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Preface

The equation of reaction and diffusion in one space variable
is

+ ) - <
U F (u) o < X Foo

Nf =

(*) u, =

where F is a real valued function with the continuous first
derivative. Such an equation arises in population dynamics, in
flame propagation problems in chemical reactor theory and in other

u may represent the random

areas. The diffusion term 5
poe

migration of the individuals of a population or chemical species
in a mixture and the non-linear term F(u). the reproduction rate
of individuals or the speed of chemical reaction. The dependent
variable u may be a population density or the temparature of a
mixture. In these applications it is useally assumed, as we do, that
there are two trivial steady states u = 0 (there‘ié no diéturbance)
and u = 1 (the saturated state) and that all states lie between
them: F(0) = F(1) = 0, 0 < u(t,x) < 1.

The equation (*) was first introduced by R.A.Fisher in 1937
fo model the spread of advantageous genetic traits in a population.
In the same year the mathematical treatment of it was given in
some details by A.N.Kolmogolov, I.G.Petrovsky and N.S.Piskunov
who are also motivated by the application to the population genetics.
They all assumed, at least, that F(u) > 0 for 0 < u < 1 and
F'(0) > 0. Ya.I.Kanel' cdnsidered, among others, the combustion case
where F(u) =0 for 0 <u<py and F(u) >0 for y <mu < 1
with 0 < p < 1 (1961 to 1964). D.G.Aronson and H.F.Weinberger

interpreted the case of sign change: F(u) < 0 for 0 < u < up and



F(u) >0 for u <u < 1, as the model of population dynamics
where the heterozygote is inferior (1975).

The central subject concerning the equation (*) is to find
features of solutions that do not depend on details of initial
states and to understand how the disturbance spreads. The
simplest one of such features is the convergence to a stable
steady state. In the case of Fisher or Kolmégorov et El- the
saturated state is the only stable steady stafe and it is true
that for any initial disturbance the solution approaches to unity
as time t tends to infinity. But this does not fully explain
the behavior of the solutions, because if the disturbance disappears
at éome time, so does at every later time. In this paper a more

clear picture of solutions is obtained in the case
F(u) > 0 for 0 < u < 1.

It will be provea in this case thaf if the system is initialy
disturbed in a finite interval and will be ultimately saturated,
then we can chose functions m(t) and n(t) so that:=after
sufficient time has past the solution is getting close to unity
as going into the x-interval (-n(t),m(t)), decreasing to zero
apart from it and forming fronts, called propagating fronts,
around both ends of it. The function m(t) (or n(t)) which
becomes large unboundedly, will be calculated at least within
l+p)

O(log t) wunder the additional assumption: F(u) = F'(0)u + o(u

(p > 0).

The phenomenon of this kind was first observed by Kolmogorov



et al. when the initial function is the indicater function

of the negative réal axis. Kanel' improved this by allowing
more general initial condition, though he still required them
to be either monotone and zero or unity outside a finite
interval, or a perturbation of a propagating front. Recently
the problem has attached an increasing amount of attention and
many authors obtained partial answers to it, but they‘wereifar
from satisfactory in the sense that the case of initially

disturbed in a bounded domain was excluded.

Acknoledgement. I would like to thank professors M.Nagasawa
and M.Motoo for their advice and encouragement in writing

up the present dissertation.

Kohei Uchiyama

February, 1978.
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0. Introduction.

Consider the semi-linear diffusion equation

1

(1) v u’ = E-u" + F(u) £t >0, -» <X <o
. )
(u = u(t,x), u° = %%3 u = %;%-)

with the initial condition
(2) u(o,«) = f.

The function F 1is always assumed in this paper to satisfy

]

(3) Fe cl[fo,1], F(O) =F(1) =0 and F(u) >0 0 <u <1

and the initial function f ~to be measurable and compatible
to F, i.e. 0 <f < 1. Our interest is in the behavior
of the solution for large time +t.

We mean by the solution of (1) and (2) &Mﬂla:ﬁxmtéon» u(t,x)
defined on the upper half plane [0,%®) X (-w,w) Tthat (i) 0 < u
<1, (1) u has continuous derivatives u® and uﬁ and satisfies
(1) in (O,MO X (=e0,00), and (il u(t,-) converges to f as t 4 0
in locally Ll sense. It is well known that sgchélsolutﬂXIeXists
and is unique. We denote it by wu(t,x;f). It is clear that
u(t,x;u(s, ;f)) = u(t+s,x;f) (Huygens property) and u(t,x;f(-+y))

= u(t,x+y;f). We sometimes consider the equation (1) with different
F’s and in such cases use the notation u(t,x;f;F) in order to
elucidate the dependence on F. There are just two.trivial
solutions of (1): uw = 0 and u = i. . We always consider our
problem for non-trivial initial functions f; £ £ 0 and # 1. Such

initial functions are called data. We will mainly deal with such

data that f(x) - 0 as x—>cod.
The behavior of-a golution u(t,x;f) is closely related to

solutions of ordinary differential equations

O S pWitew + FG) = o (0 sws1)

7



where ¢ 1is a real constant. This equation 1s formally obtained
if we substitute the wave form u(t,x) = w(x-ct) in (1). A non-
trivial solution of (1) with such form.is called, if exists, a
travelling wave with speéd c¢. An assoclated ‘funcﬁion (or, equivalently,
global solution of (4)) w 1is called a front of a travelling wave
with speed ¢ or simply a c-front, which will be denoted by w,.
Siﬁéé (4) is trasformed to 1/2 w"—-cw'+ F(w) = 0 by inverting the
sign of x, we always assume c¢ 2 0. |

In many articles ( [1], [6], etc.) it is shown, under the restr-
iction F'(0) > 0, that there exists the minimal speed; denoted by
Co»> such that a c#front exists if and only 1if fcl 2 cp. We will
give, for completenesé, a proof of this assertion under present
situation, though the proof is essentially the same as those given in
papers cited above. Since the equation (4) is invariant under the
translation along the x-axis and w, has the correspornding ambiguity,
we set thé normalization: Wc(0> = 1/2 except in § 1 and §2. Under
this conven%ion just one w, corresponds to each ¢ 2 cg.

General solutions of (1) and (2) are related with c-fronts in

the following manner: if a datum f satisfies certain conditions, then
(5) ‘ u(t;x-km(t)) — W (x) as X ——> o

where u = u(t,x;f) and m(t) =.supf{x; u(t,x) = 1/2 } ( any number,
e.g. zero,'may be assigned to m(t) when the set expressed with
braces is void). This phenomenon was observed By Kolmogorov, Petrov-
'sky and Piscounov [13]; they proved that (5) is valid with ¢ = cgo
if we set f =vI(_m,O) ( ISiSthe indicator function of a set S ).
Kametaka [10] found a certain criterion on a datum for (5) to hold
which is satisfiled with many data but not easily checked for a given
one. The main purpose of this article is to prove (5) for sufficientiy

general datum, e.g. any data with compact support ( Theorems 8.1, 8.2 and

’



8.3; Theorem 8.3 contains Kametaka's result).

The method of the proofs is similar to that used by the authors

" mentioned above and summarized in the following. Let u(t,x) be

a solution of (1) and (2) and suppose that for each positive vt,

THT(t,x) < 0 on a right half x-axis, i.e. an infinite interval {x; x > N}. Define

M(t) = sup {u(t,x); u'(t,y) <0 forall y > x]
and define for 0 < w < M(t)
x(t,w) = sup{x; u(t,x)=w}
p(t,w) = ul(6,x(t,m)).

Considering ¢ as functional of datum f, we denote it by ¢(t,w;f).

Then, since u(t,x;we) = wo(x-ct), ¢(t,w;we) 1is independent of ¢:

‘this function is denoted by 1.(w). We will prove (5) by showing

~that ¢(t,w) converges to TC(W). This will be carried out at first,

in § 6, for data which is subject to several restricti&ns (Lemmas 6.1 fo 6.4) and
then,:n1§8, for general data by using this result and by applying
some comparison theorem on a parabolic equation. The section 7 is
devoted to estimate the order of wu(t,x;f) decreasing to zero as ¢t
tends to infinitvahich Jjustifies the application of the comparison -
theorem.

The section 1 is devofed to prove the existence of c-fronts.
The case in which c¢qo > Y2F'(0) is illustlated by examples in
which an explicit form of We o is given. Also some comparison
lemmas about the equation (4) are proved. 1In the section 2 asympt-
otic behaviors of we for large x are investigated. Results are
refinements of those bbtained from the standard theory of ordinary
differential equations but will play minor roles in.the main story of this paper.

In the section 3 we introduce comparison theorems concerninig paraLP

- bolic equations which will play important roles in later arguments

together with results of § 1 and § 5. 1In the sections 4 and 5 some



properties of u(t,x;f;F) which are well known or readily proved

are explained. The main theorems are_;n@véd:ﬂuwugh §6 to §‘8 and
formulated in § 8.

In the section 9 we will investigate the speed of m(t)
tendihg- to - infinity. It wiu.be;xmvgd that if (5) occurs then
m°(t) converges to ¢ as t tendsto infinity. If F'(0) 2 F'(u)
we will get, under additionl assumptions, a fine.estimate;

cot - m(t) ~ 5%5 log t as t > o,

(*)

The question of when we may replace m(t) by ct + const. in (5)

- will be.answered.

In the last section an alternative method, which is a modifica-.
¥ ¥
tion of that used in P.C.Fife and J.B.MclLeod [3b]( ), is applied

to the problem described by (5) in case co> +/2F'(0).

Notations. We will use throughout the article the following

notations in addition to those introduced above:

i1
£
—~
(@)
~—
-
(¢
b2
I
~
o
Q
“

a

, vy =sup |[Fr(u)], y¥ = sup F'(u)

B

i
(0]
o

o’

( the supremum of a function 1is taken with respect to all arguments
for which it is defined unless otherwise specified); for a real
number A, At = max {0,A}, A" = min {0,A}:; if A is a real
function of gz, AT is a function defined by . A*(z) = A(z)t ; R =
(~»,w) whole real line,' E = (0,o) xR open half plane: Et
= (0,t) xR, g = {t} xR (%t > 0);

X
p(t,X) = /—2—]%_[—_5 e 2t ft > O, X €& R
(¥) " a(t) Db(t) as t -+ s " means that lim o a(t)/b(t) = 1.

(¥%) Their situation is different from ours, where F changés

its sign at least one time.

v
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( p(t,x-y) are fundamental solutions for the heat equation u
= 2’lu" ); for t > 0 and a measurable function g on R we

write
Peg = Pee(x) = SR p(t,x-y)g(y)dy

if this integral converges absolutely.
Some terminologies, which are used throughout this paper,
are introduced in the beginning of the section 1.

Most of the results of the present paper were announced

in [17].

Acknowledgements. I am grateful to N.Ikeda for introducing

me to the problem through his lecture given at Tokyo Institute
oft Technology in June, 1976 and to him and to T.Sirao for the
discussions on_the problem. I.wou;d like to thank P.C.Fife and
J.B.McLeod for sending me a preprint of [3b]. Finally I am
indebted to M.Nagasawa for reading the manuscript through and

pointing out several errors in it.



‘r‘i, Fronts of Traveiling Waves ,

In this section we find all non-trivial solutions for the

equation (1) , called travelling wave, which has the wave form

u(t,x) = w(x-ct)

T where c¢ 1is a constant called a speed and w 1is a function on R
called a front or a é—front. We denote any c-front by w, to
elucidate the speed. A c¢c-front is chéracterized as a non-trivial
solution of the equation (4) on R . It will be shown that if a
global solution exists 1t is unique up to the translation along

vMX—axis. Thus &c corresponds at most one to each ¢ except this
ambiguity. As mentioned in §O we treat only the case c¢ 2 0.
This amounts, as far as global solutions are concerned, to set

the boundary condition
(1.1) » w(e) = 0 and Ww(-e) = 1 -

~to the equation (4).

We oftén consider the equation (4) in the phase plane:

(1.2) v
.2 .
{‘ p' = -2cp - 2F(w).

p

The range of (w,p) is restricted to the strip 0 <w <1. Any

solution of (1,2) which stays in this strip and terminates at its
”.boundary w=0or 1 s called, for convenience, a c-manifold.

We call a corresponding solution of UD“a<ksoﬁﬁﬁon,vihasfyc;&iuwion

is a function defined and satisfying (4) on a (finite or infinite)

interval, at the end points of which it attains 0 or 1. A manifold

to which a c-front corresponds is also called a c-front. Let ¢ z

Y2q and put

c + /c2-2a

o
i

(1.3) | b

c - /2¢%2=-2u and



f;i:iﬁ will be proved that there exist c-manifolds which enter the

' opigine along a line p = -bw or a line p = -bw. A c-manifold

'éhtering the origine along p = -bw ( resp. p = -bw ) is called

" (c,b)-manifold (resp. (¢,b)~-manifold).

“side of (1,2) is important in the arguments of later sections

We will mean also by a c-manifold a corresponding curve drawn

“in (w,p)-plane. Parametrizing the part of this curve under w-axis
U with its w-coordinates, we denote its p-coordinate by +1(w). Then

T satisfies

(1,4) | o= oo - 2Fiw)

in its domain of definition.

The prospects of the vecter field defined by the right-hand

~as well as of this section. It will be explained in the proof of

~Theorem 1.1 and illustrated in Appendix. We often use explicitely

~or implicitely an argument described below. LetTAdl(x) = (wl(x),

pl(x)) anq Qo(x) = (wz(x),pz(x)) be smooth curves in R2.

Suppose (wgy,Pg) = (w1(0),py(0)) = (W2(O),p2(0)). Then according

as

<X<X

‘ wl'(O) w2'(0)
det < 0 or > 0,
p1'(0)  p,'(0)

.the angle measured from Qz(x) toward Ql(x) around the point

(w,,po) 11€sin the interval (0,7) or in the interval (-m,0) for

~all sufficiently small x. If the former case (resp. the latter case)

occurs we will say that the curve Q2 crosses the curve Q3 (at

(Wo,po))vfrom the left-(resp. right- hand side of Q. For example

“let g(x) be defined and twice continuously differentiable on an

~interval (Xl,Xz) with 0 £ g < 1. Then the curve {(g(x), g'(X»;xl

5 }  crosses c-manifolds from the right or left according as

-g'(%—g"+0g' + F(g) ) < 0 or > O



Vrdet (gr't g: }

at intersecting points, since for a solution (w;p) of (1.2)

—g'{%—g" +cg' + F(g)}l at (w,p) = (g,8').

The next theorem follows from standard arguments concerning
with the 2-dimentional autonomous system. The proof is given for

completeness.

Theorem 1.1. (i) There exists a positive constant Co such

that a c-front exists if and only if ¢ > ¢o. The c-front is unique

up to the translation along x-axis. (i) c, satisfies that V2o

UA

=

Co £ V2B. (i) Let ¢ 2 c¢y. Then for a c-front w, there

. W' (x) . =
eXxists %;g ?EKES— = -b, b=Db 1f ¢ >cy, and b =Db 1if c¢ = c,

where b and b are defined by (1,3). ( Especially w.( logx) is

regularly varying at infinity with exponent -b %’wc(x+xo)/wc(x)“—+;

exp{-bxp} as x > =)
Proof.. Step 1. Consider the fields~fof~f1;29 for different c’s,

say ¢ and c¢', ¢' > ¢. Since

' p p o
Det = 2(c - c¢')p

-2F(w)~-2cp -2F(w)-2c'p

is negative,c'-manifolds never cross each c-manifold from the right
hand of the c-manifold ( c-manifolds are considered to be directed ).
(ef. Fig.I) Note that the field points downward on the w-axis and
that its w-component directs right in the upper half and left in the
lower half of the strip 0 £ w £1 (Fig.I).. Clearly the c-fpont

lies always under the w-axis if it exists.



,}p -
T
-t
(0,0) [ } i N
N \’ v \E
\ I
<L }? ) c! > ¢
. ‘
. c'-sol. c-sol.
&\ (\\\
Fig.I

There exists the unique c-manifold issuing from (1,0). It is routine to
prove the existance. To prove the uniqueness assertion let (w¥,p¥)
and (w¥¥,p¥*¥) be two such manifolds. Regarding the difference p =
p¥ - p¥*¥ as a function of w, we see that the derivative dp/dw =
p2F(w)/p¥p¥** has the same sign with p, which implies p = 0 since p

conVerges to 0 as w > 1. |
The c'-manifold issuing from'(l,O) lies oygf pheicfmaﬁifold
issuing from (1,0) if c¢c' > ¢. This is proved by assuming the contray
and by tracing back a c'—manifold passing through a point between
two manifold untill getting to w-axis.
Step 2. Let a c-manifold pass a point (wy,~bw,) where b > 0.

The sine of the angle, made by a tangent vector of it at this point
and a half line p = -bw, w> 0, which is directed to the origin ,

and taken from the former toward the latter, is equal to the ratio

of
-1 D
(1,5) det W= - [b2 - 2be + 2FV(VW0) ]WO
- - 0 o
b 2F(w)-2cp p=-Buw,
to V1+b2vb2 +4(F(wy)/w, +¢b)? wg . This ratio is less than a

hegative constant, say -e, if b > b > b (c > c¥) and larger than a posi-
tive constant, say e, if b <b, b <b or c¥ >c (2 0) for O

< W < §, where € or ¢ become small unrestrictedly only if ¢

v

c¥ and b approaches to b or b (¢ being fixed). It is easy to

s




~ gee that if 0 <c <c* every c-manifold reachs the negative p-axis

1W1th finite x and that if ¢ > c¥ there'ex1sts a

Zfé;manifold which enters the origin <along p = -bw ( called (c,b)-
vjmanifold) and those along p = —bW(called (c b)~man1fold) These
sl . . ) ( :’: ) ‘

',exhaust all c-manifolds enterlng the origin (in case .e¢ > c¥).

Step 3. From Step.1 it follows that if the c-manifold issuing

~—prom (1,0) enters (0,0) then the situation is same for any c' > c.

Let ¢, be the infimum of such c’s. By Step 2 c¥ £ ¢co £ V28 ( the

- ~pight side of (1,5) is negative for c¢ >/28 = b). Since b is increa-
*ging with ¢ and every c'~front lies over the c-front for c' > ¢ >c,
“the c-front enters (0,0) along p = -bw if ¢ > cg. This proves the
ifirst half of (ii). The co-manifold issuing from (1,0) enters (0,0),
because dJ&bntsvﬁth<WUD = 1/2 converges to a cy-solution with w(-e)

1 increasingly for x < 0 and decreasingly for x:> 0 as ¢ Vv cg- Thus
thé co-front exists and (1) is proved. The second half of (dii) is‘
trivial if ¢o = c¥. Let ¢, > c¥ and ¢, > ¢ > c¥. The co-front is

obtained as the limit of c-manifolds issuing from (1,0) as c tcg.

S8ince eachrof these manifolds is bounded from the above by the

A(C sb)-manifold whlchrmwesrmwmtmmnwly, as ¢ tcy, to the (co,b)~

‘manifold, the c -front is the (co,b)—manlfold Thus (Iu) is proved.

The Droof of the theorem is completed.

‘Remark. The (C,B);manifold, whose existance has been proved

.,in Step 2 of the above proof, is unique if ¢ > c¢® as is shown

~_below. Parametrizing any two (c,b)-manifolds with w-coordinates,

denote by p = p(w) the difference of their p-coordinates. Assume

;) According to the behavior of F near zero,'there occur both cases
‘that a c*-manifold entering the origine exists and that such one

»ques not exists (see Remark of Lemma 2.2).

L4
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5> 0. By 20/ D2 = 2¢/b -1 <1, we derive-from (1,4) that

W/p)-dp/dw <r <1 for small w. This implies p > w' which
6ntradicts to p = o(w), and we have p £ 0. Similarly p 2 O.

f;f%mhus p = 0,

In order to illustlate that when o <B both the case cy > c¥
__and the case ¢y =c¥ occurs according as the shape of F, we give
‘examples which are generalizations of Fisher’s population genetic
~model for the migration of advantageous genes. The results are simi-
““jape to what K.P.Hadeler and F.Rothe obtained for F(u) =u(l-u)(l+vu),
vl (ef. [6D). |
Let G(u) be a function defined in 0 S u £ 1, having the
-continuous derivative which is continuously defferentiable in O<u £ 1,

and satisfying conditions;

G(0) = G(1) = 0, G'(0) > 0, G"(u) =o(u™1),
G'(0) 2 G'(u) and G(u)> 0 for O <u < 1.

CPut F(u) = G(u)H(usk), H(uzk) = 1 + 2c75( G(0) - G(u)) « > O.

~Then the function w = w(xj;k) given in the inverse form

—xdu

LW
- (1,6) = fip e

iiiigwé front with-an associated spéed

+

AR

c = % (‘@ =G'(0) = F'(0)).

- If ¢ = /24, then c¢ = /20 and hence c, = Y2a. As « increases, F(u)

_decreases and cy does not increase. Since co 2 /20, we get

co = V20 for k 2 V2a.
If k < /24, then
wi(xsk) o 2.5 Gw) _ 2 _ _ e
T CTT S L T (0 T me e
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grom (i) of Theorem 1.1 it therefore follows that w(x3;k) is the

’front. This means that

- K
Co ~= *é-“l"

xlL

for k <V2a.

i f G! (0) - G'(U.) ~ upL(u> where L 1is SlOle Varyj_ng a’t'vzero and P > O,
“fhen o <B but c, =20 for VZ2a I k </2a(ptl).
Similar arguments are-availéble in the case F'(0) =0. Let

@(u) be as above and put

F(u) = G(uM(uzk),  M(uzk) = 5G'(0)-G'(u)).

. .Then w(x;x) given by (1.6) is the cy-front and co=G'(0)/k .
The first example may seem to suggest that whether co >c¥ or
ity =c* does not depend only on the behavior of F(u) near u =0,

~But there is an exceptional case of Remark to Lemma2.2 presented

later, | in which ¢, > c¥ 1s implied only by a behavior of F near u=0.

Let us state a lemma for use in the next section.

Lemma 1.1. Let F¥ be a function satisfying the same conditions as

 4;imposed to F , and denote by w¥, b¥, b¥, etc. the corresponding quantities.

~ Assume that F <F¥ for O<u<1 and that c>/2F% (0). Then, (i) the (c,b¥)-

o ;manifold lies over the (c,b)-manifold as far as they are under the w-axis,

- ~and (i1) for every (c,b¥)-manifold [resp. (c,b)-manifold ] there exists a (c,b)-

manifold [resp. (c,b¥)-manifold ] such that the (c,b¥)-manifold lies under the.

;f;;(C,E)-manifold near the origine.

Proof. First note that b £ b¥, b* < b. Since

= -2( pF¥(w*) — p¥*F(w) )

~...1s positive at (w,p) = (w¥,p¥), (i1) is clear. (i) follows from the fact that

‘a,C—manifold for F passing a point below the (c¢,b)-manifold must reach the negative
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p-axsis (see Fig II'). q.e.d.

Corollary . Under the assumptions of Lemma 1.1 (i) if w

and w¥ are the (c,b)- and (c,b*)-solutions, respectively, with

ESE—

w(0) £ w¥(0), then w(x) < w¥(x) for x>0, and (ii) if w [resp.

w¥] is a (c,b)- [resp. (c,b¥*)-] solution, then there exists a (c,b¥*)-

[resp. (c,b)-] solution w¥* [resp. w] such that w(x) > w¥(x) for

x > 0.
p
LR
v,’/'(c,g)—sol.
AN
N (c,b¥)-s0l.
h (c,b¥)-sol.
(c,b)-sol. Tl
Fig L. (F < F¥)
2. Asymptotic Behaviors of c-Fronts as x > +%

The tail of a c-front for large x is nicely approximated by that

Lyt oew' +aw = 0 , if F

of a solution for the linear equation 2
behaves regularly (in some sense) near zero. Indeed a theorem in the
stability theory says that the error of the aproximation is a small
order of e P¥X with some p>0 if ocu—F(u)=o(ul+q)v with some q>0 (cf. [2]).
Here we find (weaker) conditions sufficient and almost necessary

for certain estimations about the approximation to hold. Symbols

and terminologies introduced in the previous section are used also

here (and later sections).

Let us introduce a function &(u) defined by

F(u) = au + E(u) (a=F(0)).
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Theorem 2.1. Let ¢ > /2a and c 2 c,. Assume
l£(w) | N

(2,1) fO-l- u2 du < ‘o

Then the c-front satisfies

(2,2) wo(x) = ae % (1 +0(1)) as x > o,
where ‘b = —)JEL-L)Q(WC'(‘X)/WC(X)) and a is a positive constant and given by

1 s , o DS b
2/ e% —ou {bw, (0) +we' (0) - IOe Cg(we(s))ds}t if ¢ >cg

seram e(0) +w' (0) ~ [ kuo(s))ast  ir ¢ =cq.

Theorem 2.2. Assume c¢g= /2o and

(2,3) f0+ léigll [1ogllldu <w .
u :

Then the c,-front satisfies either (2,2) with ¢ = c,, b = V20 or

(2,1) : wco(x) = alxe_/za}((l-ko(l)) as x > o,

where a or a, are positive constants and given by

a = W () + [ se‘/zo‘sg(wco(s))ds,

/20 SE(WCO(S))dS.

o ) ey ) - J

Remark. If £&(u) has a definite sign near u =0, the condition

(2,1) is also necessary for (2,2) to hold. The similar statement

Is asserted to the case of Theorem 2.2 as well. (See Lemmas 2.1 and 2.2)

Theorem 2.3. Under the assumptions of Theorem 2.2 a sufficient

condition for (2,2) to hold is that there exist no F¥*, satisfying (3) and not

ldentically equal to F, such that F* 2 F and co* = /2a ( where cg¥

4
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ig the minimal speed corresponding to F¥), If & satisfies that
' o 1+
(2,5) Jo+ |g;£u) |loguldu < = or &(u) = o(u"P) p>0

then this condition 1s also necessary.

If & 2 0, then (2,4) holds under (2,3).

Applying thé last theorem to examples of the section 1, we
have that 1f [, []|G"(w)| + |G'(0)~G'(u)|/ul|logu|du <= or
G'(0) -G'(u) = o(uP), p >0, then the co-fronts for F = G-H with
k > /2G'(0) satisfies (2,L4).

The proofs of these theorems follow from Theorem 1.1 and lemmas
presented below. The proofs of lemmas are somewhat complicated

and may be skipped if the reader is contented with the result for &(u) =

o(u1+p), p>0 or is little interested in the problem all its own.

¥

Let us write z(x) = ebX:W(X) with b = —%;&(W'/W) for a c-
solution which satisfies w(+») = 0 and write z, = %;g z(x) if

the 1imit exists.

Lemma 2.1. Suppose ¢ > /2a and at least one of the following

conditions holds;

+
%
(2.6) fos §£E%~ du <o )
v u
E(u) " (%)
(2,7) for B au > -,
, u
Then for any c-solution w with w(+x) = 0 there exists z,6 =

%;Q z(x) with 0% z, £ «. If b=b the condition (2,6) [resp.

(2,7)] is necessary and sufficient that 3z, < [resp. z, > O0].

(%) xT = sup {x,0} , x~ = inf{x,0} .



If b =

-

gufficient that =z _ > 0 [resp. =

[ve]

Proof. Write the equation (1,2

d

dx

da

X

fo

the integral equation

then apply the formula ePS (a%-yb

and you have

' ~bx -5 1 X _Hlx— -b(x~s)
(2,8) w(x) = Ae — -~ Be bx + 5_b IO [ b(x S)--e = le(w(s))ds,
where
A bw(0) +w' (0) B _ ‘gw(?) +w'(0)
| ,, b-b b-b
be e y~¥¥a%ffy$\ Yo,
@Eﬁéé logw(x) = IE %L<is + const. = -bx + o(x) and.since Db > b,
for the (C,B)— solution we have
- -bx — ®  —b(x—
(2,9) w(x) = -Be P¥ 4 E? - jz ebSE(w)ds + :%— IX e ‘KX S?g(w)ds,
and
— o) _k_)_S
(2,10) bw(0) + w'(0) = [O e~ E£(w(s))ds.
Let b =b, i.e. w'/w > ~b. It follows from (2,8) that
X w -
(2,11)  =z(x) = A - pe~(P-R)x %l~ IO e_(b-g)bés)z giy) ds
-4 fX z ELw) ds ,
b-b "0 w
and
(2312) Z'(X) = (0’—9)138 (E_ P_)X _ IX e-—(g-g) (X-—S)Z E;(‘:/I\T) ds .

tb
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b > 0, the condition (2,6) [resp. (2,7)] is necessary and

< oo:l,

) in the form

-£(w) s

) w

)f(s)ds = ebxf(x)-f(o) twice,

0
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Since z'(x) = o(z(x)) ( which follows from Ww'+bw = e % g = o(w) ),
' = 1 X gE(w(s))
(2,13) Z(X) = (1 +O(l))[ A - %‘_‘i [O Z(S)W dS].
First assume IO+ E(g)—dw > -». From the inequality
W

z(x) £ A'+ D'j’é z(s)P(s)ds

where A', D are some constants and P(s) = -g£(w(s)) /w(s), we can

easily deduce the boundedness of z(x) because of the integrability:

w(0) | -
o _ ' lgw) 7] w
foP(s)ds ]O 2 ]

dw < o,

The integral in the right side of (2,13) converges,for the left

side must be non-negative and z is bounded. Now we get that there
exists z, = A - (E;E)—l fg Zgéwl ds, which is positive only if

(2,6) holds.

+
Next assume f0+ E(g) dw <, Let us prove that l1im z(x) > 0
w ’ X>oo

Without loss of generality, by virtue of Corollary of Lemma 1.1, we may

assume £ 2 0 near u = 0, which guarantees the existance of 1im 2z(x) = zer Then

Zo = 0 , by (2,13), leads to the contradiction;

w

: 1 e E(w) .
z(x) = (1l+o(l))=—- z ds = ofz(x)).
= 05 (a(
Thus 1im z(x) > 0. Now it suffices only to prove that if

o+ éigl“ dw = —c.
W

—o» then 1lim z(x) = «». Let

Let Xq and X5

Then, by (2,11), (2,12) and that =z'(x) = o(z(x)),

are two points such that Z(Xl) > z(x) for Xy < X

2(x) = z(xq) - E(Xl) (% g(w)

5 _p x, W ds - o(z(xl))

¢
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: +
. x £(w) .
for X < X < X,. If x; 1is large , fxl - ds is small and z(x)
is little 1less than z(xl) for x > Xy Since 1lim z(x) = =,
this proves lim z(x) = o, The proof of the lemma in the case

b = b 1is completed.
In the case b = Db we can proceed similary as above starting

from (2,9) instead of (2,8). qg.e.d.
In the case ¢ =/2a, a > 0, we get, instead of (2,8),

(2,14) w(x) = [ w(0) + (w'(0) + bw(0))x ]e PX

-b(x-s)

=[5 (x-s)e E(w(s))ds, b = /4.

Lemma 2.2. Suppose o > 0 and at least one of the following

conditions holds;

g(w)” '
(2,15) ' fo+ ¥ ]log ul du < o,
(u)~
(2,16) fO+ €u2 |log u] du > ~e,
Then for every c¥-solution (c¥ =/2q ) w with w(+x) = 0 there

exists vy, = 1im x"lewa(x) (b=v20 ) with 0 gy, g ». If both

(2,15) and (2,16) hold, there then occur two and only two cases:
#
0y,

0 < Yoo € ® (Zgp = ®©)3 0 < 2y < © (Yoo = and a c*-solution to

the latter case (or corresponding c¥-manifold) is obtained as the

limit of (e¢,b)-solutions (or (¢c,b)-manifolds) as c¢ +c¥, Conversely

if one of these cases occurs to some c¥-solution, then both (2.15)

and (2,16) hold. The cases ¥, = @ occur if and only if (2,16)

does not hold. If (2,16) [resp. (2,15)] fails to hold, then y_

= 0 implies Zeo = 0 [resp. lim z(x) = o],

(#) The use of the symbol z, implies the existence of lim z(x).
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+
Remark. In the above lemma if j0+ E(g) du = « ( which
u

implies (2,15) fails and hence (2,16) holds by the assumption of

the lemma) then there is no c¥-gsolution with w(+~) = 0. In such g

case we have cg > c¥,

Proof. Let w be a c¥-solution with w(+») = 0. First we
note that x = - %—logW'+ o(logw) as x - » and that-
+ + :
x . B(w)” w(0) -2 g(w)~
s ds = b 1 ul du (1 +0(1)).
IO w IW(X) u2 I og I ( (1))

From (2,14) it follows  that

(2,17) 2(x) = w(0) + (w(0) +bw(Ox = [ (x-5) =5 qs,
or,introducing‘the notation y(x) = z(x)/x,
w(0)

(2,18) y(x) = —5

£ W (0) + buw(0) - [X (1-5) ys B a5,

Assume y(x) to be bounded @s x»=. (Notice this holds always under
(2,16) as is easily seen (see the proof of the next lemma).) Then

we have, by the hyposesis of the lemma,

(2,19) o g ey < w,
which further implies that fé S Zggy) ds = o(x) and hence that
(2,22) Yo = w'(0) + bu(0) - 7z Bl g5,

Tt is clear, by (2,18), that y, > 0 dimplies both (2,15) and (2,16).

Let Yo = 0. Then we have

(2,23) 2(x) = w(0) + xf0 z E0) qs 4[5 52 BU g,

or, by dividing by =z

(2,24) 1

w(0) w z(s)/ g(w(s)) (s) . g(u(s))
z(x) + Lx i(i)/i 5 W?S) ds + fé g(i) S W?é? ds.
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Assume (2,15) to be true. Then z(x) is bounded. Because, assuming

the contrary, we can chose a sequence X1, X2, ... such that z(x)

IIA

< z(x,) for x Xp, 2(xp)/xpn > z(x)/x for x > xpn and z(xp) » «,
which leads to the contradiction, for the right side of (2,24) tends

to zero along this sequence. The boundedness of z(x) implies, by

(2,23), that ]E s zl§£ﬂll-ds < o,and hence that

(2,25) z, = w(0) + [3 s zgiﬂl ds.

w

Clearly Ze > 0 only if (2,16) holds. If =z, = 0, we have z(x)
= ;f: (s-x) zééﬂl ds, from which we deduce that (2,16) is spoiled.

Thus we have proved that under (2,15) Yo = 0 dimplies O S Zp < ®
where =z, > 0 1s equivalent to (2,16).

Under (2,15) and (2,16) a c¥- solution with yeo = 0 1is
obtained as the limit of (c¢,b)-solutions, with w(O)’é taking the same
value,as c +c¥. TFor the proof it suffices to show that z(x3c) =
egkw(xgc) are ‘boundéd uniformly as c vc¥. Prove this for positive & ,
and then apply Corollary of Lemma 1.1.

Now we prove the existance of a c¥-solution with Yy, > O
under (2,15). Corollary of Lemma 1.1 (which must be modified appropriately

to the present case ; ¢ =c¥) allows us to assume £ 2 0. Since, for

such &, z(x) is less than w(0)(1 +bx), we have

w(O oD [ [ B g g g B g5

=
o 8
N
(\aa]
—~
=
g
Q
[97]
It

o(w(0)) as w(0) ¢ O.

Since there exists a c¥-solution with yo = 0 as already proved
we can take initial values w(0) and w'(0) so small that w(+) =0

and bw(0) + w'(0) > fg 7 E%El-ds. By (2,18) we see that this is

¢
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desired one.

Let (2,15) be spoiled. Since (2,16) implies the boundedness
of y(x), by (2,18) we see y, = 0 and have (2,23). By Céfollary
of TLemma 1.1 we see that w is bounded from the below on x > 0 Ey

. |€(u) |

&4 with §_ =0 where W 1is a c¥-solution for £ < £ with f0+ 5

el

.
]
‘

log uldu < ®. Therefore 1lim z(x) > 0, which , by (2,23), turns

iﬁto Tim z(x) = ». ( Remark follows from these and (2,19).)
If T1im y(x) = »(which occurs only if (2,16) fails), then we
can prove that 1lim y(x) = » as in the last part of the proof of

Lemma 2.1. Now the proof of Lemma 2.2 is completed.

Lemma 2.3. Assume (2,3) and (2,5). Let a > 0. Then there

exists uniquely a c¥-manifold with ¥Jo = 0.

Proof. When the latter one of (2,5) 1s assumed, we can
apply a theorem in the stability theory (cf. [2]) to get the result
by fixing 2, = w(0) + fz S zgéﬂl ds. Therefore we assume the

other one of (2,5). A c¥-solution with 7y, = 0 satisfies (2,17) and
(2,26) w'(0) + bw(0) = fz g(w)ebsds.

Assume there are two such solutions with a common  w'(0), say &, and

different w(0)’s, say Then we have Vo = 0 for any c¥-

€1 » €5 -
§

solutions with w'(0) = and < w(0) < €ye Put z(0) = g and

€1
regard z asa function of x ande: z = 7(x3e). By (2.17) we have

that n = 9z/3& satisfies

(2,27) n = 1+ bx - fé (x—s)gy(w)r1ds.

Tt follows from this and from n 2 0 (€2 is assumed to be small) that

A

(2,28) n 1+ bx + xfg |£7Gn] nds.
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By (2,28) n is bounded from the above on x 2 0 by the solution n

~of the linear equation
- (2,29) o= 1+ bx+xf5 |g(w] fds

which has the unigue solution with the bound: n(x) £ Ax + B
where A, B are constants chosen independently of . Now differen-
tiate the both sides of (2?26) with respect to &€ and we have, by
the Fubini’s theorem, that b = f;’ £'(w) nds, the right side of
which tends tozero if we let e small. But this is absurd since

€o may be arbitrarily small. qg.e.d.

Lemmas 2.1 to 2.3 and results of the section 1 prove Theorems 2.1, 2.2
and 2.3 except the last statement in Theorem 2.3. But since, for a
front, w'(0) + bw(0) can be assumed to be positive, £ ¢ 0 impl-

ies, by (2,22), ¥y, > 0 as desired.

Theorem 2.4 Let o =0 and c¢ > c¢,. Then for any small € >

0 we can find constants Cl’ C2 and N such that

X X
al —=+0)) ¢ we(x) g al F5o+C;)  for x > N
where q(x) is the inverse function of
1/2 gu-
Proof. Put T(w,) = we'. Then F(w)/t(w) > -c as wvO0. For
any € > 0 we can find 6§ > 0 such that
1 1 1
—-C - e < - + 0 < < .
( £) F(w) < ;l_m— < (-c E)W W $
By integrating each part of this inequality, we get for x > W;l(é)

(crorf) | py 2 %O 2 (e-o)f  wiy
X

wy w{x

’
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or equivalently

X Wcrl(a) wc_lQS)

X
q(c+ e~ c+e

q(c—e' c— €

+q ) + q7H8)).

v

3%

we (%)
g.e.d.

To illustrate what Theorem 2.3 says we put F(u) = u1+pL(u)

with p > 0 and L slowly varying at zero. Then for ¢ > ¢
1

we(x) ~ cpq(x) as x > o

O .

and q(x) is regularly varying at infinity with exponent i%. If we

take F(u) =u(-log u)—l—rL(—log u) with r > 0 and L slowly varying

at infinity , then for c > ¢

o
-1
log w,(x) ~ 02+r logq(x) as X - o
and  |loga(x)|is regularly varying at infinity with exponent f:?.~ (In

these cases (with additional conditions on L) e satisfies (2,2).)

The next lemma will be used in the proof of Theorem 9.3.

Lemma 2.4 Let ¢ > c*¥ and o > 0. Assume the condition

of Theorem 2.1 if ¢ > c¢® and that of Theorem 2.2 if c¢ = c¥, Let

S be the part of the half strip 0 <w <1, p < 0 sweeped out

by all c-manifolds that enter the origin. Let (w,p) be a c-mani-

fold starting from (w,,pp) € S at x = O: Consider the gquantities

bx

a = lim e~ w(x) if ¢ > c¥
— . C*X —l 3 -— »
aj %%g e x T w(x) if e¢c=c¢

to be functions of (wo,po) &€ S. Then they are continuous.

Especially if (wy,p,) approaches to a boundary point of 8

which is not on {(w,p); w = 1 or p = 0}, then a or aj tends

to zero in each cases.

¢
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Proof. When ¢ > c¥, the statement is clear by (2,10) and
by the first expression of a in Theorem 2.1 which is valid for
any (c¢,b)-solution, becauce {w/w'; w < §/2} and exp{bxlw(x) are
uniformly bounded as long as (w(0),w'(0)) moves in the intersection
of S vand w>26. In case c¢ = c¥ use (2,22) and the expression

of aj in Theorem 2.2.

Corollary. Let w be a c-solution with (w(xo),wKxo)) being

a inner point of S. Then, under the assumption of Lemma 2.4, if

‘(W(XO), w'(xy)) approaches to a boundary point of S not on

‘{(w,p); w=D1or p=20} as a (or aj ) and w(xd) being fixed,

Xo tends to.infinity.

3. Parabolic Fquations.

We exibit hére comparison theoréms on the pafabolio equation
(3,1) - u* = au"+ bu'+ cu + Q u = u(t,x)

where a, b, c¢ and Q are functions of (t,x) ¢ E = [0,») xR.
It is assumed throughout this section that a » 0 and Q > 0. Most
of the results presented below are standard and proofs of some

of them are omitted (éee e.g. [4], [8]). When we say u satisfies
(3,1) in an open set, it means that u°, u'. and u" exist,
~are continuous and satisfy (3,1) together with u in it. Let D
is an open set of Ep, T > 0. We denote by D the closure of D
in R° and by 3D 1ts boundary. We will further impose.on'solu~r

tions in D the continuity on D.

Proposition 3.1. Let wu satisfy (3,1) in an open set D of

E T > 0 and be continuous on D. Assume there exists a constant

T)
M such that




(3,2) a(t,x) ¢ M,

and

(3,3)

for (t,x) € D. Then u=> 0 in D i

Proposition 3.2.

Jo(t,x) | ¢ M(|x |+1), c(t

u(t,x) > ~Me

-y
o

nv
O

Let D be an open set co

24

,X) < M( x2+1)

(*)
on D-f.

ntained in the

~rectangle (0,T) x (0,

1). Let u satisfy (3,1)

in D and be

continuous on D. Suppose there exists a constant M such that

a(t,x) < M x° (1+ |logx|), |b(t,

(3,4)
and

Then u 2> 0 in D

ce(t,x) < M(1+ |Logx| )

0 on D~

i .
L u on T

v

x) |

A

Mx (1+ |logx])

for (t,x) € D.

Proof. Putﬁing u,(t,x) = u(t,exp{(l—x2)/2}), apply Proposi-

tion 3.1 to wug.

Proposition 3.3.

Let D be a rectangle (0

0 <« L g o, Let u s

atisfy (3.1) in D and be

,T) x (0,L) ~with

continuous and

nonnegative on D. Suppose that (3,2) and (3,3) are satisfied,

and ay = Infpa

that by = sup.b and c¢, =inf_ ¢ are finite
diolvoddl * D aiit # D

> 0,  that §1 = 1
>0 if L < =,

continuous on D, whi

nfy pop W(t,0) > 0, and that 6, = inf u(t,L)

There then exists a functi

2 0<t<T

on v defined and

nd depends only on

and continuously on

uxv on D.

Proof. We prove

v(t,x)

ch is positive on D-—lo a

61, 62, azx, bg, cx, T and L

the proposition only when

If

p(agt , x + byt —

oo

sec*tfo

such that
I < w, Set
y Jy2dy

where ¢ 1s a positive constant chosen so small that

v(t,0) £ &4

and v(t,L) < Sy

(*)

Lp = {(T,x); x ¢R}.

for o <t < T.



Noticing v 1is a solution of

. - n '
v ayVv +-b*v + CyV

we see that w=u - v

1t

(a=a )v" + (b=b )v'+ (c-c,)v+Q

with

satisfies (3,1) with Q

v(0,x) =

25

X2I(_m’o)(x>,

replaced by Qg

and the boundary»condition: W

20 on 3D-25. It is easily seen that ~v" » 0 and v' < 0, and
hence Q, > 0. Therefore by Proposition 3.2 we have w > 0 din D
as desired.

Proposition 3.4. Let u satisfy (3,1) with Q = 0 in E

and be continuous on E.

Suppose that (3,2) and (3,3) are satisfied

in Et for each t > 0 and that ¢ 1s bounded on each compact
set of E. Suppose g(x) = u(0,x) satisfies
(3.5) g(x) < O if x; <x <x,5 2 O if x< Xy or x>x
with some extended real constants Xl and Xni = éin < x2 < o,
Then there exist extended real functions Xl(t) and X2(t) of ¢
> 0 with - —cng‘Xl(t) < Xg(t) < ©  such that
u(t,x) { :
> 0 if x <X3(t) or x> Xo(t).
It Xy = - o [resp. Xy = @ ], we may set Xl(t) = - » [resp. X2(t)
= » ]

Proof.

By virtue of Proposition 3.1

it suffices to prove

that if u(T,x;) <0 and u(T,X,) <0 with X; <X, T >0

then u(T,x) <0 for X, <x < X,.

1

components of

Let

(T,Ez), respectively.

D, and D are connected

1 2

{(t,x); u(t,x) < 0, 0 <t < T} whose boundary

Define an open set

for some y, and Jo with

contains (T, l) and
D contained in ET by the relation that
yl < X < ¥
(t,x) € D iff {

Since both Dl_ﬂ 20

and (t,yz) ¢ D2.

and D, N gy contain points of the segment
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{0} x [x9,x5], g <0 on DN Lo by (3,5) and hence -u 0 on

v

3D~—2T. Then Proposition 3.1 1s applied to -u to get u

A

O .

in D (we may assume D 1is compact by curtailing it if necessary).

Thus the proposition is proved.

4, Fundamental Properties of u(t,x;f;F),

It is well known that our Cauchy problem (1) and (2) is reduced

to finding the solution of the integral equation
€
(4,1) u(t,x) = P.f(x) + [ ds fR p(t-s,x-y)F(u(s,y))dy

such that 0 <u <1 ( this will be proved in the following).

The solution of (4,1) is obtained by the usual method of the
successive approximation. The uniqueness of the (bounded) solution
is proved by usual method (cf. [13]). Let u _bema.solution of

(4,1) (with 0 g u < 1). Then we have equations for t >0

(4,2) u'(t,x)

(Byf)'(x) + fods [ p'(t=3,%-y)F(u(s,5))dy

(h,2)" u'(t,x) (P f) ' (x) + fg ds JR p(t-s, x-y)F'(u(s,y))u'(s,yldy

and

H

(4,3)  u"(t,x) (P L) (x) + fg ds IR p'(t-s,x-y)F'(u(s,y))u'(s,y)dy.

We will use formulas

2
(qgu) ) IRI—%‘Lp(t:y)dy = /—:

y2
(435) IR ?p(t,y)dy = .

From these equations or formulas it follows that

1 . —
(4,6) jure, 0] s 7S5 (g + 2 |IFlIVE )

“and
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(4.7) lu"(t.x)| = £+ 2y(||F|lt + 1)

where |[[F]| = supulF(u)[. We remark that these inequalities imply in
‘particular, by Fuygens property of u, that u' and u" are bounded
on t > 1, x¢R. (Similar boundedness assertion of u™ is deduced -
from (4,8) which follows.) The existance and continuity of u°

follows from (4,1) and the inequality (derived from (4,6))
|fg P~ (t=s,x-y)F(u(E,y)dy| = |[[z p'(t-s,x~y)F'(u)u'dy|

— 1
< const.{7%= + Vs Vs,

Now the derivation of the equation (1) and (2) from (4,1) is
immediate. The uniqueness of the continuous solution of (1) and (2)
follows from Proposition 3.1 1if f is continuous. For a measurable
f, putting f, = u(l/n,-) and un(t,x) = u(t+1/n,x) with u a
solution of (1) and (2), each U, is the unique solution of (1) and
(2) with fn in place of f and hence u, is the so}ution
of (4,1) where f is replaced by fﬁ. Letting ﬁ"tend to>infinity
we see that u satisfies (4,1). Therefore uniqueness assertion for
the equations (1) and (2) follows from that for the equation (4,1).
Let u be a solution of (1) and (2): u(t,x) = u(t,x;7). ‘Then

u satisfies (4,1) as just proved. By differentiating the both sides

of (4,1) with respect to t we obtain

u'(t,x) = (Ptf)' + PtF(f)(x)
(}4:8) t
t f,ds jR p(t-s,x-y)F'(uls,y))u’(s,y)dy
from whiéh the existances of u™ and u’ follow. Putting v =u'
’ . - L
(4,9) \% = 5V + Fr(u)v.

Suppose f is Lipshitz continuous on R. Then by (4,2) u' is
bounded on ET’ T < o, and converges to ' at any points where !
exists, since (Ptf)' has these properties.

Suppose F" exists and is continuous on [0,1]. Then from
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(4,8), by comsidering u¥(t,x) = u(t+l/n,x) = u(t,x;u(l/n,*)) if necessary,

we see as before that v = U’ satisfies (4,9). If we further assume that

f' exists and is Lipshitz continuous on R, u is bounded on

each E and converges to % " + F(f) at any point at which

T

" exists,

The next lemma will be used repeatedly.

Lemma 4.1 Let k(t,x) and Q(t,x) are bounded measurable

functions on E. Then for each bounded measurable function g

on R the integral equation

(4,10) w(t,x) = Pee(x) + fodsP,__{k(s,*)uls,-) +Qs, )} (x)

has the unique solution which is bounded and continuous on ET’

T < . Such a solution satisfies

- t - -
M reT(x) + g TR o7(s, ) (x) as

(4,11) ‘ :
< u(t,x) X< ek*tPtg+(x) + j; ek*(t_S)P

os@ (5,°)(x) ds

1]

where k¥ sup k(t,x).

Proof. For a measurable function v on E we write

(4,12) K, v ==2va(t,x) = fg ek(t—S)Pt_sv(s,.)(xj ds ,

where A 1s a real constant, if the double integral for |v| 1is

finite. Then formulas

[o] n B ’
(4,13) ngl (vK)"v = WKL Vs
(4.14) AK P g} (t, ) = e“Ptg - P.g, Ko (P g}(t,+) = tP.s,
(4,15) (A=u) K, © ]Ku = K, —IKU

are valid as far as the both sides of each equation have the meaning.

Rewrite the equation (4,10) in the form u = P.g + Ky kutQl}, and



apply K_, to the both sides of it, then we obtain, by (4,14)

(4,15), the equation

-\t

u = e P& + K_ {(k+Mu+qQ .

A
Iterating this equation, we see that the solution of (4,10) is

necessarily given by

u = ngl [IK_AO(k+A)]n'{[e~AtPtg]t=_ + K_,Q 1

where IK_Ao(k+A) is the mapping: v H*]K_x{(k+x)v}. ‘Chosing A

80 large that k + A 2 0, we have

o % n ~At + +
u < z, [(k¥+0) K_, 1" { [e"""P g ] _ +XK_,Q}
- + +
= (k*+A)ZKk*[e AtPtg ]t=-'* :KK*Q

_ k¥t + +

This is the same as the second inequality of (4,11). The first

inequality is similarly proved.

29

Remark 1. In Lemma 4.1 if k and Q are uniformly Lipshitz

continuous in x, the solution of (4,10) gives the unique solution,

which is bounded on E for the equation

T,

u’ =%—u"+ku + Q.

Remark 2. Let F¥ and f¥ be a function on [0,1] satisfying

(3) and a datum, respectively. Put u¥ = u(t,x;f¥,F¥), u = u(t,x;f;F)

and w = u¥ - u. Then w satisfies (4.10) in which g = f¥ - f,

L

k = (F(u*)-—F(u))/(u*—u)(h%md Q = F¥(u¥*) - F(u¥). Terefore, by the

first inequality of (4,11), if F*¥ >F and f¥ > then u* >

Let g be a bounded nonnegative measurable function on R.

Then it follows from the inequality, valid for IXI < M,

| 1
(4,16)  peg 2 lell [ sy 0Ly + 7= )| cps py 8D

(:':) if u® = u, we put 'k = F'(u),.

u.
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that

if g, > 8 in locally Ll sense and boundedly, then

(4,17) ff?tgn > JEPtg uniformly on (0,T) x (-M,M) for each

T «o and M < «.
Similarly we see that, for |x| <M

- (&) (O | < 7z I8l 5y P9 |vlay

(4,18)
1

tore |y arwE n 8-

Lemma 4.2. Let f,»n=1,2,..., and f be data and u, ~and

u corresponding solutions of (1) and (2). Suppose fn - £ in

locally L' sense. Then /EWﬁ] > /tu, tu ' > tu', and t/tu "

> t/tu" as n » o uniformly on (0,T) x (-M,M) for each pair of

finite constants M and T.

Proof. Putting w, =u -u, we see that - W satisfies (4.10)

(F(un)—F(u))/(un~u) and Q = 0.

with g = g, = fn-f, k
Therefore that /EWHI + 0 in the desired sense follows from (4,11)

and (4,17). By (4,2) we have

[w,' < (B )]+ fg'dSIRlp'(t—s,x—y)[F(un(s,y))—F(u(s,y))]Idy.

The first term multiplied by t tends to zero by virtue of (4,18).

The second term is bounded, for x| <M, by

o lyl
2 IF1l focsce or t-e<s<t @8 J_P(t=8,¥) £i5dy

o t-e. y e
PRI dS&q p(t-s,y)glgdy + = SR v lw, (s,3)|.
€<s<t

Chose ¢ so small and N so large that the first two terms are
less than an arbitrarily given positive constant and then let n

fend to infinity so that the last term tends to zero. This proves
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| that twn' + 0. The last convergence assertion is proved similarly
py using (4,3).

Lemma 4.3. Let Fn’ n=11, 2,..., and F be functions on [0,1]

satisfying (3) and Uy and u corresponding solutions with common

initial datum £} u, u(t,x;f;Fn), u = u(t,x;f;F). Suppose F_ -

n

F uniformly. Then u_ - u and un' + u' uniformly on ET for

n _— -

each T < », Further suppose Fn' -~ F' uniformly. Then un‘ -+ u

and un" + u" in the same sense.

Proof. Set w, = u, - u. Then W satisfies (4,10) with g

]

0, k= (F(u)-F(u)/(u,-u) and Q = F (u)-F(u)). Putting 8,

l(ey_t—l). This proves u_ -+ u in

|1}

|F, -F|| , we have |w 1< 8,7~
- the required sense. Remaining assertions are similarly proved by

(4,2) or (4,3).

Lemma 4.4. Letadatum f have the continuous first derivative

on R which is Lipshitz continuous there. Suppose there exists

extended real constants Xq and X5 = < Xq £ Xq Loy, and ¢ >0

such that

v
=)
e
,_,3
>
A
e

(4,19) %f’" + ¢cf' + F(f) {

0 if X, <X <X

A

2

where x’s are those points at which f" exist. Then there exist

extended real functions Xl and X2 of t>0 with -~ < Xl(t) <

X2(t) < o ‘such that

>0 if x < Xl(t) or x > Xz(t)
(4,20) z ' (t,x) {

<0 if Xl(t) <X < Xz(t)
where z(t,x) = u(t,x+ct;f). If X, = X, wWe may put Xl = X5,
if X, = -» then X, = - and if x, = «» then X, = o,

Proof. At first assume F" exists and is continuous. Then
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py the equation (4,9) and remarks mentioned just after it the
function v(t,x) = 7' (t,x~-ct) = u'(t,x) + cu'(t,x) , where u =

u(t,x;f), satisfies (4,9) and that, as t ¢ 0,
e(b,x) > g(x) = 2 £ +cfr(x) F F(EE)  a.s.
and is bounded on 'ET’ T < It is proved as before that v(t,x)

can be approximated uniformly on each finite rectangle [T~1,T]x[4LM]

by solutions of (4,9) v such that v are continuwous on t > 0 and g = Vv (0,°)
n n = n n >

1

Therefore we may assume that g 1is continuous to apply Proposi-

 satisfy that gn(x) >0 if x <x; or X > %55 <0 if x; <X <X

tion 3.4 which proves (4,20) (see also Proposition 3.3). In the case
that F" does not exist, use Lemma 4.3 and notice Proposition 3.3

to see the strict inequality in (4,20). q.e.d.

Lemma 4.5. Suppose two data f and fy satisfy

fg(x) < f(x) + 0(e™%)

where b is a positive constant. Set v(t,x) = u(t,x;fy) -
u(t,x;f). Then for each constant ¢
(%) %
v(t,x+et) < O(e—Kt“bX) with x = b(c- % _,% ),
and if ¢ <b, for each finite N,
2
L —(5 -9t
v(t,x+et) < 0( = e ) uniformly in x > N.

Proof. By Lemma .1 (see Remark 2 for it) we have

%
v(t,x) < e tPt[f*—f]+(x-+ct).

(%) If Tfg(x) £ f(x) + o(e—bx), then this can be replacd by

" y(t,x+ct) < ofe as t » « uniformly in x > N.
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Set

1 4ir x <0, = & P% ir x > 0.

g(x)
Then

b2 . —

P.&(x) = fxﬁ/f p(l,y)dy + e
The lemma follows from these and the formula f;p(l,y)dyA'%-p(l,X)

as X > o,

The follwing theorem asserts that if c¢ > /2y¥ c-fronts

are stable in a certain sense.

Theorem 4.1. Let ¢ > /2y¥ and f(x) = w_(x+x,) + O(e—bx)
2 Y* ana c

with some constants b and x,. Then

u(t,x+ct;f) = WC(X+XO) + O(e_Kt_?X)

where k 1s defined in Lemma 4.5; and if ¢ <b

—(%2 —Y*)t)

1
u(t,x+ct;f) = wc(x+xo) + O(J%:e

uniformly in X > N > ~ow,

Proof. Immediate from Lemma 4.5 and the stationarity of

c- fronts: u(t,x+ct;wc(-+xo)) = WC(X+XO).

Let o > 0., It is proved in McKean [14] (in case F(u) =u(i-u)) that if

f(x) ~ aw,(x) as x > with a >0 and c 2 v/2y¥ then

u(t,x+et;f) = wc(x+xo) uniformly in x > N, where x, = p~t loga,

b = -lim [w, '/w 1.

Here is a proof of this assertion under our setting. It will
be not wasteful to remark that Theorem 4.1 is not directly available
for the present problem since WC(X) decays as x » o 1little

more rapidly than e_bX , b=c-/c?-20 <c and «x = a-y¥ < 0.
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Now we return to the proof. By the relation f(x) ~ wc(x+xo),
for any fixed & > 0, we have W, (x+xo+68) 2 £(x) g w, (x+x0-8)

for all sufficiently large x, and by Lemma 4.5 we see
wc(x+xa+6) - Q(t) < u(t,x+et;f) < WC(X+X0—5) + Q(t)
. — "1/2 . 2 ¥ .
for x > N with Q(t) = O(t exp{~(c“/2 -y¥)t}. In paticular
u(t,x+ct;) - WC(X+X0) as desired.
5. Limits of wu(t,x+ct;f).

We will investigate in this section the problem: what is the

1limit of
z(t,x) = u(t,x+ct;f)

as t- o0 ? The limit w(x) = lim  =z(%t,x), 1if exists, must be a

solution of (4) on R. 1In fact, in the equation

z(t+s,x) = u(t,x+ct;z(s,-))
letting s tend to infinity, we have, by Lemma 4.2, the equation
w(x) = u(t,x+ct;w),

from which we see that w satisfies the equation (4) on R. 1In

Ht

particular if 0 < ¢ < Co, W 1 or wZ 0.
The following lemma is due to Aronson and Welnberger [1] except

some additional statements, The proofs given here are based on

thelr idears.



Lemma 5.1 Let q(x) be a c-solution (c > 0) defined on

a_interval (L;,L,), =-» <L; <L, <, such that q(Ly) =0

i
(=]

or =1 and that q(L2)
i

f(fi:fLet q(Ll) =1 and L, =« (these implies c 2 c,). Set

T

(5.1) f(x) = 1 1if x < Ll’ = q(x) if Ly <x

and set z(t,x) = u(t,x+ct;f). Then z(t,x) decreaseswith t.

The 1limit w(x) lim z(t,x) 1s zero if

limx_mq(x)/wc(x) = 0, and it is a c-front if otherwise and o > 0.

() Let q(Ly) = 0. Put

0 if x <L; or x > L = q(x) if L, <x <L

2° 1 2

(5,2) £(x) 1

and set z(t,x) = u(t,x+ct;f). Then =z(t,x) increases with +¢.

Its limit is unity if ¢ <.cg or ) limt+wq(x)/wc(x) = ®,

and it is a c~front if otherwise and o > 0.

Proof. We prove only (i), since the proof of (il) is very

1
< 0, define for each constant a > |[F||

similar. Let q(Ll) =1, L, > -» and L2 = o, Noticing q'(Ll+O)

1 X < Ll-— 8
£E(x) = {1 -Et(x~Ll+6)2 L~ <x < Igt§
q(x) x>11+6

where § 1s a positive constant possibly chosen so that q'(Ll+6)
= —;Maé and that 1 - a.(26)2. = q(Ll+6). Then f#* is conti-
nuous, has the continuous first derivative and satisfies

% L™ + cf¥' + F(f¥) < 0 at any x # Lt 6. Thus Lemma .y
says that z¥(t,x) = u(t,x+ct;f¥) decreases with t. It is clear
that =z has the same property by virtue of Lemma 4.2, since £¥%
converges to f as a » . If 1lim q(x)/wc(x) > 0, we have f(x)

> wc(x+xo) with some constant x, and hence z(t,x) 2

O
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u(t,x+ct;wc(-+xo)) = wc(x+xo). Thus w(x) = 1im z(t,x) 2 wc(x+xo).
This proves that w is a c-front. If 1lim q/w, = 0, we have
lim w/w, = 0, but this implies w = 0 because wc(x+xo)/wc(x)

-bx
converges to e 0O as x » », qg.e.d.

The information on the behavior of u(t,x+ct;f) may be roughly
gathered by Theorem 5.1 stated below. Results will be somwhat
sharpend in Theorems 9.3 and 9.4. We will need the following

condition-on f

1
Condition [G]: u(t,x3f) » K as t » o locally uniformly.

If o > 0, this is the case for any data. We will discuss about

Condition [G] at the end of this section.

Theorem 5.1. Let f be a datum and set z(t,x) = u(t,x+ct;f).

-bx)

ngjlpet f(x) = 0O(e as x > «. Suppose either that b >

¢ -Ve?2-20 and ¢ > c, or that b > c¥, c =c, = c¥, and (2,3)

0

and (2,4) are valid. Then for each N > -

z(t,x) -+ 0 as t » o uniformly in x > N.

%}})fiSuppose either that 0 < c< c, and Condition [G] is satisfied

or that ¢ z ¢, and lim f(x)ebX >0 with b <c¢-Vc?2-2q. Then

for each N > -«

z(t,x) > 1 as t > o uniformly in x > N.

Remark. Assertions of Theorem 5.1 are obtained by several
authors ([13], [10]) in a special case under some restriction on
F and by Aronson and Weinberger in case that f has compact
support(mainly) and c¢ # cg.

—bx)

Proof of Theorem 5.1. Let f(x) = o(e , b >c=-V/c2-2uq

and ¢ > c¢,. We can chose a constant ¢, such that c¢ > cg> ¢
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and b > cy-/c,Z-2a. Then there exists a cy-solution ¢ which
~satisfies the conditions of Lemma 5.1 (i) and for which f < f

where f, 1is defined by the right side of (5,1). 1In the inequality
Vz(t,x) S u(t,x+et;fy) the right hand side tends to zero, since,

by Lemma 5.1, u(t,x+c,t;f) tends to zero or to @ c,~front, Thus z(t,x) > 0.
-The required uniformity of convergence is obvious. In the case
¢ = ¢, Wwe can similarly proceed, but taking as q(x) a éo—solution
~ which corresponds to the extremal one in all co-manifolds that enter
the origine (see the last diagram of Appendix). These prove (i).

Let 1lim f(x)ebX >0 with b <c -/Ve*=2a, c

nv

Co. We can
find a function F, satisfying (3) such that F, < F and

Fo' < 0; e.g. set, for small u,
(5,3) Fy(u) = fg (Fr(v)Aa)dv .

Then, putting u, = u(t,xtct;f;F,), we have z > z, and hence
z(t,+) > 1, since, by Lemma 4.5 and Lemma 5.1 (ii) , zZy(t,°) » 1.
In the case ¢ <c¢,, we can proceed as in the proof of (i) using

Lemma 5.1 (il) . Thus (il) is proved. 4.e.d.

In the case ¢ = ¢, > c¢¥*, which is excluded from the above theorem,

the situation is much simpler (see also § 10):
Lemma 5.2. Lét c¢, > c¥., For any couple of constants b and
- with ¢4 =4ch -2 < b < ¢, +/c% =2&X (i.e. b2/2 —cob + &% < 0) and

2
b"/2 ~cob +X < -N < 0, there exist positive constants A and A’ such

that if we set

Ug(t,x) = W, (X—Ae“nt) - e—nt—bx
[o}¢

U¥(t,x)

]

W, (X—N(l—efnt)) + e~NE-DX

Aand if a datum f satisfies
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(5,4) Up(by,obx)) 5 £(x) g Uk (t,,x+x,,)

for some constants tl, t2, Xys X5 then

- (5,5) Ug (B48,xHx7 ) < u(t,xteotsf) < UR(b48,,%4x,)

for all t > 0, x € R.
Proof. Extending F to a continuously differentiable function
F on R so that F'(u) <o for all u ¢ [0,1], and setting

v(t,x) = u(t,x+cot;f) - U*(tfﬁl,x+xl), we have, by the mean value

theoren,
veoo= % v +cov! + FY(B)v + Q*(t+tl,x+xl)
where
Qe = 3 Uy" + ooUy! + F(U,) - U," .

Since (5,4) implies v(0,x) >0, f@?thelnwofcﬁ:therdghthamisi&aineq—
vality in (5,5) it suffices to show that Qg > 0 or E, by virtue .Of’
Proposition 3.1. Set w(t,x) = wco(x-Ae—nt) and h(t,x) = eTNE-bxX
Then, putting o = b2/2 + Cob - 1,

Qp(t,x) = -F(w) + F(w-h) + & h - Ane "Tur,

Since o > a, we can find a positive constant & > 0 so small that

[F(w) =F(w-h)] > 0

gl ol

0 <w<d§ or 1-8§<w<l implies o -
for all h > 0. Then choose constants N and a > 0 such that

§ < w, (x) < 1-8 implies w_ '(x) < -a and
Co = Co

w_ (%) < 1-8§ dimplies x > -N.
Note that w(t,x) < 1-8 implies W, (x) £ 1-§. Now we may define
o =
A by the equation

Ana - y*ebN = 0

50 that Q; 2 0, for §, N and a are chosen independently of A.
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Noticing that w¥ = W, (x-A'(l—e—nt)) 2 W, (x) > h(t,x) for
[o] (o}
large x, and following the procedure similar to that taken in the

above, we can find-a constant A' such that

* ' _
Q (t,x) = 5 U¥" + c Ut + F(U¥) - U3
= -F(w¥) + F(w¥+h) - o h+ A e xs (U% = w¥% + h)
< 0

which’proves the right hand side inequality of (5,5).

These complete the proof of Lemma 5.2.

As the direct consequence of Lemma 5.2 we have

Lemma 5.3. Let ¢y, > ¢c*¥ and b and n make up a couple of

constants in Lemma 5.2.

(1) Suppose that a datum f satisfies Condition [G] and

Cf(x) = O(e_bx).

Then for some constants Xq5 X5, and K

-nt-bx -nt-bx

wco(x+xl) - Ke < u(t,x+c,t;f) < wco(x+x2) +VKe

for all t > 0, x ¢ R.

(ii) For any € > 0 there exists a positive constant 6 such

that if |[f(x) - W, (x)] < 6e™®* ror all xe¢ R then
[o]

lu(t,x+cot;f) - W, (x)] < ee—bX for all t > 0, x € R.
(o] .

Remarks to Conditidn [G]. Functions F satisfying (3) are classified

into two classes according as Condition [G] is satisfied for all data
~or otherwise. 1In the former [resp. latterl case we say F Dbelongs
to the gl§§§ I [resp. class ml. The cléss I is not empty. Some
criteria for F to belong to the‘class I are obtained by several
authors: Fujita [5], Hayakawa [7], Kobayashi-Sirao-Tanaka [12]

(they all deal with the problem in the multidimentional case).
Hayakawa [7] says that if limu¢oF(u)/u3 > o(*)then_F belongs to
the class I and that if F(u) = o(up)(*) with some p > 3 then F

belongs to the class II . Kobayashi et al.’s results are sharpenings

(¥) L 1+2/n

In n-dimentional case these must be replaced by lim F(u)/u >0 and by

F(u) = o(uP) with p > 1+2/n, respectively.
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of these consequences. Here is a rapid proof of the assertion: if

F(u)/u3 + © as u ¥ 0 then F belongs to the class I (the proof
is good for the multidimentional case). Let f be any datum and
set u = u(t,x;f;F). Then there exists € > 0

and t, > 0 such that
u(l,x) > ep(ty,x) x € R,

It suffices to prove that wu, = u(t,x;fy) ~ 1 where f, =£p(ty,-).
' Noticing ug(t,x) 2 Ptf*(x) = gp(t+ty,x), it suffices, in turn,
to prove that g(x) = ep(t+t,,x) satisfies, with some t > 0,

(5,6) S e"(x) + F(g(x)) > 0 x ¢ R,

because this inequality implies that wu(t,x;g) increases with ¢t
and hence tends to unity by what is remarked at the beginning of

this section. Since g"(x) = g(x)(xz-tl)/tl25 t1’= t+t, and

since e//2ﬂtl > g(x) 2 e//2ﬂtle for |x| < /Ei, we have
, > 0 ir x| > /EI
L -
5 + F(g) ,
’ _— e Flg) _meq,3 o
g) - 5.0 2 [—"§* - —Eflg it x| < /tl.
1 g £

The right hand side of the last inequality is positive for some
large t. Thus (5,6) is obtained. |

We note that for any e> 0 ‘there exists adatum f <e with compact
support for which [G] is valid. This follows from Lemma 5.1. It
is also obtained that if ligt%w u(t,x,) > 0 for some x, then
[G] is valid, as is proved below. The idea of the proof comes

from Kanel’ [11]. We may assume x, = 0. It is easily checked

that
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u(t,x) = [ p*(t,x,y)f(y)dy + fgd8f§p*(t—s,x,y)F(u(s,y))dy
+ fgu(s,o)p'(t—s,x)ds x >0,

where p¥(t,x,y) = p(t,x~-y) - p(t,x+y). The first two
integrals are positive and the last integral, which is

S 2, 2 R
equal to 2fxﬁ/€ u(t-x</v=,0)p(l,v)dv, . is bounded below
by (1/2)1im u(t,0) for 0 <x <N and for all sufficiently
large ¢t. Thus the fact remarked at the beggining of this

paragraph proves u(t,x) = 1 1in the desired sense.
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6. Behavior of Front of u(t,x;f) (Special Case),

In this section we treat the problem expressed by (5) when
datum f has a certain special form. Suppose u(t,x) = u(t,x;f)
decreases as X 1increases on some right half of the x-axis and

tends to zero as X » « for each t > 0. Put

L(t) = sup {x; u'(t,x) =0} (= -« if {°} is empty),
M(t) = u(t,L(t))

x(t,w) = sup {x; u(t,x) = w} 0 < w < M(t)

op(t.w) = u'(t,x(t,w)).

Note that ¢ 1is determined only by the shape of the tail of u

(i.e. invariant under the transform: f - f(-+const.)) and conversely
restored to it through the inverse form

w du
f

(6,1) X(t,W) m.

We write ¢ = ¢(t,w;f) to express that ¢ is determined by f

and M(t) M(t;¢) for convenience. We also write M = M{71}

if 1 1s a nonnegative function defined on an interval [0,M].
Thus M(t;¢) = M{¢(t,-)}. For each t the graph of ¢(t,+) is
identical to the orbit of (w,p) = (u(t,x),u'(t,x)), L(t) <x < e,
We will use abbreviations ¢ = 3¢/6t, ¢’ =3¢/dw, etc. By
formulas 0x/ow = 1/u', 9x/3t = -u'/u', ¢' = u"/u' and
u'u"*-—(u")2

(u')3

(6,2) ¢"

3

we derive from (1) the equation
.1 2., . _
(6,3) ¢° = F " - F ' + F'¢ 0 <w <M(t).
2

Let g be another initial datum and set ¢ = ¢(t,w;g) and
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w = ¢ -y. Then it follows from (6,3) that « satisfies

(6,4) v = E %" - Fu' o+ [P+ 3(e+)v o

in the domain {(t,w); 0 < w < min{M(t,¢),M(t,y)}, t > 0}. This
‘equationgis fundamental in the later arguments. We will sonsider

it as a parabolic equation discussed in § 3 by regarding ¢, U,

¢" or " as given functions. Let 1 be a solution of (1,4).
Then ¢ = ¢ ~t satisfies (6,4) where y 1is replaced by 1, since
(1,4) implies

0 = !2:’[21—" - FT' + F"[‘ O < W < M{T}.

We denote by T, (c » ¢,) the solution of (1,4) corresponding to
the c-front, i.e. the unique solution solving (1,4) on the interval
[0,117 with <(0) = (1) = 0. The equation (6,4) will be sometimes

cited in the alternative form

(6,4)! w' = F Yo" - Fo' + [F' + %(¢+¢)¢" Tw.

Lemma 6.1. Let ¢ > Co. Let a datum £ satisfy the assump-

1
tion of Lemma 4.4 with c¢ = cq- Suppose that there exists a cons-—

tant x3 such that

(6,5) £

nv

0 if x <x,3 <O if x > X

= 32

that there exists a function e(t) > 0, © > 0 such that

33

(6,6) o(t,wif) < T, G 0 <w <e(t), t> 0"

and that u(t,x) = u(t,x;f) satisfies

(6,7) u(t,x) -+ 1 as t » o

~and

(6,8) u(t,x+clt) > 0 as t > o,

(¥) This condition can be removed if X, = @ where X, ‘appears

in (L}:l9)- ¢
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Then ¢ = @(t,w;f) satisfies
(6,9) o(t,w) < TCl(W) + o(1) 0 < w < M(%t3¢)

uniformly as € » «,

Proof. Applying Proposition 3.4 to the equation (4,9) satis—
fied by v = u', we see, by (6,5), that u'(t,-) < 0 on a right
half line and » 0 on the other half. Especialy ¢ = ¢(t,w;f)

is well defined and M(t;¢) = max u(t,x). Put z(t,x) =

X€R

u(t,x+cqyt). Then by Lemma 4.4 there exists extended real func-

tions Xl(t), X2(t), - < Xl < X2 < », with which (4,20) holds.

We will examine the evolution of the orbits of the vector func=

tions (w(x),p(x)) = (z(t,x),z'(t,x)) x € R in the half strip

D="{(w,p); 0 <w <1, p < 0}. 4Parts of these orbits contained

in D are denoted by S._. For the proof of the lemma we assume

that -« <« Xl(t)'< X2(t) <o for any ¢t >0, since the other case

is easy td deal with. Denote by At a point in D that has coor-

dinates (z(t,X;(£)),2"(£,X(£))) = (z(t,X;(£)),0(t,2(t,X(t)))) or

coordinates (M(t;¢), 0) according as z'(t,Xl(t)) <0 or >0.

Denote also by Bt a point with coordinates (z(t,X2(tD,z'(t,X2(t)))
1

By the equation z° = 5 z" + clz' + F(z) and by what is remarked

Just before Theorem 1.1, cl—manifolds Cross St from the right

or the left hand of S according as z* >0 or <o at inter-

t
secting points (see Fig II). Notice that z° <0 on the closed

arc of S between A and Bt and z° > 0 on the other parts

t t
of St' From these and the hypothesis (6,6) it follows that St
lies under the c¢,-manifold passing through A for each t > 0.

t

6" At and Tt lies over the cl—front.

1
We denote this manifold by T
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P 2 (0,0) (1,0) w
N,
! l’
At /’
N
//
e Aw,t_ }
St c
Fig III.

It is shown below that if z'(t,Xl(t)) < 0 then AS, s > t
does not enter into the open domain bounded by Tt and the w-axis
untill z'(s,Xl(s)) vanishes first after t. Let t(u) be a
solution of (1,4) corresponding to Tt and set @ = ¢-T.. Then
w satisfies (6,4) with y = ¢ and by Proposition 3.1 w(t+s,w)
>0, 0 <w < Mit} for sufficiently small s. This proves the
desired assertion. Especially we proved that if 7z*(t,X1(tj) <0
for tl < t < t2 then Ttl lies over St for tl <t < t2.

To prove the assertion of the lemma first assume that there
exlists a sequence '{tn} such that tn + o and z'(tn,Xl(tn)) >
0, n=1, 2,.... By the hypothesis (6,7), for each e > 0 we
can find n, such that M(t;¢) > 1 - ¢ for & > ty, = by Let
T be a Cq- manifold passing through (1-¢,0). If t > t, and
.z'(t,Xl(t)) >0, then T Ilies over Tt and hence over St' ir
t > t, and z'(t,Xl(t))< 0, then, by what has proved in the
previous paragraph and'by the continuity of St wilth respect to
t, we can find a time t' with ty <t' <t such that T 1lies
over Tt' and Tt' lies over St' Consequently T lies over
Tt for any t > ty. Since T converges to the cl~front as e+v0,

we have (6,9).

Next assume the remaining case: z'(t,Xl(t)) <0 for t > t,
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t

with some constant ty. Then T lies over S if t* >t >

t t =

There exists an unbounded sequence tn such that w-coordinate

of A
tn

we can find § € (0,1) such that z(t,,x,) > & implies

tends to unity as n + «. Because in the opposite case

z' (to>%X,) > 0, which in turn implies =z(t,x,) > & for t > t,

and contradicts to (6,7) and (6,8). Since A, tends to the
n

point (1,0), T converges to the cl-front. Consequenyly we

tn
have (6,9). The proof of the lemma is completed.

Lemma 6.2. Let f, = I(_ 07" Then for any data f for
. 0 5 -

which ¢ 1s well defined , we have

p(t,w;fs) < o¢(t,w;f) t >0, 0 <w < M(t)

where M(t) = M(¢(t,-3f)).
Proof. Set u = u(t,x;f) and u, = u(t.x;fy). We prove

a stronger assertion: for any s > 0
Uo '(8,X%0) < u’(s,xl) if u(s,xl) = Uo(8,X0) -
Fix s > 0. Let u(s,xl) = Us(8,X,). Putting
v(t,x) = u(t,x—xo-kxl) - ug(t,x),

we have v(s,X,) = 0 and v'(s,x,) = u'(s,xl) - Uy '(8,X5) .
Therefore it suffices to prove v(s,xo+x) 2 0 for x > 0.

Since v solves the equation

vS o= %—V" + F'(uo +ev)v 0 20 = 1
with the initilal condition
( <0 1if x <
im v(t,x) = f(x-x,+x%,) - £,(x) { B
%iﬁ 1 >0 1if x >



43

we see, by the Proposition 3.1 and by the method of approximation
as used in the proof of Lemma 4.4, that v(t,-) > 0 on a right
half x-axis and < 0 on the other half for each t. This proves

the required assertion.

By the same method as used above Kolmogorov et al. showed
that ¢(t,w;f,) 1increase with t. But this fact now clear by
Huygens property: ¢(t+s,w;f) = ¢(t,wiu(s,*;f)) and the lemma
Just proved. Thus there exists +1(w) = limt%° ¢p(t,w;f,). Since
TCO(W> = ¢(t,w;wco) we have t(w) < TCO(W). These prove that
u(t,x+m(t);f,) converges to some function, say W(x), which is
decreasing with @W(®) = 0 and #H(-*) = 1. But by Lemma 4.2
¢(t,wiuls,x+m(s);£,)) = lims+wA¢(t+S;w;fo) ; ;(w),

¢(t,wiw) = lim

from which we see, using (6,3), that 1T satisfies (1,4) for some

¢. Since T < Ty » W€ have 1 = Te .  Consequently we have.
- “o o :
Lemma 6.3(Kolmogorov et al.). Let f, = I(_ 07" Then
- T >
p(t,w;fs) 4+ 1 (w) as t. 4 o,

The next lemma is complementary to Lemmas 6.1, 6.2 and 6.3.

Lemma 6.4. Let cy >cC,. Suppose a datum f has the Lipshitz

continuous first derivative with ! < 0 and satisfies that

< 0 if x <0

SEM + o, £1 4 (L) {
0 if x>0

v

where x’s are those points at which f" exist. PFurther suppo-

se that u(t,x+c2t;f) -1 as t » », Then ¢ = ¢(t,w;f) satis-
fies

(6,10) o(t,w) > T, (w) + o(1) 0 <w <M(t;¢)
2

uniformly as t -+ o,

Proof. The proof is very similar to that of Lemma 6.1 and

here only the outline i§ given, Let St be the orbit of the
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vector function ( z(t,x), z'(t,x)) of x ¢ R, where z(t,x) =

u(t,x+c t;f). As in the proof of Lemma 6.1 we ean take a point

2

¢ on St such that z° < 0 iff 2z 1is larger than the

_w-coordinate of A . Then c,-manifold T, passing through A,

A

bounds S below for t' > t. There exists a sequence

t'
'{tn} along which p-coordinates of Ay tends to unity. Since

A is bounded below by the graph of ¢{t, ;f,) Dby

t

virtue of Lemma 6.2, At approaches to the point (1,0). Thus
n

Ty converges to the c,-front. This implies (6.10).

n 2
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7. Asymptotic Behavior of u(t,x;f) for large x.

In order to apply Proposition 3.3 to the equations (6,4)
or (6,4)' we must know the behavior of ¢ = ¢(t,w;f)
and @" as w y 0, which are involved in that of u s u(t,x;f),
u', u" and u™ as X » ». Roughly speaking, the behavior of
u(t,x;f) and of its derivatives are asymptoticaly same as

that of -eatP f for data f ©belonging to certain classes.
t

Definition. (1) Let y Dbe a non-negative constant. A

datum f dis said to belong to the class [Ep] if

f(x) = 0 for x > X, with some cnstant x, in case u=0
and :

f(x) ~ A(x)p(u,x) as x » o in case u> 0,
where p is defined in § 0 and A 1is such a function that
AClogx) 1is §lowly Varying at infinity, i.e. A->-0 and
A(x+x5,) ~ A(x) as x » o for each constant xo.

(i1) Let ) be a positive constant. A datum f is said

to belong to the class [F,] 1f
f(x) ~ A(x)e_)‘X as x » o,

where A 1is same as in (i).

What we want to prove in this section is stated in the next

two lemmas.

Lemma 7.1. Let f Dbe a datum belonging to the class [Eu]

(w2 0).

(i) Set u = u(t,x;f). Then following relations hold

9x

%2
(7,1) logu(t,x) ~ - §~(}—;§57
Jeoe .
(7,2) pulter) o~ - Z a5 =1, 2, 3
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as x > « uniformly in t ¢ (l/T,T) for each (finite) T > 1.

(i) Set ¢ = ¢(t,w;f). Then

0(t,w) ~ I /TIEW W and ¢"(t,w) = oL LTIOBNT

as w ¥ 0 uniformly in t € (1/7,T) for each T > 1.

If

0 all these relations hold uniformly in t ¢ (0,T).

Lemma 7.2. Let f Dbe a datum belonging to the class [FA]
(x» > 0).

(1) Set u = u(t,x;f). Then the following relations hold

j . A2
(7,3) §~5i§35l ~ (=0T T @I, 4y X j=0,1, 2, 3
‘ 9X

as x = « uniformly in t € (1/T,T) for each T > 1.

(ii) We have

-1

" (t,w;f) = o(w ™)

as w ¥ 0 uniformly in t ¢ (1/7,T) for each T.>» 1.

Remark 1. The second parts of Lemmas 7.1 or 7.2 are readily
derived from the first parts of them and from (6,2). It is also
clear by Lemma 7.1 (ii) combined with Lemma 6.2 that for any

datum £, for which ¢(t,w;f) is well defined,

(7,1) p(t,wsf) = 0(=z /TIogww )

as w ¢ 0 uniformly in t ¢ (0,T).

Remark 2. By the fact that v(t,x) = 1-u(t,x;f) is a
solution of the Cauchy problem ‘

vt = % v" - F(l-v) , v(0+,-) = 1 -1,

we can derive similar results on the behaviors of 1 - u(t,x;f)

and its derivatives as x =+ -« to those obtained above. We will
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not, however, use them later except the following simplest case:

if 1 - f(-x) belongs to the class [Ep] (u2 0), then

. X2

1og(1—u(t,x)) ~ —W

u'(t,x) ~ e (1-u(t,x)

as X » =-o for each t > 0 > where u(t,x) = u(t,x;f).

For the proofs of Lemmas 7.1 and 7.2 we prepare several lemmas.

Lemma 7.3. Let g be a locally bounded measurable function

with fR p(t,x)|g(x)]|]dx <« for any t > 0 and

ess. sup{x;|g(x)| > 0} = X; < . Then
y 2
, X=X
P.g(x) = o exp{- S-ggll—} ) as x » o

uniformly in t ¢ (0,T) for each T < =,

Proof. Immediate from

_ (XX (*17Y)

- 2
exp{iﬁggll~} P.g(x) = fxl e t p(t,x1-y)g(y)dy
(X-Xq)W w2
= f:; e /'t e ° g(x,~/T w) dw.

Lemma 7.4. In addition to assumptions imposed on g in

Lemma 7.3, suppose . g > 0 on the interval [x5,x%;]
with some X, < Xy - Then for any constant X3 with x3 < Xq
, (X—X3)2 5
(7,5) | exp fmp>— I P g(x) —> o,
especially
P g(x) ~ Pt{g'I(x3,xl)}(X)
and especially
5 1 -X\ N
(7,6) 5 Pe(x) ~ ()P alx) n=1, 2,...

9X
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as x » « uniformly in t ¢ (0,T).

Proof. The divergence in (7,5) follews from

gy 2 2
exp 1P g 2 exp {3523 P g(x)
(x-a)(y-a)
> Ia e p(t,a-y)g(y)dy-(1+0(1))

as x > «, where a 1s a constant which satisfies mak{xZ,x3}
X
<a <x;, gla) >0 and fa g(y)dy = (x-a)g(a) + o(x-a) as
X
x ¥ a so that Iait p(t,a-y)g(y)dy > g(a) as t + 0 (ef.

Widder [171).

Lemma 7.5. ILet f be a datum with limX+°o f(x) = 0. Then

u(t,x;f) = eatPtf(x)(l-Pt~o(1))

where o(1l) > O as x » » uniformly in t €(0,T) for each T.

Proof. Define F(u) =0 for u > 1. Putting v(t,x) =
eatPtf(X), u = u(t,x;f) and w =u - v, we have
w o= ZKO {kw + F(v) -«v}

where k = (F(u)-F(v))/(u-v) and ZKO is defined by (4,12).

By Lemma 4.1
t v (t-
jw(t,x)| < ]O Y (T S)Pt_S[F(v(s,-)-—av(s,')l(x)ds.
Since v(t,x) » 0 as x » « uniformly in t € (0,T), for any

e > 0 we can chose constants M and I so that

|F(v(s,x)) ~av(s,x)]| =< %V(t’¥)+'MPs—SI(—W,L)(X)

if § <s <T, where § = £/28. Then, using the inequality

|F(v) -xv| < Bv (v > 0), we see that if 0 <t < T

lw(t,x)]| < 'teyt'{ePtf(x) TMPL s I(_m,L)(X) }.
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This proves w = t-o(Ptf(x)) uniformly in ¢t €(0,T), since
the second term in the braces is small order of Ptf(x) as x
>  uniformly in t €(0,T) by virtue of Lemmas 7.3 and 7.

.

Lemma 7.6. Let g be same as in Lemma T7.4. Let T

and
n

be a positive constant and a non-negative integer, respectively.

Then we can find such constant

Kn(T,g) = Kn(T,xl) depending
only on T, n and X, = ess. sup {x;2#0} that

fg ' (s,x=3) [P |&] () |y|"ay

S ‘%ig*—"‘(yg len'+ |77y P, le ] (x)

for x >1, t >0, s >0, t+s <T.

Proof. Setting

I(z,6,%) = [ [p'(s,x=y)|p(t,y-2) |y| ay

we have, for x > 1,

J(z,t,x) = p(t+s,x-2) ]R’ /Et+:)s Wt ilg

X

e 2

n
dw

T
X - /é+§ W= tis (x-2)
K_(T) '

< 2+s p(t+s,x-2) {(/Zﬁigiil + |z[n)(]x|n—%]z[)-%[Xln+l},

is a constant depending only on n and T,

K (T,g)
IR J(z,s,x)|g(z)|dz < ~251§~—-{7% x| + |x]n+l}

where K _(T)
n

and

Pt+s,g’(x)’

which is the desired inequality.

Proof of Lemma 7.1 in case M = 0.

Let f Dbelong to the
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class [EO]. The relation (7,1) is clear by Lemmas 7.3, 7.4 and 7.5.

For the estimation of u' we rewrite (4,2)' as follows.

u'(t,x) = e“t(Ptf)'(x) + fg<ksz p'(t-s,x-y)J(s,y)dy

where J(s,y) = F(u(s,y)) - ueuSPSf(y). Then, using Lemmas 7.5
and 7.6, we see, as in the proof of Lemma 7.5, that the last term

in the above equation is small order of z:—Ptf‘(x) as X » o

t

uniformly in t ¢ (0,T). Since -(Ptf)'(x)A«~—%E}f(x) ~

-%efatu(t,x), the case j =1 in (7,2) is obtained.
Estimation of u" 1s carried out as follows: Set fy =

u(t, ), u,(t,x) = u(t,x;fy) = u(2t,x). To prove is that

ug" (t,%) ~ e2“t(x/2t)?%tf(x) uniformly in t € (0,T/2). By (4,3)
t
(7,7) ug"(t,x) = e“t(Ptf*)"(X) + deSIR p'(t-s,x-y)J(s,y)dy
where
I(s,5) = F'lug(s,y))ug'(s,y) - w3 (P )" (y).

ot t

since Iy'(x)~ -e® Lp r(x) ~ e®M(P £)1(x) uniformly in ¢

< T/2, we see, as in the proof of Lemma 7.5,using (7,6), that

= 1 ~ %t X
(Psf*)'(x) Psf* (x) e s Pt+sf(x)
~ e_asu*'(s,x)

uniformly in 0 < s <t < T/2. By this relation and by the
inequality (L4,6), for any € > 0 we can find constants M

and L depending only on ¢, T and f such that

M
(3o | 5 S fE Pyt 4 e Pl a, ) )

for 0 <s £t <T/2. Therefore Lemma 7.6 says that the last

14
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ferm in (7,7) is bounded by

X

vt

X

5 .
K1<T,f)( = )Pgtf(x) + Kx PtI(—w,L)(X)

for x > 1, te€(0,T/2], where KX 1s a constant depending only

on L, M, and T, while we see also by Lemma 7.6 that

at

(P Fed"() = (P fe)'(x) ~ e (5‘5)21:2;@)_

uniformly in .t €(0,T/2]. Thus we have u(2t,x) = u, (t,x)
~ e2at(x/2t)2P2tf(x) with required uniformity.

Noticing that u' ~ %—u" and u™ ~ 2u'', and using the

equation u't = Z (PF)™ + (PF(£))' + (K IFr(u)u'})'( K, is
defined by (4,12)),_we_can estimate the tail of u™ at
infinity as in the case of u" . Now Lemma 7.1 has been proved

in the case 1y = 0.

For the proof of Lemma 7.2 and of the rest of Lemma 7.1
-We prepare the next

Lemma 7.7. Let A(x) Dbe a function as appears in Definition

of the classes [Eu] and [FA]’ and T a positive constant.

(1) Let {g, (x)} be a family of bounded functions
_— t 0<t<T

such that _gt(X) ~ A(Xu/(u+t))p(ﬂ+t,x) (u>0) as =x > « uniformly in

t € (0,T), then

n
(7,8) 2 PB () = g, (0 (- ™ (14 0(1) =) n=

3 x™ /t

where o(l) + 0 as x » o uniformly in 0 s <t <T.

X

(i) If g(x) ~ A(X)enx (A > 0) and g(x) is bounded, then

1
n-1

— Ptg(x) = A(x) e_xx{(—k)n + co(1)} n=20,1,
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where ‘o(l)i+ 0 as x > o uniformly in t ¢ (0,T).

Proof. First we prove (i). Write gt(x) = At(x)p(u+t,x).

Then A (x) = A( u+t x)(1l+0(1)) as x » «© wuniformly in t and

JoC 5 ) (b, x-y)e (y)ay

X -1 __.5,%2
= f A (x=y)p(uts,x- y)p(t,y)( )Pdy + of ~:f——— e )
/tz 1

Let J denote the first term in the right hand side of this

equation . Then
w
- ‘ 1 wts o /TEE)E
’ pluttrs,x) | Ag( pttts © u+t¥s 8
w
u+s 1 n 2 _
(//u+s+t Utstt VT u+t;§‘X) e dw// 2w,

Hts b /K;Eiﬁlf— = (0, Since

where wy o is defined by TTtTs ToEs wy o=

A( logx) is slowly varying at infinity, A(x) is expressed in

the form

e
A(x) = a(x)exp/{ fl e(y) dy} x >0
where a(x) » ag, 0 < ag< « and e(x) » 0 as x - o, Especlally

A(x-x0) _  al(x-x,)
A(x) a(x)

. X=X, _
exp{ fex E%%l dy } = o(e™®°) as x, + -w
o _

uniformly in x > 0. Then it 1s not difficult to see

W~
1 (UFT¥s)
T = plurtes) [ AC He(xe pAaciio) TOETES) )

Wwe

(e 2 A/ TT(1 +0(1) MED)




gt+s(x)(u+t+s> (1 +0(1) }'/“;“ ) .

These combined with the fact that t_np(t,x) = o(gt(x)) as
x = » uniformly in t proves (7,8).

The second part of the lemma follows from

f p(t,x-y)e(y) (L) "ay

1
—
b
~~
i
o
A
} no
®
g
[o])
e
+
O
—
=]
|
~

' n 2.
= e L2 A2 (14 0(1) ;—}Tﬁ).
t

The proof of Lemma 7.7 is completed.

Now we prove Lemma 7.1 in case .u > 0. Fix tl > 0. By
(7,8) and (4,2)' and by Lemma 7.5 it is easy to see that (7,2)
with J = 1 holds uniformly in ¢t é(tl,T). Using this, (7,8)

and the equation

Wb, E) = (Peut (5, 10) () # [0 (B g )T (x)ds

where gs(x) = F'(u(tl+s,x))u'(t1+s,x), we see (7,2) with
J = 2. The case of " jJ = 3 1s similarly proved. The proof of

Lemma 7.1 (i) is completed.

Lemma 7.2 (i) is similarly proved by Lemma 7.7 (ii).
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8. Approach of Front of u(t,x;f) to Front of Travelling Wave.

Here we will clarify the behavior of the front of u =

u(t,x;f), i.e. the function u(t,: +m(t)) where

N

m(t) = sup {x ; u(t,x) = =},

for large t. We will use symbols ¢(t,u;f), = M(t;9),

c’
which were introduced in §6, in this section too. We will

mainly deal with data which satisfy the following

Condition [W]: there exists t, > 0 and finite number N such

that

(8.1) 1im u(ty,x) = 0, u'(ty,x) <0 for x >N

and

(8,2) lim u(te3x) > 0 or u'(tgy,x) > 0 fqr X < =N

X >0
where u(t,x) = u(t,x;f): if F belongs to the class II (see
Remark to [G] in § 5 for the definition) we assume
limx+_m u(t,,x) > 0.

This condition scarcely narrows the class of data to be dealt
with. For example if f does not increase for large values of
x and tends to zero as x + « then (8,1) is satisfied. Data
which belong to the class [EH] or [F,] also sétisfy (8,1). The
condition (8,1) guarantees the existance of ¢(t,w;f). The
condition (8,2) is imposed in order to apply Lemmas 8.1 or 8.2, given
later, which prove M{¢(t,*;f)} =1 as t =+ o for data f
satisfying [W]. Especially [W] implies Condition [G] (see § 5) and
that m(t) takes adefinite value for every sufficiently large +t.

If ¥ Dbelongs tb class I any datum with compact support satisfies
[W]. We can remove Condition [W] under a certain restriction on

F (Theorem 8.5).
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Now we state the main theorems, from which it
will be seen that the behavior of the front of u(t,x;f)
depends mainly - on the behavior of f for large x which is

inherited to u(t,.;f) as was seen in the previous section.

Theorem 8.1. Iet.adatum f ©belong to the class (E,T (w2

%
0) or to the class [FA] with A > ¢, - /coz'—2a.( )

Suppdse Condition [W] is satisfied.. Then u = u(t,x;f) satisfies

(8,3) lim u(t,xtm(t)) = w_ (x)
Eroeo Co
uniformly in x > —nm(t).

Corollary. Let f be a datum with compact support.

suppose F belongs to the class I. Then u = u(t,x;f) satisfies

[o]

u(t,x) - W, (X'—m(t))I(O,w)(X) - ch(_x'+m*(t))I(—m,O)(X)

—> 0 as t > o« unifdrmly in x¢ R

where m,(t) = inf{x; u(t,x) = 1/2}.

Theorem 8.2. Let a datum f belong to the class [FA] with

0 <A Zco-Ycio =20 (a > 0). Suppose Condition [W] is satisfied.

Then u = u(t,x;f) satisfies

o
Il
>
-
>R

(8,4) lim u(t,x +m(t)) = WC(X)

Lo

uniformly in x > -m(t).

Remark. Let f be a datum such that f(-x) belongs to
the class [EU] or [FA] as well ws f(x). Then assertions analo-
gous to Corollary of Theorem 8.1 hold if F belongs to the class
I. The condition that F belongs to class I can be replaced

by Condition [G] (ef. § 10).

(¥) The classes [EU] and [FA] are defined in § 7.

¢



In Theorems 8.1 or 8.2 the condition that f belongs to the

class [Eu] or [FAJ should be weakened. This is su8Zested by

the next theorem.

"

Theorem 8.3. Let f be a differentiable datum for which

Condition [W] holds. Suppose

(8,5) -f'(x) > f(x)(b+o0(1)) as
and
(8,6) | F()e 2% 4 o as

for a positive constants b > c,-YcZ ~2a and b, <b.

u(t,x;f), (8,3) holds uniformly in x > -m(t).

The next theorem is complementary to these theorems.

Theorem 8.4, Let o > 0. Let f be a datum which is

X &> -

differentiable and positive for large x and .satisfies that

lim__  f(x) = 0 and limx+mf'(x)/f(x) = 0. Then under Condition [W]

X
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Then for u

lin u(t,x +n(t)) =

oo

uniformly on each compact set of R.

For proofs of these theorems we need two more lemmas.

Lemma 8.1. Let f Dbe a continuously differentiable datum.

Suppose a constant § > 0 is related with f

in such a manner

that the equation f(x) =8 has just two roots, say

H
Xy < X, and f'(x) <0 for x > Xps

> 0 for

§(t) Dbe a solution of the equation &' (t) = F(&(t))

§(0) = §. Then for each t, §(t) 1s related with wu(t,-;f)

in the same manner of how & 1is related with f,

§(t) < sup u(t,x;f).

X &R

as long as

X < X
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Proof. Let g(x) be a continuously differentiable
function such that 0 é.g <1, g' <0 and g 1is not a constant.
Suppose that the equation f(x) = g(x) has just two roots, say

Yis Yos ¥y < Vo and that f'(x) < 0 and f(x) < g(x) ~for

X 2 ¥,- Put u=u(t,x;f), v =u(t,x;g) and T = sup {t; ul(t,x)
> v(t,x) for some X6 R}  We show here that u'(t,x) < 0 for
x 2 sup {x; u(t,x) = v(t,x)} 4if 0 <t <T. Since Ww=1u - Vv
satisfies

W' o= %w" + R (vhow)w' (0 <6 =6(t,x) <1),
the set {(t,x) 5T >t >0, u(t,x) < v(t,x)} has just two

connected components by virtue of Proposition 3.4. Let D be
one of them which contains a right'half x-axis. By Lemmas 7.3, 7.4
and 7.5 D,the closure of D in E, contains a right half of
QT = {T}IxR if T < ». Assume for simpliciﬁyth&t T .is finite and set
3D =D - D and I =38D-(2pU8y). Then u' gv' <0 on T
because the intersection of D and zt is connected for each
positive t < T. Thus u' <0 on T , which implies, by
Proposition 3.3, u' <0 in D. This is the same as what was
announced to be shown.

Now the lemma 1is easily proved. Let ¢ ‘be such a time
that 6(t) < sup_ u(t,x). Clearly we can find a function g
for which g > 6, conditions stated at the beginning of this
proof are satisfied and t < T where T is defined in the
previous paragraph. Since §(t) < u(t,x;g) x é R, we have

u'(t.x) <0 for x > Xg(t) = sup{x; 6(t) = u(t,x)}. Similarly

we get u'(t,x) > 0 for x

A

Xl(t) = inf{x; 6(t) = u(t,x)?}.
It is clear that u(t,x) > §(t) if Xl(t) < X < Xg(t); Thus

&t) and u(t,-) are related in the required manner.



58

The proof of the lemma is completed.

The similar method proves

Lemma 8.2. Let f be a continuously differentiable datum

Suppose the set {x; f(x) = 8§} consists of just one point and

f'(x) <0 1if f£(x) < 6. Let 6(t)  be defined as in Lemma 8.1.

Then &(t) has the same relation to u(t,-;f) as § does

to f for each t > 0.

Proof of Theorem 8.1. Step 1. Set u = u(t,x;f) and

dp(t,w) = ¢(t+ty,w3f) = ¢(t,wi;ult,,*)) where t, appears in

Condition [w]. We will prove

(8,7) pCt,w) = T, (w) +o(l) 0w <M(t;0)

as t » « uniformly. Since we know that ¢ > T + o(l) as
. - (o] ’

a direct consequence of Lemmas 6.2 and 6.3, for the proof of (8,7)

it suffices to show that

(8,8) p(t,w) =< T (w) + o(1) 0 <w < M(t;0).

Let ¢y > Co- Condition [W] enables us to find a
constant & > 0 which is related with ’u(to,')' in the manner
stated in Lemma 8.1 or 8.2. We will show in Step 2 that there
exists a datum f#* and a constant t; > to such that r*
satisfies conditions imposed in Lemma 6.1 and inequalities

¥(x) < min{g(x), &} X € R

and

$(0,w;f*¥) > ¢(0,w;g) 0 <w < M(¢p(0,.;£%))

where g(x) = u(tl,x). Let such f¥ and tl be found for

each ¢y > ¢, sufficiently near c,. Set ¢¥= o(t,w;f*¥) and
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= ¢(t,w;g) = ¢(t+(t;~t,),w). Then we have, by Lemma 8.1 or 8.2;
v =9 ¢ 1

M(t;0%) < M(t;y) t

v
o

and hence w = ¢ - ¢¥ 1s defined and satisfies (6,4), where
¢ 1s replaced by ¢*, in the domain D = {(t,w); t‘> 0, O
<w < M(t;¢%¥)}. Since M(t5¢*) = sup, u(t,x;f*) and (t,M(t;¢%))
< 0, there exists a continuous function M(t) such that 0
<M(t) < M(t;¢*) t >0 and w <0 in D-D, where Dy =
{(t,w); t >0, 0 <w < M(t)}. Then g <0 on 93D, . Check
that Proposition 3.2 1s applicable tothe equation (6,4) in D%
for the present w, using Lemma 7.1 (il) or Lemma 7.2 (ii).
Then we have w g 0 in Dg. Consequently y < ¢¥ in D.
Since ¢% < Tcl-Fo(l) by Lemma 6.1 and since Tcl ¥ e, as
c; ¥ co we get (8,8).

Step 2. Now we construct f¥. We carry out this énly
in the case 1lim _ _ f(x) = 0 (in the other case the construc-
tion is much simpler). Thus we assume that F belongs to the
class I. Set h(x) = 6exp{—x2} and take ty > t, such that
h(x) <min{g(x),s§ } x ¢ R where g(x) = u(ty,x;f) (see
Lemma 7.14).

First we assume that f belongs to the class [Eu] or [FA]

with X > co +/c,2-2q - Let cq > ¢, and let % + % > Cq > Co
if f Dbelongs to the class [FA]' Then, by Lemma 7.1 or Lemma 7.2
there exists a constant X, such that g' <0 for x > X, and
~]:-g"+ c. g+ F(g) >0 and g < —-§— for x > x,-1
2 1 e 2 :

Set k(x) = —a(x—x2)2+ g'(xg)(x—xg) + g(xz) where the constant

a > 0 1s chosen so large that
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% K" + e k' + F(k) < 0 if k > 0,

max k(x) < $  and /g'(x2)2 + lag(x,) L ..
X€R © a :

Since (l/2)h"{+ clh' + F(h) >0 for x <-1 and h(-1) = §/e,
two trajectories "{(h(x),h'(x)); x < -1} and {(k(x),k'(x));k(x)
>0, k'(x) <0} drawn _ in the vertical half strip (0,8) x (0,)
cross each other at just one point, say (w,p). Let x ¥ and
Xq be values of parmeter at which they pass though it: h(xf)
= k(x1 ) = w, h'(xf) = k'(xl ) = p. Now we may put

g(x) if x> x,

£¥(x) = < k(x) if X; <X <X,

h(x—xl+x1*) if x < X
By Theorem 5.1 u(t,x+clt;f*) + 0 as t » w andﬁby Lemmas 7.1 and
7.2 Tim,,, 6t W f¥) /< ¢, -/T7 =2 which implies (6,6)
for ¢ = ¢(t,w;f¥)., Other reqﬁirements for f¥*¥ are clear by the
construction and hypotheses.

" When f belongs to the class [F,] with co /¢ =2a < A

<co +Vcy? —20, we can find x," such that

% g" + cqg' + F(g) <0 and g < ﬁ% for x > x,°

and then construct % as above, but in this case % satisfies

the condition (4,19) with X, = . Thus ¥ is constructed.

Step 3. The inverse function of u(t, +m(t)) is given by

u dw
f1/2 q)(t,W;f; = X(tau) - m(t)

and converges to w '_lfu)"; W —1(w (x)) = x. The desired
Co Co Co

assertion follows from the inequality
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u(e,x +m(e)) —wy (x)] = e, x +m(E)) —ult,x(t,w, (0))] |

C

1
= Kt! Co

where Kt = Sup{h'(t,x)léx € R} is bounded for large t by the

remark following (4,6). This completes the proof of Theorem 8.1.

Proof of Theorem 8.2. Set ¢ =¢(t,w;f). It is proved as

in the proof of Theorem 8.1 that ¢ < T, t o(l). Thus it

suffices to prove that ¢

v

T, + o(1l). This follows from
Lemma 7.2 and the next lemma.

Lemma 8.3. Let o > 0. Let a datum f Dbe positive and

differetiable on a right half x-axis. Suppose 1imX_>Oo f(x) =

0 and

(8,9) 0 < - f'(x) < (b+o(1)F(x) as x> (%)

with 0 <b <cg, -Yco? ~2a. Then

(8,10) p(t,w;f) > TC(W) + o(1) as t >

uniformly where c¢ = % + % .

Proof. Set u = u(t,x;f). First it is proved that (8,9)

implies

(8,11) 0 < -u'(t,x) < (b+o(1))u(t,x) as X + o«

for each t > 0. Put v(t,x) = exp{at}Ptf(x). It is easy to
see o < -v'(t,x) < (b+o(l))v(t,x). By Lemma 7.5 v(t,x) ~

u(t,x) as x-w., Set w=v-u. Then w' = ZKd{F'(u)w'+

av' —F'(u)v'} CKO is defined by (4,12)) and, by Lemma 4.1,

lwr(t,x)|] < K\‘({!a—F'(u)lIV'I}(t,X) = o(v(t,x))

w. “(w) -x(t,w) +m(t) | if w = W, (x) < M(t,9)

(¥) " a(t) < b(t) as t » «» " means that a(t) <b(t) t >N > 0.
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as X » «. Thus we have (8,11).

Set ¢(t,w) = ¢(t+1,w;f). From (8,11) it follows that

o(t,w)

v

~-bw+o(w) as w { 0. Take a constant c, with ¢,
<C, <cC. It is not difficult to construct a continuous func-
tion Yo(w) 0 < w <1 which has a piece-wise continuous

derivative bounded on each compact set of the half cpen interval .

[0,1) and satisfies

Yolw) <0 0 <w <1, Yo (0) = yYo(l) = 0

Yo (W) < ¢(0,w) O <w < M(03;¢)

5 2F (w) { 2 Yo' (w) 0 <w < —é
-0 -
27 o () < Yo' (w) % <w <1

and .

-Po'(0) < c, »/ngiffﬂg
(yo may be taken to be equal to a (d',g)—manifoidlwith c, <
c' <c near w = 0 and equal to ¢(1/2,w;fy), fo = I(-m,o)
near u =1 ). Let g(x) Dbe a non-trivial solution of the
differetial equation g' = y,(g) on R and set ¢ = ¢(t,w;g).

By Theorem 5.1 u(t,x+c,t;g) - 1 as t - o, because the

2
last condition imposed on Vo Implies g(x)exp {b¥x} » =
as x> @ 1if -95'(0) < b¥ <c, -/e,?2 -2a. It is easily checked
that g satisfies conditions imposed on f in Lemma 6.L4.

Thus ¢(t,w) > To (w) + o(1), while (6,4) combined with
- 2

boundary conditions:
$(0,w) > Y(0,w) = Pg(w) 0 <w < M(03¢),
o(t,w) > P(t,w) for w near 0 or M(t;¢) (%)

implies ¢(t,w) > y(t,w) 0 <w < M(t;¢). Therefor we have

(¥) If M(t;¢) = 1, to get this strict inequality we may use

Remark 2 of Lemmas 7.1,and 7.2.



o (t,w) > T, (w) + o(1) Dby virtue of Lemma 6.4. This proves
5 _

(8,10) because T (w) 4+ T (w) as c, + c. q.e.d.

. ¢, I 2

Proof of Theorem 8.3. Set ¢(t,w) = ¢(t +t,,w;f) where

to 1s a constant which appears in [W]. As in the proof of

Lemma 8.3 we see that ¢(t,w) S -bw +o(w) and that for each bl’

b,, <bl< b there exists a smooth datum g such that

g(x) ~ e P1X
g'(x) <0 Xx <0
and |
Y(0,w) > ¢(0,w) 0 <w < M(0;9)
where ¢ = ¢(t,w;g). Let & Dbe a positive constant which is

related with u(to,-;f) 1in the manner stated in Lemmas 8.1 or 8.2.
Conditions (8,2) and (8,6) allow us to assume that g satis-
fies in addition g(-x) < mih{u(to,x;f),é} so that M(t;¢)

<M(t;¢) t >0 and M(t;9) > 1 as t + =, Then as before

we have ¢ <9 , while, as was shown in the proof of Theorem 8.1,

b
L2y,

2 "D

p(t,w) < 1 _,(w) + o(1) ¢t = max{cO,
¢ 1

This implies ¢(t,w) = T (w) +0(1) and proves (8,1) as before.
o]

Proof of Theorem 8.4. Set ¢ = ¢(t,w;f). Condition [W]

and Lemma 8.1 implies M(t;$) - 1 as t - «, while Lemma 8.3
says that ¢(t,w) = o(l) as t > =, From these the assertion

of the theorem 1s obvious.
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Under an additional restriction on F, Condition [W] can be

removed:

Theorem 8.5. Suppose F(u)/u is non-increasing. Then in

each of Theorems 8.1 to 8.4 Condition [W] may be removed from

assumptions of each one. In Theorem 8.3 the condition (8,6) may

be also removed simultaneously.

For the proof we use the following lemmas

10 T

Lemma 8.4. Suppose F(u)/u is non-increasing. Let f

and f be so related that f = fl + f2. Let u, Uy and

be corresponding solutions of (1) and (2). Then u < ul-+u2.

u

2

Proof. Set k(t,x) = F(u(t,x))/u(t,x) and let ul* and

u2* be solutions of the equation

u’ o= % u" + ku

with ul*(0+,-) = fl and uz*(0+,-)4¥ f2, respectively. Then u

> F(u)/u for any (t,x) & E, we

= * % 3
uy + u,¥. Since F(ui)/ui

have u,
i

v N

* 1 -_ m
uy (1 1, 2). Thus u < ul~+u2.

Lemma 8.5. Suppose F(u)/u 1is non-increasing. Let fl and

f2 belong to the class [EO] i.e. sup{ x; fi(x) > 0} <« gnd

set mi(t) = sup {x; u(t,x;fi) = 1/2} (i=1 ,2). Then ml(t) - mz(t)

is bounded for large ¢t.

Proof. Clearly we can assume fl = I(~l,0] and f2 = I(—W’O]'

Since f, = f, - fg(-+1), by Lemma 8.4 and Theorem 8.1

0(X) - wco(x+1)rv (l~e—c%)wco(x) (x » ).

1im u(t,m2(t);fl) >w

t > ¢

Hence m2(t) - ml(t) (> 0) 1is bounded.

Proof of Theorem 8.5. We deal with only the case that f
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belongs to the class [Eu] for some u > 0. The other cases
are analogously treated and omitted here.
Let f ©belong to the class [EU]' For each positive integer

n define

fn = 1 for x < -n; = f(x) for x < -n
~and set mn(t) = sup{x; u(t,x;fn) = 1/2}. Since f < fn + £,(-4n),

where f, =1 > by Lemma 8.4
(—OO,O]

[u(t,x+m(t)) - wco(x-+m(t)-mn(t))[

< u(t,xtm(t)+n;f,) + |u(£,x+m(t);fn) - wco(x+m(t)~mn(t))[ .

By Theorem 8.1 the last term in this inequality tends to zero as
t » » wuniformly in. x¢ R. Thus, writing my(t) = sup{x;u(t,x;f,)

= 1/2},

%ié']u(t,x+m(t))—Wco(x+m(t)—mn(t))I < Wbo(x+-%igvhn(t)—mo(t))+n).
Since li@(m(t)—mo(t)) > —o Dby Lemma 8.5, the left side quantity
in the aboﬁe inequality become arbitrarily small uniformly in x
> -N for each real N when we let n large. Therefor (8,3)
holds uniformly in x > -N. The required uniformity in x > -m(%t)

is obtained if we bound u(t,x+m(t)) below by u(t,x+m(t);f,)

where
fe(x) = 0 for x <0; = f(x) for x >0

and apply Theorem 8.1 and Lemma 8.5. g.e.d.

In the proof carried out in the above we needed Theorems 8.1
to 8.4 applied to data with li@x¢_wf(x) > 0. But for such data the
proofs of these theorems are much simplified. Indeed we need only the
comparison argument based on Proposition 3.1 in the phase space and
Theorem 4.1 in addition to Lemmas 6.2, 6.3 and 8.2 (see the proof

of Theorem 8.3). Correspondingly Theorem 8.5 can be obtained more

easily than Theorems 8.1 or 8.2..
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9. Speed of Propagation.

We have seen in the previous section that the front of
u(t,x;f) propagates with speed m'(t) as forming the shape of
the c~front with some constant ¢, provided that the tail of f at
(positive) infinity behaves regularly in a certain sense. The

purpose of this section is to get nice estimations of mnm(t).

Theorem 9.1. Let f be a datum. Set u = u(t,x;f).

Suppose, for some continuous function k(t), there exists

%im u(t,x+k(t)) = g(x) in locally L1 sense,
>0 ) m———

where g 1is not a constant. Then g 1is a c~front with some

speed ¢, [c¢| 2 co. If m(t) 'is defined by (for large t)

u(t,m(t)) = %- and m(t) - k(t) Dbeing bounded,

then m 1is continuously defferentiable and m (t) » ¢ as =g

> o, Furthermore v(t,x) = u(t,x+m(t)), v' and v" converge

to w

wc' and wc", respectively, as- t - o« locally uniformly.

gt c?

Proof. Set, for yu > 0, fu = uly,-), gu = u(p,-3;g) and
v. (t,x) = u(t,x+k(t);f ).
M H
'In the identity
vu(t,x) = ulp,x;ult, -+k(t))),
letting t tend to infinity, we have, by Lemma 4.2, that
1 1 1" " . o0
(9,1) VT 8 v, g, and VU > 8 as 't -

locally uniformly for each 1y > 0. Fix any p > 0 and set fg =

fu, gy = gu. Let J Dbe a connected component of the open set
{x; g4'(x) # 0}, which is not empty, for g is not constant.
Without loss of generality we assume gg' <0 on J. Let Xlé J

be fixed. Then we can define a continuous function k,(t) (for



f

1
{/éhd f \§¥{data so related tha///ﬁ/{ f + f .,/Let u, 31// n
£

Proofs Set

s
e’ y
V/;:;;//u *(0 and u
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large t) by
u(t,kg(t)3f,) = gy (x;) and %im (ky(t) —k(t)) = Xy .
->~co
Set  vu(t,x) = u(t,x+ky(t);fy). Then by (9.1)

(9,2) Ve  8gs Vg' > gy' and vy" 5 gy"  as t > o

locally uniformly. Note that vg(t, 0) = g%(xl) is constant.
Letting x = 0 be fixed and t +tend to infinity in the equation

V*o — %. V*" + CV*' + F(V*)’

we have

. = _ (1/72)g,"(*1) + F(ga(*1)) 5 o
kg (t) » ¢ = - & B (7)) as t .

Integrating the both sides of the same equation by t from n
to n+l and letting n tend to infinity, we have 0 = (1/2)g" +
cgy' + F(gy). Hence g, 1s a c-front. By Bupg = u(s, 3;84),
we see that gu is a c-front for each u > 0 wi%h'common-’speed
c. Consequently g 1s a c-front.

The iast statement followsvfrom (9,2) and the identity
u(tHu, x4k, (841)) = vy (b,x+ky (t+u)=k,(t)). That m'(t) » ¢ is

obtained as in the case of k,(t).

/ ——— / - / /
// Lemma 9. Supp ‘ F(uJ/ﬁ is non—lncrea81ng/ Let ., f2
a :

be/corre;géﬁdlng/é/iutlonb/of (1) and .  Then

(t x))/u(t4x)

and le

5, Trespec 1\ely

i
ES

(%,

Since /;%ﬁg; ;;;B/Z/ F(u)/u for any

1, 2.
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the behavior m(t) than

the differenc ion. letting

m,(t) and ml(t) be corresponding>& = and to f

74): respectively, : /
k]

Mo (8)381) 2 WCO(X) —V?f

and hence m, (t) ~ my (t) ( > O) ,&S/Bg;nded R

McKean [14] found that if F(u) has the special form
ou(l-u) and intial datum f 1s the indicater function of nega-
tive real axis then m(t) < c*¥t - o(t) + const., where we write

log t
2c* 7

This is éasily extended to the case that F(u)/u L asi.e. B=a, and is

(9,3) a(t)

readily derived from

Proposition 9.1. Let v ©be a solution of the linear equation

(9,4) vt o= %v" +ogv

with v(0+,-) = g a.e. and with v(t,x) =vO(exp'{x2}) uniformly

in t € (0,T) for each T < ©, where g 1s measurable and satis-

%
fies IR e® X]g(x)[dx < o, Then

—_—C R
v(t ,x+c¥t-0(t)) = —j Vo(y)ay e C*X as

Proof. By the eguation (X+c*teklogt—y)2 = (x—y-—klogt)2 +
2c¥t(x-y-) log t) + 2at2, we see
ot

v(t,x+tc*¥t-) log t) = e Ptg(x+c*t—xlogt)
c¥)logt . - 2
e . (x-y-Alogt) + ook ~c¥x
= = - d .
Vo= IR exp { 5% c¥ylg(y)dy e

Then substitute A = 1/2¢* to get the result.
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Suppose F(u)/u < a. Let f be a datum and set u =

u(t,x;f), m(t) = sup{x; u(t,x)=1/2}. Then
. c¥x )
m(t) < c¥t-g(t)+const., if IR e f(x)dx < «,

This is immediate from Proposition 9.1 and the inequality u(t,x)

< eutPtf(x). Let A Dbe a positive function such that
IR A(x)dx < » and A(logx) varies slowly at infinity.

Then under the same restriction on F

c¥t —o(t) =m(t) + o if f(x) = O(A(x)e—cxx) as x > o,
For the proof it suffices to show that if f(x)~ A(x)exp{-c¥x}
as x> and f(x) =1 for x <0 then u(t,c*¥t-o(t)) - 0 as
t » =, But for such f we have seen, in Theorem 8.1,
u(t,x+m(t)) - wco(x), while 1im u(t,x+c¥t-o(t)) < const.exp{- c¥x}
= o(wco(x)))'since, by Lemma 2,2 (see also (2,22)), limX+¥
WCO(X)exp c¥x /x > 0.0 Thus 1im u(t,x+c*t-g(t)) = 0.

We get here a more exact estimation under some additional

restrictions on F and f.

Theorem 9.2. Suppose F(u) <au for 0 <u <1 and ou-F(u)

- of ul*d)

with some 6 > 0. Let f be a datum with sup{x;

f(x) > 0} < o, Then

c*t — 30(t) + const.

A

m(t) < c* - 30(t) + O(loglogt).

Proof. Step 1. We can rind a function F¥ and F,
satisfying (3) such that F¥ > F > F, and F#*(u)/u and Fy(u)/u
are decreasing. Therefore there is no loss of generality in

assuming that F(u)/u is non-increasing and that f = fg =

I by virtue of Lemma 8.5.
(..oo, O)
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Set u = u(t,x;f,) and v(t,x) = u(t,x +m(t)). Then, by

Lemma 6.3, we see v(t,x) + w

o (x) for each x <0 and + w_ (x)
(o]

Co
for each x > 0 as t »>o,

Let m(t) be the maximal convex function on t > 0 that
bounds mnm{t) below. In the remaining part of this step

we prove that m(t) - m(t) is bounded. Define a function

a(t,s,N) t, s, N >0 by
m(t+N) - m(t) = m(t+s+N) - m(t+s) + a(t,s,N).

Since c¢*t -m(t) > » and m"(t) > c¥, there exists an unbounded

sequence {tn} such that m(tn) = g(tn). It is easily seen that

0 £ m(t) - m(t) < SuPs,N>O a(r,s,N) if t > tn.
r >tn

Therefore for our present purpose it is sufficient to prove that
(9,5) a(t,s,N) + 0 as t » uniformly in s, N.

Set h(t,x) = [v(t,x) - v(t+N,x)]". Then h(t,x) < v(t,x+M(t))
with some function M such that M(t) » » as t - o, By

Lemma 8.4 and the monotonicity of F(u)/u

u(s,m(t+s) —m(t);v(t,))

N
i

A

u(s,m(t+s) -m(t);h(t,-)) + u(s,m(t+s) —m(t);v(t+N,)).

Since u(s,m(t+s) -m(t);h(t,-)) < v(t+s, M{t)) =+ O as

t » o uniformly in s, N, we have
u(s,m(t+s) -m(t);v(t+N,:)) + o(l)

= u(s,m(t+s+N) ~m(t+N);v(t+N,-))

v
PO

and hence m(t+s+N) - m(t+N) > m(t+s) - m(t) + o(l) where o(1)
> 0 as € - « uniformly in s, N. This is the same as the state-

ment (9,5).

1l

Step 2. Set k(t,x) F(v(t,x))/v(t,x). Then we have

v o= oz v" 4+ mv' + kv.
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In terms of the standard l-dimentional Brownian motion {Bt’ t

> 0; P, xeR} (ef. [9]), we have by Kac’s formula

t
k(s,B___ +m(t) —m(s))ds
v(t,x) = E[ efo t-s 77 o £o (B #m(t))1,

where Ex[~] stands for the expectation of Brownian motion

Bt starting from a position X. Let aqy be a function on

R defined by

Qe (x) = Me~P¥ M >0, b>0,

where constants M and b are chosen so that k > a-qy. This

is possible, because v(t,x) + W, (x) as t 4 » for x > 0,
o]

N

log w, (x) ~ -c*¥x as x » o« and Fu)/u = o + o(ué). Then
(]

~[bay (B tm(t)-m(t-s))ds

v(t,x) 2z e*“E [ e £o (B +m(t))].
| Write H
m(t) = c¥t - n(t).
Setting L = inf_ _ o {m(t) -m(t-s) - %m(t)} , we see, by-the

convexity of m(t) and the boundedness of m(t) -m(t), that L

is finite and we have

€ ey S
ot —foq*(Bs+1n(t)E-+L)ds

v(t,x) > e EX[ e fo(Bt+m(t))]
and
ot -[gq*(BS+ m(t) £ +L)ds
v(t,-1) 2 e E_j[ e _ A B tm(t) =-1]
X P_l[—l < Bt-+m(t) < 0],
where E.[fl'] stands for the conditional expectation. Since

{BS-+nKt)%~; 0 <s <t} conditioned on Bt-km(t) = -1 has the
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same conditional law as ’{BS; 0 <s <t} conditioned on Bt =

-1, the right hand side of the last inequality is equal to

~ftq (B _+L)ds 1
et Bl e Ve | B, =-1] f p(t,y-m(t))dy
0
t *
. ~fgax (B )ds Qo*n(t) 1l
= E [ e | B, = -1+L] ——nv— ( J e” Jdy +0(1))
~1+L % VT 0

- *
= Sk p(6,-141,-141)e ) (140(1))

Where p,(t,x,y) is the fundamental solution of the parabolic
equation

. 1
u = E-u" - ggu t >0, x € R.

In order to estimate py(t,x,x) let ﬁ(t,x,y) be the fundamental

solution of u® = u" - u where §(x) = exp{-2x}. Then
p(t,x,y) = fm»e_tk L K. (e®)K. (e¥)sinh(sw)dAr s2 = A
34 0 ‘.”2 is is ; >

where i = /=1 and KU are modified Bessel functions of the

second kind:

o33

- -z cosht
Ky (2) = fo e cos(st) dt

(ef. [15]). It 1is easy to obtain the corresponding integral

representation of p*(t,x,y) from which we have the asmptotic

formula:

- - (+)
W3 . 2/7N -bx/2..2 1 1
p*(t,X,X). R {KO(T e )} 7% (l+0(/g)).

(¥) We need here only " 0 <Cq éx/f3p*(t,x,x) <Cy <o (t4e)?,
. . . . + o0
This is obtained under the assumption that [ g (xX)xdx < o, qy

>0, dy #0 and qy is locally bounded.

’
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Therefore
ec*n(t)
v(t,-1) > const. ———— (1 +0(1))
/T3
and
3
n(t) < EEE'logt + const.

This proves the first inequality in the theorem.

Step 3. We may assume without loss of generality that
F(u)/u <a-n for 1/2 <u <1 .with some positive constant n
(< a) (if this is not the case, consider sup{x; u(t,x) = 1l-¢}

instead of m(t)). Then, setting
g¥(x) = n if x <0 and = 0 1if x > 0,
we have k < a-g¥ for all t > 0, x¢R, and

) | .
Lot o [e—IOQ*(BS+m(t)-m(t_s))ds

X

A

v(t,x) " fo(Bt+m(t))].

Since for large t, by Step 2, m(t) -m(t-s) -m(t) %v= n(t-s) -

n(t)(1- %) < bo(t), we see , as before,

t s
~f a®(B_+m(t)=+40(t))ds
L= vu(t,00 5 e°F E L e Joa* (B R | B #m(t) =07

A

X POE Bt+m(t) < 0]

p¥(t, 4o (), bo(t))e® (B %.

¥+o(l)),

where p¥*(t,x,y) dis the fundamental solution of
. - J-_ "o ¥
u = 5 u a*u.

The Laplace transform of p¥(t,x,x) 1s explicitely caluculated:
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G (x,x) = L {2 Q- |2 x_ammed P > 0,
V2 /X n
and inverting:the transform we have, setting o= lo,
p*(t,5(t),0(t))
_ 8¢ . L e®
= e My Al oiehyp2E o T
v 2rt w2 2/rwtt _ /at t
~o ’
= - 28 (1 +0(1)) as t > o.
v/ 27t

Thus we have

~ 2
1 26(t) c¥*n(t) 1
o 2B, (L so(1))
2 = /21T/f'3 c¥

or

—§—-logt - J%'log logt + const.
c . -

n(t) 5oW

v

and the second inequality of the theorem has been proved.. The

proof of Theorem 9.2 is completed.

Remark. If we put w(t,x) = V(t,x)--wC (x), v(t,x) = u(t
o]

f), then w" = w" + cw' + F'(0)w - (c¥-m*)v' and especially

nOf

(1/2)w"(t,0) + c*w'(t,d)
v'(t,0)

c¥* -m°(t)

From this it 1is reasonable to expect that under the assumptions
of Theorem 9.2 the order of the decay expressed in (8,3)

is not more rapid than that of %.

It is interesting to compare the results as in Theorem 9.2

(%) a(t)sb(t) = fg a(t-s)b(s)ds.

, ()

s X
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with the result obtained in case F(u) = u(u-a)(l-u) where 0 <a <1
( as typical example): Fife and McLeod [3a] says that with
such F there exists the unique speed ¢ for which the

differential equation (4) has a global solution w such that

0 s w <1, w(-») 1l and w(e) = 0 and that for any continuous

with ylimx+_wf(x) > a and lim f(x) < a it holds that

X0
(%) [u(t,xtct) - w(x+x,)| -+ 0 as t >

where u 1s the solution of (1) and (2) with present F and
X, 1s some constant.

Next three theorems give an answer to the question of when
m(t) - ct 1is bounded and such formula as described by (%)
holds.

Theorem 9.3. Let o > 0 and ¢ > c,. Let™ f be such a

bx
datum that there exists lim}woo e~ f(x) = a £~ where b =c¢ -

/e¥=2a. suppose [ [a-Fr(wluTtdu <e. Set u = u(t,x;r).

Then m(t) - ¢t is bounded if and only if 0 <a < o, If this

is the case and:if. Condition [W] is satisfied, then

(9,6) u(t,x+ct) - wc(x+xo) as t » « uniformly in x > N,

- b
where x, = b l1og(ao/a), 8o = lim__ wc(x)e—x, for each N> -,

X

Proof. It suffices to prove (9,6) assuming that 0 < a < «,

Set wy = limt+w u(t,-+ct) and w¥ = limt+m u(t,.+ct). We will

prove that if 0 < a < «

(9,7) WwH(X) ~ wWe(x) o~ £(x) as x - o,

2/2

Note that these are immediate consequences of Lemma 4.5 if ¢

2T ¥ First we'prove we(x) 2

f(x)(1+0(1)). For this purpose,ias in the proof of Theorem 5.1 (ii),

£
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take a function F satisfying (3) such that f0+ }ﬁ(u)-uulu_2du
<o, F1(0) = o, B <a and P <F. Then a(t,x ) =
u(t,x;f;ﬁ) <u(t,x) and, since 02/2 > o = sup §'5 1im G(t,x)

= WC(X+§O) where ﬁc is a c-front corresponding to f and

X, 1s determined by ﬁc(x-+§o)/v £(x) as x > ®. Thus wy(x)

2 f(x)(1+0(1l)). Next we prove w¥(x) < wc(x-fxo).. By
Corollary of Lemma 2.4, for any & > 0 we canifind a continuous
datum g such that with some constant L

%g"4-cg'-+F(g) =0 for x>L and g=1 for x <L
ané such that g(x)~ £(x) as x » o and f(x) <g(x-§) xe€R.
Let U = u(t,x;g). Then by Lemma 5.1 1im ﬁ(t,x-fct) = WC(X+X0)-
Since u(t,x) < ﬁ(t,x-—ﬁ), we have w¥(x) < wc(x+xo—6), ‘Hence
w¥ < wc(x+xo). Since 1lim wc(x+xo)e?‘X = aoe"pXO, w¥ < f-(1+o(1)).
Consequently (9,7) has been proved. |

If Condition [W] is satisfied, we have u(t,x+m(t)) - wc(x),

and hence (9,7) implies (9.6). The proof of Theorem 9.3 is

completed.

Similarly we obtain

Theorem 9.4. Let ¢, = c¥, Assume (2,4) and that

So+lF'(u)-—a Hlogtl'u_ldu <o or F(u)-au = o(u?)y p > 1.

-1 c¥x
e

Suppose lim f(x)x = a exists and is positive and finite.

Then under Condition [W]

(9,8) u(t,x +e,t:f) - W, (x +x,)
o
- % s -1 c¥x
where x, = log(a,/a)/c¥, a, = lim W, (x)x e .
[o]
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In case ¢ = ¢y, > c¥ we have

Theorem 9.5. Assume the hypotheses of Lemma 5.3 (i). Then

m(t) - ¢t 1is bounded. If we assume in addition the hypotheses

of Theorem 8.1, then (9,8) holds where x, 1is some constant.

Proof. The boundedness of m(t) -~ c,t 1is clear by Lemma 5.3

(i). Let f Dbelong to the class [FA] with X > ¢, - /co2 -2a.

Then if c¢, - VCg?-2a < b <min{r, c, +/¢,2 —=2a  we have
' bx
Sup. ., lu(t,x+m(t);f)-+wco(x)|e >0 as x > o
and hence, by Theorem 8.1,
bx
supXéI{lu(t,X+m(t);f)-—wco(x)[e >0 as t » o,

which combined with Lemma 5.3 (il) deduces (9,8). When f belongs
to the class [Eu], we can similarly proceed with any c, -/ ¢c%

<b <co /e, -2a. qg.e.d.

10. Supplement to The Case c¢c, > c¥*,

Here is given an alternative proof of Theorem 8.1 in the case
¢, > ¢*, which . provides a better consequence. The proof
is a modification of a proof given in P.C. Fife and J.B.McLeod
[3.b] to the assertion cited in § 9 and simpler than that was

given through & 6 to §8.

Theorem 10.1. Assume c, > c¥, Let f be a datum such that

~-b

F(x) = 0(e™>®) for a constant b > c, - +fcz -2, It is assumed

in addition that Condition [G] iﬂ g 5 is satisfied (this is auto-

matic when & > 0). Then (9.8) holds.

Proof. Set u = u(t,x:f) and =z(t,x) = u(t,x+c t). Obserb-

ing that v = u or v = u' satisfies that, with k = F(u)/u or

k = F'(u), respectively,



v(t+l,x+y) = fé p'(l-s,y)v(t+s,x)ds
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+ f: pF(l,y,r)v(t,x+r)dr

+ fé dsfz p*(l-s,y,r)k(t+s,x+r)v(t+s,x+r)dr

for = ¢ R, y > 0 and t

0,

where p#* 1is defined just after

the equation appeared in the last paragraph of & 5, differen-

tiating the both sides of this equation with respect to vy, and

then putting y = 1, we deduce the estimates: for > 0, x € R
t+l T+l
[ut (t+1,x+1) | < Klu[t’x > Jum(t+l,x+1)] < K'u'lt,x
t+l .

where Iv]t,x = Supt<s<t+l,y>x ]v(s,y)] and K is a constant
independent of t and x. Then, by the equality = 2_lu" +
F(u) and by Lemma 5.3 (i), we see that for t > 1, x € R
(10,1) z(t,x), Iz'(t,x)l, lth,x)I < Klmin{enblx+e~nte~?x,l}
where bl = cot 2—l¢cf -2a and Kl is a constant independent
of t and =x. Let € be a positive constant so small that

(cy-b)e < n, and set

EC(t)

et 2e%x, 1
[ev e Ly

z'(t,x)2 - fg(t’x)F(r)dr]dx.

Then, by (10,1), E(t) 1is bounded as t tends to infinity and

(lo,2)

E°(t) = o(1) - [

et
~-et

chox[ 1

72"+ coz! + F(z)]de.

From these it follows that there exists an unbounded sequence {tn}

along which E(tn) + 0. Since

zZ, z; z" and z"' are bounded

for x € R, t > 1 ( see the remark following (4,6)

we can find a subsequence {tn,} C:{tn} such that

converges in the norm of

0

l1im z(t,x). Then,by (lo,2) and lim E(tn,) =0, 2

and, by Lemma 5.3 (i),

¢

W

CQ(—N,N) for each N > 0.

dose not degenerate.

and (4,7)),

z(tn,,x)

Let wi(x)

lw"+cow'+F(w)

Therefore



w 1is a c,-front. Since any c,~-front is stable in the sense
of Lemma 5.3 (ii) , we have actually 1lim.z(t,x) = w(x) ({(see.

the proof of Theorem 9.5). Thus the theorem is proved.

77
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Appendix.

Following diagrams illustlate solutions of the equation

(1,2).

(a) 0 <c </2u (b) V2a <c <cp, ¢ >0

DONNG L DO

(e) ¢ = cy >V 20 | | (d) ¢ = ¢co =vV2a (case 1)

BN
&// IS

(f) e =co =vV/2a (case 2)

NN

~
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A REMARK ON THE NON-LINEAR DIRICHLET PROBLEM
OF BRANCHING MARKOV PROCESSES

By Masao NAGASAWA and Koehei UCHIYAMA
TOKYO INSTITUTE OF TECHNOLOGY

1. Let A be the Dynkin's characteristic operator for a continuous
strong Feller process (xt,Px) on a locally compact Hausdorff space with
~a countable open base. We will call the process a base process. Let
D be an open subset of the state space and Yy be a bounded measurable
function on the boundary 93D of D. We assume || ¥|| < 1. Then the non-
llnear Dlrlchlet problem of a branching Markov process is
Au(x)+c(x) ( Zoq (x)u(x) —u(x)) =0 in D,

n=

(1) (%)
u(b) = Y(b) on 3D, |

,wheré ¢ is a nonnegative bounded continuous function on D (c=0 on D)
and q, is a bounded continuous function on D (qn=0 on D) satisfying

) ]qn(X)l =1, for x €éD. ‘
n=0 . - -

For simplicity, we assume qn(x) > 0 in the following. Let’Xt be
the stopped process of the base process at the boundary of D. Let
(Xt,Px) be the branching Markov process on

R *w)
= U 5rutay, )
n=0 .
determined by —t’ ¢ and q, (cf£.[11).
For a bounded measurable function f on D, we define f on S by

-

f(x) = £(x;) £(x ), when x = (xl,---,xn),

(2) f((S) = ll
Ay = 0. .
-

‘Then if || £]| < 1, £ is bounded on S.

Let T be the killing time of the base process by means of the multi-
‘plicative functional exp(-fg c(X )ds) and T be the first hitting time
of xt to the boundary 9D, and we assume ‘ '

(3) P T <] 2e >0, for all xebD.

" (*) The equality should be understood in a suitable sense.

(**) D" is the n-fold cartesian product of D and D° = {8}, where § is

- an extra point. A is another extra point.



[

THEOREM. For a boundary function ¥, set

f =4¢y on 9D,
0 in D.

(4)

: Then under the assumption (3), there exists

- (5) u(x) = lim E_{E(x )], xeB,
. Lo ,
- which is a solution of the non-linear Dirichlet problem (1) satisfving

e et

lim u(x) = y(b),
X€D
X-bedD , (%)
b is a regular point

e
}-h

of the boundary. 3D and i£'¢'i§ continuous
~at b (c£.[2]). | ‘

Instead of (4), let us take

£f ={y on 3D,
T(6) g in D,
ias an initial data in (5), where g is a measurable function on D with
Mallg 1. 1£ || gl < 1, the limit in (5) exists and does not depend on
~the choice of the initial value g on D. 1In precise, let ng be the
‘number of particles in D at t, then . - B
A7) ﬁ(x) = lim E [f(X ) X EBD for all i.or X =§ at some s<wx]

tesoo

+1im E_ [f(x ); n_ + «» when st=],

t~ro

n U

‘Therefore, the second term vanishes when lI'gll < 1, ana the first term

‘does not depend on g. However, if
Px[nt 4+ = when tt+w] > 0,

at some point xoe‘D, then the second term does not vanish, if we take

e.g., g = 1.
Take ¥ = 1, for simplicity. If we take fl = 1 on D, then
— Xk) .
ul(x) = lim E [?l(xt)] =1, for all‘xesl_),(w )
tsoe ) .

while if we take f0 = 1 on 3D (= 0 in D),

ap(x) = lim B [£,(x,.)] < 1.
X o
£ o
u, is known to be the extinction orobablllty of the branching Markov

process with absorbing boundary (cf.[3],[4]).

(*) The regularity'is for the base process.
(**) We assume the branching Markov process does not explode.

4



2. The solution of the non-linear Dirichlet problem is not unique,
as is seen in §1, but how many solution do we have? To diséuss the
problem, let us take the simplest case of one dimensional branching
Brownian motion, D = [-%2,2], and Yy = 1. The problem in this case is

(85 u" (x) + c(h(u) -u)({x) =0, x é(—k,k), ¢;constant > 0,
u(-2) =u(L) =1, N '
_where o - ' -
h{u) = § qu®, qﬁ > 0, ) q, = 1.
n=0 : n=0
We assume .
v 1 < h'(l)
;and h(u) is analytic on .
V We will prove, for example, when h(u) = u2, there is a critical

?length 20 = 1w/2/c, and if & > 20, the number of solution of (8) is
;"approximately" (c£. (14) and (15) in precise)

‘L n o~ z[z/zol,(*) >

%where [a] denotes the greatest inﬁeger strictly less than a.
f To solve (8) put

;(9) ' C(u) = 2c(u - h(u)fi

iThen we can write the equé%ioh'(8) as
o) 2t = cw.

:Introducing

a - : .
f(u) = J C(r)dr - .
0 S .

3 | - &
~and taking the value b of u(x) at u'(x) = 0 as a parameter, we have
ey (u)? = £(u) - £(b).
Therefore the formal solution for (8) is
: o ‘
(12) x = f du .
, ' : vE (u)-£(b)
: Put ' 1 - -
. o) = I S, g £@rmDu) - £0)
0 © (b-1) o
LEMMA 1. (1) F'(b) < 0, *(ii) F(l) = ———= 2, and (iii)

‘ N O
~lim F(b) = =, where 0 < g < 1 is the root of B

b-qg :

e

(%)

hiu) - u = 0.

(*¥) We count the trivial !solution u = 1.




o

PROOY. Because

1 -1 1 R |
B(u,b) = —f> £'(1+(b=-1)x) (b-1) ~dr = [ - C(1+(b-1)r) (b-1) ~dar
u ' , u
orl x
= ~f dr j C'(1+(b-1)s)ds,
we have‘ . 1 r ,
=g = -[ dr f C"(1+(b-1)s) -sds.
. u 0
- Since ' :
| F'(b) = - & ' 2~ dau, and C"(u) = ~2ch®(u) < 0
2), 5372 du an BT meehtim) = Ay

;we have B' > 0 and hence F'(b) < 0, proving (i).

Becuase B(u,l) = c(h'(l)-l)(l-uz), we have
1 fl du
3 /o' (1)-1) Yo /1-u® '
‘proving (ii). Because ,(u) ~ u-q, f(u)—f(q)f~'(u~q)2. Therefore,
fl//ﬁ?ﬁ?§3'\'l/(l—u), implying (iii) by monotone convergence theorem. .

F(l) =

Fig.l.
F(b) g
A - ' ‘
5 %o : -
g f--meme- e e S
; L . b
0 q b 1 b

Put
lo =.m/2/c(h'(1)-1),

then this is the critical length of the domain as will be seen in the

following. ' , _ - , .
Case 1. When % <. %,, we have the solution u® > 1 as in Fig.2.
Fig.2.
0
: B (x)
1 - ‘
' b
vy
-% .0 <2



Because

B ]
J du = F(B),

1 YE(u) £ (B)

. to have the solution uo, % = F(b). It is clear that such b > 1 exists
" when and only when 2 < 2 (cf£.Fig.l).

Case 2. When & = &

o’ the solution of (8) is unlque, i.e., we have

~ just the trivial solution u = 1.

Case 3. When 2 > 20, we have the solution u, as in Fig.3.

Fig.3.
: /uo (x)
1 /
H'b
-£ ,'.0 |  2>£0
Because
1 au _
= F (]2) ’

b VE(u)-£ (b)

b is determined by & = F(b). It is clear that such gq < §'< 1 exists

when and only when & > ko (cf.Fig.l).

Let u(x) = b+e, then

b+e du '
I-xl= f > 0o, ifb-——-}q,

b YE(u)-£f(b) CT

‘where € is arbitrary and hence U, (x) —>q, x € Rl This is understand-

‘able because the efect of absorblng boundary decreases when % = « and

‘the extinction probability u, converges to that of the branching Brown-

ian motion without boundary.

Now, if the length % of the domain is large enough, we have,'for

‘example, the solution of two nodes as in Fig.4.

Fig.4.f

-

o
e =
~eoi

3

- A
The sufficient condition for existence of such solution is
3F (1) < 4. | '
In general, if
(n+l)F (1) <,&, 4 v
there exist solutions with nodes ub to n. However,vit may happen that



the solution of the same nodes is not unique_for a given length of the
domain. For example, take the éolption of Fig.4, then

F(b)+ 2F(b) = &.
Put

Ky (b) = F(b) + 2F(b).

Since £(b) = £(b), b is a function of b, g <b <1, satisfying

oy
A

LEMMA 2.

() 02321, and Fp=-1 atbh =1
(i) b — l, when b — 1.
PROOF. It is clear that b — 1, when Q 1. By differentiating

f£(b) = £(b) with respect to b, b' = db/db "(b)/£'(b). We have
~f'(§)/(5~p) = (f(B)*f(Q)*f'(é)(5—9))/(5-9) “*(l/Z)f"(l), and similarly
£'(b)/(b=b) ~ (1/2)£"(1). Since £"(1) # 0, we have b' — -1, when
b — 1. To show bt > -1, assume the contrary; inf b'< -1. Since

l §=q &5 bl R Far
~at-b . Since b" = d25/db2 = (£"(b)-£"(b) (b')“°) /£ (b) and f" is mono-
‘tone, it follows that b" < 0 at b ., but this contradlcts our setting
of b . o

= 0, there 1is a point bo, g < bo < 1, andgb'attalnsthe minimum

By Lemma 2 and by the equation

K3(b) = F' (b) + 2F! (b)db’,

"we have

il

K3 (1) -E'(l)'> 0.

Clearly lim (b) = o, on the other hand. ThlS means 1f we take &

b—q
like in Fig.5, we can choose two dlfferent values of b.

Fig.5. § K v
\'3
: j— '

Lo R

(o]
o R —

S
Put F) =F, Fp (b) = nF(b)+nF(b), F, . (b) = (n+1)F(9)+nF(E),
Kon(B) = Fpn(B)y Ky q(R) = nF(b)+(n+1)F(b).

Then, for a given length £ of the domain, the number of solutions is
. M * .
the number of crossing of F_and K, with £ as in Fig.6.( )

4

(*) We distinguish ==~—— and ~——,



Fig.6.

PROPOSITION. The number of solutions is bounded from below as

(14) 204/2_1 £ n, 8> 8 = w/2/ch (1)-1) .
In the special case of h(u) = uz, |
(15) 2[8/%,1 < n £ 208/8.142, & > & = 1/2/C,

where [a] denotes the greatest integer strictly less than a.

We have the upper bound of:(lS)_becausé Fn.and Kn are convex in

this case.
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ON LIMIT THEOREMS FOR NON-CRITICAL GALTON-WATSON

PROCESSES WITH EZ.logZ, = &

1 17

By Koehei UCHIYAMA
TOKYO INSTITUTE OF TECHNOLOGY

1. Let ZO = ], Zl' Z2, »++ denote a non-critical Galton-Watson
processes with a non-degenerate offspring distribution pj = P[Zl==j],
j=0,1,2,-+--, having a finite mean .m = EZl < o, Write fo(s) = s,

= == % j = —3 * o &
fl(S) oof(S) Zj=0 Pjs / fz(s) f(fl(S)), f3 f(fz(s)), » 0<s<1.
When zj=0 pj(jlogj) < « it is known (cf. Athreya and Ney [1]) that

in case m > 1 Zn grows up to infinity as n® a.s. on {Zn+ ® as n +~ »},
and in case m < 1 l-—fn(O) = P[zn;£0] decays to zero as n?, Stating
more minutely; ' L ' ‘

(1) when m <1, lim (1-£ (0))~

-+ and define a probability distribution on {1,2,3,°°j}; and further-

lP[Zn==j] exist for j = 1,2,3,

more m—n(l~fn(0)) converges to a positive constant if and only if
ij(legj) < @; and ,
(ii) when m > 1, for some sequence of positive constants C, v

= lZn converges almost surely to a proper non-degenerate random
variable, and furthermore m_ncn converges to-a positive number if
and only if ij(jlogj) < w,

If ij(jlogj) = «, we have lim(].--fn(O))m'_n =0 in case m < 1

and lim cnm"n = 0 in case m > l. In this note we.will investigate
the rate of decay for l-fn(O) or of growing ﬁp for Zn in certain

cases with } pj(jlogj) = o, . -

2, Let us introduce a condition:

| T 3 ~a T (%)
(1) L 3Py~ (logn) *L(logn) . as ne =,
where L(x) dis a function slowly varying at infinity and o a real
constant. :

THEOREM. Let L(x) be as above and 0

L o <l.
(a) If m < 1, then the condition (1) is equivalent to
(2) log (m ™ (1~£_(s))) ~ =-ani™%L(n) as n-r
for 0 2 s < l,where A = }logmlué,ﬁm(l::u) .

(b) If m > 1, then the condition (1) is equivalent to

VA
log - ~ -Anl aL(n) as n —y «

i
(3) a.s. on {Z =+ « asn - «},

(*)"a(x) ~ b(x) as x-c" means that - lim , a(x)/b(x) = 1.



where A is defined as in (a).
REMARK 1. Let (1) hold with a > 0. Then ij(jlogj) =® if and

ldy = o, This follows

only if either 0<2a<l, or a=1 and le(y)y“
from LEMMA 3 and 4 which are stated in the following section. When
a =1, the assertions of THEOREM are also true if we replace -Anl—aL(n)

by-&?L(y)y—ldy/{mlognﬁin.(2) and (3).

REMARK 2. Suppose o > 0. Then (1) follows from

n v
P j2pj ~ n(logn)ha—lL(logn) . as n- «,
which is iglturn implied by
.§ Py~ n-l(logn)—a"lL(logn) as n-= o,
These conditiog;nare satisfied with p  ~ n—z(logn)"a-lL(logn).

3. Before going into the proof of THEOREM we state several prelimi-
nary lemmas. '
LEMMA 1. If m<1l, then

. 1l=-f_{(s) . :
= ] —na ts £ <s<1l
G(s) Lim 1= £, (0) exists for 0<s ’
and ,
’ — . f'(S) :
-G m)-%unﬁkﬂ_“_ >. 0 for 0<s<1l.
e 1-fn(0) —_— o

PROOF. It is known that G(s) is well defined in the above fornula
bécause of the increasingness and the boundedness of the defining
sequence of functions (c.f.[1l]). Since l-—fn(s) is analytic we get
the latter formula except G’ < 0. - By the definition of G we find the
functional equation G(f(s)). = mG(s), which shows G(s) is not constant
because m< 1l. Therefore =-G’(s) >0 in the interval (0,1), because
=G’ (s) is non-negative, analytic and non-decreasing. .

LEMMA 2. Jp(jlogi) = e if and only if f:(:&n—f’(l—rt))dﬁ = o

for some 0<r<l,.

: ot _ g o .t k-1
PROOF. Since fo (m=-£'(l-r"))dt L y=1KPy fo(.-l (1-r") "7 ae,

it suffices to see that &)(l-—(l—rt)k—l)dt ~~ const.logk ‘as k =+ o,

But (-logr) [’(1-(1-r%)Fjat = fy 1= vy = 1+ le ... to o~

~ logk as k - o,
The next lemma is part of the standard textbook literature (see
W.Feller[2] p422,9237). _
LEMMA 3. Suppose that L(x) is slowly varying at infinity and u(x)

a non-negative function on [0 «), Put

U(t) = fotu(x)dx and Uu¥(t) = f:u(xmx.

/.



Then the condition that u(x) ~ tdL(t) as t + « implies
—ltd%l

U(t) ~ (d+1) L(t) as t =+« when d+1 > 0,

and

* - )
U (k) ~ Ja+1| P () as t o+«  when d+l < oO.
Moreover if u(x) is monotonic, the converse assertions also hold.

LEMMA 4. (1) is equivalent to

(4) S m=£(1-v) ~ (-logv) *L(-logv) as vV 0

where o may be an arbitrary real number.

PROOF. Observe the equation

n-f(s) = } 3py(-sh) = (1-8) ] (] sp.s
j=2 - . k=0 j=k+2 -
and then apply a Tauberian theorem to coefficients a, = zj=k+2jpj .
4. We now prove THEOREM. Let m< 1l. Suppose m-n(l-fn(O)) + 0

as n » ». Then we can see, by LEMMA 1,2 and the equation

£a'(s) ?ﬁfwi(M)
' m -
that as n » = k=0
- n-1 f' £
-log ..:L___fg_(...s._)_. ~ . Z log(l - (l —-_....S_.l{_.g_s._)._)..))
i k= m
(5) : o
- n-1 ’
~ ] u~?(iﬁsn) 0gs<1.
‘ k=0 . A
Taking any tow numbers r and s, 0<r<m, 0<s<1, fixed,
k “k . AT
l-m éf(s);l—r k>k°

with some integer ko, and hence
f'(l-m )

g b
(6) n £/ (£1c(s)) n,. £’(l-rf
> Z (1 - —) Rl jk(l“ " m )at.
k=k_ m °

By LEMMA 2 we get ij(jlogj) = o, Conversely,‘f;pm the above argument,
we see that ij(jlogj) = o implies limn?w(l-fﬁ(s))m_n = 0. There-
fore , for the proof of THEOREM these two conditions may be always
assumed. | -

Prom (6) it follows that

B £ (fx(s)) ~m £°(1 -m") - o
(7) kzo (L —) IO (1 . — ydt as n - o,
7 -t
| . _ 0o £ (1-xY) _ 1 £/(1-v), dv._
Indeed, setting a_(x) = IO;(l —~ja~—*f)dt = fxn (1 - =) ?fv

0 <x <l; and bn(s) = Xﬁzo(l-'?:ffm(s?)J’ we get an(r)/an(m) >



> logm/logr and hence, by (6), 1 > Ifﬁh+mbn,4an(m) > limb, /a,(n) 2
logm/logr , which leads to 1lim b, /a (m) =1 since r can be taken
arbitrarily near m . _ _

Because l-f’(l-rx) is a monotone function of x, the converse
part of LEMMA 3 is applicable to it. Using LEMMA 4 it is seen that

(1) is equivalent to A |
o £/ (1-r®), . \i' S -logr) ~®
(8) IO (1-=——F—)dt ’\’ L(n) m(l-a) as n + o,

By (5) and (7), we have that (2) is also equivalent to (8). Thus (a)

has been proved.

The proof of (b) is performed along the same lines as in the above.
Let m>1l. Denote by g(x) the inverse function of £f(x) defined for
g<x <1l where g is the smallest non-negative root of £(s) = s ,
and by gn(x) its n-times iteration.“Let:ibbe any fixed numberlbetween

g and 1. Then c, in section 1 can be taken as (—logg&l(so))”l. Thus
e Tt 1 -gn(sp) , and (3) is equivalent to

n
mnlog(l-gn(so)) ~ Anl_aL(n)~.

Corresponding to LEMMA 1 we have that for g<s<l

1 ! '
llﬂlI-gE%§%'= H(s) exists and llnxigngiéégy' = in'(s);> 0.

Observe that n
gn'(s) = 1/ kTT £'(gy (s))
=1

and that

'rkil-gk(so); m_k for k >k,

where r is an arbitrarily fixed number in (m_1 1) and ko some cons-:
tant. Then imitate the proof of (a) to see that
!
n -1 1 £/ (g (so)

log[ (1 ~gn(sg))Im™]l .~ kzo (1- - )
S
T In ".“""*"——'—f (;m))dt as n > o,

It is clear that (b) follows from these formulas as in the case m< 1l .
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107. Limit Theorems for Poisson Branching Processes

By Koehei UCHIYAMA
Tokyo Institute of Technology

(Comm. by Késaku Yosina, M. J. A., Sept. 12, 1975)

1. The process treated here is a model of the population growth
in a biological system in which each object gives births at various
times of its life length and new born objects behave as their parents
independently of others. The process is specified by two nonnegative
continuous functions on [0, co) A(x), w(x) and a probability generating
function A(S)= w1 1e8® D opihy=1, h,=20 (n=1,2,...); a living
object of age x gives births to j objects before it reaches age x4 dx
without dying itself with a probability h,2(x)dz and dies before age
x -+ dx with a probability p(x)dx where these probabilities are independ-
ent of each other and of past history. This process appeared in [2] as
a special case of general age dependent branching processes and was
called a Poisson branching process. In this paper limit theorems will
be given for probability generating functions of the population size at
time t of Peisson branching processes. Limit theorems of such type
are studied by Ryan [5] for subceritical general age dependent branch-

-ing processes. His results contain a part of ours as a special case.
The forms and proofs of theorems given here are simpler than Ryan’s
and almost parallel with ones of age dependent branching processes
given in [1].

2. Let Z(t) be the population size at time ¢ of a Poisson branching
process specified by i(x), p(zx) and h(s) as in the first section and let
F(s, 1) be its generating function; F'(s, f)=FE[s%?¥], 0<s<1. Wealways
assume that the process starts with a single object of age 0. Let L be
the time when the initial object dies and G(¢) be the distribution funec-

tion of L; G(t):jt () exp (»«ju y('r)dr)du. By conditioning on L we
0 0
get
t
F(s, )=s(1— G(t))E[exp U log F(s, t-—u)dN(u)} lL>t].
0

+J E[exp {j:mg Fs, t—v)dN(v)} l L=u]dG(u),

in which we denote by N(¢) the number of direct children of the initial
particle that have been ever born untill time £. Then we have

F(s, £)=5(1—G(£)) exp {J: (R(F (s, t—10) —1)).(u)du}

D +f: exp {L (s, t—v))—l)/?(v)dv}dG(“)-
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When m=K(1—)<co, F(s, ) is continuous in t¢[0, co) for each
se[0,1] and is the unique solution of (1) with 0=F =<1 (see (3] for the
proof).

From now on we assume m="n'(1—)<co.

Put g(s)—.:j: exp ( J : ,z(u)du(h(s)_l))dG(t) and let ¢ be the smallest

root in [0, 1] of g(s)=s. Then ¢ is the extinction probability for Z(f);

g=lim,.., F(0,%) (13D, and ¢=1 is equivalent to g’(1)<1 and ¢g(1)=1.

We call our process suberitical if g’(1)<1 and g =1, critical if g'()

=g(1)=1 and supercritical if g'(1)<1 or g(1)<1. :
Let M(t) denote E[Z(H)1=F'(1,%). From (1) it follows that

M) =m j; M(E—w)2w)(1—Gw)du + (1— G®)).

. We can see that M(t) is bounded on each finite interval and the standard
renewal theorem deduces ([5], [3]) the following.

Lemma 1. Suppose there exists a such that mr exp (—at)(1
0
_GEAHdE=1 and r exp (— at) (1 — G(B)dt < oo. Then M) ~a
[ : .
-exp (at) as t—oo where a—_—r exp (—ab)(1— G(t))dt(m r exp (—at)(d
0 1]

MG(t))z(t)tdt)—l.

3. In this section we study the asymptotic behavior of F(s,t) as
t—00 for suberitical processes under the condition of Lemma 1. Let
« be a number in Lemma 1. Note that « is necessarily negative when
g(1)=1 and ¢’(1 <1.

Lemma 2. If ¢(1)<1, g(D=1 and the condition of Lemma 1is
satisfied, then SuP;so,1z5z0 €XP (—at)A—F(s, )=K<co.

Before going into the proof of the lemma we gtate the main
theorem.

Theorem 1. If g(1)<1, gH)=1, the condition of Lemma 1 18
. satisfied and

(2) j ® tem2(B)(1—G()dt < oo,
[}
then limitinf,... (1—F(s, 1)) exp (—at)>0 if 2. Ry log H<oo and
E[X log X]1< oo, where X Er exp (—ab)a(t)dt. In this case limit,... (1
L

—F(s, D) exp (—at)=Q(s) exists and defines a positive analytic function
of sel0, 1) with R(1—)<o0.
Remark 1. We can see that > ;(jlog /) <eo and E[X log X]<

iff E[Y log Y1<oco where YE.‘.L exp (—at)dN(#). Therefore, by the
1]

- inequality
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| ELY log Y12 E[BLY | N(L)] log E[Y | N(L)]]
>3 pilelog & j exp (—at)dLy(0)

where p,=PIN(I)=k] and L,()=k'E[N()|N(L)=k], the sufficiency
part of the theorem is reduced to the result of [5].

The next theorem is an immediate corollary of Theorem 1.

Theorem 2. Suppose that conditions of Theorem 1 is satisfied
and that E{X log X1 and 3 h;(7log 7) are both finite where X is defined
wn Theorem 1. Then lim,_., PIZ(t)=Fk|Z(t)>0]="b, exist and {b;}i., is
a probability distribution with mean > kb, =Q'(1—-XQO) . '

Now we prove Lemma 2. After simple caleulations (1) is rewritten
as follows;

1—F(s, £)=8'(t) —£%(t) — £(1) — &)
(3 )A +m r (1—F(s, t—u)2(u)(1 — Gw)du
where ‘ .
£ =(1—G(B) exp {- J : (1—-h(F (s, t_u)m(u)du},

£ =1—G)A ( J 0 (1— h(FYs, t—u)))z(u)du),
E%t):J: 4 ( f "G, t——v)))k(v)dv)dG(u),

(D)= f (i~ F(s, t—) — (1— h(F(s, t—wN}A) (1 — Gad)du,
with A(@)=2z—1+exp (—x). Let us write &(t)=exp (—at)e'(t) etc.
Put H()=1—F(s,{) and R.(f)= j " m exp (— a1l —Gw)du. Then

Ha(t)gexp(—at)a—(;(t))+j: H.(t—w)dR, () since &, & and & are all

non-negative. Lemma 2 now follows from the Renewal theorem ([4]).
For the proof of Theorem 1 we need the following lemmas.
Lemma 3. &%), £(t) and £4(1) are all Riemann integrable.
Proof. Taking Laplace transforms, it follows from (3) that
A ()1~ R (2))=E1(2) — &4(x) — E(x) —€4()
where we set éi(:v):fexp (—zt)EL(t)dt ete. Since £4(0+)< oo, by com-

pairing the signs of terms in both sides, we see that £(0+)< oo,
1=2,3,4. .
The next lemma furnishes a key for the proof of Theorem 1.
Lemma 4. Let Y be a non-negative random variable with E[Y]
—1. Then for any 6>0 f " ELAGY)Ju2du< oo iff E[Y log Y1<co.
. ,

Corollary. Let f(s)=> 7, ¢:8" be a probability generating func-

tion with ¢=f'(1)<co. Then for 0<3<1, f[c—u“l(l—— FOl—w)lu-du
. 0
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C <oo iff Yoo ¢u(ilog i) <oo.

We omit the proof of these results (see [1] for a proof)

Proof of Theorem 1. Let liminf (1—F(0,1)) exp (—at)>0. We
first note that there exists a positive constant C such that for all £=0
(1—F(0,t)>Ce* and 1—RF(0,1))>Ce™.

By Lemma 38, using the inequality A(x)>z—1, x>0,

oo>j 2(1)dt

>C j a— G(t))dtj -~v;(v)dv—~j e-(1—GD)dt,
and then the hypothesis of the theorem implies

(4) j :’ (1—G@)dt L e~ 2(v)dw < co.
From (2) and (4) it follows
(5) j: dt r dG ) L e~ 2(v)dw < oo.

We see similarly that
oo>r £(t)dt> r o-etdt f ‘A (C j " e"“‘”’z(v)dv)dG(u).
Since A(x) <z, 'Ochis inequa;ity, com;)ined Woith (5), leads to
oo>j: e~etdt j:A (CL e““‘”’l(v)dv)dG(u)

=(~a)'C| BlA@X)lu*du.

Consequently, by Lemma 4, we obtain F[X log X1< oo since B[X]=1.

We deduce in a similar way, using Corollary instead of Lemma 4
and using integrability of &%, that > h,(j log 7) <co.

To prove the converse part, we assume that E[X log X]<co and
> k(G log )<oo. Since E[X log X1< oo implies (4), we see that £3({)
is directly Riemann integrable. &L, £ and & are also directly Riemann
integrable: for example

sup E@)<e® inf E(w+Km j%i dG(u) J:e“"”).(v)dv

nEt<n+l n-l<u<n

and the sum of the right hand sides over n converges. The renewal
theorem therefore can be applied and then :

r(éi(t)—&(t) _ () — e )dt
lim e (1 —F(s, 1)) =% »

e r tdR.(®)
1}
exists. We denote this limit by @Q(s). Now we claim that

(6) lim 9©) :J (1—G)e™as
onl=s j tdR.(0)

If we prove this equation, since Q(s) is non-increasing, we obtain that
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Q(s)>0, 0<s<1 and the proof is completed.
For the proof of (6) it suffices to show that

tim -2 [ @0+ 60 +eoat=0.

. st1 1—8 Jo
If we take a convention such that F(s, t)=1 for < 0, then (1—s8)7(£2(0)
1+ £3(1)) is written as

jwo Ju }wﬁﬁ’(_ﬁ_’&i’,t__fi)). 2()ydv
0 Jo 1—s

o] P ef{L(ﬂ_(l‘ W(EGs, t—MA@)D0)

dG(w).

j " (1 W(F(s, t—0))A@)dw
1]
From Lemma 1 and Lemma 2 it follows that

i—s

Since the right hand side of this inequality is integrable on [0, c0) by
Lemma 4, the dominated convergence theorem is now applied to obtain

lim L j (E2(t) +EE)dt=0.

st1 1—s
We can argue similarly to get that > hy(f log 7) <oo implies
: lim & j " et (t)dt=0.
st1 1—sgJo

Thus the theorem is proved.

Remark 2. Evaluation (4) is not implied by conditions of Theorem
1, i.e. there exists a triple A(), p(t) and h(s) for which conditions of
Theorem 1 are satisfied but (4) fails to hold.

4. TFor the supercritical processes we get only an unsatisfactory

result.
Theorem 3. Let g(A—)>1. If there exists a number B such that

1= TJ: exp (— BOA(q—J@)dE and j " exp (— (g (D)t < o0, where

J(t):-.j: exp {(h(q)—nf: Z(v)dv}dG(u) and y=N(q), then (q—F(,1)

-exp (—pt) is bounded on [0, co).

For the proof the same method as in the proof of Lemma 2 is ap-
plied.

In order to demonstrate that a number 8 defined in the above will
be proper one, we give a simple example. If we take 2B =2, DO =p
where 21 and p are positive constants, then our process is a Markov

branching process determined by the backward equation %F(s, t)
[

J7
S
24p Atp

o ul(F (s, ), u(s):(l-{-p)( s-h(s)—s) with f=72q—pq™



No. 7] Poisson Branching Processes ‘ 515

which coincides with an usual parameter 8, determined by the equation
1=u() [ exp (=t 1),
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