u (2.45)

(UBV): (x®Y)=uVv;xYy; =ux%V;y; =(u-x)(v-y) (2.46)
A product of agiven second-order tensor T and itsinverse T™ resultsin the identity tensor.

T T =T*T=1 (2.47)
Then T iscalled an invertible tensor or non-singular tensor defined in away that

det(T)=0 (2.48)

Determinant of T is defined as the determinant of the matrix T with respect to an orthonormal basis. Det(T) is
scalar invariant of T.

det (T) = gijkTilTj 2Tka (2.49)
where ¢, , whichis called the alternating symbol, is defined by,
1 (ijk) is a cyclic permutation of (123)
gy =1-1 (ijk) is an anticyclic permutation of (123) (2.50)
0 otherwise
For det(S)=0,

(sT)'=T*.s* (2.51)
Sinceu ® v isrank 1 tensor, the determinant is zero,

det(u®v)=0 (2.52)
Some properties of the determinant for second-order tensors are summarized as following,

det(1)=1 (2.53)

det(T") = det(T) (2.54)

det(aT)=ca’det(T) (2.55)

det(T-S) = det(T)det(S) (2.56)

det(T7) = det(T)" (2.57)

The relationship between determinant and trace is expressed by,
det(S):%tr(SSS) =§sT (s-5) (258)
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2-1-3 Eigenvalues and Eigenvectors
For an arbitrary second-order tensor T, a mapping to vector v can be existed to itself in such away that,

T-v=Av (2.59)
Alternatively,
(T-41)-v=0 (2.60)

A iscalled the eigenvalue or proper number of T corresponding to the eigenvector v.
For non-trivial solution for v, thatis v = 0, if and only if, the characteristic equation for T is satisfied by

det(T-41) =0 (2.61)
In according to Eq.(2.49), the determinant term can be expanded to,

21,22+ 1,A-1,=0 (2.62)
where

[, =tr(T) (2.63)

1 2 2

l,= E{tr (T)? ~tr (T%)} (2.64)

|, = det(T) = %{tr (T)* =3 (T)tr (T%) + 21r (T°)} (2.65)
Referring to Eq.(2.59), repeated application of T can be obtained for any positive integer n.

T".v=A"v (2.66)
Multiply Eq.(2.62) with v and consider Eq.(2.66), Cayley-Hamilton theorem can be proved,

T -1, T241,T-1,1=0 (2.67)

Furthermore, it is proven that T" is expressiblein terms of 1, T and T2 for any positive or negative integer n.

2-1-4 Symmetrictensors
For asymmetry tensor T =T', the eigenvectors of T are mutually orthogonal and the eigenvalues are real. The
spectral representation of symmetric tensor T with respect to the basis {v;} isidentified by,

3
T=)Av,®v, (2.68)
i=1
where v, (i=1,2,3) are orthonormal sets of proper vectors

A, (i=1,2,3) are associated proper numbers
For positive semi-definite, thatis v-T-v>0 where VweR',v=0,4 >0

1 3.1
T2 = Zﬂ,livi ®v, (2.69)

i=1

For positive definite, thatis v-T-v>0 where YveR'v=0,4 >0
3
TS ey, (2.70)
i=1

The properties shown in (2.69) and (2.70) can be employed to find out square root and inverse of second-order
tensors.

2-1-5 Orthogonal tensors
Since avector is aindependent quantity of any coordinate system, vector can be represented by any particular

system in different components which can be expressed as a linear mapping from basis {e} to {e "},

v=ve =v'g’ (2.71)
Components of v transform under changes of orthonormal basis, where

V"= Qv (2.72)

g '=Qje, (2.73)
Q arethe direction cosines of the vectors {g '} relativeto {e},

Qj=6"¢ (2.74)

Transformation tensor can Q be expressed obvioudly as,
e'e €'€ €-6
Q=& &', €'e (2.75)
86 €€, €&
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Transformation rules for changing vector under rotation of axes,

v'=Q-v (2.76)
According to orthonormality,

5ij =€ g € = Qlkek "€, = Q|ijk (2-77)
Asaresult of EQ.(2.77),

Q-Q"=Q"-Q=1 (2.78)

Ql=qQ (2.79)
For proper orthogonal tensor, corresponds to maintenance of right-handedness of the basis vector,

det(Q) =+1 (2.80)
For improper orthogonal tensor,

det(Q)=-1 (2.81)
A tensor exists independent of any coordinate system in such away that,

T=Tye ®e; =T 'g ®e;' (2.82)
Transformation rules for changing second-order tensor under rotation of axes,

T'=Q-T-Q" (2.83)
The componentsiis expressed by,

Tij "= QipQjq Tpq (2.84)
Asaresult, it is found that tr(T), tr(T?) and tr(T*)=3det(T) are scalar invariants of T which are shown below,

tr(T)=tr(Q-T-Q")=tr(Q" -Q-T) =tr(T) (2.85)

tr(T?) =tr(Q-T-Q"-Q-T-Q") =tr(T?) (2.86)

det(T") = det(Q-T-Q") = det(Q) det(T) det(Q" ) = det(T) (2.87)

2-1-6 Third-order tensors
A third-order tensor is defined as a linear map from an arbitrary vector v to a second-order tensor T in such a

way,

W.-v=T (2.88)
where W can be recognized by tensor products among three vectors,
W=u®v_ew (2.89)
Actually, athird-order tensor W is represented by
3
W= > W,e ®e ®¢ (2.90)

i)jk=1
Components of third-order tensor W can be extracted by
W, =(e ®e):W-g, (2.92)

A well-known third-order tensor isthe alternating tensor €, which is defined in such away,
£=¢ ®e,®e,+6,0€ ®e,+6,8e,®¢e

(2.92)
-6, 0e,06-606,06,-6,06 Q¢
Asaresult of EQ.(2.92), componentsof ¢ are shown by,
gy =(e ®e ):e-6 =6 (e xg) (2.93)
Actualy, (g-v) isseenasskew tensor of v insuchaway,
£:(U®V)=(g-v)-u=uxv (2.94)
Additional properties of double contraction are given below,
UBVAW):(X®Y)=(VvOW):(X®Yy)u=(V-X)(W-y)u (2.95)
(U®S):T=(S:T)u (2.96)
(S®u):T=ST-u (2.97)
W:(u®v)=(W-v)-u (2.98)
(W®u)-v=(u-v)W (2.99)
(UBW)-v=u®W v (2.100)

2-1-7 Forth-order tensors
Forth-order tensors are obtained by extending the combinations of tensor products as
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C=a®b®c®d

Essesential, the constituents of aforth-order tensor C can be represented by,
3
C= ) C,e ®e ®g ®¢
i,j.k,l=1
A double product of forth-order tensor and second-order tensor is expressed by,

C:D=Cye ®e ®e ®e:D,e,0¢,
=Cye ®e, (e -e,)(e-e,)D
= Cijkl Dklel ®ej
The component of double product can be expressed as,
(C: D)ij = Cljkl Dy = Dklcljkl
A component of double product of forth-order tensor and forth-order tensor is expressed by,
C:E=C,& ®e ®e,®e,E, e, 0 Qe Qe
=C,mEw€ ®e ®(e,-e)(e,-6)e®e
= CymEq9:s0,& ® €, ®e Qe

ijmn —stkl ~'ms™'nt ~i
=CimEnv€ ®€; ®e ®¢g
The component of double product can be expressed as,
(C : E)ijk| CljrrnErmkI

Components of forth-order tensor C can be given by,
Cu =(e®e):C:(e, ®e)

A double product of forth-order tensor C and its inversion gives an identity forth-order tensor shown by,

c':c=c:Cct'=1l
I dentity forth-order tensor can be expressed by,

[5 5, +6,0, |6 ®e ®¢, ®g

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

A double product of identity forth-order tensor | and second-order tensor results in a symmetric projection of

that second-order tensor as,
I:T :%[5@], +5,0; |e ®e ®e, ®¢ T €, ¢,

1

:TrmEI:é‘ikgjl +5ilé‘jk:|ei ®e, (ek 'em)(q 'en)
1

=T E[é‘ik% +5ilé‘jk:|ei ®€;60in
1

=Ty E[é}kéjl +5i|51|<]9i ®e,

:%[Tij +TJ.i]ei ®e,

The components of identity forth-order tensor can be viewed as 3x3 matrix in 3x3 matrix shown by,

1 00
000
000

0 05 0
05 0 O
0 0 O

|

0 05 0] [000
el = {0.5 0 0] {0 1 0] {
0 0 0] (000

0 0 05
0 0 0
[o5 0 0

0 0 05
0 05 O

5

50 0

0 O
0 05

0. 0

0 0 05]]
0 0O

0.
0
0
0 05
0
;]
00 1) |

In compare with tensor product of unity second-order tensor, the difference can be recognized,

(2.110)

(2.111)
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1
]
|
1
|

f1 0 0] [o 0 0] [0 O O]]
010/ (000|000
|0 0 1/ [0 0 O] [0 O O]
[0 0 0] [1 0 0] [0 0 O]
[[1®1],.],,=|/|0 0 of |0 1 0] [0 0O
|0 0 0/ |00 1] |00 O
[0 0 0] [o 0 0] [1 0 O]
000/ (000|010
000|000 |001

Some properties of fortr_l:order téns_or are o_bta_j ned as
(u,®u,®u,®u,): (x®y) = (uy - x)(u, - y)u, ®u,

(5,®S,):T=(S,:T)S,
UOW):T=u®(W:T)
(WRu):T=u®(W:T)
(T®S)-v=T®(S-v)

2-2 Tensor analyses

2-2-1 Derivatives
Time derivative of ascalar function
af -
at
Partia derivative of function with respect to apoint x in aregion
of (x.y,2)
OX
Second derivative of function with respect toy and x

o ( of 0% f 2
—|—|= =0, f
ox\ oy ) oxoy

First derivative of ascalar function with respect to a second-order tensor
a6 _, 1
Jc'

Second derivative of ascalar function with respect to second-order tensors
2
ofa)_Pf
06'\0q) 06'0q

2-2-2 Directional derivatives
Differentiation of scalar field

\%i :izﬂe, =f.e
OX OX ’
Differentiation of vector field
oV oV,
Vw=—=—=¢ ®¢, =V, 6 ¢
OX 8xj '

=0,f(xy,2)

div(v) =tr(Vv) = %‘ =V

Differentiation of tensor field

oS
VS:a—S=ieI ®e ®e =S 6 Qe ®e,
OX 0%, '
. 3, 05, 3
div(S)=VS:1= Z@—el =>'S,e

i,j=1 O ij=1
The following properties of the gradient and divergence are aresult of the product rule,
V(fv) = fVv+v® Vf

(2.112)

(2.113)
(2.114)
(2.115)
(2.116)
(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)
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V(fS) = fVS+S®Vf (2.129)
V(V-w) = (Vv)T ~W+(VW)T v (2.130)
div( fv) = fdiv(v)+ v-Vf (2.131)
div(fS) = fdiv(S) + SVF (2.132)
div(v®w) = vdiv(w) + Vv-w (2.133)
div(S" -v) =S:Vv+v-divs (2.134)

2-2-3 Tensorial derivatives
Some properties of tensorial derivatives can be given by

da Oa

—=—e Qe .
e . ®e, (2.135)
ij
as.
%:%e, ®e, Qe ®¢ (2.136)
Kl
%:l (2.137)
o(R:S " !
( ):[ﬁ} :R+[ﬁ} :S (2.138)
aT aT aT
o(1:T
(8T ) i1o1 (2.139)
o(T:T
(aT ):I:T+I T=2T (2.140)

2-2-4 Integrations

For the vector field u has continuous first-order partial derivatives at all pointsin aregular region R, n isthe
outward unit vector normal to the boundary JR . dV and dS are elements of volume and surface area
respectively, then,

j j j div(u)dVv = Hu -ndS (2.141)
In terms of iomponents, "
[[Ju,av =[funds (2.142)
The diverge[;ce theorerar];§ can also be applied to second-order tensors, such as,
[[[T.av = [[Tnds (2.143)
R R

2-3 Stresstensors

Definition of stress can be seen in many standard textbooks; [4, 5, 6, 7, 8]. The basic introduction is
summarized in this topic. Generally, Chauchy’'s stress in term of Cartesian components is expressed by a
second-order tensor of nine components shown by,
Oy O O3
0=|0n O Op (2.144)
Oz Oz Oz
The stress tensor components are displayed with reference to the coordinate planes. The components
perpendicular to the planes which are (c11, 622, 033) are caled normal stresses while others acting in tangent
planes are called shear stresses. The balance laws of angular momentum implies that the stress tensor is
symmetric, therefore,
6=¢ Of 0, =0; (2.145)

2-3-1 Principal stresses
According to Cayley-Hamilton theorem shown in Eq. (2.67), the following equations can be given,
¢’—16°+1,6-1,1=0 (2.146)
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where the invariants of o are given below,

| =1:6=tr(c) (2.147)
1
l,= E{tr (0)* ~tr(6”)} (2.148)
| ,=det(o) (2.149)
According to characteristic equations shown in Eq.(2.62), the following equations can be given,
o~ lo’+l,0-1,=0 (2.150)

The solutions of above cubic equation are the eigenvalues of o which are referred to the principal stresses.
In principal stress space, only diagonal terms are existed. Therefore, a stress tensor can be shown in short as,

s=dag[o, o, o] (2.151)
For real roots[9], (compression as positive)

2 3
Q:_ﬂ, R:2|1 I, + 271, , 6 =cos™ R (2.152)
9 54 /_Q3
0, =2{-Q cos(g) +i (2.153)
3 3
0 2 |
— 2 —0Qcos(——— +_1 2154
o, Q cos( 373 ) 3 (2.154)
0 2 |
=2/-Qcos(—+=7)+-= 2.155
O, Q cos( 373 ) 3 (2.155)
Properties of three roots are,
o to,+o,=1; (2.156)
0,0, +0,0,+0,0, =1, (2.157)
0,0,0; =1, (2.158)

2-3-2 Stressdeviator tensor
A given stress can be separated into isotropic pressure and stress deviator as follows,

o=pl+s (2.159)
where
1 1 1
p=31li0=3 (o) 3k ( )
Szc—%(l:c)lzc—pl (2.161)

A forth-order tensor mapping stress and stress deviator is defined herein as deviatoric forth-order tensor A. The
derivation is shown below, (See more about deviatoric forth-order tensor A in Appendix A)

Szc—%(l:c)lz{l—é1®1:|:0':A:6 (2.162)

s and o share the same principal axes. Invariants of the deviatoric stress tensor can be defined by the
corresponding characteristic equations,

s*-J,s°-J,5-J,=0 (2.163)
where
J, =tr(s)=1:s=0 (2.164)
J, :%tr(sz) :%s:s (2.165)
J, = Etr(sS) Lo det(s) (2.166)
3 3

It can be shown that the invariants J;,J, and J; are related to the invariants |4, 1, and |5 of the stress tensor s
through the following relations, [10]

J, ::—13(I12—3I2) (2.167)
J, =2—17(2|f—9|1|2+27|3) (2.168)

Eq.(2.152)-(2.155) can bereinstated by,
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0 [ 343 4, J (2.169)
2 i

o, = 2\/J—E Sin(9+§;z) +'§1 (2.170)

- 2% sin(0) +'§1 (2.171)

oy = 2\/3—; s n(e—én) +'—§ (2172)

where o, >0, >0, are mgjor, intermediate and minor principal stresses. —%< 0 <% is regarded as Lode

angle.

2-3-3 Triaxial stress condition
Under reduced stress form of triaxial stress condition, the mean normal stress p’ and deviatoric stress g can be
expressed by the major and minor principal effective stress o,, o, and o, (inwhich o, =0o;) by

_01+20, (2.173)
3
g=./3J, S S=0,-0, (2.174)
Therate of volumetric and deviatoric strains can be defined by,
&, =6 +24, (2.175)
&= %(e1 -&) (2.176)

2-4 Incremental stress-strain relations

2-4-1 Generalized Hooke's law
Many classical textbooks on easticity can be taken as references for Hooke's law [11, 12, 13, 14, 15]. In
summary, the rate of stressisrelated to the rate of elastic by,

6=C:&° (2.177)
The forth-order elasticity tensor C for isotropic material can be expressed by,

C=K(1®1)+2GA (2.178)
where K is bulk modulus and G is shear modulus of material. The symmetry of C can be found by

Cijkl = Cijlk = Cklij (2-179)
2-4-2 Flow rule

Many textbooks on plasticity can be taken as references [16, 17, 18, 19, 20, 21] for associative flow. In
summary, the rate of plastic strain can be described by,

£P = /li (2.180)
oo
of(o) (3,0 of A, of 83, of 2l 2180
oo 0o ol, 06 0, 06 0J; Oo
Since,

9 _q (2.182)
0o

D, _ s (2.183)
06

9, —-t=s S—EJ 1 (2.184)
0o 3
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2-5 Optimization theory
Optimization is a systematic approach to problem involving an optimal solution within certain constraints.
Details of optimization theory can be reviewed in many texts[22, 23].

2-5-1 Optimization of functions of several variables
In the topic of optimization of functions of several variables, several keywords will be described as followed,

Stationary point
The stationary point in f(X) can be defined as,

“X isastationary point for afunction f(X) if all partial derivatives of f arezeroat X ,.” Vf(X,)=0

(2.185)
Hessian matrix
The Hessian matrix is the (nxn) matrix of second order partial derivatives of f. The ith row of H holds the partial
derivatives of theith component of the gradient vector.

Quadratic form
If A isasymmetric (nxn) matrix then the function q(X) =X-A- X" iscalled a quadratic formDefiniteness
Ais positive definite if X-A-X">0 for all nonzero X

potive semidefinite if X-A-X">0

negative definite if X-A-X"<0

negative semidefinite if X-A-X"<0

otherwise, A isindefinite

Optimal pointA function f(X) has a relative minimum (maximum) at a stationary point Xq if H(Xg) is positive
(negative) definite.

2-5-2 Convex and concave functions

EPIGRAPH

x1 » %
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X

RZ

CONVEXITY OF FUNCTION f

Figure 2.1 Convexity and a convex set

In all these definitions, assume that K isaconvex setin R, X, Y areinK, 0< <1, and f:K — R.
Convex function

fisconvexif f(EX + (1-€)Y) <EF(X) + (1-£)F(Y).

Convex function has arelative minimumStrictly convex function

fisstrictly convex if f(EX + (1-8)Y) < &Ef(X) + (1-E)(Y).

Concave function

fisconcaveif f(EX + (1-E)Y) > Ef(X) + (1-E)f(Y).

Strictly concave function

fisstrictly concaveif f(EX + (1-§)Y) > Ef(X) + (1-£)F(Y).

Affine function

fisaffined if f(EX + (1-E)Y) = Ef(X) + (L-E)F(Y).

Epigraph

The Epigraph of a function f, denoted epi(f), is the set { (X, Y) | Y> f(X)}. Note that the epigraph is the region
above the graph of f.

Hypograph
The Hypograph of a function f, denoted hyp(f), is the set {(X, Y) | Y < f(X)}. Note that the hypograph is the

region below the graph of f.
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2-5-3 Constrained optimization

For an objective function: f(x)

*Equality constraints: h;(x)=0, hy(x)=0

eInequality constraints: 01(X)<0, go(x)=0

*Equality/Inequality constraints: h;(x)=0, g1(x)<0

Solution for Optimum

* Objective function - Convex analysis for minimum

* Equality constraint - Lagrangian functions

* Inequality constraints - Kuhn-Tucker conditions

* Equality/inequality constraints - Karush-Kuhn-Tucker conditions

L agrangian functionsThe Lagrangian Function: L(X, 1) = f(X) + A.h(X)
A necessary condition for f to have a stationary point at X, subject to the constraint h(X) = 0 is that grad(L (X))
=0.
Theorem: Let f and h be twice continuously differentiable defined on a neighborhood of a point X 4 for which
h(X o) = 0 and suppose there exists a number A such that f(Xg) + A.Vh(X) = 0 and the matrix H(X) = F(Xy) +
A.K(Xg) is positive definite where F is the Hessian for f and K is the Hessian for h. Then X, is a relative
minimum for f subject to h(X) = 0.
Equality/Ineguality ConstraintsThe following conditions are necessary for a point Xo to solve the problem:
minimize f(X) subject to inequalities g(X) <= 0 for k = 1,2,...,K and equalities hj(X) = 0 for j = 1,2,...,J. Let the
Lagrangian function L(X,pA) = f(X) + wodX) + Ah(X) where p and A are Lagrange
multipliers.Karush-Kuhn-Tucker ConditionsFirst-order KKT (Karush-Kunh-Tucker) condition

VE(Xo) + 2 uVak(Xo) + £ 4jVh(X,) =0 stationary condition

hj(Xo) =0forj=12,..,J equalities constraints
ok(Xo) < 0fork=1.2,...K inequalities constraints
uk>0fork=1.2,...K constraint qualification
wkOk(Xo) =0fork =1,2,...,.K complementary condition

Second-order KKT condition
Theorem: Let f be convex, the equality constraints al linear, and the inequality constraints all convex. If a point
(Xo, po, A0) satisfies the KK T conditions for this problem, then X, is the optimal solution to the problem.

2-6 Newton methods

2-6-1 Newton-Raphson methods
In non-linear problem [24], the general problem is therefore always formulated (in terms of th
e discretization parameter a) as the solution of,

v@=p@-f=0 (2.186)
By Taylor's expansion formula, the residua w(a.1) is expanded around g to the first order of accuracy plus
second-order terms O(a,.,,, &)

y(@.,) =y +Aa)=y(a)+ray'(a)+0@.,,a)* (2.187)
g isastarting value for searching a, Aais an increment, in which
Aa=a,,-a (2.188)

When a;,, approaches to solution satisfied by Eq.(2.186), w(a,,,) =0. According to Eq.(2.187) and Eq.(2.188),
&+, is determined by,

2
a~i+1 — a, _ l//(al)+lo(a|+1'al) (2189)
y'(@)
Tominimize O(a,,,a), replacea in Eq.(2.189) by a «a,,
(&)
1 =& T (2.190)
AT @)

Asaresult, theresidua O(a,a,)* isaways reduced by the quadratic rate during iteration. The way the iteration

converges to the solution is depicted in Figure 2.2. This technique is sometimes called linearization because a
solution of non-linear problem is solved by a series of linear problem.
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210° |- -

Result1 %

1’105 — ]

0 50 100 150 200 250 300 350 400 450 500

Result’"?” a

Figure 2.2 Generalized solution obtained by Newton method

That givesimmediately the iterative correction as,

3., -a =K, y@) (2.191)
where Jacobian matrix corresponding to the tangent direction.
. 0
Kt=w(aﬁ)=a—‘”_ (2.192)
Using Eq.(2.192), Eq.(2.191) can manipulate to reach,
sa,, =K 'y(@) (2.193)
A series of successive approximation gives,
ai+1 = al + 5ai+1 = ao + Aai+1 (2194)
i+1
where  Aa,, =) da,, (2.195)
k=1

2-6-2 Modified Newton-Raphson methods
Just replace the variable jacobian stiffness by a constant approximation:

K, =K, (2.196)
In replacing Eq.(2.193), giving,
sa,, =K, 'y(@) (2.197)

can be chosen as the matrix corresponding to the first iteration K;, or may even one corresponding to some
previous step of load incrementation K,. Obviously, the procedure will converge generally at a slower but
simpler. Many variants of this process are used in practice and symmetric solvers can generally be used
providing a symmetric form of K, is chosen.

2-6-3 Quasi-Newton methods
Once, the first iteration has been established giving,

sa, =K, y(a) (2.198)
A secant slope can be found such as,

sa =K, (v(a)-y(a)) (2.199)
This slope can now be used to establish da, by expression of the form of Eq.(13), giving,

sa, =K 'w(a,) (2.200)
Now dropping subscripts for i>1

sa =K y(a) (2.201)
and K. isdetermined so that

PR E i, B (2.202)

v(@a.,)-v@)

The determination of Kgistrivial and the convergenceis almost as rapid as with the Newton-Raphson process.
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2-6-4 Direct (or Picard) iteration
To totally avoid the stability difficulties and reduce the storage and number of operations needed, the direct or
Picard iteration is particularly useful in the solution of non-linear problems which can be written as,

v(@=K()-a-—f=0 (2.203)
Insuchcase w(a,,)=0 istakenand theiteration proceeds without increments, writing
a,=K(@)"f (2.204)

The comparisons between (i) Newton-Raphson, (ii) initia tangent, (iii) previous tangent, (iv) quasi-Newton and
(v) Picard iteration have been made in Figure 2.3. It was found that Newton-Raphson method gives the fastest
convergence by quadratic rate. Though, Quasi-Newton gives a dower rate than Newton-Raphson does, quadratic
rate of convergence is still observed. Picard iteration gives a stable solution but lose a quadratic rate feature. The
initial and previous tangent method are straightforward in methodology but show awkward feature by a linear
rate of convergence.

Comparison of Newton methods

; i o= - - = =)
a0 o 8—=a & &

solution

2 : : : : : ' '
2 4 6 8 10 12 14 16

Comparison of convergence
100 T T T T T T T T

2

10

01

residuals

001F
1103 |

1104 F

1.10-5 | | | | | ! ! !
2 4 6 8 10 12 14 16
no. of iteration

&6© Newton-Raphson

B88 |nitial tangent
Previous tangent

+—++ Quasi-Newton
Picard

Figure 2.3 Comparison among Newton methods

2-7 Central Limit Theorem

The statement of the central limit theorem is as follows. The sampling distribution of the sample mean from a
population, which has an unknown probability distribution, will still be approximately normal if the sample size
n is sufficiently large. If x;, Xa,.. X, are random samples of sizes n taken from a population (either finite or
infinite) with mean p and finite variance 6® and if X isthe sample mean then,
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i Xl )= a(2) =L | exp-o5u? 2.2
lim,_, P(Glﬁ < z} ®(2) > :[Oexp( 0.5u%)du (2.205)
Central limit theorem, named by G. Polya in 1920 [25], is the most remarkable of all probability theory. Under
very general conditions, the distribution of the sum of number a random variables converges to, or approaches,
the normal distribution as the number of variables in the num becomes large. The specific example by tolling
dices can beimaged in Figure 2.4.

Centiral Limit Theorem 1 Let X, X, ... be independent, identically disivibuted

randam variahles having mean y end finile nonzero variance a2.

Let 8, =Xy +...X,. Then

dn P (% <o) =0t

where ®(x) is the prolehilily thel e stendard nermal rendom varighle is less
than .

normal with mean 3 5%7and variance 36 7/12

Figure 2.4 lllustration of Central limit theorem [26]
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CHAPTER 3
Convex Analysis
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3-1 Associated plastic flow at the inter section corner of plastic potential
functionsin soil mechanics

3-1-1 Introduction

A hypothesis of associated flow rule has been generaly applied to elasto-plastic models in order to
determine irreversible plastic flow emerged in an outward normal direction to the yield loci. It has been found
that the expressions in the original Cam-Clay [1] (Roscoe, Schofield & Thurairgjah, 1963) and the Sekiguchi-
Ohta models [2] (Sekiguchi & Ohta, 1977) cause the discontinuity in stress space by accommodating the
intersection corner of two continuously differentiable convex yield surfaces.

The discontinuous yield/plastic potential function can cause computational difficulties in numerical
analyses; careful study of the relevant subroutines in the finite element program CRISP described by Britto ,
A.M. & Gunn, M.J. (1987) [3] shows that, for practical use in numerical calculations, the point of the original
Cam clay plastic potential has to be rounded off and the discontinuity eliminated.

Gens, A. & Potts, D.M. (1988) [4] pointed out that the discontinuity of the yield surface of the original Cam-
clay model at zero stress ratio implies difficulties both theoretical and practical. As the flow rule is associated,
isotropic stress changes at that point will cause non-zero shear strains. Also, the model may have problems in
yielding a reasonable stress response for some applied increment strain ratios. The modified Cam-clay model
overcomes those drawbacks by adopting ellipse as yield locus in replacing logarithmic spiral in original Cam
clay.

The arisen singularity at the corner rules out the normality postulate, therefore, plastic strain increment is
indeterminate thus it should be marked as a limitation of the models which none of algorithm has yet to set forth.
The aim of this study is to provide the mathematical treatment for evaluating the irregular plastic flow on the
intersection corner of the yield functions of the original Cam-Clay and the Sekiguchi-Ohta models by broader
foundation. Results of this study may suggest a solution to the problem concerned and serve as the basis for
further research and devel opment on the models and related fields.

3-1-2 Governing equations

The fundamental implementation to deal with the problem encountered is based on the associated flow rule
for multiple non-smooth yield criteria extended by Koiter (1953, 1960) [5,6] (See Figure 3.1 and Figure 3.2).
The governing equations are formed in Box 3.1 following the general approach advocated in Simo, Kennedy
and Govindjee (1988) [7]. The classical Kuhn-Tucker complementarily conditions of convex mathematical
programming are capable to appropriately characterize loading/unloading constraints using two active
independent Lagrangian multipliers. The scope to concern is narrow to rate-independent infinitesimal plasticity.
For convenience, al equations corresponding to both models are considered at a time by specifyingn, of the

Sekiguchi-Ohta model to zero for those of the original Cam-Clay model.

Evolution of flow rule m-constraint

(Koiter,1953 &1960 and Naghdi,1960) - fn (g' , a):o
m
P _ n 1
& = 27/ ac' fn(G ’a)
n=1
Kuhn-Tucker complementary 0 E
conditions

7" 20 f (6, a)<0;y"f (6',a)=0

Consistency requirement

y"f.(c',a)=0

Figure 3.1 Koiter's associated flow rule for nonsmooth yield surface
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3-1-3 Loading/Unloading & Consistency conditions

Figure 3.3 shows admissible stresses on the state of boundary surface of the origina Cam-clay. In strain
space, the region of M™ defines the bunch of unloading boundaries while the normal cone of M* borders the
associated plastic flow from the corner. The direction of plastic flow can be expressed by the angle of dilation

(B). Loading/unloading criteriaare listed in Box 3.2.
y=flowspeed 0, f =flowdirection Koiter, W.T. (1953)

1
. 47 .
et £ 5> &P
f N
1 f, /

&, =710, T & =70, +7,0.,

f,=0 ff=0 f,=0

Figure 3.2 Associated plastic flow for multi-yield surfaces

0.x

deviatonic stress
=

-0.5

0.4 1 1.5 ]
Frincipal mean strecs

Figure 3.3 Plastic flow regulated by the original Cam-clay model

3-1-4 Evaluation of plastic flow at the corner

Box 3.3 contains the basic equations to evaluate plastic flow for case 2.1.1 in Box 3.2, as the classical flow rule
is applied to other cases. It isrequired that matrix X must be positive definite 2x2 matrix. (See Box 3.3)
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Box 3.1 Governing equations

Yield function: Sekiguchi-Ohta model (1977)

j+D77 -a=0

f(o"a) = F(p'7 @) = MDln(E'

o

Intriaxial stress condition (o', =0';,0', =0'; =0, =0)

f(o',a) = MDIn(ﬂ'j+ D‘ﬂ._ﬂo -a=0
P, p

wherea = & =jévpdt ; p'sltr(o'); p', zltr(c'o); s=¢'-p'l; s,=6',—p

_S. .S 31-K) . _s
n=Sime = e o= S n ek neg

Heterogeneity of yield function (compression & extension boundary)

i) Upper yield locus: f, (6", @) = MDIn[pJ+D(ﬂ—ryoj a=0
P p

(o]

ii) Lower yield locus. f,(6',a) = MD|n(%J— D(%—%j—a -0
Associated flow rule: Koiter (1953, 1960)
&= 7004 Ty (6',a) +7.0,.f (6", 2)
Hardening law (isotropic strain-hardening)
a=¢&)=y,0,f,+70, 1
Kuhn-Tucker complementary conditions
70 20 f,(6,a) <0y, f,(6',2) =0 (compression side) and
>0, f (6,a2)<0y f (6,a)=0 (extensionside)
Consistency requirement
7, f,(6a@)=0 and ¥ f (6',2)=0

where f, =0,.f,:6+0,f,a; f =0,f 640, fa; 0,f,=0,f =

1 3 1 3
0,1, =§ap.ful+\gaq fn; o, :gap.fL1+\gaq fn

Hookean relation for isotropic hypo-€elasticity
G'=c: (é—é")

where c®*=K1®1+ ZG[I —%1@1}

[55 +0,0; |6 ®e ®g ®e; 1=5,6 ®¢;

K ,_§ 1-2v') . _ N A . _ N \
=15 —2(1+V.j, K= K(P) =53 Pt G B(P) =K (p)

|01;

Box 3.3 demonstrates the assessment of plastic flow in regard to the original Cam-clay model under
isotropic strain rate. The resulting slopes of e-In(p’) curves provide the verification of the method. Angle of
dilation corresponding to associated flow rule applied on both smooth surface and at corner are given in Figure

3.5.

3-1-5 Closure

Though the discontinuity still exists, the arguable plastic flow can be theoretically settled using the scheme
developed. States of stresses at the corner lie in the margin among many conceivable plastic flow directions
depended on the strain rate applied. Heterogeneous soil deformation is characterized by the coupled

contribution of intersecting yield loci at the corner.
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Box 3.2 Yield, consistency and loading/unloading criteria
Covariant componentsof ¢relativeto {0,.f,,d,._}
L, =0,f,:c®:¢; L =0,f :c°:¢
For any (6',) € E,.
1) Inside elastic region:
f,(6,a)<0 and f (6'a)<0 — y,=0y =0
2) Atthecorner: f,(6',2)=0 and f (¢',2)=0
2.1) Plasticloading: L, >0orL >0
2.1.1) To the normal cone of the intersection corner:
fu(c',a)zo and f (6,a)=0 — », >0y, >0
2.1.2) To theregion of upper yield locus:
f,(6,a)=0 and f (6,2)<0 — 7, >0y =0
2.1.3) To theregion of lower yield locus:
fu(o',a)<0 and fL(c',a)=O - 7, =0y >0
2.2) Elastic unloading:
L, <0 and L <0 — y,=0y =0
3) On upper yield locus:
fu(6,a)=0 and f (¢2)<0 — y =0
3.1) Plastic loading:
L, >0 and f,(c'a)=0 — y», >0
3.2) Elastic unloading:
L, <0 or fu(c',a)<0 — 7, =0
4) On lower yield locus: f,(6',2) <0 and f (6¢',a)=0
{The same manner in parallel with item 3}

Box 3.3 Plastic strain increment vector at the corner

Admissible stress constrained at the corner
f,(6a)=0 and f (¢a)=0

Plastic strain increment Consistency parameters
-P o,f, o0,f
B ) (e
&l AT AV 7L
-y Bl
[8 fy 0 'fLJ p' p p' p
where | " e
O,fu  0,fL D D
p’ p'
Ko, f, 3Go,f, (4 L+l
L= "V qu}(,vj where (L) =— 11
| Ko, fL 3Go,f, |\ & (L) 2
Coupled-hardening matrix
M 2 2
. K (0, s ) +3G(0,f, ) +0, f, K (g fy 0y fL)+36(0, fy 0, L)+ 0, f
- 2 2
| K(0, 750, 1) +36(0, Ty 0 fL ) +0,. K(0,f ) +3G(0,f. ) +0,f,
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™.
|
oM
kel
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A

f,=0,f,:6+0,f,a=0 —

(e =k101+ ZG(I %1@1)

f'L:a(,.fL :6'+0,f a=0

& =20, f, +7.0, f

s Y7

Yu
X : =L
0, = 3a f 1+\fa fin @), |7 =@
0,fu=0,f ==1 |a=4F X must be positive-definite

Figure 3.4 Evaluation of consistency parameters at the corner

Box 3.4 Plastic flow for isotropic volumetric compression
Rate of strain during isotropic volumetric compression

é:lg'vu\ﬁésn; f=——C ¢ =0
3 2 l+e

Covariance of strain rate Consistency parameters

LU _KMD év yU _ KpI ‘c}v
L) p & 7.) 2(p+KMD)(&,

Plastic strain increment Stress increment
&l _ KMD &, p' _p'A &,
&) p+KMD'\0 q) MDLlO
AN . )
where D=———: coefficient of dilatancy
(1+e)M

e-In(p’) curves;, loading: éz—ﬂﬁ,, unloading: e=—x£,
p

Angle of dilation On continuous surface

' &P 2>0
83 \ IB tanﬂ_
&y M — /
At the corner . q
it —=0 -1
P 1 tan f =

Figure 3.5 Angle of dilation corresponding to the original Cam-clay flow rule
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3-2 Thevertex singularity in the Sekiguchi-Ohta model

3-2-1 Introduction

The Critica state theory incorporated with normality criterion has released many numerical
implementations in soil mechanics. Sekiguchi and Ohta (1977) [2] proposed the constitutive model to address
the stress anisotropy induced during the natural clay deposition in addition to those of Cambridge models by
introducing the non-negative normalized shear stressm* taking principal stresses reorientation into account. The
expression causes the inevitable discontinuity by accommodating the singular vertex in stress space. In recent
days, Pipatpongsa et al. (2001a,b) [8, 9] developed the mathematical treatment for the intersecting corner of
two continuoudly differentiable convex yield loci; namely, upper and lower yield loci, and evaluated theoretical
Ko-value and Poisson's ratio in corresponding to the Sekiguchi-Ohta model. However, it is not clear the
implementation, which is based on the triaxial condition, is valid for general conditions. The study discusses the
scope of method by considering the existence of the vertex in principal stress space and plane strain condition.
This study may lead to a better understanding of the vertex singularity in the model and its implementation.

3-2-2 Deviatoric view of yield surface

In addition to three stress invariants, the stress-induced anisotropic yield function for an inherent isotropic
media must depend on the state of stress at the completion of consolidation. Herein, the invicid form of yield
function proposed by Sekiguchi and Ohta (1977) is shown by Eq.(3.1).

f(e',0',,a)= f(p'\7 ,a) = MDIn[ p'}_ Dy -a=0 3.1

where azgvpzjévpdt;n5§;ﬂ0=_,a77 —\/7”7] Tlo"

The set of intersection of the yield surface with n-plane is yield curve, which is conveniently given by the
expression transformed to polar coordinates where 6 is angle measured anti-clockwise on n-plane. The
substitution of 6=const. gives the meridional section relating || s|| and p'.

s(p,0) = \Ep'{COS(H)% + \/M ’ |n(IOL,')2 -sin(@)*7,” } (32)

G,l e=0
Triaxial
r}

Deviatoric plane

Figure 3.6 Circular yield curves formed by intersection of yield surface with planes of constant mean stress

The major principal stress axis at 6=0 locally coincides with the major principal direction of stress-induced
initial anisotropy, in general, the vertical stress direction. Figure 3.6 shows the plot of Eq.(3.2). The physical
meanings of the angle 6 are given as following.

7/326>0 for ¢',>20', 20", , compression test: 6=0
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27/320>7/3 for o', 20", 20",
72022x/3 for ¢' 20", 20", extension test: 6=n

Taking 6=0 and = will cut the Sekiguchi-Ohta yield surface by a triaxial plane relating to customary p’-q
plane where upper and lower yield loci with intersecting corner can be observed in Figure 3.7. It is clearly seen
this particular state of stress totally passes the singular vertex (n*=0) where the serious numerical convergence
occurs. The corner is rounded off for a small rotation 56 , indicating the special treatment is only required for
state of stress under axis-symmetry in which the Sekiguchi-Ohta model is reduced to the Ohta-Hata model
(1971) [10Q]. In the case of plane-strain, the intermediate effective stress is determined by EQ.(3.3), thus
diverting the stress condition from the vertex. However, K,-condition can be deduced from plane-strain under
condition by Eq.(3.4).

K
o'p=0', =V'(a'xx+o"zz):1+l"< (0't0'2) (33

o

(3.4)

Upper yield
locus

=040 l Yu 0 fU
O

Gl

;Sp

yLac' fL

56=0.025n

56=0.05n

_ 0'g+2c',

L ower yield locus
Figure 3.7 p’-g plane relating to meridional section at 6=0 and =

3-2-3 Implementation at the vertex singularity

Singular yield surfaces with edges or corners may be described by a finite number of yield functions based on
Koiter's suggestion [5]. Concerning with the Sekiguchi-Ohta model, the discontinuity is observed on triaxial
plane where upper and lower yield locus expressed by Eq.(3.5) and (3.6) intersecting each other to form the
corner. At the singular stress ¢* in which f, (¢',e) = f_ (6',a) =0, a consistency requirement guarantees the

actual values of y, >0 and vy, >0can be determined, then ¢' must keep on the hardening vertex so that
f, (6',a) = f_(c',@) = 0. For a certain imposed strain rate in which eithery, =0 or y, = Ois evaluated, this

particular method will reduce to the ordinary method applicable to the Sekiguchi-Ohta model and the stress
point o' will move out of the singularity. The basic equationsin tensor notation are available bel ow.

fu(p',q,a)zMDln[ﬂ,jm(ﬂ,—%j—a:o (35)
Po p

f (p' = Pl ol |, _

L(pq,@)=MDIn o D o n, |—a=0 (3.6)
Incremental €lastic stress-strain relations:

6'=c": (-2 (3.7)

Evolution of associated flow rule: Koiter (1953)
& =y,0,.f,(6\a)+y.0,f (6'a) (3.8
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Consistency requirement at the corner:
f, =0,.f,:6%+0,f,a=0 (3.9)
f,=0,f :6%+0,fa=0 (3.10)
From Eq.(3.5)-(3.10), the manipulation for unknowns is shown by
1
¢ {ao'fU} {aa'fL} G' €
(0.1} 0,00, f, 0,f,0,f |7 |=]0 (3.11)
(0.1} o, fo,f, o,f.a,f [\rn) \0O
To solve Eq.(3.11), X2, Ly and consistency parameters must be primarily obtained by calculating Eq.
(3.12)-(3.14).
Coupled hardening matrix:
x {aﬂ.fu 10,0y =0, 1,0, 1, 8,f,:¢%:0,.f -8,f,0,1

<

(3.12)
0, f :c®:0,.f,-0,f .0,% 0,.f :c:0,.f —-0,f.0,1

g

Loading parameters:
Lo 0, f,:c:¢ (3.13)
o,.f :c®:¢
Consistency parameters:
{“j:x-w (3.14)
7L
Incremental stress-strain relations:
6'=c¥:¢ (3.15)
Tangential elastoplastic moduli:
c?=c- Y }[X‘llw {9.®g,} (3.16)

a,peil2)
c®:0, 1,
c®:o,.f, }
The details of proof are shown in Appendix C.

where g :{

3-2-4 Conclusion

A generalized concept to the Sekiguchi-Ohta yield surface possessing the singular point where the gradients
of yield surface (or potentia) to stress space are indeterminate is implemented. Though Koiter’s method does
not apply to the Sekiguchi-Ohta model in stress space, it is particularly applied to the intersecting corner of two
yield loci characterized by the Sekiguchi-Ohta model on Rendulic’'s stress plane or triaxia plane, where the
plane of induced anisotropy is coincided, resulting in simple formulation.
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4-1 Coefficient of lateral earth pressure at rest, K,-value

The sedimentary processes over a long period engage in a creation of all natural clays which is laid
down under a condition of zero latera strain. This initial condition is the starting state of stress in every kind of
practical engineering problem. The definitions of geostatic coefficient of lateral earth pressure are shown in

Table4.1.

Table 4.1 Definition of coefficient of earth pressure at rest, KO

Definition

I nter pretation

Ko is a ratio of horizontal to vertical effective stresses for one-
dimensionally compressed soil. [1]

’
O,
_~h
Ko =—r

oy

1-D compression

During monotonic one-dimensional normal compression, the value
of K,isfound to be a constant. [1]

K,=0, K,=3%
doy |,

A soil mass at a particular level stabilizes into a steady state where
the vertical and lateral stresses become principal stress action on
principal planes; this effective stress state is termed as at-rest or Ko

Vertical direction is the major
principal direction
K, <1

condition. [2]
Ko isthe lateral stressratio in a special case where there has been no g =0
lateral strain within the ground. [3]

After a mass of soil has been deposited by either a natural or an Ka<Ko<Kp
artificial process, Ka< Ko < Kp. [4]
Ko must depend on the amount of friction resistance mobilized at K, =K, (¢

contact points between particles. [3]

It is a common physical behavior describing that lateral movement in soil media can be prevented itself due to
internal friction angle; therefore, K, would has a relation with internal friction angle. Jaky (1944) [10] managed

to arrive the expression for K, by thinking of conditions at the center of the base of a heap of granular material,

K, :(1+Esin¢'j 1-snd (4.0)
3 1+sing'

Simplified form was suggested for values of ¢’ between 20°-45°,

Ko =1-sing’ (4.2)
Massarsch (1979) [5]

|
K, =0.44+042—"> (4.3)
100

Kenney (1959) [6]

sing'=0.81-0.233log| , (4.4)

Usually, K, isdefined in terms of principal stress ratio between horizontal to vertical stress. Since K, condition is
defined in axisymmetric condition where horizontal stressis equal in radia direction, the stress parameter p’ and
g can be used to define K, value by referring the relations given below,

The stressratio in p’-q diagram on K-lineis given by,

n-(d] -
P Po

Under axisymmetric or triaxial stress condition at initial state, which is referredto o', o', =05, , astress
ratio is shown by,

, '
9% 01670 3

(45)

o =T o'y =Ko (4.6), (4.7
© 5(0‘10"' 20'y,)
According to Egs.(4.6), (4.7), the stressratio in Eq.(4.5) isrelated to K, value by
3(1-K -
n = (1-Ka) g K =37 (4.8), (4.9)
1+ 2K, 217,+3

Under zero lateral strain, volumetric and deviatoric strains are
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&, =&, &= %él (4.10), (4.11)
Eqgs.(4.10), (4.11) suggest the following property during 1-D consolidation,

& 2

sz 412

&, 3 (412)

\

The study of Alpan (1967) [7] found that K, given by swelling loading is larger than K, given by consolidation
loading. The empirical correlation with OCR was then proposed,

PI)

122 (4.13)

exp(

0.541
K, = K,OCR
where Pl is plasticity index.

Stress paths in p-g plane under triaxial condition given by K-loading and K-swelling loading plotted with the
Sekiguchi-Ohta yield surface can be presented in Figure 4-1.

4-2 K, obtained from smooth constitutive equations

Theoretical K, expressions derived from Original Cam-clay and Modified Cam-clay models can be summarized
below. It is discussed that the value of K, is over-predicted by the modified theory. See proof in Appendix D.
Original Cam-clay [8]

K, = 921|\2/|M (neglect all elastic components) (4.14)
6-2M +3A .
= neglect elastic shear components 4.15
o= 5TIM—6n (neg ponents) (4.15)
Modified Cam-clay [1, 9]

_ / 2

K, = 9=V9+4M” (neglect all elastic components) (4.16)
2N/9+4M*?
/ 2 2

K, = 6-VvIA" +4M +3A (neglect elastic shear components) (4.17)

® 6+ 2J9AZ+AM? —6A

q

g

LR

‘ singularity
PN,
0 O
7o
Elastic region ]
Mg e .

| 03 ] L] g L p

Figure 4-1 K -consolidation and K ,-swelling
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4-3 Plastic flow adjacent to the corner

Oedometer test is designed to model the uniaxial compression corresponding to K -consolidation in
natural stratum by subjecting a monotonic compressive loading to a specimen. However, a K, -consolidation
performed in triaxial apparatus can be achieved by lateral strain control keeping at zero during applying a
compressive loading. Repetitive adjustments between cell pressure and vertical pressure bring about the varied
loading steps subjecting to a specimen rather than monotonic loading steps. As shown in Figure 4-2, it is found
that in triaxial test, soils are repetitively adjusted to nearly K,-state from compression or extension tests, namely
mobilized K, condition, while in oedometer test, soils are thoroughly set to K o-state under monotonic loading,
namely, immobilized K, condition. These different kinds of |oading concepts would result in different modeling.
From the previous section, it is known that a plastic flow at the corner can be evaluated by Koiter’s flow rule by
considering active yield at current stress point. By immobilized K, condition, it is secured that stress point is
placed at the corner; therefore, both upper and lower yield surfaces are active throughout loading steps. But
under mobilized K, condition, only a single yield surface either upper or lower yield surface, is active at a
particular time during repetitive loading steps, therefore, the coupling effect between both surfaces is diminished
in plastic flow.

Sekiguchi-Ohta plasticity e
model in triaxial state

g=0,-0

r

Extension test

Activeyield surface

< »| | Upper yield surface

¢

a
pl

'S % <n,| |Loweryieldsurface
% =1,| |Doubleyield surfaces

- c',+20',

3

Figure 4-2 Monotonic & Varied Loading Steps

The governing equations under mobilized K, condition is different from immobilized K, condition set in
previous section. The plastic flow is a sum of individual plastic flow on upper and lower yield surface and then
accumulated by a strain history parameter. The consistency parameter is also determined individually without
coupling effect. The guideline of the governing equations is shown in Figure 4-3.

Consistency parameters of upper and lower yield surface are determined individually from consistency
condition of each surface. Stress increment is determined individually but only plastic volumetric strain is a sum
of both plastic flows, thus, only a coupled parameter of both yield surfaces in governing eguations. The
procedures to determined plastic flow (See Figure 4-4) is similar to the immobilized K, condition. Firstly, the
positive-definite hardening matrix X is determined; consequently, consistency parameters can be evaluated using
loading vector L and hardening matrix X. Under this scheme, the coupling parts between upper/lower yield
surface in X matrix is vanished. X is evidently positive-definite by determining its determinant, which always
gives a positive number greater than zero as shown in Eq.(4.19).

2 2
K(%j +36[%f—“) +% 0
x=| P 1/ * (4.18)

2 2
0 K i +3G ﬁ _;,_i
op' aq op’
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Upper yield function [FASEESLPRNEP- LNl | ovver yield function

v =y,0,1,(c",) Flow rules ¢ =y.0,f (c,2)
a=gf = [&ldt Hardening a=gf = [&0dt
functions
A
>0; f (6", ) <O, P >0; f, (¢',@) <0,
y f (e',a)=0 conditions 7o fu(d',a)=0
i
 (0'a) = consseney | | 7,7,("c0) =0
7ol (@a)=0 conditions -t

b Individual formulation J

Figure 4-3 Governing equation for plastic flow adjacent to the corner

6'=c":(8-4%)

f, =0,f, +Jug=0 (]

oa &M =,0,f,(c",2)

f|_ =80.fl_ G'+ia =0 - dlzce:(é_épl')

oa ePL=y.0,f (c'a)

o 1 j
c"=KI®1+2G| | —-=1®1 |~
5,1, ~ L1, 3, °
3 0p' V2 oq
1 6f, [3of Yu
O,f ==1—L+, |=n—t X(2x2) " =L
Y 376p' N2 oq (2x2) YL (&)
of, of, 1 lo_er
o oa a=g, X must be positive-definite

Figure 4-4 Evaluation of consistency parameters adjacent to the corner

[K[af—uj +3G[%J af J{ (6f J +SG(ﬁJ +i]>0 (4.19)
op' oq ) op op' aq) op

In order to distinguish X by concepts of immobilized and mobilized K, condition, coupled-hardening
matrix X and decoupled-hardening matrix X are referred respectively from now on. The derivatives of upper
and lower yield surface are common each other. If one compare X and X, it would be found that the different
between them is that the coupling parts of upper/lower yield surface in X is removed in X as shown in
Figure 4-5. That is, X matrix is decoupled between the connection of upper and lower yield surfaces and

reduced to X . Criteria for loading/unloading conditions are also common for both Ko conditions. The discrete
form of strain rate imposed during triaxial Ko consolidation can be shown in Figure 4-6. Even though rate of

radial strain is not zero during variedly repetitive loading &, = 0, the incremental form under a small period of
time is expected as zero, Ae, =0, dueto zero lateral strain corrections.
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Immobilized | oading step ~ Coupled Hardening Matrix

2 2
([T ) pag o) o S O g O, O
x| \oF oq) o opopt a9 aq op
- 2 2
kP O ag Oy O Oy ([ ] ol O} O
| op' op' oq og op op' aq op'
Mobilized loading step ~ Decoupled Hardening Matrix
- ; ; !
of of of
K= | +3G =¥ | + i L0/
% - (0p’j (an op PP
- P 2 2
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Figure 4-5Coupling/decoupling hardening matrices
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Figure 4-6 Strain increment under triaxial Ko consolidation

The discrete consistency parameters corresponding to the mobilized Ko condition can be determined by,

(AVU)Z KL
Ay,

where
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(4.20)

(4.21)

(4.22)
(4.23), (4.24)

(4.25)

According to Egs.(4.21)-(4.25) together with a state of stress at (p'=p’, G=Q.), the consistency parameters

(4.20) isdetermined as,
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KM - Kz, +2G
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7/U — Aga .0 770 770 p o 770 p o (426)
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KDM ? + 2KDM 77, + KD7,” +3GD + Mp',+ 7,p’,
Consequently, the plastic flow adjacent to the corner is eventually determined by,
of, of D D
N |5 & Sy M)
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According to Figure 4-7, the incremental strain ratio between deviatoric strain to volumetric strain is
not equal to 2/3 as obtained under immobilized K, condition. This fact signifies the clue that this condition can
be imposed to the expression to obtain relation for K,-value in next section.
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AS\? T 5K 16D 21 4 GKD- KM 7 g+ ZMEGK D1 o= 61 @D K21 oD 2KEME D o7 SKMEGD KEM Dy KMEp o)
= A
K=———p Q
MD{_A) ™ Bulk modulus Consider all
G=pK Shear modulus |  ©astic properties
K
(6.,"24\ —3pA o 20" M2 4 o M2+ 24 OZYM*, A 03) — o
(M"m M= 20 oA = o M+ BpA MP— o PME 20 A o MP e BA - By Uﬁ-/\) 1+ Ko
= .
Show u'= No Assumption related to
relation 2 immobilized K , condition
with plastic
p
parameters '. (1+4) Ae, 2
Pho7— ) Not equal !! =
\2'M +31gA =21 4 ) ASV 3

Figure 4-7 Incremental plastic strain ratio

Stress increment under K o-consolidation can be computed by,
Ap' K 0| (Ag —AgP
P _ A& TRE (4.28)
Aq 0 3G]| (Ag,—Agf
[KAga(KZDZryO" +K?D2M* + 77,7 p"~M?p2-9G?D? - 6GDMp',— 2K DM ?3,” + 4M GKD?1, — 417, °GKD? 712770(3202)
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o

(KDM?-2KDM 7, + KD7702 +3GD +Mp',—7,p',)(KDM? + 2KDM 73, + KDr]D2 +3GD+Mp',+7,p%)

Subgtitutionof G=u'K, K= m p', into EQ.(4.28) givestheratio of deviatoric stress to mean stress
as shown by,
M, = A_q, (4.29)
Ap K,
— o (—A27704 + 7702M 24 AZUOZM Z-M*+9u” A*-9u' A%, +3A* M ? —3/\27703)

—A - M2+ 2A0, M2+ AP M2+ MP—2M A + 92 A2 +6A ' M2 61" APM? — 41" AP M2 + 4 ' A2 +12, 1" A2
Manipulation of Eq.(4.29) for solving an unknown m, results in a implicit form of fifth-degree polynomial
expressed by,



48

2u'M* 184" A2 1

9u? A2 +2M*A-M*—6u'AM?| | T
2

2u' N2M? =122 A2 =2u'M 2 | |7

=0 4.30

M?—2AM? —A2M? +64'A° N (4-30)
—2u'A* 7,
A? Mo

The solution of 1, in Eg.(4.30) is possibly solved numerically for a given set of basic materia
parameters M, A and p'. However, by an additional assumption using relation between ' (or v’ ) and n,, the
solution of n, can be simply obtained algebraically in the next section.

4-4 Dependence of K,-value on effective internal friction anglein regard to
the Sekiguchi-Ohta model

4-4-1 Introduction

By the process of soil deposition, which has the history of one-dimensional deformation, a coefficient of
earth pressure at rest K, is generally found to be constant and depended on the friction resistance. K, condition
can be retained over the virgin loading (normal compression) restricted to the special condition of zero lateral
strain. Many studies have shown some particular relations between K, and angle of interna friction
[10,11,12,13]. Values of K, predicted by the original Cam-clay model are much higher than those measured in
practice [8]. Roscoe and Burland (1968) [9] derived K, expression from modified Cam-clay model but it tends to
over-estimate the empirical relationship. This study aims to establish the alternative relationship derived from the
Sekiguchi-Ohta model (1977) [14] employing the extension of normality to the intersection corner of yield
surfaces. The findings may provide the theoretical relationships among basic parameters reciprocally describing
the physical nature of soil grains.

4-4-2 Theor etical background

Since the conventional flow rule limits the determination of plastic flow to the smooth convex yield surface,
the singular point where the Sekiguchi-Ohta model has a corner, produces uncertain plastic flow. Consequently,
the stress ratio during K, consolidation is undetermined but the difficulty met can be overcome by employing the
extended flow rule to upper and lower yield surfaces (Pipatpongsa et a., 2001) [15].

4-4-3 Deter mination of K, value

The effective stress state during soil deposition can be reproduced in a conventional triaxial apparatus, which
subjects to repetitive corrections by compression/extension tests to maintain zero lateral strain. The admissible
plastic strain increment vector is the summation of associated plastic flows on each upper and lower yield loci
depicted in Figure 4-8. In Box 4.1, the matrix X is determined whether consistency conditions are
simultaneously or consecutively active, resulting in the coupled and decoupled hardening plasticity

matrix X and X , which is formulated by removing coupling parts of X . During the mobilization of shearing
resistance along series of the random kicks and shoves of soil particles on the correction paths approaching to
K,-condition given by uniformly distributed regions of extension/compression tests, the consistency parameters

can be evaluated by taking matrix X into account.
The loading vector of mobilized Ko condition can be considered similar to that of immobilized Ko condition
by the following assumptions,
A) Both regions are uniformly distributed and balanced each other
B) Bothregionsare kept considerably small
C) Stress& strain paths are kept close to Ko-condition
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Lower yield by upper

locus

Figure 4-8 Incremental plastic strain under K,-condition

In Box 4.2, contribution of elastic moduli manages to arrive K, expression, namely, mobilized K, in an
implicit polynomial form having coefficients related to Critical state parameter, Poisson’s ratio and irreversibility
ratio as noted in Eq.(4.31). Once the repetitive loadings gradually approach to monotonic one-dimensional
normal compression, the consistency conditions are satisfied with those of coupled heterogeneous plasticity thus
concerning with X, giving K, as a function of Poisson’s ratio, namely, immobilized K, shown in Eq.(4.33). The
transition of K, value stahilized between both states can be obtained by combining Eqg. (4.31) and Eq. (4.32)
expressed by EQ.(4.33) (See details in Appendix D). Regarding to Eq(4.31)-(4.34), the plots in Figure 4-9,
Figure 4-10 and Figure 4-11 show an acceptable agreement with many experiment results and widely-used
correlations, confirming the relations among Ko, ¢’ and v' in according to the Sekiguchi-Ohta model.

K,(M,v',A)=0 (4.31)

K, = 1l/v. (4.32)
15-/9+16M?

K, = o VIHIoM - (4.33)
6+2v9+16M?

_ 36_3';n¢¢' (4.34)

4-4-4 Closure

Apart from the theoretical relations obtained, the study may suggest a solution to break the limitation of
the Sekiguchi-Ohta and related models in evaluating incremental plastic strain at the intersection corner. There
are many K, values (mobilized) found before the steady K, value (immobilized) is approached.
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Box 4.1 Rate of plastic strain at the corner

Rate of strain under triaxial Ko—condition

0 0 O
: : implies é—ié 1+\/§én
=0 &y 0 3 \ 2 s
0 0 O

where &, =¢,, & =3%¢
1

"% ° 100
5 1=/0 1 0
n= 0 3 0 001 (@
1
0 0 —%
Rate of plastic strain Consistency parameters
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oading parameters (covariance of ¢): = Ko, f. 36o,f, ||z
X e{X,X} must be positive definite as defined below

Matrix of coupled hardening plasticity

| K(0uf, ) 436(0,1, ) +0, T, KT, 0, f +3G0, T,0,f, +0,1,
X =

2 2
KOy, 0,1 +3G0,f, 0, fL +0,f,  K(0,f ) +36(0,f.) +0,f,
Matrix of decoupled hardening plasticity

. K (0,6, ) +36(0, 1, ) +0, f, 0

0 K(0,f. ) +36(0,f.) +o,f,
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Box 4.2 Determination of immobilized and mobilized K,

Incremental stress-strain relation

o K 0|[é& P :
p. = ‘V - ‘g.‘v and o :.&
q 0 3G||\& &r Pl
for decoupled heterogeneous plasticity, m, isobtained by solving the polynomial:
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M2 —2AMZ-A’M?+64'A% | |5
—2u'A? o'
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Figure 4-9 Relation between K, and ¢’ [16]
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4-5 Deter mination of K -value by Central limit theorem

4-5-1 Introduction

According to Koiter's associated flow rule (1953) [18], the plastic flow at the corner of the Sekiguchi-
Ohta model can be determined by yield surfaces’ curvatures enclosing the corner and the strain rate imposed.
Provided that the stress point is continuously kept aong the corner, the arbitrary strain rate is varied within the
certain limit, resulting in upper and lower limits of uniform possibility of plastic flow as depicted in Figure 4-12.
The consolidation process is obtained by successive summation of random plastic flow, leading to the normal
distribution of total plastic strain accounted by the Central limit theorem. As a consequence, the theoretical K-
value was formulated. This study may suggest the new concept of K ,-consolidation.

4-5-2 Therate-independent Sekiguchi-Ohta model

The inviscid form of the soil constitutive model proposed by Sekiguchi and Ohta (1977) [14] can be expressed in
terms of invariants as shown in Eq.(4.35).

- 3,37,

f(o',6')=f(l,,3,1,)= |\/|D|n(|'—1}r DI—2 (4.35)
cl 1

where the stress parameters are listed as following,

| =tr(c"), | ,=tr(c',) ,s=dev(c) ,s. =dev(c') ,n, = Sf ,§:s—illnC ,J 2=%tr(§2) ,J 2:%”(52) ,
P

3

o B 3(1-K,)
o ™" 1k,
Geometric boundary of Kg-consolidation is restricted to an axisymmetric condition. Therefore, among the
discretized yield surfaces enclosing the corner, only yield surfaces in K,-compression and Kg-extension, as

shown in Eqs.(4.36)-(4.37), are active and activated during plastic loading. The criteria of yielding at the corner
during K,-consolidation is satisfied by,

1=diag[l 1 1],de\/(0):O—:—13(0:1)1, n(e) =

3y/3J
f,(c%6") =, (1,3, 1) = MDIn(LJ+ D(l—z—%}o (4.36)
cl 1
3y/3J
f(ce')="1(,3,1,)= MDIn(ll—lj—D[ I 2 —;70}:0 (4.37)
cl 1
€ u_ 1
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Figure 4-12 Arbitrary plastic flow at the corner

4-5-3 Koiter’s associated flow rule

In EQ.(4.38), plastic flow at the corner is computed by assigning ¢’ = o’ to the sum of associated plastic flow on
each upper and lower yield surfacesin according to Koiter’s associated flow rule.
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According to Eq.(4.38)-(4.41), the plastic flow can be expressed by Eq.(4.42) as components of volumetric and
deviatoric parts in an axisymmetric plane governed by tensor basis 1 and n.. The consistency requirement
enforcing a continuoudly yielding stress implies the subsequent yielding stress by three cases,

a) To the normal fan of theintersection corner: y, >0;y, >0

b) To the region of upper yield surface: », >0;7, =0
c) To theregion of lower yield surface: y, =0;y, >0

Source: Wroth (1972), Ladd, Foott, #
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Figure 4-13 Theoretical and Experimental values of K,

Consistency parametersyy and v, have alinear mapping relation with imposed strain rate. Hence, for an arbitrary
strain rate applied to state of stress at the corner, the corresponding plastic flow is randomly varied between
upper and lower limit given by Eqs.(4.43)-(4.44). The random, upper, lower and mean ratios of deviatoric to
volumetric plastic strain rate are given by Eqs.(4.45)-(4.48). The mean ratio of an arbitrarily distributed plastic
flow isthe average of both limits.

&) =§év‘g 1+ \/gég‘j n, (4.43)

& =§é¢il+€é§nc (4.4)

ﬁ:j—{:(y . WA (4.45)
v ()M =( =),

B =p :M+no (4.46)
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Figure 4-14 Accumulated plastic flow at the corner
4-5-4 Determination of theoretical K,

If the irreversible response (Egs.(4.49)-(4.51)) of plastic strain ratio obtained from one-dimensional
consolidation or oedometer test result is considered as population mean shown by Eq.(4.52), the sample means
are considered by the mean of plastic strain ratios of several loading steps taken from many trials. According to
the centra limit theorem, when a sufficiently large size of loading steps is employed, the sample mean will be
approached to mean of normal distribution B of Eq.(4.48), which is equivaent to 2/3 as given in Eq.(4.52).

Then, K, expression can be solved as shown in Eq.(4.53) and plotted with experimental results in Figure 4-13.
Theoretical K, confirms an agreement with past experiments.
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Figure 4-15 Distribution of plastic strain ratio at each step
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AeP =diag[0 Agf 0] (4.49)
2 2
p_ £ Py AP
I O B (450)
AgP =tr(AeP) = Agp (4.51)
Asp _2 (452)
Ag) 3
2
K _15-V9+16M (4.53)

° 6+2J9+16M?

4-5-5 Numerical illustration Numerical illustration

The plastic flow is uniformly generated as described in Figure 4-16 by 100 trials for 100 steps with M=1. The
generated results are shown in Figure 4-14 where the distribution of plastic strain ratio at step 1 and step 100 are
shown in Figure 4-15. For 100 steps, total plastic strains are approached to normal distribution with an expected
value 2/3, which is consistent with value obtained by rigorous implementation of Koiter’s flow rule to the corner
of SO model. Plastic flow during K,-consolidation process may be interpreted as uniformly distributed plastic
flow along the vertical direction in aground.
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Figure 4-16 Approach by the central limit theorem
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5-1 Introduction

Formulation and numerical implementation of soil constitutive models with a smooth/single yield surface
have aready been well developed and become a standard code for finite element method. Among many of
engineering software and package, general FEM codes based on the soil congtitutive model proposed by
Sekiguchi and Ohta (1977) [1] have been extensively recognized in Japan and still being improved continuously.
However, it has been found that a plastic flow at the point of preconsolidated stress, which is related to a material
memory of the model, is unable to correctly evaluate plastic strain increments due to a problem of mathematical
singularity on yield surface at which the gradient is not uniquely defined. A geometrical representation of the
yield surface in stress space shows this point representing a ridge corner of asymmetrical logarithmic spiral. Asa
consequence, the discontinuous slope at the corner rules out the normality postulate; the similar difficulty in
numerical implementation is also found by Britto & Gunn (1987) and Gens & Potts (1988) [2, 3] in original
Cam-clay model (Roscoe, Schofield & Thurairgjah, 1963) [4].

Unsurprisingly, the same difficulty is found in the original Cam-clay model in which the mathematical
prescription produces uncertainties due to the presence of distortion when predicting volumetric strain under
imposed isotropic compression boundary conditions. This is an example of a difficulty met in the theory of
plasticity when a yield curve has a corner. For the reason of metastable (yield under any increment of p’ of
effective spherical pressure), the volumetric strains under this condition are directly presented by virgin
compressed curve of normally consolidated clays without any association with Cam-clay flow rule. Moreover,
any attempt to choose a particular plastic flow normal to yield curve at or near the corner would produce a much
higher value of K, than those measured in practice [5].

The discontinuity is suggested to eliminate either by rounding off using smooth approximating functions
(Zienkiewicz & Pande, 1977) [6] or adopting an ellipsoidal yield surface (Roscoe & Burland, 1968). [7] Actualy,
there is no theoretical objection to non-smooth yield surface (Koiter, 1953, Rudnicki & Rice, 1975,
Christoffersen & Hutchinson, 1979) [8, 9, 10]. Moreover, evauation of plastic flow at the point of singularity
can be achieved theoretically without any modification of ayield surface's curvature.

One of the theoretical extensions to cover constitutive models with the point of discontinuity, where
elastic domain is defined by non-smooth convex boundaries, is developed by Simo, Kennedy & Govindjee
(1988) [11], showing that the standard Kuhn-Tucker optimality conditions of convex mathematical programming
are essentially equivalent to the multisurface counterpart of the conditions in Koiter (1953). By the
abovementioned approach, Pipatpongsa et al. (2001a, b) [12, 13] described an additional procedure to handle a
difficulty when a particular stress point is placed at the corner of yield surface in stress space. Under this concept,
K, consolidation process is regulated by two activated yield loci referred to upper and lower yield surfaces
intersecting each other in axisymmetric triaxial plane to form the hardening vertex, in which plastic flow at the
point of discontinuity lie within the fan of possible directions.

The approach of adjoining the singular corner by only two conceivable yield functions can reduce bulky
equations required by Koiter’s condition for non-smooth multisurface plasticity. The typically reasonable values
of coefficient of earth pressure at rest governed by the SO (Sekiguchi-Ohta) model can be obtained by
connecting a typical normality of individual yield surface to Koiter’s associated flow rule (Pipatpongsa et al.,
2001c) [14]. The application of compatible Kuhn-Tucker optimality conditions and Koiter's flow rule to corner
of the model isillustrated by stress update algorithm (Pipatpongsa et al., 2001d) [15].

In aview of practice, most of natural soil formation possesses a certain degree of over-consolidated ratio;
therefore, aninitia stressis placed inside ayield surface rather than at the corner. To avoid the same problem in
normal consolidated young clay, an initial stress placed at the corner is put inside yield surface intentionally by
factoring it with a number that is sightly less than one. Besides, a calculation of one-dimensional consolidation
is obtained by assuming soil media as an elastic material. By means of those reasons, error due to the singularity
is not exaggerated in finite element program applicable to the SO model, for example DACSAR (lizuka & Ohta,
1987) [16]. However, in rigorous aspect, this fact cannot be overlooked and violated any longer.

In this paper, a standard FEM procedures based on smooth yield surface was corrected by adding a corner
mode to assess plastic flow when stress is defined at the corner in particular. Detailed procedures with
theoretical background are provided. A continuum tangential stiffness tensor corresponding to the singular corner
of the SO model was formulated. The comparisons between methods with/without a consideration corner mode
under K,-condition were illustrated under plane strain and axisymmetric conditions. The effects of element
assemblage and size of sub-incrementation were discussed. The study may provide a source of numerical
implementation to fill in the overlooked procedure in previous development of FEM applicable to the SO or
similar models.

5-2 Soil Condtitutive Equations

The SO model has been proven to produce predicted behaviors which are consistent with observed field
responses for anisotropically consolidated soils. The model is based on critical state theory considering dilatancy,



60

reorientation of principal stresses, anisotropy and time dependency. The SO model is reduced to be the original
Cam-clay model in case of initially isotropic stress condition.

5-2-1 Forms of the Sekiguchi-Ohta M odel
The two-invariant, rate-independent elastoplastic associative soil constitutive model proposed by
Sekiguchi and Ohta (1977) is originally expressed by a convex yield (plastic potential) function:
f(e',h)= f(p'7',&d) = MDIH(E’J+ D —&f =0 (5.1
Po
where
c' = effective stress tensor;
h = selective isotropic hardening parameter;
p' = effective mean stress;
n* = generalized stress ratio;
£, = volumetric plastic strain;
P’ = effective mean stress at the end of completion of anisotropic consolidation (typicaly, K, consolidation);
M = dope of critical statelineinap’-q plane;
D = coefficient of dilatancy
Internal variable h controls a size of ayield surface and can be selected either as stress-like or strain-like
variable. A form in Eq.(5.1) serves as strain-like type, which physically means that a hardening/softening
characteristics of material isinduced by a plastic volumetric strain. On the other hand, a stress-like type can be
formulated from Eq.(5.1) using relation given in Eq.(5.2) and expression of coefficient of dilatancy in Eq.(5.3)
(Ohta & Hata, 1971) [17].
& 5.2
=plexp| ———L—— .
_ A-x
M(@A+e)
Without loss of originality, an aternative form of the Sekiguchi-Ohta model with stress hardening as
parameter can be expressed by Eq.(5.4). Figure 5.1 shows the outline of two corresponding forms of the
Sekiguchi-Ohta model.

(5.3)

’

f(o',h) = f(p',n*,pé):MDIn[%J+D7f=0 (5.4)

()

where p’ . = stress hardening parameter

Strain-Hardening Form

f(o,h)= f(p'n" &) =MDIn = |+ Dn’ —&P =0
po —

"D ex ey ng
Pe=Po®R v)lre) M(+e,)

Stress-Hardening Form

f(e,h) = f(p',n", p,) =MDIn = |+ Dy =0
3

Figure 5.1 Forms of the Sekiguchi-Ohta model

5-2-2 Geometrical Representation

The SO yield surface in three principal stresses space can be conveniently presented by referring to new
Cartesian coordinate system (X;, X,, X3) on the deviatoric plane (n-plane) as shown in Figure 5.2. The
parametric form of yield surface on (p’, o) is formulated by coordinate transformation system (see Appendix A).
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Figure 5.3 shows a distorted bullet shape of elastic domain in principal stress space and in different views on
plane A, B and C which refer to deviatoric plane, meridional plane at ®=0 and &, and top view (c'>- c'3) plane
respectively. The existence of a singular corner on K-line reveals that the SO yield surface is not smooth at the
particular stress point where material memory of consolidation history is kept as hardening parameter, therefore,
this point isidentified as the hardening vertex of the model.
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Figure 5.2 Deviatoric planein principal stress space

5-2-3 Generalized Convex Format

The initially stress-induced anisotropic consolidation history is recorded at the corner of Sekiguchi-Ohta
yield surface given by o’¢. Under the stage of natural deposition, the state of stress at the corner, which its
vertical direction (also the major principal axis) is coincided with the direction of gravity force, can be given in
terms of Cartesian components as,

O cupy O c2py) O caspe) Koo' O 0
6 =0 o O ey O ey |=| O o'\ 0 (5.5)
O enzg O cam) O sz 0 0 Kol

o’ isreferred to the currently stress-induced anisotropic consolidation history at a current time of interest
(subsequent stage). o’ is distinguished from o’ by the fact o’ is referred to o’ right after at the completion of
natural K,-consolidation and serves as the initially stress-induced anisotropic consolidation stress history at the
starting time of interest (initial stage, t=0). A reference state of the SO model is set to initial yield stresso’at
t=0, therefore, this sort of format breaks the principle of objectivity (frame indifferent) at all times. It is
suggested to have the model changed its reference state to current yield stress ¢’ in order to satisfy principle of
objectivity.

Baker and Desai (1984) [18] showed that it is necessary to include joint invariants of stress in a
congtitutive equation in order to completely describe the anisotropic behaviour of soils. The joint invariants
characterize the relative orientation of the stress and plastic strain tensors in space. In order to characterize this
anisotropy, a mapping rule is adopted with respect to the anisotropic consolidation axis (K,-line) into stress
deviators. i.e, s isthe current stress deviator, S isthe relative stress deviator using mapping quantity defined
in Eq.(5.14)) [18,19,20,21].

For later reference throughout the paper, it is more convenient and general to rewrite the yield function of
Eq.(5.4) interms of stress invariants and joint invariants between stress tensor o' and stress hardening tensor o'
which is kept along paths of corner as,

f(¢',6',) = f(Il,jz,Icl)zMDln(ll—lJ+ D—3V3J_2=o (5.6)

cl Il



Figure 5.3 Various views of the Sekiguchi-Ohtayield surfacein principal stress space

where
1 R .
p'==1 ,==tr(c)==1:¢ ;mean effective stress
3 3 3
.1 i, .. 1 . _ .
p'. :§| Cl=§tr(<r c)=§136c ;mean effective virgin consolidated stress
s:c'—:—13I11=A:c' ;stress deviator
S, =c'c—%lcll=A:c'c ;virgin K,-consolidated stress deviator
1 1 . . .
J ,=2tr(s¥)==s:s ;the second invariant of stress deviator
2 2
J o= %tr(scz) =%sC 'S, ;the second invariant of stress hardening
N = Sf ;orientation of yield surface in second order tensor quantity
P.
_ 1 1 . . .
S=S—§|mc = A—§‘15®1 ¥y ;relative stress deviator
- 1 ., 1_ _ ) . . .
J Z:Etr(s :ES' S ;the second anisotropic invariant

The outline of relation between 7 (not »*)and J, isshownin Figure5.4.

(5.7)
(5.8)
(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)

(5.15)
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Figure 5.4 Relation between joint invariant and generalized stressratio

The second-order identity tensor is defined by
1=0,6 ®¢, (5.16)
The forth-order identity tensor is defined by

| E%[@kajl +0,0) |6 ®e ®g, ®¢ (5.17)

The forth-order deviatoric tensor (forth-order tensor mapping stress and stress deviator) is defined by [22] (See
more in Appendix A)

A=l —%(1@1) (5.18)

5-2-4 Reciprocal basic
Apart from the tensor basis e ®g, which is independent of any preferred choice of basic for E, there is an
additiona linear mapping T set in space to characterize material anisotropy in particular. A resulting reciprocal

basic considering a relative relation between Cartesian and anisotropic mapping quantity is schematized in
Figure 5.5 and also written in expressions given below,
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Figure 5.5 Schematization of reciprocal basics employed in mapping quantity

6'=p'l+p'n +3 (5.19)
6. =p.l+pem, (5.20)

Relative stress deviator S in Eq.(5.21) is coaxia with deviatoric plastic flow; thus, it is more suitable than
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stressdeviator s in the manipulation of anisotropic constitutive equations.
S=s-p'n, =4/23,0 (5.21)
Asaresult, astress tensor can be efficiently represented in terms of reciprocal tensor basis {1, N, ,ﬁ} .

5-2-5 Form-Invariance Principle

A

L2

> X » X

i

5 B

\ i Rotation of the material
5 B 5

element and stresses

Equivalent
> X Configuration
Rotation of the reference axes

Figure 5.6 Schematic representation of form-invariance principle (Baker & Desai, 1984)

The material response described by the congtitutive equations should be satisfied the objectivity
requirement as depicted in Figure 5.6 (Baker & Desai, 1984) [18] where a rotation of both reference axes and
material elements result in equivalent configurations. A transformation tensor Q is a proper orthogonal
second-order tensor, in which,

Q-Q"'=Q"-Q=1, det(Q)=1 (5.22), (5.23)
The stress and stress hardening variable after rotation can be expressed as,
¢ =Q¢Q, ¢, =Q0c,.-Q (5.24), (5.25)

The stress invariants under the new reference can be calculated by transformation rule shown in Appendix G, Itis
found that,

=1, J,=J,, I =1, (5.26), (5.27), (5.28)
The previous equations simply mean the property of yield function satisfies the principle of objectivity.
£, 3, 00) = £, 35, 10) (5.29)
Then, the objectivity of the constitutive equation is proven by
f(¢",6'.)=f(Q-¢-Q",.Q-¢'.-Q") = f(¢',0",) (5.30)

It is noted that the original concept of the SO model has an expression referred to the initia yield stress. As a
result, the objectivity is not satisfied in the way that,

6, =¢,%2Q ¢, -Q’ (5.31)

5-2-6 Stress-induced anisotropy

Under the assumption of homogeneous and isotropic material, anisotropy response is generated if either yield or
potential functions depends on the joint invariants between stress and hardening variables. Difference in
sampling in anisotropic media give difference in stress-strain response as depicted in Figure 5.7 (Baker & Desal,

1984) [18]. According to the SO model, 1 =7"(¢',6',) in the expression is referred to the joint invariant.
Therefore, the model can characterize the anisotropy response. However, 1 =7 (¢',6',) isaso referred to the

initially stress-induced anisotropy, which is no longer satisfied with the principle of objectivity. In the study, the
generalized convex format referring to a current stress-hardening variable is suggested. Under this concept,
n=1(c',6',) isemployed instead, which isreferred to the stress-induced anisotropy providing that there is no

rotati onal-hardening response.



Figure 5.7 Effect of rotation on the joint invariants (Baker & Desal, 1984)

In order to have the SO model satisfied the principle of objectivity, the generalized stressratio #n* is replaced

by generalized relative stressratio 77 presented by,

T=oe) = Ve \/ﬁ{i—ﬁ}{i—ﬁ} (5:32)

ly 2(p" pJ(P P
S.
where —-=nq, = \Enodiag{—g ? —%} providing that W, =0 (5.33)

5-3 Incremental Stress-Strain Rdlation

It is generally assumed that strain increment can be decomposed into elastic and plastic parts, denoted by

§=¢"+¢° (5.34)
Associated flow rule is applied to the SO model to determine irreversible plastic flow emerged in an outward
normal direction to the plastic potential coincided with yield surface.

£P = 7i =0,.f (5.35)

Jc'

wherey is a proportional factor or consistency parameter.
Consequence of the consistency relation gives

o0.f:c%:¢
= 5.36
"TTH A H, (5:36)
Tensorial moduli c®, scalar moduli He and H,, are defined by
c°=K1®1+2GA (5.37)
H,=0,f:c:0,.f (5.38)
l+e ,
Hp Z—Etr (66.f)pc6p.cf =tr(60.f) (539)

€, isareference void ratio at a state of ¢’,,. A (=0.434C;) and k (=0.434C,) are compression and swelling
indices obtained from triaxial tests. Failure condition is defined when the plastic modulus H, approaches zero.
According to Egs.(5.34)-(5.39), the incremental stress-strain relation can be formulated by

6 = (60, 1) = e © 10, f®o,.f:c "
H.+H,

K and G are referred to bulk and shear moduli respectively. v' is Poisson’s ratio of soil skeleton.
Dependence of K and G on p’ suggests a hypo-elastic model is employed in aformulation.

K=L(1re) (5.41)

(5.40)



3(1-2v'
G- 32-2v) K (5.42)
2(1+v")
The first derivative of the SO model respective to stress tensor is shown in Appendix B. Substitution of these
termsto Eq.(5.40), obtains aterm,

¢:0,1 @0, (KAL+/BGn)®(KAL+6en)

H T H | (5.43)
et p K 2 G+—L
g+ +3Dﬂ
where
c:0,.f = 3?[ K 81+ ZG\Eﬁ] (5.44)
1
DY D
He+Hp=[3l—] (Kﬂ2+3G)+3|—ﬂ (5.45)
1 1

3J.

Under K, condition

_ 3(1_ Ko)
T =K, (547)
= \E%diag{_% ? _g} (See Appendix B) (5.48)

ncis an aligned direction along hardening vertex in stress space. (n);j iS a component of n in stress space
in which a direction of (n¢); is corresponding to a component of 1. in parallel with a major principle axis of
preconsolidation stress.

5-4 Treatment of the Singular Cor ner

Since the state of stress at the singular corner is referred the stress at triaxial condition [13], Figure 5.8
shows the yield loci and intersecting corner in the meridional plane associated to the triaxial stress plane
(Rendulic’s stress plane). The upper and lower yield loci are expressed by Eq.(4.1, 4.2) shown as,

f, (1,95, 1) = MDIn[|—1]+ D[—s\'f‘]z——a\'&]w] =0 (5.49)

Icl 1 Icl

fL(l, 3z 1) = MDln(L]— D(3V3‘]2 _33e, ] =0 (5.50)

cl I1 Icl

Eq.(5.49) and its conjugate Eq.(5.50) are selected as candidates among conceivable yield functions passing the
corner needed by Koiter’s condition. This approach refrains from dealing with bulky equations may arise from
using many slopes of discontinuous yield functions since bulky equations are generated in corresponding to the
number of non-smooth yield functions in concern. Therefore, this approach gives the smallest forms needed by
Koiter’s condition.

Concerning with Koiter's associated flow rule, plastic flow at the corner is interpreted as a resulting
vector of plastic flow of upper and lower yield loci and expressed by,

&P =y,0, 1, 70, f (5.51)
Incremental stress-strain relation is expressed by
6'=c’:(¢-¢P) (5.52)

According to App. C-3, substitute values of consistency parametersinto Eq.(5.51), obtain

P = | 0y f, _x1. OpfyiC:d . A (5.53)
7. )\ 0,1, 0,.f :c®:8)\ 0,1,
Substitute Eq.(5.53) into Eq.(5.52) to obtain stress increment

oo Ce_(luugu ®Gy + 0% @9, j . (5:54)
X009 ®0, + 7.0, ®0,



67

q=0',—0' YuOe fu Upper yield locus

Upper yield fu(ll,Jz,Id):MDIn[L]+D[@7@]:O

cl cl

I Y Lower yield locus
10e T fL(Il,Jz,Icl):MDIn[LJ—D[@—LSJZC]:O

cl I1 Ic1

Koiter's associated flow rule

Z Lower yield| &P =y, 0, fy +7.0, fu

..o Surface
\S‘< _

Consistency conditions

., O',+20",
3

Figure 5.8 p’-q plane relating to the meridional section associated to the triaxial stress plane where the corner is
placed

NEN
g, =c":0,.f, =3I—D[K[M —3—2]1+ZG\EnJ (5.55)

1 1

NEN
g . =c:0,f =3I—D{K[M +3|—2]1— 2G\/gn} (5.56)

1 1

where

x =X isdefined in away that Xou = X1 Yoo = X120 XYoo = Xogs XL = X2 (5.57)
According to Appendix C-4, coupled hardening matrix is expressed by,

3—

2 I |
2 Kﬂu +3G+_1ﬂu KﬁuﬂL_g(;+_lﬂL
X :[ :Dj 3D 3D (5.58)

I I
KBAy =3G+o0hy KA +3C+-L 4
Eq.(5.54)-(5.58) reveals atangential elastoplastic moduli considering corner mode is expressed by Eq.(5.59) as,
*=c- Y Z.,(9.99,) (5.59)
a,ﬂe{U,L}
A more compacted form is derived in Appendix C-7 as shown by,

cP* = (1- A)K1®1+ \/g(l—A)noKnc ®1+2G[A-n ®n] (5.60)

55 FEM Formulation

Four-node displacement-based element with 2x2 Gauss integration is formulated by standard FEM
methodology for both plane strain and axisymmetric conditions. A procedure for corner mode is added to normal
mode by employing tangentia elastoplastic moduli defined in (5.60). A corner mode is judged to activate by
extra condition given in Eq.(5.61). If the condition is invalid then a computation is handled by a general mode,
which simply means stress is located out of the corner. (See Figure 5.9) A condition for elastic unloading is
defined in Eq.

f, 2ZERO and f >ZERO (5.61)
L, <ZERO and L, < ZERO (5.62)

where ZERO is a zero truncation allowed in computation, usually set to avery small positive number, e.g. 10
FEM simulations of K,-condition can be performed by considering one-quarter of specimen enclosed by
stiff lateral boundary depicted by Figure 5.10. Type A model refers to a true K, condition controlled by zero
lateral strain while type B refersto areversed K, condition controlled by alateral pressure generated by K, value.
Geometric boundary conditions are shown in Figure 5.11 showing both single and four-element assemblage
denoted by numerator 1 and 2 respectively. Material parameters with initial conditions for a class of inviscid SO
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model are listed in  Table 5.1. Code names of all cases are tabulated in Table 5.2. Symbols + and - notify a
calculation performed with or without corner mode. Applied vertical load of o'y, (100 kN/m?) is further
subdivided into 100 sub-steps for all cases except two latest cases where 1000 and 5000 sub-steps are applied to
observe sizes of sub-steps affected in computation.

f, > ZERO and f, > ZERO

Unloading
Loading YES

Corner mode | . ] c® =K1®1+2GA

Loading
{ Normal mode

cP=c®- ZX?B (ga ®g[3)

< _ e [KBL+V6GA)® (Kp1L+6GH)

apelU,L I
KB2+3G+-L
p ) p
Figure 5.9 Mode judgment
Table 5.1 Soil parameters
Parameter Description Vaue
D Coefficient of dilatancy 0.101
A Irreversibility ratio 0.825
M Critical state parameter 1.120
\% Effective Poisson’sratio 0.364
Ko Coefficient of earth pressure (NC) 0.572
K; Coefficient of earth pressure (in-situ) 0.572
A Compression index 0.342
& Voidratio at ¢’y 1.500
G’ vo Eff. preconsolidation pressure (kN/m?) 100
Gy Eff. overburden pressure (kN/m?) 100
5-6 Calculation Results

Results of effective stresses, shear stress and ratio of horizontal stress to vertical stress were listed in Table
5.3. Strains and ratio of deviatoric strain to volumetric strain were shown in Table 5.4. | sotropic hardening stress,
volumetric and deviatoric plastic strain, ratio of deviatoric to volumetric plastic strain and ratio of volumetric
plastic strain to volumetric strain were shown in Table 5.5. Results in Table 5.3-Table 5.5 indicated that under
K,-condition, FEM procedures with/without corner mode give a substantialy different results. The exact
solutions given in Egs.(5.63)-(5.70) are obtained from a basic 1-D consolidation problem. Therefore, cases of
Alat+, Alp+, Blp+, A2at+, A2p+ and B2p+ were equivalent one another and provided the reasonable results.
Calculations without corner mode failed to give reasonable results.
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Figure 5.11 Schematic description of single element and four-element assemblage
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It was found that results obtained by single element (for Ala+, Alp+, Blp+) and four-element (for A2at+,
A2p+, B2p+) generated almost same responses due to a class of homogeneous deformation. There is no effect of
subdivision of spatial domain in the calculation, but there is an effect of subdivision of time domain
(sub-incrementation of loading) as illustrated by results obtained from case Alat+* and Alat+**, that is, a more
exact result can be taken for a finer sub-step. Herein, 5000 sub-steps are required to yield an exact solution. Type
B model gave correct responses only for plane strain condition. Therefore, arestraint in plane strain condition is
satisfied for areversed or stress-controlled K,-condition where stress path is kept along the corner. A comparison
between Ala+ and Ala alone were shown in Figure 5.12-Figure 5.15. It is clearly found that without corner
mode, stress paths were mobilized along Kq-line, resulting in fluctuated paths in Figure 5.12. Volumetric
contraction given by cases without corner mode is less than a solution (see Figure 5.13 and Figure 5.14).
Moreover, the slope of e-log(c’) curve (see Figure 5.15) is not equal to swelling index (in logye-scale) C. while
a procedure with corner mode can produce responses associated to the solution.

5-7 Concluson

FEM procedures including a corner mode are formulated using Koiter’s associated flow rule to evaluate the
plastic flow at the intersecting corner of the Sekiguchi-Ohtayield surfacein meridional plane under K,-condition.
The extra implementation is added without any modification to the whole procedures of a normal mode and
general FEM codes. Ignorance of special treatment for the corner would produce unacceptable results. It was
clearly seen acorner mode is considerably needed especially for a particular type of problems such as analysis of
K, consolidation, self-weight consolidation, K, creep and ageing as well as site responses when a level of water
table is changed.

Table 5.2 Case study classification (100 sub-steps)

Code Geometry/Elements Corner effect
Alat axisymmetric/Al considered
Ala axisymmetric/Al ignored
Alp+ plane strainfA1l considered
Alp- plane strainfAl ignored
Blat+ axisymmetric/B1 considered
Bla axisymmetric/B1 ignored
Blp+ plane strain/B1 considered
Blp- plane strain/B1 ignored
A2at+ plane strainfA2 considered
B2at axisymmetric/B2 considered
B2p+ plane strain/B2 considered
Alat+* Alat+ by 1000 sub-steps

Alat** Alat+ by 5000 sub-steps




Table 5.3 Calculation results: effective stress (kN/m?)
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Case T ) e Tay(r2) ) O
Alat 114.50 200 0 114.50 0.572
Ala 114.98 200 0 114.98 0.575
Alp+ 114.50 200 0 114.50 0.572
Alp- 114.98 200 0 114.98 0.575
Bla+ 113.75 198.13 -9.08E-5 113.75 0.572
Bla- 114.50 200 0 114.50 0.572
Blp+ 114.50 200 0 114.50 0.572
Blp- 114.50 200 0 114.35 0.572
A2at+ 114.50 200 0 114.50 0.572
A2p+ 114.50 200 0 114.50 0.572
B2a+ 113.80 199.50 0.03 113.55 0.570
B2p+ 114.50 200 0 114.50 0.572
Alat+* 114.50 200 0 114.50 0.572
Alat+** 114.50 200 0 114.50 0.572
Exact 114.50 200 0 114.50 0.572

Table 5.4 Calculation results: strain
Case Ex(r) Ey(z) Vxy(r2) 30) &l¢e,
Alat 0 0.094 0 0 0.667
Ala 0 0.030 0 0 0.667
Alp+ 0 0.094 0 0 0.667
Alp- 0 0.030 0 0 0.667
Bla+ 0.025 0.043 1.21E-3 0.025 0.137
Bla- 5.89E-3 0.022 0 5.89E-3 0.323
Blp+ 0 0.094 0 0 0.667
Blp- 7.28E-3 0.025 0 0 0.462
A2at+ 0 0.094 0 0 0.667
A2p+ 0 0.094 0 0 0.667
B2a+ 0.020 0.046 9.27E-4 0.019 0.208
B2p+ 0 0.094 0 0 0.667
Alat+* 0 0.095 0 0 0.667
Alat+** 0 0.095 0 0 0.667
Exact 0 0.095 0 0 0.667
Table 5.5 Calculation results: plastic variables
Case P’ gy g> el /el el le,
Alat 142.28 0.077 0.052 0.667 0.823
Ala 143.84 0.014 9.24E-3 0.683 0.448
Alp+ 142.28 0.077 0.052 0.667 0.823
Alp- 143.84 0.014 9.24E-3 0.683 0.448
Bla+ 141.57 0.076 2.13E-3 0.028 0.823
Bla- 142.28 0.018 0.000 0.000 0.515
Blp+ 142.28 0.077 0.052 0.667 0.823
Blp- 142.69 0.016 5.42E-3 0.339 0.491
A2at+ 142.28 0.077 0.052 0.667 0.823
A2p+ 142.28 0.077 0.052 0.667 0.823
B2a+ 142.45 0.069 6.67E-3 0.097 0.807
B2p+ 142.28 0.077 0.052 0.667 0.823
Alat+* 142.93 0.078 0.052 0.667 0.825
Alat+** 142.98 0.078 0.052 0.667 0.825
Exact 143.00 0.078 0.052 0.667 0.825
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6-1 Integration schemes

Integration of the constitutive model by computing the stress and strain changes corresponding to the
total change of the displacement isimportant in FEM procedure. As shown in Figure 6.1, the stresses have to be
integrated in terms of the elastoplastic stiffness matrix C® that is dependent on the state of current stress, strain
and alinear increase of strain. The integration procedure adopted in elastoplastic computation can be classified
into sub-incrementation and iteration methods, simply referring to explicit and implicit categories[1].

Generalized elasto-plastic
incremental relationship

do = C*®(0,¢,de).de

Total strain change subjects to
(60’80) 1 Ag initial conditions

g, +Ag

Integral form incorporating into the
_ ep

Ac = j C (6'8' dg)'da dependence on state variables

sO

Figure 6.1 Integral form of elastoplastic stress-strain relation

6-1-1 Explicit method
The early days of computational rate-independent plasticity used this technique. The direct summation of
small increments is adopted. The prescribed strain Ag is given and the integral from shown in Figure 6.1 can be
replaced by,
Ao, =C%(0,,5,,A¢): Ae (6.1)
Most of the FEM employs the sub-incremental method to handle numerical integration of the congtitutive
models. The accuracy of computation is entirely depended on the size of stress/displacement sub-increments.
Consequently, to attain a high accuracy degree, computational time is substantialy required. The stress change
will generally depart from the yield surface by some margin. These updated state parameters do not satisfy the
yield condition at the next step, that is, f,,, = f(s,.;,0,.,) #0 and the solution drifts from the yield surface. A

single-step computation may lead to considerable errors and inaccurate solutions. The more precise explicit
procedure can be provided by use of some form of the Runge-K utta process for second-order accuracy.

Due to inaccuracies of the method, it is no longer favored. Therefore, the dissertation will focus on the
iteration method to solve the disadvantage.

6-1-2 Implicit method

Stress increment during iteration is evaluated by using tangential matrix referred to the state at the end of
the increment denoted by,

Ao, =C%®(0,.1,8,.,,AE) 1 Ag (6.2)

The derivation in Eq.(6.2) can be seen as Backward Euler difference while Eq.(6.1) is seen as Forward
Euler difference. Formulation for C® is complex and depends crucially on the particular constitutive model
chosen. In some case, a serious error is committed in the approximation form of C*®. The set of equations is
iteratively solved by Newton-Rapson process. This type of algorithm usualy starts in the first iteration with a
purely elastic increment and iteratively reduces the stress to the yield surface if plastic deformation occurs. For
this reason, it is called a return-mapping agorithm.

The merits of the scheme over explicit method are described by less computer time and storage for the
same level of accuracy, less unwanted information and suitable for finite deformation analysis. It has been
proven that wide range of model’s features can be applied, for example, nonlinear hardening laws/Kinematics &
Isotropic, associative/non-associative plastic flow, complex/nonsmooth multisurface yield criteria, time
independent/dependent features [2].

6-2 Return-mapping algorithms

6-2-1 Overview

Return-mapping algorithms are the numerical algorithms for integrating the rate constitutive equations.
The overview for the function of return-mapping algorithm is shown in Figure 6.2. The stress is updated by a
prescribed strain increment. The operator splitting theory is referred as the break of updated state by 2 parts.
First part is called elastic predictor, which is related to the guessed value of the solution. The second part is
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called plastic corrector, which is related to the iteratively corrected value of the solution.

State-variables update algorithm

Strain
increment
—_— =
' p RETURN-MAPPING ' p

Elastic <:> Plastic

predictor corrector
Operator-splitting

theory

Figure 6.2 The role of return-mapping agorithm for integrating the constitutive model

The algorithm was generalized by Simo et al. [2] as the frame work set by the optimization theory to
the principle of maximum plastic dissipation (See Figure 6.3). Dissipation energy is considered as the objective
function while yield functions are considered as constraints. A set of equations is governed by Lagrangian
function, Lagrange multipliers and Kuhn-Tucker optimality condition. By these principles, the stationary state,
associativity of plastic flow as well as hardening laws and loading/unloading conditions can be recognized.

Principle of -

Maximum Plastic Stationary State
Dissipation —

— Associativity of

\ )
@Opt/m/zation Theory/}@ Plastic Flow &
Hardening Laws

Dissipation energy

Loading/Unloading
conditions

‘ Objective
function

Constraints

Figure 6.3 Frame work set by the optimization theory

Yield functions

The more interesting interpretation of the agorithm can be viewed as ski analogy as shown in Figure
6.4. Elastic predictor is interpreted as a shift to higher potential energy. Contour levels are interpreted as yield
surfaces. The intersection of contours is interpreted as non-smooth multi-surfaces yield criteria. The fastest
direction is usually normal outward to contour level. This normal direction is referred to associative plastic flow.
Energy is dissipated along the way. According to loading/unloading forced by skier, the successive flow path or
plastic corrector will lead to the stable position or solution of the problem.

For an associative flow rule, o,,,; isinterpreted as the closest point projection onto the yield surface
of the trial elastic stress o"@ in the energy norm induced by elastic and plastic moduli. The geometric

n+1l
interpretation in stress space is represented in Figure 6.5. The plastic correctors in normal direction to yield
surfaces are iteratively determined until the convergence is met.
The integration of the nonlinear constitutive equations over a finite-step was pioneered by the
contribution of Wilkins[3] on theradial return algorithm. The extension to the case of kinematic hardening laws
was presented by Krieg and Key [4]. The radial return method has been generalized to several plasticity models
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in[5, 6, 7, 8]. The accuracy and stability of the algorithms have been investigated in[9, 10, 11, 12].
Return-mapping algorithms substantially impact on overall computation accuracy and rate of

convergence in two levels. First level is corresponding to the stress update for local stability, which will be

extended to comprehensive details in this chapter. Second level is corresponding to the consistent tangent

modulus for global equilibrium, which will be explained in the next chapter.
Energy
Dissipation

) Associative plastic flow
Multi-Surface
Yield Criteria

Non-Associative
plastic flow

Elastic Iteration number

predictor

Plastic corrector

| Yield surface

Stress space in

the metric
Elastic defined by the
domain elasticity

Figure 6.5 Geometric interpretation of return-mapping algorithms

6-2-2 Rate-independent plasticity

The typical constitutive model f (6,q) = 0is considered whose parameters are the current state of stress
and hardening variables. The formulation of rate-independent plasticity is[13]
(a) Additive decomposition of rate of strain into elastic and plastic parts

£=i%+4P (6.3)
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(b) Relation between stress rate and elastic strain rate

(s:ce:sezce:(s—sp) (6.4)
(c) Plastic flow rule and evolution of hardening variables
£ =yr(e.0) (65)
d=rh(s,0) (6.6)
(d) Yield condition
f(s,0)=0 (6.7)
(e) Loading/unloading condition
y>0;f <0;7f =0 (6.8)
(f) Consistency parameter
0,f:c%:¢
Y= 2 (6.9
Osf:coir—0o,f:h
(g) Stressrate and strain rate relation
6=c®:¢ (6.10)
(h) Continuum elasto-plastic tangent modulus
e . . A€
P e cCir®o,f:c (6.10)

05 f:c®:ir—0,f:h
which is symmetric if plastic flow is associative r(¢,q)=0,f and h(e,q) =0, f

6-2-3 Fully-implicit backward Euler scheme
This method enforces consistency a the end of time step n+1,i.e,, f_ ., =0, to avoid drift from the yield

surface. The plastic strains and hardening variables are calculated at the end of the step updated from the
converged values at the end of previous time step n. The integration scheme is written as,

€, =8¢, At where Ag = At (6.12)
eh =€) +Ay,.f,., Where Ay=vyAt (6.13)
qn+1 = qn + A’leh n+1 (614)
Opnyy = c: (£n+l - 3£+1) (615)
fr|+1 = f (Gn+1’qn+1) = O (616)

Substitution of Eq.(6.13), (6.12) into Eq.(6.15) gives
Onig = c: (Sml _Sr? - AYn+1rn+l)
=c: (sn +Ae—¢gf — Aynﬂrml) =c’: <3n -gf ) +C% 1 Ae—C Ay My (6.17)

e . e . trial return
= (Gn +C: As)_A'Yn+lc . r.m-l = Gn+l +6n+1

where 6!'¥ =6, +C°: Ae isthetrial stressof elastic predictor

n+1
return

6y =—Ay,.C°:r,., istheplastic corrector

n+l in+l
It is found that the elastic-predictor phrase is driven by the increment in total strain while the
plastic-corrector phase is driven by the increment of consistency parameter. The solution of the set of nonlinear
equations (6.14), (6.16) and (6.17) is typically obtained by a Newton procedure, resulted in the concept of
closest point projection [14].
To form the suitable Newton iteration, considering the following 3 equations of three unknowns o, ,
0,., and Ay, .These3equationsareformulated by Eqs.(6.17), (6.14) and (6.16) asshown below,

= 0

f G0 Uny A n+

F(Gn+1'qn+1’AYn+1) :{ (f (;q ; Y) 1)} = {O} (618)
n+17 n+l

0
where the sub-function of tensors are assigned by,
_ el el trial
f (Gmquml; Ayn+1) _ {C 6,,—C o, + AYn+1rn+1} (6.19)
—Opy +0,+ A'Yn+1lﬂI n+l

It is noted that in general r,, =r,,(0,,,.0,,) ad h,,=h (o
quoting to Newton method. Superscript (k) marks iteration number.

0,.,) - Linearization can be retrieved by

n+l?
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Ac®
n+1
ARl | ¢ ==VF(or2,and, Avd) (000, and, Avey (6.20)
A%y
The left side of above equation is the difference of variables between current and previous iterations.
aof]) [foti]] [[o%
aql% [ =1lats -1 lats (®:21)
A ) v ) LA

The gradient of function F is determined by,

:—1 {rml}
=n+1
VF(6n+1’qn+l’ A’Yn+1) = hn+1 (622)
{o,f o,f} 0

q

The algorithmic moduli are defined by,

el o
=) [C + AYn+1aGrn+1 AYnJrlaqrnﬂ 1 (623)

e Ay,.,0.h 1 + Ay, ,0,h

¢ n+l q n+l

In Eq.(6.20), the inversion of VF is required to accomplish. However, high-order tensorial inversion would be
sluggish tasks especially for complicated yield function, the form without inversion is preferred,

Ac) Fla® q® Ay®

(k) (k) (k) (k)l _ f (6n+1’qn+l’AYn+1)

VF(6n+1’qn+l5A’Yn+1 . Aqul = ) () (624)
f (6n+1'qn+1)

AZYgi)l
Substitution of Eq.(6.22) into Eq.(6.24) yields two equations of tensor and scalar below,
AG(k)l} r (o _
i1l A2y 00 g0 )T Lm0 | 0 (6.25)
{Aqﬁ?l T hg, b
() ()| AGL )
{ac fn+l 6q fn+1} : {Aqsi)l} == fn+1 (6.26)
Multiply both sides of Eq.(6.25) by {0, 0,1}, subsequently subtracted by Eq.(6.26) gives,
r _
SRR A A =) {h';;,l } = £ {0, f 9 o, fi )= - T (6.27)
n+l

Since Eq.(6.27) isscaar equation, the unknown A%y®), can be solved,

f(k)_{a f0 5 f(k)}::‘(k) 10)

n+l ¢ n+l g 'n+lf " =n+l " "n+l

AZYS?l = (k) (6.28)
r
(k) (K) ] -m(k) n+
{aa fn+1 aq fn+l} s =n+l - {h(k)ll}
Back substitution of A*y*), givenin Eq.(6.28) into Eq.(6.25) resultsin,
Act), I ri
Ml=—E R A e 6.29
{Aqg?l n+1 n+l Yn+1 hgi)l ( )
Updated unknowns are proceeded by,
G(nkfll) 62?1 Acgi)l (k+1) ®) 2 (k)
{q(nl:il) = Si)l + Aq(nli)l ’ A’Yn+l = AYm—l + A Yn+l (630)
where the values at the initial stages for k=0 are set by,
0'(031 °'"+iall ()
O (=] o[ Maa=0 (6.31)
qn+l qn
Repetitions of Eq.(6.25)-(6.30) would be terminated if no longer the significant change of unknownsis found,
i fo)
R , A% 0 (6.32)
{Aq‘ntf) 0 '

At thefinal iteration, updated unknowns shown in Eq.(6.30) are entirely determined.
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6-2-4 Semi-implicit backward Euler scheme

By this scheme, the formulation is implicit in plasticity parameter and explicit in the plastic flow direction
and plastic moduli, i.e., the increments in plasticity parameter are calculated at the end of the step but the plastic
flow direction and plastic moduli are calculated at the beginning of the step, resulted in the concept of cutting

plane[7].

€., =8, tAs (6.33)
n+l n

8r?-*—l = SE + A’Yn+lrn (634)

qn+1 = qn + A’Yn+lhn (635)

6,.,=C:¢g,, —¢& (6.36)
n+l n+l n+l

fr=f(6,1.00,)=0 (6.37)

According to the system of EQ.(6.33)-(6.37), the substitution of Eq.(6.33)-(6.34) into Eq.(6.36), and
substitution of EQq.(6.35)-(6.36) into Eq.(6.37) can reduce to one unknown in one equation by

fro=f(Ay,,)="f (c:ﬁ] —Ay,.C T, +AYn+1hn)= 0 (6.38)
Linearization can be retrieved by,
Op frn=-0,1:cr +0,f:h, (6.39)
f (A
AZy® = (AYp1) (6.40)

"o, fictir, —9,f th,

The update procedures are the same as Eq.(6.30)-(6.32). Due to the explicit treatment of the plastic flow

direction and plastic moduli, a simple equation is obtained. By employing associative flow rule, the difference

of both schemes can be described by Figure 6.6. According to their appearances, fully implicit Backward Euler

scheme was coined as Closest Point Projection Method [14] while the semi-implicit Backward Euler was coined
as Cutting Plane Method [7].

Closest Point Projection Cutting Plane
Simo & Taylor, 1985 Ortiz & Simo, 1986
tr tr
Onit of Oni1
. of
" be
fn+1 =0
. r .
Variables ( ”*1J =7 Variable Yp =7
Y+t

Figure 6.6 CPPM vs. CPM
6-3 Return-mapping algorithm for the Ohta-Hata model

6-3-1 Introduction

The Sekiguchi-Ohta model is one of the most widely used soil constitutive models based on critical state
theory. The model characterizes nonlinear stress-strain behavior including softening/hardening and dilatancy
responses, principal stress reorientation, stress-induced anisotropy and time dependency (Sekiguchi and Ohta,
1977) [15]. Applications of the model to numerical analysis for predicting soil behaviors have been proved to be
consistent with many field responses (Ohta and lizuka, 1992) [16]. Generally, the numerical solution of initial
boundary-value problem is cast into FEM involving spatial and time discretization. The integration of
congtitutive equation over a time step is commonly accomplished by incremental solution for a given strain
increment, in other words, a strain-driven process what is classified into explicit and implicit categories. The
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first method simplifies the integration to the summation of sub-increments while the latter one applies the
iterative scheme using Newton-Raphson method formulated in more complicated expressions.

In nonlinear problem, the size of increments substantially affect the quality of analysis, that is, a large
step size will cause inaccuracy while a finer one will become a drawback in computation speed. Therefore, the
aternative way to handle the problem is to apply the implicit integration method using return-mapping
algorithm, the algorithm that usually starts in the first iteration with a purely elastic increment. Borja et al.
(1990) [17] has developed the implementation of return-mapping algorithm applicable to the modified
Cam-Clay model with a remarkable solution accuracy and quadratic rate of convergence. However, the
procedures concerned show a sign of incompatibility with Sekiguchi-Ohta model because both have lost much
in common since the advent of modified version.

Lagrangian function:

maximize DP subject to (s,a)eE, ; f(o,a)<0

L(¢)=-DP (o) +7.f(6,a)

By Kuhn-Tucker condition Order 1%

VL =-¢P +yi =0 ‘ gP = 7/i :Flow rule
06 0o

y > O f < O;]/.f ~0 1 Invariant forms

év _7a_p. ésp:7a_q

which

Order 2@ V2L
Must be positive-definite ‘ Convexity of -DP

Figure 6.7 Optimization for stationary state of plastic dissipation energy

Stationary state:

of

Possible stationary state: gP = y

B eoscesvesssvanromion 01177
Elastic stress-strain relation
* af . * af
&7 gl ) "op|ie
o o
Necessary

y >0 f(o*,a*)SO;y.f(c*,a*)zo

conditions:

Initial condition: ((;n o )

Figure 6.8 Solution for stationary state

In abid to formulate the governing equations for return-mapping algorithm applicable to Sekiguchi-Ohta
model, rate-independent Ohta-Hata model (1971) [18], the inactivated principal stress reorientation version, is
employed to motivate the development to the theory based on a generalized framework for nonlinear isotropic
hardening plasticity (Simo and Hughes, 1997) [2]. The regularization of operator splitting theory restricted to
yield condition and hardening function entails an iterative determination of the consistency parameter, the
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Lagrange multiplier that satisfies a constrained-optimization to the principle of maximum plastic dissipation
(See Figure 6.8, Figure 6.9). Attention is also paid to Kuhn-Tucker complementarity for appropriately holding
the conventional loading/unloading judgment proposed by Hill (1950) [19]. The performance of this
implementation is evaluated by a number of iterative calculations to reach the solution in compare with the
explicitly incremental method.

Backward difference scheme:

X(t) = T(x@®) |
X(0) = X, in[0T] mm) TXM =X, + At. f (X,,1) T

Implicit expression

Possible stationary state:

G —6,=Ac = C(o) AS_Ay% (6 ')
a —a Ao =A o h A At
— = = — where =.
n 7/ apl (G*,a*) )/ )/

Figure 6.9 Time integration carried out by backward Euler difference

o Ao =(Ap.AQ) For monotonic loading
+ Ac=(Ag,,As)
G g [ Stress increment (closed form)
: Ap'= (exp(ws,) ~1)p',
Gn
€
g, €11 Aq =3G,(Ag,)Ag,
Secant shear modulus Gs (Agv) = exp(a)Aev) — 1G( p'n )
wAg,

For undrained condition |lim,, ., Gq(Ag,) =G(p',)
\

Figure 6.10 Integration of soil elastic constitutive equation

6-3-2 Thealgorithm

The principle implementation, uniqueness and stability of the algorithm are explained and discussed in
detailed by Simo and Hughes (1997). Box 6.1 contains the basic equations, yield function with derivatives and
the plastic correctors with their derivatives in corresponding to associativity. The variable elastic shear modulus
isderived in term of secant modulus to accord with monaotonic loading (See Figure 6.10).

Sub-local Newton shown in Box 6.2 marked to refine the convergent direction with a suggested constant
k for securing iteration from a divergent loophole. The relevant governing equations for computing consistency
parameter and the main engine of return-mapping algorithm are summarized in Box 6.3 and Box 6.1
respectively. Schematizations of the algorithms are presented in Figure 6.11-Figure 6.13.
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Box 6.2 Sub-local Newton method for computing stress condition
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Box 6.3 Local Newton method for computing consistency parameter
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2. Do lteration: (see BOX 1 for equation descriptions)
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Box 6.4 Return-Mapping Algorithm
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Figure 6.11 Solution procedure: outline
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A 4
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Figure 6.12 Solution procedure: step
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Figure 6.13 Solution local Newton procedure

Figure 6.14 Solution local Newton procedure
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6-3-3 Numerical example

The UU test predicted results (see Figure 6.15) based on soil parameters shown in Table 6.1 are plotted
with results performed by return-mapping and sub-stepping methods to 7% axial strain on ideal sample (see
Figure 6.16).

Table 6.1 Soil Parameters

D 011 Coefficient of dilatancy
A 0.83 Irreversibility ratio
M 1.02 Critical state parameter
V' 0.38 Effective Poisson’s ratio
Ko 0.61 Coefficient of earth pressure at rest (NC)
Kij 0.70 Coefficient of earth pressure at rest (in-situ)
A 0.38 Compression index
€ 1.73 Voidratioat &'yo
S'vo 100 Preconsolidation pressure (kN/m?2)
GV 69 Overburden pressure (kN/m2)
Elastic ’

| | predictor

/

Plastic Ay o tolerance 0.01% |
corrgctor _— convergence
S i | | |
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Figure 6.15 Iterative solutions
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Figure 6.16 Comparative results between solutions obtained by return-mapping algorithm and sub-stepping
method
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6-3-4 Conclusions

The stress integration algorithm in the context of strain-driven process for Ohta-Hata model, the
simplified form of Sekiguchi-Ohta soil constitutive model is developed as guidance for ongoing investigation. A
comparison with the closed form and incremental method on a numerical analysis of a soil specimen under
unconsolidated undrained test shows a good accuracy and a promising efficiency. Under the new
implementation, input steps incurred by dividing load/displacement into small increments are replaced by
employing the optimum step sizes governed by return-mapping algorithm to catch up the solutions at quadratic
rate. The fundamental mathematical disciplines pave a way to the modest scheme of FEM and the emerged
evolution of finite deformation analysis.

6-4 Integration Algorithms for Soil Constitutive Equation with a Singular
Hardening Vertex

6-4-1 Introduction

Return-mapping methods have been extensively proved to be one of the most robust, stable and accurate
integration algorithms applied in a realm of plasticity. Simo, Kennedy and Govindjee (1988) [20] raised the
performance of agorithms by coping non-smooth multi-surface plasticity and viscoplasticity with the corner
flow rule proposed by Koiter (1953) [21]. The evolution of flow rule substantially provides the theoretica
foundation to evaluate plastic strain increment for constitutive laws with points of singularity. In this study, the
return-mapping methods for rate-independent small strain plasticity (Pipatpongsa and Ohta., 2000) [22] and
corner treatment theory developed by authors (Pipatpongsa et al., 2001a-c) [23,24,25] are combined together to
upgrade the integration algorithms applicable to the soil constitutive laws proposed by Sekiguchi and Ohta
(2977) [15].

120 T T T T T e T-——-- [ pepp— I, T
g=0,-0, oo Updated stress | D=0.067
100 === - , ; E (p'n+1 1 On+1s plcm1 ) i M=1.022
| Initial stress !y R RREREEEEEEEEEES ! Ko=0.615
. —i N p,cn ) E \\‘ ............ b Elastic predictor L Ki|—0;615
SR S b Do stic predi P
Upper yield A ( Y P ! o', =100kPa
éofunction .~ 7, Y T T _
f,=0 (Ae, = 5%, Ae, = 0%) 955:165.3??81
A =0.295
A =0.584

BASIC PARAMETERS

D: coefficient of dilatancy

M: critical state parameter

Ko: coefficient of earth pressure at rest (NC young clay)
K;: coefficient of earth pressure at rest (IN-SITU)

ower yield
function

20 f =0 o', Preconsolidation pressure, o' : overburden pressure
""""" _0'at20) | &:voidratioat o'y, v': Poisson’sratio
40 | | | 3 | 2 compressionindex. A : irreversibility ratio
0 20 ) 60 80 100 120 140 160 180 200 220

Figure 6.17 Iterative return paths in p’-g plane generated by CPPM for a single step strain increment

Attention is given to Rendulic’s plane of stress or triaxial plane where the model accommodates the
singular corner consisting of the intersection of differentiable upper and lower yield loci. The iterative
numerical scheme driven by the Newton method is carried out for both the stress point at the corner and
condition of stress passing very near or across the corner. The shape of yield surface grows in the direction of
hardening vertex. The solution can reach a convergence with rapid calculation speeded by a powerful Closest
Point Projection Method (CPPM). This development of theory can lead to the analytical and numerical methods
for plastic flow evaluation at the corner, self-weight/K ,-consolidation, creep/ageing and rotational hardening for
natural deposited clays.
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6-4-2 Theoretical Descriptions

The objective of constitutive integration algorithms is to update the state variables at step n for a given
strain increment Ag. By using a sub-stepping method, though it is straight-forward, a numerical result is suffered
from inaccuracy dueto adrift on the yield function, i.e., f1=f(Gn+1,0n+1)>0.

MULTIPLE STEPS CPPM ITERATION
RETURN-MAPPING ALGORITHM
58V=A€V ggs:% n=1 Elastic predictor
N N
Ay Ay
p P
q B ql {gv} B {SVI}
Pe Po| (&), (&8s fung >TOL OF f ., >TOL
p p
& Evo or norm(r,,;) >TOL, N
p p (o]
€s n €5
1
Yes
&) (&), Oeg
Plastic corrector
Ay
o
9L iteration(se,, 8¢5, Py, G, P, 2 e2)] | N:number of sub-increment steps
Pe Ag,, : volumetric strain increment
&€
svp Agg: deviatoric strain increment
S Jn+l .. .
nen+l p': mean principal effective stress
p'. : stress-hardening parameter

( ( . deviatoric stress, k.: convergence
STORE q Ko
DATABASE Y%@No step, TOL 4, TOL,: tolerance

Figure 6.18 Flow chart of multiple-steps return-mapping agorithm

In CPPM, the state variables at n+1 are calculated and enforced to satisfy the yield function at the end of the
step. The plastic flow emerged at the corner of the Sekiguchi-Ohta model is evaluated by the contribution of
upper/lower yield surfaces considering two consistency parameters associated to each surface. Bulk modulus
K(p') is pressure-dependent while stress-hardening-dependent shear modulus G(p.') is employed for energy
conservation during loading/unloading steps within yield surfaces. The feature of the method is shown in Figure
6.18. The outcome of multiple-steps CPPM is described in Box 6.6-Box 6.7.

Box 6.8 contains sets of equations for elastic predictor and plastic corrector steps.

6-4-3 Numerical Examples & Conclusions

The simulation of K-triaxial consolidation test is performed by exerting an axia strain up to 10%. The
incremental strain is divided into 100 sub-increments. The ratio of deviatoric to volumetric strain increment is
varied around a mean of 2/3 by a normal distribution function with standard deviation of 1. Figure 6.19-Figure
6.21. The resulting curvesin Figure 6.22-Figure 6.23 show a performance of the algorithm.
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Box 6.5 Common expressions

Slopes of v —In(p') curve: compression line 4 = , swelling lineic =

Bulk modulus: K(p')=%, Secant shear modulus: G,(p’,, p',,) = y'ﬁ
K pc
©ln(-—e)
and lim G.(ph,ply) = 2e where p'=30-2Y)
PP K 21+v)

In Rendulic’s plane(o-,, = 04,04, = 05 = 05 =0)

The rate-independent Sekiguchi-Ohta model reduces to

Upper:f, (p',d, p.) = MDIn[ P ]+ D(ﬂ.—ﬂoj 0;
P p

Cc

Lower:f_(p',q, p;) = MD'H(E,]— D(ﬂ.—ﬂo] =0
P p

c

Box 6.6 Elastic predictor
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Box 6.7 Plastic corrector

Second derivatives of upper and lower yield surfaces
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Figure 6.22 Simulated results of K-consolidation
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7-1 Introduction

In the realm of nonlinear analysis for cohesive soils, the model proposed by Sekiguchi and Ohta (1977)
[1] is one of the most widely used soil constitutive models based on Critical State theory. The model
characterizes nonlinear stress-strain behavior including softening/hardening and dilatancy responses, principal
stress reorientation, initial-stress-induced anisotropy and time dependency. The performance of the model has
been proved to be consistent with many field responses in predicting soil behaviors (Ohta and lizuka, 1992) [2].
The integration of constitutive equation over a discrete sequence of time step is commonly practiced by
incremental solution that is classified into explicit and implicit categories. The first method simplifies the
integration to the summation of sub-increments while the latter one applies the iterative scheme using
Newton-Raphson method formulated in complex expressions. It has been shown that the procedure used for
explicitly integrating the constitutive equations is inferior to that of implicit integration on solution stability and
accuracy [3]. Moreover, in nonlinear problem, the size of increments substantially affect the quality of analysis,
that is, alarge step size will cause inaccuracy while a finer one will become a drawback in computation speed.
According to severa literatures [4,5], the effective method suggested to handle the problems is to apply the
implicit integration method using return-mapping algorithm, the algorithm that usually startsin the first iteration
with a purely elastic increment.

Much of foundation for the return-mapping methods for nonlinear isotropic and kinematic

hardening/softening plasticity have been contributed over the passed two decade (Simo et al, 1985, 1988, 1992,
1993) [6,7,8,9] in which Closest Point Projection (CPP) and Cutting-Plane (CP) methods have been devel oped.
Borja et al. (1990, 1991, 1998, 2001) [10,11,12,13] have developed the implementation of return-mapping
algorithms applicable to the modified Cam-Clay model with a remarkable solution accuracy and quadratic rate of
convergence. However, the procedures concerned show a sign of incompatibility with the Sekiguchi-Ohta model
because both models have lost much in common since the advent of modified version. In addition, a number of
recent studies have been proposed for the modified Cam-clay with prominent performance.
Recently, Pipatpongsa and Ohta (2000) [14] developed the return-mapping agorithm applicable to an invisid
form of the Sekiguchi-Ohta model asits first kind of implementation, which is fallen within the class of convex
CP method coupled nonlinear hypoelastic response on two invariants stress space. The iterative return path
generated by the algorithm is optimized at quadratic rate with high accuracy.

The purpose of this paper is to extend the previous work by developing an efficient CPP method
applicable to the Sekiguchi-Ohta plasticity model, formulated to include a class of two-invariant stored energy
function considering initial stress and damage process. The nonlinear elasticity is adopted by taking shear
modulus G varied with pre-consolidation pressure while bulk modulus K is varied with mean stress. As a
consequence, a conservation of energy is satisfied and path independent feature can be guaranteed in an elastic
predictor step, which isrigorously required by return mapping algorithms.

An outline of the paper is as follows. In section 2, the mathematical framework is set for the algorithmic
residuals and constraints. The congtitutive equations and empirical hardening law are reviewed in section 3.
Section 4 deals with a class of stored energy function considering initia stress. In section 5, hardening potential
function appropriate with the model is defined. A procedure for damage process is accounted for changing a
value of G in corresponding to a hardening parameter. A set of equations regulating the elastic constitutive law is
arranged in section 6. In section 7, the implicit integrative scheme under CPP method is derived. In section 8, the
nonlinear analysis for stress-strain-strength under CU and UU tests in two-invariant stress space problem were
carried out to test the performance of the algorithm by comparing with sub-stepping technique and closed-form
solutions. The conclusion is marked in section 9.

It is noted that in this study, attention is confined to infinitesimal deformation and rate-independent
plasticity. It is out of scope in this paper to consider the existence of corner on yield surface however basic
theories [7] and ongoing researches are available [15,16,17,18]. The unusual procedures can be neglected if the
interested stress points lie outside and far from the corner. The further research subjected to soil/water coupling
FEM for three-dimensional state of stressis being developed.

7-2 Plastic dissipation

This section illustrates the important role of the principle of maximum plastic dissipation (Hill, 1950) [19],
its connection to the associated flow rule (Drucker's stability or normality postulate, 1950) [20] and basic
regularization in the infinitesimal elasto-plasticity. The mathematical framework advocated by Simo (1992) [8]
is rephrased but a modification is made for plastic variables in a sense to suit the hardening potential function
defined in the section 5. Within a convex elastic domain of stress space defined by

E={(c',h)eSxR|f(c',h) <0} (7.0)

where S is avector space of symmetric second-order tensors, R* is areal range of positive number and his a
stress-like hardening parameter of material. Based on the 2™ Law of Thermodynamics, partialy a universal law
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of decay, the dissipation function is defined by the difference between the stress power and the rate of change of
the internal energy. The symbol ‘" signifies the contraction of atensor by 2 orders.
D=¢":14-¥(%a)>0 (7.2
The internal energy is composed of elastic and hardening plastic components expressed by the stored energy
function and hardening potentid; i.e.,
V.Y =y a), V, ¥ =H(x) (7.3),(74)
The stored energy function and hardening potential function are subjected to define in section 4 and 5. The stress

responses can be obtained by hyperelastic relationship. Herein, oo denotes a strain-like variable conjugating to a
material memory variable h.

6,:6y/(se,a) ! h:6H(05)

(7.5),(7.6)
oe® oa
Using Eq.(7.3)-(7.4) and chainruleto Eq.(7.2) obtains,
D=[6-V pl:é+V y:[e-&|-0,Ha)a>0 7

Eq.(7.5),(7.6),(7.7) imply (7.8) to hold for all admissible stress state and hence the optimum stress state for a
given strain rate can be obtained by maximizing,

Objectivefunction: D=¢":[£-&"]~ha >0 (79
Optimizedvaridble (¢',h) €E
Subjecttocondrant: f(s',h) <0

The corresponding Lagrangian function

L=-D+yf(s',h) (79
By Kuhn-Tucker condition for extrema, define the residuals
v.L fe-eJer o 0
vL=J el o' | _ (7.10),(7.12)
v, L . of 0
a+y—
oh
y20; f(e'h)<0; yf(c',h)=0 (7.12),(7.13),(7.14)

Eq.(7.10),(7.11) are read as associative flow rule and associative hardening/softening law to the maximum
dissipation energy principle. It is noted that Eq.(7.12),(7.13),(7.14) can judge loading/unloading condition but
cannot judge for a state of hardening/softening.
of of
P gty =y 7.15),(7.16
=gt =y a=-7— (7.15),(7.16)
Eq.(7.15) is corresponding to the postulate of associated flow rule by taking a Lagrangian multiplier y as
proportionality constant. In Critical state models, a hardening plastic variable h is chosen to p'c and its
conjugate o is referred to €, in particular. Therefore, an empirical hardening law denoted in Eq.(7.17) is
commonly employed instead. Comparison of EQ.(7.16) to Eq.(7.17) implies the adopted hardening/softening
law in Critical state models is non-associative sense [9,13], that is, Lagrangian function in Eq.(7.9) is not
maximized because o is empirically associated to volumetric plastic strain, not theoretically associated to p'..
of of
.:.p:.p:lz B 71
a=é& =% Yo" o (7.17)
Eq.(7.15) is found to contain (7.17), therefore, hardening parameter updating procedure can be set aside from
iteration as formulated in section 7.

7-3 Constitutive laws

Sekiguchi and Ohta (1977) proposed constitutive equations for stress-induced anisotropy in clays. The
inviscid form of yield function is expressed by
f(e', p',) = f(p',n*,p'c)zMDln(%J+ Dy =0 (7.18)
P’ indicates an isotropic hardening stress of the subsequent yield surface which is determined by an empirical
relationship based on e-In(p’) curves of consolidation test (Eq.(7.19),(7.20)).

&P — &b = ﬂln{p—fj (7.19)
l+e p',



Eve — Epy = K In[p—fj (720
l+e p',

The pre-consolidation pressure p', marks the isotropic pressure after the completion of K-consolidation.

According to an infinitesimal void ratio-volumetric strain relationship denoted in Eq.(7.21), the plastic and

elastic volumetric strain at p', equal to zero, Eq.(7.22),(7.23).

—-e

&, = , &2 =0, &,=0 (7.21),(7.22),(7.23)
l+e,
Select the candidates of hardening variablesin particular
h=p',, a=gb (7.24),(7.25)
where recompressibility and compressibility indices are
F=—t, =2 (7.26),(7.27)
l+g l+e

A summary of congtitutive lawsis noted in Box 7.1.

7-4 Nonlinear elasticity

Mechanisms of strain are typically depicted by recoverable and irrecoverable parts caused by alternation
in particle spacing, bending and reorientation of clay particles. Elastic stress-strain relation should cover time
independent behavior, recoverable feature (monotonic & hysteretic) and small strain range. Classes of soil
elasticity are among of linear, nonlinear, isotropic, anisotropic hypoelasticity and hyperelasticity. Hypoelasticity
(Cauchy’s elagticity) is fine for monotonic unloading/reloading but not guaranteed in energy conservation and
path dependence. Hyperelasticity (Green's elasticity) is acceptable for al types of unloading/reloading,
satisfying conservation of energy in any closed loop and path independence. In regardless of stiffness
degradation by small strain, the typical elastic congtitutive equation is related to volumetric and deviatoric
stress-strain responses with stress variable stiffness as shown in Eq.(7.28).

s sl
q J 3G]|é&

For materials that are elastic and isotropic, the coupled shear and volumetric effects are decoupled; i.e., J

equals to zero [21]. Isotropic pressure-dependent bulk and shear moduli; i.e., K=K(p'), G=G(p’') are often
employed but such relation does not give an energy conservative model [22,23]. Thus, the viable nonlinear
elastic moduli are restricted to a sort of K=K(p') and constant G [24]. Actualy, an extensive study showed that
G ishboth afunction of p’ and p’'.[25]. For an illustrative study, G is assumed to depend only on p’ . and governed
by a stored energy function cast for a class of two-invariant isotropic nonlinear hyperelasticity accounted for
damage effects. Energy conservation is guaranteed in the elastic domain but the material characteristics on the
subsequent state boundary are path dependence and obeyed the elasto-plastic constitutive laws. The damage
process isincorporated when elastic domain changes in shape due to hardening/softening process.
It is noted that a sort of K=K(p') and G= G(p'.) implies a variation of apparent Poisson’s ratio which may
become very low or negative value for a considerably low mean stress. Thus, there is a limitation of applying
G(p' o) to a certain extent of OCR values. To solve this difficulty, a light of K=K(p',q) and G=G(p') has come
into view in recent research [25,26], though, complex expressions of non-zero coupling modulus J and elastic
dilatancy response during simple shear appear questionable. By and large, soil is considered to hold initial
stresses, thus, work done by initial stresses is included to the stored energy. The parameter of hardening p'. is
held constant in formulation.

7-4-1 Energy of distortion
Consider the energy as a product of deviatoric stress-strain,

e 1 1 e
x(e5,p') EEST g5 (7.29)

where €% is the principal elastic strain deviator, sisthe principal stress deviator.
Eq.(7.29) can be reduced to Eq.(7.30) where G(p'.) denotes the shear modulus. £°stands for deviatoric strain
corresponding to €%.

2P =5 6P e (7:30)

where & = \/é
3

. €5 :se—lsfl
3

e
€4



Conjugate of y by Legendre transformation

200, p%) = maX(qs - (& ))—
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q

6G(p')

Box 7.1 Condtitutive equations
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Yield function proposed by Sekiguchi and Ohta (1977)
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7-4-2 Energy of contraction
Based on e-In(p’) curve of consolidation test,

—€
l+e

Voidraio-granrdation (degic): £° =

v

&, isthe reference state referred to void ratio at the completion of consolidation.

Eladtic sweling curve: é:—% p'

(7.31)

(7.32)

7.39)
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Initia condition: e(pl)=¢5=0
Substitute Eq.(7.33) into (7 34), integratewith initial condition

gt = In
& —&; = 1+e0 (D.)

e e

Rewrite Eq.(7.35) to p'= p' exp(r—2u)
K

Form potentid srain energy by setting:

ouU
oe;

p':

Integrating EQ.(7.37) revealsthe potential energy as follow,

U-u, = jpdg—p

g\ll

S
Fexp(t—" w)

(7.34)

(7:39)

(7.39)

(7.37)

(7.39)

Potential energy is energy of state. And the state chosen to correspond to zero potential energy is arbitrary. Asa
consequence, the constant termsin Eq.(7.38) isomitted,

—6‘
U= pfcexp(“ )

Find a conjugate of U by using Legendre transformation,

W = pk[ln( Py
Py’ &

7-4-3 Sored energy function

Sum of Eq.(7.30) and (7.39) givesastored energy function as presented by Eq.(7.41) below

:

p(e 168, p') = p R exp(C S w)+3G(|o )es

Complementary stored energy function is also obtaj ned,

@(p'q,p'.) = p'z{m(ﬂl')ﬁ__we'_l}_
P K

1 o
6G(p".)

Stress relation can be taken by gradient of stored energy

oy e
ool
P 3G(p c)es
By the same fashion, strain relation is,
. 9@ ey e
{5\/ } V- op _ i
& LA
aq 3G(p’)
Stiffness matrix can be taken via stored energy function as
Py 0y
Covvy - Oeos.  0gloel
Py 0y
0g,0es  Ogloe;
K
0 3G(p')

By the same fashion, the compliance matrix is

(7.29)

(7.40)

(742)

(742)

(743)

(7.44)

(749

(7.46)
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£ o
1 p
E=C'=VVa= (7.47)
1
0 1
3G(p')
Compare Eq.(7.28) with (7.46) and (7.47), using Eq.(7.43) tangent bulk modulus is determined by,
e 'i gf _ g\(/ei '
K(eo) = 2exp(* %) o K(p)=2 748
K K K

Tangent shear modulus is set to be the function of constant Poisson’s ratio v and bulk modulus at the state of
consolidation,

G(p') = 'K (p) = B (749)
. 31-2v"
where u'= —2(1+ ) (7.50)

In Eq.(7.51), the parameter p’. can be calculated from a pre-consolidation pressure p’, and volumetric plastic
strain &P, or volumetric elastic strain £%.in loading process or consolidation on e-In(p’) relation (see Eq.(7.19)
-(7.23)). Therate form of p’ will be discussed later. The change of p’.causes a change in size of elastic domain
and trigger damage process on stored energy.
p e
P, = P &Xp(="—) = pl, &xp(%) (751)
A—-K K

It is concluded that, within state boundary condition, G is constant but increase exponentially with
strain-hardening parameter after yielding by taking damage effect on energy conservation into account. Its
explicit evaluation will be shown in the next section.

q (p,n+1,CIn+1) Sev (gev n+1;8esn+1)
p’n ’qn) (Sev n,ge
\ \ P
p’ cn ' en+l ges

Fgure 7.1 Mgpping of incrementd dadtic draininto incrementd sress

7-5 Hardening potential and inelastic damage process

Irreversible part of isotropic normal compression represents the hardening development in soil particles.
A hardening potential function is defined to keep in line with a stored energy of volumetric elastic strains
Eq.(7.39). Under this combining process, an internal energy and derivative can be defined straightforward by,

= a
Hla)=p' (A -k |exp(=—— 752
(@) = p'y(2 -F)exp(=—) (752)
. a
H(e) = =——=H(a) (753)
A—K
Substituting Eq.(7.52) into Eq.(7.6) obtains a stress-hardening parameter corresponds to Eq.(7.24).
. o '
h= p o exp(z—_) =p c (754)
—K
Nonlinear plastic modulus and rate form of p’. are obtained by
H(P) =52, pL=H(pL)a (755).(756)

According to the stored energy in Eq.(7.41)-(7.42), the inelastic damage process affects on deviatoric stress
when stress is in contact with yield surface. Refer to Eq.(7.43),(7.51) the quotient of incremental relation
between g and p’ . are expressed by,
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55(.]. _ '3G(p c)eé‘gs = Sﬂ'giz (757)
o Poopieysey %
K K

It is assumed that a material experiences a holonomic strain path; i.e., proportional increments of strain over the
time interval, thus, the explicitly integrated expression can be evaluated by considering an incremental elastic
strain as shown in Figure 7.1 from initial yield stress (step n) to a subsequent yield stress (step n+1).

e e
U1 —Gn v Esni1 " Esn
; I PP (758)
Penii™ Pen Evens1 ~ Even

Manipulate Eq.(7.58) and use Eq.(7.20), the nonlinear secant shear modulus including damage process due to a
change in size of yield surface can be determined by,

(jml — qr; - 31u- pecn+1_ pecn _ 3GS( pICn+17 p-cn) (759)
gsn+1 - gsn gvcn+1 - gvcn
whee  G,(pl, P',) = e P (7.60)
Kin(p'.,../P',)

Non-linear secant shear modulus is a result of externally integrating on the plastic hardening parameter. It is
noted that the secant shear modulus is held constant inside the state boundary. In case of the initial yield surface,
the secant shear modulus is the tangent shear modulus of pre-consolidated pressure.

lim G(p',p) =G(pt) = -t (61
By rewriting Eq.(7.59), Eq.(7.62) gives an evolution of g in Eq.(7.43) and stiffness matrix in Eq.(7.46) are
thus taking damage effect into account.

qn+1 = qn + 3Gs( p‘cn+1’ plcn)(gSGnJrl - gsen ) (762)
pln+1
— 0
C=| ¥ (7.63)
0 3GS( p‘cn+1’ plcn)
Box 7.2 Eladtic parametersand moduli
e _ K Tangent shear modulus:
Recompressibility index: & =—— D'
1re, G(p)=p'—=
Compressibility index: 1 = 1 Secant shear modulus:
+e ' '
° Peai— P
—2p" G, (p,. 'p'm)zﬂ'%
Ratio of shear to bulk moduli: y':M ' KIN(p'eh.af P'ey)
2(1+v"
Tangent bulk modulus: K(p‘):g note. G,(p',,.,p' ):ﬂ'&
K n cn ’?
The relevant equations are summarized in Box 7.2.
7-6 Elastic constitutive equation
The incremental stress-strain relation can be described by,
6'=c®:¢° (7.64)
Jc' op' 0Os
whee =—=10—+— 7.
oe® og®  0g° (769
¢'=p'l+s, g° :%g§1+ e (7.66),(7.67)
op' 0Op' g, . op' Os, . Ogg (768)

Oe® 0t et 0s° 0e%  08°
6se _ ase ®8si ase ®ﬁs: :682 (769
0e* 0Os; 0% Os; Ogq Ot
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Iz%[@kﬁj, +o"i,5jk}ei ®e ®e ®e is the forth-order identity tensor, c¢® is forth-order tensor of elastic

stiffness including damage effect. Elements of C are defined in Eq.(7.63). In this case, C;, and C,; are simply
zero.

C=C,1®1+ \Ecul@m\gcnn@uéan (7.70)

whee A= —%(1@ 1), n= 770,772

Il

7-7 Integration schemes

Solutions of elasto-plastic responses usually rely on sub-stepping technique, however, a numerical result

is inaccurate due to a drift on the yield function. By fully implicit integration (Backward-Euler), the state
variables at current step are calculated and enforced to satisfy the yield function at the end of the step. Iterative
methods based on this scheme are more robust, stable and give a better accuracy for the same increment of
driving variables; e.g., strains, displacements, forces and time periods. It is necessary to integrate the constitutive
equations by assuming material is subject to a constant rate of strain over the interested time interval.
Elastic-plastic operator-splitting methodology is used in the fully implicit integrative scheme, leading to the
return-mapping algorithms with unconditional stability and first-order accuracy [27].
Operator splitting theory has everything to do with a decomposition of incremental elastic and plastic parts.
Figure 7.2 illustrates an outline of the algorithm by referring to an elasto-perfectly-plastic one-dimensional
model being pulled by force g on rough surface against friction resistance o,=pp. A slippage of box represents an
irrecoverable deformation. A stretch of spring represents a recoverable deformation. The combined incremental
deformation is split into two discrete steps. First is called elastic predictor step where plastic part is firmly locked
and all deformation is dominated by trial elastic part. Second is called plastic corrector step where plastic part is
released and elastic part is corrected. The box would stop at the stationary point where dissipation energy of a
system reaches the maximum value and hence, the solution of a problem.

P Increment

m elastic predictor
plastic corrector

P Lock P Release
plastic part plastic part

o, = u.p =

Fgure 7.2 Schemetization of operator-gplitting theory

7-7-1 Time discretization
According to ordinary sub-incrementation technique for numerical integration, Forward-Euler difference is
amost in practice giving the series of sub-increments. Though Backward-Euler difference is superior to that of
explicit method by providing the iterative scheme with a quadratic rate of convergence, formulations driven by
Forward-Euler are simpler than Backward-Euler, which is complex and depends crucialy on the particular
congtitutive model chosen. Herein, the integration algorithm applicable to the Sekiguchi-Ohta model is presented.
Refer to Eq.(7.15),

£=¢— yﬂ (7.73)

Jc'

The integration to Eq.(7.73) within the time interval [t,,t..1=t,+4t] can be approximated using Backward-Euler
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differential scheme where plastic strain increments and hardening variable are calculated at the end of the step.
8n+l = sn + A£ 1 SEA - ‘(;r'? + Ayml {%} (774)!(775)
G n+l

where ¢, =€(t,,,)), AV,q=7.aAt, Ag=3EAt
Subtraction of Eq.(7.74) by (7.75) obtainsacurrent elastic strain tensor,

ha=¢" —Ay,, {i} (7.76)
66 n+l

g =g +Ag (7.77)

g" is atria strain given by geometric update of the imposed displacement increment over the time step. Ay is
taken aszeroin astic predictor step Stresses are updated correspondingly,

P = P eXp(— " rn “”) (7.78)

Sn+l = Sn + 2Gs( p cn+l? p cn) {8:n+1 _sle:ln} (779)
Update state variables are summarized in Box 7.3.

Box 7.3 Updated date varicbles

Stress update
P’y =Py eXp(———" o ~ “”)

Sy =S, +2G,(p'sis P cn){sjm1 g, }
Stress-hardening parameter update

plcn+1 = plcn p( V n+l V : )

7-7-2 Linearization
The goal of this section is to solve Eq.(7.76) for €° in strain space constrained by the discrete form of
Kuhn-Tucker conditions given by

A7pa 20 f,1(6',P') <05 A7, (6" pl) =0 (7.80)
The solution can be achieved iteratively by Newton-Raphson method assigned on a set of equations below with
P fixed.

Sen+l
Unknown vector; X= { } (781
A7 n+l
Eq.(7.76) and yield function define aresidual vector of
T
r= where T=¢ha—-¢" +Ay,, {i} (7.82)
fn+1 80.- n+l
Consistent Jacobian of the residuals is defined by,
2
| + A}/L 1 c*t i
{6_r} _ 0c'Oc' oc' )
OX o .
—:C 0
60" n+l
-1
Iterative scheme: x®H0 = x® _k {Z—r} r® (784
X

Super-script k indicates an iteration number. The iteration will stop when the norm of residual vector is less than
the tolerance imposed. k. denotes a controlled step of convergence. Iterative schemein Eq.(7.84) can be reduced
to the following procedures. The algorithmic moduli = replace the Hessian matrix of the Lagrangian function
by reassembling

I +A o°f cL,=E" 7
+ yn+1 ' ) Cn+1 =n+l " Cn+l ( 85)
G 00 n+l
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Ix

Therdtore, =, = (¢, '+ Ay,.H nﬂ)*l (786)

n+l

2
where H,, = of and hml:{i}
06'0c' | | 06') 1

The different of unknown vector for each iteration can be expressed by Eq.(7.87). Substitute Eq.(7.87) into
Eq.(7.84) and rearrange to form Eq.(7.88),

(k4D _ (0 _ e’ (7.87)
oAy
Z':¢ h o€’ T
e =k (7.88)
h:ee 0]  loay o
Pre-multiply the first set of Eq.(7.88) by {h:E} _, then
{h:ce:53"’+5A;/h:E.:h}ml:—kc{h:E:T}n+l (7.89)
(hicoioe) =—kf., (7.90)

Solve for 64y by substituting R.H.S of Eq.(7.90) to Eq.(7.89). 8¢° can be solved by substitution of o4yin
Eq.(7.89) to the first set of Eq.(7.88). The difference of the increments of consistency parameter and elastic
strain are as follow,

SAy =k, (Mj (7.91)
h - h n+1
5o = {-c* 21 (KT + aayh)| 79)
n+1

According to the previous research [14], a controlled-step of convergence is suggested by k.=3/4 to refrain
iteration from the ill convergent direction. Update the unknown variables by,

AYY = Ay + oy (-9
A el g 099
V::l) tr(e (lj:il)) 82211) A gy (7.95),(7.96)
gvpf]':” =tr ( —goy ) (797
(k+1)
+: gvpn+ _ngn
P = P exp(n e
(k+l) e
p? = pyexp(C ) 7
sk _s +2G,(p c(nkf’ P cn){ AREEA (7100

The iterative loop of EQ.(7.84) corresponds to the Closest Point Projection (CPP) method. To bypass the need
for computing the gradients in Eq.(7.83), Cutting-Plane (CP) method using an explicit procedure is developed
involving quasi-Newton method [6]. CP algorithm applicable to the Sekiguchi-Ohta is available in the previous
research [14]. It is obvious that CPP is superior to CP in accuracy and stability in particular for a large step
increment [9]. Box 7.4 contains detailed procedures of single/multiple-step CPP method.

7-8 Numerical examples

In order to evaluate the performance of the algorithm, the numerical examples based on two-invariant
stress space problem of consolidated undrained test (CU test) and unconsolidated undrained test (UU test) were
performed by a strain-controlled axial compression to a maximum axial strain of 10%. Soil parameters were
adopted from soil reports of the northern line of Bangkok initial subway project [28]. The systematic parameter
determination suggested by lizuka and Ohta [29] (1987) was used to determine soil parameters for calculation as
listed in Table 1. The tolerances, TOL, and TOL,, were set to 10°. Verification was done by comparisons with a
closed-form solutions derived from the congtitutive equations as well as exact results of both sub-stepping (SS)
and CPP methods generated by a series of very small increments of imposed strain.



Box 7.4 Closest Point Projection iterative scheme
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1. Input: dg,6', &, .80, P,

2. Initidize: k=0, Ay® =0
g =¢g,—¢&h, €, =¢,+0¢, d3e’hn =0,
vn+1 =tr (8n+1) 8dr|+1 =A: £n+1'

o =tr(e%), g5, =A g%, & =tr(e%)

3. Elastic predictor:

o(k)
g =g +dg, eha=¢"

(k) (k) (k) (k)
apn+1 = Sr? +68 pn+1 y \Ien+1 tr (ge
e(k) . ek p(k) p(k)
dn+1:A'8”+l' vn+1_tr( n+1)
(k) (k)
P P
E4ny1 = =Aghha
O & p(k)l ;
' A\ V
p cn+l p cn exp( = ﬂ)
A-
e(k) &8

itr

i(k 1
p = p f‘w)l p exp( Vn+ Vn)
K v (k) e(k)
S Sn+1 S + 265( p cn+l? p cn) {gdn+1 - 8dn
'(k) 1(k) (k)
n+l p n+l 1+ Sn+1

4. Check yield function and residuals:

fn+1 = f(o' 'Sj-)l’ p'cS:)l
2
hn+1 = {i} ’ Hn+1 = a f
06') 1 06'0e'|

WK

n+1' 'n+l

— (k)
r=g%a1—&" +Ay

5. Algorithmic moduli:
Cﬁ+1 = K(pl(k) )1®1+ZG (p Cn+1’ p cn)A

n+1
e (k) !
En+l = (le + A7/n+1H n+1)
6. Plastic corrector:
f-h:z:7\
oAyl =k | =L
7o =k h:Z:h

n+l

(k)
=: (kT +aA7h)|

n+l

e(k)

1
0gni1 = { o

7. Update solutions:

(k+1) (k) (k)
Sen+1 = Sen+1 + 888n+1 ,

A}/(kﬂ) (k) +5A}/(k)

n+1
(k+1) (k+1)
o€ pn+1 = Str — Sen+1 ,

(k+1) (k+1)
£Pna =8p + 8¢’
e(|<+1) o(k+1) E(k+1) ek
Vn+l =tr ( ntl ), dn+1 =A:gm
(k+l) p(k+l) (k+l) i (k+l)
g\/n+1 Ztr( n+1 ) dn+l =A:e’ha
c p(k+l) p
v (k+D) V n+l v
Pl = P'ay EXp(-2—1)
A—-K
e(|<+1) £

1(k+1)

pkd = pt exp(Srnt i)

(k+1) v (k+1) e(k+l) e
S _S +2G(pcn+1 ’pcn){ “%4p

n+1 dn+1

-(k+1) (k+1) (k+1)
n+1 p 1+ S

n+1 n+1

8.Set k=k+1and GOTO 4

IF f., <TOL AND |F|<TOL, 9.0utput: ©'..;,&0,1,€0, Py

THEN Set (e),,, = (¢)*,and GOTO 9 and EXIT
Table 7.1 Soil parameters
Parameter Description Vaue
D Coefficient of dilatancy 0.102
A Irreversibility ratio 0.825
M Critical state parameter 112
V' Effective Poisson’ s ratio 0.38
Ko Coefficient of earth pressure (NC) 0.61
K; Coefficient of earth pressure (in-situ) 0.70
A Compression index 0.376
& Voidratio at ¢’ o 1.735
G'vo Eff. preconsolidation pressure (kN/m?) 100
Gy Eff. overburden pressure (kN/m?) 69

7-8-1 Accuracy assessment

In practice, the number of sub-increments is repeatedly applied to algorithms for improving the accuracy. To
evauate the calculation performance, a series of analyzes were performed for CU test by SS (using
Forward-Euler difference) and CPP methods (using Backward-Euler difference) with a single step and
incrementally multiple steps:- 5, 20, 50 and 1000 steps, in other words, with strain increments:- 2%, 0.5%, 0.2%
and 0.01% respectively. The closed-form solutions relevant to the problem can be derived by directly integrating
the constitutive equations over the imposed stress paths. These solutions are given for deviatoric stress and axial
strain as functions of effective mean stress shown in EQ.(7.101),(7.102). The comparisons with SS and CPP

methods are arranged in - Figure 7.3.
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oy M P
q—(ﬂo A ln( p.on (7.101)
N ( LI jsl’j!;{’ij"
S A YC YA 3 e
Po D M 1+ M In(pj
A(M _770) p'o

The errors of analyzes are obviously found due to the effect of increment sizes. Therefore, the emphasisis placed
on selecting the size of sub-incrementation for high accuracy. According to Figure 7.3, it is clearly seen that
solutions by SS are drifted from the yield surface while those of CPP are always constrained on it. That is why
the accuracy performance of CPP is substantially superior to SS for coarse increments or even a single step
increment however it becomes extremely laborious for a finer step using very small sub-increments. The exact
solution can be obtained by repeatedly applying the increasing numbers of sub-increments to the algorithms until
there is no change in results. For 0.01% strain increment (1000 steps), numerical solutions by both CPP and SS
meet the closed-form solution, thus resulting in exact solution.

7-8-2 Convergence study

Figure 7.4 and Figure 7.5 show the effective stress and stress-strain responses for UU test predicted by
multiple-step SS and single- step CPP methods. The convergence performance of CPP method was tested by a
single increment as large as failure axia strain of 10%. The stress update iterations started from the initial stress
state inside yield surface and then moved outside by elastic predictor step. The consistency condition iteratively
corrected the state variables to return back to yield surface taking damage effect on stored energy into account
while internal hardening variables were updated simultaneously along the return paths. The number of iterations
to satisfy the tolerance was 12. Figure 7.6 shows that the consistency parameters computed at successive
iterations using the consistent Jacobian can approach to the solution with a quadratic rate of convergence.

7-8-3 Evaluation of error
The undrained shear strength, S, is able to determine by UU tests. Expression of undrained shear strength for
ideal samplesis given below (Ohtaet a [30] ,1989).

A-1
i. =%M exp(_AJrA,]O) OCR1+ 2K, (7.103)
% et 6 M 1+ 2K,

Table 7.2 shows the results of S, determined by SS and CPP methods with the variation of sub-increments.
Errors are evaluated by comparison with Eq.(7.103). Though SS needs as much as 1000 steps for 0.20%
accuracy, a single-step CPP method needs only 12 numbers of iteration for -0.77% accuracy. Therefore, CPP
method is proved to give a high accuracy and stability even asingle large strain near failureisimposed.

7-9 Conclusion

The implicit integration agorithm cast in form of Closest Point Projection method in the context of
strain-driven process for the inviscid Sekiguchi-Ohta model was developed. The two-invariant conservative
stored energy function with damage process and choice of suitable hardening potential were proposed. A class of
isotropic pressure-dependent bulk modulus and stress hardening parameter-dependent shear modulus were
employed as an illustrative case of hyperelastic model required by return-mapping algorithms. The developed
formulations were implemented and used in numerical analyses for CU and UU tests. The numerical results
showed that CPP method could provide an effective, stable and robust integration scheme to the rate constitutive
equations for any variation of imposed strain increments. The exact solutions of both CPP and SS methods can
be obtained by subjecting the agorithms to very small strain increments. Verification has been done by
comparisons with the closed-form solutions. The errors associates with CPP method were relatively low in
compare with those of SS method even at a single large strain increment near failure. It was clear that CPP
method is superior to SS method in particular when a small number of steps are applied or alarge size of strain
increments is used. The fundamental mathematical disciplines developed in the study will pave a way to a
formulation of soil/water coupled FEM and the emerged evolution of finite deformation analysis in further
research stages.
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Fgure 7.4 (Ieft) Numerical resultsby 1000-step SSand single-step CPP methodsin p'-q spacefor UU test at 10% axid strain

Figure 7.5 (right) Numerical results by multiple-step SS and single-step CPP methods in g-¢, space for UU test at
10% axid strain

Table 7.2 Undrained shear srength tests (10% axid strain)

Method Normalized strength S/o o Error (%)
Closed-form 0.2547 0.00
SS (single step) 1.3258 420.48
SS (5 steps) 0.3443 35.16
SS (20 steps) 0.2909 14.21
SS (50 steps) 0.2639 3.60
SS (1000 steps) 0.2552 0.20
CPP (single step) 0.2528 -0.77
CPP (5 steps) 0.2543 -0.17
CPP (20 steps) 0.2545 -0.04
CPP (50 steps) 0.2546 -0.03
CPP (1000 steps) 0.2547 -0.03

SS=Sub-Stepping, CPP= Closest Point Projection

Consistency parameter at each iteration
T T T T

Consistency parameter
(41}
o
T
1

0 I I I I
2 4 6 8 10 12

Iteration number

Fgure 7.6 Convergence of congstency parameter gpproached by CPP dgorithm for asingle-step of 10% axid strain
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Consistent Tangential Stiffness Tensor
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8-1 Tangent Moduli

The well-known stress-strains relation is the forth-order tensor of elastic moduli. However, in nonlinear
problem, the rate relationship is rather considered and employed. As a result, the corresponding relation
between rate of stress to rate of strain is called tangent moduli. In plasticity theory, many different congtitutive
relations can be developed to complicated elasto-plastic moduli which can include multiaxial properties,
anisotropic responses, time dependent characteristics. In this section, the derivations of tangent moduli using
governing equations are presented by two versions, which are continuum and discrete versions.

8-1-1 Rateform

The governing equations in rate form are reinstated. r is plastic flow direction which can relate to plastic
flow potential or flow rule. y isascaar plastic flow rate or consistency parameter. ¢ is rate of hardening
variables. h defines atype of hardening.
In general non-associative model, plastic flow is defined by

P =yr (8.1)
Rate of stress and elastic strains is related by elastic moduli,

6=c’:(¢-¢") (8.2
The evolution of hardening or hardening law,

g=vh (8.3
Yield function,

f(s,q) =0 (8.4)
Kuhn-Tucker loading/unloading complementarity condition

y>0;f<0;yf =0 (8.5

8-1-2 Continuum tangent moduli
Under loading condition, Eq.(8.5) are satisfied. By a result of Kuhn-Tucker condition, consistency
condition is developed by means of,

f(6,0)=0sf:6+0f:q=0 (8.6)
Refer to Eq.(8.1)-(8.3), scalar Eq.(8.6) becomes
Ot e (E—pr)+0qf :yh=0 8.7
Solve for consistency parameter,
Ogf:c%:¢

= 8.8
4 0t :c®ir—04f :h @8)

Substitute to Eq.(8.2), yield
6=c":|¢— O, fic:é ri=c®:¢ (8.9)
0,f:cfir-o,f:h
The continuum tangent moduli are derived as,
e Cir®o,f:ct

c®=c*- (8.10)
0,f:c®ir-o,f:h
For associative flow and evolutionlaw, r=0,f, h=0,f
S c:0,f®0o,f:c (8.10)

_66f :c®:0,f-0,f:0,f

8-1-3 Forward Euler
By driven variable Ag=At¢ as an increment of strain, and a given set of {sn,sr’f,cn,qn} as initial

conditions, the continuum problem is transformed into a discrete problem by applying difference schemes that
are explicit forward-Euler and implicit backward-Euler. The subscript n+1 refers to the current time step whilen
refers to the previous time step. The current strain can be given by,

€, =&, + At (8.12)
By Forward-Euler scheme, continuum Eq.(8.1)-(8.3) can be discretized by,
8r’1)+l = ‘(;r': + Aynrn (813)

Ony1 = c: (8n+1 _sr‘])+l) (814)
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Oni =0, +A75h, (8.15)
Using aresult of EQ.(8.8), consistency parameter at previous step is computed by
O, f:C%: Ag ‘
Ay, = g 8.16
7 0 f:c®:ir =04 f :h (810
6=6,,0=0,
Using aresult of EQ.(8.10), the current stress can be computed by,
G,.,=6,+C" 1 Ag (8.17)
@ e C r®o,f.c | (8.18)

_6Gf etir=0o,fih| o
Since Eq.(8.4) isnot employed by this determination, as aresult it is found that,
f(6p,1,0ns1) 20 (8.19. The form

of continuum tangent moduli shown in Eq.(8.18) is usually applied in incremental FEM. However the solution
would meet inaccuracy if large steps of loading are involved.

8-1-4 Backward Euler
By Backward-Euler scheme, a driven variable shown in EQ.(8.12) together with initial conditions

{sn ,sﬁ,cn,qn} , aset of continuum Eq.(8.1)-(8.5) can be discretized by,

6,.,—6,=C:(As—AgP) (8.20)
Increment of plastic strain and hardening variable are given in corresponding to the state at current time step,

A Y (8.21)

Ani1 —Un = A%pahna (8.22)
The value of yield function and Kuhn-Tucker conditions are marked at the state at current time step,

fre1 = F (i1, 0nea) (8.23)

AYpi1 205 f <05 Ay fr =0 (8.24)

Since a set of above equations or algorithms usually forms in non-linear system. A linearization of
return-mapping algorithm carried out on Eq. (8.20)-(8.24), which are those of previous formulations done in
Chapter 6, results in the determination of Ay,,; by Newton method. The implementation of all variables

satisfied with all governing equations at the current states will be used to determine the consistent tangent
moduli.

8-1-5 Consistent tangent moduli

By a second exact linearization of return-mapping algorithm, the consistent elastoplastic tangent
moduli are developed. These moduli relate incremental strains and incremental stresses and play a crucial role
in the overall solution strategy of a boundar-value problem. The use of consistent tangent moduli are essential to
preserve the quadratic rate of asymptotic convergence that characterizes Newton's method.
In case of plastic loading, the condition in EQ.(8.24); Ay,.; 2 0; .., <0; Ay, f.1 =0 aresatisfied.

By differentiating the algorithms shown in Eq.(8.20)-(8.23), one obtains

do,,, =c*:(de,,, —dg?,, ) (8.25)
dsr?Jrl = dA7n+lrn+1 + A7/n+1drn+1 (826)
dqn+l = dAymlhml + A7/n+ldhn+1 (827)
dfnJrl:an :d0n+1+6qf :danrl:O (828)
In short, Eq.(8.28), which is equivalent to consistency condition, can be written by,

O f d°n+1]

: =0 (8.29)
(aq f ] [dq n+l

Variational forms given in Eq.(8.25)-(8.29) are kept on unknown de,,,, ,dep, ;,dg ., dAy,, ;-
Substitution of Eq.(8.26) into Eq.(8.25) together with manipulation of Eq.(8.25) and Eq.(8.27) lead to,
¢ do,,, =de,. —dAy,, Fhy — Ay, (8.30)
=09, =—dAy, NG —AYLadh (8.31)
Grouping Eq.(8.30)-(8.31), yields

o1 d d r dr
¢ 0 . ( Gn+1] :( 8n+lj—dA)/n+l( n+lj_A7/n+l[ n+l) (832)
0 —I dq n+1 0 hn+1 dhf”l
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Because r=r(s,q) and h=h(s,q). By Chain rule, the components on Eq.(8.32) can be expanded to,

drosg _ Osf Ogf |(dopg (8.33)
dhn+l 6uh aqh dQn+1
Substitution of Eq.(8.33) into Eq.(8.32), with some equation manipulation, the resulting equation becomes,
o1
c + Aymlrc A}/mqu : d(‘iml _ (dsmlj _ dA7n+1 rn+1 (834)
Aymlha -l +A7/n+1hq dC‘In+1 0 hn+1
To reduce the terms of equation, define the following matrices as,
r -1
==l Aymlacr] (8.35)
Y =(-1 +Ay,,0.h) (8.36)
- -1
My, M, L Ayo,r
M= “} - 1% (837)
Mgs Mgq Ayosh Yt

Using new defitions shown in Eq.(8.35)-(8.37), Eq.(8.34) can be manipulated to be,

d
Gn+l _ M : d‘(’.nJrl _ dA}/m_l r.n+1 (838)
dqn+1 O hn+1

Substitution of Eq.(8.34) into scalar Eq.(8.29) gives,

o f de r
° M " dA "l=0 8.39
(aq f j [( 0 ] }/nﬂ(hmljJ ( )

Since Eq.(8.39) isscalar equation, therefore, the scalar unknown can be solved,

aaf :M: d£n+l
0, f 0

dAy, ., = 8.40
7””- ac f . M . r.n+1 ( )
aq f o hn+1
Asaresult, Eq.(8.38) can be determined by the substitution of Eq.(8.40) back to Eq.(8.38),
ac f dgm—l r.n+1 ao f
‘M: M: ® ‘M
d6n+1 dsn+1 6q f 0 Mo hn+1 8q f d‘(’.n+1
=M: - M: =|M- : (8.41)
dqn+l o (ach_M_(rmlj h (acf]_M_erlj 0
6q f o hn+l aq f o hn+l
For associative flow rule, the direction of plastic flow and plastic variables are associative to,

rr|+l 80 f
hn+1 ) aqf n+l

Substitution of Eq.(8.42) into Eq.(8.41) turnsto,

n+1

(8.42)

M_[ag]@(acf]_M
d6n+1 =M . 6qf 6qf . . d8n+l (843)
AN Lo '
O, f ' 'é’qf

dq n+l -
Each expansion can be performed as following,

M, M| (0,f M, :0,f+M,:0,f
; = _ _ (8.44)

Mie My | \ O My, :0,f+M,:0,f

o, f o, f 0, F) (Mg :0,f +M,, 10, f

‘M: = :
0, f o, f 0 ) (Mg 10, T +M,, 0, f (8.45)
=0,f M, :0,f+0,f:M,:0,f+0,f:M,:0,f+0,f:M,:0,f

M, M d M, :de
|: oo cq:| . ( sn+lj _ ( 60 . n+1] (846)
Mqu qu 0 Mqo ’ d8n+l

The full expansion of Eq.(8.43) can be presented in accordance with Eq.(8.44)-(8.46) by,



115

M, :0,f®0,f:M,+M, :0,f®0, M,
do, ., {+MM 10, f®0,f M, +M,, :0,f®0, f :Mqu}

deny " 0 T My 10, T +0, 1 My 10T +0,f My, 10, T +0,f My 0, f
For non-coupling hardening model o,r =0,9;h =0, in other words, r=r(s), h=h(q). Eq.(8.37) can be
reduced particularly,

(8.47)

=t o] [z 0
M_{ 0 Yl} _[0 Y} (8.48)
Asaresult, Eq.(8.41) can be viewed as,
[dcmlj _ (E : dsmlj_ 0,f:E:de,, ( Bl j (8.49)
dag,., 0 0, FiBir  +0,f:Yh ,(Yih,,

Eq.(8.49) can beindividually spitted into incremental equations of stress and plastic variable tensors by,

do, =|5-— =10 ®0T:E de, (8.50)
O, FiEir +0,f:Yh
dq,., = Y:h, ®0,f:Z de, (8.51)

_66f BN, to,frYih
From Eq.(8.50), consistent tangent moduli can be simply given by,

=: f:=
C:‘-)o-l _ dGn+l — E— rn+1 ® aa (852)
de,, ., O, fFiEir ,+0,f:Y:h
In case of associative flow rule, EQ.(8.52) isreduced to,
=:0_f f.=
¢?, =B _z_ 0.1 ®0, (8.53)
de, ., 0,f:E:0,f+0,f:Y:0,f

where algorithmic moduli are also reduced to terms with second derivatives revealed below,
-1

1
== [ce’l +Ay.0. f J LY = (487000 ) (8.54)

It is noted here that the determination of Ay,,, hasalready stated in Chapter 6.
In case of semi-implicit scheme, Eq.(8.52) isreduced to,
w do ., Er,®0,f:2
Chn = ===
de,., O, fiBir,+0,f:Y h,
In this expression, all quantities except for plastic flow and hardening type are evaluated at time n+1. This
moduli isin general not symmetric even plastic flow is associative [4].

(8.55)

8-2 Return Mapping Algorithm for Anisotropic models

8-2-1 Introduction

Implicit numerical algorithm using return-mapping method [1] has been proven to provide an excellent
performance when integrating a nonlinear isotropic €eastoplasticity (See for major past researches
[2,3,4,5,6,7,8,9,10]); i.e., a pressure-dependent model, in particular, where only a few scaar equations are
required to formulate whole governing equations(Aravas, 1987 [3]). The simplicity lies in the fact that return
directions to yield surface are coaxia with updated stresses in principle stress space. (See Figure 8.1, Figure
8.2) Accordingly, a closed form of a consistent tangent operator in regard to a modified Cam-clay was derived
by Borjaet al. (1990) [11], giving by-passed steps needed for evaluating a costly inversion of material stiffness
tensor. However, the similar procedure is not conveniently applicable to an anisotropic model mainly because
return directions to anisotropic yield surface are not coaxial with updated state of stresses. (See Figure 8.3)

Luccioni et a. (2000) [8] employed a return-mapping technique to an anisotropic Bear-Clay model and
concluded that the formulation of governing equations under a return-mapping scheme is complicated and
relatively cumbersome due to the complexity of anisotropy; therefore, the method loses a performance and
appears impractical to initial boundary value problems.
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e Smo & Taylor (1985), U. Berkeley + J, plasticity (von Mises)

¢ Ortiz& Smo (1986) » |sotropic model (Modified Cam-clay)

¢ Aravas (1987), U. Pennsylvania » Pressure-dependent (Gurson’s model)

e Ortiz& Martin (1989), U. Brown » Algorithmic moduli

e 9mo (1992), U. Sanford * Finite deformation theory

e Alawaji et al. (1992), U. King Saud e Soil-water coupling (Modified Cam-clay
e Borjaetal. (1998), U. Sanford * Finite deformation (Modified Cam-clay)
e Luccioni et al. (2000), U. Berkeley e Anisotropic model (Bear-clay)

e Borjaetal. (2001), U. Sanford ¢ Bounding surface (Modified Cam-clay)

e Majid et al. (2001), U. George Washington Cyclic plasticity

. !

| sotropic plasticity models Anisotropic plasticity models have
have been successful in been suffered complex formulation
high performance and impractical

Figure 8.1 Past Research on Return-Mapping Algorithms
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Figure 8.2 Co-axial Return Path

In this study, a return-mapping regularization applicable to anisotropic models was devel oped following
a typical procedure [12] but a newly developed process corresponding to invariant-based tensor basis was
applied to solve a concerned limitation. An implementation of implicit finite element method and numerical
illustration were presented to demonstrate a computational performance under the proposed procedure. The
mathematical technique may suggest a solution or extend a performance to other similar anisotropic plasticity
models.

8-2-2 Anisotropic plasticity

The anisotropic soil plasticity proposed by Sekiguchi and Ohta (1977) is adopted in the study. A
stress-strain-strength response of model behaves anisotropically due to the existence of the joint invariant
between current stresses and stress history induced by the initial yield stress. The yield function expressed in
terms of stress invariants, hardening stress parameter and their related tensorial notations are summarized in
Box 1.
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Figure 8.3 Non-coaxial Return Path
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Box 8.1 Sekiguchi-Ohta Plasticity Model
8-2-3 Rate constitutive equations
In general, return-mapping methods are based on a set of equations expressed below,
Additive decomposition of strain rate
P=g—¢P (8.56)
Stress-strain relationship
6'=c’:(£-¢) (8.57)
Nonlinear elastic stiffness
c*=c’(c) = K1®1+2GA (8.58)
Flow rule (associative case)
£° =vo,.f (8.59)
Evolution law of hardening (isotropic hardening)

p' =02 Ha = %d where  a=1:¢" (See Appendix B-11) (8.60)
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Stress hardening

¢'.=06'.(p.) where ¢'. = p’, {1+ \Enonc} (See Appendix B-2) (8.61)
Yield function
f(e's',) (8.62)
where bulk and shear moduli are
' 3(1-2v'
K=K(p)=-(1+¢,), G=G(p) :(—.)K(p') (8.63),(8.64)
K 2(1+ v )
All of these are subject to the Kuhn-Tucker complementarity conditions
vy>0f <Ovf =0 (8.65)

and with the initial conditions

{s,ap,o',c'c}tzt :{sn,srﬁ’,o'n,c'm} (8.66)

The summary of rate-independent plasticity is shown in Figure 8.5. Figure 8.6 summarizes hardening potential
and related equations.

8-2-4 Return-mapping in strain space
Basically, return-mapping method has been developed in stress space [1,11,13]. The updated stress is
split into elastic-trial stress and plastic-corrector stress, which is iteratively determined by correcting the trial
stress. Though return mapping cast in stress space is more obvious and simpler than that of strain space in
formulation, both methods are equivalent each other. However, in the problem of nonlinear, stress-dependent
material stiffness, return mapping in strain space is superior to that of stress space in formulation. (9). In strain
space, return-mapping method is formulated by keeping driving strain into trial strain variable. The
schematization of the concept is shown in Figure 8.4.
Concerning with Figure 8.4, £° is an elastic strain converged in previous step, Ae® is an elastic strain

increment, ¢° isan elagtic strain increment in the new step. It is straightforward that,

n+l

g, =€ +Ag® (8.67)

n+l =

P _ P p

gt Ag =&,178,
n+1 tr

&€

Ag = €hi1 &

v

Figure 8.4 Schematization of elastic-trial-plastic-corrector in strain-space

However, the solution in Eq.(8.67) will be searched by the split operation procedure involving two steps.
Firstly, the integration of the €elastic equations as shown in Eq.(8.68) using eastic tria is taken as the initia
condition for the plastic equations. Secondly, the relaxation of the elastically predicted strains onto an updated
yield surface using the plastic corrector is taken for plastic equations as shown in Eq.(8.69). The solutions of
both steps are iteratively obtained using Newton method.

g =g +As (8.68)

g, =8 —Ag’ (8.69)
Ag is strain increment (driving strain for nonlinear system), Ag,, is plastic strain increment, trial strain is
the sum of &%, and Ae. Trid strain " is given to the system. Plastic strain increment Ag, can be determined

iteratively. Finally, elastic strain at the new step €°,,1 can be obtained.
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Rate-independent plasticity

€ —g_gP ‘ Elastic-plastic strain decomposition ‘
6'=c°:¢ ‘ Elastic stress-strain relationship ‘
c®=c%(c") | Nonlinear dlastic stiffress |
¢P=vyo,.f(6'6'.(P") ‘ Associated flow rule ‘

pC :8§aHd where o =1:¢P ‘ Isotropic hardening law ‘
f=1(ol0(pl)

y>0 f<0 yf =0 ‘ Kuhn-Tucker complementarity condition

Figure 8.5 Governing equations for rate-independent models

H(x)=p', (/T — I?) exp(_L_) Hardening potential function
A-K
p'.=0,H (a)=p’,, exp(o/%_oﬁ‘) Stress hardening parameter
% =0°H (a) = P - Evolution law of hardening
dae =« A—K
whee A —K = Ak =MD
l+e

Figure 8.6 Usage of hardening potential function applicable to the SO model

8-2-5 Nonlinear system

Backward Euler scheme is used to integrate the rate constitutive equations in previous section. Yield
condition can be enforced at the end of the step. State variables at time step n+1 are updated from the converged
values at the end of the previous time step n. Based on integration scheme employed by Simo & Taylor (1985)
[1], a set of nonlinear equations shown in Figure 8.7 is consistent with their rate form shown in Figure 8.5. The
corresponding variables are to be solved in regard to a driving strain increment imposed to the system.
Underlined in Figure 8.7, all of variables can be solved by Newton method for a given incremental strain or trial
strain. For a particular case of constant elastic stiffness tensor, the equation system will reduced to the
mathematical framework originally set by Aravas (1987), U. Pennsylvania

Thereisan implicit relation between Eq.l1 and Eq.111. That is, anonlinear elastic stiffness tensor of Eq.I11
cannot be evaluated without determining a stress tensor of Eq.11. In opposite, a stress tensor of Eq.ll cannot be
evaluated without determining a nonlinear elastic stiffness tensor of Eq.lll. Borjal simplified this difficulty
using constant elastic moduli which is determined from stresses converged in previous steps (forward Euler
scheme). The more sophisticated stress-dependent elastic stiffness tensor applied to an isotropic model can be
evauated implicitly (backward Euler scheme) by a method suggested by Borja et a. (1998) [7], however,
relevant expressions are cumbersome and seemingly complicated for an anisotropic model. In this study, a
method mixed between two previous methods is employed, namely, semi-backward Euler scheme.
Stress-dependent elastic stiffness tensor is explicitly determined from a previous iterative step instead of the
previously converged step or implicit expressions explained earlier.

8-2-6 Reduced form of nonlinear system

However, to solve the nonlinear system of 6 six variables by Newton method, an inversed gradient of
residuals of the whole system would be required and become cumbersome in analysis. In order to reduce the
order of the equation system, some equations will be substituted by other equations, resulting in reduction of
number of variables, though a compacted equation system becomes complex.
There are many ways to reduce the nonlinear system by equation substitutions among them. The efficient way is
carried out substituted Eq.IV into Eq.l, Eq.Il,111,V into V1. Reduction of hardening function was suggested by
Borja et al.(1998). As a result, variables are reduced from six to two, i.e, elastic strain increment and
consistency parameter.
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Figure 8.7 Backward Euler Incremental Form

Reduced forms of equation system
Variables | €r.1 | Ay |=— indicate unknowns of a system
V-l 8ﬁ+1 = atr - A’Yn+1acr' fn+1 where atr = Sﬁ + €ni1 &y
&1 o€ ' ' e
VVI 1:n+l = f (6 (8n+1)’c c( p cn+1(£n+1))) = O for Ayml 20

c 1 1 1 .

_g 6 ,1=0,t Cﬁﬂ(c n+1) . {sfwl - Sﬁ}
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1 8 -
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Figure 8.8 Reduced Incremental Form

8-3 Linearization

% Residuals Expressions Unknowns

7

a\ r 8ﬁJrl —e" + AY i fc;‘n+1 =0 X1 8ﬁ4—1
Bl o)) o |

= 1:9e" —g° X, | Ayn
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Figure 8.9 A set of residuals of nonlinear system
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Nonlinear system of residuas given in Figure 8.9 can be solved using Newton’s method. The Newton loop for
searching unknown variable x is shown in Figure 8.10.

r© :{?} =) 5x® =—[Q‘1](k) 00 mh kD — () sy m k k41
T loop ‘

Figure 8.10 Loop of Newton’s method

Details of equation manipulation using algorithmic moduli are given in Appendix F. All of procedures can be
summarized by Figure 8.11.

o or 0,190 =22 |\ Pe__ Pey
Sx=-QL.r ‘9: Xy 0% - P P. |&T K
i i MD:Z_Kzz—]? azg'q'cf:O

-1 =-1..e e a3
se[ctrmai o] | =hC at]fe] [
o,.f:c*+1 0 ||8Ay f

. B
f—{aﬁ.f+?j<l}:{E:F} 1

_{§,f+11}-{5-alf} ‘ 56 = —c® =1 {T + AT}
" A

Figure 8.11 Introduction of algorithmic moduli in Newton’s method

8-4 Consistent tangential moduli in regard to the SO model

The exact linearization of stress tensor by strain tensor implies tangential moduli. Depended on whether
forward Euler or backward Euler difference scheme is employed for stress update, tangential moduli can be
formulated to continuum or consistent tangential tensor. It iswell known that the use of the consistent tangential
moduli preserves the asymptotic rate of quadratic convergence of the global iterations.

8-4-1 Continuum vs. consistent tangential moduli

A difference between continuum and consistent tangential moduli is that continuum moduli employ a
previous stress as a basis to determine stiffness gradient while a consistent moduli employs a current stress
correctly enforced on yield surface as a basis to determine stiffness gradient. As a result, the consistent moduli
is consistent with exact linearization of Newton’s method, therefore, a quadratic rate of convergence can be
achieved in iteration. Figure 8.12 shows an idealized concept of continuum and consistent moduli, which are
referred to stress update scheme by forward Euler and backward Euler respectively. However, in the study,
semi-backward Euler is employed as a mixed scheme between forward and backward difference. Nonlinear
eadtic stiffness is forwardly updated by a previoudly iterative stress update referred by superscript <k-1>. This
technique can reduce effort for equation formulation since variation of elastic stiffness tensor would result in the
sixth-order tensor if fully implicit (backward Euler) is implemented. As a consequence, the exact linearization
cannot preserve, the rate of convergence may not be as attractive as Newton’s method can do. However, the
methodology is equivalent to quasi-Newton in which a quadratic rate of convergence is, more or less, able to
achieve. There is no difference in accuracy of both methods; however, the unconditional stability is not
conserved.
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Figure 8.12 Forward, backward and semi-back Euler for stress update scheme

8-4-2 Backward Euler Incremental Form

A rate-independent congtitutive equations are integrated by backward Euler scheme to obtain the backward
incremental form as shown in Figure 8.13. The updated state of variables can be solve by stress update

algorithm described in previous chapter.

Governing equations mmp Backward Euler by driven strain Ag
Rate-independent Incremental form | Ae=g,,, ¢, |As® = As —AgP
GI: Ce : (8_8 p) Glzti_cln = C?Hl(c ;Elb {sml 8 A7n+lac fn+1}
ép - 'Yr (G' pl ) SP +1 8 _A7n+160 fn+1
N A N .

e || g

= GI, p‘ -
‘ fn+1 = f (olml’ p|Cn+1)

y=0 | f<0 | yf=0 i —

Ayp1 20| frp<0 AYniafna =0
Associative case -
po = indicate unknowns of a system 1
r=—
e’ Solve by stress update algorithm

Figure 8.13 Backward incremental congtitutive equations for anisotropic plasticity

8-4-3 Scalar variation

Two of scalar differential variables can be solved linearly and expressed in terms of stress tensor. This technique
of equation manipulation is adopted from Borja et a. (2001) [9]. Subsequently, these scalar variation is
substituted back to the differential equation of stress. The details of manipulation are obviously shown in Figure
8.15. As aresult, the implicit differential expression in terms of stress tensor is obtained. By manipulation of
stress tensor and separate strain tensor to another side of equation as shown by flow equation in

Figure 8.16 . A consistent tangential tensor is obtained.

8-4-4 Consistent tangential operator
Refer to equation manipulation described in Figure 8.16. The consistent tangential tensor in accordance with
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Figure 8.14 Differential form of backward i
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incremental anisotropic constitutive equations

(8.70)

Plastic modulus defined in Appendix B is used to reduce plastic hardening terms found in Eq.(8.70). According
to the SO model, plastic modulus H, is shown in Eq.(8.71). Using an expression in Eq.(8.71) to deduce

Eq.(8.70) resultsin the consistent tangential tensor in

MP dp'.—(1:0,.f )dAy =1: Ayd% . :do’

C m—

—0p frdp’,=0,.f:do’

1 matrix format
MD

regard to the SO model as shown in Eq.(8.72).

dc':ce:{da {Ay62 A d0'+6 f®d

> ~(1:0,f) dp‘c}_{Ay{l:ﬁi.c.f}:
0,1 0 day 0,f:ds"

l matrix inverse
. (e {Av{laz 1): ds}
a1 o, 1 0

&

O f:de.

1
dp', ===, :de’
Do f = I

-1

0
(dp, 0, f Ay{L:82, 1)
dA -1 -1 MD o,.f :do
| (1e,.f) o, f(1:0,f) P, —

Figure 8.15 Variation of stress hardening and consistency parameters
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Figure 8.16 Consistent tangential tensor in accordance with the anisotropic models

Substitution of Ay=0 into either Eq.(8.70) or (8.72) would result in continuum tangential tensor, which can

invert to compliance of continuum tangential tensor as shown in Eq.(8.73). The expression is the same

expression shown in Appendix B and hence verify the resullt.
Pl g® 0, f®ao,.f

8.73
1:0,.f ®&73)
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CHAPTER 9
Tensorial Inversion Technique
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9-1 Introduction

It is a tough computational effort to determine consistent tangential tensor as previously derived in
Chapter 8. A determination of implicit tensor inversion would require exceedingly numerous nested loops for
each step and iteration to reach a converged solution and hence diminish the attractiveness of return-mapping
algorithms. In this chapter, a numerical inversion technique applied to forth-order tensor is introduced to by-pass
laborious procedures needed to determine consistent tangential tensor in regard to anisotropic plasticity model.
Formularization and verification of an inversion algorithm is demonstrated from elastic tangential tensors,
continuum tangential tensors and consistent tangential tensors for both the Sekiguchi-Ohta model and the
origina Cam-clay model.

9-1-1 Inversion of square matrix
For a square matrix A, having eigen values and eigen vectors are A, and v

Av® = 4 v® (9.2)
Combination of whole elements of eigen vectors of matrix A can be shown by,
AQ=0QA (9.2)
Q isamodal matrix (orthogonal matrix) given by,
Vv, Ve v, ]
Vi, Vo o Wy
Q:[v‘l) v oL v(”)]: .. . (9.3
[Vin Von oo e Vi |
where A isa spectral matrix of A (diagonal matrix) given by,
4 0 .. .. 0
0o 4 .. . O
A=dag[4 4, . . A4]=|. . . (9.4)
0 0 . . 4,
The spectral representation of matrix A can be given by,
A:Q-A~Q’1:Q-A~QT:Zn:l,[Vi®Vi] (9.5)
i=1
The similarity transformations can be expressed as,
f(A)=Q-f(A)-Q” (9.6)
if A issymmetric matrix, then
f(A)=Q- f(A)-Q (9.7)
Inversion of matrix A can be performed using similarity transformations as,
AT=Q-A™"-QT (9.8)

It is obvious that the inversion of A is still kept in form of moda matrix, that is, the vector basic of inversion of
matrix A isthe same vector basic of matrix A.

9-1-2 Inversion of forth-order tensor
The identity forth-order tensor can be written by a sum of isotropic and deviatoric forth-order tensor as,

| :%l®1+A 9.9)

9-2 Elastic tangential compliance tensor

9-2-1 Linear stiffness moduli
Isotropic elastic tangential tensor is given by two independent material parameters and two tensor bases shown
below, (See Appendix E)

¢’ =K1®1+2GA (9.10)
The elastic tangential compliance tensor is assumed to base on two reciprocal bases in corresponding to identity
forth-order tensor, and two unknown material parameters as,
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d°=a[l:1®1]+a,[l :A]=al1®1+a,A (9.11)
The double product of tensor in Eq.(9.10) and Eq.(9.11) is
¢ :d°=[K1®1+2GA]:[a1®1+a,A]
=[K1®1]:[a1®1]+[K1®1]:[a,A]+[2GA] :[a1®1]+[2GA]:[a,A] (9.12)
=3Kg1®1+0+0+2Ga,A

If EQ.(9.11) isan inversion of Eq.(9.10), then the double product should equal to an identity forth-order tensor
defined in Eq.(9.9). Collection of independent coefficients respected to tensor bases are shown bel ow,

c’:d° = I
3Ka,1®1+2Ga,A = %1®1+A (9.13)
[3Ka1—%j1®1+(26a2 DA = 0

Since tensor bases are not zero tensor, each scalar coefficient shown in Eq.(9.13) must be zero. As a result,
unknown scalar coefficients assumed in EQ.(9.11) can be determined as following,

3Ka1—% = 0
o (9.14)

27

2Ga,-1 = 0
1 (9.15)

2 T

Substitution on unknown scalar identified by EQ.(9.14),(9.15) ino Eq.(9.11) obtains an elastic tangential
compliance tensor.
d° =L 1@1+—1 A (9.16)
9K 2G

9-2-2 Nonlinear stiffness moduli (secant moduli)
Isotropic elastic tangential tensor of nonlinear secant moduli is given by three independent parameters and three
tensor bases shown below, (See Appendix E)

Cr,=a1®1+2GA + \EAqm ®1 (9.17)
2
where a=K,;,a =2G,,a, = gAq (9.18)
aq=3u" s nge m= A8 ageo \P |ass (9.19)
A€l |ae 3

The tensor bases of elastic tangential compliance tensor is reciprocally assumed to be
d;,=bl®1+bA+bl1®mM+bm®1l+bm®&m (9.20)

Double product of d%.; and c%.. results in forth-order tensor whose scalar products respected to each
independent tensor bases are shown in Table Table 9.1.

1®1 A 1®&m m®1 m®m
bl®1:[a1®1+a,A+am®l] = 3ab
bA:[a1®l+a,A+am®l] = ab, ab,
bi®m:[al®l+a,A+am®1] = a)b, ah,
bm®1:[a1®1+a,A+am®1] = 3ab,
bm®m:[al1®1l+a,A+am®1] = ab,  ah

Table 9.1 Double product of d%..; and c%..1

1®1+ab,A 1®
de . :c (38 + 8,0, )1® 1+ 30A + 3b,1OM + “li®14A (9.21)

e (ab,+3ab, +ah)m®1l+ahm®m | 3
By comparing coefficients of tensor bases of both sides of Eq.(9.21), linear algebra equations can be taken,

nil T
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1

3pa +ash; = 3

a,b, =1
9.22
ab =0 62

a;b, +3ab, +ah, = 0

ah; =0

Solutlonsofalmear systemln Eq (9.22) are shown by,

q- bz— . B,=0, b=—-", b =0 (9.23)

3a,3,
Substitute Eq.(9.18) into Eq.(9.23), then

1 1 2
h=ge o Bpg B0 b= \EGK 5 B0 (9.24)

n+l
Substitution of unknown coefficients obtained in Eq.(9.24) to Eq.(9.20) obtains an elastic tangential compliance
tensor given by,

d,——t 1@1i_t A—F A el (9.25)
Ky 26, V3 6K,G

Verification of the result is shown below by double product of ¢%,.;and d%... It is found that double product is
valid by yielding the identity tensor.

Kn+11®1+ZGA+\/§Aqm®1 |1 1@1+ LA \F A el
3 K,., 2G, 36K,,G,

n+1
lig1ia- \F Aq m®1+\ﬁ A h@1-)
3 33K, 33K,

9-3 Continuum tangential compliance tensor
The continuum tangential elastoplastic forth-order tensor in regard to the SO model is given by five tensor bases
and corresponding five constitutive coefficients. (See Appendix B)

de

n+l T

n+1

(9.26)

2
c? = K- K 'B 1®1+2GA - JgGKﬂ(l®ﬁ+ﬁ® 1)—6(3 n®n (9.27)
Hw Hw Hm
{33,
Hep:Kﬂ2+3G+3I—I1Dﬂ, ﬁ:M—3I—2—\/§(nc:ﬁ) (9.28),(9.29)
1
Spectral representation of ¢ in Eq.(9.27) can be given by
c®=a1®1+a,A+a,1®nN+a,N®1+an®n (9.30)
Spectral representation of (c®)™is presumably given by
c® =ph1®1+bA+b1®A+bA®1+hA®N (9.31)

Eqg.(9.30) and (9.31) share common tensor bases. A double product between them is an identity forth-order
tensor shown by,

c® e = :%1@ 1+A (9.32)

Scalar | B by b, b b, bs

A Tensor | 1®1 A 1®7 hn®1 n®N
a 1®1 31®1) 0 3(1on) 00

®:ic® < 8, | A 0 A 0 Tne®l nen

a; | 1®n 0 1®n 0 1®1 1®n
a, 1®1 3A®1) 0 3IIAen) 0 0

as, TN®N| 0 TA®AF 0 A1 AN

Table 9.2 Tensorial components of double product betweem c® and (c®)*
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g -1
index Tensor Scalar components  c® :c®

@» 1®1 3a)by +a;b, 3
(2) A a,b, 1
(©)] 1®n 3ab, + a;b, + a,b; 0
(4) nel a,b, + 3a,b, + a;b4 0

(5 n®n ab +3ab,+ab,+ab 0

Table 9.3 Scalar components of double product betweem c® and (c*)*

By comparing coefficients of tensor bases of double product with that of identity tensor, alinear equation system
with b;-bs as unknown variables can be generated.

~ 1
33 0 0 a 0 1) |3
0 a O 0 0 b, 1
0 a 3 0 a, b= 0 (9.33)
33, 0 0 a,+a 0 b, 0
| 0 & 3, 0 a,+a; | (b 0
Unknown variables b;-bs (notified by vector B) can be solved linearly by,
&+tas
9
3 0 0 a o T % aﬁz“”‘;ﬂ
B g - 3O 8 X ! 1 % (9.34)
T|Y & A % | o[ am-aa+aa 3 -
0 a 3q, 0 a, + a, 0 3
~(aa -aa,)
a,

Constitutive coefficients a-as (notified by vector A) are substituted into Eq.(9.34), therefore, B can be
determined and hence the constitutive coefficients for (c®)™.

13KDA +1,
9 KD
a KH,, K242 b ly
a, ZGHep b2 26D
A=lal- Hi _J6eKp +, B=1b, =|9 \E (9.35),(9.36)
a ? —\/EGK/? b, ' 3
3 —6G? b \E
9
25

Finally, continuum tangential compliance elastoplastic forth-order tensor in regard to the SO model can be
determined. The expression is consistent with a derivation given in Appendix B.

dv=co'=| L, DS 1®1+iA+\E2[1®ﬁ+ﬁ®1]+ 9D
9K 3l 26 V21, 21,8

nen (9.37)

9-4 Invariant-based spectral composition of thefirst derivative of the SO
model

In the ream of plasticity theory, the first derivative of the yield function with respect to stress tensor (in
Eq.(9.38)) gives the associative plastic flow direction, which is outward normal to the yield surface or plastic
potential. According to the SO model, the flow direction is separated into isotropic and deviatoric directions

governed by invariant-based second-order tensor bases 1 and N (See Appendix B). The flow magnitudes in
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corresponding to tensor bases can be derived from the yield function. Herein, the constitutive coefficients r,; and
r, derived from the SO model are shown in Figure 9.1.

% =rl+r,n (9.38)

of  of ol of ad, Joint deviatoric tensor
= +—=
oc' 0l 06" 0J, Oc'

— 1 1
A= A—§[1®nc +1, ®1]+§nc . (1®1)

- 1

3y _ 5 (-t i) 1)-E-o foS

— g_,/sz(n 5 (e :7) 1J—A.c @& 7 H
of [(of 1®1 of —). of  MD
- = __+TA .0 —_ =
o' \al, I, a3, al, |,

: 8 o a1 T
=23y —=—=(n.:0)| (&) [ D] y_3¥3h
of _ ol aJ, 3 a, | | I,
_86' = r11+ rzn . i - 9D
r, = ZJZaT_Z od, 2'1\/@

Figure 9.1 The first derivative of the SO model

9-5 Invariant-based spectral composition of the second derivative of the SO
model

Directional derivative of the flow direction given in previous section can be expressed by the second derivative
of the yield function with respect to stress tensor (in Eq.(9.39)). The resulted forth-order tensor is necessary in
formulation of return-mapping agorithms. There are 7 independent tensor bases with corresponding constitutive
coefficients shown by H;-H;. Since Hz=H, and Hs=H-, the tensorial expression for the second-derivative of the
SO mode isfound symmetric. The details of each tensorial and scalar composition are shown in Figure 9.2.

ﬂ(af al, of ajz]
0| ——+—=——= - =
o*t  \dl, 06" 03, 06’ ) g % f Lof o1, (0% o2 f Lo 823,
46'0s' ac' “|ée' 86'dl, al, d6'd6'| | 66’ 0683, &3, dc'de'
%t 2 = o%f .= 0% 1, _yu 1 6f
1 allall 3 2 anall(nc ) 26\]2&]2 g(nc ) 95J2 (nc nc)
of = 9%f - 9% 1, _ - 9%f
Hy=—|Hg=H,=12), —=-2],—=—==(n.:N) H5=2],—=—=
a3, 1,03, 83,03, 3 83,03,
Y
f  @f | |_MD _6Dy3J, 9D A P VA
alal, a3l | | 1) 12 21.2,/33,
2 2 -
g f, ? f, __ 9 _ _73D _ Symmetric
01,03, 03,03, 21,237, 41,3,4/33, forth-order tensor
o%f _ - _
W:H11®1+H2A+H31®n+H4n®1+H5n®n+H61®nc+H7nC®1
G OC

Figure 9.2 The second derivative of the SO model



132

o’ f
06'0c

= H,1®1+H,A+H, 10+ H,A®1+HA®A+H,1®n, +H.m ®1 (9.39)

9-6 Algorithmic tensor

In linearization process of a constitutive equation, an algorithmic tensor is defined for convenience in equation
manipulation. According to Ortiz, M. & Martin, J.B. (1989) [2] tensor E is defined in terms of Hessian
forth-order tensor as,

et 1
E=|d°+A 9.40
{ }/80'80'} (9:40

Concerned with elasticity tensor of linear stiffness moduli and the second derivative of the SO model, a spectral

representation of Z™ can be expressed by 10 composition of mapping forth-order tensor bases SxS in stress

space S where 1LineS; S={g:R° > Rg=¢}
E'=al®l+a,A+3,1®Nn+aN®l+an®n+a,1®n, +an, ®1

+8N QN +am, ®N+a,n, On,
where the corresponding constitutive invariant-based coefficient a;-a, are shown as following, (See Appendix E
and F)

(9.41)

1 1
31:A7H1+W’ 32:A7H2+£’ & =AyH;, a,=AyH,, a;=AyH;,a=AyHs, a,=AyH,,

8,=8,=8,=0 (9.42)
The agorithmic tensor E obtained by an inversion of tensor shown in Eq.(9.41) is supposed to share common
tensor bases reciprocaly. The constitutive invariant-based unknown variables bl-b10 are identified in
accordance with al-al0. A spectral decomposition of an algorithmic tensor E iswritten by,
E=b1l®1+bA+bl®N+bnN®1+hn®nN+b1®n +bn, @1

_ _ (9.43)
+hn®n, +byn, ®N+ben, O,
A double product of E* and E is enforced to result in an identity forth-order tensor.
ElE=| :%1®1+A (9.44)

Tensorial components of double product are shown by in Table 9.4 which the first and second column notify
scalar coefficients (identified by a) and tensor bases of £ while the first and second row notify unknown
coefficients (identified by b) and tensor bases of E respectively. Table 9.5 shows composition of scalar
components of double product in corresponding to each tensor bases. Since this double product is specified as
the identity forth-order tensor |, which is related to two tensor bases 1®1 and A as shown in Eq.(9.44). For
arbitrary tensor bases or non-zero tensor bases, a set of 10 linear equations matching coefficients of these tensor
bases can be formulated. Reminding that b ={b;-b,o} are unknown variables, equation system given in Table 9.6
is sufficient to solve for unknown coefficients b using inversion of 10x10 matrix.

9-6-1 Reduced form of algorithmic tensor
Table 9.6 shows alinear equation system to solve constitutive unknown coefficients of inversed E providing that
a determinant of a linear system is not zero. The solution can be solved both numerically and agebraically
however the method can be more effective and simpler if a symmetric condition is considered. In a case that
symmetry is preserved in Eq.(9.40), an amount of unknown variables can be reduced by adding conditions,

8, =8,,8, = 8,8 =8 (9.45)
As a consequence, Eq.(9.41),(9.43) can be reduced as shown in EQ.(9.46),(9.47) in which an amount of
unknown variablesis reduced from 10 to 7.

E'=al®l+a,A+a,[1®N+N®1]+aN®N+a,[1®1, +1, ®1]
+8[MON, +1, ON]+a,m, O,
E=h1®1+bA+b[1®N+N®1]+bN®N+b[1® 1, +1, ®1]
+h,[N®n, +n, @N]+bn, ©n,
The implementation of reduced spectral components is shown in Table 9.7. As shown in Table 9.8, coefficient

ay,8,8s,85,86,83 and &y can be evaluated. Providing that a determinant noted in (1) is not zero, vector b noted in
(I1) can be determined; therefore, a closed-form of = can be obtained as noted in (I11).

(9.46)

(9.47)
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Table 9.4 Tensorial components of adouble product of = and &

|
(1
I

Ix

sl b | B b b b b, B b, o, b, by ____
a 'tensof 1®1 A 1®n n®1 nen 1®n, N ®1 N, n.®n N ON,
a 111 |J1®) 0 J1®N) 0 0 J1®n,) 0 0 0 0
a ! A 0 A 0 n®1 nen 0 1.®1 nen, 1, ®" . ®n,
a '1®n| 0 1®[ O 1®1 1®n 0 nn(®) 1®n, N (len) nin(1®n)
3 (ne1|3neY) 0 dAen) 0 0 dJA®y) O 0 0 0
a M| 0 n®[ 0 n®1 nen 0 nq(M®) nen N Aen nn (e,
g% 1®n,| 0 1®m, 0 n.N(I®Y n:Al®n) 0  min(1®Y N (1®n) 1 :n(197) 1,0 (1®n,)
a n.®Ldn.®) 0 dn,®n) 0 0  dn.®n) 0 0 0 0
Table 9.5 Scalar components of adouble product of = and 2
Index | Tensor Scalar components =t:=

@ 101 3ayby +agh, + 1 . (agh; +aghy )+ m i nagd, =

) A a,b, 1

(3 | 1®n | 3ab;+agh, +ashs +Nincaghs + N incashy + 1. 1 ncaghy 0

(4 n®1 a,b, +3a,4b, +ash, + N :in.asb, 0

) n®n a,bs +3a,b; + agh, + asbs + N ashby 0

(6) | 1®n | 3abs+agh, +asbg +N:ncazbyy + e incaghy +nineaghs | O

(7 | n.®1 apb; +3asb 0

8 | N®n 3a,bg +a,bg + aghg + N 1 ashy 0

9 | n.®n 3a;b; + &by 0

10) | nc®n, 3a7bs + 3,y 0
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Linear algebra
(33, 0 0 a-+n:ina 0 0 Nninas+n,: N3 0 0 0 I
0 a O 0 0 0 0 0 0 0 i’
0 a 33 0 a+n:ng O 0 0 Nina; +1n; N8 0 0
33, 0 O a,+ 8, 0 0 n:nag 0 0 0 0
b 0 a 3a, 0 a,+a 0 0 0 n:nag 0 Jo
0 & 0 0 0 33 0 8 +Ning 0 NN+ M | |
3 0 0 0 0 0 a, 0 0 0 o
0 0 O 0 0 3a, 0 a,+8, 0 n:n.ag 0
0 0 3a 0 0 0 0 0 a, 0 0
|0 0 O 0 0 3a, 0 0 0 a, 1o
Determinant of non-singular matrix
(aga4a3 +868,8,N 1 M, +8,8,8,N 1N, + 88,8, 1M, JS
det(b) =273, ) )
+2,8,3GM; 1N — &2,8 — a3, —ada, (N11,)

Table 9.6 Linear equation system for solving coefficients of  which is obtained from the inversion of =

9-6-2 Variation of consistency parameter and elastic strain

Variation of consistency parameter SAy and elastic strain 8¢° determined on each iteration can be evaluated by
Eq.(9.48),(9.49). Multiplication of forth-order tensor in massive computation may expend a considerable attempt,
however, it is able to minimize the obstacle by expanding the compositions into the individual multiplications of
tensor bases and consgtitutive invariant-based coefficient.

f—{aq.f+3?<l}:{5:?} f—(ac.f:E:F+9?<1:{E:F})

Shy = : = z (9.48)
d+—1}:{E:0,. O f 20, f+—1:{E:0, f
{a"HSKl}{ o.f} 0, T {:0,.f}

o0& =—[d° ] T+ oAy f,.} (9.49)
Some common expression =:0.f=g8:9.f, E:1=8:1, ¢ f:=:0.f, 1:{E:0.f} can be previously
computed in regard to their constitutive invariant-based coefficients by considering Eq.(9.50)-(9.55),

E:0,.f=cl+cn+cn, (9.50)
where the coefficients c1,c2,c3 are determined as following Table 9.9 and Table 9.10.
E:1=30r1+3brn+3brm,, 1:2:0,.f =3¢ (9.51),(9.52)
scalar c C C G
r tensor 1 N q
o,f:2:0,f = | = 3re+ne,+(Min)r 9.53
c c rl 1 3 O 0 1Cl 202 ( nc) 2C3 ( )
r, n 0 1 nin,
= :{aﬁ.f +i1}=3:66,f stz
3K 3K (9.54)
_ 1 _
={C11+ Czn+C3nc}+E{b1r11+k%r1n+bsr1'lc}
{8 f +i1}:{3:6 .f}=3(rl+ijcl+rzcz+(ﬁ:q )1.C (9.55)
° 3K ¢ 3K ¢

A composition of d°:Z can befoundin Table 9.11-Table 9.12.
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Erand =2

scalar b h b by=hy <« b by =by <~ =0 < by

a tensor 181 A I®N+N®1 <« N®N 1M M® «  N®n.4m.En « o

a 1® 2] 0 31%0n) «~ 0 1®n,) « 0 «~ 0

& A 0o A n®1 <~ n®n Xl «  NON+M.®N « o

ENE= a=g ION+N®L 0@l 1en  JAen+el  «  1on  Jen +nin(l®l) «  1®n+nin(l®n)  « nin(lon)

T T T 1 ) T 7 ) ) ) ) T

a nen 0 Ti®n el < Nen (@) « e A®n < ninicdn)
=2 18, +1,®L In®Y 1®n, In.®N)+n,HIRY « ;18N In@n )1 181  Ning(1®n)+1 i {1®N) 1 inf1®n)

T T T 1 ) T 7 T ) ) ) T

Index Tensor Scalar components 1=

@ 1®1 3ayby +aghy + N1 n(agh; +aghys )+ mc : ncaghy <

2 A a,b, 1

3 1®nN+n®1  3ab; +agb, + agbs + N naghs + N naghy +m. i meaghy + asb, +3a,b, + ash, +n:n.asb, 0

(4) ) ) T

@) n®n a,bs + 3a,b; + agh, + ashs + N i mashy 0

(6) 1®n.+7n.®1 3aybg + agh, +aghg + N imcaghyg +me i ncaghg +N i mcaghs +ayb; +3a7b 0

(7 ) ) T

8 nen+n.®nN 3a,bg + a,bg + asbg + N 1 magby + 3a,b; + aby 0

9) ) 0 o

(10) N 1, 3azbg +a,byg 0
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Table 9.8 Determination of constitutive invariant-based coefficients of agorithmic forth-order tensor

- 2 2 2 2 2 2
DB = \-az-aG M o— @g NCN @t agay — 2-aragaghn—azag +ajaragtag nNng ag

b:=DB '

1.
Sazlagt a5>
DB-i

az

- 1
‘Adydqt+—agnn.a
3 293 3 6 c“5

[ 2 2 \
\—31'32'35'{- 3.2'33 'f‘aG ‘nen C'a5/

ap
-+
E-\a2+ a5>-a6
\ 26
<az'a3— agN_ncasg P

2
ag

( .
ap+ag, ay

1
—AvH 4
aQ 7/19K
1

—AvH, +—
& = AV o5

8, =AyH; =a,=AyH,
85 =AyHs
8 =AyHs =a; =AyH;

n_Me=N:n¢

nene =MN¢ - MN¢

E=b1®1+b,A+b[I®N+A®1]+b,A®N+b[1®n, +n, ®1]+bs[A®n, +n, ®7]+bn. ®n,




137

scalar r r r,
b tensor 1 n
b 1®1 31 0
b, A 0 n
E:0,.f = b, 1®n+n®1 3.0 1
b, n®n 0 n
by 1®n.+1,®1 31q, (A:in)1
b, A®n+n,®" 0 (A:in)A+n,
b, n, ®n, 0 (Mm)n,

(
Table 9.9 Tensorial componentsof =:0 . f

coefficient  tensor scalar component
G 1 3b1r1+(b3+b5(ﬁ:'lc))r2
c, n 3nn+(b,+b,+by(Min,))r,
c n. 3n+(b b (Ain))r,

Table 9.10 Scalar componentsof Z:0_. f

e b, b, b, by
oz - tensor  1®1 A 1®A+N®1 A®N 18, +1.®1 @M, +1,®0 1, @1,
T |(9K)T 1®1 3(1®1) 0 3(1®A) 0  3(1®n,) 0 0
(2(;)‘1 A 0 A n®1l n®n n.®1 NN +1. 9N 1. N,

Table 9.11 Tensorial componentsof d°:Z

index tensor scalar component
® 1®1 3(9K) '
2 A (2G) b,
3 1®n 3(9K) b,
4 nel (2G) b,
(5 nen (2G) b,
6) 1®n, 3(9K) 'y
M n®l  (06)'h
@8 n®n, (2G) ',
9 n.9n (2G) b,
(10 n,®n,  (26)°b,

Table 9.12 Scalar componentsof d°: =

9-7 Consistent tangential tensor

9-7-1 Compliance of consistent tangential tensor in regard to the SO model
The consistent tangential tensor derived in Chapter 8 is expressed implicitly in terms of inversion form of
compliance consistent tangential tensor as shown in Eq.(9.56),(9.57).
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a4 11 2 o2.f:1

¥ =c® +—0,.f®0,.f+Ayo.,.f—Ay0, f @ =2—— (9.56)
H P H p

of 1y g0t .o o MD
dly,MD 66" 06 o, Iy
In order to express explicitly or in closed-form expression for c¢®, the inversion algorithm will be applied in the
similar way of previous section. However, symmetry is not preserved in consistent tangential tensor even flow
rule is associative [1,2] because hardening law in regard to critical state model is not associative but empirical
rule [3]. linvariant-based spectral composition of c®* is expressed by 10 constitutive coefficients and tensor
bases as,

where H =- (9.57)

10
=Y u[T] (9.58)
i=1
ﬁ@)ﬁ:r121®1+r1r2[1®ﬁ+ﬁ®1]+rfﬁ@ﬁ
of _ os' O¢'
———=nR1+r;N
oo p
Py
2
%1901 _h191: 2100+ 2ne1+ 2 non
1:0,.f 3 3 3 3n
0% f = o
P -=H{1®1+H,A+H31®N+HN®L+Hgn®N+ Hgl®n +Hom ®1
G 00
1 =3{H,1+H,fi+He,}
"6 06" ' ° o'le

. A2
0 1 ®Li0ue | 1®14H, 100+ H 10, + 2 HA®1+ 2 Haon+ 2 H Ao,
1:0,.f n r r

H ¢ =d® = (9K ) 1@ 1+ (2G) A

-1
Cepz 0971+M+AY I_M :836'1: <
1:0,f 1:0,f

Figure 9.3 Consistent c®in terms of invariant-based spectral composition

By following a process outlined in Figure 9.3, descriptions of constitutive coefficients u;-u;g and corresponding
tensor bases T1-T o are shown in Table 9.13. Though the constitutive coefficients ug and u,o are zero, the tensor
bases Tg and Ty cannot be disregarded because whole tensor bases are required to correctly relate
stress-to-strain mapping to strain-to-stress mapping. T, marks a deviatoric forth-order tensor A while forth-order
tensor bases T1,Ts-Ty are formulated by multiple tensor product of 3 basic symmetric second-order tensor,
which are, (See Appendix B)

1=diag[l 1 1] (9.59)
ﬁ:ﬁ where S=s- p'nC:[A—%nc(@l}:c' (9.60)
S
2 | J6 6 6
Ne=0) = Mo = \/%ﬂodlag {_? 3 —?} (9.61)

Double products (double contraction) of these basic tensors with deviatoric forth-order tensor A result in
second-order tensor shown by,

A:1=0, Ain.=1., A:n=n (9.62),(9.63),(9.64)
Double products among these basic tensors result in scalar values shown by

1:1=3, 1:9,=0, 1:n=0, n:n=1 (9.65),(9.66),(9.67),(9.68)
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Index T Scalar components u
® 1®1 (9K)’1+r—é U,
2 A (2G) " +AyH, u,
@ 1®n % u,

4 Aol Ay(H4——Hlj+— u,

2
(5 hen Ay[ 5——H3J+i U

r 3,
6 1®q, 0 U,
(7 n.®1 AyH; U;
@ nen.  -ArEH, oy,
1
9 n.®n 0 U
(10) n . ®n, 0 U,

-1
Table 9.13 Spectral componentsof €%

Based on Eq.(9.59)-(9.61), it is concluded that the reciprocal bases 1,n,n, €S are neither unit tensors nor

mutually orthogonal tensor. Though orthonormal bases are obvious, reciprocal bases employed in the study is
convenient to deal with axis-transformation for anisotropic materia response in particular.

1.bs
9K  9p’
EE-I%
2G 2p'qg
D
U, \/gp
u, q 3
23 —-3M + -+ M M+ :
N b D (ﬂ J_ (ﬁ +2M(nc ﬂc)j .
u, Jep' 6pp’ p q
u=1"%1_
Ug M q
u, 3D 3D Py,
Ug 2Bpp" 2pBp’ q
Uy 0
Uy D
———=Ay
2p'q
3J6D )
45p'q
0 (9.69)
0

where /5’=M—%—\/g(ﬁ:nc), g=133,

According to the SO model with linear elastic moduli (nonlinear elastic moduli by semi-backward Euler), the
corresponding constitutive coefficients u;-uyg shown in Eq.(9.69)are evaluated by Eq.(9.56). All of these terms
can be numerically evaluated at a current step. Consistency parameter Ay isiteratively updated using algorithmic
tensor (Refer to EQ.(9.48)). Although nonlinear elastic moduli arein flavor for computation, linear elastic moduli
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with backward update (semi-backward Euler) can be used for smple formulation with similar accuracy but
slower in convergence. For exact form of nonlinear elastic moduli, the elasticity tensor derived in Appendix E
should be employed.

iof2PrKDF 1 D D 3D 4545490 (9.70)

9 Kp' 26 ep' ep 2p'p

It is observed that a consistent ¢®*is not symmetric forth-order tensor by the fact that; Us= Us, Ug U; and Ug# U.
A substitution of Ay=0 into expression of u for consistent ¢®* in Eq.(9.69) results in expression of u for
continuum c¢®* as shown in Eq.(9.70), which is previously shown in Eq.(9.36) (note p'=3l,). The continuum is
symmetric forth-order tensor by the fact that; us=u,. This method can use to verify a consistent expression with a
continuum expression.

9-7-2 Consistent tangential tensor in regard to the SO model
Consistent tangential tensor can be obtained by the inversion of ¢®*. Expanding of Eq.(9.58) is shown by
Eq.(9.71),

c® = u[1®1]+u,[A]+y,[1®N]+u, [A® 1]+ u [A®N]+Uus [1®n ]
+U, [, ®1]+Us [N® |+ Uy [n, ® ]+ Uy [0, ® 0 ]
The inversion algorithm starts by expressing an inversed form of c®*to be coaxial with itself. The tensor bases

do not change but scalar coefficients do change by mapping law in the space. To evaluate these quantities, the
identity of double product isimposed by referring to Eq.(9.73).

c® =V [1®1]+V, [A]+V;[1®A]+V, [A® 1]+, [N®N ]+ Vs [1® 0, |
+V; [0, @1+, [A® 0 ]+ Vg [0, ®N]+ Vo [0, ® 7]

(9.71)

(9.72)

¢ ic® =1 =%[1®1]+[A] (9.73)

Double product between ¢®*in Eq.(9.71) and ¢®in Eq.(9.72) is shown in Table 9.14. The unknown scalar
quantities vi-v;o assumed in expression of ¢®in Eq.(9.72) is finaly determined by a system of 10 linear
equations given by Eq.(9.74) providing that determinant D, given by Eq.(9.75) is not zero.

— 2 — 2 — — —
D - _[(n IM)” U Ug — (T2, )" UgUgUy + 12 mUyUl, — 11y Uy UpUg + 112 1 U, U, U (©.74)
v 2 *
M * MUsUzUg + UyUsUy + M S MUsUgUy + M MU UgU, — LU Us — U, Uy
[3u, 0 O U, +n:m.Ug 0 0 n:imU;+m,:nU 0 0 0 1
0 u O 0 0 0 0 0 0 0
0 u 3y 0 Uy +N:mUg 0 0 0 n:nU; +m, MU 0
3uy, 0 O U, +u;+n:nuU, 0 0 ninUs+mn N 0 0 0 (9-75)
0 u 3u, 0 u,+us+n:nu, O 0 0 n:mUs +1, iU 0
0 u O 0 0 3u, 0 Uy +N U 0 n:nU; +n, U
u, 0 O 0 0 0 u, 0 0 0
0 u O 0 0 3u, 0 U, +Ug +N MU 0 N:nUs + M, i MU
0 0 3y 0 0 0 0 0 u, 0
10 0 O 0 0 3u, 0 0 0 u, |

Solutions for v;-vig (denote by vector v) are presented in terms of u;-uypas shown in Figure 9.4 And hence, a
consistent ¢*® can be determined. It is found that a consistent ¢ is not symmetric forth-order tensor due to
non-symmetry of ¢®*,

According to the mathematical implementation of consistent ¢®* shown in Eq.(9.56), to obtain a consistent ¢
for the anisotropic plasticity model in 3D standpoint, it is required to invert 6x6 matrix at each Gauss point per
iteration, which can reduce the powerfulness of return-mapping algorithms. The proposed inversion algorithm
alows a direct evaluation of an exact linearization of material stiffness inexpensively. Furthermore, a quadratic
rate of global convergence of Newton's method can be achieved with less computational effort required by
conventional anisotropic plasticity model [2].

The proposed inversion algorithm can be considered as the extension of method proposed by Borja, R.I. et .
[1,4,5] for isotropic Critical-state models [6] to be applicable to anisotropic Critical-state models. Moreover, the
concept may break similar difficulties that are seemingly appeared in computation for anisotropic or complicated
model by return-mapping algorithms[7,8,9,10,11].



141

Table 9.14 Invariant-based spectral composition of double product of c** and c®

scalar : v v, A A A Vg Vs v, A Vy Vi
U itensor | 1®1 A ®n nei A®n_ 1®m, n®L n®n, 1 .00 . ®mn
u | 1®1 [3181) O 3(1®n) 0 0 3191, 0 0 0 0
u o+ A 0 A 0 n®1 nen 0 n.®1 nen, n.®n n.®n,
U ®A| 0 1®F 0 101 1®n 0 nm(lel)  1®y, A (l®n) A (1®n,)
@i _ | W | M®1|3[®1 0  37Aen) 0 0 3(h®n,) 0 0 0 0
u | n®n 0 fo®n 0 n®1 n®en 0 nin, (N®1) nen, A, (A®N) N (A®n,)
Us i 1®n, 0 1®n, 0 nin (1®1) n:q (1®n) 0 1., (1®1) nin (1®n,) n.:n (1®0) 7n.:q (1®7,)
u 1 n,®1(3n®) 0 3(n®n) 0 0 3(n.®n,) 0 0 0 0
U i nen, 0 nen, 0 niq ("®1) n:q (N®N) 0 1., (N®1) nin(A®n,) n.:n(A®N) n.:n(N®n,)
U o n.®n 0 n.®n 0 n.®1 n.®n 0 nin (n,®1) n.®n, n:in.(n.®n) nin(n.®n,)
Uy inc®nc 0 n®n 0 nnn®1) (@) 0  nin(n®1) Nin(n®n) M (n.®N) n.:n(n.©n,)
Index | Tensor Scalar components I
@ 1®1 3UpV; + UgVy + 11 (UgVy + UgVy )+ Mg MUYy 1
(2 A U,V, 1
3 | 1®n 3U;V3 + UV, + UgVg + 1 1 (UgVs + UgVg )+ 1 : McUgVo 0
(4) | n®1 U,V + 3UgVy + UsVy + i (UsVy + UgVy )+ 1, 2 MUgVy 0
(5) | "®N U,V + 3UgV3 + UsVy + UsVs + 12 M (UsVg + UgVs )+ Mg i MclgVe | O
6) | 1®n, 3U;Vg + UgV, + UsVg + 11 : ncgug,v10 +UgVg %+ 1 : MeUgVio 0
(7) n.®1 UyV7 +3U7Vy + UV, + N M (UggVa + UgV7 )+ N McUypVy 0
8) [n®n, 3u,Vg + UsVg +UsVg + N nc(u5v10 + u8v8)+ UgVo + Mg iMcUgVyg | O
(9 | e ®N | 3UVz +UyVg + UgVy + UgVs + 1 2 M (UggVs + UgVg )+ M : MeliioVg | O
(10) |Mc®mc | BUzVe +UpVyg + UrgVy +UgVg + 1 1 Mg (UggVg + UgVyg )+ M i MclizoVao| O
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Figure 9.4 Consistent tangential tensor for the SO model
9-7-3 Consistent tangential tensor in regard to the original Cam-clay model
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Figure 9.5 Consistent tangential tensor in terms of invariant-based spectral composition

In order to verify the closed form obtained in Eq.(9.72), a closed-form of ¢c® applicable to the origina Cam-clay
(CC) model given by Yatomi, C. & Suzuki, Y. (2001) [6] will be compared. This Oadopted solution was derived
by a method introduced by Borja, R.I. & Lee, S.R. (1990) to the modified Cam-clay model. The SO model can
be simply reduced to the original CC model by taking n, to zero. A components of consistent ¢® in regard to the

CC model can be derived as outlined in Figure 9.5.
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Figure 9.6 Compliance of consistent tangential tensor in regard to the CC model
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Figure 9.7 Consistent tangential tensor in regard to the CC model

A removal of anisotropic response in the SO model reduce a number of individual basis to five instead of ten as
shown in Figure 9.6. Therefore, anisotropic features are a major source of difficulty when formulating a plastic
congtitutive model into return-mapping scheme. The congtitutive coefficients u;-us can be evaluated as
represented in Figure 9.6. By a similar manner applied in previous section, an inversion of non-symmetric c®*is
given in terms of the constitutive coefficients vi-vs as shown in Eq.(9.76). A non-symmetric consistent tangential
forth-order tensor in regard to the CC model is thus obtained. The expansion of solution given by Yatomi, C. &
Suzuki, Y. (2001) reaches the same result shown in Eq.(9.76). Therefore, the inversion algorithm proposed in the
study is proven by a certain degree. The algorithm proposed is simpler and rather straightforward than equation
manipulation technique introduced by Borja, R.I. et al. (1990). The procedures to evaluate ¢® by the inversion
agorithm are concluded in Figure 9.7. A verification of result in Eq.(9.76) is carried out by substituting Ay=0
into Eq.(9.76) to degenerate a symmetric continuum tangentia tensor as shown in EQ.(9.77), which is satisfied
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with a standard form.

Kp'2(p'B+3GD) +3Kp'DGAy
2Gp”(M - B)(p?(3GD + p' #+ A°KD) +3AyGD( p'+ KDM )
p7 (M- 5)+34/DG (9.76)
—J/6p? BKGD
J6GDKp'((M - ) Ay - p' )
~6G°p” D(p” (M - )+ Ay(p'(M —28)+DK(M* =M g - %))
(p?(M - B)+3AyGD)

1
V=
3(Dp'+ KMD?)GAy + p*?(p' 8+ 3DG + DK ?)

K(3GD+ p' )
2G(p' B +3DG+ DK %)
V= ! —J/6KDGp (9.77)
p'f+3DG + DK 2 '
—J6KDGpS
—6G°D
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10.1 Matrix Notation

The brief recall of the basic matrix notation used in finite element modeling applied to continuum mechanicsis
given. The standard conventions are used to abandon tensor in favor of matrix and vector.

10.1.1 Three dimensionsimplementation
For 3D formularization, the following notations are employed for stress, strain, plastic strain and stiffness matrix.

Exx Ean O Cii Cun Cum Cup Cu Cux
Ey € )E)y Oy Ciz Coz Cus Cowr Cous Cup
£— &4 e = & z’;  a= Oy C= Cusm Couss Cam Cap Cas Cagn (10.1)
2z, 2¢ xpy Oy Ciur Corr Car Cop Cioiy G
25, 2¢ )?z Oy Cius Cois Cais Cuis Gz Cips
2, 2¢;, Oy [Cuzs Coms Cagm Cis Cis Cogs

Correspondingly, the identity forth-order tensor is reduced to (6x6) matrix while identity second-order tensor is
reduced to (6x1) vector as shown below respectively,

100 0 O O 1
010 0 0 O 1
001 0 0 O 1
| = , 1= (10.2)
00O0%Y2 0 O 0
000 O Y2 0 0
000 0 0 Y2 0
The deviatoric forth-order tensor A is reduced to,
(2/3 Y3 -3 0 0 O]
-¥3 2/3 -3 0 0 O
Aoi-ligo| V3 Y3 F3 0 00 (10.3)
3 0 0 0 22 0 O
0 0 0 0 12 0
| O 0 0 0 0 2]
I sotropic elastic tensor (See[1]) can be represented by using Eq.(10.2) and (10.3) as,
[K+4G/3 K-2G/3 K-2G/3 0 0 O]
K-2G/3 K+4G/3 K-2G/3 0 0 O
. K-2G/3 K-2G/3 K+4G/3 0 0 O
¢ =K(1®1)+2GA = (10.4)
0 0 0 G 0 O
0 0 0 0 G O
0 0 0 0 0 G|
Also, the double dot or double contraction is reduced to dot product in the sense that,
¢.e=0,¢ =>0-e=0¢ and <s=C:s,E:CUk|5|j:>6:C~£'5:Cij£je (10.5)
However, double product of stress tensor to stress tensor (not to strain tensor) needs to be modified. The
following example show how to modified the product,
J, :%s(m) Siaxy = %s(exl) 1 76x0) Sy AN Clagayars * Craxanaxy) = Croxey -1 (6x6) * Crae) (10.6)

The double product modification lead to different definition for inversion, for example define E' as an

inversion of =, then

—_ =1 —_ -1 —_

= (3x3x3x3) * = (3x3x3x3) I (3x3x3x3) — =(6x6) IRCORS (6x6) — |(6><6) (10-7)
It isfound that theinversion of Z inreduced format is

—_ —-1

E'exe) = | oxe) "2 (6x6) | (g (10.8)

10.1.2 Two dimensions implementation both for plane strain/axi-symmetric
For 2D formularization, the following notations are employed for stress, strain, plastic strain and stiffness matrix.
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Exx Eo O C, C, G G,

e={ | &P = 85{) Lo=1""!, c= Ca Co Ca Cu (10.9)
2¢,, 2, Oy C, C, C; C,
€z & Oy Cu Cp, Cpy Cy

Correspondingly, the identity forth-order tensor is reduced to (4x4) matrix while identity second-order tensor is
reduced to (4x1) vector as shown below respectively,

10 0 O 1
01 0 O 1
| = , 1= (10.10)
0 012 0 0
00 0 1 1
The deviatoric forth-order tensor A is reduced to,
2/3 -3 0 -Y3
Aoi-Ligyo| Y3 23 0 U3 (10.11)
3 0 0 Y2 o0
-3 -3 0 2/3
I sotropic elastic tensor can be represented by using Eq.(10.2) and (10.3) as,
K+4G/3 K-2G/3 0 K-2G/3
c®=K(1®1)+2GA = K-2G/3 K+4G/3 0 K-26/3 (10.12)

0 0 G 0
K-2G/3 K-2G/3 0 K+4G/3
The other modifications are similar to those suggested for 3 dimension implementation.

10.2 Numerical Integration

Numerical integration is used extensively in finite element method (See more details in [5, 2, 3, 4]).
Principles of numerical integration will be summarized by the following sections. The concept of iso-parametric
finite element will be reviewed. Interpolation functions for geometry transformation will be examined.

10.2.1 Gauss-L egendre quadrature

The Gauss-Legendre quadrature is the most popular method for numerical integration technique. The sampling
points (Gauss points) and weights H is based on the Legendre polynomial. In general, integration can be
approximated by,

+1 n
jf(r)dr =>"H.f(a,) (10.13)
-1 k=1
By the same manner, double integrations is approximated by,
+1+1 n n
IIf(r,s)drds:ZZHiij(a,.,aj) (10.14)
—1-1 i=1 j=1
The sampling points and weights for 2 to 5 points integration are given in Table 10.1 (See [5]).
n a H
1 0.000000000 2.000000000
2 + 0.577350269 1.000000000
3 0.774596669 0.555555555
0.000000000 0.888888888
- 0.774596669 0.555555555
4 + 0.861136312 0.347854845
+ 0.339981043 0.652145155
5 + 0.538469310 0.478628670
0.000000000 0.568888889
+ 0.906179845 0.236726885

Table 10.1 Abscissae and weight coefficients of the Gauss-L egendre quadrature formula
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10.2.2 shape function
A shape or weight function can be defined based on the Lagrange polynomial interpolation defined as the
product of,

LX) = H X" % (10.15)

Where n is a number of nodes. When x=xy, the product becomes unity. However, when x=x.,, the product
become zero. For one-dimensional element of two nodes from —1 to 1, node one is -1 and node two is 1. The
corresponding shape functions at node number one and number two can be defined by,

l = c-¢ - ¢-1 :_1 1 10.16

(f) ":1_52 (_1)_(1) 2§+ 2 ( )
-6 _é-(n 1,1

L (&)= - =ZF+ = 10.17

(é) fz _égl (l) - (_l) 2 é: " 2 ( )

For one-dimensional element of three nodes from —1 to 1, node one is -1, node two is 1 and node three is 0. The
corresponding shape functions at node number one to node number three can be defined by,

676866 1. 4 10.18
Ll(g) 51_5251_53 25(5 ) ( )
=& &-& 1
LYoo 56 1o 4 10.19
== e (10.19)
LG S8 e ) (E1 10.20
L@)= T =D (10.20)

Shape function corresponding to any node will equal to 1, the biggest weight number, at its own node. The plot
of shape functions along with its domain between -1 to 1 can be viewed in Figure 10.1. For two dimensions, the
corresponding shape functions is extended by,

Lim (X%, Y) = L, (X)L, () (10.21)
Two-dimensional shape functions are applied in two-dimensional FEM. A particular quadrilateral domain
between -1 and 1 on both x and y directions will be considered in the next section.

1 T 1 T
1
_ =£(¢-1)
Doyl 2 05~ —
2 2 —
_ L 05 7] E~é-(é+1)
Ze4= 2
2 —_—
e -(6+1)(6—1)
0 ' -05 '
-1 0 1 -1 0 1
< <

Figure 10.1 Weight distribution of shape function (left: two nodes, right: three nodes)

10.2.3 I'so-parametric quadrilateral element

Even in rather complicated problem, certain properties along the boundaries and interior of the element is
conveniently integrated by interpolation function in a normalized space defined by boundaries lying at 1. A
generalized geometry of element is defined by local coordinate system. A mathematical coordinate
transformation is required for shape functions and their derivatives in order to evaluate local stiffness matrix
using numerical integration. Four-node and nine-node quadrilateral iso-parametric elements are shown in Figure
10.2 and Figure 10.3 respectively.
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je
® 0O
n=-1

Figure 10.3 9-node displacement-based element with 3x3 Gauss integration

The (2x2) shape functions associated to each node number as ordered in Figure 10.2 are determined in
Eq.(10.22). while the (3x3) shape functions associated to each node number as ordered in Figure 10.3 are
determined in Eq.(10.23). & and n are called iso-parameters. Moreover (€, 1) is called natural or generalized
coordinates.

200y

: Ceml [Fhem-

N (£,77) = Lﬂ(g’”) -1 (10.22)
2577 4 1 1
L) | aéryeD

e+
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1
2577(5 -D(n -1

ZEnE Y09
L11(‘§177)

L) | ZnEDm+Y
L, (& m) 1
) L,(&,m) 2577(5_1)(77 +1)
Noya (£,7) =4 Lar(&:m) | = _l D(E -1 (1 -1 (10.23)
Cen S E+DE -0 -Dn
L@ | -0zt +00-)
Lis(&.77) i
La(@m)] | =5 E+DE D0 + Dy

-2~ +30 -
&+ D07+ -1

10.2.4 Interpolation function
For prescribed global xy-coordinates of nodal points in a rectangular element model, interpolation functions for
global xy-coordinate matching to local &n-coordinate can be expressed by,

X(Em) =NEn)-X, y&m=NEmny (10.24)
where X isthe corresponding global x-coordinates as ordered in the similar way with local &-coordinates. For
example, X' ={x X, X X} for(2x2)-nodeselement are the x-coordinates of nodal 1-4 in Figure 10.2.

By using local-coordinate system, global xy-coordinate system is easy to refer. According to Eq.(10.24), the
middle point in element can be referred by local coordinate system of (0,0). Then, globa coordinate system is
matched by,

1 1
X(O, 0) = Z(Xl X+ X+ X4) ) y(O, 0) :Z(yl +Y,tYy;+ y4) (10-25)

Unit volume of orthogonal infinitesimal element of dx by dy can be related to infinitesimal element d¢ by dn
using Jacobian of the transformation [6],

a(x,y)
dv = dxdy = |—~|d&dn (10.26)
o(&,m)
If x andy are differentiable in aregion, the Jacobian of x and y with respect to & and 1 are defied by
ox ox|
;= =
Jxa) = |:8(X’ y):| = N (10.27)
o&,m) oy oy
¢ on
According to Eq.(10.24) and chain rule, Jocobian in Eq.(10.27) is determined,
ON , ~ 8N ) ~ oN, oN,
J=| . R = N N (10.28)
ON(E, ) o ON(7m) o i i
% . —X —Y,
on on ) on 2 on

Derivative of interpolation function for 4-node element is shown below,
of | | o o0& o€ 1[77—1 -n+1 np+1 —;7—1}

N'oxay (§177) = =2 E-1 —£-1 &+1 —£+1

- (10.29)

oN| |ON, ON, oN, oN, | 4

on| Lom on on on
Derivative of interpolation function for 9-node element is shown below,
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(o1 1 T
R Z6E-D@-y
HCEOR) 25+ D@-y
@+ 25 D@r+Y
N %(25—1)(%1):7 %f(é—l)(ZnJrl)
- 3 65 B
Vool g 17l - 2@ E-@D (1030
on 1
—E(n+1)(77—1)(2§+1) —-&(E+Dn
£+ D) 2+ E D@7+
20+ D12 - £y
2£(n+ (7 -1) 2 +1(E -1y
Jacobian matrix can be written as a product of two matrices given by,
Iy =N {% 9} (10.31)

where {)”( 9} is referred to set of globa coordinates with respect to type of element. In case of 4-node
element,

X Vi
% 9= Z zz (10.32)
X Vi
10.3 Element

Properties in element include nodal displacements, stress and strain. The inter-relation between these
properties will be presented. Interpolation functions given in previous section are used to determined strain from
nodal displacements. The fundamental theory for the development of a local stiffness matrix to relate strain to
stress will be examined.

10.3.1 Displacements
The interpolation function is applied to interpolate the displacement field based on nodal displacements.

u(gm) =NE -G, v&n)=NEn)-9 (10.33)
where u and v refer to displacement field in x and y direction respectively, G and V refer to the nodal
displacements x and y direction respectively as ordered in Figure 10.2.

O={uw u u ul, I={v v, v vV (10.34)
By the result of Eq.(10.33)-(10.34), vector of displacement can be given by,

_ ~N-u, (10.35)
vl (N

where N isinterpolation matrix and u® isvector of nodal displacements. In case of 4-node element,

NN, ON O N O N, O
Newy =9 : ° ‘ (10.36)
ON O N O N, O N,

ue(8x1):{ul Vi U Vo U VoU, VA}T (10.37)

10.3.2 Srain
In regard to 2-dimensional plane strain quadrilateral element, small strain is defined by,
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ou
) x
N o
&g = wlooo oy (10.39)
Vxy ou ov
fz)way |oy ox
0

(4x1)
According to Eq.(10.38), the partial derivatives of u and v with respect to global coordinate x and y is required.
Thechainruleis applied in the following form,

ou) [aN)  [aNog oNon

- 0& ox Om ox| .
OX|_Jox| )05 ox anox| (10.39)
Qf N aNag Ny

o) oy o0& oy on oy
Derivatives of interpolation function with respect to global coordinates in EQ.(10.39) can be related to
derivatives of interpolation function with respect to local coordinates by,

N| [og an] [N

28 75 P T

ox|_|ox ox| ool o) | g (10.40)
oN| |96 on||aN| [a(xy)
oy oy oy on

Referring to Jacobian assigned in Eq.(10.27), the above equation can be written by,

N'=J Y N (10.41)
where N' ismatrix contained derivatives of interpolation function with respect to global coordinates. In case of
4-node element,

ON| [oN, ON, &N, oN,
OX OX OX oOx oX
)17 10.42
@[Tl N, N N Hos
oy d oy oy oy
Partial derivative shown in Eqg.(10.38) can be expressed as operations and displacement variables by,

N 1

9 9 9 9
OX OX
o 2 o 2 N ON O N 0 N 0
9 J 9
&) = oy {} = oy { ' ’ : ‘ }ue (10.43)
PR Vew | o 4 O N O N, O N 0 N,
oy ox 3y ox
L 0 0 d(ax2) 0 0 A(ax2)

As aresult, the kinematic matrix B, in EQ.(10.44) defines the kinematic relation between the strain vector ¢
and the nodal displacement u,. In case of 4-node element represented in Figure 10.4, under plane strain
condition, B, isdefined by Eq.(10.45),

£=B,-u, (10.44)
[ ON, o N, Ny g N, g )
oX OX oX oX
o Moo M, o N, N,

B, = oy oy 2% oy (10.45)

ON, ON; ON, ON, ON, N, ON, ON,
dy ox o9y ox oy ox  dy  ox
| O 0 0 0 0 0 0 0 |
In case of 4-node element under axi-symmetric condition, the similar fashion can be achieved as shown below,
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) o

or or
" ov 0 9
¢z 0z oz||Np 0O N, O N, O N, O u

€= = = . .

- ou ov 6 o/|/0 N O N, O N, O N,| °

_+_ R— JR—
Egp oz or o0z or

u 1

' - (10.46)
N Ny g N N,
or or or or
0 oN, 0 oN, 0 ON, 0 oN,
_ 0z 0z 0z Z |, =B u
N, oON, oN, AN, oN; ON; oN, N, | ° 9 e
oz or oz or oz or 0z or
N N N N
L r r r r i

-» .4,
2r’u2

Figure 10.4 Noda displacements and internal forces for 4-node element under plain strain and axi-symmetric
conditions

10.3.3 stiffness matrix
Actually, the stiffness matrix is defined by integration of stiffness field over element domain,

k, = [ BIc*B.dQ° (10.47)
o

By using Gauss-L egendre quadrature, the domain integration will be reduced to the summation on Gauss points
in the element given by

keZZZBZ(éJ]])CmBe(é,Ui)HideQe (10.48)
i=1 j=1

Herein n is a number of Gauss points in each direction, (&,7;) isloca coordinates of Gauss points, H; and
H, areweight functions defined in Table 10.1. Moreover, using Jacobian transformation, global domain can be
mapped to local domain by,

dQ°® = dxdy =|J(£,7,)| dédn (10.49)
The consistent tangential moduli ¢® is determined by 10 coefficients with 10 tensor basics introduced in
Chapter 9. In stress update agorithm, the algorithmic moduli = is also computed directly from 10 coefficients

with 10 tensor basics. The direct evaluation dramatically reduces time needed for performing the inversion of
those moduli. See summary in Figure 10.5.
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spectral table T a b u \Y
index tensor scalar scalar scalar scal

10 10
o m =Y afm ] m ==Y (]

@ A & b
(€] ®n & b; V3 P P
I=1 i=1
@ n®l a =3 b=b vy
Vs

® nen  a by

© 1®n, & by 3 1 10 10

U] n®l & =3 b,=h v o

PR e D um e - Y
© n®N =3 h=h Vo - -

(19 O & by Wy Vo =1 =1

E&FEFFEFEFEE

Figure 10.5 Constitutive matrices

10.4 Global Solution Scheme

For most engineering practice, the non-linear response is primarily attributed by material non-linearity
while geometric non-linearity is a second importance. In this study, the geometric non-linearity is not the main
focus, therefore, infinitesimal deformations and strains are considered. In displacement-based FEM, a solution
previously converged at time t=t, is known and satisfied global equilibrium requirement which can be shown by
unbalanced force,

F'(c')-F* =0 (10.50)
where d, is the nodal displacement vector at time t=t, . F:* is the vector of applied nodal forces and
F" =F™(c',) isthevector of internal forces obtained from stresses ¢, in element.

A solution in terms of displacement d,, at t=t,.;for anew loading F°, can be solved by Eq.(10.51).

AF(d,.,)=F"(c",,,)-F=0 (10.51)
where
F2 = [N"b,.dl, + [ N"t,.dT, (10.52)
T, T,
F" (6" 1) = /n%_elf Beo',, dQ° (10.53)
Qe

where ,nA_el is assembly operator for all assemblage elementsin spatial domain.

According to the Newton method, a solution can be obtained iteratively from a previous iteration (k) as
shown in Eq.(10.54) Let (o), be the value of a variable (s) at the k™ iteration during the load step in

n+l

[tnatn+1]-
OAF@) T* v
d? = dat’l—{[—ad( } -AF(d)} (1054)
n+1
where
i ' (k) int [
OAF()[" _ o™ (o) )| _ oF" (0" (10.55)

8d |n+l ad n+l | ad $1k+)1
The schematization of the global solution is shown in Figure 10.6.
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— ®
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Figure 10.6 Schematization of global solution

10.5 Global Iterative Procedures

The gradient in Eq.(10.55) can be derived by chain rule as followed,
F™ (') re . .06 0gl

n+l — n+l n+l e
1(K) _ e (k) (k)
66 n+l e~19€ 8£n+1 adn+1
N [ pT ek
=A Blc*¥B dO° (10.56)
e
ne
— ) _ g k)
- élkeml =K n+1
o6 1(k)
where ¢P{) =—mt (10.57)
88( )

Herein, the consistent tangential stiffness tensor Eq.(10.57) is employed in EqQ.(10.56). K&, is the global
tangent stiffness matrix evaluated ate iteration (k).
Refer to Eq.(10.54), the variation of d,,, of each iteration can be computed by,

1
. . OAF(d¥,
s a2 -a, | PG ara)
2d®, (10.58)

-1 .
= _[K (nk+)1] : {Flm c ‘(nk+)1) - Fr?fl}
The full Newton iteration procedure to solve these equilibriums equations can be summarized in Eqgs.(10.59)-
(10.60). The new displacement is updated iteratively by Eq.(10.61)

KR -8di? = —{F™(o1%) - ) (1059)
Ad? = Ad, +adl? (1060
dfi? =d, +AdYY = +5d( (1061)

with initia conditions given by previously converged values at step t=t,,
KO =K ;6'® =¢';F"(c'®)=F":d® =d, (10.62)

n+l n+l n+l n+1
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Qe

Figure 10.7 Global iterative procedures

A sequence of linear system in EQ.(10.59) solves a non-linear system in Eq.(10.51). The iteration would be
preceded until the sufficiently small convergence is reached. Convergence is measured in terms of residual force
norm Eq.(10.63) and the discrete energy norm Eq.(10.64), which is computed from the residual force vector and
the incremental nodal displacement vector.

Ein® _ et
n+l n+l
<TOL ;e (10.63)
n+l
[ AR _
|6dn(+1) ] < TOboeg Where AR =F"(o"0)—F7 (10.64)
n+l n+l

Summary of global iterative procedures are shown in Figure 10.7.

10.6 Local Iterative Procedures

At each global iteration, local iteration is invoked to correct or relax a stress by enforcing back to yield
surface. On each element, by the standard iso-parametric interpolation function, the incremental nodal
displacement calculated in global level is used to calculate incremental strains at each Gauss points using
kinematic matrix or strain-displacement matrix as shown in Eq.(10.65).

Ag,., =Bl -Ad{P (10.65)

At each Gauss point in materia level, the information on initial state variables (typicaly, stress, strain,
plastic strain and hardening variables) and applied strain increment are passed to the stress update algorithm.
Using local iterative procedures presented in Figure 10.8, the constitutive model computes the material response
over finite increments of strain. The details of update algorithms are shown in Chapter 6 for state of stress at
corner and Chapter 7 for regular yield function in which the return paths generated by the algorithm is viewed as
non-coaxial mapping as shown in Figure 10.9.
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Figure 10.8 Local iterative procedures

The whole algorithm can be considered as the interaction of the object modules that are element, node,
material, assembly, spatial domain, iteration and linear system as given in Figure 10.10. The agorithm starts
from calculating external nodal forces in node module. By the same time, nodal internal forces determined from
initial stresses and the corresponding local stiffness matrix are carried out in element module using interpolation
functions. In assembly module, the global stiffness matrix is determined together with the assembly of
unbalanced nodal forces. Iteration module controls the convergence of solution given by the incremental
displacement. The incremental displacement is used to determined strain increment in element module. The
prescribed strain increment drives return mapping algorithm to evaluate stress in material module. The updated
stress is employed to determined internal forces. The agorithm will be repeated until the converged
displacement is reached.

141 o G

Figure 10.9 Non-coaxial return paths is observed on the SO yield surface
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Figure 10.10 Object interactions
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11.1 Initial-boundary-value-problem

A numerical simulation is presented to illustrate the performance of the return-mapping algorithms and the
practical importance of consistent tangential stiffness tensor in a Newton solution procedure.

11.1.1 Simulation of CD test

The numerical simulation of drained bi-axial (plane strain) compression tests up to half of over-burden
pre-consolidation pressure. Soft clay parameters and FEM mesh are shown in Figure 11.1. |so-parametric
rectangular element with 2x2-Gauss points is employed. A tolerance is set to 10 for both global and local
iterations. Maximum iteration number is limited to 50.

0.50',
/)
8) © Basic parameters

® D=0.1015, A=0.8254,
M=1.12, v’ =0.378,

VANERAN A=0.3765, e =1.735,

K =0.608, ¢’ , =100 kPa,

K. =0.702, ¢’ =69 kPa

Figure 11.1 FEM mesh and basic parameters

11.1.2 Effect of load increments

Figure 11.2 shows the calculation results with varying load increments of 1, 5, 10, 20 and 50. By 50 increments,
the solution does not change significantly and hence the exact solution by the algorithm is achieved. It is found
that the resulting solutions can reach a convergence with considerably accuracy even by arelatively large strain.

Tolerance = 10>

Normalized deviatoric stress

] ] ] ] ] ]
0 0.02 0.04 0.06 0.08 0.1 0.12
B8 1 increment ) . )
869 5increments Deviatoric stran

+++ 10 increments
® ® e 70 increments

— 50 increments

Figure 11.2 Comparison of results based on different load increments
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11.1.3 Rate of global convergence

Norm of residuals (log scale) Norm of residuals

Norm of residuals

Norm of residuals (log scale)

4 T T T T T T T T T

| % F U, N A N A A
1 2 3 4 5 6 7 8 9 10 11

©-© forceresidual Global step number
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01
001
1010 °

1010
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| | | | |
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1010

©© forceresidud

+—+ energy resicual Global step number

Figure 11.3 Results achieved by employing consistent tangential modulus

4P T T T T

10 20 30 40 50

66 forceresidua
+—+ energy residua Global step number

10 20 30 40 50
S forceresidual
+—+ energy residua Global step number

Figure 11.4 Results achieved by employing continuum tangential moduli
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According to calculation results shown in Figure 11.3 and Figure 11.4, it was found the solution
which is employed consistent tangential moduli reaches a convergence with quadratic rate while that of
continuum tangential moduli showed a sign of losing this performance. A norm of residuals governed by
consistent tangential moduli reach 10 by 10 iterations while that of continuum tangential moduli spent more
than 50 iterations to achieve the same accuracy.

11.2 Accuracy assessment

Isoerror maps of stress update algorithms are often used as the key numerical testing. [1, 2, 3] The
procedures are developed based on a strain-controlled homogeneous problem to typically assess the overall
accuracy of the algorithms. The stress points, which represent regular state of stress on the yield surface, are
selected, i.e., uniaxial, biaxial and pure shear. The calculation can be performed in terms of principal values of
the strain and stress tensors without loss of generality. At each selected point, a sequence of normalized strain
increments is specified to obtain the resulting stress contour map generated by the algorithm relative to the exact
solution, the value for which further repeatedly sub-incrementing produces no change in numerical results is
taken as the exact solution.

From the results, level of error can be roughly observed. As a rule, good accuracy (within 5 percent) is
obtained for moderate strain increments of the order of the characteristic yield strains. [4]

11.2.1 Characteristics strains
The characteristics strains are given by the specific strain at current yield stress. For Ky-consolidated clays, the
characteristics strains are given in terms of volumetric and deviatoric strains as shown below,

p’ P =
& :—"':'—O_:K (1.1
TOK(p) PR

q) q(l _Kno (11.2)

E. = = — = -
¥ 3G(p,) 3u'p,/kK 3u
In numerical illustration in this section, the characteristics strains are obtained as,
&, =2.387%, &, =1.591% (11.3)

11.2.2 Relativeerror
Relative error is calculated in compare with the exact solutions marked by ¢* and o¢'.*

ERR=\/{G'_G|*} Loed bol-oWli ook oo (11.4)

ek ket
6*:6%+06'.* 10,

In case of axi-symmetric stress condition, components of Eq.(11.4) can be simplified. The stress error can be
represented by,

{o-0"} :{o-0"} ={(p'=p*)1+s 57} { (' -p*)1 45 57}
=3(p'-p*)’ +{s-s%} { s-s} (11.5)
2

=3(p'-p*)’ +<(a -q*)°
The hardening variable error can be represented by,

{6'c_6|c*} :{6|c_6|c*} :{(plc _p|c*)1 +Sc _sc *} :{(plc _plc*)l +sc _sc *}

=3(p'.-p'*) Hs. -5} {5 s} (1L6)

2 2

=3(p-pt) +5(0 —a )’ =(3 +§f702j( Pl —p.t)’
The magnitude of error are sum of both stress and hardening variables.

¢'*:6*+c¢' *:¢' * =3p"*? +§q*2 +(3 +§/702j p'.*? (11.7)
Asaresult, Eq.(11.4) isreduced to,

N 2 .
3(p-p*)’ +§(q—q*)2 +[3 +3f702j(p )

ERR=

. 5 x100% (11.8)
3p™* +§q*2 +(3+3’702j p'*’
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11.2.3 Sub-step and Closest-point-projection methods

The comparison between results obtained by sub-step (SS) and closest-point-projection (CPP) methods are
compared. It was found that even a single step, CPP can give a better solution than SS. Figure 11.5-Figure 11.6
showed calculation results by applying different constant strain increments. 77, isstressratio g/p’ at corner. 7,

isstressratio at initial stress. 7, isstressratio at final stress.
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Figure 11.7 and Figure 11.8 show results obtained by CPP and SS with varying strain increment steps. For
a finer step both SS and CPP gave the same results as shown in Figure 11.9 (for example 1000 steps). It was
found that the solutions by CPP are more stable than that of SS especialy for large strain increment.
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Figure 11.10 Return path of converged stress

Figure 11.10 shows how stress return from trial stress to solution on yield surface by driven strains. Herein,
adriven volumetric strain is as much as characteristics volumetric strain and a driven deviatoric strain is as
much as 5 times of characteristics deviatoric strain.

11.2.4 1 soerror maps
Under axi-symmetric condition, isoerror maps generated by stress update algorithms are presented by Figure

11.11-Figure 11.22. The initial stresses are assigned at 7 =7, and 7 :gM . Relative error is calculated by

Eq.(11.8). Errors were found no more than 6% in a domain of driven strain 10¢,, by 10, . Isoerror maps can
figure stability and accuracy of algorithms under a specific domain of imposed strains.
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S Mean stress update accuracy

Figure 11.11 Isoerror map of mean stressfor initial stresson slopen,

S Deviatoric stress update accuracy

ERR2 vy

Figure 11.12 Isoerror map of deviatoric stress for initial stresson slopen,
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Hardening stress update accuracy
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S Mean stress update accuracy

Figure 11.17 Isoerror map of mean stress for initial stress on slope 2M/3

S Deviatoric stress update accuracy
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Figure 11.18 Isoerror map of deviatoric stressfor initia stress on slope 2M/3
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S Hardening stress update accuracy

Figure 11.19 Isoerror map of hardening variables for initial stress on slope 2M/3
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Figure 11.20 Isoerror map of overall update for initia stress on slope 2M/3
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Details of theoretical development contributed in this thesis are developed in each chapter. In generally, the
newly-proposed theories are summarized as following.

12.1 Generalized form of the Sekiguchi-Ohta model

The new form of the Sekiguchi-Ohta model shown in Eq.(12.1) is proposed in terms of the current
stress-hardening parameter instead of using a strain-hardening parameter as employed in the original model. The
new form is proven to satisfy objectivity by referring to the current state of stress tensor and the current state of
hardening stress tensor. The expression is consisted of three stress invariants and two material parameters.

Stress invariants employed are those of the first invariant of stress tensor (1,), the first invariant of

hardening stress tensor (1_,) and the joint second invariant between stress and hardening stress tensors J, . It is

found that the anisotropic feature of the model is due to the contribution of J,. Material parameters are the
Critical state parameter (M) and dilatancy parameter (D).

f(o'e')=f(l,,3,,1,)= |\/|D|n('—1}r D@ (12.1)
where i l

1=5,6 ®e€,, |=%[5ik5“ +06,0) |e ®e ®g, ®¢, Azl—%(l@l) (12.2), (12.3), (12.4)

| =3p'=0"1, | ;=3p'.=0',:1, s;,=A:c’, (12.5), (12.6), (12.7)

9, = ;f , §:{A—%nc®l}:c', 32=%§:§ (12.8), (12.9), (12.10)

12.2 Siffness matrix considering the corner of the SO model

Eq.(12.11) shows the stiffness matrix for the particular case of K,-condition or at-rest condition where the
current stress is positioned at the current stress hardening, or in other words, the stress in located in the corner of
the SO model. The tiffness matrix using an implementation from single yield surface would lead to an
erroneous solution.

The particular stiffness matrix is developed on Koiter’s associated flow rule. As aresult, the model can give
a reasonable feature under loading and unloading during K,-condition. This development settles the strongest
argument of the model and interprets the physical meaning of the corner in yield surface.

cep*:(1—A)K1®1+\E(1—A)770Knc®1+2G[A—nc®nc] (12.11)
where

LS R N RS (12.12), (12.13), (12.14)
1+e, l+g A

k=P Gouk, =302 (12.15), (12.16), (12.17)
K 2(1+v)
3(1-K

%zu no= S (12.18), (12.19)

12.3 K,-valuein regard to the SO model

In corresponding to the interpretation of 1-D K, consolidation phenomenon, Eq.(12.20) reveadls the
theoretical K, expression based on the SO model. This simple expression can predict K, value close to a
correlation generally used in soil mechanics. By this result, K, expression indicated by the SO model can give
more reasonable K, value better than those of specified by other Critical state models. Moreover, Poisson’s ratio
can be designated to have arélation with friction angle of soil material as shown in Eq.(12.21).

_ 2
K, - B-V9+1oM” (12.20)
6+2v9+16M?
2 _ 2 _
K, 9J9+16M2—8M?*-27 (1221)

v'= =
1+K, 9J9+16M? +8M 227
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12.4 Update algorithm in regard to the SO model

For a prescribed strain increment, the algorithm for evaluating stress, stress-hardening parameter, elastic
and plastic strains based on Backward-Euler difference scheme are provided by procedural steps listed below. A
current loading step is denoted by subscript n+1 while a previous loading step is denoted by subscript n. Because
solution of this non-linear system is obtained by Newton method, the loop of calculations is performed
iteratively using superscript (k) as iteration number. When the variables at iteration (k+1) and (k) are not been
changed much far from an acceptable tolerance, the calculation is terminated. Finally, al variables in Gauss
point level are updated.
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(12.25)

(12.26)
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AgP
Pens1=Plen exp[ MEB J (12.33)
6'cni1 = Plenya {1+ M) (12.34)

12.5 Consistent tangential moduli in regard to the SO model

The current stress, hardening variable and consistency parameter determined by update algorithm is used to
calculate the consistent tangential moduli as shown in Eq.(12.35).

(k)2
& = e® (6, 6" W Ay®) = |:éel +M+ AY{I - 61".' f ®1} (9% f } (12.35)

n+1'"Y cn+1? n+1/ — 166f P f c's

It is noted that there is no plastic material parameter, i.e, M (critical state parameter), D (dilatancy
parameter) in the expression because they are contained in Eq.(12.1). That is, the consistent tangential moduli
shown in Eq.(12.35) is matched with the form of yield function shown in Eq.(12.1). In other words, if the yield

n+1

3J, —
function is aternatively expressed by M In[|—1]+l—2 or %In(l—ljh/&]z , then the corresponding
cl 1 cl
consistent tangential moduli would be different with that appeared in Eq.(12.35). The consistent tangential is
employed in local stiffness matrix of each element as shown in Eq.(12.36). The global stiffness matrix is the
summation of whole local stiffness matrix as shown in Eq.(12.37).

ko = [ BIE*rB,dO° (12.36)
S
K®, = Ak (12.37)

e=1

12.6 Exact form of the consistent tangential tensor in regard to the SO
model

The consistent tangent moduli shown in Eq.(12.35) isinitially expressed in form of compliance consistent
format. The tensorial expression in EQ.(12.38) is expressed by 10 components of forth-order tensor. The
forth-order tensor bases are given in EQ.(12.50) and their corresponding coefficients are givenin Eq. (12.49).

, D
e -3y (12.38)
i=1
u = i+D—ﬂ (12.39)
9K  9p'
1 3D
— =y A 12.40
275G 2p'G V4 ( )
D
- 12.41
= Jop ( )
q 3
28 —3M ++ M+ > (n:
5 5 (ﬂ p.j M(ﬁ M+2M(nc-nc)j
u, = + : - < Ay (12.42)
Jep' epp’ p q
3D 3D [M_Zq']
p
U=t PIAy (12.43)
°28p' 28p° 0
U, =0 (12.44)
u=__D Ay (12.45)
U = 3@[) Ay (12.46)



178

U, =0 (12.47)
U, =0 (12.48)
u={u U, U U U U U U U Ul (12.49)
T={T, , T, T, T, T, T, T, T, T, 1250
~{1®1 A 1®7 N®1 N®N 1®n, n.®1 N®n, 7O 7O} '
where
p=mM-I_ g(nc:ﬁ), g=+37,, ﬁ:ﬁ (12.51), (12.52), (12.53)
P S

However, the explicit expression of the consistent tangential tensor can be obtained by EQ.(12.54) with the
same forth-order tensor bases but different material coefficients. The material coefficients are calculated by
means of inversed linear mapping which are presented in Eq.(12.55)-(12.56). By explicitly determined form of
the consistent tangential tensor using this technique, the computation time is dreadfully reduced in compare with
using implicit one which is needed to be inversed at run-time level.
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D, =—(N:n,) Ugl,Ug + (N M) Ul — T 1 UyUsU, + 112 M UyU,Ug — 1 1 U,U,Ug (12.56)
. . . 2 '
+1 M UsUrUg —UpUsU, — 1) S UsUgU; — 1 - M Uy UgU; + LUy U + U, Uy

Return-mapping method shows a good performance for coarse or large increment steps. The adequate
accuracy can be obtained even a single step solution. Though, return-mapping method needs many updated steps,
these tasks are carried out in local matrix, not in the global matrix. And global convergence due to Newton
method meets quadratic rate due to the consistent tangential tensor. As a result, there is a promising sign of
applying the method in large-scale computation like those of 3-dimensional numerical application, finite
deformation and soil dynamic where efficient update procedure is necessary to reduce computational time but
with high accuracy and stability.

Thus, this dissertation provides the basis for the unfolded areas for applying the Sekiguchi-Ohta model in
higher rank of numerical analyses.
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Appendix A: Tensor analysis

A-1 Theforth-order deviatoric tensor
The forth-order deviatoric tensor is defined by,

A=l —E(lDl)} (A.2)
where its component is shown by,

Aju =%[5|k5j| +4 5jk] ‘% 3 Q (A.2)
A symmetric property can be checked by

AT =1" —E(lm)} - E(fu 13% + EC& 19} A (A.3)

A deviatoric projection of a second-order stresstensor is given by
A:c{l —%(1 Dl)}:c: o %(1:0)1= S (A.9)
A double product with a second-order isotropic tensor
A:1=[I —%(1D1)}:L- I:F %(]] n:1
L L (A.5)
=1--(1:1):1=1-=-(3:1=1-1=0
3( ) 3( )
A double product with aforth-order deviatoric tensor

A.A—[I 3(151)H|— e 1)}
I 1 g4 1
=1 =20 —(0 DA S0 DEL 1)

1 1. 1
=1-Saoy JT@ Y —a -
1 1. 1 A.
=1-5a0y SOy S0

— 1 1q - -
=1-SA0% SOy S0 - 33J1 ) A

A double product with a second-order stress deviator
A:s=A:(A:6)=(A:A):6 =A:0 =S (A.7)

A U DR .
A=A ——=—A:s. =— =1 (A.8)
P pe P
A double product with a forth-order identity tensor

-l = —E = '—E . E
A.I—{I 3(1D1)]I [ 3I.(:D19 1 3@1 4) A (A.9)

A-2 Theforth-order anisotropically deviatoric tensor
The forth-order anisotropic tensor is defined by,

K=A—%[1ch+ no 4 %(nc:nc)]. 1 (A.10)
A symmetric property can be checked by
AT =AT —%[1D1]C+ nd 1 %(nc:nc)p 1’
1 - B (A.11)
:A—g[qCD} 0 nJ 5(:10:116)1:1 A
A double product with a second-order isotropic tensor
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K:le:l—%[mq; nd 14 %(nc:qc)[l 1:1
—0-1 Lo m)1=n, (.
=0-3{3nd +3(n:me)1= e +<(neime)2

1
=-|A-=10n, |:
A-S1on |
A double product with a second-order anisotropic stress ratio

_ 1 1
A=A —Z[10n+ 02 vy Z(m:m)L Y:m,
3 9

1
=1, —= : 1
. 3(nc 1)

1
=|A-=10n_ |:
[a-Lion]in
An anisotropic projection of a second-order stress tensor is given by
Aic=A:{p{1+n}+3}
={A:p{1+n} +A:d

A:S

A-3 Directional derivative of a norm of second-order stressdeviator
For a given second-order tensor, a horm associated with a scalar product is

8= +s:s

A sguare of EQ.(A.15) is,
o =s:s

The derivative of EQ.(A.16) with respect to sis,
2||s{|%=s: | +s:1 =25

For a non-zero s tensor, EQ.(A.17) gives Eq.(A.18) where n is a unit norma of deviator s

ofs_ s _

=" =n

os [

A-4 Derivative of a unit normal field of second-order stress deviator
A unit normal field for a given second-order tensor sis defined by

n=—>
s
A derivative of n with respect to s can be given by
-1
on_1ds O 1, s o
os [fas - o | os
Subgtitute Eq.(A.18) into Eq.(A.20), obtain
on_1

1 1,1 1
= -—sOr —F —rla —f n)
os o s Isl[s] Il

A-5 Redation between a norm of second-order tensor and the second invariant
The second invariant of stressis expressed by

1
J, ==s:s
22

According to Eq.(A.16), Eq.(A.22) can be rewritten as,

1
Jz:E”S"2 or | =123,

According to Egs.(A.19), (A.23), S canbegiven by,
s=|s|n =4/23,n

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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Appendix B: Sekiguchi-Ohta plasticity

B-1 Generalized Sekiguchi-Ohta model
Without losing the generality, the SO yield/potential function can be expressed in convex format based on three
invariants by

37,

f(Il,jz,IC1)=MDIn{II—1j+D | (B.2)
cl 1

The partial derivatives with respect to these invariants are shown below

i:EEM _3\/£J (B.2)

o, |, l

0J, 2,/33,1,

o __MD &
al, Iy '

B-2 Cartesian coordinate system in principal stress space
Relation between Cartesian coordinates system in principal stress space is expressed by using transformation
tensor Q.

x=Qls' (B.5)
- ; - i_
V2 2 o .
1
where Q= % 7;' 7;' , 6'= 0:2 , X=| X%, (B.6)
ERERE
B B B
Xz-axisis coincided with hydrostatic pressure axis and the principal mean stressis marked by,
X =~/3p’ (B.7)
Substitute Eq.(B.7) into Eq.(B.5) and solve for the arbitrary stress,
¢'=Q" X (B.8)

The locus of yield surface intersecting with a constant mean stress can be obtained by substituting Eq.(B.8) into
the yield function. Consequently, the SO yield functions can be expressed by,

' 2 _ , 2 w2 2
f(o‘,p'c)=MDIn£L|J+D\/3X2 20,0+ 21, P 434" (89)
P. p’
Rearrange Eq.(B.9) to aparticular form below
2 2
2 2M p'
2+ x ——nop‘j = —In[—] p' (B.10)
& [ NG TR
Transform Eq.(B.10) to apolar coordinate system by introducing
2M p' . 2
R=——In| — |p', x =Rsinw, =Rcosw+—1n,p' (B.11), (B.12), (B.13)
G ( j 8 & G

where w0[0,274, p'O(, p'.]

B-3 Evaluation of normalized deviatoric stress at the corner of yield surface
Consolidation stress kept at the corner of the SO yield surface for t=0 can be expressed by

o', =0 diag[K, 1 K| (B.14)
where o', isavertica direction component of the consolidation stress history
Mean stress, stress deviator, normalized stress deviator, deviatoric stress and unit normal for consolidation stress
o’ are given below respectively,

p'. :%(1:cs'c):%(il.+2Ko)0'VC (B.15)
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) 1 2 1
s, =¢'.-p'.1=(1-K,)o', diag| = = —= B.16
c c c p c ( 0) vc gl: 3 3 S:I ( )
n, =2 =37k g, [—3 2 —3} (B.17)
. 1+2K, 3 3 3
3
@ :énscn:(l— ) ®19
n, =— =diag —ﬁ ﬁ —ﬁ (B.19)
|| Y 6 3 6
According to Eq.(B.15)-(B.19), o’ . can be represented by,
o', =p 1+s =p {1+n} =p‘c{1+\/§ onc} (B.20)

Since there is no consideration of rotational hardening in the study, the subsequent normalized stress ratio is kept
constant asn,. Theinitial normalized stress ratio n, mutually has arelation with a coefficient of earth pressure at
rest K, as shownin Eq.(B.22).

9 _ %

P P

n, = 1-K, oK, = 3-n,

1+2K, 2n, +3

Using Eq.(B.17) and (B.22), an anisotropic second-order tensor n. can be written in form of a unit normal
defined in Eq.(B.19) and n,

=1, (8.21)

(B.22)

2% , \f diag */_ V6 V6 (B.23)
3p, 3 6
Some scalar products of n and its unit normal are shown below.
2 J6
LIS 3‘1c :5/75 1 N :nc :?”o (824)!(825)

By expression, though Eq.(B.26) equals to Eq.(B.17), it should be regarded in mind that it does not equal in
sense of frame indifferent. 1, is referred to orientation at t=0 while 1), is referred to orientation at current
time and marked under material configuration.

1 1 2 1
=3 > diay -= B.26
Mo 1+209[33 3} (8.2
B-4 Derivative of an anisotropic tensor
A derivative of n with respect to o’ . can be given by
ot .
om. __(PeJ_ 1 SC+SCDPC_LA_ 1sCD P
d6'. 0o, p'. dc' do'. p'. p'’ dc ',
= 1At sor i{A— > g 1} (B.27)
P 3p' P 3p’
- faty o]
P 3
B-5 Gradient of ajoint invariant with respect to stresstensor
S=s-p'n, :A:c'—%(l:c‘)nc :{A —%nc Dl}:o‘ (B.28)
= _1_ _
J, ZES: S (B.29)
By Chain’srule and definition of ajoint invariant defined in Eq. (B.28)-(B.29)
ai: 9J, ﬁ (B.30)

Jc' E'ac'



- 05 _ 0 1
where —2=35, —~=—_Js-=(1 =A-Zq, 01 B.31),(B.32
=5, Bt e} =a -, (B.31),8.32)
03, _ 1 1 T I | _
—==S:|A-=q 01 AqO1 5 |A- 'S B.33
pr [ 3" } { 3 } [ 3L N (B.33)
Subsgtitute Eq.(B.28) into Eq.(B.33)
aJ, 1 1 —
—Z=|A-Z10n, :|A =90 1|:6' Ao’ B.34
D [a-t10n | tar 1) Ao 0%
where K:A—%[mn; nd 3 é(ncinc)l 1 (B.35)
A scalar product of n. isshown in Eq.(B.24)
Alternatively, Eq.(B.33) can be expanded by /2J,n
%:[A—%lﬂnc}:_; [A— :—:;]] qc}: 2J,n
° (B.36)

=423, [ﬁ—%(nc 1) 1}

B-6 Gradient of ajoint invariant with respect to hardening stress tensor
Refer to Eq.(B.29) and (B.31)

0, _0J, 05 _. 05 (B.37)
Oc'. 0S Oo', Jo ',
According to Eq.(B.28)
s _ 0 {s-pn) :_p.anc (B.38)
dc', OJc', i do ', '
Subgtitute Eq.(B.27) into (B.38)
s p' 1 l [ 1 }
— =- T |A-Iq 01E- LA Zn01 B.39
ac IC p'c [ 3nc } ICl 3r|c ( )
Substitute Eq.(B.39) into (B.37)
J, - 1,423,
—23? :—§:L|{A —%nc m}— e {A— %JD nc}:ﬁ
o c p c_ cl (B40)
1,323, 1,
=- n—-— Nl
lcl I: B(nc ) :l
q ' T
In short, aiz—l{A L Dl} Zl:Ar LoD 1}:@'— Ly e (B.41)
ao'c p'c 3 3 Icl

It is noted that in regard to isotropic hardening generally applied in the SO model, though n is kept as constant

as itsinitial value n,, the second-order tensor as defined in Eq.(B.17), the derivative shown in Eq.(B.41) does
not become zero tensor.

J. J.

0J, #0 but 0J,

c (o)

=0 (B.42)

o o

B-7 First derivatives of the Sekiguchi-Ohta yield function with respect to stresstensor
By chain rule, the derivative can be written in terms of stress invariants

of(1,,3,,1,) _of o, of aJ, Lof ol

L4 "2 (B.43)
Jc' dl, 0’ 0J, do' Odl, Oc'
where ﬂ:M :1:ai =1 (B44)
Oc' Jc' oo’
00, z. o =L -
F:A.a =423, n—g(nc )1 (See Appendix B-5) (B.45)
%:a(l:oc) =1_06C =0 (846)

Jc' Jo' " 9o’
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Substitute Eq.(B.44),(B.45) and (B.46) into Eq.(B.43), obtain

_ l:c' _ _
of _of L ot g of (Lie), of 4o _(of 101 of 4. . (B.47)
oc' adl;, 4, o, 1, 0J, o, 1, a9,
Alternative form of Eq.(B.47) can be given by
of _ of of = 1
—=—1+—,/2), |n—= ‘n)l
o' o, a3, " 2{ 5% }
of = of 1 _ = of _
= ——=4/2), ——= ‘n)|1+4y2), —n B.48
(al1 Ve 0323("° )j 293, (B.48)
3 3 33, =
whee n=—>_=_5_ O _Dfy NSk o3 o _ 33D (B.49)
S:S 23, o, I I, 0J, 2
In compacted from, Eq.(B.48) can be expressed as,
% =rl+r,n (B.50)
of = of 1
r,=| ——42), —= n B.51
1 [all \ zan 3(ﬂc )] ( )
= of
r, =4/2), — B.52
> 2 33, (B.52)
B-8 First derivatives of the Sekiguchi-Ohta yield function with respect to har dening stress tensor
By chain rule, the derivative can be written in terms of stress invariants
af(ll,Jz,Icl):i ol, +i 0J, +i ol (B.53)
0o, ol, 06'; dJ, d¢'. Ol do',
where i = M =0 (B.54)
G, 0o ',
0 _ 5. P [A . Dl}:— b A6 (SeeAppendix B-6) (B.55)
ac'c p'C 3 ICl
al, :a(l:c <) -1 (B.56)
Oc ', Oc ',
Subgtitute Eq.(B.54),(B.55) and (B.56) into (B.53), obtain
of =—il—1;\:c'+ of 1 (B.57)
0o, 0J, 1, ol
In alternative form,
o __ O 5. P { Lo Dl} of 4
0o, aJ, p'. 3 ol
=—1[A—E1Dnc}:§ 1y O 1
0J, 3 l, Ol
= —1[5 —E(nc 'S) 1}'—1 L (B.58)
0J, 3 l, Ol
== iji[ﬁ—i(nc —)1}'_1+af 1
0J, 3 l, 0,
of I, = of 1 _ l, == of _
= +1./2), —= 1-—,/2), —n
{md Ry 3 )} Ve,
of MD
where ==
aIcl Icl
In compacted form Eq.(B.58) can be reduced as,
of _
=s5l+sn

Jo'

Cc
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of | = of
where s =— +—./2J, —(n. ;1 B.59
R ) (n:n) (859
I of
= L J23, = A (B.60)

B-9 Evolution of hardening parameters

gp=A7K |n{&J =MD |n{&j (B.61)
l+e, P P
Volumetric strain rate can be obtained by taking a time derivative on Eq.(B.61)
er =MD P (B.62)
Rate of plastic flow and volumetric plastic strain are obtained by flow rule
&P :yi, EP = ptr (ij (B.63),(B.64)
Jo' Jo'
According to Eq.(B.62) and (B.64), evolution of p’. is given by
P ooy Plo [ Of j
= B.65
Pe = MD & yMD (ac' ( )
In terms of first invariant of o'
. of
[, = lo tr B.66
cl y MD [ac j ( )
Refer to Eq.(B.14), (B.15), the evolution of 0’ . can be expressed by
&', =0, diag[K, 1 K]—I— 6 =g (B.67)
cl p c
Substitute EQ.(B.66) into (B.67) and write compactly as
., y of ) ,
=—1r = B.68
o = o = (869
where h —itr of G, (B.69)
MD | de’
According to Eq.(B.15), it is noted that
=yl:h=3p', =1, (B.70)

For generalized concept, according to Eq.(B.20), the evolution of hardening stress should consider the rotational
hardening noted by 1, in expression given below,

6'.=p' {l+n} +p'. 0. (B.71)
Therefore, it should be reminded that the derivations of Eqs.(B.67)-(B.70) in this section are merely
particularized for W, =0. This fact is one of the assumptions intrinsically sustained in the SO model.
Consequently, Eqs(B 72),(B.73) can be followed by,

6'.=p' {1+n.} (B.72)
oo © =14, (B.73)
op’

B-10 The derivatives of the Sekiguchi-Ohta yield function with respect to virgin K,-consolidation
pressure
Derivate of the SO model With respect to p’ can be given in according to Egs.(B.50), (B.73), (B.4) as

of  of
= = 1 1 =3 n
. 20 apc ={sl+sm} {1+n} =35 +s,(n.:N)
of I, of |, = of
=3—+-L [23, A)-—+./23, Z (q.:n B.74
a, 1, V7T, a3, (M) 1, Va3, (n 1) (8.74)

of __3MD __MD

al cl Icl p 'c
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By short proof: ;
op

c

_of 9l _ _MD,_

aIc .ap'c B Icl
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MD

(S8

B-11 Consequence of a consistency relation
Requirement for consistency conditionis

. of
f=—1:"+
Jc'

Jo'

o o =0

c

(B.75)

(B.76)

Substitute incremental stress-strain relation and evolution of hardening parameter Eq.(B.68) into Eq.(B.76),

f—ic
Jo'

N
0 Jo ',

Collect for consistency parameter y and solve for y

of . . (af . of  of
— -yl —:Cci—~-

h]=0

Oc' dc' ' do' 0o,
of ... of .
—:c%:¢ —:c° ¢
y= do' _0c’
of .. of of H, +H
—:c:—-——:h e P
Jo' Oc' Jo',
where He=i'c‘3'i H =- of

ds' dc' "  dc',

, ¢ =K10% 2GA

Consider a product (double contraction) between c® and Eq.(B.48) below

.. of
C
G

=(K1O0% 2GA): ([a——

of
I

1

of 1 of
V23, — 1+4/27,
("° )J ¥ an J

aJ

ot m=of 1 o _
=3k | L - 23, L L im) |1+ 26,23,
[al 23,3\ )J 293,

Pre-multiply (double contraction) with Eq.(B.48), elastic modulus H, can be given by

c: i —QK[af -y23, i%(qo

_ot

e acl

Jo o0l

a3,

.n

Consider plastic modulus H,, by referring to Eq.(B.58) and (B.68)

A L [A—Ench}
aJ p'. 3

of
H =-
p aG'
of

=—TS:
a3,

cl

Substitute Eq.(B.82) into (B.81), asaresult H, =tr (ij

ol,

( lic',

P A—lncﬂl}:cc U
plc L 3 cl MD

T Iy

B A:o'c—l(l:c') c} i
p'. 3 al, MD '
p s —p. s, |_of ICl (afj
P p'; alCl MD | de'

_l;ltr (ij _tr( af
w MD  {0c' oo’

B-12 Continuum tangential moduli
Incremental stress-strain relation is given by

6'=c’:¢&° =c° :{é—é"} =c®: {

Subgtitute Eq.(B.78) into (B.84), obtain

)

Jo'

2]
Jo'

:1:i
Jo'

[ ox{3]

of 1
——tr
MD

(B.77)

(B.78)

(B.79)

(B.80)

(B.81)

(B.82)

(B.83)

(B.84)
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of . . « of _ of o
S0 o O—Da—

6'=cie-| 96 | T l_|e_ 0o’ Jo & (B.85)
H,+H, |dc' H, +H,

According to Eq.(B.48), isotropic component can be taken by

il 3= [M 3\/a f ] —p (B.86)

Jo'
Introduce the modular ratio 3 defined by

3J.
B=M —3% —\/g(nc :1) (B.87)

According to Eq.(B.48), deviatoric component can be taken by
of = of 3 3D _

A:—=,2),—n= (B.88)
do' dJ, 2 I
Rewrite Eq.(B.79), (B.80) and (B.83) by using Eq.(B.86), (B.87) and (B.88)
c’ :i:32 K,81+ZG\/§ﬁ (B.89)
os' I, 2
2
of of D
H,=——:c®:—=|3=| (KB*+3G B.90
Jo' Oc' ( 1) ( o ) (B.0)
of
H =—:1= 3 B.91
e 173 P (B.91)
Continuum tangential moduli can be determined in accordance with Eq.(B.85) as
- of _of
t— L
®=c - 0s' 0o’ (B.92)
H.+H,
T 2
where i:ce={i:ce} =3E Kﬁ1+ZG\/§ﬁ , Ho+H, = 32 (Kﬁ2 +3G) +32[3
Oc' Oc' I, 2 I, I,

:;,D% o= [3?}2(@} Jeenp (ka1 Jeen)

Expand Eq.(B.92) to (B.93) and reduceto Eq.(B.94)
(K,B1+Jéeﬁ) O (KB]# Jéeﬁ)

c® =K10% 2GA- | (B.93)
KB?+3G+_L
B n?
c®=v10% v,A+ v A vAo+1 ¥n n (B.94)
I
3GK +—LKp ,
+
where v, = 3D =K 3DG+p'p v, =2G,

2 ] !
Kp2+3G+ 2 g  IGD+KDE ++p'f
3D
—J6GK 8 -J6KDG S _ ~6G> _ -6G°D

BT [ :3GD+KDﬁ2+p'ﬁ’ % 3GD+KDB% +p' B
KB2+3G+$/3

I
KB +3G+_L
B 3D’B

B-13 Compliance of continuum tangential moduli
A strain increment is composed of elastic and plastic parts. In relation to compliance stiffness tensor and flow
rule, the expression can be presented by

£=8° 48P =7 +y:—f (B.95)
()

where ¢ =1 10% LA (B.96)
oK 2G
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Substituted by Eq.(B.83), consistency condition in Eq.(B.76) can be shown by
of

f=—:6"+ 16— =0 B.97
Jo' o 60‘ My ( )
From Eq.(B.97), solvefor y
1 of
=——:¢6' B.98
4 H, dc' ° ( )
Subgtitute Eq.(B.98) into Eq.(B.95), obtain
PPN (S T A P S I &9
H ' | e’ H, 06’ Oc'

According to Eq.(B.48) and (B. 87) tensor product beI ow can be reduced by

of Jof_ |D 33D
P {I ]D{ | }
={|2/3j 10% 3@(?} B0 A @ + gﬁ—DjDﬁ n

As a consequence, the compliance of continuum tangential moduli are given by

vtaete LI g et (DY Ay \/E[El sim+1 DA on (B.100)
H, ¢’ Oc' I, )] 3 2 2B
A compacted formulation can be expressed by
e =ul0% uA u,IOH ub+1l &Wn N (B.101)
where ul__+_£ LDKﬂ, uzzi’ u, =u, —£E U5=£
9K 1, 3 9Kp' 2G p' 2p'pB
B-14 I sotropic hardening potential
Potential energy defined in regard to isotropic consolidation responseis
H (@)= p’, (A —K)exp(—) (B.102)

where a =¢&p

Stress hardening parameter corresponding to strain hardening parameter o is defined by isotropic hardening law
given below,

p'e=0,H (a)=p, eXp(ﬁ) (B.103)

According to an incremental analysis, the step-wised p'. is practically employed using subscript n to indicate
time step, that is,

P'or =0, H (@) = P, (- (B.104)

The alternative isotropic hardening law based on step-wised computation can be obtained by dividing Eq.(B.103)
by (B.104),

P =P, (B.105)
Define nonlinear plastic modulus as

Hp) =P =5 W (a) =P (B.106)

da “@ A-K

Rate of changefor p’. is expressed by

b =H(p')a =Pa (B.107)

A-k

It is noted that

T-k=2"% —mp (B.108)
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Appendix C: Ohta-Hata plasticity

C-1 Formsof Ohta-Hata yield function

The Ohta-Hata model is a particular form of the Sekiguchi-Ohta model for the triaxial stress condition. The
mathematical point of discontinuity is found due to a turning sign given by an absolute function existed in the
expression. Consequently, it is a common discontinuous point for both models. The expression for Ohta-Hata
yield function is presented below,

f(c',@) = MD |n[£,] + D‘i‘ -n,| -a =0 (C.1)
o p
where p'=£1:c'=£tr(o') =£Il (C2
—‘/—s s= tr(s =37, (C3
‘](:2 .
n,=n, =—- =" a = [epdt (C.4),(C5)
p c lcl
In terms of stress invariants

3J.,
f(l,3,,14)=MDIn| — (C.6)

Icl I1 Icl

The discontinuity caused by absolute sign breaks Eq.(C.6) separately into two continuous functions intersecting
at the singular corner. One of function regulates the yield locus on a compression side while another one
regulates the yield locus on an extension side. Both yield loci are named simply as upper and lower yield loci

given by,
fU(Il’ 21 c1) MDIn(l J+D[ SJ I3J J (C.?)
fL(Il,Jz.Icl)sMDln[Il—lj—D[ “|3J2 - VIBJ”j:o (C.8)

C-2 First derivatives of the upper and lower yield loci with respect to stress tensor
For a smooth surface, the derivative with respect to stress tensor is

of _of al, af dJ, _of al, af 0J, s

—_—s——t— 2= L4 (C.9
Oc' 0l dc' (')J Jdc' 0l, d6' 4J, 0s 96"
where ﬂ:li aJ =5, E_A, &:&:E:G:A :AT:O' =S
Jo' s Jo' Joc' 0s Oc'
Asaresult, EQ.(C.9) isreduced to
of _of of
—=—1+ —s——l +42J C.10
oc' 0, dJ, ol, ( )
S
where n= = (C11)
\s:s «/ZJZ

The derivatives of upper and lower yield loci with respect to stress are expressed in terms of stress invariants by
(See Appendix C-1)
of, _ofy, of,, of, of,,

L 1+—Ls=—Y1+ /2], (C.12)
' o, 83, ol 20J,
U N c13)
ds' al, a3, ol an
3J
where o _D M - 2, J23, 33D (C.14),(C.15)
al1 I1 I1 2 I1
NEY
I Dl sz 25, 2% d __|33D (C.16),(C.17)
o, 1, l, 0, V21,
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C-3 Consequence of a consistency relation at the cor ner
Consistency parameters are determined from consistency conditions subjected on both upper and lower yield loci
to ensure both loci are active and activated under loading condition. Equate time derivatives of both upper and

lower yield loci to zero and evaluate consistency parametersyy and v .

f, = g O p'. =0 (C.18)
Oc' op',
f’L_i POt p'. =0 (C.19)
Jc' op',
The evolution law of isotropic stress hardening parameter is
p'. '5”5 &P (See also Appendix B-7) (C.20)
The derivatives of upper and lower yield loci respective to p’c are shown by
Iy = LS - _MD (C.21)

op'. 0p’ P’
Subgtitute Eq.(C.20)-(C.21) into EQ.(C.18)-(C.19) and using incremental stress-strain relation, obtain the
following equations,
_ of,

f, ==%:c° e :1=0 C.22
U =30 (a s) —-¢ ( )
f :ﬁ:ce:(e—gp)—gpﬂ:o (C.23)
L aG'
where c®=K10¥* 2GA (C.24)
A

K=K(p)=—7—=1p', G=G(p)=u'K(p' C.25),(C.26
(p) MD(l—A)p (p) =u'K(p) (C.25),(C.26)

K 3(1-2v'
AN=1-—, py'== C.27),(C.28
<=y B2 (c2n.(c29)

Koiter’s associated flow rule (See also Chapter 3)

of of,

Py, —L C.29
£ W= 96" W= 96" ( )

Rewrite EQ.(C.22) and (C.23) by substituting Koiter's associated flow rule Eq.(C.29)

ﬂ'ce of, . of, of, of, 120
o'’ y”a yLa' mao ’fao
of, ) of, of, of,, of,
—_L.c®: - —+y — | |- 1=0
Oc' [8 (Vu Joc' 4 OG'D [}6 Oc' T Jo' j
And rearrange to the followings,
Y [i:ce'%+%:lj+n(af it i+i:1j=%:ce:é

Jo' "d6' Oc' Gl J¢' Oc' Jo'
yU af_L:Ce:ﬂ+ﬂ:l +yL af o ﬂ+af_L:1 :ﬂ:ce:g
Jc' de' Oc' e dc' Oc' do'
Rearrange above equations by collecting consistency parameters and rewrite simply by Eq. (C.30) and (C.31)
Yo (HS +HE )+ (HS +H?) =1, (C.30)
Yo (HE +HE)+ 1 (HE +HS) =L (C.31)
an (SR afL e .4
where L, =—:c":¢, L =—:c°:¢ (C.32),(C.33
Jdo' Jc'
_of, of of, of
He, =—2L:¢c®: =L, H, =—Y:c°: -, C.34),(C.35
Y et Jo' % 96 Jo' ( ) )
of, of of of
He, =—t:c®: =%, H® =—L:c°:—L, C.36),(C.3
Y 96! Jo' * 96 Jo' ( )(C-317)
HE =tr o, , HP =tr o, (C.38),(C.39)
6" o6

Formulate Eq.(C.30) and (C.31) tolinear agebraic system and solved for consistency parameters
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[J;u j - [Etu j (C.40)

Hi +HS HG +H” | . . ,
vuoon o UL L s a non-singular [4x4] matrix (C.41)
HE, +HE HE +HY

X is defined as amatrix of coupled-hardening plasticity of the upper and lower yield function.

where X {

C-4 Matrix of coupled-har dening plasticity
Double product between forth-order elasticity tensor and gradient of upper and lower yield functions are as
following,

of, of of of
c:—L =(K10% 2GA Y g ,/23 3K —L# 2G/2J, —Ln C.42
dc' =( ): [al al, 297, (C.42)
ce:af =(K1O0% 2GA) ( —L % 1/2\] 3K%1+ 2G,/2J, %n (C.43)
c'

Asaresult, Eq.(C.34)-(C.37) can be written as,

of of of of
He, =] =21+,/23, —2Ln |;| 3K =L1+2G,/2], —Ln
» [all ’ 0J, j [ ol “0J j

1 2
2
—ok | Mo 4o J23, == o, (C.44)
al, 33,
By the same manner,
He, =ok v My o[ 29, Mo O (C.45)
al, al, 8J, 0J,
HE, —ok I g5 ii (C.46)
al, al, ?0J, 8J,
He =ok T o[ oy, M O (C.47)
al, al, 20J, 0J,
Eq.(C.38)-(C.39) can befurther reduced as,
ST LTI G TRV U (C.48),(C.49)
Oc' ol, Oc' ol,
According to Eq.(C.14)-(C.17), Eq.(C.44)-(C.49) aredefined as,
2 2
. _[3D . D
HE, :[TJ (kg +33), He :(STJ (KB, B, -3G) (C.50),(C.52)
1 1
DY DY
HE, =(3l—j (KB.B, -3G), Hg :[Tj (kB +36) (C52),(C.53)
1 1
HE =324, HI =324, (C.54),(C55)
1 1
NES NEY
where B, =M -3 | 2, B =M +3|—2 (C.56),(C.57)
1 1

Subsgtitution of Eq.(C.50)-(C.55) into Eq.(C.41) resultsin,
I I
KB,>+3G+-~ K -3G+-L
(3 Djz B, 3D B A A 3D A

| |
Kﬁugu _‘?’G+$:3J Kﬁl_z +‘?’G+$:8L

Verify anon-singular X matrix by evaluating a determinant of X, given by,

det(x) =[3|9j (X =% %) (©59)

X = (C.58)

1
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— 2 Il 2 Il
where Xou XL —(KAJ +SG+$,QJJ[K,BL +3G +$’BLJ (C.60)
_ _ag 3G+
K =(KAA 65 A KA R -4k A ce
Expansion of Eqg.(C.60) and (C.61) inEq.(C.59) resultin,
det(X) =[3|9j (8 + A6 KA +4) 2 c62)

Subgtitute Eq.(C.56),(C.57) into (C.62), obtain non-zero det(X) as shown in Eqg.(C.63), therefore, X is a
positive definite and the inverse of X isexisted as given in Eq.(C.64).

4
det(X) =[3|Rj 4GM [3KM +|Blj (C.63)
1
DY , 1, I,
3— KB +3G+_—p | KA B -G+ =4
o I, 3D 3D
= (C.64)
PO (kpm -wi | kAT
: 3D 3D
C-5 Incremental stress-strain relation at the cor ner
Incremental stress-strain relation using Koiter’s associated flow ruleis given by,
6'=c":{e-¢"} (C.65)
o,
where &P =y, ﬂ+yLi= W)y’ (C.66)
Jc' o' () )| of
Jo'
Consider a double product of elasticity tensor and plastic flow,
ce: ﬂ
cig’ =y, —~ o, +) I (% i (C.67)
aO' l 60 ' yL Ce . ﬂ
"¢
Substituting for consistency parameters from Eq.(C.40) gives Eq.(C.67) as,
Ay o) e ) (O o) (e
e gP = X1 Jo Jo =y Jo Jo (C.69)
of, o Of, of, ... o Of,
—:ctig||cti— :c: —
Jo' do' Jo' Jo'
where  y=X" (C.69)

Defining components of x in away that Xy, = Xi1: Xoo = X123 X = X213 Xu = X2 then Eq.(C.68) can be
expanded as,

of,
qua_ +XUL
e.op —
P = o (C.70)
XLU o 4 XLL .- c
af of,_ of, of of of
= c® D iy Rt S B YLt ce:fgL— L.t ¢
(X“” o0 a g oo - X 96 a6 T M Ge e Js

Defining a particular second-order tensor basis below can reduce the above equation as expressed in Eq.(C.72)
of, of, 1 of,

e . - ~€

9 C B —l.C —'.C
{ uj: do'| _) 0o _J 0o (C.71)
G ce:ﬂ af—L:c*"T ﬂ:ce

Jo' Jo' Jo'

where g,,9, 0S; S={§ZR3 —>R3|§=§T}
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18" = (X 09+ Xu8l & Xwdd 8 Xul. 9.):¢ (C.72)
Therefore, an incremental stress-strain relation defined in Eq.(C.65) can be reduced as,
é' =[ce = > Xap (ga Og, )]s (C.73)
a,fHu .4

C-6 Vector basis associated to plastic flow at the corner
The vector basis g, and its conjugate g, defined in Eq.(C.71) can be employed to define the direction of

plastic flow at the corner. Accordingly, the covariant components of € in respect to the bases{ g, g,} are

shown by,
["U J - {QU 8} (C.74)
L. 9. :¢
where {3” } isbases for stress spaceS  associated to the corner
L

The loading vector components L, L defined in Eq.(C.32) and (C.33) are, therefore, corresponding to those
of Eq.(C.74). The consistency parameters ), ), can be interpreted as the covariant components of £
relative to the bases associated to{ g, g, } asshown in Eq.(C.75), which is compatible with Eq.(C.40).
Post-multiply Eq.(C.40) by €, obtain

il

C-7 Continuum tangential stiffnesstensor at the hardening vertex
The tangent elastoplastic moduli for a stress state at the corner are defined in corresponding to Eq.(C.73) as
P =c"= 3 Xup (0, 09) (C76)
a.piu.
where c*=K10O%* 2GA
Herein, asuperscript “*” in ¢®* is used to distinguishes from c¢*® which is employed on a smooth yield surface.
Expanding second-order basis defined in Eq.(C.71) gives,

= e'ﬂ:ﬂ' e :ﬁ g
g, =¢C S aGl.c 3 {KﬁU1+ZG\EnJ (C.77)
= e-ﬂ:ﬂ' € :3—D - §
g =c S 60"C ) [K,BLl ZG\/;nJ (C.78)
The following tensor products form basesfor SXS
g, 0g,= [?;—Dj (xB,% Veenj (kgm Vecn) (C.79)
g, 0g= [3;—'3) (xB,% Veenj (kga eon) (C.80)
g Og,= ﬁ—Dj (kB Veenp (Kgm eon) (C.81)
g Og= ﬁ—Dj (xp.x Veenj (kg4 ecn) (C.82)

Expansion of the summation part in Eq.(C.76) yield,

D{qua,ﬁguﬂgf Xoo9d o5 Xuo9d B X 0. to, xldo. 9.
a,pu,

where
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'}'KZ'B U2' <3-K-B LZ,D+ 9GD+ 11 L)
3 [G[<B L+B U>-<3-K-D-[3 U+3KB | D+21 1>]]

\
Ikp U'“/E" <3'K\'B ’D+9GD+1B L
’ [(BL+By)(3KDB y+3Kp D+21y)]

2 \
}-K- A6 <3'K'B L D+9GD+14B L)
3 p U"/— [(B L+B U)-(S-K-D-B U+ 3KB | D+21 1>]
<3-K-B SD+9GD+1,p L>

2.G
[(B L+B U>-<3-K-D-[3 U+ 3KB | D2 1)]

<3-K-[3 UB L 'D-9GD+1 4B ,_)

(10 1)
(10 n)

l(no 1

(nO n)

[G'[<B LB U>'<3-K-D-B U+ 3Kp | D+2l 1>]]

E'K'B U“/E' <3'K'B uB 'D-9GD+14B L>

3 [(BL+8y)(3KDB y+3KB D+ 21y)]

-1 3Kp B D-9GD+I1p )

E'JE'K-B L'[<B LEB U>-<3-K-D-B U+3KB L'D"'/2'| 1>]
(3K B D~ 9GD+15 )

[(BL+By)(3KDB y+3KB | D+214)]

2G

(3K B yB | D-9GD+118 )

__1'K2'B ub L y y
3 [G-[(B L+B y) (3KDB y+3Kp | D+2 1/]]
'—1-«/8-K-B . <3-K-[3 UB L 'D-9GD+1 P u)
3 [(B L+B U>-<3-K-D-B U+ 3Kp | D+21 1}]
3K-B (B | -D- 9GD+1 B
é-K-B U-«/E- ( UPL th1 u)

[([3 L+B U>-<3-K-D-[3 U+ 3KB | D2 1)]
<3-K-B UB L 'D-9GD+1 P u)

2G
[(B L+B U)-(s-K-D-ﬁ U+3KB | D+21 1)]

-E-KZ-B L2' <3-K-[3 UZ-D+ 9GD+148 U>
3 [G[(B L+B y)-(3KDB y+3Kp | D+21)]]

<3-K-[3 U D+9GD+1B U>
[(B L+B U)-(s-K-D-s U+ 3KB | D+21 1)]

-1
A6 KB -
3 L

1 foks <3-K-B U D+9GD+1 B u>
3 [(B L+B ) (3KDB y+3KB | D+21 1)]

<3-K-[3 U D+9GD+1 B U>
[(B L+B U)-(a-K-D-s U+ 3KB | D+21 1)]

&

3(B, +B.)K?’D1O % ?G(ﬁu— B.) Kl 1
3(B, +B.)KD +2I,

2:G

+2Gn0On

(10 1)
(10 n)
l(mo 1
(nO n)

(10 1)
(10 n)
ICEE)
(nO n)

(10 1)
(10 n)

TGRS

(nO n)

(C.83)
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Expression of coupled plastic modulus in above equation, substituted for By, and B, by Eq.(C.56),(C.57), in the
bases defined in Eq.(C.79)-(C.82), emerges a non-symmetric forth-order tensor as,

2 K./3]
> Xep(9, 00, F MDDy 6N 0y oG n (C.84)
afqU.y 3KDM +1, 3KDM +1,

For a particular stress state at the corner by a hardening stress on both yield loci, that is, state of stressis placed
at the corner coincided with the singular hardening vertex in stress space, using Eq.B.18, a unit normal n reveals

asl
n .. =n, :\/§£ =diag —ﬁ @ —ﬁ (C.85)
¢ 2n, 6 3 6
J3J, \J3J 1-K .
where =312 = 2 =3 o (See also Appendix B-2) (C.86)
(. l, 1+2K,
Consequently, the tangent elastoplastic moduli at the corner defined in Eq.(C.76) can be explicitly reduced to,
3KZMD \F 1,Kl,
Pro|K-—— |10 |2 —20 4 2G[A c.87
¢ ( 3KDM +|J 3 (3KDM +|1)n‘D [A 0 n (80

Subsgtitution into Eq.(C.87) for 1, by p’ from Eq.(C.2), for p’ by K from Eq.(C.25), for D by Eq.(C.88) and for A

by Eq.(C.89), acompacted form of c* at the corner is given by Eq.(C.90) as,
- Ak o K (C.88),(C.89)
M((1+e,)) 1-A

c®* = (1-A)K1OH \E(}A)noKnCD 4 2G[A ] n] (C.90)

It is found that the continuum tangential stiffness tensor at the corner of Hata-Ohta and Sekiguchi-Ohta models
are asymmetric forth-order tensor.

C-8 Consistency parametersin regard to the har dening vertex
Based on conditions of stress state at the corner employed in Appendix C-7, Eq.(C.56) and (C.57) can be
specified as,

By =M -1, B =M+, (C.91),(C.92)
In addition to Eq.(C.91),(C.92), X and its inversion defined in Eq.(C.58) and (C.64) can be specified by
giving p'=p’c as,

o] Ko b B ),
DS K (M) -n,) <36+ (M n,) k(M 4n,) 96 ()
[ D ]2 K (M +/70)2+3G+p—I°(M +7,) —[K(M2 —/702) -3G &(M ﬂD)J
i P’ D D (C.99)
12D°GM [KDM“:p] —(K(Mz-nf)-%+rg° (M -no)j K(M 7,)° +3G +%°(M #1.)

According to X specified above in accompanied by Eq. (C.74), (C.77), (C.78) substituted by Eq.(C.91), (C.92),
the consistency parameters defined in EQq.(C.40) can be evaluated as,

. o2 . M + '
4 - EKpc(‘?’MGD ,70 pc M’?opc)1+( ”O)pcnc 8 (C95)
6 GDM (KDM + p',) J6DM
' 2 ' M — '
L: lec(‘?’MGD ,70 pc+M,70pc)1_( no)pcnc 8 (C96)
6 GDM (KDM +p*.) J6DM

ne is the unit norma pointed from hydrostatic axis to the corner. Magnitude of consistency parameter is
depended on driving variable &, combination of value yy and y_ can judge loading/unloading condition. In
addition, it can interpret whether the subsequent stress is still placed on the corner or out of the corner during
loading.

C-9 Plastic flow at the hardening vertex
Concerning with Eq.(C.66), plastic flow at the hardening vertex or corner is defined by assigningo’= @',
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" =W i”.ﬂ{iﬂ (C.97)
Jo Jdo

wherey, and y; are defined in Eq.(C.95),(C.96)
In according to Eq.(C.12)-(C.17), the gradients of yield surface in stress space on ¢'= @’ are expressed by,

6'=c';

of, :L(M _,70)1+\/§£nc (C.98)
Oo'|,.,. 3P 2p
Ml =D map)1- 2 (C.99)
ac ‘ 6'=6'. 3p IC 2 IC

As a result, the plastic flow at the hardening vertex is determined by substituting Eq.(C.98),(C.99) into

Eq.(C.97).
g =| —KMD___ KP'e 1,
| 3(KMD+p",) JBG(KMD + p*,)

n,O01+n 0On, :l i (C.100)

Eq.(C.100) can be further reduced by substitution of K from Eq.(C.25), G from Eq.(C.26), D from Eq.(C.88)
and A from Eq.(C.89), n. from Eq.(C.85). Consequently,
A 1-A
¢ =| =10t —n,nO4 n, |:¢ (C.101)
2 NOREGhaR }

C-10 Plastic flow under K, consolidation
Effective stress under K ,-condition for a given overburden pressure ¢’ ,is given by

o, o, 0 K,o', O 0

XX Xy xz
¢'=|o', o' o,|= O o', 0 (C.102)
g, o'y 0, 0 0 K,o',
The corresponding effective mean stress and deviatoric stress are given by
+
p':%tr(c‘) :%J'a (C.103)

During K,-consolidation, an imposed strain rate is given by solely axia rate of strain as,
E, £, £ 0 0O

XX Xy Xz
£=|&, &, &,|=[0 & 0 (C.104)
&, & &,] |0 0 0

As a conseguence, volumetric strain rate, deviatoric strain rate and a unit normal corresponding to an imposed
strain rate given in Eq.(C.104) are asfollowing,

.o . . 2. .. 2, . _2.,
&, =ell=¢,, &, :\/gﬁd 1€y :\/ES:A ¥ :gfa (C.105),(C.106)
n :L :diag —ﬁ @ —@ (C:LO?)
JeErAE 6 3 6

It is found that the unit normal n for the imposed strain rate under uni-axial compression is coaxial with n
specified for the unit normal of stress at the hardening vertex. Accordingly, Eq.(C.104)-(C.107) can be written
smply by,

é:£€v1+\/§ésn :lgv1+\/§gsnc = 21 +\/§”c £, (C.108)
3 2 3 2 3 3

Plastic flow at the hardening vertex can be determined by substitution of Eq. (C.108) into Eq. (C.101), obtain

N 1-A 1 2
P =|—10% ——npnOH n. |:<+1 .|=n_;&
€ |:3 \/E’u'qo (J] Iﬂ c:| {3 3 C} a

~[n(Hn e
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1 .
5(/7o —2u)1-N) 0 0
= Big 0 u1'(2+N)=n,=N 0 (C.109)
7
1 :
0 0 5(/70 —2u)1-N)
"(2+A)-n,A-NA
nwhich g2 =4 2FN-mLA=N (C.110)
3u’
Based on result of Eq.(C.109), volumetric and deviatoric rate of plastic strain are
EP =1:8P = N¢, (C.111)
g0 = |25 pngp 2 2H AN (C.112)
3 3u’

C-11 Incremental stressunder K, loading condition
Incremental stress during loading condition can be determined by a stress-strain relation using tangential
stiffness tensor given in Eq.(C.90) as,

6'=c®*:¢=(1-NK¢&, {1 +\Enonc} =1 -NKé {1}

K, 0 O
3(1-A)K |
= W ga 0 1 0 (C113)
° 0 0 K,
3 '
where 1+n, =————diag[K, 1 K]
1+ 2K,
Eqg.(C.113) can be verified by the ratio of incremental horizontal stressto incremental vertical stress as,
K, == (C.114)
Oxn Oy
o 3(1-A)K
inwhich 6,, =0', =———&, (C.115)
1+ 2K,

The corresponding incremental effective mean stress and deviatoric stress are shown by Eq.(C.116) and (C.117),
in which K, A are substituted by Eq.(C.25) and Eq.(C.27).

p'l+e) R

a

q'= /gd‘:A:6'=—p ’7°E]1+e°)ga (C.117)

Moreover, Eq.(C.115) implies the e-In(o’,) relation is hold by substituting for K, Aand p’ by Eq.(C.25),
Eq.(C.27) and Eq.(C.103) respectively, achieve
__A J%

l+e 0,

D'=%tr(6') =1-NK¢, = (C.116)

(C.118)

a

C-12 Incremental stressunder K, unloading condition
During unloading, there is no plastic flow, thus, elastic behavior is recovered. It is trivia to employ elastic
tangential stiffness tensor in incremental stress-strain relation as,

6'=c:¢=[K10% 2GA] :{%3 \Enc}sa

={K1+ZG\/ZnC}£a
3

3K-26 0 0
==¢| 0  3K+4G 0 (C.119)
0 0 3K-2G

K, unloading can be expressed by the ratio of incremental lateral stress to incremental vertical stress using a
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relation defined in Eq.(C.121). The relation between K, unloading and effective Poisson’'s ratio can be
established as,

K =on =32V (C.120)
6y OK+4G 1-v°
.G _31-2v)
) (see also Eq,(C.26),(C.28)) (C.121)

Substitutions of K and G from relations given in EQ.(C.25)-(C.28) into Eq.(C.119) while employing K, as
shown in Eq.(C.120) and p’ in Eq.(C.103) give nonlinear elastic stress-strain relation during unloading as,

=
¢'=%g 0o 1 o0 (C.122)
0 o 1:/
inwhich 6,, =0, =%éa (C.123)

K
The incrementa elastic stress-strain relation during K, unloading in vertical direction can be verified by
Eq.(C.123) inaway that,

o= K . (C.124)
l+e o',
C-13 Coefficient of volume compressibility under K, loading condition
The definition of coefficient of volume compressibility is defined by
m =5 (C.125)
P

Asaresult, m, defined in Eq.(C.125) can be verified by Eq(C.126) in which p’ in Eq.(C.116) is substituted by a
relation in Eq.(C.103).

m=fa=_A4__ A (C.126)

p' (1+e)p' (1+e)(1+2K,)0,

C-14 K, value during loading condition
By considering EQ.(C.118) and (C.124), vertical plastic strain increment can be determined by

A-k 0’y _ A O

é‘: =£, —g: = =A——2 =A§, (C.127)
1+e, o', (l+e) o,
Equating Eq.(C.127) to Eq.(C.110) and solve for n, as given by,
n,=2u' (C.128)
Substitutions of n, from Eq.(C.86) and i’ from Eq.(C.121) reach the conclusion that,
K, = (C.129)
1-v'

It is found that K, values obtained from both elastic and elastoplastic models share the common value. Hence,
the unified relation between K, and effective Poisson’s ratio can be guaranteed. It is emphasized that without the
application of Koiter’s associated flow rule, the proof cannot carry out.
e
Ko(elastic) = Ko(aastoplastic) :m
Substitution of results obtained in Eq.(C.130) into Eq.(C.109) and (C.112) settles the following deduction in
Eq.(C.131),(C.132), that is, lateral strain increment is zero under elastic, plastic and elastoplastic response during
K, condition. This conclusion is consistent with the fact that K, consolidation is a sort of 1-D deformation.

(C.130)

ép:Aéa{%l+\/gnc}:diag[0 Ag, O] (C.131)
o e
L6 52 (C.132)
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Appendix D: K, value

D-1 Rate of strain under uni-axial test condition
Under tri-axial test condition, rate of strainis given by,

& 0 0]
£=|0 & O (D.1)
0 0 &|

Axial and lateral rate of strain can be reformed to volumetric and deviatoric parts as,

g L2,
{.”}= 2 2 {} (D.2)
&, = ==&

3 3]
For particular case of uni-axial test condition, rate of strain is given by,
0 0O
£=|0 & O (D.3)
0 0 O
Accordingly, volumetric and deviatoric rate of strain are
£, =&, & =§£a (D.4), (D.5)
It is noted that strain rate ratio of deviatoric to volumetric part is 2/3 for this particular case,
& 2
=== D.6
& 3 (06)

v

D-2 Rate of stressunder uni-axial test condition
Stress tensor and stress rate tensor can be expressed by isotropic and deviatoric parts as,

¢'=p'l+s=p'l +\/§qn, 6'=p'l+s= p'1+\/§qn (D.7), (D.8)

Under uni-axial condition, state of stress is taken in formed of isotropic and deviatoric stress where o', is
referred to an axial stress,

pv=(1+2K°ja'a, q=(1-K,)o", (D.9), (D.10)
Asaresult, the ratio of deviatoric to isotropic stress is obtained by
n, _ :31_A (D.11)
p'  1+2K,
According to Eq.(D.11), K, and n, value can relate each other by,
K, = 3__,70 (D.12)
3+21,
In summary, the stress ratio and ratio of rate of stress are constant under K, condition, that is,
a-4., (D.13)
pp

D-3 Theoriginal Cam-clay model
The original Cam-clay model’s yield function is expressed by,

f =MDIn[L|]+Dﬂ' (D.14)
P. p
Dilatancy parameter is related to compression indices by,
D=-AK _ hee A=1-K o 2K (D.15)
(1+e)M A K 1-A
Evolution law for hardening parameter is expressed by,
b =Pcgr (D.16)

MD "
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Asaresult, the partial derivatives of hardening variable are obtained as following,
P WL
s’ MD' ogf
Derivatives of yield function with respect to stress tensor can be generally presented in terms of isotropic and
deviatoric parts as,
o _ofop' ofog _1of \ [30f
Jdc' 0p'ds' 0qoc' 30p' Zaq
where deviatoric stress tensor , unit deviatoric stress tensor and deviatoric stress are given by,

2 S 3 3
s=,/—gn, n=—, q=\/: =,|=s:s (D.20), (D.21), (D.22)
. n=2 0= B4

Derivatives of yield function with respect to isotropic pressure, deviatoric stress and hardening parameter are,
i_D[M qj of D of _ MD

(D.17), (D.18)

(D.19)

op' p’

D'

"oq p' op., P,

(D.23), (D.24), (D.25)

D-4 Plastic rate of strain
By flow rule, the emerged rate of plastic strain is determined by,

R R 029
(o)

Plagtic rate of strain is conveniently expressed in terms of isotropic and deviatoric parts as,
b _ - of . 2.,.. of
£V"=sp:1=ya—p,, &P = gsg:ad ya (D.27), (D.28)
3of
2 aq
By consistency condition, the below scalar equation can be obtained,
_of of 1 of 3 of of _of af of
S 3 o= 2 1+ 206+ n' + of D.29
"6 Top P T [36p ﬁaq J o P Tap P aqd T P (D-29)
Z 0P 4, OP' o
oe? & 65" &
According to (D.29), consistency parameter is able to be solved,

ip+—q+ of p' =
6p oq  op’, °

of ., of . op'. ., 0p'. .
—p+—q+ SE)+—=£0 | =0
ap'p aqq op' [aef Y oeP sj

O e gy O [OP O 0P O (D.30)
op' oq op'.\ ogf op' o€’ aq

where ¢ =A:¢° =y, /=

where p',

—p+—q
_____ o og

of (Opc6f+6p‘c afj

op'.\ 0! op' del oq
According to Eq.(D.27), (D.28) and (D.30), rate of plastic strain are then obtained,
o of of of
.p B T3 i
. 1 op'dp' 9qdp {p} (D.31)
£r of q

op’, of  dp’ of of of of of
op'. | 0e op' 9eP 3q)| p'0a  9q aq

D-5 K, valuein regard to the original Cam-clay model
Elastic parts of volumetric and deviatoric rate of strain are calculated by the stress-strain relationship,
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1
ge E 0 .p.
R
&) o Lj|la
3G
Elastic bulk and shear moduli are reinstated as shown below,
_p o ,_ G _31-w)
K = p (1+e), G=p'K where p'= < 2@ (D.33), (D.34)

Using the original Cam-clay plasticity, Eq.(D.30) can be substituted to,

D q]., D . [ qj.. .
—IM-—1p+—q M -—|p'+q .
p[ p p' p (M=-n)p'+q

y _I\/HDp'cD[M_CI] M_gl M -7 (D.35)
p'. MD p' p' p
Referring to Eq.(D.31), the plastic strain rate governed by the original Cam-clay is given by,
gl oMt
{g‘vp} o I {q} (D.36)
s M -7
Accoring to Eqg.(D.15) and (D.33), common term employed in Eq.(D.36) isreduced to,
D A K Al (D.37)

P 1-A(l+e)Mp' 1-AKM
Summation of elastic and plastic parts leads to total rate of strain,

1.D D
é crer) |k M) P b’
{sv} :{gvugvp} - D 1 D 1 {/7 p'} (b-38)
sJ) p=n, s s — — |
p’ 3G p'M-n,

Under K, condition, volumetric and deviatoric parts of total strain rate are characterized by substituting
Eq.(D.13) into Eq.(D.38),

1 D D 1 N 1
s =l —+ = (M - - H'=—|1 ' = n' D.39
£, (K+p.( /70)+p./70jp K( +1_Ajp (1_A)Kp (D.39)
. [ n D D L _|n A p'
g v 2D pre| e P (D.40)
(f’wK pp(M-n,) J [311 (1-A)(M —no)}K

Substitution of Eq.(D.39)-(D.40) into Eq.(D.6) resultsin,
(1-A)n, LN 2

3u’ M -n, 3

(D.41)

1-A
where elastic component can be seen by (:%J A

while plastic component is seen by v .
1

By solving Eq.(D.41), n, is obtained in complicated expression as,

\

- -<|v| A M+ 2-p'+«/M2— 20 M2= 4 M4 AZM2 4 4 M 4 42 12 0 — 120 27

o=
(2(1- 7))
In regard to Eq.(D.12), the corresponding K, expression can be given by,

\
-1 < 6A+6+A M=M= 2y ﬂ//\z-Mz— 2A M2 AN-M + M2 = 40 M 4 4’ = 12050 + 12A 4
o=—
2 < . 2,2 2 \ 2 . 2 2, ,\
BA=3+AM=M=20 +AA"M = 2A-M 4 4A-M '+ M = 4p"M + 4§ = 12A 0 + 12A ')
Under particular consideration, the expression show in Eq.(D.41) can be reduced by,
Case (1): Purely plastic contribution

K =

Substitute A =1 into Eq.(D.41) then 7, =M —g; K, = 9;3\/' (D.42)
Case (2): Purely elastic contribution
Substitute A =0 into Eq.(D.41) then n,=2u'; K ="—, (D.43)



Case (3): Ignorance of elastic shear

. . 3 6—-2M +3A
Substitute u' - into Eq.(D.41) then =M -——=A; K =———-— D.44
W'~ o InOEG(D.AL) then 7, =M ~ZA; K = b (D.44)
Case (4): Corresponding Poisson’sratio to K, value
Substitute ,u':%" into Eq.(D.41) then 7, =M —g; K, = 9;'\2/:\" (D.45)

D-6 K, valuein regard to the modified Cam-clay model
The modified Cam-clay model’syield function is given by,

f=g°-M?p'(p, -p’) =0 (D.46)
Evolution law for hardening parameter is similar to those of the original Cam-clay model’s. Derivatives of yield
function with respect to isotropic pressure, deviatoric stress and hardening parameter are,

of 2 (o1 (2 _n2) Of of 2
—=M*(2p'- =p'(M°-n°), —=2q, —=-M D.47), (D.48), (D.49
o0 (2p-p.) =p( H)quap'c p (D.47), (D.48), (D.49)
Using the original Cam-clay plasticity, Eq.(D.30) can be substituted to,
of ., of .
_OT)'p+6qq__ p'(MZ—nz)p'+2qq
of ap', of 200 Pe (2 2
e —MPp e pi(MP )
] p ]
ap', 65Y ap MD (D.50)
o 214
__ M-p
- |V|2—l72
2
P MD
Referring to Eq.(D.31), the plastic strain rate governed by the original Cam-clay is given by,
P _ MD : '\/|22,—7f72 5
2 p
Vi = D.51
{é;’} p'|_21 a/k {q} 5y

2 _ 52 2
M*-n (M 2 _,72)
Under K, condition, volumetric and deviatoric parts of plastic strain rate are characterized by substituting
Eq.(D.13) into Eq.(D.51),

&r =M—I?[1+ 5,70 ZJ p' (D.52)
p M* =7,
2
&h = 27,MD 1+ 3'7" > |p' (D.53)
(M2-n2)p' " M*-n;
Theratio of rate of plastic deviatoric to plastic volumetric strain can be found by,
gp
L2 2217 i (D.54)
& M-n,
The elastic volumetric and deviatoric strain increments under K,-condition can be given by,
kK 1
o Pa— 0 .
{fv} _|1rep { P } (D.55)
& n=1, 0 L—l TP’
1+e3u'p’
Theratio of rate of elastic deviatoric to plastic volumetric strain can be found by,
L2 P/ (D.56)
& n=o 3u

The ratio of volumetric rate of plastic strain to elastic strain in 1-D deformation can be obtained by using
compression indices,

L S (D.57)

By definition of irreversibility ratio in 1-D deformation, the following relation is obtained,



- P
& - (D.58)
EV
According to elastic-plastic strain decomposition, rate of deviatoric strain is given by
E+EP =€, (D.59)
Normalize Eq. (D.59) by rate of volumetric strain resultsin,
e ap e b oep -
“'_‘—5+‘&j_5 = & +ét5 “f“’ =§ (D.60)
€V €V ~E ( gp J gV gvp EV
E 11+
€V

Substitution of Eq.(D.6), (D.56), (D.57) and (D.58) into Eq. (D.60) yields,

A=A, , 21N 2 (D.61)

3u' MZ2-p? 3
(1-A)n,
3u'

271,
Solution of Eq.(D.61) is extremely complicated, as a result, this expression can be reduced by considering

particular cases,
Case (1): Purely plastic contribution

where elastic component can be seen by while plastic component is seen by

V9+4M? -3 9-v9+4M?

Substitute A =1 into Eq.(D.61) then 7, = Ky = —— (D.62)
2 2\9+4Mm?
Case (2): Purely elastic contribution
Substitute A =0 into Eq. (D.61) then 7, =2u"; K, =% (D.63)
-v

Case (3): Ignorance of elastic shear

[on2 2
Substitute ' - o into Eq. (D.61) then 7, = 9N +42M 3/\;

_ 6+3A-y9IN* +4M?

K, = (D.64)
6—6A+249N* +4M?
Case (4): Corresponding Poisson’sratio to K, value
[ 2 _ _ 2
Subgtitute u' =1 into Eq.(D.61) then 1, :W; K, :M (D.65)
2 2 2\/9+4M?

D-7 Thesingularity found in the SO model at K-line

The singularity in the SO model is found at the point where the direction of plastic flow which is coincided with
the gradient of yield surface is undetermined. Referring to Appendix B, the gradient normal to the SO yield
surface is determined by

% =?;_D{31+\Eﬁ} (D.66)

where /3=M—3“?J2 —\E(nc:ﬁ), n=_>
1

2J,
For aparticular point ¢'=¢"_, the relative stress deviator is
S| =S=p'n .. =S ~p.n =0 (D.67)
- 1_
Ja|. oy =Es: S =0 (D.68)

Asaresult, n and S in Eq.(D.66) are undetermined at the point ¢'=¢", and the gradient of the SO yield
surface is not continuous at the corner.

D-8 K, valuein regard to the Sekiguchi-Ohta model
The formulation of incremental stress-strain relation of two stress invariants p’ and q during K,-consolidation
can be given by,



(s S

According to Chapter 4, for a state of stress adjacent to the corner, manipulation for n, can be compacted by
polynomial form,

24'M* 184" N? 1
o' N +2M*A-M* =6u' AM? | | TTo

24 NPMZ =124 N2 =2u' M2 | |6

0, =0 D.70

M2 =2AM? =AM +6u' N2 | |1’ (b-70)
_2/.1'/\2 /704
i N’ InS

By the assumption that mobilized K, state gradually approaches to immobilized K, state for the eventually
stabilized state, the relation between Poisson’s ratio and K, value in Eq.(D.71) derived previousy under
immobilized K, state would be commonly hold by Eq.(D.70). The equivaent form of Eq.(D.71) can be given by
Eq.(D.72) as the relation between n, and ratio of G/K. Substitution of Eq.(D.72) into Eq.(D.70) reduced the
fifth-degree polynomial expression to third-degree as shown in Eq.(D.73)

K n
==l D.71), (D.72
K, H== (D.71), (D.72)
A M?(2M? -3, -27,.7) =0 (D.73)

Third degree of polynomial expression would give three roots of solution. Correspondingly, the solutions for n,
are displayed in Eq.(D.74)

0
n, = _73 _%\/g +16M? (D.74)

LN FTYE

4 4
Using the direction relation between n, and K., K, values in corresponding to expressions in Eq.(D.74) can be
obtained by Eq.(D.75). It is denoted that the conjugate multiplication of denominator can change a form of
expression asillustrated in Eq.(D.76).

1
1
; —(9\/9 116M2 +8M> +27)
K, = 15+V/9+16M2 | _ 2 (0.75)
6-24/9+16M 2 16M
15-~/9 +16M 2 HN9+16M?% -8M 2 -27
- 2
6+ 249+16M? 16M

where

15-/9+16M° _ 15-/9+16M°> 319 +16M°
6+ 29 +16M? 2(3+«/9+16M2) 39 +16M°

_ 15-49 +16M2)) [Qg_m) (D.76)

2(32 ~(9+16M?

_—27+9%/9+16M?* -8M*?
16M?
In regard to the solutions obtained in Eq.(D.75), K,=1 gives the possible maximum value available for fully
elastic material where Poisson’s ratio equals to 0.5, signifying a material likes liquid or slurry. This solution is
considered as impossible root. Another solution gives a minus K, value. As a result, there is only root left and
considered as the possible solution for K, value. In order to explore the predicted range of K, values obtained by
Eq.(D.75), plots of predicted K, expressions are shown in Fig D-1. It is obvious that Eq.(D.77) is the solely
reasonable root of the solution.
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_15-4/9+16M? _ 9J9+16M? -8M?2 —27 .77
° 6+2/9+16M2 16M? '

The predicted value of K, in Eq.(D.77) indicates the relation between K, value and internal friction angle ¢'.
Moreover, Poisson'sratio is also ableto related to ¢ viaM by using Egs.(D.71), (D.77) asshown below,

2 _ 2 _
Lo /9+16M* ~8m* ~27 (.78

N9+16M? +8M? -27
Values of K, and v’ for an extremely low friction angle like those of slurry can be achieved by taking a limit of
Eq.(D.77) and (D.78) when M converge to zero as,
- 2 / 2 _ap2 _
lim 15-4/9+16M* _ lim 9V9+16M*° -8M*“ -27 1 (D.79), (D.80)

M-06+2J9+16M 2

K

11

|
M-09./9+16M?% +8M2 -27 2

The above results show a reasonable values, e.g., when ¢ =0, M=0, then K,=1 and v'=0.5.

-1 <27—9*\/9+16-m2+8-m2>

16 2
m

-1 <8'm2+27+9'\l 9+16'm2>

16 2
m

\

-1 <-15+’\l9+16-m2/
2 < 5
3+A9+16m?)
ooz \
-1 15449+ 16m°)
2 < 2\
344/ 9+ 16m%)

ooo

Figure D-1: A monitored range of theoretical K, values varied by practical range of Critical state parameter

D-9 K, expressionsin regard to various Critical state models

K, expressions evaluated by original Cam-clay, modified Cam-clay and Sekiguchi-Ohta models under particular
case (4) as shown in Eq.(D.45), (D.65) and (D.77) respectively are plotted in Figure D-2. It is found that
expression given by Sekiguchi-Ohta model rather matches with Jaky’s correlation than others.
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| | |
0 05 1 15 2

XXX Jaky's correlation
+++ Origina Cam-clay
B85 Modified Cam-clay
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Figure D-2: K, expressions given by various Critical state models



Appendix E: Soil elasticity

E-1 Sressand strain components
An effective stress can be written in form of mean stress and stress deviator as,

¢'=p'l+s (E.D)
Mean stress and stress deviator can be obtained by,
pr=Zlic’, s=Ad’ (E2,(EI

Correspondingly, an elastic strain can be written in form of volumetric strain and strain deviator as,
g° =:—:;£fl+£§ (E.4)

Volumetric strain and strain deviator can be obtained by,
er=1:¢°% g =A:€° (E.5),(E.6)
Deviatoric stress and strain are defined by,

= \E"S” £t = (E.7),(E.8)
Unit normal of stress deviator and strain deviator are defined by,
=g S” = 8" (E.9), (E.10)
Using Eq.(E.9) and (E.7), Eq.(E.l) can be written as,
c'= p‘1+\Eqn (E.12)

E-2 Linear stiffness moduli

For an isotropic material obeyed Hooke's law, linear stiffness moduli can given in terms of bulk and shear
moduli. Relations between mean stress and volumetric strain, stress deviator and strain deviator are given by
Eq.(E.12).

p'=Ke®, s=2Ge: (E.12),(E.13)
Substituting of sand €% in Eq.(E.13) by sfrom Eq.(E.9) and €% from Eq.(E.10), obtain
Isi g5 m (E.14)

From above eguation, it is found that m=n, that is, linear elastic stress-strain relation is coaxial. Using
Eq.(E.7),(E.8), ascaar of Eq.(E.14) can be expressed as,

q=3Ge&s (E.15)
The corresponding €elastic tangential tensor can be derived by taking a derivative of stressin Eq.(E.1) by elastic

strain. According to chain rule and Eq.(E.12),(E.13), the forth-order tensor of elastic tangentia operator can be
obtained in terms of bulk and shear components.

ct :ai :1|]6L- E where s _ O,
0e° 0e®  0e° 0g°® 0e°
=10 9P %, %6, 6% hee P =i, %8 g O
os; 68 0s°® os; 0s°® 0¢°
=K10% 2GA (E.16)

If one derive an elastic tangential tensor by taking a derivative of stressin Eq.(E.11) by elastic strain using chain
rule and Eq.(E.12)-(E.15), the same result is. (See directional derivative in Appendix A)

= p® 2 \ﬁanﬁ

e® V3 0s 0g°
:map % ZrD aq 0, Oq , 2 = [1 -nOn]: 2GA
0et 0e® N3 0ef 085 0e° ||s||

=K10% \Erﬂ SG\En:A 2G[A n]

=K10% 2Grid © 2G[A n|
=K10% 2GA
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In practice, K and G are determined from initial preconsolidated pressure and keep G/K constant.

E-3 Nonlinear stiffness moduli (secant moduli)
According to e-log(p’) relation obtained from triaxial tests, rate of change between mean stress volumetric strain
can berelated by,

p'=K(p)E& where K(p) =£_, g=_"- (E.17),(E.18),(E.19)
K l+e

By keeping G/K constant, shear modulus can be related to bulk modulus and rate of stress deviator can be

expressed as,

3(1 )
2(1+v)
Application of forward-Euler difference to Eq.(E.17),(E.20) gives an incremental form of stress-strain relation

by taking subscript n as a previous step and n+1 as a new step.

p|n+1 p n "~ K(p )( vn+l n) =Kn A‘E\? (E23)
Sy =S, =26(p" ){ &5, — €5} =26, A5 (E.24)

By the same manner, application of backward-Euler difference to Eq.(E.17),(E.20) gives an incremental form of
stress-strain relation as,

pln+1 p n "~ K(p n+1)( vn+1 ) Kn+1 A“:e (E25)

Sy =S, =26(p" ) ){e5,0 —85,} =260 (E.26)
The elastic response given by Eq.(E.23),(E.24) is under-estimated while those in Eq. (E.25),(E.26) is
over-estimated. However, the more reasonable results can be obtained by a direct integration of Eq.(E.17) where
adifferential form can be written by,

ey

p' K
Taking a definite integral from time step n to n+1 results in a closed-form solution for incremental stress-strain
relation given by equations below,

§=2G(p")&; where G(p")=u'K(p"), (E.20),(E.21),(E.22)

Pt St
[Ldp=2 T de
P’ p K &,
pln+1 1 e e
In| —/—= |==(& ,, —¢&
(2o )2 (s e
e _ — p n+1
Egny —En =K In( o J (E.27)
The updated mean stress can be evaluated directly by,
£Vn+ _g
P =P exp[lTJ (E.28)
Asaresult, secant moduli between time step n and n+1 can be evaluated using Eq.(E.27) by,
K—K(|on+1|o)-E"*lE":'D”*l Py (E.29)
vn+l vn Kln[p n+1]
Py
Gs :Gs(p|n+1’ p'n) :lule(panrl’ pln) (E‘?’O)

Secant moduli are step-dependent. The initial response where singularity takes place can be evaluated by taking
limit of Eq.(E.29)

Ko(p'n %)= lim K (p'. — (E.31)
Anincrementa stress-strai n;él a;ion can be given inKterms of secant moduli by,

D= P =K (s P (€50 —£5, ) (E32)

Sy =Sy =26, (P'yas P 6 — €50 (E.33)

Updated stress can be expressed by



Agl 0AE]
Pl = P KA = p') exp[ t j where Agl =g, — &, —=1 (E-34)
K g%
0As]
Sy =S, +2G,Ae] where Aej =¢gg, ., —¢£5,, % =A (E.35)
€ n+1
Elastic tangential tensor for updated state is determined by
?1+1 - a6n+1 :1 D ap n+l, asn+1 (E36)
0% 0c%41 0%
According to Eq.(E.34) and (E.35), the derivative of p',+; and s,.; in regard to elastic strain tensor are given by,
e o K LTS R E37)
aaenﬂ K K aﬁenﬂ K
where K, — P (E.38)
K
G Ae; K
OShg =25 O oG, , 2G, 0Re, _ 2uh 0 a—-h 2G,A (E.39)
68 n+l aﬁenﬂ oe n+l 08 n+l
where the variation of Kin Eq.(E.29) with respect to €%, is obtained as,
K K ' 'a— P
ae s — aa ' S apen+l - 1 l _ p n+l pzn Kn+11
01 P ha 0g°nu I?“'I[p?ﬂ] 7|n[p‘"+l] p‘ml
P P, (E.40)
pln+1
- -K
K e s K...—K
== | KX ____|K,1=K (—l"*l > }1
p n+l p n+l” p n p n+ p n
K
. K ' . .
lim oK, =Pn (in particular) (E.4D)

Pl P aﬁen+1 2/?2
Eqg.(E.40) can be further reduced by substituting Ks from Eq.(E.29). Eq.(E.42) reaches the same expression
given by Borja, R.I. (1991)

aKs _ p|n+1_ p|n[ KnJrl_Ks jl

e e —_
0e°n+1 AEV Pri— P, (E42)
- Kn+1 B KS 1
Agl
Substitution of Eq.(E.37),(E.39) into Eq.(E.36) obtainsthe elastic tangential tensor as,
oK
c, =K. ,10% 2G.A+ 2u' FA g0 1 (E.43)
n+l
Derivation shown below deduces Eq.(E.43) to the same expression given by Borja, R.I. (1991) as,
oK Agf
Chy =K 10% 2GAF 2u'—=A L (Km Ko 1
0e°ns1 5V
oK, = .
=K, 10% 2G A+ 2u'—>A g0 4 —SA el 1
[ n+l 8 n+l
1] (E.44)
8 1
-k + e g ae
asen+1
where ¢*=10% 2u'A (E.45)
It is noted that for an initial state (t,), an elastic tangential tensor is given using forward-Euler difference as,
c =K, 10% 2G A (E.46)

In this study, the semi-backward Euler is implemented; therefore, the high order of backward incremental terms
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is omitted in the derivative. Eq. (E.43) is simplified by ignoring deviatoric elastic strain increment part

K . . L :
2p'—=-Agg 1 to reduce the number of tensor basis, the following expression is employed instead.
€ n+l
co., =K, 10% 2GA (E.47)

The semi-backward Euler form of Eq.(E.47) can be interpreted in the sense that, the tensor basis is based on the
state at t=t,, but the scalar identity is based on the state at t=t,.;.
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Appendix F: Linearization

F-1 Second derivatives of the Sekiguchi-Ohta yield function with respect to invariants
Apply chain rule to the first derivatives derived in Appendix B-5 as shown below,

f _o(of)_o|MD _y3J,D|_ MD 6Dy3J,
_3 - +.

aal, ol el ) a1, 1,2 1,2 12
aZf :i[ij:i @—Q BjZD = - oD
03,01, aJ,\a,) aJ,| I, 12 21,2./37,

9 f -i[i]-i 90 |__ 9D
01,03, al,\aJ,) al | 21/3], 21233,

o .o (x).0f ). o
03,0J, 093,03, 0J, 21, 3j2 4|1\T2 3j2

2 2
Note that in regard to a smooth function; of :L = —ii

F-2 Second derivatives of the Sekiguchi-Ohta yield function with respect to stresstensor
Referring to Appendix B-5 accompanied by chain rule, the second-order derivativeis

0l, d6'0c’

a{affmafaizj
9°f _ (0l,06" 09I, 06') _ al1D 9°f .| of 0°l, N GJZD 9°f +i62\]2
0J, 0c'0c'’

dc'dc’ dc' d6' 96’0l
where the second-order derivatives of invariants are
AR 1% R
06'dc' Oc'\0dc') Oc'
- _
0 JZ :i ai :i(ﬂ:c'):ﬂj :,&
06'dc' Oc'\ 0c') Oc'
By the same manner employed in Appdenix B-5, the first terms shown in Eq.(F.6) expand to,
o Of_ A (O o of a5,
d¢' 0¢'dl, 0c" |al,0l, d¢' 0J,0l, dc'

9°f 9*f = 1
=10 ks (21, | n—-= 'n)l
[allall Z[n 3('](: n) jj

' 06'0J,

aJ,al,

0 f 0 o= 1
= 10y 2 25 (oA oA 1
[allal1 23,01, V" ( 31 n

:[ o'f —l(qc:ﬁ)\/i‘zz—fjm} O Baon
alal, 3 0J,01, 0J,0l,
The second terms shown in Eq.(F.6) reduce to zero,

of 9%, _

0_Il dc'0c'

The third terms shown in Eq.(F.6) expand to,
T 2 T 2 2 T
6J2D o°f _ 0dJ, af_alg Ef_ aJ,
01,01, 06’ 0J,0J, Oc'

d¢' 9¢'dJ, Oc'

— 1 0°f 0% f —= 1
=23 (n-L(m )10l 2oy AR ORI
2(” 5 n)j [allan Z(W AL j]

83,07,

|

(F.1)

(F-2)

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)
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— 0°f 1
=./2J —(ndOF = n)o 1
J2, 2 [n S(n.:) j

IlaZ
23, i[ﬁmﬁ— L m)ma —( n)1+n =(n, ;)AL 1)
? 03,0, 3
= 0%f 1, v 0°f 1
= 2), ——= . - 2J 101
( 2557, o M V2% 5553 (ne: )j
= 0’ f - 9f 1, )
+| {23, -2, =—==>(n.:0) [n 01 F.11
( ?91,0J, Zanans("° )j (10

2
+| =27, o°f l(nc:ﬁ) 10m | 23, 9T o
0J,0J, 3 0J,0J,
The forth terms shown in Eq.(F.6) reduceto,
e
i 0°J, :i'& (F.12)
0J, d06'ds’' 0J,
Summation of Eq.(F.9)-(F.12) results in the expansion of Eq.(F.6) as shown by a symmetric forth-order tensor
below,

azf 62 2 62 _ aZf 1 > 1 af
- (e :m)y23, ——(n.:0)" +S(n.: 101
9696’ (6I a, 30 293,01, 203,03, o (i) +g (e ) o= j
2 2 2
23, 20 25, )2 |noa«nog 23, 2L m (F.13)
J 6I 3 OJZ ) ana‘]z

of

+—|A——|10nt 1

7 { 3[ n¢ nd ]}

The result of above expansion can be represented by a summation of products between invariant-based scalars

and the corresponding forth-order tensor basis as shown,
0% f

G 0o DY HAHI A HO+1 Hje m Bt me Hone 1 (F.14)
6 0C
where
62 2/ 02 — = 0°f 1 _y2 1 of
. +2), ——— ‘n) +—— : F.15
M ana, 3V e, 283 0329("° ) 943, (n.:me) (F.15)
of 62 _ 1 aZf
H =—, \’2\] . — = F.16, F.17
*og, 33,0, 23 (n. )032032 (F.16), (F.17)
2
H, :ij 9 f_ , Hg =H, :—li (F18), (F19)
0J,0J, 347,

F-3 Derivative of the forth-order anisotropically deviatoric tensor
According to adefinitionof A (See Appendix A) and by chain'srule,

- _a{A—;[mn; nJ 4 g(nc:nc)ﬁ 1]}

ao'c aG'C
_ oA _;0[1Dnc+ o 1] 1a(nc‘nc)151
o', 3
I on,:
_ Ly, ﬂa ¥ 1 (ne:me) (F.20)
3| 0O¢'. Oc' o'
— T
-1 15% ﬂg * 1 ot on i, 01
3| O0c'. Oo'; o',
B T
=1 non ﬂa—l 101 .qc—lm oM | o1
3 Jo', Oo', 3 G, 3 0o ',

where (See Appendix B)
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1n . L {ﬂ A D oa, 1}, Me 1y L {Aﬂ—l lao1 1}
Cop 3 dc', 3 3

o, | 1 1 1 1
—< | i, = A-=10 n= - Z(n.:n.)1
LGJ n= { 3 nc} Ll {nc 3(nc 1) }

C C

Asaresult, Eq.(F.20) can be expressed by

10A %]] W+10A 1 %m 11

A 11

e SPelinpwm 3 oae 1 oS(aowfl 1o

c

1 1 1
A-I10n- in04 =(n n
11 { 3100 onf 9(nc . 1 }

(F.21)

3P +1D{A— %:D . _@+1 —(nc. n)1 1}

Al

Eqg.(F.21) illustrates a symmetric sixth-order tensor.

F-4 Second derivatives of the Sekiguchi-Ohta yield function with respect to stress tensor and stress
hardening tensor
Referring to Appendix B-5 accompanied by chain rule, the second-order derivativeis

a[afa' affﬂj

0°f dl, d¢' 9J, Oc'
Oc'. Oc' - Jo ',
_ iD 0% f of 9%, 0J, azf_ i 0%, (F22)
Oc' Oc', 0l 0l, dc', dc"' ds' 0c',0J, 0J, d¢', Oc'
where the second-order derivatives of invariants are
2
ol _ a ol =0 (F.23)
Oc'. Oc' " 96’ \ o'
923, _ 0 a aJ, 0 (/K-o') _O0A ., (F.22)
Oc'.06' Oc dc' 60‘ ' do'.
Substitution of Eq.(F.21) mto Eq.(F.24) gives,
0°J, aA ‘= E1[ADJ;LJ]A]
Oc'. Oc' 06 .
11 . N
= SpC[A(1.6)+1DA.G:| (F.25)

—Ii[llﬂ +1 D{ﬂ :o} J

cl

The order of derivatives can be exchanged each other for continuous function, therefore,
%3, _ 0 aJ, 0 —l—lﬂ:c'
0c'0c ', "9’ 0o ', 66' I
:——(ﬂ Da—+ LA L i({Z\:c}Dﬂ AL:e)) (F.26)
Joc'

Oc' Iy
o3 ]
Jc'. Oc'

Consider the following termsin Eq.(F.22) using Egs.(F.26), (F.5) and Appendix B




:l_l azf_ {Iﬁwlﬂ 27, [ﬁ- —(nczﬁ)lﬂ (F.27)

_ — 1 —
- L A+ 23 100-2(n 1) 23,101
B amail 2 5 (e M)y22, }

The derivatives of invariants with respect to stress hardening tensor are shown below (See Appendix B)
Beg, B gy B

1
, : n-=(n.:n)1 F.28), (F.29
O ', Jo ', I Iy 3(1l ) } ( ). ( )

Consider the following terms in Eq.(F.22) using Eqgs.(F.28), (F29), (F2)
] °f _ al {aZf a,  o°f ajz}

1
210 A
Oc' 0o’ 0l, d¢' |0dl,0l, 0c', 0J,0l, dc';

L (F.30)

2f 1,423
=9 4 2{1Dﬁ— l(qc:ﬁ)ﬂ 1}
03,01, 1, 3
According to Appendix B, the derivatives of joint invariant can be expressed by,

03, =[_ 1, _ 0J, l, - I, 232{_ 1, }
—=A:0c'=,2),|n—-=(n. :N)1|, =——A:¢'=- n--(n.:njl F.31) ,(F.32
o ° 2{ 5(n::1) } . 1, 0 ° I 3(ne:1) (F31) (F32)
Consider the following termsin Eq.(F.22) using Egs.(F.28), (F.4), (F31) and (F.32)

T 2 El 2 2 El

aJ_ZD 0 f__ 0J, 0 f_ ol 9 f_ 0J,

d¢' 0¢'.0J, 0o’ |01,0],0¢' 0J,0], ¢

_ o°f a3, . 0J,
0J,0J, dc' dc'

Cc

%f - [

=-——A:¢'0-LA:c' (F.33)
03,03, Iy
0° f 232|1{_ 1, } {_ 1, }
=——— 21 p-Z(y, :N)1|0|F Z(n,:0)1
R L i U
9% f 232I1[1 _\2 1, .\ 1 N _}
- | = : 10 = : 0o = n)d
33,03, 1 o (M) 3 MADE S(:m)D A @A

Referring to Egs. (F.23), (F.27), (F.30) and (F.33), the second partial derivative is found symmetric as shown
below,

) o f 23,1, #f , |
[9I1 1,03, e )5 o ("°:n)zjlm
cl 1¥v2 cl 2 2

J 2
+(—2J2'1 o (n, :ﬁ)jlmﬁ

3, 03,03,
2 £l 2
Of |, [2h O°F (n.:0)|AD1 (F.34)
Oc'. Oc' 3l, 03,0,
_ 23,1, o°f -
l, 03,0d,

+£ 02 f A 1,2 0°f

|, 01,03, 3l 1,03,

[10ng a0 1]

The result of above ex;_)ansi on can be represented by a summation of produ;:ts between invariant-based scalars
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and the corresponding forth-order tensor basis as shown,
0° f

5o =M, 10% M,A+ M,TOA MJA+1 M+ 0 M &y My, 1 (F.35)
6 . Jdo
where
1> 0°f 23,1, 9%f _
M: =g aror, e %) g Gran (ne:m)’ (F.36)
cl 1 2 cl 2 2
1.2 92
M, =1 o°f (F.37)
I, 01,07,
23,1, 9%f
M.=M =52 91 ‘A F.38), (F.39
3 4 31, 03,03, (“c ) ( ), ( )
23,1, @2
M5=—#L (F.40)
l, 03,03,
2 2
M =M, = O (F.41), (F42)

31, 31,03,

F-5 Second derivatives of the Sekiguchi-Ohta yield function with respect to stress hardening tensor and
stress tensor
By the same manner with previous section, by chain rule, the second-order derivativeis,

o O 9, of 33,
0% f dl, dc'. 0J, do',
d'dc', dc' (F.43)

[0 o ott J ot ony | [o3, ot ] [or o,
dé'. 0¢'dl, | |0, 06'dc", | |06'. 06'0J, | |0J, d6'0c",

where the second-order derivatives of invariants are

2
a3 (da) -
06'dc'., Oc'| 0o,
o a[aalfj a[_“IADJ
=22 = 22 =0 (F.45)
Oc'0l Jo' Jc'

Consider the following termsin Eq.(F.43) using Egs.(F.31) and (F.32),

aJ, _ 9*f _ L x4 o°f o, 9°f A,
' 01,03, 0¢' 093,03, dc'

2 _=- _1
ds'. 0d6'0J, |,

23, [_ 1 _ 0°f °f —=(_ 1 _
-_1 2 l:n —é(nc :n)1:| D[al aj B 2\]2 (n_é(nc n)lj]
1 2

Iy 83,03,
I 31, o 1,723, 92 ]
—(nc:ﬁ)Z%L+(nc:ﬁ)l—za—f_ 101
9, 03,03, 3, a1,03,
w(n ) Bl _&F gpg
731, 83,03,
_ _ (F.46)
1,4/23, 92 J 2
_lel, o°f +2J2|1(1]C:ﬁ) 9or no1
l, 0,83, 3, 0J,0J,
1,23, 9°f S
la 0J,0d,

Consider the fz)llowi ng termsin Eq.(F.43) using Egs.(F.26),
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0% f
' J,01,

I

—%(nc :ﬁ)l} 01+ |1/Sj

({A o} OF K(l:o'))}

2
I

2
I

ol ajzall

2

A
31, 03,

10 0 1
al[ 0+ nd ]

(F.47)

Referring to Eqs.(F46) and (F.47), Eq.(F43) can be reduced to,

o’ f

Gz

250

_|,2%n

2

1> 9°f (n,
9, aJ,0l,

0% f
3l, 03,0,
0% f

06 '0c ',

23,1,

I
i 0 f

3, 93,0,
0° f
0J,0J,

2

I, 0J,01,

23,1, 0*f
91, 83,87,

. nc)
(n.
(n.

non
_ o
"3l 03,01,

——(n, flel
(F.49)

+ n0 1

The solution found in éq.(F.48) issimilar to that of Eq.(F.34) even the orde; of differentiation is opposite. This
property should be hold for continuous function. However, it is not guaranteed at the point of singularity.

F-6 The derivatives of gradient of the SO yield function with respect to virgin K ,-consolidation pressure
The derivative of gradient of the SO yield function with respect to p'. in corresponding to Appendix B and
Eq.(F.35) can be given by,

00, f) _ a%f _ 0%t o',
op', op'.06' 0dc' . dc' Op'.
={M,10% M,A+ M,0 A MA+1 MJ+ 0 M n, M,n + {1 n} (F.49)
=(3M1+M3(ﬁiﬂc)+'\/'e('lc :'lc))1+(3M7 +M, )0, +(M5(ﬁ:nc) ""?"V|4)ﬁ
=0
where
1,2 0%f 23,1, 0*f _
L= (qm) - ——(y, :A)
_ 3l a1,0d, 3l, 0J,0d,
M, +M, (i) +Mg (ne:m) =| L ) =0
23,1, o°*f R I PR E )
tY—— == (nc'n) v = (ncnc)
3l, 0J,0d, 3l 01,0d,
23,1, 0°f 23,1, o0*f
M, +M (A:n,) =—2t—— ‘n)-——2t——(A:n,) =0
4 5( nc) ICl anan (nc ) Icl anan ( nc)
2 2 2 2
M, +M, =1 o '1 o
l, 01,03, 1, 01,03,
According to Appendix B, the short proof can be obtained by,
d(o, f
(0. f) _ 2% of (1 om ), g (F.50)
op', 3 aJ 6p
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where
o

A |1+423.
)25 2

{A -%nc Dl}:{]ﬂ- ng

=]

] (F.51)

2

o (of —=aof 1
—_— = — - 2J —_—
o0’ [a| v 2aJ 3
on, _ O, 1
', oo, apc p‘c

=M N, =0
pc{ "

(providing that 1, =0) (F.52)

F-7 Rate congtitutive equations
The rate congtitutive equations for inviscid version of Sekiguchi-Ohta plasticity are listed below,

£ =g —¢P (F.53)
6'=c g (F.54)
¢ =c*(6) =K (¢ )1 0% 2G(c)A (F.55)
& =y0,.f(c'0") (F.56)
p, =02, Ha = /Tp 4 where  a=1:¢" (F.57)
-K
cC=G'C(F)'C):F)lc{j'-i-tlc} (F'58)
f=f(e Y6'.)=0 (F.59)
y=20;f<0;yf=0 (F.60)

F-8 Backwardly incremental constitutive equations
Using Asg=¢At and Ay=vyAt as driving variables between state at t, to t,.,=t,+ At, rate-independent

congtitutive Egs.(F.53)-(F.60) can be integrated backwardly by the followings, (subscription defines atime step)

£5e1 =65 =0 ~80u) {80 60} He0u =} {80 €0} =8 {el. €0} (F.61)
Y 'n+1_ o In = C§n+1 :{aﬁﬂ _Sﬁ} (F62)
Czn+1 = Cz (6 ln+1' Y l ) (F63)
e —8) =0y,,,0,. fn+1 (F.64)
v 1 gp
Penis = Plen exp(”—K) (F.65)
vV n+l gp

cn+1 p cn+l {1 'lc} p cn exp(m—Kn){l ‘ch} (F66)
fn+1 = f (6 'n+1 Y |Cn+1) (F67)
Ay=0; f,, SO0, = (F.68)

Eqg.(F.61) can be written in the notion of relaxation from trial state serving as a guessed value for the non-linear
system, expressed by

n+1 {A£+£} { n+1 } tf _{£n+1 _85} (F69)
where €' = Ag+g? (F.70)

F-9 Reduced form of backwar dly incremental constitutive equations
Substitutions of Eq (F64) into Eqgs.(F.69), (F.66) give

e, =€ =Ny 0. f ., (F.71)
1.{8'”1 € } A 1 A’Yn+1aa fn+1
6.y =P, EXp —5 {1+n} =p', exp —5 {1+ng (F.72)

Substitutions of Eqgs.(F.63) into Eq. (F.62) giveimplicit form of o’ ., by arranging

60y =6, +C (00, 0%) {e0, — 2] (F.73)
Substitions of Eq.(F.?l) into Eq.(F.72), and then with Eq.(F.66), obtain Eq.(F.74). Next step is substitutions of
Egs.(F.73), (F.74) into Eq.(F.67), obtaining updated yield function Eq.(F.75) asafunctionof &,,.
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1:4e" —¢r,
o 'Cn+1 (sfnl) = p‘cn exp[{——_l}J{l-Fnc} (F74)
A-K
fra (€)= f(o In+1(£ﬁ+1)v"lcn+1 (e7:1)) =0 (F.75)

As aresult, the primitive nonlinear system noted by Eq.(F.61) to Eq.(F.67) is reduced to two nonlinear system
of Eq.(F71) and Eq.(F.75) where Eq.(F.71) contains Egs.(F.61),(F.64) and Eq.(F.75) contain Egs. (F.61),
(F62), (F.63), (F.66) and (F.67).

F-10 Consistent elastic moduli

. e .
do n+1 _{ e e} . acsn+1 .60 N+l 4 e

=\ & —&.f - .
e n+l n l e sn+1
0g,,, os' ., 0t
T
ocg dc'
sn+1 o€ e . n+tl _ e
| - a—| '{£n+1 _En} e _Csn+1 (F76)
c n+l a‘(;n+1
-1
T
' e
e _60 n+l _ | — acsml Jee  _e® . Re
Con = e - ' 180 & 'Csn+1
agn+1 66 n+1

In this study, to reduce to complexity of tangential elastic tensor, the incremental strain tensor inside stiffness
tensor is omitted. The simplified tangential elastic tensor shown below is employed instead in this study.

0
Gy =t =K, 10% 2GA (F.77)
n+l
The number of tensor basic would become 16 if the incremental strain deviator were included in consideration.
The simplification has the consistent tangential moduli lost the fully backward scheme; therefore, it should be

called semi-consistent tangential moduli in this study.

F-11 Partial derivative of yield function with respect to elastic strain tensor
According to Egs.(F.73), (F.74) and (F.75), the partial derivativeis given by

o _5,1:99 g, 1.9 (F.78)
oc® oc® ©  0g®
According to Eq.(F.74), the derivative of stress hardening tensor with respect to elastic strain is,
do' do' op' -n' 1:4e" —g,
O o1 - O cni1 0 P ensa {:H' 'IC}D _p cn exp {_ 1} 1
0eS, P,  Oe, A-k X -k
(F.79)
_plc _lcl
={l+nf O=—=F —— o4 1
O v 3(;|—;?)[ Wy
According to Eq.(F.79) and Appendix B, aright termin Eq.(F.78) can be expanded to,
Jo' o' " -1
9, f:—== ¢l o, fr =—=2{10% 00 n}:(s?1 sn
c aae {|: age j| c } 3(A _/?){ } (%. SZ )
n+l (F.80)
=y _ -l of MD
=——=—(3g + N l=——1=-—-1
3 —/?)( s +s (nm)1=l . Ak
where MD=2"K -7 ¢ (F.81)
l+e
Substitution of relation in Eq.(F.81) into Eq.(F.80) obtains,
o 1:%%e g (F.82)
c 689
Asaresult of Eq.(F.82), Eq.(F.78) isreduced to,
of =0,.f:c*+1 (F.83)
oc®

F-12 Partial derivative of yield function gradient with respect to elastic strain tensor
According to Egs.(F.73), (F.74) and (F.75), the partial derivativeis given by
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010,.f ' '
o, }=a§.6,f o g 599 (F.84)
0g°® 0g°® © 0s®
According to Egs.(F.79), (F.35), aright termin Eq.(F.84) can be expanded to the following terms,
. .00 _ (3M, +M, (A:n,) +M, (0, :m,))101
Tt 0t | +(3M, +M (Min))N 0¥ (3M+ M,)n0 1
Referring to Eqgs.(F.36)-(F.42), these scalar values in Eq.(F.85) can be evaluated in the same manner with
Appendix F-6 as,

(F.85)

3M, +M, (A:n,)+M¢ (n, :n.) =0, 3M, +M (A:n,) =0, 3M,+M, =0 (F.86)
Substitution of Eq.(F.86) into Eq.(F.84) obtains,

02, f ;ao_c =0 (F.87)

c aae

Asaresult of Eq.(F.87), Eq.(F.84) isreduced to,

010, f

Mn?ju.f :c® (F.88)

0s®

F-13 Algorithmic moduli
A component of unknown variables, unknown variation and residuals are shown below,

" :{ e } 5x :{ % } (F.89),(F0)
A}/I'HZI. &yml
T g, —¢ +Ay,,.0..f,
r:{rnﬂ}: va 78 Tl (F.o1)
fn+1 f (6 (£n+1)!6 c(8n+1))
According to Newton’s method, the unknown variation can be evaluated by
ox=-Q* [0 (F.92)
where the Jacobian matrix is,
or ot
0x, 0x
=t 2 (F.93)
L
0X, 0%,
Each component of Jacobian matrix Q is given below
o +Ay{a§.u,f e+ f a"—} (F.94)
0x, © o 0e° |,
or
—=0_.f F.95
0X2 ¢' 'n+l ( )
i={aﬁ.f e+, f :a‘“} (F.96)
aXl ‘ aae n+l
LI (F.97)
0%,

According to the SO model in Appendix B, derivatives referred in Eqs.(F.94)-(F.96) can be taken from
Appendices F-11-F-12. As a consequence, Eq.(F.94),(F.96) are reduced to Egs.(F.98),(F.99)

or

a—X1=I +[ 02, 1 :c‘*}n+1 (F.98)
of d
a—X1={au.f ¢} Lt (F.99)

To obtain the exact form of variation of unknown variable &x, the exact Hessian matrix defined by is introduced
for a convenience in equation manipulation as,

== [ce‘l N } (F.100)

n+l

Omit a subscription n+1, Eq.(F.98) can be further reduced using = defined in Eq.(F.100),
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(;)Tr = it + A, f S =[c‘f1 + 0y, f }:Ce =E":c° (F.101)
1

It is an implicit procedure that involves solving a local 6x6 system of equations in inverting matrix =

(second-order tensor) in Eq.(F.100). The more efficient method will be introduced in the next chapter to dea

with numerical inversion.

An exact form of unknown variation 8 is derived by manipulating equation of residuals shown in Eq.(F.91).

Using al of the prescribed determination deduces Eq.(F.92) to Eq.(F.102),(F.103).

E'ic®: 0 +0, fAAy=-T (F.102)

{0, :cc+1}:0e° = (F.103)
Performing double product of [=™ :c"‘]_1 to Eq.(F.102) resultsin,

det+c” B0 fAy=— E:T (F.104)

Next, perform double product of {aa. f:c +1} to Eq.(F.104), obtain a scalar product,
{aﬂ.f it +1} :0g° +{6ﬁ,f oy +1} :{ce_1 B ac.f} oy
= —{au,f ct +]} Z{Ce_l :E:ﬂ
Refer to Eq.(F.103), aterm of {aa.f .c® +1} :0g° inEq.(F105) canbereplaced by —f , therefore,
~f +{0,.F:c" +1) :{ce'1 E: 0, f} oy =91 :c +1 :{cf1 :a:r} (F.106)
From the above equation, 6Ayis then enable to solve,
f —{6G.f :c® +1} :{c"rl :E:T}
{ac,f :ce+]} :{ce_1 :E:aﬂ.f}
0Ay can be further reduced by tensorial expansion,

- f —(ac.f :c"‘:{c‘fl:E:F}+1:{c"f1 :E:T})

(F.105)

Ay= (F.107)

a,.f:c :{cef1 :E:au,f} +1{ ¢ :a:aﬁ.}

_ mem e 3 =, (F.108)
_f (aﬂ.f._.r+9K1.{_.T}j
}

1
f - +—1|4E:
] (0,1 + g 1)z

) 1 e
{a,,.f +3K1}.{_.ac.f}

Findly &€ can be solved by manipulating Eq.(F102). Using dAy in Eq.(F.108), variation of elastic strain is
found,

gt == E:{F +0, f o (F.109)

F-14 Backwardly differential form

Differentiation of a system given in Egs.(F.61)-(F.67) is more complex than solving for unknown variables in
the system. The target of the differentiation is to solve for consistent tangential moduli. As a result, expression
for stress tensor would not be replaced by other expressions that have been carried out to solve the system.
Performing a derivative of Egs.(F.61)-(F.67) obtain,

def,, =de,,, —del, (F.110)

do’,, =dcs,,, &0, —e2} +c2,., 1 del, (F.111)

sn+l " sn+l

n+l



Sn+1 = a C (6 ln+1’ G' ) : dG 'n+1 (F112)
dﬁﬁﬂ Oy,,,do, f,, +0,.f ., Od v, (F.113)
do’,., ={1+n, ;“” 1:deg,, (F.114)
df,, =9,.f:do’,,+0, f:de’, ., (F.115)

Eq.(F111) contains a derivative of elastic secant tensor, which is expanded to sixth-order tensor as noted in
Eq.(F112). To approach a solution numerically rather than algebraically, Stress tensors appeared in left and right
sidein Eq.(F.73) aretreated at different iteration <k> as shown below,

- =c (o e {en, —e) (F.116)
As a consequence, the derivative of elastic secant tensor can be ignored in the sense that noted in Eq.(F.117).

Hence, Eq.(F112) is taken as zero as shown in Eq.(F.118). The simplified form of Eq. (F.111) is shown by
Eq.(F119)

c

e <k-1> 1
LralC o 100) g (F.117)
aG 'n+1
e _0Ca(e7 " 6)
def,,, =—" 3 = (F.118)
n+l
do ., =Cg,, 1 den,y (F.119)
Substitution of Eq (F 110) into (F.119) obtain,
do’ n+l T sn+1 {danﬂ d8n+1} (F120)

Consider atermof dd,.f.,; inEq.(F113),
dd,.f,, =02, :de’,, +02,. f:do’

¢' 'n+l cn+l
' F.121
S0, fdot 0 £ % gt (R121)
©oop’
According to Eq.(F49), 02.,. f: ga < inEq.(F121) isequal to zero, then
‘ [
do,.f ., =02 f:ds' (F.122)
Subgtitution of Eq.(F.122) into (F.113) obtains,
def,, =Ny, ,02.,.f:de'  +d,.f ., Od vy, (F.123)
Substitution of Eq.(F.114) into (F.115) obtain,
df,., =0, f:de’ ,+0, f:{l+n, _°”*1 (1:de? (F.124)

n+1)
L P

According to Appendix B and Eq.(F.81), the term a f {1 } in Eq.(F.124) can be reduced by,
-K

0, f:{l+ng =0, f:—F=—-=-—= ‘ (F.125)
‘ { } ©oop. Op P P
Asaresult, Eq.(F.124) isreduced in association to Egs.(F.125), (F.123)

w=0,.f:do' , —1:de’

=0, f:do',,~1:{ Ay, .02, f :de’,, +0, f,, O v,
=0,.f :do 'y, ~{ Ay, (02,1 :1):do’,, +(1:0, 1,,.) d oy, )

{ AV ( o 1} do ', (1 0, fn+1) dby,,
According to the consstency requirement, df ,, =0, therefore, Eq.(F.126) can be used to solvefor dAy,,,

a - {a f -y, {22 .f:]}}:do-‘nﬂ (F.127)
Substitution of Eq.(F.127) |nto (F.123) obtains,

n+l

(F.126)

dAy, ., =



d8£+1 :AYn+1a:2r'o'f :do'n+1+aa'f Dl;é c'f_A 'Yn+1b 2' f ]}} :dG'

I 0.0 2 .f:
I E R I N P § oofid o
T 1:0_f

0,10, f 5 [0
H, H

Substitution of Eq.(F.128) into (F.120) obtains,

dG'n+1 =C§n+1i{d£n+1 - aGVfHﬁ*—A’YnH l_a Glﬂ:l 1:|62 'f‘|:d6|n+1}

P P

Manipulation of common terms of do'

{I +C§n+1 :
danﬂ:(cim)_l: I +ci., M+A}/M{I—a A= 1}:03.64} ‘de’,.,
HP HP

:{(szl)_l +(‘%IfH&+AYn+1 |:I 9 6::] 1:| ai'a'f}:dclnﬂ

P P

toL.H.S, obtains de,; as

n+l

M%{l 0,01 af}}d e
H H

n+l

T Vsn+1
p p

= Cg-)uil tde’
Inversion of Eq.(F.130) resultsin,
do',, =Cry1de,y

According to Eq.(F.130), the consistent tangential stiffness forth-order tensor is expressed by

-1
chy :[Cznﬂ_l +Hiaﬁ.f @ ,f+A q{l— H—la . fO0 1}: i.ﬂ.f}

p P

F-15 Simplification of consistent tangential moduli
According to the inversion of differential form given below,

[S+as]" =St -S*:AS:S?
By the result of property shownin (F.133), the Eq.(F.132) can be simplified as following,

c®, :cgnﬂ—cznﬂ[Hiau.f 0 A ylil— H—la .0 1}}: j,ﬁ.f]:cin+1

P P

F-16 Exact inversion of consistent tangential moduli
According to the inversion of non-singular tensor given below,

o THCOD:TH
1-b:17hcC
By the result of property shownin (F.135), the Eq.(F.132) can be simplified as following,

[T-cop: 7T

T =C§n+11+Ay[I ~1 a,.f Dl}ﬁ 2 f
HP

1.0, 0

TR
C?ﬂ:T_l_ . p—l.
a,.f:T:0,.f
1+-0 - T
H

p

(F.128)

(F.129)

(F.130)

(F.131)

(F.132)

(F.133)

(F.134)

(F.135)

(F.136)
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Appendix G: Form-invariance principle

G-1 Basicinvariants
The basic invariants can be written as follows,

tr(c) =¢'; (G.1)
tr(c?)=o i 6 (G.2)
tr(c') =o' (G.3)
tr(c'’)=o 5 O ¢ (G4

tr(c'e’)=c'6’; (G.5)

For two-invariant anisotropic model, 5 of above basic invariants including joint invariant must be retained as
arguments in the constitutive law.

G-2 Isotropicinvariants
| ,=tr(e’) =60, =6’ (G.6)
1
Sj =6 _5 |16ij (G7)

1 1
J 2=Etr(sz) =588

1 1 1
:E{G i _:_gllsij}{c ji —§|15”}

i, , 1 1 N
_E{G i O ji _gllc i 6ji _gllsijcji +§|1 6ij6ji} s
i 111, (©8)
—E GO _éllc i 6ji _gllsijc ji +§|1 Sijsji
=%{tl’(6'2)——|12}
=£{tr(6'2)— tr(c')z}
2
_S U3
== — (G.9
pc Icl
I 4=tr(c';) =¢'y; 8; =c’;, (G.10)
, 1
i =0 —élclﬁij (G.11)
1 2y _ 1 1 b2y 1 VN2
J ==tr(s.°)==s.5s.. =—<tr(c ——1r(o G.12
022((:) Zcuc“ 2{(0)3(0)} ( )
— Scij zgscij Gl3
g \ (G.13)
pc Icl

There are no joint invariant appeared in isotropic invariant expressions for both stress and stress hardening
variable.

G-3 Anisotropicinvariants
The anisotropic invariants are defined as follows,
- 1
S =S _5 Ilncij (G.14)
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= _1 1__
J 2=§tr(sz) =555

21 1 | 1 |
_E S; _5 M (1S _5 1Mej;

1 1 1 1.
=51SiS;i _élﬁjﬂc“ _éllncijsji +§|1 N Neji

2
_ 1 Il |1 I12
_E{ZJZ TS S T S Sii +I_ZSCijSCji

I cl I cl cl

2
| |
=J, _l_lgjscji +(_l] Jeoo

cl I cl

=J, —lli{tr(o-'c'c) —%tr(o r (e c)}+[||—lj Jo,

cl

2
| L 1 |
=J, _i{tr(c c') _glllcl} '{ij Jeo
| 1 LY
=J, _{itr("'“'c) _gllz}"'[ij Jeo
2

1 12 1 2 Il ' 1 2 Il 1{ 1 2 1 2}
=—<tr —— 1 =y —=tr —| H — | =<tr — |

s fren S -freen S 1] Hren S

2

1 12 1 2 Il 'Y 1 2 1 |1 1 2 1 2
=—qtr —=, p=q—=1r =10+ =] tr —1

LGRS PR DR 2{(@ @,

1 | 101, Y
=Ztr(6?)——Ltr(c'e’) +=| = | tr(c"’

> (™) I (c'c’.) 2(| j (c')

cl cl

=%{tr(o'z)—2—”("') tr(c'c'c)+£—tr(°')J tr(o'cz)}

(G.15)

tr(c’) tr(c’.)
There is ajoint invariant tr(c's',) appeared in anisotropic invariant expression. It is found that anisotropic
invariant J, isexpressed by all of basic invariants defined in Appendix G-1.

G-4 Principle of objectivity

I =tr(e”) =tr(Q &' [@Q") =tr(Q" [ ") =tr(L[@") =1 , (G.16)
R
s =¢ ——1:11

I _l 1* T

=¢" -217QMQ

=QF @ - QI (G.17)

— I_E T
afe-ii) o

=QBO’
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P P
J, ==tr(s $)==tr(s 8
2 =3 (s 3) > (s 8)

=%tr(Q B0 QB

=%tr(QT Q313)

(G.18)

1
=Etr(sB) =J,

By the same manner, stress hardening variable is able to expressed
la=1,, 8 =QB ", Jz2=J, (G.19), (G.20), (G.21)
s, 3s

C p— C

p'c* - | cl*
_3QE, @7
l cl
=Qm, @'
According to Egs.(G.14),(G16),(G17), S istransformed by,

1, =

(G.22)

S =S __Ilnc

-{oBw) —%(Il){Q . @) (G.23)

_ 1 T
_Qms 3|1nc)|:(D

=QBEO’
Then J, istransformed by,

NP ——tr(s 3)

NIFR NP NIERENRPRNIERDN

r({Qezw’} foswy)

({
(o’ @ s107)

r(QEE")

—
=

(G.24)

r{Q" @ E)

tr(ss)=J,

In the SO model, generalized stress ratio n* is replaced by generalized relative stress ratio 77. 77 can be
proven to satisfy the principle of objectivity according to the resultsin Eqs.(G.16), (G24) by,

. 333, * _3 [33, _n 625

1 1
All of invariants including anisotropic invariant are satisfied the principle of objectivity.




