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Introduction

In this paper, we study the Reidemeister torsion in the context of low-dimension-
al topology. Reidemeister torsion is originally defined by Reidemeister, Franz, and de
Rham. It is a piecewise-linear invariant of certain finite cell complexes with respect
to a representation of its fundamental group in certain Lie groups. In this paper, we
deal the Reidemeister torsion of 3-manifolds for SL(2; C) and SU(2)-representations.
We may consider this invariant as a function over the space of the representations of
fundamental groups. In this case the space of representations of fundamental groups
is related to the geometric structures and topological invariants of 3-manifolds, for
example, Casson’s invariant and Witten’s invariants.

The actual definition of the Reidemeister torsion will be given in chapter 1,
where we give necessary definitions and propositions. As an application of the Rei-
demeister torsion, Reidemeister and Franz obtained the complete piecewise-linear
classification of the lens spaces in all dimensions. These examples are explained in
chapter 1. The concept of the torsion is well-explained in [3] and [13].

In chapters 2 and 3, we deal the Reidemeister torsion of 3-manifolds for the
SL(2; C)-representations. Recently Johnson [5] derived an explicit formula for the
Reidemeister torsion of Brieskorn homology 3-spheres for SL(2; C)-irreducible rep-
resentations as follows. Let M,, be a 3-manifold obtained by pelformmg the ;—Dehn
surgery on the torus (p, ¢)-knot. The manifold M, is diffeomorphic to the Brieskorn
homology 3-sphere £(p, ¢, pgn+1). In this case, the fundamental group = M, admlts
a presentation as follows.

My = (z,y | 2P =yI,mi" =1)

where m is a meridian of the torus knot which is a word of = and y and [ is similarly
a londitude. Then Johnson proved the following theorem.

THEOREM (JOHNSON). The distinct conjugacy classes of the SL(2;C)-irreducible
representations of w1 M, are given by Plabk)y Such that

(1) 0<a<p0<b<qa=hmod2
(2) 0<k <N =|pgn+1],k =na mod 2

(3) '51'/)((..,(,,1\:)(;5) = 2COS ZT_CE
P,
/

(4) “P (a,bk (U):?'COSQ
q,
mh

(3) P b k) (10) = 2 cos v



In this case the Reidemeister torsion (. 1) 10r p(apk) 1S given by
_ _{?.(1—cosl;‘i)(l—cos’—:lﬁ)(lﬁ—cosf’;—'\,’ﬂ) a=b=1k=n mod 2
(bl = 0 a=b=0ork#n mod 2.
His methods can be applied to the investigation of more general Seifert fibered
spaces and give a way to compute the Reidemeister torsion of them. The main result

in chapter 2 is the following theorem. Let M?® denote the orientable Seifert fibered
space given by the following Seifert index ;

]\/I = {b,(s,g); (Olluﬁl)’ s 7(a’m7ﬂm>}‘

THEOREM. Let p : myM — SL(2;C) be an irreducible representation. Then the
Reidemeister torsion T(M;V,) is given by

0 ifH =1
ot=m=19 T] (1 = (1) cos ikile)T HH#TLe=o0
r(M;V,) = LG~ 0o 5T g
(2 = 2cos E)* =™ [T (1 — (=1)¥ cos ELT(”)—T) ifH#I,e=n
1=1 )

where

(1) H = p(h),

(2) h is a representative element of generic fiber in M,

(3) piyv; € Z such that C;' ?/i =—1and 0 < p; < ay,
IS T 6"

(4) ki(p) € Z such that 0 < k; < «;, and k;(p) = f; mod 2.

(6 5] Qmy
(6) s € Z such that 0 < s <2N + 2.

This is an extension of Johnson’s result mentioned above. In particular the sets
of values of the Reidemeister torsion are again finite subsets in R.. It follows that it has
no continuous variations, although the dimension of the space of the representations
of the fundamental group of these manifolds is generally positive.

In chapter 3, we consider the following problem.

PROBLEM. Does there exist a closed 3-manifold with continuous variations of the
Reidemeister torsion for SL(2; C)-representations 7

In order to attack this problem, we first need to investigate the spaces of the
SL(2; C)-representations for given manifolds. Applying the method, due to Riley
[16], to the Wirtinger presentation of the figure-eight knot, we determine the space
of representations of the fundamental group of the figure-cight knot exterior. Then
by the method of Johnson, we obtain an explicit formula of the Reidemeister torsion
of this manifold. The formula shows that it has continuous variations. The main
result in chapter 3 is the following,



THEOREM. Let K C S® denote the figure-eight knot, and E its exterior, that Is,
the complement of an open tubular neighborhood of K. Let M denote the double
E Ujq E of E. Then the set of values of the Reidemeister torsion 7(M;V,) of M
for SL(2; C)-representations is the set of all nonzero complex numbers. Therefore
7(M;V,) has continuous variations. ’

In chapter 4, we deal the Reidemeister torsion for SU(2)-representations. In
particular we study the connection between the Casson’s invariant and the Rmde—
meister torsion.

In 1985 Casson defined a topological invariant for homology 3-spheres. Let M3
be a closed, oriented homology 3-sphere. By the classical theorem of Heegaard, M can
be decomposed into two handlebodies of a certain genus g. We respectively denote
these handlebodies by Ny and N3 and the common boundary surface by £,. Let R, be
the space of SU(2)-irreducible representations of 7, ¥g. Similarly R', R? and Ry are
defined as the space of SU(2)-irreducible representations of each fundamental group
of Ny, Ng, or M. Then SU(2) acts on these spaces of representations by conjugation.
We denote the orbit spaces respectively by Rg, R, R* and Ry;. Tt is easy to see that
Ry coincides with the intersection of B! and R2 by van Kampen’s theorem, when
we consider R! and R? as a submanifold in R

Casson’s invariant A(M) is defined to be the half of the algebraic intersection
number of B! and R? in R,. Casson’s invariant is explained in [1].

Later Johnson [5] defined a natural volume form on Rg in the above situations.
Let V be an n-dimensional vector space over R. We denote the n-dimensional exterior
product A"V by detV. A volume on V is defined to be a nonzero element of detV
Johnson’s theorem is the followmg

THEOREM (JOHNSON).

A

(1) There are natural volumes v1,0, and 9, on the tangent spaces T[,,]Rl,T[,,]RZ
and T}, R, for "[p] € R' N R? = Ry.
(2) Suppose R* and R? have a transverse intersection at [p]l. A nonzero real number
t[p) is defined by
Dy A Dy = t[ﬂ] Dy
Then a sign of ty,) coincides with the sign of the Casson’s one. In particular if
R and R? are transversal for Y[pl € R* N R, then the tollowing holds,

2AN(M) = " sign(t,)).
[r]

(3) We cousider the Lie algebra su(2) as a m, M-module using a representation p
and the adjoint representation of SU(2). We denote the m, M -module su(2) by

5



su(2),. Then the Reidemeister torsion 7,(M) of M with su(2),-coefficients is
defined. In this case, the following holds up to sign ;

lpl = Tp(]\/[).

This result is a very interesting but it only points out a vague connection be-
tween Casson’s invariant and the Reidemeister torsion. We would like to understand
geometrically the meaning of this connection. Our main result in chapter 4 is the
following theorem.

THEOREM. Johnson’s volumes ¥, 09 and 9, are respectively the Reidemeister torsion
of Ny, Ny, and £, up to sign, that is,

b1 = e17,(N;) € detH*! (Ny;su(2),),
by = €aT,(Ny) € det H'(Na; su(2),),
by = €,7,(S,) € detH' (g3 5u(2),)
where €1, €, €, € {£1}.
By this theorem, we can consider the relation
by A Dy = 1y, - By

as a relation with the Reidemeister torsion. Hence we have the following relation of
the Reidemeister torsion of these manifolds, up to sign,

To{ N1 )Tp(N2) = 7,(M)7,(Z,).

Now we have the following natural exact sequence which is derived from the Heegaard
decomposition

M = Ny Ug, Ny,
0 — Ci(Zy;5u(2),) = Cu(N155u(2),) B Cu(No; su(2),) = Cu(M;su(2),) — 0.

Then we get the following equality by well-known fact in the theory of the Reide-
meister torsion,

To(N1)Tp(Ny) = 7, (M)7,(Zy)7(H),

which holds up to sign where the chain complex H is the following homology exact
sequence ;

H:0— Hi(Zy;su(2 ),,)——>H(Nl,>u( )p) @ Hi(Na;su(2),) = 0.

Suppose that a volume on H{(X;5u(2),) is given by the product of the volumes on

Hy(Ny;su(2),) and Hi(Naisu(2),). Then it holds that
T(H) =1 up to sign.

6



Hence we have the following, up to sign,
TN TH(Na) = 7,(M)7,(Zy).

Therefore we have naturally the relation

from. a well-known relation of torsion invariants.

In chapter 5, we deal the Reidemeister torsion of knots in 52. In 1928, Alexander
introduced a new knot invariant which is now called the Alexander polynomial. In
1962, Milnor [12] proved that the Alexander polynomial of a link in S* is equal
to a certain Reidemeister torsion of the exterior of the link. As an application of
his interpretation, he derived the well known symmetry of the coefficients of the
Alexander polynomial. The connection between the Alexander polynomial and the
Reidemeister torsion is explained in [17].

In 1992, Wada [18] defined the twisted Alexander polynomial for finitely pre-
sentable groups. We consider the case of the group of a knot. Let K C 5% be a knot
and E its exterior. We denote the fundamental group 71 E by I' and the canonical
abelianization of I by

. a:T—=T=<t>.

Then we will assign a Laurent polynomial A ,(t) with R-coefficients where R is a
unique factorization domain to each linear representation p: I' — GL(n; R). We call
1t the twisted Alexander polynomial of K associated to p. For simplicity, we suppose
that R is the real number field R and the image of p is included in SL(n;R). It is a
generalization of the Alexander polynomial Ag(¢) of K in the following sense. The
Alexander polynomial Ag(t) of K 1s written as '

A[((t) = (1 — t)AI-\”l(t)

where 1 : I' — SL(1;R) = {1} is the 1-dimensional trivial representation of I.

We consider the following problem, the analogy of the Milnor’s theorem.

PrROBLEM. Can we consider the twisted Alexander polynomial of K as a certain
Reidemeister torsion of its exterior ' 7

For the representation p : I' = SL{n; R), we define the representation
pRa:l — GL(n; R(t))

by
(p@a)(z) = plx)a(z) for "x € T.

Then our main theorewm in chapter 5 is the following.

7



THEOREM. The twisted Alexander polynomial Ak, ,(t) associated to p is the Reide-
meister torsion Tpgal for p ® « ; that is,

A["’p(t> = Tp®(_yE.

As an application of this interpretation, we obtain the symmetry of the twisted
Alexander polynomial in the following sense.

THEOREM. If p 1s equivalent to an SO(n)-representation, then we have
Arplt) = Dgp(t7)

up to a factor et™* where € € {+1} and k € Z.
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Chapter 1

Definition of Reidemeister torsion

§1. Reidemeister torsion

Let us describe the definition of the Reidemeister torsion. See [3], [5], and [13].

Let V be an n-dimensional vector space over a field . Let b=(b1,...,b,) and
c=(c1,...,cn) be two different bases for V. Setting

n
c; = Za,‘jb]‘ for Vi € {L s :n}a
=1

we obtain a nonsingular matrix 4 = (a;;) € M(n;F) and denote the determinant of
A by [b/c].

Suppose

a O =1 2}
C'* 10— C'm. — Cym-—l Ln__) e 4 C"l ""l+ C'0 —0

is a chain complex of finite dimensional vector spaces over F.

Let Z,(C.) C €y denote the kernel of 8, and B,(C.) C C, the image of J,;.
The ¢-th homology group H,(C.) of C, is defined by the quotient vector space
Z4(Cx)/By(Cy). For "q € {0....,m}, assume the preferred basis ¢, for C,(C,) and
h, for H,(C\). Choose any basis b, for B,(C.) and its lift b, in Cyy;. Furthermore
we choose the representative element ﬁq of hy in Z,(C,).

Since

0 — By(C\) — Z,(C.) — H,(C\) — 0

1s an exact sequence, the vectors (by,h,) is a basis for Z,(C,). Since the next
sequence

0— Zfl(c*) - C/'(I(’C*) - B(](C*) —{

1s similarly exact, the vectors (by.hy,b,) is a basis for C,(C4). Tt is easily shown that
~ [bg, by, b,_1/¢,] depends only on b, h,, b,_; and does not depend on the choices of
liftings. Hence we simply denote it by (b,.h,,b,_/c,].

9



DEFINITION 1.1. The torsion 7(C'.) of the chain complex C, is defined by the alter-
nating product

m

H[bqv hy,b,_, /Cq].(_l)q

q=0

LEMMA 1.2. If {b,...,bm_1} are the other bases, then we have

m e

H[qu hq’bq—l/cq](_l)q = H[b;ahmb;q/cq]&l)q

q=90 qg=0
Proof.
It is obvious that
[by:hy, bl /eg] = [by/byl[b, _; /bylbg, by, b,y /c,].

Then we have

m m

TT1B}, By b,y /0" = TLibg by, by gl =0 [l /b, 10" b by ]2
= =0
= H[bqshqvbt/“]F—_I)q
q=0
REMARK.

(1) If the chain complex C, is acyclic, then 7(C.) depend on only the bases for
chain modules.

(2) If C. is not acyclic, the torsion 7(C,) is defined to be zero. However we

m
. . . f N —1319
may consider 7(C,) as a nonzero linear functional on @ detH (C,)\=Y" where
¢=0

detH,(C\)~! is the dual vector space of detH,(C,). In chapter 4, we consider
this type torsion as a volume form on the spaces of the representations.

Now we apply the torsion to the geometric situations. Let X be a finite cell
complex and X the universal covering of X with m X acting as deck transformations.
The chain complex C,.(X;Z) becomes a chain complex of free Z[r; X]-modules. Let
p: mX — SL(n;F) be a representation. We may consider V = F” as a 7, X-
module by using this representation p and denote it by V,. We define the chain
complex C,(X;V,) by

. C X, Z) ’DZ[WL.\'] V,-,.
Then we choose a preferred basis {5; © ¢;} of C',,(A\t'; V,) for V¢ where {en,..o e}
is some fixed basis of V' and {7;} is the preferred basis over Z[r X| of C',I(X’; Z)
consisting of the lifts of the ¢-cells of X.

We consider the following case that C,(X;V,) is acyclic, namely, all homolo-
gy groups vanish : H,(X;V,) = 0. Then we call the representation p the acyclic
representation.

10



REMARK. If the representation p is acyclic, then Euler characteristic of the local

homology
Y(X;5V,) =0.

Since |
X(X5 Vo) = x(K)-n

we have Euler number y(X) = 0.
DEFINITION 1.3. Let p: m X — SL(n;F) be an acyclic representation. Then the
Reidemeister torsion T7(X;V,) is defined by the torsion of C'\.(X;V,).
REMARK.
(1) The Reidemeister torsion 7(X;V,) depends on several choices.
(a) The choices of lifts of the cells to X.
(b) The orientation and the ordering of cells of X.
(c) The choices of a basis of V.
We restrict the case of oriented closed manifolds and then can prove the well-

definedness as follows.

(a) If we change the lift &; to « - &; where z € 7 X, then the original basis changes
at {F;®ey1,...,5; ®en}. In this case the change of the Reidemeister torsion is
the same as the change caused by the action of z on V. But we consider only
SL(n; F)-representation, that is, detp(z) = 1. Hence the indetermination due
to lifting cells differently disappears.

(b) Johnson has proved the existence of the natural orientation and the ordering of
cells of X. See [3] for details.

(¢) The following lemma is straightforward.

LEMMA 1.4. Let {e;} be another basis of V' and {c}} the corresponding the new
basis of C, for Yq. Then
[bqqu-l/cg] = [by,by—1/¢y]

where C' = det(e},..., e’ ) and d, = dimC|,.
1 n q q

Apply this lemma to the following,
m m
_ 1 vl — . k23 [ —_ q
H[bqﬂbq—l/cg]( D' = glomdit b (1) H[bqv bq—l/cq]( bt
q=0 q=0
e
=y H[bqv bq—l/cq](—‘l)l
q=0
e

H fl—l/cq (=1

q={

11



Hence 7(X;V,) does not depend on the choices of a basis for V.

§2. Invariance under subdivisions

In this section we prove its invariance under subdivisions of the cell structure,
up to Z,. Here Zy = {£1} acts naturally on F as a natural reflection. This fact is
based on two lemmas. See [11], and [13].

LEMMA 2.1. Let 0 — C! — C, — C! — 0 be an exact sequence of n-dimensional
chain complexes with preferred basis {c}}, {c;} and {c!} such that [c},c!/c;] =1 for
V4. Suppose two of complexes are acyclic. Then the third one is also acyclic and the

Reidemeister torsions are all well-defined. In this case the next formula holds that

n

Zﬂ’ 3!

i—1r1%

T(C'*) = (.-1)1?:0 T(C’;)T(Cyg)
where 8; = dimdC},, and 8] = dim0CY, ;.

Proof. Tt 1s easy to show the acyclicity of the third complex from the long exact
sequence of 0 = C, — C, — C — 0.

We consider the next diagram for each z.

0 0 0
| | |

0 —— 9C!,, —— Ciyy — ACY, —— 0
| | |

0O — ¢ — ¢ — ¢! — 0

J l l

0 — C! — C; — AT — 0

l l l

0 0 0

We choose the bases b} in dC| ;| and b} in 9C} | and make b; = (b}, bY) for 9C4 .
We will show that

iﬂﬁ_lﬁ,’-’
T(C)r(C)r(Ca)™ = (=)=

12



Here
H(Cr(Cyr ()t = [Tk By~ 0 by /el i by fe
1==0
Because this value does not depend on the choices of bl and b}, we may assume that
(b}, bi_i /el = [b],bi_/ci] = 1.

From the assumptions, we may choose identifications

OCi41 = 0Ci1, ®OCY,y,
C;=CiaCY,
oC; = aCi @ aC!,
Cl=aC!,, ®aC,,
Cl = 9Ct,, ®oC!.

Then we can identify
C; = 0Ci,, & 0C; & Cy, & 0C].
Now we get a basis for C;,

2

(b"h bvl'—lv b',ilv b-lil——l) = (C-,ia C;l’)

= C;.
On the other hand we have

(b}, bi_y, b biy) = (1% (bl, b, bl b))
= (=1)fF1(by, by ).

Hence

bl bl /e b, /"] [bibi i, Je;] Tt =11 (=1)Fi-18¢
3 t—1 2 t -1 v

= (=1

Therefore we have

i»’t’-_lxs.’-’
T(COT(C)T(CL) ™" = (=1)i=0

Q.E.D.

13



LEMMA 2.2. Let (X,Y) De a pair of cell complexes and (X,Y) a pair of universal
covering complexes whose cell structures come from base complexes. If the funda-
mental group m X permutes the components of X — Y as deck transformations and
all relative homology groups vanish : H,(K,L;V,) = 0, then we have

(I, Ly V) = £1.

Proof. Let Xy denote the union of ¥ with the one component of X — Y. Then
the injection

Co(X0,Y32)®V — Cu(X,Y: Z) @gpm, x1 V

is an isomorphism where X, is the lift of Xy. Thus the torsion 7(X,Y": V,) is the
image of the torsion invariant of 7(Xy,Y’; V1) where the subscript 1 denotes the trivial
representation in V. But this is in turn the image of a corresponding invariant with
the vector space V replaced by the ring Z of integers. Since the only units in Z are
+1, it follows that

7(X,Y;V,) = &1.

Q.E.D.

PROPOSITION 2.3. The Reidemeister torsion 7(X;V,) modulo Zs is invariant under
subdivisions.

Proof. We fix an universal covering X of X whose cell structure is coming from
X. Choose s sequence
C,II)Z.X() C.X—l CC.Y,:X

of subcomplexes of X so that each X;4; — X consists a single cell. Let X, denote
the preimage of X; in X. Let I denote the unit interval considered as a C'W -complex
with 7 X acting trivially. For a given subdivision X', let X' denote the subdivided
complex of X_,corresponding to X' and Y; the CW complex formed from X x [ by
subdividing X; x {1}. Since ¥y = X x {0},

m(X;V,) = 7(Yy; V,) where ¥y = ¥ /7 X
Because each pair (Y,;+ 1, Y; ) clearly satisfies the conditions of Lemima 2.2.
(Yo, V) =r(Y;;V,) = = 7(Y, V,) mod Z,

where Y; = f/})/ mX and Y, =Y.

Thus
(X5 V) = 7Y, V,) mod Z,.

Now let M; denote the subcomplex of ¥ formed from (X' x {1hHu (X, x I ). Then
by a similar argument, X’ x {1} = A4, we have

T(XT V) = My V).

14




In this case,
T(My;V,) = 1(M;V,)= - =7(M45V,) mod Zj.
Since M, =Y.
(X' Vo) =7(Y;V,).

Therefore we have
T(X;V,) = 1(X"; V,) mod Zs.

Q.E.D.
REMARK. By the proof of the above lemmas and proposition, if dimension of V is

even, then the Reidemeister torsion is really invariant under subdivisions and it is a
combinatorial invariant of p.l. manifolds.

§3. Examples of Reidemeister torsion

In this section, we compute the example of the Reidemeister torsion for the
SL(2; C)-representations. For simplicity, we have some conventions.

(1) When a representation p are given, for "z, we denote its image p(z) by the
corresponding capital letter X.

(2) We denote the 2-dimensional complex vector space by V' and the canonical basis

{(é) , (?)} of V by {e1,es].

First we consider the 1-dimensional sphere S'. This can be considered as a cell
complex with a 0-cell p and 1-cell . Then we may consider that m; S = Z generated
by . '

- PrROPOSITION 3.1. Let p : mS* — SL(2;C) be a representation. All homology
groups vanish : H,(S;V,) = 0 if and only if det(X — I) # 0. In this case the
Reidemeister torsion of S' is given by

T(SYV,) = det(X — I).

Proof. The chain complex C4(S;V,) is given by

0 — 1 9T V — 0.

Hence C(S1;V,) is acyclic if and only if det(X — I) # 0, that is, p is non parabolic.
In this case by easy computation,

7'(5[3‘/,;) = [by/ci] ™ [bo/cy]
= det(X = TI).

15



Q.E.D.

Next we consider the 3-dimensional lens space. Let p > ¢ be relatively prime
integers and 7 denote the cyclic group of order p with generator . We consider the
3-dimensional sphere

5% ={(z1,22) € C* | |z1* + |»|* = 1} € C%
Then the group 7 acts on S without fixed points by the rule
t- (21,2’2) = (L{)Z'[,u)q.?}z)

277\/?f)
P

where w the complex number exp( . The quotient manifold S* /7 is the lens

space denoted by L(p, ¢). Note that m; L(p, ¢) is isomorphic to =.

L(p,q) can be considered as a cell complex with only 4 cells, {1y, . . ., @3 }. They
are the image of the natural projection of the cells in $* as follows,

(0) 0-cell ug = (1,0),
(1) l-cell uy = {(exp(6v/—1),0) |0 < 8 < —21% ,

(2) 2-cell ug = {(z1,1/1 = |z:|") | |2a| < 1},

(3) 3-cell ug = {(z1, exp(fv=D)\/1 = [z1]* | [z1] < 1,0 < 6 < 22},

Thus C.(L(p,q); Z) is a free Z[r]-module with 4 generators {tg,...,u3}. The
boundary operators are easily seen to be as follows.
011y = (_t - I)Z_LO.
oty = (1L +t+ - +tP Ny,
sty = (t" — 1)ta.

where r € Z such that ¢-r = 1 mod p.

Let p: 7 — SL(2; C) be a representation given by

p(t) = (BJ S)

l+w+- +w? =0,

Since it holds that

the boundary operators in C.(L(p, ¢); V) become

Oi(ty @ v) = (LS wO_ 1) Uy (D,
Oy(tiy &y o) =0,

=
Os(iiy o v) = (w 0 W,-O_ 1) Uy 50,
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Then Cw(L(p,q); V) is obﬁiously acyclic and 7(L(p, ¢); V,) is well-defined. We take

the bases {co,...,c3} coming from the cell decomposition as follows.

c3 = {U3 e, iz D e}
cy = {tr D ey, iy @eq}.
c1 ={u Qe u @ ey}

Co = {tpy ey, Uy @ ez}
Then we can take the bases by the following ;

by = {(w" — 1)ey ® tg, (@" — 1)ey @ s }.
b]_ = {O}
by = {(w — 1)e1 @ o, (@ — 1)es @ o}

Therefore 7(L(p, q); V,) is given by

T(L(p,q); V,) = [ba/cs] ™ - [ba/cs] - [by/ca] ™ - [bo/co]

w"—1 0 w—1 0
“det( 0 wr—1>'det< 0 w—l)

= (0"~ 1)@ = 1w - 1)(@—1)

2 2
= 4(1 — cos —2)(1 — cos 220,
p p

Applying this computation to L(7,1) and L(7,2), we obtain
27 o
T(L(7,1)) = 4(1 — cos —)~
7
27 s
T(L(7,2)) = 4(1 — cos -7—)(1 + cos -7-)

Thus the Reidemeister torsion distinguishes L(7,1) from L(7,2). Then L(7,1) is not
homeomorphic to L(7,2).

REMARK. It is well known that L(7,1) has the same homotopy type with L(7,2).
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Chapter 2

Reidemeister torsion of the Seifert fibered spaces
for SL(2;C)-representations

§0. Introduction

Recently Johnson [5] derived an explicit formula for the Reidemeister torsion of
Brieskorn homology 3-spheres for SL(2; C)-irreducible representations. Let M, be a
3-manifold obtained by the %—surgery on a torus (p, ¢)-knot. It is a Brieskorn homol-
ogy 3-sphere X(p,q,pqn £ 1). The fundamental group 7 M,, admits a presentation
as follows.

mM, = (x,y |2F =y, mi" =1)

where m is a meridian of the torus knot which is a word of 2 and y and [ is sumilarly
a londitude. Johnson proved the following theorem.

THEOREM (JOHNSON). The distinct conjugacy classes of the SIL(2;C)-irreducible
representations of m M, are given by p(, p ) such that

(1) 0<a<p0<b<qga=bmod?2.
(2) 0<k<N=lpgn+1|,k=na mod 2.

Ta
(3) 8rp(apk) (@) = 2cos R
. wh
(4) tr/)(a,b,k)(y,) = 2cos ?7
. k
(5) trp(a,p.k)(m) = 2cos ZTT
I

In this case the Reidemeister torsion T(a,b,k) 10T P(ap k) 1 given by

’2(1—cos%)(l—cos’—:lﬁ)(l—i—cosl];\}il) a=b=1,k=n mod 2
T(ab k) = !

0 a=b=0ork#n mod 2.

Key proposition of this theorem is the following. We have this proposition as a
corollary of Lemma 2.1 in chapter 1.

PROPOSITION. Let M be a closed, oriented 3-manifold with torus decomposition
A Up2 B and p i mM — SL(2;C) a representation whose restriction to m;T? is
acyclic. Then H,(M;V,) = 0 if and only if H.(A;V,) = H(B;V,) =0. Morcover in
this case,

T(M;V,) = (4 V,)7(B; V,).
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This methods can be applied to the investigation of more general Seifert fibered
spaces and give a way to compute the Reidemeister torsion of them.

The main result of this paper is the following theorem. Let M?* denote the
orientable Seifert fibered space given by the following Seifert index ;

M= {b,(&,g); (alyﬂl)v' : "(am7ﬂm)}'

MAIN THEOREM. Let p: m{M — SL(2;C) be an irreducible representation. Then
the Reidemeister torsion 7(M;V,) is given by

0 ifH=1
T(M V) B 24—-m—-4gl 1(1 _ (_1)ui cos pik;(ip)‘rr) i H # Ie=o
y Yp) =
(2—2cos )4 (1~ (~1)% cos 2Ky e L [ o=y
i=1 '
where
(1) H = p(h),
(2) h is a representative element of generic fiber in 7 M,
(3) pi,vi € Z such that g‘ i’ =-land0< p; < &,
(4) ki(p) € Z such that 0 < ki(p) < a;, and ki(p) = B; mod 2.
(5) N:ﬁ+..._ﬂﬂ,
431 m

(6) s € Z such that 0 < 5 <2N + 2.

REMARK. In general the dimension of the space of SL(2;C)-representations of a
Seifert fibered space is not zero ; In particular the distinct classes of irreducible rep-
resentations are not finite. However the set of the Reidemeister torsion turns out to
be a finite subset in R by this theorem ; that is, the Reidemeister torsion is a constant
tunction on each connected component of the space of irreducible representations.

Now we describe the contents of this chapter. In §1 we examine the Reidemeister
torsion for the 2-dimensional torus and the solid torus. These results will be used
later for the torus decomposition formula. In §2 we investigate SL(2; C)-irreducible
representation of Seifert fibered spaces. In §3, we give a proof of Main theorem for the
case of H = —I. In §4, we prove the non-acyelicity of the chain complex C, (M V)
in the case of H = 1.
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§1. Reidemeister torsion of the torus and the solid torus

In this section, we compute the Reidemeister torsion of the torus 7% and the
solid torus 5. First we consider the condition of the acyclicity of T2, When a
representation p is fixed, we denote the matrix p(x) for Yz by the corresponding
capital letter X. We denote the 2-dimensional complex vector space C? by V and
the canonical basis of V by {e;,es}.

DEFINITION 1.1. A parabolic element of SL(2; C) is a nontrivial element which fixes
some nonzero vector in V. Equivalently an element is parabolic if it is conjugate to

<é t) for 3t € G- {0}

DEFINITION 1.2. Let p: mT? — SL(2;C) be a representation. Then it is called a
parabolic representation if X is either trivial or a parabolic element in SL(2; C) for
Ve € m T2,

We can easily prove the following lemma.

LEMMA 1.3. Let p: mT? — SL(2;C) be a representation. The following statement
are equivalent,

1) p is a parabolic representation.
b

(2) det(X —I) =0 for Vo € mT? where I is the unit matrix in SL(2; C).
Now we describe the condition of acyclicity.

PROPOSITION 1.4. Let p: mT? — SL(2; C) be a representation. Then all homology
groups vanish : H.(T*,V,) = 0 if and only if p is a non-parabolic representation. In
this case, the Reidemeister torsion is given by .

(T V,) = 1.

Proof. Suppose p is a non-parabolic representation. We fix an orientation on
T?. By assumption, there is an element z € 7, T? such that det(X —TI) # 0. We take
y € mT? such that the geometric intersection number z -y = 1. We assume that a
cell structure of T? is given by the following :

(0) one O-cell p,
(1) two l-cells @ and v,
(2) one 2-cell w,

1

with the attaching map given by dw = wyz~'y~!. By easy computation this chain
g P g Yy Y Y Yy I )

complex is given as follows :
-~ 7 (.)‘.2 7o - r Jy o 7
O—wOV =00 VhdyorV-—poV -0
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where
(=Y =1)
=5 I)
h=(X-I1 Y-1I).

Since det(X — I) # 0, O is surjective and then dim(Kerd;) = 2. Similarly 9, is
injective and dim(Im&;) = 2. On the other hand, we have

Imdy C Kerd,
by the definition of the boundary operators. Hence
Imd, = Kerd,.

Therefore this chain complex C,(T%;V,) is acyclic. Then (77, V,) 1s well-defined.
Since a canonical basis of V @ V is given by

{(el ,0),(e2,0),(0,e1)(0, e?.)}v
we may identify the bases

Cg = {el,eg},
€1 = {(61,0), (6270)7(0561)’(07 62)}7

co = {er, e}
We take a basis b; of B, for Vi € {0,1} which satisfies

b1 =aC2,
bo zacl .

By the definition of Reidemeister torsion,
7(T%V,) = [by/ca][by, bo/ci] ™ [bo/co].
From the straightforward computation,
[bi/c:] =1,
o] et (7))

= det(Y — I),
[bo/co| = det(Y —I).

Therefore the Reidemeister torsion is given by
(T*V,) =1
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Conversely we assume that p is a parabolic representation. If p is a trivial
. . 4 2 r . . . .
representation, it is clear that C'.(T%; V) is a usual V-coefficient chain complex and
not acyclic. Hence we may assuime p is nontrivial. Then there is an element

& € mT? such that X = p(e) # I.

Let v € V denote the fixed vector of X and L the complex line spanned by v. Let
y € mT? be any other element such that ¥ = p(y) # [. Since Y commutes with
X, they have a common eigenvector which must be v or its multiple. Since Yisa
parabolic element of SL(2; C), Y also fixes the vector v. Then we have

Imo; C L
and 0, is not surjective. Hence we have
Hy(T% V,) #0.
This completes the proof.

REMARK. If7(M;V,) is well-defined for an even dimensional closed orientable man-
ifold M, then the absolute value of the Reidemeister torsion

ir(M;V,)| = 1.
See Ray-Singer [15] for details.
Next we consider the solid torus § = S* x D? with 7, S = Z generated by .

PROPOSITION 1.5. Let p: 7S — SL(2;C) be a representation. The representation
p Is non-parabolic if and only if the chain complex C\(S;V,) is acycllc In this case
the Reidemeister torsion of S is given by

(5;V,) = det(X — I).

Proof . Tt is easy to see that S has the same simple homotopy type as S*. We
may assume that a cell structure of S! is given by one 0-cell p and one 1-cell z. Then
the corresponding chain complex is given by

0——>a:®VB=—’—>\r—Ip®V————>O.

Hence C(S;V,) is acyclic if and only if det(X —T) # 0. Therefore p is a non-parabolic
representation. If we take a basis by = {Jey, Je,} for By(C,), then the Reidemeister
torsion is given by
T(S5;V,) = [bo/Cl_]_l[bo/Co]
=1-det(X —1I)
= det(X —I).

This completes the proof of Proposition 1.5.

Q]
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§2. Irreducible represenytations of Seifert fibered spaces

In this section, we investigate the SL(2; C)-irreducible representation of the
Seifert fibered space M given by the Seifert index ;

{b,‘(&‘,g), (alaﬁl)? v 7(O‘maﬁm)}'

It is well known that the fundamental group of M has a presentation as follows. If
¢ = o, that is, if the orbit surface is orientable, then

M = {a1,b1,...,a4,bg,q1, ..., qm; D |[ai, h] = [bi, h] = [q;, h] = 1,
Q?‘illﬂ; = 1,(11 e qm[CLl, bl] . [CLg7 bg] = hb>
If ¢ = n, that is, if the orbit surface is nonorientable, then
T M = (V1,0 Gy Gy R lv;ho ! = h‘l,qihqi—1 = h,

qf‘ihﬁi =1,41...qmv> U; = h).

REMARK. In the case of € = o generators a;,b; and ¢; come from the fundamental
8 q

group of the orbit surface. Then we can choose the representative closed curves on

the orbit surface

q1,--.,qm such that q1 ... ¢gm[a1,01] ... [ag, be] = 1.
Similarly we choose the curves in the case of € = n.

We fix this presentation for 1 M and consider only SL(2; C)-irreducible repre-
sentations. The next lemma gives us a clué to compute the Reidemeister torsion.

LEMMA 2.1. Let p: ;M — SL(2;C) be an irreducible representation. Then the
image of the generic fiber h is given by

+] (
H = p(h) = (3 A(L)

I is the unit matrix in SL(2; C),
A\ € C such that \2V12 = 1,

U]

Il
L

oy

i

3
N

where

r ’ '}'m,

23] Dy

Proof. By the irreducibility of p, it is easy to see that H is a non-parabolic
element.

23



Case l: e =0 ~

Suppose H # *I. Let u be an eigenvector for an eigenvalue \ of H. Since
H commutes with 4; = p(a;), B; = p(b;) and @; = p(q;), all vectors A;u, B;u
and Q;u is contained in the vector space spanned by u. It contradicts the
irreducibility of p. Thus H = +1.

Case 2: ¢ =
Since we consider the conjugacy classes of representations, we may suppose H
. i . A0
is the diagonal matrix H = 0 -l
s

Subcase 1: m =0
In this case M has no exceptional fibers ; it is an S!-bundle over a non-orientable
surface of genus g. By the relation V,H = H~'V;,

ViHe, = \V;e,
= H_ltfiel.

Accordingly we get
HViGl = /\'lViel

and V;e; is contained in the eigenspace for an eigenvalue A~! as in Case 1.
Similarly Ve, is contained in the eigenspace for A\. Thus we may set each

o 0 a; B
Vi = <bi 0 ) such that ¢;b; = —1.

By simple computation, we have

The relation of 73 M implies

Hence

Subcase 2: m>1
Then M has the exceptional fibers ¢y, ..., ¢n. For Y¢;, we set the corresponding

matrix
S5ty
i = ( v; ) .

The condition H Q j = Q;H implies
/\'1 /\—lt]‘
- /\u Al .

< /\H /\'/'
/\-l /
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If we compare each entry of the left-side with the one of the right-side,
A= )\"1 or t] =Uj = 0.

If A\ = A71, then we get A\ = 41 and consequently H = £1. If A £ A=, then
every (); is a diagonal matrix. In this case, the relation q;_’j K8 = 1 implies

s 0N /am g
0 w7 ) 0 )& /-

_Z 5
s;=A %, and v; = \% .

Hence we get

On the other hand, we get
o 0 a; o
Vi= (bi 0 ) such that V> = —T

. . o . .
as in the subcase 1. The relation h = ¢y ... qmvy ... vg implies

A 0 _ gl 51 . Sm 0
(O /\“1) = (1) < 0 " ...’Um>
wm 0

Hence the following holds

Therefore setting N = g—ll 44 B

This completes the proof of Lemma 2.1.

From the above lemma, we get easily the following corollary.

COROLLARY 2.2. Qi = p(q;) has only eigenvalues which are roots of unity.

(]
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§3. Proof of Main theorem (1)

In this section, we give the proof of Main theorem. Here we decompose M
into tubular neighborhoods of exceptional fibers and their complement. Then we
compute the Reidemeister torsion for each part and apply Lemma 1.3 in chapter 1 to
our situations. Since we can compute the SL(2; C)-torsion for ¢ = n as in the case
of ¢ = o, we will prove only the case of = = o.

We put
S =S —(DjuU---UD%)

. are disjoint em-
bedded open 2-disks. Also let M, denote the trivial S*-bundle &* x S'. We give a
canonical torus decomposition of Seifert fibered space M as follows.

where X is an orientable closed surface of genus g and D2, ..., D?

M= .7\4[.,71U50 Usl "'U51n

where any S; is the solid torus. The solid torus Sy is the one corresponding to the
triviality obstruction b and for Y1 € {1,...,m} S; is the one corresponding to the
exceptional fiber.

LEMMA 3.1. Let p: m (M) — SL(2;C) be an irreducible representation. Suppose all
homology groups of the boundary vanish : H,(0M,,;V,) = 0. Then H,(M;V,) =0
if and only if H (M; V) = Ho(So;V,) = -+ = Ho(Sm;V,) = 0. In this case, we
have

T(M;V,) = 7(Mum; V)m(So; Vo) oo . 7(Sim; Vo).

Proof. Apply Lemma 1.3 in chapter 1 to the short exact sequence of the chain
complex given by the torus decomposition of M ;

B CL(Si;V,) — Cou(M;V,) — 0.

0= & C,(0S:; V;) — Cu(Mp; V,) ®

T

- By the proof of Proposition 1.4, dimdC,(95;;V,) is even. Therefore we have Lemma

3.1.

PROPOSITION 3.2. Let p: m(M) — SL(2;C) be an irreducible representation. We
denote the restriction to my(Mpy,) by the same symbol p. Then all homology groups
vanish : Hy(My,;V,) =0 if and only if H = p(h) = —I. In this case the SL(2;C)-
torsion 1s given by
(M V,) = 92—im—iy

Proof. Tt is easy to see that M, has the same simple homotopy type as the
direct product of the one point union of 2g + m circles ST v .- v S' and §'. We
denote this space by (V.5;) x §'. Then V.S; has a natural cell decomposition given by

b t
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one 0-cell u and 2g +m 1l-cells a;, b;, q;. It gives a cell decomposition of (VS;) x St
by
(1) O-cell u,
(2) Ylcells ay,...,ay,b1,...,b,,q1,..,qm, N
corresponding to the generators of m; M.
(8) 2-cells vy, Vayye ey Vay, Vs, Vs, Vgyy - o o> Vg
respectively with boundary a;, b; and g¢;.
By using this cell structure, we can determine the structure of C.(Mpy; V,). Recall
that {ej,e;} is a canonical basis of V. The 2-chain module Cy(M,,;V,) is a free

Z[71 M, ]-module on
{‘L}aj ey, U, ey, Vy; I ei}-

Similarly Cy(Mm; V,) is a free Z[m My, ]-module on
{a; ® e, bj®eiq; Qe h® e}
and Co(My,) is a free Z[my My, ]-module on
{u@e}.

Then the boundary operators are given by

I-H 0 0
0 I—H 0 ... .. ... 0
Oy = : : : : : : : :
O e 0 I-H
A -1 Ay -1 B, -1 Q-1 Qm — 1T
01:(.41—-1 B[—I Q[—I Q,,-L—I H—-I)
It is easy to see that C(M,,;V,) is acyclic if and only if H = —I. Let b; be a basis

of the boundary B;(M,,;V,) for ¥ € {0.1}. Then the Reidemeister torsion is given
by
T(Mn; V,) = [b1/c2][by, bo/ci]  [bo/col.

We may choose a lift of by which coincides with ¢, and the one of by which coincides
with {e; @ h,es @ h}. By the simple computation,

r(M,;V,) =1 (det(I — H))=20+m+D) . det(H — ])
e (d(z‘,t([ — H)).‘“(‘z![""l”)
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Then we substitute —I for H, we have

(M3 V,) = (det ( :

o O

))—(29+m)

el (V]

— 9—2{(2g+m)

This completes the proof of Proposition 3.2.

Because OM,, is the disjoint union of tori, the fundamental group 7 M is gen-
erated by kb and {qi,...,qm}. Then Cu(0Mm;V,) is acyclic if and only if H = —I
by Proposition 1.4.

PROPOSITION 3.3. If H = —1I, then the Reidemeister torsion 7(5;V,) is given by

T(SO:, ‘//1) = 22

1 Po
b 1Z0]

lg € Ty My, by ¢f°h¥. The sewing of the solid torus Sy makes the curve my = goh®
on the component of dM,, null-homotopic in Sy. On the other hand the closed curve
ly is the generator in 715y = Z. Then the relation implies

Lo = p(lo)
= QA"

Proof. Let pg and vy be integers such that = —1. We define an element

Since go = (R*)™ =(q1 ... qm[a1,b1] ... [ay,b,])"" and vy — bpy = —1,

Lo =(Q1...Qu[A1, Bi]...[Ay, B,)) " o H"
— H'bPo-l-l/o

T H_l
=TI

Therefore the Reidemeister torsion of Sy is given as follows,

7(S0; Vp) = det(Ly — I)

)
= det< Od _02>

— 92
This completes the proof.

ProposiTioN 3.4. If H = —I, then the Reidemeister torsion 7(S;; V,) 1s given by

piki(p)r
S—_-_—_—
(&

(S V) =2(1 - (=1)" co ).
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Proof. Let p; and v; be integers such that 3 v,
i 7

define the generator /; € 7 S; by ¢”*1”i. Here the image of I; is given by
Li=p(l;)
=QUVH"

— (_1)11, in.
By Proposition 1.5, we have
7(S5i;V,) = det(L; — I)
= det((—=1)"Q - I)
=2 —(=1)"tr Q.
In view of relations
¢t =1

and
H=-1I,

it holds that
Qs = (-1
Then we denote the eigenvalues of @Q; by
V=Tk;(
Qg

and
V=1ki(p)m )

exp(— =
3

where 0 < k;(p) < o; and k;(p) = B; mod 2. Hence we get

(55 V,) =2(1 — (=1)" cos PifAP)T (p)ﬂ).
(273
This completes the proof of Proposition 3.4.
By Lemma 3.1, 7(M; V) is given by
(M V) = 7(Moi V(S0 V,) . 7(Sms V)

m
— 22—-‘2m——»1{/ . -2?. Lom H(l _ (ﬁ]_)”" oS /),’k'.i(‘p‘)’f(' )
=1

a;
TH A »
=21 - (-1 cos ZRUIT),
- ) [
=1
We have a proof of Main theorem for the case of H = —1.

29
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84. Proof of Main theorem (2)

If H =1, we cannot apply Lemma 3.1 to our situations because a given repre-
sentation is not acyclic when we restricts it to the complement of exceptional fibers.
However then the representation p is not acyclic. Now we prove the following propo-
sition.

PROPOSITION 4.1. Let p: n (M) — SL(2;C) be an irreducible representation such
that H = p(h) = I. Then p 15 not acyclic ; that is, H.(M;V,) # 0.
Proof.

The proof is by contradiction. We assume all homology groups of M vanish :
H.(M;V,) = 0. Then the following sequences given by the Mayer-vietoris sequence
are exact.

0 — Ho(OMm;V,) — Ha(Mp; V,) — 0,
0 — Hy(0Mn3 V) — Hi(Mi: V) & & Hi(S5V,) — 0,

0 — Ho(OMp; V,) — Ho(Mm; V,) @ & Ho(Si;V,) — 0.
=0

Case 1: There exists a non-parabolic element in {4;, B;, Q;}.

From the proof of Proposition 3.2, in the chain complex C\(My,;V,),
rank(dy) = rank(d;) = 2.
In this case, by easy computation, the homology groups of M, are given as follows ;
HO(‘.\/[m lf ) ~s L.:Qg+m.—1
Hiy(My; V) = V:29+""’"1
- Ho(Mp,; V,) = 0.

By the above exact sequences and the Poincare duality, we have the following iden-
“tifications

Ho(OMm; V,) = Hy(OMn; V)
o~ Hg(‘f\/_[.m; X/p)

~ r2q +m—1

HO(a]\/[m,; Vp) HO ]\/-[ma ) b (_E H0(5l7 ‘//)

1=
o {()} @D Vm,—}—l—l.:
~ ‘/"m—*—l——k
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where k 18 the number of the solid tori with non-trivial 0-dimensional homology

group. Hence we have

Because k is a non-negative integer, the genus ¢=0 or 1.

First we assume ¢g=0 ; that is, & = 2. In this case,
7Tlv]v[ =< G155 Gm; h'”([ia h] - 1, inIihﬁi = 1,q1 e = h

Then we have . ,
@ HQ(S,, x/p) o~ ‘/m—l

=0

by Proposition 3.3 and 3.4. For simplicity, we may assume
rank(L; — I) =0 for " € {0,...,m — 2}

and
rank(L; — I) = 2 for i € {m —1,m}.

For Vi € {0,...,m — 2}, that is, L; € SL(2; C) is a parabolic element. On the other
hand, from the relations of 7y M, we have

L;, = Qf"H”i
= Q¥
=1.
Hence
Q;=1Ifor ie{0,...,m —2}
and

Qm——lQm = 1.

Hence the representation p is reducible because )y, and ¢}, have a common eigen-
vector.

Next we assume g = 1 ; that is & = 0. In this case, we have

le\'{[ =< Uy, blvq.l v Gms h’i[alah‘] = [blv h] = [qia h’] = 17
qf""hﬂ‘ =1[a1,0]q1 . qm = Rt > .

Then we have

‘(%;OHO(S.&; V,) =yt

Then for Vi
vank(L; — ) =0
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and L; € SL(2;C) is parabolic or trivial. On the other hand, we have

L= QU H"
— Y
=1

Hence we have

Q; =TI for Vi € {0,...,m}.

Then p factors through a representation of the group < ay,bi|[as,b1] = 1 >. Since
this group is abelian, this representation is reducible. This is a contradiction.

Case 2: All A;, B;, Q; are parabolic elements.

In this case we have,
Q;=1Ifor Vie{0,...,m}.
Then we have
rank(ds) =2 or 0

for Cw(My,; V,). Hence

Vigtm=1  if vank(d) = 2
Hy(Mpm; V,) g{ -

y2gtm if rank(dy) = 0.
By Poincare duality and the exact sequence, we obtain

Ha(Mop; V) = Ha(OMpm; V)
= Ho(Mm; V) & ymtl

Then we get the genus ¢ = 1. Hence this representation p is reducible since p factors
through the representation of the group < ay,bi|[a;,b1] = 1 > as in Case 1. This
completes the proof of Proposition 4.1.

By the lemmas and the propositions, we get a proof of Main theorem in this
chapter.



Chapter 3

Reidemeister torsion of the figure-eight knot exterior
for SL(2; C)-representations

0. Introduction

In chapter 2, we obtained an explicit formula of the Reidemeister torsion of
Seifert fibered spaces for SL(2; C)-representations. In particular the sets of values
of the Reidemeister torsion are finite subsets in R. It follows that it has no contin-
uous variations, although the dimension of the space of the representations of the
fundamental group of these manifolds is generally positive.

In this chapter we consider the problem of determining whether there exists a
closed 3-manifold with continuous variations of the Reidemeister torsion for SL(2; C)-
representations. In order to attack this problem, we first need to investigate the
spaces of SL(2; C)-representations for given manifolds. Applying the method due to
Riley to the Wirtinger presentation of the figure-eight knot, we determine the space
of representations of the fundamental group of the figure-eight knot exterior. Then
by the method of Johnson, we obtain an explicit formula of the Reidemeister torsion
of the exterior of the figure-eight knot. The formula shows that it has continuous
variations. The main result of this chapter is the following.

MAIN THEOREM. Let K C S® denote the figure-eight knot, and E its exterior ; i.e.,
the complement of an open tubular neighborhood of K. Let M denote the double
E U;y E of E. Then the set of values of the Reidemeister torsion T(M;V,) of M
for SL(2; C)-representations is the set of all nonzero complex numbers. Therefore
7(M;V,) has continuous variations.

Now we describe the contents of this chapter briefly. In section 1 we review
Johnson’s theory. It gives an explicit formula of the Reidemeister torsion of knot
exteriors. In section 2 we give a proof of the main theorem. and prove that the
exterior of the figure-eight knot has continuous variations. To compute the matrix
A, which is a generalization of the Alexander matrix, and its determinant, we used
a computer(Reduce 2.3).
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§1. Reidemeister torsion of the knot exterior

In this section, we give a review of the Reidemeister torsion of a knot exterior.

See [5], and [12].

Let K C S% be a knot and E its exterior. We fix a Wirtinger presentation of
the knot group 7 E as follows ;

7r1E = <$1,:132,...,£Un ‘ T17T21-"’r"—1>

where r; is the crossing relation for each 7. Let p : m E — SL(2;C) be a represen-
tation. When a representation p is fixed, we denote the matrix p(x) for v € 7, E by
the corresponding capital letter X. For example, for z; € 7 E, we denote the matrix
p(z1) by X;. Consider a matrix

- Or r
P(5er) P(aL;)
A= N
Brn a"'n
( azll/ ( 8zn1)

where each p( 2% o ) denotes the image of the free derivative g%
J

in 2x2-matrixes.

f ar;

More precisely i S = Y argr where ap €Z and g € m E, we denote > arp(gy) in
k k :

2x2-matrixes by p(%). We denote by A, the matrix obtained by removing the first
J
column from A. Then Johnson has shown the next formula.

THEOREM 1.1. (Johnson) Let p : mE — SL(2;C) be a representation such that
det(X; — I) # 0. Then all homology groups vanish : H,(E;V,) = 0 if and only if
detA, # 0. In this case the Reidemeister torsion is given by :

. det(Xl — I)
r(E:V,)) =
m(E: V) detA,

REMARK. The definition of detA;, above is analogous to the standard method of
computing the Alexander polynomials of knots. Milnor has shown a parallel result
for the Alexander polynomial.

Let W be a 2-dimensional complex constructed from n 1-cells xy,..., 2, and
(n-1) 2-cells Dy,...,D,_ with attaching maps ry,...,r,—1. It is well-known that
the knot exterior E collapses to the 2-dimensional complex W. Then it holds that

T(E;V,) = 7(W;V,)

by the simple homotopy invariance of the Reidemeister torsion. To prove Theorem
1.1, we show that
det(X; - 1)

W;V,) =
T b det 4,

34



By an easy computation, this chain complex C\(W;V,) can be described as follows :

0—— V=t 2, yn Py g

8y = A
(p(g.%) o p(EE)
a":n—- 1 h O 7':11— 1

p(Tmt) o pl )

where

X; -1
Xo—1T

X, -1
Here we briefly denote by V* the k-times direct sum of V.

PROPOSITION 1.2. Let p : mW — SL(2;C) be a representation such that the
determinant det(X; — I) # 0. Then all homology groups vanish : H(W;V,) =0 if
and only if detA, # 0. In this case, we have

det( Xy — I)

Proof. 1t is obvious that Hy(W;V,) is trivial because det(X; —I) # 0 and hence
the boundary map J; is surjective. For a canonical basis {e1,e2} of V, we choose
lifts & = (X1 — I)~'e1,0,...,0),8; = ((X; — I)7'e2,0,...,0) in V™. Define the
2nx 21 matrix A whose first 2n-2 rows are 0y and last two rows are €; and &,. The
matrix A takes the form

_ * Al
A=[(X;=D'ey 0 ... 0
(*X—l —I:)—leg 0 ... 0

It is obvious that detA # 0 if and only if det A, # 0. If all homology groups vanish :
H,(W;V,) =0, then

rankA = rankd;

=2n — 2,

hence detA; # 0. In this case the Reidemeister torsion is given by

1

det A
_det( Xy - I)
 det4,

(W;V,) =



It is obvious that the contrary is also true. Namely if detA4; # 0, then H, (W;V,) = 0.
This completes the proof of Proposition 1.2.

By the above propositions, we have Theorem 1.1.

§2. Proof of the main theorem

Let K C $% denote the figure-eight knot and E its exterior. At first we deter-
mine the space of the representations of the fundamental group of E by the methods

due to Riley [7]. Here we choose a Wirtinger presentation of the fundamental group
of E as follows ;

" E = (2,y | we = yu)
where w = 2 lyzy a7t

The following lemma is straightforward. See [7] for the details.

LEMMA 2.1. Let X andY be elements of SL(2; C) which are conjugate in SL(2;C)
and not commutative. Then there exists an element U of SL(2; C) such that

Frr—1 __ S 1 rrr—1 __ S 0

where 5,t € C — {0}.

We apply this lemma to irreducible representations of knot groups. Let p :
m B — SL(2;C) be an irreducible representation. By the above lemma, we may

assume that
. : s 1
X = /)(I’) = (0 8_1 )

_ . g 0
Y = p(y) = (_t S~1>
Here we have

W=X"1'YXxy'x!

(st -1 s 0 s 1 sHo0N\ (s
S\ 0 s —t st 0 s7! ts
_ L (8PP 258 457 -1 s(sh st - s 2
- —st(s*t + 5% = 1) —s (st — s%? — 5%t — 5T+ 1)
By elementary computation, we can see that
i o1 0 (s, t)o
X —YW = —{ ., .
v . (.f(s,t)t flsit)s

where f(s,t) = s%t? —(s*=3s* + 1)t —(s* =352+ 1). Therefore W.X = YW if and ouly
if f(s,%) = 0. Let R denote the space of conjugacy classes of SL(2; C)-irreducible
representations of m; £. Then by the above observation, we have
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PROPOSITION 2.2. R = {(s,t) € C?| f(s,t) = 0,5 # 0,t # 0}.

Solving this equation f(s,t) =0 for ¢, we have

sP =352+ 1 Ve — 250 — st —257 +11

252

t =

We denote the right-hand sides of the above expression by ¢4 or t_. If we substitute
t =0 for f(s,t) =0, then we get ’
5 = iai

atr =1/(3% \/5)/2

Hence ¢ # 0 implies s # Lay. We apply Theorem 1.1 to compute the Reidemeister
torsion of E. Apply the Fox’s free derivative a% to a relation wzw™ly™! =1, then

where

Owew™ly™) w Gwt 1OV
= — 4 wr wrw
By By Oy Oy
Ow L Ow 1, —1
= — —WIrw S w— —wiw "y
dy dy
Ow
=(1-y)=— -1
(1-y) Ty
Here
ow _dalyry et
oy 9y
=z ' —ayay ™!
=271 — wae.
Hence
O(wzw™ly™) 9
R R
y dy

Therefore we have

Ay =(I-Y) X' =WX)-1

PR T L iy F il T G Uy S Iy (% t49% — 53 —2s+1)
2
_ Chd Ei
= tst 4 s® — st = 3a =28 1) R R Ay ¥ o I SC ey S, ety Ry
o P 3
k] 87 .
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Here the numerator is

" . s—1 1
det(X — I) —~det( 0 o _1>

=(s—-1)(s7" 1)
(s =1)?
s

Then we have det(X — I) = 0 if and only if s = 1. By Theorem 1.1, if s # 1 and

detA; # 0, then 7(E;V,, ) for p(, is given by

det(X — 1)
T(E; Vo ) = detd

s(s—1)2
(t—1)s* +6s3 — (1243t +11)s* + 65+t -1

If we respectively substitute ¢y and ¢t_ for ¢, we get

T(E; Vp(s,z+)) = T(E; Vp(”‘"“))
K]
2(s2 —s+1)

We denote this value of the Reidemeister torsion by 7,(E). It is obvious that 7,(F)
is a continuous function for the parameter s € C — {0,1, oy }.

Let M denote the double EU;uFE of E. Let p: myM — SL(2;C) be an irre-
ducible representation such that the restriction on each m E is p(,,,). We have the
following proposition as a corollary of Lemma 2.1 in chapter 1.

ProrosITiON 2.3. Let M be a closed, oriented 3-manifold with torus decomposition
AUp: B and p : mM — SL(2;C) a representation whose restriction to =, T? is
acyclic. Then H,(M;V,) =0 if and only if H.(A;V,) = H.(B;V,) = 0. Moreover in
this case

T(M;V,) = 7(4;V,)r(B; V,).

By the above proposition, the Reidemeister torsion of M is given by

T(M;V,) = ('THE)?‘

52

4 =5+ 1)

Hence by an elementary computation, the set of nonzero torsion is just the set of
nonzero' complex numbers. This completes the proof of Main theorem.
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Chapter 4

Reidemeister torsion and a volume form of representation spaces

§0. Introduction

Let M3 be a closed, oriented homology 3-sphere. We can decompose M into two
handlebodies of a certain genus g by Heegaard’s theorem. We respectively denote
these handlebodies by NV; and N, and the common boundary surface by &,. Let R,
be the space of SU(2)-irreducible representations of 71 2,. Similarly R!, R? and Ry,
are defined as the space of the SU(2)-irreducible representations of each fundamental
group of Ny, Ny, or M. Then SU(2) acts on these spaces of representations by
conjugation. We denote the orbit spaces respectively by. Rg, RYR? and Ry,. It is
easy to see that Ry coincides with the intersection of B! and R? by van Kampen’s
theorem, when we consider B! and K? as a submanifold in R,.

In 1985 Casson defined a topological invariant for M using a natural orientation
on Rg. It is defined to be the half of the algebraic intersection number of B! and
R?in Rg. We denote this topological invariant by A(M). Later Johnson defined a
natural volume form on Rg as follows. Let V be an n-dimensional vector space over
R. We denote the n-dimensional exterior product A" V by detV and the dual space
od V by V=1, A volume on V is defined to be a nonzero element in detV. Note that
we can write a given volume v as

v=e,Ney--: Ne,
for some basis {er,...,en} of V. Johnson’s theorem is the following.

THEOREM (JOHNSON).

(1) There are natural volumes 01,9, and 9, on the tangent spaces T[,J]Rl,T[,,}R‘
and T[p]Rg for V[p] € R* N R? = Ry,.
(2) Suppose R' and R? have a transverse intersection at [p]. A nonzero real number

tp) is defined by

’6‘1 A 'EJQ = t[”] . ’l}y

Then a sign of trp) coincides with the sign of [p] in Casson’s invariant. In
particular if R* and R? are transversal for Y[p] € R' N R?. then the following

holds,
2MM) =" sign(t,)).
[0]
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(3) We consider the Lie algebra su(2) as a wi(M)-module using a representation p
and the adjoint representation of SU(2). We denote the m(M)-module su(2)
by su(2),. Then the Reidemeister torsion 7,(M) of M with su(2),-coefficients
is defined. In this case, the following holds up to sign ;

to) = To(M).

This result is very intersting but vague connection between Casson’s invariant
and the Reidemeister torsion. We would like to understand geometrically the meaning
of this connection. Our main result of this chapter is following theorem.

MAIN THEOREM. Johnson’s volumes 91,0, and b4 are respectively the Reidemeister
torsion of Ny, N3, and L, up to sign, that is,

'(’)1 = elTp(Nl> c detHl(Nl;Su(Q')p)a

by = €37,(No) € detH'(Ny; su(2),),
by = €;7,(3y) € detH' (45 5u(2),)
where €1, €2,¢, € {£1}.
By this theorem, we can consider the relation
D1 A Dg =t - Dy

as a relation with the Reidemeister torsion. Hence we have the following relation, up
to sign ; |
Tp(N1)Tp(N2) = 7p(M)7,(Zy).

We recall a well-known lemma of the Reidemeister torsion. See Milnor [13] for
details. Let
0—-C,—-C,—C' =0

be an exact sequence of n-dimensional chain complexes with preferred volumes {c’},
{ci}, and {c!'} such that

t

iC; = ¢

i

C

for ¥i. Then the homology exact sequence H:

0 — H,(C,) = Hu(Cu) = Hy(CY) — - = Hy(Cl) = Hy(Cy) = Hy(C)) — 0

ES

can be thought of as a free acyclic chain complex. When we give the voluunes ou the
homology groups, theu 7(H) is well-defined for their volumes,
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LEMMA. The next formula holds, up to sign,

7(C.) = 7(CL)r(C,)r(H).

We can use the above lemma to our situation. We have a following natural
exact sequence which is derived from the Heegaard decomposition of M,

0— C'*.(Eg; 5u(2),) = Cu(Ni;5u(2),) B Cu(No; su(2),) — Cu(M;su(2),) — 0.
Hence we get the following equality by the above lemma,
ro(N)r(N2) = 7, (M), (S, )r(ED),
up to sign. Then the chain complex H is the following;
H 20 — Hy(Sy;u(2),) — Hy(Vy; su(2),) @ Hy(Nas su(2),) — 0.

Suppose that a volume on Hq(Xy; su(2),) is given by the product of the volumes on
Hi(Ny; su(2),) and Hy(Ny; su(2),). Then it holds, up to sign,

rH)y=1
In this case, we have the following, up to sign ;
To(N1)7o(N2) = 7(M )7, (Zy).

Therefore we have naturally the relation #; A Dy = #;,; - 0, from a well-known relation
1 {n] " Yy
of torsion invariants.

Now we describe the contents of this chapter. In section 1 we review the coho-
mology of groups and its connection to the spaces of representations. In section 2
we review the Johnson’s theory. In section 3 we define the Reidemeister torsion with
su(2),-coeflicients. In this chapter, we deal the Reidemeister torsion for non-acyclic
cases. Then we define the Reidemeister torsion using volumes instead of bases. Fi-
nally in section 4 we establish the equality of Reidemeister torsion and Johnson’
volume.
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§1. Cohomology of groups.

In this section, we describe the cohomology of groups with su(2)-coetficients.

See Brown [2], and Weil [19].

Let 7 be a discrete group. We denote the space of the SU(2)- irreducible repre-
sentations of m by R(w) and the space of the conjugacy classes of them by R(x). We
fix a representation p € R(w). The cochain complex C*(r; su(2),) is defined by the
following.

If n is positive, C"(m; su(2),) ={f:7 x - x 7 — su(2),}.
; .
n times

If n is zero, C(m; su(2),) =su(2),.
The coboundary map is

5nf(331, . -,IL"‘n+1) :$1f(fb'2> ey Tpg1) ~ f(1?15€2,9«‘3, .- -7$n+1)
+ f((cl7$‘7$37$47 SRR ‘T‘n+1) s ('—1)n+1f($13$27 e '7$n)'
v)(z) =(x - 1)v

for Vo ,..., "2 Tnets v €mand "o € su(2),. Then
01f=0

implies that f is a crossed homomorphism from 7 to su(2),. Similarly
f S Im50

implies that f is a principal crossed homomorphism. Hence we he;ve

ZY(m;su(2),) = {f : ™ — su(2),; crossed homomorphism},
BY (7 su(2),) = {f : ™ — su(2),: principal crossed homomorphism?.
3 SULL)p e I I I
The above cochain complex is just the same as the local cohomology of a particular
K(m,1)-complex using su(2),-coefficients.

We can consider the closed surface &, given by the following as a CW-complex,
which has

one § — cell p,
291 — cells ay, by, ... a,, b,

one 2 —cell e.
The attaching map is given by
[ay, ] ... [ay, byl = 1.
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See Appendixes for details. We can use this complex to calculate the cohomology
of the group H*(m1X,;su(2),), because the closed surface ¥, is a K(r,1)-space.
Because of this, we identify

H*(Zg;5u(2),) = H*(m S5 5u(2),).
It is well-known that the tangent space T,R(m1Z,) of R(m1 ;) at p is isomorphic to
Z (71 Zy;5u(2),) and T[p]R(ﬂ'lZg) to Hy(m Zy;5u(2),).
For a 3-dimensional handlebody H, of genus ¢, we identify
H(Hy; su(2)p) = H(m1Hg; su(2),).

Then the tangent space of the space of the representations, or the space of the
conjugacy classes, is isomorphic to the 1-cocycles, or the 1-dimensional cohomology
groups.

Here we introduce a m-module to describe the tangent space of R(w). Let dn
be a m-module with a generator dz for Yz € 7 and relations

d(zy) = da + ady for Yz, "y € =.
The map
d:m—dr

given by
z — dx

1s a crossed homomorphism, just by the definition. For any given crossed homomor-
phism
¢ — su(2),,

there is an unique Z[r]-homomorphism
fodr — su(2),

such that

flda) = ¢(z).
Hence we frequently identify the maps of two types via this composition with d. Here
there is a bilinear pairing over R of su(2)7" @ dr with Homq(dr, su(2),) as follows.
For "v™! @ dz € su(2)™' @ dr, ¥ f € Hom,(dr, su(2),), the pairing

<v't® da, f >
1s defined by

<v Tt fla) >

It is easy to see that the above pairing is non-singular. Since Homq(dr, su(2),) can
be identified with Z'(; su(2),), we can identify

T,R(m) = su(2)~!' ©dr

via the above dual pairing.



§2. Johnson’s theory

In this section we give briefly an exposition of Johnson’s theory. See Johnson
[5] for details. Recall that we can write a volume v on a vector space V' as

v :ell\eg---/\en
for some basis {e1,...,e,} of V. Now let

0 —A4A—B—(C—0

be a short exact sequence of finite dimensional vector spaces over R. For simplicity,
we identify A with the image of A in B. Let

VA =ay Ndaa--- N dag
and
Ve =cCL NeCy -+ Agy

be volumes on A and C. We can lift ¢; to the element b; in B and define a volume
vg on B by
ag N Nag ANby A--- Nby.

It is easy to see that this is independent of choices of the lifting. Then we can briefly
denote the volume vy by
VB = VAVC.

Similarly if v4 and vp are given, there is an unique volume ve on C such that
Vo = VB /UA.
As a special case, we consider C' = {0}. Then

ve =vg/ua

is just the ratio of v4 and vp.

We recall £, is a closed, oriented surface of genus ¢ and let m be a fundamental
group of ¥ . At first we construct a volume on the tangent space of the space of the
representations of a free group. Let I' be a free group of rank n and dI" the I'-module
as section 1. We denote an abelianization T'/[T',I'] of I' by A and an n-th exterior
product of A by detA. Let ¢ be an orientation on A, that 1s, ¢ 1s a generator over Z
of detA. We suppose that p € R(T") is given. We fix a volume

9261/\62/\6:;

on su(2),. We will construct a natural volumne v(8, t) on dI’ (,f).y(.t(?);j which depends
on 8 and t. Let
x = {ay,eg,..., 2.}
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be a free basis of T'. This gives a basis
Aday. oo de,}
of dI'. Furthermore we get a corresponding basis
a=(ay,... ,an)
of A and hence an orientation
te=ag A Aay
of A. We define a volume v(,ty) on dI' @ su(2)7* by

dxy @ 61_1 ANdzy @ e.z_1 Ndry @ e;l e ANdz, ® e;1

where {e; ', e; ', e;"'} is the dual basis in su(2)7'. Here we define e, € {1} by

T = €xtx.
Then we define a volume v(8,t) by exv(6,tx). It gives us natural volumes on
ZNT,su(2),) = T,R(T)

using the dual pairing. We need to see how v(#,t) behaves under a change of the free
basis. It is well-known that three Nielsen moves generate all basis changes in T
(1) yvi=z,yi =2inye = k(b #1,5.)
2) yp=27yr=ar.(k# 1)
(3) y1 = zyzo, ¥k = zk.(k # 1.)
By elementary computation, we have the following proposition.

ProposiTiON 2.1. A volume v(6,t) is unchanged under the Nielsen moves.

The coboundary map
o : CUT;su(2),) = su(2), — Z4(T;su(2),)

is injective because the 0-dimensional cohomology H°(T;su(2),) is vanishing. Then
we have an exact sequence

8y

0— '*U(‘)) "_’ZI(F:,S“'(?J)/J) H (F "U’( )I)) — 0.

Hence we get a natural volume o(8,1)/6 on H'(T',su(2),) = T]?[,,]( ). It is easy
 to see that v(6,¢)/6 is independent of § and well-defined up to sign. We denote it
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by o(t). This gives volumes 91, and ¥, on the space of the representations of the
handlebodies Ny and N, because I' can be considered as a fundamental group of a
handlebody of genus n.

Next we construct a voluine on the space of representations of &,. The funda-
mental group 7 of £, has the usual presentation corresponding to a structure of the
standard surface complex;

1—
7 L £

=T —7—0

where II is the free group of rank 2¢ on geometric generators
Ay, ...y, b1, ..., 0y

and

We suppose that
(L],...,(Zg,bl,...,bg

becomes a symplectic basis in H1(X,; Z) such that

iUy ZbeJZO,
— 7j sl = (Sij
with respect to the intersection pairing. In this case we have a volume v (6) on R(IT)
which depends only on 8 because the symplectic basis induces a natural orientation
on II/[ILII] = H,(Z,; Z). We have a next exact sequence from the standard surface
complex after taking the dual into su(2), ;

0 X 5y o ZUIT: sul> IR 0

— su(2), % 74T su(2),) B su(2), -

where the coboundary map 6, is the evaluation of f € Z'(II; su(2),) on 5 The kernel
of this map is Z*(; 3u(2),,) T, R(II) and 6; is surjective because H*(7;su(2),) is
vanishing. Furthermore 6y is injective because H°(7; su(2),) is Vambhmg, too. We
can then write the following exact sequences.

00— 7t (m;su(2),) — ZI(H;S‘lI,(z)P) f——’&) (2), — 0,

st
0 — su(2), — Z'(m;5u(2),) — H'(7;5u(2),) — 0.

Hence the volumes vp(8) and 8 give us a natural volume vy(8) on Z'(7; su(2),) =
T,R,. Then using it and § again gives us 9,(6) on H'(m; su(2),).

REMARK. We fix a standard Killing form on su(2),. It gives an inner procuct ou

detou()),, When we choose a volume 6 on su(2), satisfying its norm is equal to one,
9,(0) is well-defined np to sign.
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§3. Reidemeister torsion

In this section let us describe the definition of the Reidemeister torsion with
su(2)-coefficients. We deal the Reidemeister torsion for the non-acyclic case.

At first we define the torsion of chain complexes; Suppose

am Y 6711—1 e} .
Coi0 s Crp 2% Crpy 2 oo o Oy 25 Gy — 0

is a chain complex of finite-dimensional vector spaces over R. We suppose that a
preferred volume ¢, for C(C.) is given for Yq. Choose any volume b, for B,(C.)
and h, for Hy(C,).

Because
0 — By(Cy) — Z4(Cy) — Hy(Cy) — 0
is an exact sequence, the volumes b, and h, give a volume b h, for Z,(C.).
Similarly the sequence
0 = Z4(Cs) — Cy(C) = Bg-1(Ci) = 0
is exact and the volumes b h, and b,_; give a volume b h,b,_; for C,(C,).

DEFINITION 3.1. The torsion of the chain complex C, with volumes c, is defined by
the alternating product

m

]:—‘[(bqhql:’q—l/Cq)(“l)q+l

: =0
and we denote it by 7(C\).

REMARK. The torsion 7(C\) is independent of the choices of a volume b, for B,(C\).

m !
Then we consider 7(C) as a nonzero linear function on ® cleth(C'*)("l)q+1, that is
q=0

7(C4) is an element of qéodeth(C*)(_l)q.

Now we apply the torsion invariant of chain complexes to the following geometric
situations. Let K be a finite cell complex and K a universal covering of K with the
fundamental group 71 K acting on it as deck transformations. Then the integral chain
complex C,(K;Z) has a structure of a chain complex of free Z[r; K]-modules. Let

p:mK — SU(2)
be a representation. Define the chain complex C.(K;su(2),) by
C.(K;Z) @zr, k] 5u(2),
and choose a preferred volume
gr@eNdr@eNoy@es A Nay, @ ey
of C\,(K;su(2),) for g where {e1,es,e3} is some fixed basis of su(2) and the lifts of

the g-cells {5y,...,d;,} is a basis of C'q(f(; Z) as a free Z[r| K]-module.

47



DEFINITION 3.2. The Reidemeister torsion 7,(K) of K with su(2),-coefficients is
defined by the torsion of the chain complex C\(K; su(2),).
REMARK.

(1) The Reidemeister torsion 7,(K) depends on several choices. However we can
prove the well-definedness of Reidemeister torsion, up to sign as in the acyclic
case.

(2) This Reidemeister torsion is just the inverse of the one defined in chapter 1. In
chapters 3 and 4, we deal this type of the Reidemeister torsion.
We assume K is the closed oriented surface ¥, of genus g. Then the Reidemeis-
3 ‘
ter torsion 7,(K) isin ® detH,(K;su(2),)"V". If p is an irreducible representation,
g=0

then
Ho(K; su(2),) = H2(K; su(2),) = 0.

Here
Hi(K;su(2),) 2 HY (K;su(2),)

from the Poincare duality. Furthermore H'(K; su(2),) is isomorphic to the tangent
space Tj, Ry of Ry at the conjugacy class [p]. Therefore the Reidemeister torsion
To(K) is in detT}, Rg and it is considered as a volume form on Rg.

84. Proof of Main theorem
In this section we give a proof of the main theorem. At first, we prove that
TP(NI) = €0
where ¢; € {1}, We can similarly prove that
7,(N3) = €309 where €5 € {£1}.)

It is easy to see that the handlebody Ny collapses to a cell complex X with one 0-cell
p and 2g l-cells 21, ...,z , which is a one point union of 2g circles. By the invariance
of the Reidemeister torsion for simple homotopies, both torsion 7,(N}) and 7,(X) are

equal when we identify both of 1-dimensional homologies with su(2),-coefficients.

LEMMA 4.1. 9 = e 7,(X).
Proof.
By the definition of the Reidemeister torsion, we have the following;

T,)(X) = (,hlbU/Cl )(bollo/cu)_l-
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Here from the irreducibility of p, we have that Ho(X;su(2),) is vanishing. Then we
have the exact sequence

0 — Bo(X;su(2),) — Co(X;su(2),) — 0.

Hence the volume cg is considered as a volume on Bo(X;su(2),). We may suppose
that
by = ¢y

because the torsion is independent of the choices of bg. Then by the exact sequence,
0— Z1(X;5u(2),) = C1(X;su(2),) = Co(X;su(2),) — 0,

volumes ¢y and ¢y give a volume ci/cy on Z;(X;su(2),). Finally from the exact
sequence

0 — Z1(X;su(2),) — Hi(X;s5u(2),) — 0,

a volume ¢y /cg is considered as a volume on Hy(X;su(2),). When a volume h; on
Hy(X;su(2),) is given, 7,(X) is the ratio of h; and ¢; /cg because it holds that

(hy/ci/cq) = (hyc,/cy).

By the definition of ¢y,
Ciy = ’Uﬂ(e)

and similarly
Cop = 8.

Hence we have

(X)) =(c1/cy)t € (detHl(X;su(_Z‘),,'))_l.

Therefore we have
‘ Tp(“X',) = ¥y

up to sign. This completes the proof.
Here we have the following by the argument in §0,
To(N1)Tp(No) = To(M)T,(Zg).
Then by the results of Johnson, we have
Dy ANy =1,

P g

and
tp = T/,(j\{[).

Therefore we have the following by the above lemma, up to sign,
vy = 71y(5y).

This completes the proof of Main theorenn.
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Chapter 5

Twisted Alexander polynomial and Reidemeister torsion

§0. Introduction

In 1992, Wada [18] defined the twisted Alexander polynomial for finitely p-
resentable groups. Let I' be a finitely presentable group. We suppose that the
abelianization I'/[[",I'] is a free abelian group T, =< t1,...,%,| t;t; = t;t; > of rank
r. Then we will assign a Laurent polynomial Ap ,(t1,...,¢,) with a unique factoriza-
tion domain R-coefficients to each linear representation p : I' — G L(n; R). We call
it the twisted Alexander polynomial of I' associated to p. For simplicity, we suppose
that R is the real number field R and the image of p is included in SL(n;R).

Because we are mainly interested in the case of the group of a knot, hereafter
we suppose that I is a knot group. Let K C S? be a knot and FE its exterior of K.
We denote the canonical abelianization of I' by a : I' — T =< t > and the twisted
Alexander polynomial Ap ,(t) for T' = 7 E by Ag ,(t). It is a generalization of the
Alexander polynomial Ay (t) of A in the following sense. The Alexander polynomial
Ag(t) of K is written as:

A[((t) =(1-)Ar1(t)

where 1 : T' — SL(2;R) = {1} is the 1-dimensional trivial representation of I'.

In 1962, Milnor [12] proved the following theorem about the connection between
the Alexander polynomial and the Reidemeister torsion. We consider the abelianiza-
tion o : I' — T as a representation of I' over R(?) where R(t) is the rational function
field over R. Then Milnor’s theorem is the following.

THEOREM(MILNOR). The Alexander polynomial Ay (t) of K is the Reidemeister
torsion 74(E) of E for «; that is,

Ar(t)=(t — 1)1, E.
This Reidemeister torsion is just the inverse of the one defined in chapter 1.

In this chapter we deal this type of the Reidemeister torsion as in chapter 4. We
consider the following problem.

PROBLEM. Can we consider the twisted Alexander polynomial of K as a Reidemeis-
ter torsion of its exterior £ 7

To state the main theorem, we define the tensor represeutation p ) o by the
following. For the representation p : I' — SL(n;R), we define the representation

p®a:l— GL(n;R(t)) by
(p©a)a)=p(a)al(r) for "o eT.

Then our main theorem is the following,



MAIN THEOREM. The twisted Alexander polynomial Ak ,(t) associated to p is the
Reidemeister torsion T,goF for p ® a ; that is,

A[(’p(t) - T{)@LYE'

As an application of this interpretation, we obtain the symmetry of the twisted
Alexander polynomial in the following sense.

COROLLARY. If p is equivalent to an SO(n)-representation, then
Apcp(t) = Agcp(t™)
up to a factor et™* where e € {+1} and k € Z.

Now we describe the contents of this chapter briefly. In section 1 we review the
theory of the twisted Alexander polynomial. We restrict the definition to the case of
the group of a knot. In section 2 we give a proof of Main theorem. In section 3 as
an application of Main Theorem, we proof the symmetry of the twisted Alexander
polynomial in our contexts.

§1. Twisted Alexander polynomial

Let K C S% be a knot and T the knot group m E. Let F =< z1,...,25 >
denote a free group of rank k£ and T =< t > an infinite cyclic group. The group ring
T over R is the Laurent polynomial ring R[t*'] over R. A homomorphism

a: =T

is the canonical abelianization. This « induces a ring homomorphism of the integral
group ring
& : Z[T] — Z[t*1].

We choose and fix a Wirtinger presentation
P(F) =< Llyee s Tk I 7"1,. ey TR >

of I" and
¢o:Fy —T

the associated homomorphism of the free group Fj to I'. Similarly ¢ induce a ring
homomorphism i
¢ Z[Fy] — Z[T).

Let p: ' — SL(n; R) be a representation. The corresponding ring homomorphism of
the integral ring Z([I'] to the matrix algebra M, (R) is denoted by j : Z[T'} — M,(R).
The composition of the ring homomorphism ¢ and the tensor product homomorphism

pis o ZT) — M, (R[EE'])
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will be used so often that we introduce a new symbol

= (p©&)0d: 2] — Mu(RIF).

Let us consider the (k — 1) X k matrix 4,go whose (%,j)-component is the
n X n matrix @(ai%) € M, (R[tT!]). This matrix A,gq is called the generalized
Alexander matrix of the presentation P(I') associated to the representation p. By
the definition, the classical Alexander matrix 4 is A;g, where 1 is a 1-dimensional

trivial representation of I'. For 1 < ¥j < k, let us denote by Al the (F—1) x (k—1)
matrix obtained from A,g, by removing the j-th column. Now regard A’ as a
(k — 1)n x (k — 1)n matrix with coefficients in R[t*!]. The following two lemmas are

the foundation of our definition of the twisted Alexander polynomial.
LEMMA 1.1. det®(z; — 1) # 0 for 1 <7j < k.

Proof. Since we fix a Wirtinger presentation P(I') as a presentation of I, we
have

ale;)=t#1

for 1 <Vj < k. Then det®(x; — 1) = det(tp(a;) — I) is the characteristic polynomial
of p(x;) where I is the unit matrix. This completes the proof of Lemma 1.1.

LEMMA 1.2, detAlg det®(ej — 1) = +detAly detd(z; — 1) for 1 < ¥j < 7j' < k.

Proof. We may assume that ;7 = 1 and j' = 2 without the loss of generality.
Since any relator r; = 1 in Z[I'], it is easy to see that

k Or-
lil(p(@arl)@(ll 1)=0
Let AZ;Z@Q be the matrix obtained from 42, by replacing
87'; 07'5 a'l',' .
P(—), ooy B
( ( 3:1:, ) ( 0.’?,'3 ) ( a;lfk ))
with' 5 9 5
(B( D) D(a) — 1), Do) Dy — 1), BBy — 1)),
Ox, Ouy oy,

Then we have

det A* = +det A?

PO PO

det®(we, — 1).
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‘Since

87"i . N N Vk‘ a’l“,' 1
@(8‘—171‘)(p(11 — 1) = —-lf;x?’(p('a—ml‘)q)(-l/[ 1),

where the matrix A,l)@m can be obtained by

by ®(x2 — 1). Therefore we have

v A2 41
we can reduce the matrix Ayq, to 4 .

multiplying the first column of the matrix 4}

o

A2 — il
detd o = detd o,
= tdet A,z detP(az2 — 1).

This completes the proof of this lemma.

By Lemma 1.1 and Lemma 1.2, we can define the twisted Alexander polynomial
of K associated to the representation p to be the rational expression

1
detA g4

()= ——
Brcplt) det®(z) — 1)

THEOREM(WADA). The twisted Alexander polynomial A ,(t) is well-defined up to
a factor €t™* as an invariant of the oriented knot type of K where ¢ € {£1}, k € Z
and n is a degree of p.

REMARK. Two representations p and p’ are said to be equivalent if there is an element

g € GL(n; R) such that p'(z) = g-p(x)-g~" in SL(n; R) for Yz € T'. Then the twisted
Alexander polynomials for p and p' are the same ; :

AI\',/J(i-.) = AI\',/J"(t‘)

up to a factor et®” where € € {£1} and a € Z.



82. Proof of Main theorem

In this section, let F be the rational function field R(f) and V = R(t)" the
n-dimensional vector space over R(t). We recall a Wirtinger presentation P(I") of
the knot group I' of K is given by as follows ;

P(T) = {x, a9, 2 L ry, e, oo Te—1)
where r; is the crossing relation for each <.
Let W be a 2-dimensional complex constructed from one 0-cell p, &k 1l-cells
zy,..., ¢ and (k—1) 2-cells Dy, ..., Dy with attaching maps given by r;,...,rp_;.
It is well-known that the exterior E of K collapses to the 2-dimensional complex W.

If a representation p : I' — SL(n;R) is fixed, we have the following by the simple
homotopy invariance of the Reidemeister torsion ;

T(E; Voga) = 7(W; Voga)
up to a factor et®™ where € € {1} and o € Z. In this case, we show that

41
detd o,

B det®(xzy — 1)

(W Vioa)

By easy computation, this chain complex Cyu(W; V,ga) is as follows;

0 —— V-t Z2pk 2y g

where

24z ) B3z )
D(TE) L ()
$(zy — 1)
(P(CI}Q — 1)
o = :
®(x, — 1)

Here we briefly denote by V' the I-times divect sum of V.

ProrosiTiON 2.1. All homology groups vanish : H(W;V,q4) = 0 if and only if
(‘letA}@ o 7 0. In this case, we have
et Al

piow

- det®(aj - 1)

7-( I/V; ‘/r/ﬂ.’f)(\' )
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Proof. Tt is obvious that Hy(W; V04 ) is trivial because det®(x; — 1) £ 0 and
hence the boundary map 0, is surjective. For a canonical basis {e;,...,e,} of V, we
choose lifts

& = (®(x; — 1) te,0,...,0),

én = ((b(:l"l - 1)_le‘n707 oo 70)

in V™. Define the kn x kn matrix M whose first (kn —n) rows are 4,5, and last n
rows are €,...,¢€,. The matrix M takes the form
1
* | A,)@a
(p(ﬂ,‘]_—l)_lel 0 0
M = _ '

By ~1)~le, 0 ... 0

It is obvious that detM # 0 if and only if detf’l}@a # 0. If all homology groups
H.(W;V,gq) =0, then

rankd o0 = rankfl},@a
=kn —mn.
" Hence we have
1
detA 5, # 0.

In this case the Reidemeister torsion is given by

’T'( ‘/I/_; L'/J@C\') =det M
_ d(’t-"l.,lJ(aQ

Cdet®(zy — 1)

It is clear that the contrary is also true. Namely if detAl # 0, then Hy (W;V,0q)
is trivial. This completes the proof.

By the above proposition, we have the proof of Main theorem.
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£3. Symmetry of the twisted Alexander polynomial

Hereafter we suppose that p is conjugate to an SO(n)-representation of I'. For
simplicity, we may suppose that p is an SO(n)-representation.

We fix a structure of the simplicial complex in the exterior E and assume that
each simplex of E has a dual cell. For a ¢-simplex of E, we can define not only the
dual (3 — ¢)-cell in E, but also the dual (2 — ¢)-cell in the boundary JF. Taking the
cells of both types, we obtain a dual complex E' with subcomplex JE'. We denote
the universal covering complex of E by E and the one of E' by E'. Let < ¢/, ¢ >
denote the algebraic intersection number of ¢’ € C’g_q(f:”, OF';Z) and ¢ € C'q(E i Z).
Next lemma is well-known fact. See Milnor [12] for details.

LEMMA 3.1. The left Z[T'l-module C'g_q(E’, OE';7) is canonically isomorphic to the
dual of C,(E,Z) and the dual pairing

[, ]:Cs_y(E',0E",Z) x Cy(E;Z) — Z[T]
is given by

=S <d,ca™ P>z
zel’

for V¢! € C'-n_q(E’,aE’: Z) and Ve € C'q(E':_ 7).

7

Now let us apply this duality to the torsion invariant. Let V g,
dual vector space of V,g4. A structure of left Z[I']-module in ¥ 1s given by the

following ; for Yo € T',Yu* € Vi ioas and v € Vygas

(2 u")(v) = u*(*(p ® a)() ™" - v)
Then we denote this dual representation space by Vg, and define the dual pairing

C?»—q(.E/’aEl§ oa) X Co(E: Viga) = R

PO

denote the
ba 3
P&

by
(' @u*,c@v)=u"(|d,v)
for V¢! @ u* € Cs3_o(E',0E";V3,,,) and Ye @ v € Cy(E; Vogq). Hence it is straight-
forward that C3_q(E', 0E'; V), ) is isomorphic to the dual of Cy(E; Vyga).
LEMMA 3.2. Let C, be an acyclic chain complex with preferred basis {¢;} and C*
the dual complex with preferred basis {c}}. Then we have
(L) = 7(C")

up to a factor e € {£1}.

By this lemma and the invariance of the Reidemeister torsion for the subdivision

of the cell complex, we have

T(EViooa) = T(E, 0BV,

P ) "
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We define a representation & : I' — T by a(z) = a'(:c);l. For the tensor rep-
resentation p @ «, because p is an SO(n)-representation, the dual representation
(p®a)* :T' = GL(n; R(t)) 15 given by the following ;

(p© ) () ="p(z) " a(z)
= p(x)a(z)
= (p® a)(z)

for Y2 € T. Therefore the representation space Soo 18 equivalent to Vi,g4. Hence
from the above observation, we have

(E; Voga) = T(E,0E; V,ga).
Similarly it is easy to show that

T(E; Voga) = T(E,0E; V,ga)-

Apply Lemma 2.1 in chapter 2 to the short exact sequence :
0 = Cu(OF;Vo9a) = CulE; Viga) = Cu(E,0E; Vyga) — 0,

we have
'T(E; ‘/p®cx') - T(aE; Vp@c\' )T(‘E, 8E, Vp®01)'

In this chapter 2, we computed the Reidemeister torsion of 0E = T°Z,

results of chapter 2, we have

From the

7(OF; Vyga) = 1 up to a factor et”.
Hence combine the above lemmas,

T(E; Vo)

I

T(_E7 OE' ‘/P(@O‘)
T( E ; V/)Oa) :

l

By the definition of the twisted Alexander polynomial and Main theorem, it is obvious
that
(B Vooa) = Ax,(t7).

Therefore we have

A[\",p(t) = A[\',p(t_l )

This completes the proot of Corollary.
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Chapter 6

Open Problems

§1. Surface bundles over S!

Let ¥, denote the closed oriented surface of genus ¢ and D C ¥, an fixed
embedded 2-disk. Let

be an orientation preserving diffeomorphism. We assume that the restriction of f to
D is the identity map on D. We define the 3-manifold M; by

My =53, x[0,1]/ ~

where ~ means the following ; we identify (2,1) with (f(),0) for Yz € =,. We
denote
T Mp— S =1[0,1]/ ~

the natural projection. This is a & -bundle over S with the monodromy map f. It
1s easy to see that its fundamental group =y M, has a following presentation.

mMp =< ai,bi,...,ag,by,t | [a;,b] =1,
ta;t™" = fi(ai),
thit™t = fal(bi) >
where f, : m ¥, — I, is the induced homomorphism of f. In this presentation we

identify the subgroup
T =<t >C 71'1]\'_/[}“

with m;.S'. From the map
T My — S,

we have the representation
oMy —T.

We consider that T C Q(t) — {0} where Q(#) is the 1-variable rational function field
over Q. Let .
: prMy— M

denote the infinite cyclic covering of A ;. Then we define the chain complex with

Q(t)-coethicients C',(M; Q(t)a) by
C’*( A’N[l, Z ) i'."ﬂz['l'] Q( t )
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It is easy to see that all homology groups Hi(E; Q(t)a) vanish. In this case, we define
the Reidemeister torsion '

To(My) € Q(t) - {0}.

By the definition of the Reidemeister torsion, this is a topological invariant of surface
bundles over S'. Because the restriction of f to D is the identity map, we may
consider

N =D x S§' c M;.

Then we have the torus decomposition of
l\{[f = —A/-[f,O U N

where My is given by the closure My — N. By Lemma 4.1 (chapter 1) and Propo-
sition 4.4(chapter 6), we have

Ty = (7aMpo)(7elV)

up to a factor et® where € € {£1} and k € Z. We conjecture that this Reidemeister
torsion is just the Alexander polynomial of

My with ooy My — T,

and

Mygo with a:my My — T

This type of Alexander polynomial of 3-manifolds with representations in T has
been studied in Kawauchi [6]. Furthermore Casson’s invariant of knots is the second
derivative of the Alexander polynomial at 1. Therefore we conjecture this invariant
is also related to the Casson type invariant of surface bundles over S?!.



§2. Reidemeister torsion of 2-knots

Let S C S* be a smooth 2-knot, that is, S is a smooth embedded 2-dimensional
sphere in $*. Let E denote its exterior. Then E is a compact 4-dimensional manifolds
with boundary S? x S'. It is easy to see that

CH(E,Z)=17
and
Y(E)=0.
Then we identify the first integral homology group H;(E;Z) with T =< ¢ > and
denote the natural abelianization map by
oa:mBE —T.
Let )
mn: B —FE

denote the infinite cyclic covering of E. The group T acts on E as deck transforma-
tions. When we consider

a:mFE—T

as a representation over Q(t), we can define the chain complex C.(E; Q(t)y) by
Cu(E1Z) Gz Q1)

where Q(t) is the 1-variable rational function field over Q. Then we define the Rei-
demeister torsion '

To(E) € Q(t) — {0}

as in chapter 6. In general E is not aspherical, especially,
T('-‘_)E 7—4 0.

In this case, the Alexander polynomial of S is defined as in the case of knots in S°.
But this polynomial invariant is determined by only m; F and carries no information
about meE. On the other hand the Reidemeister torsion 74(£) is not determined
by 71 E and has more higher and deeper information of £. Therefore we believe the
importance of the Reidemeister torsion in the theory of 2-knots. This problem has

been inspired by communications with Professor Wada.
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Appendix

§1. Crossed homomorphism

In this section, we describe the crossed homomorphism.

DEFINITION 1.1. Let © be a group and M a m-module. A map ¢ : ®@ — M is a
crossed homomorphism if and only if

p(zy) = @(2) + zp(y) for "z,"y € 7.

The set of crossed homomorphisms is an abelian group under the pointwise
addition. We denote it by xHom(w, M). By the above law, we have the following
properties. v '

(1) ¢(1) = 0 where 1€ 7w is a unit element.
(2) p(z71) = =27 p(z) for Yz € .

EXAMPLES.

(1) If ¢ : @ — M is a crossed homomorphism and f : M — N a m-module homo-
morphism, then foy: 7w — N is also a crossed homomorphism.

(2) Let ¢ : # — Z[r] be a map defined by ¢(z) = z — 1 where Z[r] is an integral
group ring of w, then ¢ is a crossed homomorphism.

(3) We generalize example (2). Let M be a m-module and m € M a fixed element.
Let.@om : m1 — M be defined by ¢(z) = (¢ — 1)m. Then ., is a crossed
homomorphism. Such a map is called the principal crossed homomorphlsm
Example (2) is just the case of m = 1 € Z[x].

Let F), be a free group of rank n generated by wy,s,...,2,. We investigated
the crossed homomorphism ¢ : F,, — Z[F,]. Let the value of ¢ at z; be arbitarily
specified to be ;. Then there is a unique extension to "z € F,,. Clearly it is unique
since ¢; determines ¢ on all words. To see that it is well defined, we note the two
words wy,wy are equal in F,, if and only if they differ by moves of the next form ;

—1 -1
WiWe & WyT;Tr, Wy T, T;Wwa
Applying the proposed definition of ¢ to the 3-words
, : .ot ; —1
W Wy, wirry wy, and wial e,

and then the results are equal in Z[F,]. Thus the crossed homomorphism ¢ exists
and it is unique.
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In partiqular, define

-— : F, Z|F,
5, Tn 21
by
&vj
%“511

for Vi € {1,...,n}. These crossed homomorphisms are called the Fox’s free deriva-
tives. It is easy to see that they form a basis for x Hom(Fy,, Z[F,]) as a Z[F,]-module.
The action of the group 7w on xHom(F,,Z[F,]) given by the right multiplication.
Namely for "z € m and V¢ € xHom(F,,, Z[Fy]),

z - Fy — Z[F,]
is given by |
z - o(w) = p(w)z ™!
Jw

REMARK. Ifzy,...,2, € 7w andw is a word in zy,...,2,, then 5> still makes sense
as an element of Z[x|. Then for a crossed bomomorph1sm @7 — M, we have

We can easily prove the next proposition.

PROPOSITION 1.2. We take a group = with generator xy,xs,..., 1, and relations
ri(zi,. .., xn) = 1for Vi € {1,...,k}. Let M be a m-module and my,...,m, € M,

then p(z;) = m; deﬁnes a unique crossed homomorphism from © to M if and only if

g“ m; =0 1in M for ¥

We define a natural m-module associated to the group =

DEFINITION 1.3. Let dT be the m-module with generator dx for Vo € n aud relations
d(zy) = dz + xdy for Yz, y € .

We have directly the following facts from the above definition.
) d=o0.
(2) d(z7t) = —z~1da. v
(3) The map d: 7 — dr given by w + du is a crossed homomorphisi.

(4) fzy,... 2, € mand wis a word in the 2;’s, then we have

w
duw = E (ll,

=0
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(8)

(6)

This follows from the law

n
v w .
by applying it to the crossed homomorphism d.

For any crossed homomorphism ¢ : «# — M, there exists a unique Z[r]-
homomorphism f : dr — M such that the next diagram is commutative.

Then we must define f by

fldz) = w(z).

Hence we have an induced homomorphism
d, : Hom,(dn, M) — xHom(m, M).

As this homomorphism d, is the isomorphism as a Z[r]-module, we frequently
identify these groups by this construction with d.

The principal crossed homomorphism © — Z{r] sending = to  — 1 induces the
w-module homomorphism

€:dn — Zr]

given by

e(dz) =2 —1for "z € m.
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§2. The homology of local coefficients

We describe a homology theory of local coefficients for cell complexes. Let
X be a finite cell complex and fix a universal covering X — X. We give X a
cell decomposition coming from X. By the cellular approximation theorem, the
fundamental group 7 K acts freely and cellulary on X as the deck transformations.
The integral chain complex Cy(X; Z) becomes the chain complex of Z[m X]-modules.
To be more precise, we choose a lifting & C X for each n-cell ¢ C X. We consider

the boundary
Jo = Zeiai
i
where ¢; € {1} and o; is (n — 1)-cell. Then
95 = me-ﬂ}i
i
where ¢; € m; X and &; is the lift of o;. Replace &; by o;, we get a chain complex of

Z[r; X]-modules with one generator for each cell of X.

DEFINITION 2.1. Let V be a Z[m X]-module. Then the local homology of a fi-
nite cell complex X with coefficients in V' is defined by the homology of the chain
complex Cu(X;Z)®z(r, x]V . Similarly the local cohomology of X is defined by the
cochain complex Homg., x( C(X;2Z),V) of the Z|r X J-module homomorphisms
from C\(X;Z) to V. '

Example 1. Closed surface ¥,

Let X, denote the closed oriented surface of genus g. The fundamental group
m1 5, admits a presentation with 2¢ generators

al,bl,...,ag7by

and a single relation
ay by cz.l_lbl_1 .. .(1.gbga.g_1b;1 = 1.
The cells of I, are given by

(0) a O-cell P.

(1) 2¢ 1-cells Ay, By,..., A,, B,
corresponding to the generators ay, by ..., a,,b, of m X,

(2) a 2-cell U.

Figure 1.1
We lift these cells to universal cover %,

Figure 1.2
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Hence the boundary maps 04,9, dy of C'*(.?:y; Z) as a Z[m Ey] homomorphism are
given by the following.

do P =0.
HA; =(a; - 1)P for Vi e {1,...,9}.
O B; =(b; — 1)P for Vi € {1,...,¢}.
0D =A1 + a1 By — arbya Ay — [ay, b1]By + ...
cootag, b fag, 0)(Ag + agBy — aybga, Ay — [ag,b,]B,).
Here we can give a compact description of this complex if we replace the symbols

Al,Bl,...,A!],Bg by dCLl,dbl,...,d(J,y,dbg.

Then C’l(ig; Z) becomes Z[m, 5,]@, dr where 7 is the free group on ay, by, ..., a,,b
In this case,

g

OD :da1 + Gldbl - alblal—ldal — [CLl, bl]dbl + ...
ot lan, bh] . ag.by)(day + aydby — agbyagda, — [ag, b,]db,).

It is just df where 6 = [a1,b1]...[ay,b,]. If we also replace C’g(ig;Z) by Z[m1X,]
with 1 representing D, the above chain complex becomes our standard one for I,

0 — Z[r] =% Z[m) @n, dt - Zm] — 0

where € sends dz to o — 1.
Example 2

We easily generalize the above arguments to find the chain complex for any
2-dimensional cell complex X having only one vertex P.

Let {Ay,..., A} denote k 1-cells representing the generator of the free group
F = 71(1 — skelton of X) and {Dy,...,D;} I 2-cells attached by the a;’s words
{r1,...,7m}. We get a presentation for m = m X
R F2r—0

where R is the free group on Dy,...,D; and j(D;) = r; for Y € {1,...,1}. For
Ci(X;Z), we have

Co = Z[r],
Cy = Z[x] @gpr) dF,
50 = €

as before. Now (' is a Z[r]-free module with the generator for each D, and the
corresponding relation will be dr;, just as with a surface. We can use Z[r] ¢) dR for
Cy with generator {dD;} aud the bhoundary map dD; — dr; is just what we have
called dj. Then we get the following discription ;

dj

Co(X) 10— Z[r] cip dR = Z[r] Op dF 5 Z[x] — 0.



Figure 1.1
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