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"Chapter 1
(General Introduction

The main goal of coding theory is to construct efficient error-correcting codes and for this

purpose, a considerable number of researches has been done so far.

In 1981, Goppa introduced a new class of error-correcting codes, which originates from
classical Goppa codes and is called geometric Goppa codes or algebraic geometry (AG) codes
[7]. In 1982, Tsfasman showed a remarkable result [40] that there exist some AG codes
which exceed Varshamov-Gilbert bound [17]. Subsequently, it has been shown that AG
codes can be regarded as a natural generalization of Reed-Solomon codes and Reed-Muller
codes, and arbitrary linear codes can be represemted as AG codes [16, 30]. Since then,

studies of AG codes have been much attractive.

Because of the difficult mathematical background, only a few good AG codes have
been found besides ones on elliptic, hyper-elliptic and Hermitian curves. On the other hand,
it is known that the problem of seeking good AG codes can be paraphrased, in some sense,
into the problem of seeking algebraic curves with many rational points for given genus
[19]. Thus it is a main problem to specify a class of algebraic curves which have many
rational points. From an engineering point of view, it is also required to develop an explicit
construction method of AG codes on a given algebraic curve. These two problems have
been deeply investigated for a decade, and as a solution, Miura defined a class of algebraic
curves called Cy; and gave explicit construction method of AG codes on Cyy [19]. Cyp is
a very wide class of algebraic curves which contains not only conventional representative
curves, i.e., elliptic, hyper-elliptic and Hermitian curves, but also other mazimal curves,

‘on which the number of rational points reaches the Hasse- Weil-Serre upper bound [38].



Actually a couple of good codes on Cl, which have better parameters than BCH codes,

" have been discovered by computer search [19, 45, 46].
Though it is widely accepted that AG codes on C; yield inany good linear codes,
still it has not been clear that conditions under which AG codes on C,; really have good
- parameters. This is an important problem to be solved if we intend to utilize AG codes in
actual applications. So in this dissertation, we first compare the parameters of AG codes
on C,, with those of BCH codes, and draw a necessary condition for AG codes on Cy
to have better parameters than BCH codes. More precisely, we derive a boundary on the
number of check symbols in terms of a, b (parameters which determine the essential part
of the curve Cg) and the genus of Cg. Then, AG codes on Cy; with the number of
check symbols beyond the boundary can be better than BCH codes. It is noted that this
boundary on the number of check symbols is relatively small in general compared with
code length. In other words, AG codes on C,; which satisfy the condition include codes

whose rate is high enough to be utilized in practical applications.

It is known that taking subfield subcodes is one of the most important approaches to
~ obtain good codes. Representative examples are BCH codes (subfield subcodes of Reed-
Solomon codes), classical Goppa codes and alternant codes (subfield subcodes of generalized
Reed-Solomon codes). But it is also known that it is difficult in general to explicitly de-
termine the parameters of subfield subcodes from the parameters of the original codes.
Therefore, to develop methods to evaluate the parameters of subfield subcode is an impor-
tant open problem. For this purpose, several authors have investigated how to estimate
parameters of subfield subcodes [13,43,45,46]. Stichtenoth [37] has given a general esti-
 mate for the dimension of subfield subcodes of arbitrary linear codes. By investigating
Stichtenoth’s approach in detail, we propose in this dissertation a tighter lower bound,
denoted by kprop, for the dimension of subfield subcodes of arbitrary linear codes.
Next, we restrict our discussion to subfield subcodes of AG codes on Cy,. The bound
Eorop is rather good when the number of check symbols of original codes is relatively small,
while unfortunately, it does not give a sufficiently good estimate when the number of
- check symbols is relatively large. On the other hand, we have shown in Chépter 3 of this
dissertation that AG codes on Cy; can be good when the number of check symbols is
relatively large. Thus in order to find good codes in subfield subcodes of AG codes on

C, it is considered effective to take AG codes on C, with relatively large number of



""Eheck symbols as original codes. By restricting the codes to AG codes on C,p, we can
V ”r‘j”’i‘r“‘improve the bound ‘kpop especially when the number of check symbols is relatively large.
- Moreover the improved bound fér the dimension of subfield subcodes of AG codes on C
~can be computed only from a, b and ¢ (the order of the field over which subfield subcodes are
: mdeﬁned) when the code length is given. Thus calculating the improved bound is much easier
| ‘than calculating the true dimension from the parity check matrix by Gaussian elimination.

“We also show through a numerical example that the improvéd bound can exceed the true
s dimension of a shortened BCH code with the same code length and designed distance,

~while the Stichtenoth’s bound cannot.

‘ In the early 1990s, a new parameter of linear codes called generalized Hamming weights
* was introduced by Wei [42]. He clarified in his paper the relation between the generalized
V“"“"Hamming weights and a wire-tap channel problem in an area of security [44]. Subsequently,

it was also shown that the generalized Hamming weights reflect a trellis or state complezity

of linear codes [11,12], which determines the complexity of maximum likelihood decoder

-employing trellis structures of linear codes. Moreover, the Carlitz-Uchiyama bound, which
_gives a lower bound for the minimum distance of the dual of binary BCH codes {17], was
| generalized to a bound for the generalized Hamming Weights of trace codes [39).

For the applications of generalized Hamming weights mentioned abgve, it is important
to evaluate the true generalized Hamming weights for given codes. However, it is not
easy to evaluate the true weights except for some special codes such as Hamming codes,

Reed-Muller codes and MDS (Maximum Distance Separable) codes. Thus bounds for the

generalized Hamming weights have been investigated in many literatures [20, 27,41, 47].
. Recently in [8], a bound called order bound was introduced in a general setting of codes on

algebraic varieties which includes the one-point AG codes.

In this dissertation, we introduce a new lower bound for the generalized Hamming
weights of arbitrary linear codes in terms of a notion of well-behaving, which is known
to act an essential role in the Feng-Rao decoding algorithm [3]. While the conventional
bound requires some structures of the concerned [n, k] code C, the proposed lower bound
can be calculated only from a sequence of vectors, B := {hy, hs,..., h,}, which is a basis
of F* and whose first n — k elements constitute the row vectors of parity check matrix of
the code C. Next, we introduce a parameter ¢(C), which is uniquely determined from the

basis B, and show that the ¢-th generalized Hamming weight of C is equal to n — k+ ¢ for



g(C) +1 <t < k. A code whose ¢-th generalized Hamming weight is equal ton — k+1 is
- gaid to be t-th rank MDS [42]. Thus we can say that any linear code is t-th rank MDS for
g(C)+1<t<k.

This dissertation is organized as follows. In Chapter 2, we briefly review AG codes,
- especially AG codes on Cg;, and codes on affine algebraic varieties. We also give a couple of
propositions needed in the following chapters. In Chapter 3, we compare the parameters of
AG codes on C;, with some shortened BCH codes. In Chapter 4, we propose a lower bound
for the dimension of subfield subcodes which exceeds Stichtenoth’s bound and improve the
~ proposed bound for AG codes on Cy,. In Chapter 5, we investigate a lower bound for the
generalized Hamming weights of arbitrary linear codes. Finally in Chapter 6, we summarize

the results obtained in this dissertation and list problems for further studies.



i Chapter 2

- AG Codes and Codes on Affine
Algebraic Varieties

Throughout of this dissertation, we denote a finite field with ¢ elements by F, or simply
F. '

2.1 Algebraic geometry codes

We review the definition of AG codes [38].

Let F/F be an algebraic function field of genus g over a finite constant field F'. Let
{P,,P,,...,P,} be aset of places of degree one in F/F. Let G and D be divisors of F/F
such that D = P, + Py + - -- + P, and Supp (D) N Supp (G) = 0. Define the vector space
L(G) as follows:

LG) = {feF:(f)>—-Gor f=0}, (2.1)

where (f) is the principal divisor of f.

Consider the F-linear evaluation map ¢ by

¢: L(G) = F™
f H(f(Pl)’f(P2)77f(Pn))

Then the algebraic geometry (AG) codes Cr(D,G) and Cq(D, @) associated with two
divisors D and G is defined by

(2.2)

Cr(D, G) = Image(¢) = ¢(L(G)), Ca(D,G) = Cr(D,G)*. (2.3)



For a divisor A of F/F, denote by dim A and deg A the dimension of L(A) over F
" and the degree of A, respectively.

Propdsition 2.1 [38] Let D and G be divisors of F/ F defined above.
(i) CL(D,G) is an [n, k,d] code with parameters

k=dimG — dim(G — D) and d > n — degG.

(ii) Ca(D,G) is an [n, k', d'] code with parameters

E'=n— (dimG — dim(G — D)) and d' > deg G — (29 — 2).

2.2 AG codes on C

Definition 2.1 [10,19] Let a and b be positive integers such that o < b and ged(a, b) = 1.

Then the defining polynomial of the curve C; is expressed as
.
h(z,y) = a(b,O)iUb + o0,0)Y" + R'(z,y),
h/(x, y) = Z a(i,j)xiyj>
0<4g, . (2.4)
i+j<b,
ai+bj<ab

oG, € Fy 0 7 0, ap,0) # 0

~where h(z,y) is non-singular and absolutely irreducible. QO
It is well known that the genus of C; is [19)]

1 -

gzi(a—l)(b—l). (2.5)

_ We denote by F(C)/F an algebraic function field F(z,y)/F with h(z,y) = 0. Let
- Q be the common pole of z and y and G := m(). Then a basis of L(G) is given by the

- following proposition.

Proposition 2.2 [19] For z5y¢ € F(C)/F, let 7(z%y%) := ak + bl. Then
Tap(m) = {zfyt  0<k0<L<a— 1,7(z*y) < m} (2.6)

' is a basis of L(mQ). 0



: It is known that for f = z*y? € L(mQ), 7(f) = —vo(f) where vg is a discrete
' yaluation [38] of F(C )/ F associated with the place Q.

Lemma 2.1 The code length n of C(D,mQ) and Co(D,mQ) on Cy is less than ¢>.

(Proof) It is known that there exists one-to-one correspondence between places of degree

 one in F(Ca)/F and F-rational points of Co[26]. By Eq.(2.4),

n={(z,y) € F* : h(z,y) = 0}.

Noting of = « for all & € F = GF(q), we can replace h(z,y) by its reduced polynomial
[15], which we denote by h(z,y). Since the degree of h(z,y) with respect to y is less than

q, the number of roots of h(c,y) = 0 is less than ¢ for all @ € F', which implies n < Q.
[

2.3 Codes on affine algebraic varieties

In this section, we denote by R := F[X1, Xs,...,X;] the polynomial ring R in s variables
- and by Ny :={0,1,2,...,} the set of non-negative integers.

2.3.1 Codes on affine algebraic varieties

Definition 2.2 (23,24, 26] For a subset V C F*, we denote by I(V) the ideal of the poly-

nomial ring R given by
I(V):={f € R: f(P)=0forall P eV}
. We also denote by R(V) the coordinate ring of V defined by R(V') :== R/I(V). 0

For f € Rand V = {P, P,,..., P,} where n := |V], let ¥(f) = (f(P1), f(P2),- -,
f(P,)). Then it is shown in [23, 24, 26] that the coordinate ring R(V') and F™ are isomorphic
as linear spaces over F and an isomorphism is given by the F-linear map ¢ : R(V) — F"
which is induced by . For subspace L of R(V), (L) is called a code constructed on an
affine algebraic variety V [23, 24, 26].

It is shown that in addition to the definition of codes on affine algebraic varieties, if a
monomial order and a Grobner basis are given, a non-trivial lower bound for its minimum
distance can be derived as the Feng-Rao designed distance of the code. We review monomial

orders and Grobner basis in the next subsection.

7



2.3.2 Monomial orders and Grobner bases

: >‘ : A monomial in R is a polynomial of the form

oy e ., as :
a’(al,az,...,as)Xl 2 Xs %y Q(ay,a2,.0s) # 0.

For simplicity, we shall use the notation ao X% Wwith a = (o4, a2, ..., ;) € N§ to denote

al a2 . e 0 e+
a(alaa21“-aaa)X1 2 Xs i

Definition 2.3 [1] A monomial order on R is an order < on Ng, or equivalently an order

on the set Qf monomials X (a € N§), satisfying:

(i) < is a well-order on N§, that is, < is a total order on N and every nonempty subset

of Nj has the smallest element with respect to <.

(i) fa < Band vy € N§, thena+y<B+v".

Wewritea < Bifa<Bora=,.

Definition 2.4 [1] Let f = Taens 0oX ™ be a polynomial in F[X] and < be a monomial
order. Then the multidegree of f, denoted by mdeg(f), is defined by

—00 1= (—00, —00, ..., —09), if‘f: 0,

d =
maegf) max{a € N§ : an # 0}, if f+£0

where the maximum is taken with respect to <. The leading term of f, denoted by LT(f),

Uis defined by
0, if f=0,
LT(f) :=
{ amdeg(f)deeg(f): if f # 0.

Proposition 2.3 [1] Let f, g be polynomials in R. Then:

(i) mdeg(fg) = mdeg(f) + mdeg(g).

(ii) mdeg(f + g) < max.{mdeg(f), mdeg(g)}, and equality holds if mdeg(f) # mdeg(g).

U For a = (0, Qz,. .-, 05), B= (B1,B2,-..,8s) € N§, a+ B:= (a1 + fr, 0 + Ba, ..., s + fBs).

8



O

' Definition 2.5 [1] Fix a monomial order on R. A finite subset G = {g1,92,..-,9¢} of an
it ideal I of R is said to be a Grébner basis of I if

(LT(I)) = (LT (91), LT (g2), - - -, LT(ge)),

where (LT(I)) and (LT (g1), LT (gs), ..., LT(ge)) denote the ideals generated by {LT(f) :
§ € I\ {0} and {ET(01), LT(g2), .., LT(an)}, respectively. 0

It is known that the following propositions hold for Grébner bases.

Proposition 2.4 [1] Let G = {¢1,62,...,g¢} be a Grobner basis of an ideal I of K. Then
for any f € F[X], there exists a unique polynomial 7G € R which satisfies the following

two properties.
(i) 7 =0 or no term of f° is divisible by LT(g;) (1 < Vi < £).
(i) fi=f T €l ie,

¢
fI:f—TGZZfz‘gi, fi€R, g €G. (2.7)

=1

O

In Eq.(2.7), }f_G is called the remainder on division of f by G, and denoted simply by
7 if there is no fear of confusion. By Proposition 2.4, we see that {f : f € R} gives the
representatives of all cosets of R(V) := R/I(V). Thus, in what follows, we identify R(V)
(with {f: f € R} and use the F-linear map 1 for 1.

Definition 2.6 23,24, 26] For given V' C F?, define A(V) C N§ by

AV):=Ng\ U {mdeg(f) + Ng} (2.8)
fel(vi\{o}
where {mdeg(f) + N5} := {mdeg(f) + & : o € N§}. O

Proposition 2.5 [23,24,26] Let G = {g1, s, ..., 9¢} be a Grébner basis of I(V). Then:
—G
(i) X* = X*for A e A(V).

(i) {X*: X e A(V)} is a basis of R(V).




(iii) A(V) = Ng\Uizi{mdeg(g;) + Ni}.

[
Since |V| = n and R(V) is an n-dimensional linear space over F, we have from
Proposition 2.5-(ii) that |
n=dimR(V) = {{X*: A€ AV)} = |A(V)].
Thus we may write A(V) as
A(V)A: AL A2, At A < Ay (2.9)
Then by Proposition 2.5-(ii) again, a basis of R(V'), denoted by B(V') can be written as
B(V):={X*, X, .. .Y,X"“} = {f1, for--, fu}- (2.10)

Lemma 2.2 Notations as in Proposition 2.4 and Proposition 2.5. Let f € R be a mono-

mial. Then:
(1) mdeg(f) < mdeg(f).
(i) mdeg(f) < mdeg(f) if ' # 0.
(iii) mdeg(F) < mdeg(f) if and only if mdeg(f) & A(V).

(Proof) (i) As is noted after Proposition 2.4, f € R(V) and by using the basis B(V) of
R(V) given in Eq.(2.10), f can be expressed as

4
h—

F= 2 axXV ayerl (2.11)
AjEA(V)
Therefore mdeg(f) € A(V).
If f/=0, f = f and obviously mdeg(f) < mdeg(f).
If f' # 0, there exists a term f;g; in Eq.(2.7) such that mdeg(f’) = mdeg(fig;) and
we have from Proposition 2.3-(i) that mdeg(f’) = mdeg(f;) + mdeg(g;), which implies

mdeg(f’) ¢ A(V) by Proposition 2.5-(iii). Thus mdeg(f’) # mdeg(f) and we have from
Proposition 2.3-(ii) that

mdeg(f) = max {mdeg(/"), mdeg(f)}. (2.12)

10



Therefore mdeg(f) < mdeg(f).

Proposition 2.5-(i) that f = f, i.e., f' =0 and contradicts the hypothesis.
(iii) If mdeg(f) < mdeg(f), i.e., mdeg(f) # mdeg(f), we immediately get

mdeg(f) = mdeg(f") ¢ A(V)
~ " gince we have from Eq.(2.12) that either -

mdeg(f) = mdeg(f) or mdeg(f) = mdeg(/")

must hold.

by Eq.(2.11). This implies that mdeg(f) < mdeg(f) by (i) of this lemma.

11

(i) Suppose mdeg(f) = mdeg(f). Then mdeg(f) € A(V) by Eq.(2.11), and since f

is a monomial, f must be expressed as f = axX A for some XA € A(V). This implies by

Conversely, if mdeg(f) ¢ A(V), we have mdeg(f) # mdeg(f), since mdeg(f) € A(V)

|



Chapter 3

The Performance of ‘Algebraic

Geometry Codes

3.1 Introduction

In this chapter, we show that the conventional BCH codes can be better than the AG
codes when the number of check symbols is relatively small. More precisely, we consider
an AG code on C,;, whose number of check symbols is less than min{g + a,n — g}, where
n and ¢ denote the code length and the genus of the curve, respectively: It is shown that
there always exists an extended BCH code, (i) which has the same designed distance as
the Feng-Rao designed distance of the AG code and the code length and the rate greater
than those of the AG code, or (ii) which has the same number of check symbols as that of
the AG code, the designed distance not less than that of the AG code and the code length
Jonger than that of the AG code.

3.2 Preliminaries

In this section, we review Feng-Rao designed distances of AG codes on Cl; in terms of the
structure sequence define in [21].

Hereafter we examine the residue Goppa code Cq(D,m@) on Cy, with genus g. In
this chapter, we always take { P, ..., P,} as the set of all places of degree one in F(Cly)/F
except @ in order to make the code length as long as possible. Thus we denote Cq(D, mQ@)
as Co(mQ) for simplicity.



3.2.1 Structure sequence and gap sequence

Denote the code length, the number of information symbols and the number of check
symbols of Co(m@Q) by n = n[Cq(mQ)] (independent of m), £[Ca(m@)] and r[Ca(mQ)],

‘respectively.

Definition 3.1 [21] The structure sequence associated with Co(m@) (m = 0,1,2,...) is
given by

S(Q)={m:me{0,1,2,...}, k[Ca(mQ)] < k[Ca((m — 1)Q)]}.

O

It is known that the cardinality of S(Q) is n [21], and therefore we can express S(Q) as
{p1, P2, s} (pi < piy1). It is also known that any p; € S(Q) (1 < i < n) can be
expressed as [21]

p=ak+bl,0<k 0<{f<a—-1 (3.1)

Proposition 3.1 [21]
(i) pp=0and p, =n+ 29— 1.
(i) If n > 2g, then p, = 29 — 2.
(iii) fn>2g+1,thenpy=g+i—-1forg+1<i<n-—g.

(iv) If t <n—g, then {p1,..., 0} = {7(f) : F € Tas(pe)}.*

Proposition 3.2 [21]
(i) For m < py, Ca(m@Q) = F™.

(if) For m such that p; <m < pey — 1, Ca(m@Q) = Ca(pQ) and rlCo(pQ)] =1t (1 <t <
(iii) For m > pn, Ca(m@Q) = {0}.

1 1t is concluded from Eq.(3.1) and this proposition that all integers such that ak + b (< pn_g)
(0 <k, 0< €< a—1) are elements of S(Q).

13



d

We see from Proposition 3.2 that it is sufficient to examine the codes Co(p:Q) (t =
1,2,...,m—1). It is noted here that the parity check matrix of Cq(p,Q) is given in terms
of the structure sequence as follows. Let fi(z,y) and f;(z,y) (j = 2,3,...,%) be nonzero
elements in L(p;Q) and L(p;Q) \ L(p;—1Q) ( = 2,3,...,t) which satisfy 7(f;(z,)) = p;
= (j=1,2,...,t), respectively.? Then the matrix

fi(P) fi(P2) -+ fi(Pn)

o, f2<:Pl) fQ(:Pz) fz(:Pn> (3.2)

 fi(Py) fi(Pa) - fil(Pa) |
becomes a parity check matrix of Cq(p:Q) where {Pi, P,,..., P,} denotes the set of all

places of degree one in F(Cly,)/F except Q.

Definition 3.2 [21] Denote by £(m@) the dimension of the linear space L(m@Q) given in
Eq.(2.1). Then the gap sequence at @ is defined by

G(Q)={m:me{0,1,2,...,}, {(mQ) = {((m - 1HQ)}.

O

It is known that the cardinality of G(Q) is ¢ [21], and therefore we can express G(Q)) as
{2 A2, -, Ag} (A < Aiyr). It is also known that if n > 2g, then p; =29 —2, Ay =2g — 1
and {p1,...,pet U{A1,..., A} =1{0,1,2,...,2¢ — 1} [21].

{
s

3.2.2 Feng-Rao designed distance

The Feng-Rao designed distances of the residue Goppa codes on Cj; are given in terms of

the structure sequence as shown in the following theorem.

2 For example, f; € Tas(p;) with 7(f;) = p; satisfies this condition.
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Proposition 3.3 [14,21] The Feng-Rao designed distance drr[Ca(p:@Q)] of the residue

Goppa code Cqa(p:Q) on Cl, is given by

( |pe/b] + 2, for 1 <t < min{g,n — g},
min{p € S(Q): p>t+1—g}, formin{g,n—g} <t<
denlCalpiQ)) = : h formin{a.n =
min{3¢g — 1,n — g},
(t+1—g, for min{3g — 1,n—g} <t<n-—yg,
: (3.3)
where n is the code length of Cq(p:Q). : 0O

For our later discussion, we give a modified version of Proposition 3.3.

Theorem 3.1 dpr[Ca(p:Q)] is given or bounded by

= bl +2, for 1 <t < mi +a,n—g},
derlCalp@) 4~ /Y 2 forist<min{gtan =g} (34)
> |pe/b] +2, for min{g+a,n—g}<t<n-—g
(Proof is given in Appendix 3A.1.) O
3.3 Extended BCH codes better than AG codes
3.3.1 Codes for mediator
Define
f =
M) = 1 oru =10, (3.5)
{zvfyt 0 <0< u}, foru>0
cand

M*(w) = MO)UMQ)U - UM(u).

For fi(z,y) € M*(u) (k = 1,2,...,v, v = |[M*(u)]), we use fx(P;) to indicate fx(zs ys)
for P, = (x;,1;) which is a F-rational point of Cy defferent from Q.

Let o be a primitive element of GF(¢?), and define H1(u), Ha(u), Hy(u) and H3(u)
by

AP fi(B) - i Pa) ]
Jfo(Py) fo(Pa) -+ fo Pr)

_fU(Pl) fu(PQ) T fu(Pn)

15



(11 1--- 1

0alal - ot 2
Hy(u):= |00 0?--- o272 |, (3.7)
00l a® au(q2—2)
-1 ao al “ e aqg—Q
0 ao sz P a2(q2'—2)
H(u) = , (3.8)

_O ao Aau PR au(q2'”2)

1 1 --- 1
a§1 aé? PRI ain
H;(u) = | o o2 ... g% (3.9)

au&. au52 PPN augn

where in Eq.(3.9) of is the representation of z;00+ y; as a power of o for F; = (z;, y;) with

the convention that for z; = y; = 0,

1, for £ =0,

ak@:(aziaw)k:{o for k > 0
, for .

Denote by Ci(u), Ca(u), Ch(u) and C3(u) the codes over F' = GF(q) whose parity

check matrices are Hy(u), Ho(u), Hy(u) and Hs(u), respectively. We also denote by
 nfG(w)], r[Ci(w)], dperlCi(u)] and R[C;(w)], the code length, the number of check symbols,
“the designed distance given by the BCH bound and the rate of C;(«) (i = 1,2, 3) and C3(u).

Then we have the following lemmas.
Lemma 3.1
(i) nlC1(w)] = n[Cs(u)] = n < ¢* and n[Cs(u)] = n[C3(w)] = ¢*.
(i) dpculCa2(u)] = u+2.
(iii) C1(u) is a subcode of Cs(u).

(Proof) (i) Obvious from the definitions of Ci(u) (i = 1,2,3) and Cy(u) and Lemma 2.1.
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(ii) The BCH bound for Cy(u) (an extended BCH code over GF(q) with code length ¢?).

(iii) Note in Eq.(3.6) that
{fl(x)y)afZ(z)y)a-- . ,lfu(w,y)} - {mk —tyt 10 < k < u, 0 < V4 < k}
Then since H;(u)c! = 0 for ¢ := (¢1,¢o,. ..  cn) € C1(u), we have
ch ktyt

forall k (k=0,1,...,u)and £ ({=0,1,...,k). Thus for c € Cl(u), we have

forall k (k=0,1,...,u). This, by Eq.(3.9), implies ¢ € C3(u) and completes the proof.

Lemma 3.2
(i) rlCa(w)] = r[Ca(u)] < rlCi(u)]
(i) R[Ci(u)] < R[Cs(w)] < R[Ca(w)].

((Proof) (i) The equality r[Ca(u)] = r[Cs(u)] is directly obtained from the definition of
H,(u) and Hs(u). The inequality r[Cs(u)] < r[Ci(u)] is an immediate consequence of
Lemma 3.1-(iil).

(ii) By the definition of code rate, R[Ci(u)] = 1 — r[Ci(u)]/n[Ci(w)], ¢ = 1,2,3. Note
Lemma 3.1-(i) and (i) of this lemma. O

Lemma 3.3 For 1 < ¢ < min{g + a,n — g},
dculCa(pe/b))] = drrlCalp@)] = p:/b] + 2. (3.10)
(Proof) Immediate consequence of Theorem 3.1 and Lemma 3.1-(ii). O
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Lemma 3.4 The number of check symbols of Ca(u) (0 < u < ¢* — 2) satisfies

2,ig+i<u<ig+(g—1),0<i<qg—2,
rlCo(u+1)] = r[Co(u)] = 0, ig+ (g— 1) <u< (i+1)g+i, 0<i<qg—2, (311)
Lu=(@G+1)g+4 0<i<qg—3.

~ (Proof is given in Appendix 3A.2.) _
.~ Lemma 3.5 For 0 < u < ¢* — 2,

() i) =1, (1)) = 2.

(ii) 7[Ch(u)] + 1 = r[Ca(u)).

(iii) dpculCh(u)] = dpcu[Co(u)] — 1 =u+1.

(Proof) (i) As shown in the proof of Lemma 3.4,

r[C2(0)] = deg Go(2),
Go(z) = LCM[mg(z)] = = — 1.

" Therefore we have 7{C5(0)] = 1. Then by the definitions of H(1) and H5(1) and the first
expression of Lemma 3.4, we have 7[C5(1)] = r[C3(1)] — 1 = r[C2(0)] + 1 = 2.

(ii) is directly given by the definitions of H(u) and H(u).

~ (iii) is immediately obtained from the definitions of H(u) and HY%(u) and the BCH bound.
t

= Lemma 3.6 For any ¢ such that 1 < ¢ < min{g-+a,n — g}, there exists an extended BCH
code Cy(u) or Ch(u) whose number of check symbols is ¢ and code length is ¢°. (Proof is

given in Appendix 3A.3.) O

3.3.2  Relation between Co(pQ) and extended BCH code (I)

Here we investigate the relation between the parameters of Cq(p,@Q) and those of Cy(u)

whose designed distance is equal to dpgr[Ca(p:Q)].
Lemma 3.7 For M (u) defined in Eq.(3.5),
M(u) C L(p:Q) (3.12)
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holds if and only if y* € L{p:Q).
(Proof) It is obvious that if M (u) C L(p:@), then y* € L(p:Q)-
To prove the converse, suppose y* € L(p;Q). This implies that 7(y*) < p;. Note here
that since a < b, '
(¥4t = a(u — £) + bl < bu = T(y¥).

Therefore for any f € M(u), 7(f) < 7(y*) < pt, which implies f € L(p;Q). O

Lemma 3.8 Let unyax be the maximum value of u that satisfies Eq.(3.12) for given p;.
Then '
Umax = Lpt/b_l . (313)

(Proof) Since 7(yle/)) = b|p;/b] < py and 7(ylee/b1+1) = b(| ps/b] + 1) > p;, we have

yl/ e L(pQ) and ylo/t1¥ o L(p,Q).

Therefore up,, = |p:/b] by Lemma 3.7. O

Lemma 3.9 Cq(p,@) is a subcode of Cy([p;/b]). Therefore r[Cq(p:@Q)] > r[C1(|p:/b])] and
R[Ca(p:Q)] < R[C:(pe/b))].

(Proof) Lemma 3.7 and Lemma 3.8 imply that M*(|p¢/b]) C L(p:Q). Then we see that
the linear space spanned by H;(|p:/b]) is a subspace of the spaces spanned by H; given in
Eq.(3.2). Since Co(p,@) and C,(|p:/b]) are the orthogonal spaces of linear spaces spanned
by H,; and H,(|p:/b]), respectively, Ca(p:Q) is a subcode of C; ([ p:/b]). O

Now, we have (a) drr[Ca(p:Q)] = dsculCa(|p:/b])] for 1 < ¢t < min{g+a,n— g}
“by Lemma 3.3, (b) n[Ca(p:Q)] < n[Ca(|ps/b])] by Lemma 3.1-(i), and (¢) R[Ca(pQ)] <
R[C1(]p:/b])] < R[C2(|p:/b])] by Lemma 3.2-(ii) and Lemma 3.9, which are summarized |

as:

Theorem 3.2 For a residue Goppa code Cq(p:Q) with 1 < ¢ (= r[Cq(p:Q)]) < min{g + a,
n — g}, there exists an extended BCH code, i.e., Co(|p:/b]), having the same designed
distance as the Feng-Rao designed distance of Cq(p:@) and the code length and the rate
greater than those of Cq(p:@). O

Example 3.1 To illustrate Theorem 3.2, we consider the residue Goppa code Cq(p:Q) on

the curve z° + y* +y = 0 over F' = GF(2*), which is known as a Hermitian curve. In
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this case, a = 4,b = 5 and g = 6, and the code length is 64. For Cq(p,Q), we can take a
correspoﬁding extended BCH code C3(|p:/5]) over GF(2*) with code lengfh 256.

| By using the Feng-Rao and the BCH bounds, Fig. 3.1 compares the minimum numbers
of check symbols which are required for Cq(p:Q) and C2(|p:/t]) to attain the given designed
distance. The Goppa bound for Cq(p;Q) is also shown for comparison. As seen from
Fig. 3.1, when r[Co(p;Q)] satisfies the condition of Theorem 3.2, i.e., 1 < r[Cqo(nQ)] <
min{g + a,n — g} = 10, and even in the case of 7[Cq(p;@)] = 10 or 11, the extended BCH
code C3(|p¢/5]) does not require a larger number of check symbols than that of the AG
code while achieving the same designed distance.

For example, to attain the designed distance 5, the extended BCH code needs only
7 check symbols while the AG code needs 10 symbols, and rates of the BCH and the AG
codes are 249/256 = 0.973 and 54/64 = 0.844, respectively. ]

3.3.3 Relation between Cq(p;Q) and extended BCH code (1)

Here we investigate the relation between the parameters of Co(p;Q) and those of Co(u) and

C}(u) whose numbers of check symbols are equal to that of Cq(p,Q).

Theorem 3.3 Tor a residue Goppa code Cq(p,Q) with 1 < ¢ (= 7[Cq(nQ)]) < min{g + a,
n — g}, there exists an extended BCH code, i.e., C2(up) or Cy(ug) for some ugy, having the
same number of check symbols as that of the AG code, the designed distance not less than
that of the AG code and the code length longer than that of the AG code. (Proof is given
in Appendix 3A.4.) O

Example 3.2 We show in Fig. 3.2 an illustration of Theorem 3.3 for the same AG code
as in Example 3.1. As for extended BCH codes Cy(u) and Ci(u), we can take ones defined
by Hq(u) and Hj(u), respectively, with code length 256. Fig. 3.2 compares the designed
distance of Co(p,@) with that of Cy(u) or Ci(w), which are guaranteed by the Feng-Rao
and the BCH bounds for given number of check syrhbols. As seen from Fig. 3.2, when the
7[Ca(pQ)] satisfies the condition of Theorem 3.3, i.e., 1 < 7[Co(p,Q)] < g + a = 10, and
even in the case of 7[Cq(p@Q)] = 10, the designed distance of Co(u) or Cj(u) ® is not less
than that of Cq(p:@).

® In this example, we have C5((t — 1)/2) for odd t’s and C4(t/2) for even t’s.
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For example, when we use 9 check symbols, the designed distances of the extended
BCH code C5(4) and the AG code Ca(po@) are 6 and 4, and the rates are 247/256 = 0.965
and 55/64 = 0.859, respectively. O

3.4 Conclusion

In this chapter, we have shown that for an AG code on C,;, whose number of check symbols
is less than min{g + a,n — g}, there always exists an extended BCH code, (i) which has
the same designed distance as the Feng-Rao designed distance of Co(p:@) and the code
Jength and the rate greater than those of Ca(p:Q), (ii) which has the same number of check
symbols as that of Co(p:Q), the designed distance not less than that of Cq(p:Q) and the
code length longer than that of Ca(p:Q).

Appendices

3A.1 Proof of Theorem 3.1

(I) The first expression of Eq.(3.4): We separate this case into the follmﬁng two cases.
(I-i) In the case 1 < ¢ < min{g,n — g}: Theorem 3.1 is Proposition 3. 3 1tself in this case.
(I-ii) In the case min{g,n — g} < t < min{g+a,n — g} Ifg>n—gthen g+a>n—g
and we have n — g <t < n— g, t.e., this case is empty. Hence it is sufficient to consider
the case
min{g,n — g} = g <t <min{g+a,n—g}. (3A.1)
L We examine Eq.(3A.1) by appending the additional conditions (a) g+a < 3g-—1 and
(b) g+a>3g— 1.
(a) In the case g+a < 3g—1: Since min{g + a,n — ¢} < min{3g —1,n — g}, drr[Cal(p:Q))
is given by the second expression of Eq.(3.3). Noting Eq.(3.1) and 0 <t —g < min{g + @,
n— g} —g < aby Eq.(3A.1), it is clear that the minimum p € S(Q) which satisfies
p:ak+b€2t+l—gisa(k:I,E:()),ze

drr[Ca(0:Q)) = a

On the other hand, by noting that ¢ < n — g from Eq.(3A.1), t.e., n > 29+ 1, we
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have from Proposition 3.1-(ii) and (iii) that p; is expressed as

2g—2, fort=g,.
Pt =

g+t—1,forg+1<t<min{g+a,n-—g}

Hence for ¢ <t < min{g + a,n — ¢}

2 ] 1572 < P2

But 99 — 9 (a—1)(b—-1)—2
{gb J: b J:a_2
and [2g+ba_2J: (a-l)(b—bl)+a—2J:a_2.

Thus we have for g < t < min{g +a,n — g}
5] =e

drr[Ca(p:Q)] = {%J + 2.

(b) In the case g +a > 3g —1: Since 3g — 1~ (g+a) = (e — 1)(b—2) — 2 < 0, we have
only two cases; (b-1) a =1 (¢ = 0) and (b-2) a =2, b =3 (g = 1). But for (b-1), there
is no ¢ (> 1) that satisfies Eq.(3A.1). Therefore, we only need to consider the case (b-2),

and therefore, for case (a)

that is,
1 <t < min{3,n—1}.

Then it is clear that only two cases, i.e., (b-2-i) ¢ = 1 for which we must have n > 3 and

B

(b-2-11) ¢ = 2 for which n > 4, are possible.

For the case (b-2-1), drr[Ca(p:@)] is given by the second expression of Eq.(3.3) because
t =1 < min{3¢g—1,n—g} = min{2,n -1} = 2 (n > 3). Then it is clear that the
minimum p € S(Q) which satisfies p =ak+bl>t+1—-g=1is p=2 (k=1,£=0), and
we have

der[Ca(p:@)] = 2.

For the case (b-2-ii), drr[Ca(p:@)] is given by the third expression of Eq.(3.3) because
t =2 > min{3g — 1,n — g} = 2. Then we have

drr[Ca(p:Q)] = 2.
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On the other hand, because p; = 0 by Proposition 3.1-(i) and p, = a by Footnote 2,

we have 0
P1 :
— 2=|- 2 =2,
[bJJ“ {3J+
P2 2J
== 2=|= 2= 2.
{bJ+ t3 *

Therefore for case (b), ' .

drr[Ca(p:Q)] = [%tj + 2.

(I) The second expression of Eq.(3.4): We only need to consider the case where min{g +a,
n — g} = g + a, since otherwise there is no ¢ that satisfies min{g +a,n - g} <t <n-—g.
Then by the second and third expressions of Eq.(3.3), we have

dFR[CQ(th)] >t+1l—g=a+1+ t’, (3A2)

where t/ :==t—g—a (0 <t <n—2g—a).
On the other hand, noting n > 2¢g+1 since g+a < n—g, we have from Proposition 3.1-
(ili) and Eq.(2.5) that

Pt g+it— 1J
— 2= |/ 2
[ b J * L b *
, P—
_|29+a+t 1J I
i b
L ,
=a+1+ [EJ : (3A.3)
Therefore, noting t' > |#//b| for ' > 0 we have from Egs.(3A.2) and (3A.3) that
drnlCa(p@)) 2 | 5| +2

(QED.)

3A.2 Proof of Lemma 3.4

Let C}(u) be the BCH code with code length ¢*> — 1 defined by the parity check matrix
given by removing the first column of Ho(u). Then r[Ca(w)] = r[C5(u)] for 0 < u < ¢* — 2.
Let o be a primitive element of GF(¢%) and denote the minimal polynomial of o

(£=0,1,...,u) by me(x). Then the generator polynomial G, (z) of C5(u) is given by
Gu(z) = LCM[mo(z), m1(z), . . ., my(2)]
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and r[Cs(u)] = deg G, (z).
Note that any v (0 < u < ¢®> — 2) is expressed as u = ig+j (0 < 1,7 < ¢g— 1) and
thereby any £ € GF(q%)\ {0} is expressed as € = &% with some i and j. Therefore £7 = ¢,

if and only if 7 = j since (a¥9)? = 79+, This implies that

1, 4=

Ad
2,1 j. (34.4)

deg mig4;(z) = {
Next for given u = ig + j(< ¢® — 2), we divide the set {a® : 0 < s < u} into the

following three sets

A ={c’ :s=kq+k <u},
By :={cf: kg+ (k+1) < s <min{kq + (¢ — 1), u}},
Cr:={c’: (k+1)g<s<min{(k+1)g+k,u}},

which are all disjoint, and define
k k k-1
o (e)u(Qa)u o)
=0 =0 =0

Then it is easily verified that

B1=B¢cA, forVBe A
’)’q € U Cy ¢ Dy, for Vv € B,
f=k

k
5% e | By, for V5 € C.
£=0

(3A.5)

Note that Do, = {e° : 0 < s < u} by the definition of D,. Then it is easily seen from

&Eq.(BA.")) that the set of minimal polynomials which is necessary and sufficient to construct
the generator polynomial of C;(u) is given by the all minimal polynomials for the elements
of Do \UR2,Cy. Note from Eq.(3A.4) that the degrees of minimal polynomials for elements
in Ag, By and Cy are 1, 2 and 2, respectively. Thus

U

k=0

e

U B
k=0

= S A 230 1By
k=0 k=0

deg Gy (z) = +2
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where 352, |Ak] and 322, | Bi| are given by

o i, for i > 7,
DAl =9 .
k=0 1+ 1, for i < j,
1
ig — =i(i + 1), for 1 > j,

DB =
k=0 iq——ii(i+1)+(j~i), fori <7,

respectively. Therefore we have for given v = ig + j

Gy = 2T fori>g, (3A.6)
T Ut = .
2 2(u ~ i) —i%+1, fori < j.

The following four cases are possible.
(D ig+i<u<ig+(g—1) (0<i<g-—2).
Since u =ig+j with¢ < jand u+1=ig+ (j+ 1) with ¢ < j +1, both 7[C}(u)] and
| r[C5(u + 1)] are given by the second expression of Eq.(3A.6) and we have

r[Ca(u + 1)] — 7[Cao(u)] = 2.

(i) v=1dg+(¢—1) (0<i<g-2). |

r[C5(u)] is given by the second expression of Eq.(3A.6) since 1 < j = ¢ — 1 and
r[Cs(u+1)] is given by the first expression of Eq.(3A.6) since u + 1 - (t + 1)g, i.e.,-
1+ 1> 7 =0. Thus we have

T[Co(u + 1)] — r[Ca(u)]
={2u+1-0)— ((+1)"} — {2(u~1) —* + 1}
= 0.

(i) (i+1)g<u< (@G+1)g+i (0<i<q—2).

Both r[C;(u)] and 7[C3(u + 1)] are given by the first expression of Eq.(3A.6) since
u=(i+1)g+jwithi+1>jandu+1=(i+1)g+(j+1) withi+ 1> j+1. Therefore
we have

7[Cau+ 1) = r(Ca(u)] = 0.

(iv)u=(1+1)g+7(0<i<g—3).
7[C;(u)] is given by the first expression of Eq.(3A.6) since i+ 1 > j and r[C5(u + 1)]
is given by the second expression of Eq.(3A.6) since u+ 1 = (i + 1)g + (¢ + 1). Therefore
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we have

r[Ca(u + 1)] = r[Cy(u)]
={20u+1-(+1) - (E+1)°+1} - {2(u—1) — (i +1)%}
=1.

(i) through (iv) yield Eq.(3.11). (Q.E.D.)

3A.3 Proof of Lemma 3.6

For a = 1, g = 0 by Eq.(2.5) and there is no ¢ which satisfies 1 < ¢ < min{g+a,n — g}.
Hence it is sufficient to consider the case 2 < a < b, in which g > 1 by Eq.(2.5).
By noting n < ¢*, g > 1 and the first expression of Eq.(3A.6) with u = (¢—1)¢+(g—2),

we have

min{g+a,n—g} < ¢* -1

Since 7[C2(0)] = 1 by Lemma 3.5-(i), on the other hand, we see that all tin 1 < ¢ <

min{g + a,n — g} are included in
r[C2(0)] <t < r[Ca(g” — 2)). (3A.7)

We prove the theorem for ¢ given in Eq.(3A.7) by examining all r[Cy(u)] and r[C}(u)]
(for0§u§q2~2.
() g+i<u<ig+(g—1) (0<i<q-2)
Let r[Cy(u)) = t, then r[Co(u+1)] = ¢ + 2 by the first relation of Eq.(3.11) and
r[Cy(u+1)] = r[Cy(u+1)] — 1 =t + 1 by Lemma 3.5-(ii). Therefore, by induction on u,
for any t satisfying

r[Ca(ig +1)] <t <7[Calig+ (g—1))], (0<i < q—2) (3A.8)

there exists Cy(u) or Ch(u) (ig+7 <wu <ig+ (¢—1),0 <1 < g — 2) such that 7[Co(u)] = ¢
or r[Ch(u)] = t.

(i) ((+1)g—1<u<(i+1)g+i(0<i<q—2).
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Table 3.1: Proof of Theorem 3.3 for 1<¢<3.

| t=1 | t=2 l i—3
2 3
r(Ca(p:Q)] (by Proposition 3.2-(ii)) (by Proposition 3.2-(ii)) (by Proposition 3.2-(ii))
drr[Ca(p:Q)] ? 2 <3
rr[Ca(p:Q) (by Theorem 3.1, p1 = 0) (by Theorem 3.1, pg = a) (by Theorem 3.1, p3 < b)
rlca] or r(C4) rle (O] =1 GO rlc2()] = 3
(by Lemma 3.5-(i)) (by Lemma 3.5-(i)) (by Lemma 3.5-(3), (ii))
dpon(Co] dpcn(C2(0)] = 2 dacu[Ch(1)] = 2 dpon(C2(1)] = 3
or dpcr[C)] (by Lemma 3.1-(ii)) (by Lemma 3.5-(iii)) (by Lemma 3.1-(ii))

Use the second relation of Eq.(3.11) repeatedly to get

r[Ca(ig + (¢ — 1))] = r[Ca((2 + 1)g)]

= r[Ca((1 4+ 1)g + 1)]. (3A.9)
(i) u=(G+1)g+i (0<i<q-—3).
We have from the third relation of Eq.(3.11),
rlCa((i + g +14)] =7r[Ca((E + L)g+ (i +1))] — 1. (3A.10)

Note here that the range of ¢ given in Eq.(3A.7) is fully covered by the ranges given
by Eq.(3A.8), (3A.9) and (3A.10). Therefore we can conclude that for all ¢ which satisfy

Eq.(3A.7), there exists Co(u) or C}(u) whose number of check symbols is ¢. (Q.E.D.)

3A.4 Proof of Theorem 3.3

As in the proof of Lemma 3.6, it is sufficient to consider the case 2 <a < band g > 1. We
will give a proof only for the designed distance since it is obvious for the code length by

Lemma 3.1-(i).

For1 <t (=r[Cq]) <3 < min{g + a,n — g}, the theorem is difectly verified as shown
in Table 3.1.

In what follows, therefore, we only consider Cq(p:Q) for 4 < t (= r[Cq]) < min{g + q,
n—g}.

By Lemma 3.6, there always exists C or C} whose number of check symbols equals

r[Ca(p@)](=1t) for all t (1 <t¢ < min{g+a,n— g}).
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(I) In the case where there exists Cy(ug) such that 7[Cs(uo)] = T[Cg(th)](¥ t):
We have from Lemma 3.9 and Lemma 3.2-(i) that

r[Ca(uo)] = 7[Ca(peQ)] 2 r{Ca(l01/b))]-

From this relation and Lemma 3.3, we obtain

dpcu(Ce(uo)] > deculCa(|p:/b])] = drr[Ca(p:Q)].

(I) In the case where there exists no Co(u) such that r[Cs(u)] = r{Ca(p:Q)](= 1):

As seen from the proof of Lemma 3.6, this case happens only when the first relation
of Eq.(3.11) holds, and by Lemma 3.6, there exists Cj(uo + 1) such that r[Cy(uo + 1)] =
r[Ca(p:Q)] where iq + i < ug < 3¢ + (¢ — 1). It is noted here that we have from Eq.(3.11)
and Lemma 3.5-(ii) that

r[Ca(p:Q)] = 7[Cs(uo + 1)]
= 7[Cauo +1)] — 1 |
7[Co(uo)] + 1. (3A.11)

I

In the following, we show

dBCH{Cé(UO -+ 1)} > dFR[CQ(th)] ‘ (3A12)

Note first that since py — ps—1 < b for ¢ < n — g by Proposition 3.1-(iv) (or Footnote
2), we have from the first expression of Eq.(3.4) that

derlColperQ)], or
- drnlCa(p@)) = { L) (5A.13)
drr[Ca(p-1@Q)] + 1
for 1 <t < min{g+a,n — g}.
From Eq.(3A.11) and Proposition 3.2-(ii), we have
r[Ca(uo)] = r[Ca(p@)] — 1
= r[Cq(pi—1@)]- (3A.14)
Hence we have from the discussion given in (I) that
dpen|Ca(uo)] > drr[Calpi-1Q))- (3A.15)
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(i) If
decu(Ca(uo)] > dpr[Calpe-1Q)] + 1

in Eq.(3A.15), we have from Lemma 3.5-(iii) and Eq.(3A.13) that

dpelCh(uo + 1)) = daculCa(uo)]
> dpr[Calpe1Q)] + 1
> dFR[CQ(th)]

and Eq.(3A.12) holds.

(ii) Suppose .
deca[Ca(w)] = drr[Ca(pi—1Q)] (3A.16)

holds in Eq.(3A.15).
If the first expression of Eq.(3A.13) holds, by using Lemma 3.5-(iii), Eq.(3A.16) and

Eq.(3A.13), we have

dpcu(Cy(uo +1)] = dcn[Ca(uo)]
= drz[Calpe-1Q))
= dpr[Ca(p:Q)]
and Eq.(3A.12) holds.
To complete the proof, we show that the second relation of Eq.(3A.13) does not hold
in this case. Noting ig+17 < uy < ig+ (¢ — 1), we have from the first and third expressions

of Eq.(3.11) that
. r[Co(ug — 1)] = r[Ca(ug)] — s,

where s = 1 or 2. Apply Eq.(3A.14) and Proposition 3.2-(ii) to this expression to get

r[Calug —1)] = (E—1) — 5
= 1[Ca(pr-1-sQ)]-

Thus we have from the discussion given in (I) that

dcu[Ca(uo — 1)] > der[Ca(ps-1-5Q)], s =1 or 2. (3A.17)
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On the other hand, if the second expression of Eq.(3A.13) holds, then p, = 6b for
some integer 6 (> 0) and p; — p;_3 < b.* Therefore we have from the first expression of
Eq.(3.4) that-

. drr[Calpi-1Q)] = drr[Cal(pt-1-sQ)] (3A.18)

with s = 1 or 2. Therefore

dBCH[Cg(uo - 1)] = dBCH[Cg(Uo)] -1 (by BCH bOllIld)
< dpr[Ca(pi-1Q)]  (by Eq.(3A.16))
= drr[Ca(pr-1-5Q)] (by Eq.(3A.18))

and this contradicts Eq.(3A.17). (Q.ED.)

{

~ 4 As is easily seen from the first expression of Eq.(3.4), in order for the second relation of Eq.(3A.13)
to hold, there must be an integer 6 (> 0) such that (6§ — 1)b < pyy < b < py < (0 + 1)b. Since
t < min{g +a,n — g} < n— g, we have from Footnote 2 that 6b (< py < pn—g) € S(Q). Then we can
conclude that p, = b since there is no p; € S(Q) between p;_; and p;.

Assume py — ps—3 > b and let

pi = pi—3 +a, pj = p-3 + b,
pt — b, if pp—b# pi,p;
pr= S pres+2a, i pr—b=p;
pr—3+a+b,if pp —b=pj.

Then p;, pj, px are all different and ps—3 < pi, pj, pr. < pe since a < b and ged(a,b) = 1. This contradicts
the fact that there are only pi—» and p;—; between p;_3 and p;. Hence p; — py_3 < b.
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Chapter 4

The Dimension of Subfield Subcodes

4.1 Introduction

It is well known that some good codes such as BCH codes, Goppa codes and alternant codes
are constr.ucted as subfield subcodes of algebraic codes over a larger field. To evaluate the
performance of subfield subcodes, several authors have investigated how to estimate their
parameters (dimension, minimum distance, etc.). Wirtz [43] obtained estimates for the
parameters of subfield subcode of certain AG codes. Katsman and Tsfasman [13] proved a
special case of Wirtz’s result. Both papers use concepts from algebraic geometry, and their
results seem to depend substantially on the algebraic geometric construction of AG codes.
Stichtenoth [37], however, showed that the result of [13,43] are actually special cases of a
general estimate for the dimension of subfield subcodes of arbitrary linear codes.
In this chapter, we improve the lower bound for the dimension of subfield subcodes ob-
ctained by Stichtenoth [37]. Moreover, we introduce the simple estimation for the dimension

of subfield subcodes of AG codes on C;, which is based on the proposed bound.

4.2 Preliminaries

For a subspace W of the n-dimensional linear space Fi. over Fym, we denote by W g, the
restriction of W to F, i.e., W|g, := W N F?. Thus if W is a linear code of length n over
Fyn, W|g, means a subfield subcode of W over £. W+ stands for the dual space of W
defined by

W= {veFh v -w' =0forVweW}
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To study the dimension of W|g,, the operation of the Galois 4group of Fyn over [y,
denoted by Gal(Fym/Fy), on the vector space Fy is introduced in [37]. Gal(Fym/Fy) is
a cyclic group of order m, generated by the Frobenius automorphism o : Fgm — Fym
(o= 09). For ¢ = (1,62, ---,¢n) € Fim and W C Fn, 0(c) and o(W) are defined by

{a(c) = (0(c1), 0(c3), - - ., 7(cn)),

(4.1)
o(W):={o(c): ce W}..

Lemma 4.1 Let W be a subspace of F5. over Fym, and {w;}%_| be a basis of W where
k :=dimW. Then {o*(w;)}5_, is a basis of o*(W) (:=10,1,...,m —1).
(Proof) Obvious. | 0.

Definition 4.1 [37] For a subspace W C F., we define W° and W* by

W0 .= mﬁl a(W), W*:= mz—:l ot (W).
i=0 i=0 .
Lemma 4.2 [37] Let W be a linear code of length n over Fym. Then
dim(W|g,) = n — dim(W™)*, (4.2)
O

This lemma implies that the dimension of subfield subcode W|g, is determined if we
can know the dimension of (W=)*. Though it is not easy in general to know dim W* for a

given subspace W C Fi., an upper bound for dim W* is given as follows.
Lemma 4.3 [37] Let V C W C F7. be subspaces such that o(V) C W. Then

dim W* < dim V° + m(dim W — dim V) (4.3)

where V0 as defined in Definition 4.1. O

4.3 A new lower bound for the dimension of subfield

subcodes

In the remaining part of this chapter, we exclusively use symbols 7, U,V and W to indicate
subspaces of F7. such that

VCew,oV)cW
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and

U=V+o(V),W=U+T. (4.4)

Since W* = U* + T* by the second condition of Eq.(4.4), we have from the first
relation of Eq.(4.4) and Lemma 4.3 that

dimW* < dimU* + dim T"
<dimV?+m(dimU - dim V) + dim T*. (4.5)
By comparing two upper bounds given in Eqs.(4.3) and (4.5), we have
dim V® + m(dim W — dim V) — {dim V° + m(dim U — dim V) + dim T*}
= m(dimW — dimU) — dimT™.

This means, if we can find a subspace T' C W and an upper bound 7 for dim 7 such that
(dim7T* <) 7 < m(dim W — dim U), (4.6)

we can get from Eq.(4.5) a tighter upper bound for dim W* than that of Eq.(4.3). It is
obvious in Eq.(4.6) that 7 should be chosen as small as possible. Next theorem gives this

upper bound 7 for dim7™.

- Theorem 4.1 Let T and T}’s be subspaces of Fgw such that

k
T=S"T, *NT) CT,
2 T () (“7)

1<4(1) <£2) <--- < L(k) < mt

.. Then
¢

(i)—1
=3 > (T} (4.8)

=1 j=

o

and we have L
dimT* <7:=> £(i)dimT;. (4.9)

i=1
(Proof) Since Eq.(4.9) is an immediate consequence of Eq.(4.8) and Lemma 4.1, we prove

Eq.(4.8).

Let T := b, 597 69(T;). Since T* O T' is obvious, it is sufficient to show 7 C 7.

L 1t is noted that we can always find such £(7)’s since c™(T;) = T; C T.
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It is easily seen that 7" is the smallest subspace in the set of subspaces
S={SCFL:(1)SDOT and (ii) o(S) = S}.

Thus any subspace in S must contain 7*. Therefore the proof finishes if we can say that
T €S.
It is obvious that 7" satisfies the condition (i) for §. As for the condition (ii), we

immediately have from the assumption given in Eq(47) that

&
—~
.
Nty
|
—

o(T") ol (T) + };10“” (T3)

1l
M?r
Y

~
Il
—_
Iy
—
.
P
|
—

o (T;) +T.

N
‘M?’

i
.
i
)

Since T = $F_, ¢°(T;), this implies o(T") C T". Therefore, by Lemma 4.1, we can conclude
that o(T") =T". O

In order to make 7 in Eq.(4.9) satisfy the another inequality of Eq.(4.6), we may
impose additional conditions on 7" and T3’s in Eq.(4.4) and Eq.(4.7), that is,

k
W=U®T and T=T,. (4.10)

i=1

By the second condition of Eq.(4.10), we have in Eq.(4.9) that

k
dim T* < 3 £(4) dim T; < mdim T, (4.11)

i=1
and we have
~ mdim7T = m(dim W — dim U)

by the first condition of Eq.(4.10).
We may say a little more about how to select 7;’s in order to make 7 smaller. Suppose
T; is decomposed as the direct sum of its subspaces, say, T; = @}_;.5;. Then since S; C 1,
we have o/@(S;) C ¢*@(T;) C T, which means for every S; there exists a positive integer
v(7) such that
0*0)(S;) € T, v(3) < €(3)

and we have
T

v(5) dim S; < £() dim T;.

j=1

36



After all, we may decompose T as the direct sum of its one-dimensional subspaces T; := (t;),
where {t;}£_, (k :=dimT) is a basis of T, and Eq.(4.11) reduces to
\ .
dimT* < > £(i) < mdimT
=1
where £(i) is the smallest positive integer such that o®®((t;)) C T.?

In the next subsection, we give a couple of illustrative examples.

4.4 ‘Examples

We denote by (A) the vector space over a field E spanned by a set A C £™.

4.4.1 BCH code

We consider first a primitive BCH code over F, with code length n = ¢™ — 1, which is the
subfield subcode of the code with parity check matrix

hy
ho
H=]| (4.12)
Pt
where h; := (1,0}, a%,..., o™V (1 =1,2,...) and « is the primitive element of Fym. Let

Aw = {h;}2,, the set of all row vectors in the parity check matrix H, and W := (Aw).
Then the BCH code we consider is W|p . It is noted that {h;};_, constitutes a basis of
(VF;}”‘

In the following , we consider the case in which ¢ = 2, m =7, n = 127 and 2¢ = 26,
i.e., designed distance 2¢ + 1 = 27. It is noted that 2tg < n holds in this case. The true

dimension of this code is known to be 50.

Conventional bound It is shown in [37] that in a primitive BCH code, we have dim V° =
0 for YV C W with (V) ¢ W. Therefore, in order to get the best estimate for dim W™ by
Eq.(4.3), it is needed to choose V with o(V) C W as the subspace of W having the largest

dimension.

2 Asis easily seen, one can collect t;’s having the same £(i)’s to make up one subspace ({¢; : £(i) = const.})

of T with no effect on the result.
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Lemma 4.4 If 2tg < n = ¢™ — 1 holds, the best choice of V' is given by V := (Ay) where
Ay = {h} 27,
(Proof) What we need to show is:

VieVYCcW = V'CVW

Let v € V/, then it can be expressed as v = % a;h; for Ja; € Fym and we also have
2t
o(w)=> alhgzeW

=]

which implies o(v) = 2%, b;h; for 3b; € Fym. Then we have a linear relation

2t 2t
> afhg =3 bihi=0
i=1 =1

which implies

a; = 0 for g2 > 2t
since {h;}2, are linearly independent and both {h,}7; and {h;}}%, are subsets of {h;}]_,
by the hypothesis 2tg < n.

Therefore v € V'’ must be expressed as v = Z}itl/ 4 g;h; implying v € V. O

Then since dim W = 26 and dim V = [2t/q] = 13, we have from Eq.(4.3) that
dm W* < 0+ 7(26 — 13) = 91

which by Eq.(4.2) states that the dimension of this BCH code is at least 127 — 91 = 36. O

“Proposed bound Let W and V be as given above. Then by Lemma 4.1, 0(V) = (Ag(v))
with
Asvy = {o(h;) - hy € Ay} = {hy B
Therefore U = (Av) + (Ao} by definition and we have dimU = |Ay U Ag(vy| = 20.
Let Ay = Aw \ (Ay U Ay) and T := (A7) so that W = U @ T. By finding the
smallest positive integer £(i) for each h; € Ap such that o*® (h;) € Ay and collecting h;’s

having the same value of £(z), we easily see that T" is decomposed as the direct sum of

Ty = ({hio}), Tz := ({has}),
T3 = <{h15, hi7, ha, h23}>,
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and £(3)’s for which o!(T) C T (i =1,2,3) are given by £(1) = 3, £(2) =4 and £(3) = 7.

Then by Theorem 4.1, we have

3
dimT* <> 4(3)dimT; =3 +4+7-4 = 35,
i=1
and Eq.(4.5) yields
dimW* < 0+ 7(20 — 13) + 35 = 84.

By Eq.(4.2), therefore, the dimension of this BCH code is at least 127 — 84 = 43. a

Thus Theorem 4.1 gives a tighter estimate for the dimension of this BCH code than
that given by Stichtenoth.

4.4.2 AG code on a hyperelliptic curve

Here we consider a subfield subcode over Fy of residue Goppa code on a hyperelliptic curve

defined by
g4+t +y =0, over Fu. (4.13)

It is known that the number of Fjs-rational points on this curve is 513 and reaches the
Hasse-Weil upper bound [19].
The parity check matrix of this residue Goppa code is given as follows [19]. Let

T(p) = {zFy*: 0 <k, 0K L1, 26+ 170 < p}
= {fl)fQ)"')fT} (414)

where 7 := [I'(p)|. The ordering of f;’s is such that for f; = z®y% and f; = 2y, i < j if
~and only if 2k; + 17¢; < 2k; + 174;.
T For f € T(p), define () == (F(P),..., () where B (i = 1,...,n (= 512))
 denotes all Fya-rational points on Eq.(4.13) except Py (the rational point at infinity) and
F(B) = zfyf for f = z*y* and P; = (z;,y;). Then it is known that c(f1), c(f2),---,(fr)

are linearly independent and the parity check matrix is given by
e(f1)
H= :
c(fr)
Let Aw = {c(f;)}i,, the set of all row vectors in the parity check matrix H, and
W := (Aw). Then the subfield subcode we consider is given by W+|g,. In the following,
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we consider the case in which p = 66 in Eq.(4.14), which yields r = 59. Note that in this

case, ¢ =4 and m = 4.

Conventional bound It is shown in [37] that in this residue Goppa code, we have
dim V0 = 1 for {0} # VV C W with (V) C W. It is also shown in [37] that the largest
subspace V of W such that o(V) C W, by which we can get the best estimate for dim W*
by Eq.(4.3), is given by V := (Ay) where ‘
Av = {c(f) : f € T(16)} = {e(=*) Jimo-

Then since dim W = |['(66)| = 59 and dimV = |['(16)| = 9, we have from Eq.(4.3)

that
dimW* <1+4(59—-9) =201

and by Eq.(4.2), therefore, dim(W*|p,) > 512 — 201 = 311, o

Proposed bound Let W and V be as given above. Then by Lemma 4.1, 0(V) = (Ag(v))
with
Aoy = {e(z*) Yieo-
Therefore U = (Ay) + (A,(v)) by definition and we have dimU = |Ay U A,1)| = 15.
Let Ar == Aw \ (Av U Ayy) and T := (Ag) so that W = U @ 7. By finding the
smallest positive integer £(i) for each ¢(fi) € Ar such that o®?(c(f;)) € Ar and collecting

c(f;)’s having the same value of £(z), we see that T" is decomposed as the direct sum of
Iy = <{c('r18)1 C(z33)’ C($17)}>7
| Ty = (A7 \ {e(z'®), c(z%), e(=')}),
“and £(i)’s for which o®®@(T;) C T (i = 1,2) are given by £(1) = 2 and £(2) = 4.
Then by Theorem 4.1, we have

2
dim7* <> £L(E)dimT; =23 +4- 41 = 170

i=1
and Eq.(4.9) yields
dim W* < 1+4(15-9)+170 = 195.
By Eq.(4.2), therefore, dim(W|g,) > 512 — 195 = 317.
O
Thus Theorem 4.1 gives a tighter estimate for the dimension of W*|g, than that given

by Stichtenoth.
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4.5 Simple estimation for the dimension of subfield

subcodes of AG codes

4.5.1 Overview

In what follows, we fix a and b, and abbreviate s (p) in Eq.(2.6) as I'(p) for simplicity. In

order to specify each element of I'(p), we let

Do) = {fi, for-- - fr}, T(fi) < T(fir1)? (4.15)

We also denote by {P;, P, ..., P.} the set of all Fym-rational points on C,, different from
Q and use the notation f(P;) to indicate f(z;,y;) for f(z,y) € L(pQ) and F; = (z;,3:).

In the remaining part of this section, for the code length n of Cq(pQ) we assume
p < n for simplicity. Since Ca(p@)* is the image of the linear map ¢ in Eq.(2.2), we have
dim L(pQ) = dim Ca(pQ)* + dim Ker(¢), and if p < n it is known that dim Ker(¢) = 0
[38]. Therefore for p < n, we have

dim Co(pQ)* = dim L(pQ) = |T'(p)-

In [37], based on Eq.(4.3), a general lower bound for the dimension of subfield subcode
of a residue Goppa code on an arbitrary curve is derived. We can apply the result to the
residue Goppa codes on Cy, as follows. Letting W := Cq(pQ)* and V := Ca(p'Q)* where
o < |p/q) so that V. C W and o(V) C W, we get dimV® = 1* , dim W = dim L(pQ) =
IT'(p)| and dim V = dim L(p'Q) = |T(¢)|, and Eq.(4.3) yields

dim(Ca(pQ)™)" < 1+m{|T(p)| — [T()]}- (4.16)

By noting that L(p;Q) C L(p2Q) for p1 < po, we have the smallest upper bound for
dim(Ca(p@)™)* of this form by taking o = |p/q] in Eq.(4.16).
In this section, we improve the bound for dim(Cqo(p@Q)*)* for subfield subcodes of AG

codes on Cl. Let

A=A{c(f) =¢(f): feT(n)}

3 If f; = oyl £ f; = 2biy% then it is easily shown from 0 < £;,¢; < a — 1 that 7(f;) # 7(f5).
4 Tt is shown in [37] that dim V® < 1 for this case. Since 1= 2%° € T(p'Q) for p > 0 and 0(1) =1, we

have o(¢(1)) = ¢(1) € V. Thus V° 3 {0} which implies that dim V% = 1.
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Then by Proposition 2.2 and Eq.(2.2),

(A) = (L(pQ)) = Ca(p@)* (4.17)

and therefore dim(Cq(p@)*)* = dim (A)".

4.5.2 Upper bound for dim (A4)*

In the following, we let p' := | p/q] for given positive integer p.
Definition 4.2 Define I'y, 'y by

Ty :=T(p), T2 :=T(p) \T'(¥),

and let
Ai = {C(f) : f € ]._\z}, (Z - 1,2)

0O
Then by noting that I'(p) = I'; U L'y, we have
(A) = (A1) + (A2). (4.18)
We further divide I'; into the following three sets which are mutually disjoins.
Definition 4.3 Define A; (1 =1,2,3) by
A={feTi: f7 ¢Tof=y (> 0)},
| Ag:={feTy:f1 ¢l f#¢ (5 20)},
~ Ag::{fef‘l:fqgféf‘g},
where £ (f € T'(p)) is
¢ 0, for f =1,
;=
max{¢: 7(f¢) < p}, for f #1,
and let
Bi:={c(f): feA}, (1=1,23).
O

Then we have the following theorem.
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Theorem 4.2 (A)" = (B;) + (Ay)". ' 0
In order to show this theorem, we need the following lemma,

Lemma 4.5
(i) (A" =(A)+(4)".
(i) (Bs) C (42)".
(iff) (Ba2) C (42)".
(Proofs are given in Appendices 4A.1, 4A.2 and 4A.3.) o

(Proof of Theorem 4.2)
By Definition 4.3 and (ii) and (iii) of Lemma 4.5, we have

(A1) = zl (B;) C (B1) + (A2>*.

Hence by (i) of Lemma 4.5, we have

(A)" C(By) + (A2)" (C(A)").
O

Denote Ay = {c1,...,¢,}. Then (As) = @, T;, where T; := ({c;}) and @ denotes

direct sum. For each ¢; € A,, we denote by (i) the smallest integer v which satisfies
1<v<m, 0%(c;) € (A2).° : (4.19)

Then we have from Theorem 4.1 that

v(i)—

pov(i)-1
=3 > o(T)

i=1 j=

[e=]

and
~ dim (Ag)" <Y w(i) < m|A,|. (4.20)
=1

It is noted that the second equality in Eq.(4.20) holds zﬁ v(@i)=mfori=1,2,...,p.

=

For any ¢; € Ay, we also denote by v/(¢) the smallest integer +' which satisfies
1<V <m, 0¥ () € A (4.21)
Then it is obvious that for all ¢; € Ay, v(i) < V(i) and we have from Eq.(4.20) that
p p
dim (Ag)" < > v(i) <> V'(5) < mldy,
1=1 i=1

which together with Theorem 4.2 yields:

5 Since 0™(c;) = ¢; € Ay C (As), we can always find v and v’ that satisfy these conditions.
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Theorem 4.3 For ¢; € Aj, let /(i) be as defined above. Then
m
dim(Co (pQ)1)* = dim (4)" < |Bi| + > V/(4), (4.22)
i=1

where p := |Is|. : O

By noting that [I'(p)| — [T'(¢)] = [T'2| = |A2| in Eq.(4.16), we have that the difference
between two upper bounds given by Eqgs.(4.16) and (4.22) is

L m )] = NGO = {13+ 3200}
— (m[A2| - iu’(z’)) +1—|Byl. (4.23)

=1
As shown in Subsection 4.5.4, since |B;| (< a) is relatively small, we can make Eq.(4.23)
positive in many cases and can get a tighter bound for dim((Ca(p@)*)*) by Eq.(4.22) than
that given by Eq.(4.16).

4.5.3 Computational complexity

Here we briefly evaluate the computational complexity, on the basis of arithmetic operations
(additions/subtractions, multiplications/divisions and comparisons) in integers, required
to calculate the proposed bound Eq.(4.22) by assuming that we are givetn ['(p). Eq.(4.22)
would be calculated from I'(p) by:

(i) Dividing T'(p) into the disjoint union of Ty and I';. This, by the definition of I'(p)
(Eq.(4.14)), requires arithmetic operations proportional to [I'(p)| at most.

(i) Deciding A; C Ty in Definition 4.3 to get | B = |A1| in Eq.(4.22). This requires
arithmetic operations proportional to |I';| at most (See Appendices 4A.4 for the detail).

(i) Calculating v/(7) for ¢; € A, the smallest integer »* which satisfies Eq.(4.21). As
shown in Appendices 4A.4, v/(4) is obtained directly from f; € I'y, and requires arithmetic
operations proportional to |T'z|m.

(iv) Finally summing up |A,| 4+ 3, /(4) to get Eq.(4.22). This requires arithmetic
operations proportional to 1 = [T].

Totally, the computational complexity for calculating Eq.(4.22) is evaluated as
masc{ O(T(p)]), O(|Talm)}. (4.24)
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On the other hand, if one try to find the true dimension of the same residue Goppa

code by using Lemma 4.2, it may be the easiest way
(i) to obtain the set of vectoré,
{o(c(£:)): fi€T(p)yi=1,...,m—1}, (4.25)
which spans (A)* and |

(i) to calculate dim (A)* as the rank of m|T'(p)| x 7 matrix whose row vectors are o7 (e(f)

by Gaussian elimination.

Tt is obvious that the computational complexity for obtaining {¢?(c(f;))} from I'(p) is

far small compared to the calculation of dim (A4)" by Gaussian elimination which requires
min{O(|T(p)|*m*n), O(IT(p)|mn”)} (4.26)

arithmetic operations in Fgm [9].

Roughly speaking, the computational complexity for calculating Eq.(4.22), which is
given by Eq.(4.24), is much less (< 1/n? times) than that for calculating the true dimension
by Gaussian elimination, which is given by Eq.(4.26).

Moreover, it is noted that only I'(p), or equivalently a, b and p, is required to calculate
Eq.(4.22) while the whole parity check matrix, i.e., the vectors given in Eq.(4.25), is needed

to calculate the true dimension by Gaussian elimination.

4.5.4 Numerical example

(\We consider a residue Goppa code Cq(p@Q), which is constructed on the curve 3424y =0
over Fyio, and its subfield subcode over Fy2. This curve is a hyper elliptic curve whose
number of rational points reaches Hasse-Weil upper bound [19], 2049 in this case, and the
code length is 1 = 2048. |

In Fig.4.1, we compare two lower bounds, derived from Eq.(4.16) and Eq.(4.22) re-
spectively, for the dimension of subfield subcode Cq(pQ)|r,,. The horizontal axis denotes
the Feng-Rao designed distance dpg of Co(p@Q) [21]. The lower bound for the dimension of
subfield subcode of Cq(p@) is improved for dpg > 4.

In Fig.4.2, we magnifies the area in Fig.4.1 surrounded with dotted line and show

for comparison the true dimension of the shortened BCH code over Fy» with code length
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2048 which is obtained by shortening the primitive BCH code over Fy: with code length
4095. The horizontal axis in this case denotes the designed distance given by the BCH
bound. We can see from Fig.4.2 that the proposed bound can exceed the true dimension

of a shortened BCH code while the conventional one cannot.

4.6 Conclusion

In this chapter, we have introduced a lower bound for the dimension of subfield subcodes
of linear codes which improves Stichtenoth’s bound. We also presented a lower bound .
for the dimension of subfield subcodes of residue Goppa codes on C;, which exceeds the
conventional lower bound given by Stichtenoth when the number of check symbols is not

small.

We have also given a numerical example in which the proposed bound can exceed the
true dimension of a shortened BCH code with the same code length and designed distance,

while the conventional bound cannot.

Appendices

4A.1 Proof of Lemma 4.5-(i)

Since we have from Eq.(4.18) that (A)" = (A4;)" + (As)7, it is sufficient to show that
of({A1)) C (A1) + (A9)" fort=1,....m—1,

) which is proved by induction on £.

p(i) In the case £ = 1: Since 7(f9) = ¢r(f) < p for all f € L(p'Q) where p' = |p/q],
f? € L(pQ). Then by noting that (4;) = ¢(L(p'Q)), we have from Egs.(4.1), (4.17) and
(4.18) that

o((A1)) = {c(f?) : f € L(P'Q)}
C ¢(L(pQ)) = (A1) + (A2) C (A1) + (42)".
(ii) Assume o®((A;)) C (A1) + (A2)" (¢ > 1). Then by noting that o((A2)") C (A2)" we

immediately have
o™ (A1) C o((Ar)) + 0 ((A2)") C (A1) + (Ag)".
(QE.D.)
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4A.2 Proof of Lemma 4.5-(ii)

For f € A3, let g := f"ef € I's. Then ¢(g) € (A2) and o™ % (c(g)) € (A2)*. On the other
hand, we have '

o (e(g)) = e(g? ) = e(f7") = elf).

Thus c(f) € (Ag)” for all f € A;. Since any element in (Bs) is expressed as a linear
combination of {c(f) : f € Az}, we have (Bs) C (A2)". (QED.)

4A.3 Proof of Lemma 4.5-(iii)

To prove Lemma 4.5-(iii), we first show a couple of lemmas.

Lemma 4A.1 Any f € A, is written as f = z%y* with s, > 1.

(Proof) Note first that we have |p/q| < T(fqef) < p, for all f € T'(p) \ {1} from the
definition of &;.°

It is obvious from the definition of A, that f € A, is written as f = z%y* with s > 1
and ¢t > 0. Assume t = 0 then fqgf = 2% Since deg f‘fﬁf with respect to ¢ is 0 (< a) and
T(xsqéf) < p, we have 21 € I'(p) by the definition of I'(p) (Eq.(2.6)). Moreover, since
lp/q] < T(xsqéf ), we have 2% € T'y by Definition 4.2. This contradicts with the fact that
f € Aq and therefore ¢ > 1. . O

Lemma 4A.2 For f € Ay, [ (£=1,2,...) can be expressed as

¢ t=y

. :
¢ = G b she,
f Z (zz: Ay,i Gy, > + ; (RLIRY (4A1)

y=1
Gy € ' u Ag, hg,i € Ay

where Qry 45 bg,i ¢ Fm ¥ and h,g,i # f.

(Proof) By induction on £.

6 T(quf) < p is obvious by the definition of £;. Assume T(quj) < |{p/q], then we have

£p+1

() = qr(17) < qlplal < p,

which contradicts the definition of ;.
" Al coefficients which appear in Appendices 4A.3 belong to Fym. So hereafter we do not mention it

every time.
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(1) In the case £ = 1. By Lémma 4A.1, f € A, is written as f =z%y" (s,t > 1). For this
7(y™). Then we have y® € L(7,Q) and ¢ & L((ry — 1)Q). Therefore

f =z let 7, :

y* is expressed as
k
Y =3 aifi, fi € T(ry), ax # 0,
i=1
., fr} in Eq.(4.15).

where 7(fx) = 7y and fi,..., fr are the first k elements of {f},fQ,

Thus f9 is expressed as
k (4A.2)

k
fl=2ay" =7 aiz™fi,
. =1

f”: € P(Ty)) G 7é 0.
Since deg f; (i = 1,2, ..., k) with respect to y is less than a by Proposition 2.2, so is

degzf; (1 =1,2,...,k). Moreover, since
T(2*f;) < 7(2*fi) = asqg + 7(fs) = 7(f*) < p,
we have z°9f; € I'(p) for i = 1,2,...,k by Proposition 2.2. Therefore by classifying each
z%9f; € T'(p) into Ty U Az and Ay U Ay, we can rewrite Eq.(4A.2) as
fi= z (1,91 + Z b1l
g1; € 1:2 U As, hl,iZE AU As.

(4A.3)

Since hy; equals z°¢f; (s > 1) for some j, we have from Definition 4.3 that hy; & A ie.

hl,i e As.
Finally assume that f = 2yt (s,¢t > 1) equals hy; = z°f; = 2¥z%y" (s5,1; > 0),

then we must have s = sg+s;. But this is possible only when s = s; = 0 which contradicts

with s > 1. Thus f # hy; for all 7.
(2) Assume that this lemma holds for £ (> 1). Then we have from Eq.(4A.1) that

{
s

£41 —y

q q
) + (Z bl,ihe,i>

qZ—H—'y

2
41
/e Y= Z <Z Qy,iGy,i
y=1 1
¢
=2 (Z a%igmi> + 2 bR
v=1 3 ]
Therefore in order to show that Eq.(4A.1) holds for £+ 1, it is sufficient to show that hj;

can be expressed as
hi; = Z Gg+1,590+1,5 T Z betr,her;
7 ] (4A.4)

Ge+1,; € Ta U A3, heyrj € Do
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where he+1,j "# f
Since hy; € Ay by assumption, we can substitute hg; for f of Eq.(4A.1) with £ =1,
which proves Eq.(4A.4).

To show hey1; # f, we give the folloWing claim.

(Claim) In Eq.(4A.1), hy; (£ > 1) is expressed as
hei = o0 gotiytes | 5> 1, 545,105 > 0. | (4A.5)

Suppose in Eq.(4A.4) that f = z%y* (s,t > 1) equals hey1;. Then since hyyy; =
21 goeniytenii by Bq.(4A.5), f = hey,; implies s = s¢%*! + sg41,5. But this is possible
only when s = sg41,; = 0 which contradicts with s > 1. Thus hgy1; # f-

To conclude the proof of Lemma 4A.2, we give the proof of the claim.

(Proof of Claim) We have already shown just after Eq.(4A.3) that Eq.(4A.5) hold for £ = 1.
Assume that Eq.(4A.5) holds for £ (> 1). Then since hy; € Ay, we have by the same
argument which derives Eq.(4A.2) that

kl
X - (xsq’:zSz,iytz,i)q — a.x(5q5+sz,i)Qf.7
E,z J; J 7 (4A_6)

fi € T(my), aw #0,

where 7, 1= 7(y%+) and fi,..., fp with 7(fi) = 7, are the first &’ elements of {fi,. -, f+}

in Eq.(4.15). Since Eq.(4A.6) is equal to Eq.(4A.4), we have hyy1; = :v(sql“f:i)qu for some

fi= zFiyt | which means spy1; = $p;q + k; and tpp1; = £; and Eq.(4A.5) holds for £+ 1.
J

e It was shown in Lemma 4A.2 that fql is expressed as the sum of two major terms:
the first term is the sum of ¢g®~7-th power of a linear combination of elements in I'y U A3
and the second is the linear combination of elements in Ay \ {f}. Moreover, as is shown

below, the second term in the expression of f ¢" vanishes for sufficiently large £.

Lemma 4A.3 Let By = {hg;}s C Ay in Eq:(4A.1). Then E, = () for all £ > |Ay|. In

other words, there exists an integer k£ < |Ay] + 1 such that

k gt
o= ) (Z a%igv,z) y Gpi € T2 U Ag (4A.7)
1

7= i

for all ¢ > k.



(Proof) 1t is sufficient to show that Eq.(4A.7) holds for £ = k with some & < |A,| + 1.
We consider the tree of functions in A, generated as follows. Put given f € A, on the
- first level vertex or the root of the tree. Take f9 to get By = {hy;i}; C Ay ’by Eq.(4A.1) and
put these hy; on the second level vertices of the tree. Next, for each hi;, (€ Ay) attached
to the second level vertices, take h{; . Then by Eq.(4A.1), h{,, is expressed as a linear
sum of functions in I';UAj3 and in A,. Denote the functions in Ag by k(1 4,); and put these
h( 4, (for all 4, and i) on the third level vertices of the tree. Note here that if we define
E,5) = {h(14,)i }i> we obviously have
U By O By = {hg;}i-
iz
In general, for each function attached to the (j — 1)-th level vertices of the tree, which
we denote by A((1,is)is,..ij1),;» bake its ¢-th power as above. Then by Eq.(4A.1) again,
i

(Liz)isseij1)sij 15 expressed as a linear sum of functions in I'y U Az and in A, the latter

we denote by h((,i)iai)ic Lt B((1in)is.is) = {P((1i)isyis)i }ir then we have
U Einis..in 2 By = {hji}i
12,13 000525

Thus in order to show Ey = @) for £ > |As], it is sufficient to show that
E((l,iz),ig,..-,ig) = @ for all ig, ’i3, - ,’ig, 2> |A2[

Let

f - hl,ig - h‘(l,ig),ig — = h((l,'iQ),i3,...,i(_1),ig

represent a path from the root to a vertex in the /-th level of the tree. Then by Lemma 4A.2,

we have

N

T hiss Ba)ins - o P((L2) 301 )vies
hl,ig # h(l,iz),iga h‘((l,iz),is),im R
h((l,ig),i3,...,ig_1),ig7

h(l,iz),iz, # h((l,i'z),is),iu ceey h((l,iz),is,«-,ieq),iz’

h’((l,ig),ig,...,i[_z),i[_1 # }L((lail)yiQr"xif—l)1i€ ‘

This implies that all functions

Iy Piins Pt aias - - s P(Liin)siasie 1) e € D2
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on the path differ each other. Since |A,| is finite, this means any path must terminate at

a vertex with level not greater than |A,|. This proves
E((1,i2)si30i) = {P((Lia) is,in)si i = O for some k < [Aq] + 1.
Hence £, = § for all £ > |A,| and Eq.(4A.7) holds. o

(Proof of Lemma 4.5-(iii))
We have from Eq.(4A.7) that for all f € A,

g,; €1, gy, € Ag for some k S |Aa| + 1.

Applying to this expression the relationship

c(f4) = o*(c(f)) for all f € L(pQ), k=0,1,2, ..., (4A.8)

which is an immediate consequence of the definition of Frobenius automorphism o, and the

trivial relation ¢(f; + f2) = c(f1) + ¢(f2) for all fi, fo c L(pQ), we have
ZOJC ! (C (Za'yzg'yz +Za'yzg'yz>>
= ng ! (Zawc Gy +Zamc G >

& 3 F (s} + (B,

=1

“This, by Lemma 4.5-(ii), implies

e(f7) € 30" TT((A9)) C (o)

y=1

and therefore by using Eq.(4A.8) we have

e(f) = o7 (e(f*))
_k(<A2>*) C <A2)* for all f S Ag.

Finally, since By = {c(f) : f € As}, we immediately have (By) C (As)". (Q.E.D)
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4A.4 Computational complexity

Let ¢, ¢s, Cm, Ca and ¢, represent the unit complexities of addition, subtraction, multiplica-
tion, division and comparison in integers, vrespectively.
In (ii), we need to examine whether y* € A; or not for y* € I'y \ {1} ® which is tested
if 4g° > a holds or not for £ such that o' < 7(y™¢’) = big® < p. This test is realized by:
Step.1 Let 7 := 7(y*) = 4b. '
Step.2 T :=71¢.
Step.3 If r < o then go to Step.2.
Step.d If 7/b > a then y* € Ay, else 4 & A;.
By noting that Step.2 and 3 are repeated at most |log,(p/ib)] times, the total arith-

metic operations required for (ii) is at most

[Ty = 1{em + Llog,(p/ib) ) (em + cc) + ca+ ce}.

In (iii), we need to decide v'(7) given in Eq.(4.21) for each ¢; € Ay, e, ¢; = c(g:),
gi = wkiye" € 'y, which is done by:
Step.1 Letv:=1, M :=¢™—1and for g; = a¥iy%, let k == k;, £ := ¢;.
Step.2 Let k := kg and £ := [£q]p where [z], (0 < [z], < y) denotes
_ the remainder of x divided by .
Step.3 If p' < ak+bl < pand £ < a, then /(i) := v, else let v := v+1
and go to Step.2. '
Each step requires mecn, +c,, 2(cs+2cm+cq) ° and ¢, +2¢,, +3c, arithmetic operations,
respectively. Thus by noting that Step.2 and 3 are repeated at most m times, calculating

V() for all g; € T’y requires

f
f—g

[T [mcm + ¢5 + m{2(cs + 2 + ¢q) + Ca + 20 + 306}]
= |Tal{mc, + (2m + D)cs + Tmey, + 2meq + 3me,}

arithmetic operations.

8 Since 1 € A, is obvious, it is sufficient to consider y* € I'; \ {1}.
% [kq]a is calculated by kq — |kg/M | M.



Chapter 5

A Lower Bound for Generalized

Hamming Weights

5.1 Introduction

In this chapter, we first introduce a lower bound for the generalized Hamming weights of
arbitrary linear code in terms of the notion of well-behaving. We only assume that we are
given a sequence of vectors, B := {hy, ha,..., Ay}, which is a basis of F? and whose first
n — k elements constitute the row vectors of a parity check matrix of the [n, k] code C.
Next, we introduce a parameter gg(C), which is uniquely determined from the basis B, and
show that any linear code C is the ¢-th rank MDS for gz(C) +1 < ¢ < k which, compared
to the conventional sufficient conditions [41], giveé a new type of sufficient condition for
the ¢-th rank MDS codes.

. Finally, we apply our result to some well-known codes, i.e., Reed-Solomon (RS) codes,
Reed-Muller (RM) codes and AG codes on the curve Cy. Then we show that gp(C) for
RS and RM codes can be determined explicitly and the range of ¢ for which these codes
are the ¢-th rank MDS is the same as the conventional result. As for AG codes on Cg, we

show that g5(C) is upper bounded by the genus of the curve Cy; and the range of ¢ for

which the code is the ¢-th rank MDS is wider than the conventional result.
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5.2 Preliminaries
For a subset 4 of F™, we denote by Supp (A) the support of A4, i.e.,
Supp(A) :={i:1<i<n, ¢;#0 for some ¢ = (c1,¢p,...,Cn) € A}

Definition 5.1 [42] Let C be an [n, k] linear code over F. We denote by D; the set of all
t-dimensional subcodes of C for 1 < ¢t < k. Then the ¢-th generalized Hamming weight of

C is defined by ’ : |
dy(C) = min{|Supp (D)| : D € Dy}, , (5.1)

where |S| denotes the cardinality of a set S. O
The following results for the generalized Hamming weights are well known.

Proposition 5.1 [42,47] For any linear [n, k] code C over F', we have:

(i) Monotonicity:
1 <di(C) <dy(C) <--- < di(C) <.

(i) Generalized Singleton bound:

d(C)<n—k+tforaltl<t<k.

(iii) Duality: Let C* be the dual code of C. Then
{d OV U{n+1~-d(CH}YF ={1,2,...,n}.
0

Hereafter, let B := {h1, ho, ..., h,} denote a basis of F. It is noted that when we
say that B is a basis of F™, we include the order of h;’s in B.

We denote by L; := (hy,ha, ..., h;) (1 <1 < n) the linear space over F' spanned by
{h1,h, ..., h;}, the first 7 elements of B, and let Lo := {0}.

For v = (uy, U, - . -, Up) and v = (vy,v2,...,vp) in F", w - v denotes inner product of

uw and v, that is, u - v 1= 21 ;.



Definition 5.2 For {hy,hy,...,h,} C B (1 <r <n), we define [n,n — ] code C; by
CT = L;.LZ<h,1,h,2,...,hn,->'L »
={ce€F':c-h;=0foralli=1,2,...,r}.
O

Definition 5.2 means that h;, ho, ..., h, are the row vectors of a parity check matrix
of C,. '
Definition 5.3 For given D € D,, we define an F-linear map 0D': " —» F* v =
(v1,v2,...,v,) > V2 = (v7,v5,...,v7) by

b v;, if i € Supp (D),
‘ 0, if i ¢ Supp (D).
[

For D € D, we denote by S? := (h}, h},..., A7) (1- < 1 < n) the linear space over F
spanned by {h}, k5, ..., A5} and let S{ := {0}. In general, vectors b, h3, ...,k are not

necessarily linearly independent and dim S < 1.

Proposition 5.2 For any D € Dy, |Supp (D)| = dim S7.
(Proof) It is obvious that
Ker(0,) = {v = (v1,v,...,05) E.F" :v; = 0 for all i € Supp (D)}.
This implies that dim(Ker(6,)) = n — |Supp (D)|. Since {hy, hy,...,h,} is a basis of F",
we see S2 = Im(6,). Thus we have |
dim S? = dim(Im(f,)) = dim(F™) — dim(Ker(8,)) = |Supp (D)|.
O
For u = (uy,Us,-.-,Us), v = (U1,02,...,0,) € F", we denote u x v := (uyvy, upvy,
CUgy,) € FT

Definition 5.4 [5,23] We define the map p: F* — {0,1,2,...,n} by

0, if v =0,
plv) =14
k,if v(#0) € Lg \ Lk—_1.
A pair (hy, hy) (hi, hy € B, 1 < 4,5 < n) is said to be well-behaving if p(hyxh,) < p(hixh;)
forall hy,h, ¢ Bwithl1 <u<il<v<jandu+v<i+]. _ 0
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For each h; € B, we define

A= {k:k€{0,1,2,...,n} such that k = p(h; * h;)

5.2
where h; € B and (h;, h;) is well-behaving}. (5-2)
For a subset T of {1,2,...,7}, we also define
AT = U Ai)
i€T ‘ (5.3)

Ari={r+1,7r+2,...,n}\ Ar.
For given D € Dy, let

Tp={i:1<i<rh €S}

Remark 5.1 It can be seen from Definition 5.4 that p depends on B and the order of h;’s
in B. Thus so do A;, Ar and A%. O

5.3 A lower bound for generalized Hamming weights

and condition for t-th rank MDS

5.3.1 A lower bound for generalized Hamming weights

Let D; be the set of all t-dimensional subcodes of C; with 1 <t <n—r. For D € D, and
a linear subspace W C F™, we define W2 by

We .= {v € F": Supp (v) C Supp (D) and v -u =0 for all u € W}.

Since D C Gy, for all ¢ = (¢1,¢2,...,¢n) € D and h; = (hiv, higy -« b)) (1 <4 < 1), we
have
O:C'hi:Zthij: Z Cj}Lij:C'h,[;,

J=1 J€Supp(D)
which means
D C {5, h5,... KOy = (SP)*. (5.4)
In order to derive a lower bound of generalized Hamming weights, we need a couple

of lemmas.

Lemma 5.1 For any D € D, there exist at least ¢ elements hY’s in {h7 ,, 1] 5, ..., K0}

such that Y ¢ SP |, r+1<i<n.



(Proof) Assume that there exist only u (< t — 1) elements, denoted by k3, k..., K , in

{R2, 1,0, ..., B2} which satisfy k. ¢ SP_;. Then we can write

SP = SP + (B B gy . HO) = S @ (D, B2 (5.5)

where @ denotes direct sum. Hence, by noting that dim S? = dim S? + dim(SP)*?, we

have from Egs.(5.4) and (5.5) that

dim D < dim(S?)*? = dim S? — dim 57
= dim (k]

(3R

which contradicts with dim D = ¢. O

Lemma 5.2 Let (h;, hj) (hi,h; € B) be well-behaving and k := p(h; * h;). For given
D € Dy, if ] € 82, or W € 5P, then A} € S¢_;.

(Proof) Since k = p(h; * hj), h;* h; can be expressed as h;*h; = k_ a,h, with h, € B,
o, € F and a # 0. Thus by noting that k7 x b5 = 0, (h; * h;), b * B} is expressed as

*hD Zau h, € B,a, € F,a # 0. (5.6)

Without loss of generality, we assume that hy € SP . Since h; € SP, b * ki can be

also expressed as

' i—1 g
h « B = (Z auhz> * (Z bvhg) = Y u xR
u=1 v=1

1<u<i—1,
1<v<g
- Z ﬁu,veD(h’u * hv)) hu: hv & B: Qs bvnBu,v cF.
1<u<i—1,
1<v<y

Since (h;, h;) is well-behaving, p(h, * hy) < k for every 0 < u <1 -1 and 0 < v < j.
Hence
Sk = Z B,kR., h,€B,B, €F. (5.7)

Therefore, we have from Egs.(5.6) and (5.7) that

which implies that k}, € Sp_;. O
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Lemma 5.3 For any hy € B (r+1 < k < n) and given D € Dy, if h} ¢ SP_,, then
k & Ar,.
(Proof) We show the contraposition. For any k € A7, = Ujer, A, there exists some ¢ € TD?
such that £ € A;. Therefore, by the definition of A;, there exists some h; € B such thaé'
k = p(h; * h;) and (h;, h;) is well behaving.

On the other hand, by the definition of Tp, h € SP2, for any i € T,. Thus by

Lemma 5.2 we have k) € SP_;. ' 0

Theorem 5.1 For [n,n — 7] code C, given in Definition 5.2, let
ne =1 —max{|T|: T < {1,2,...,r} such that |A}| > ¢}. (5.8)

Then d,(C,) >y +tforanyt, 1 <t < n—r.
(Proof) Note that for D € D,, we have defined Tp, := {i : 1 < ¢ < r, h} € S2,}, which

yields
Hi:1<i<rh] €S2 =r—|T5 (5.9)

On the other hand, we have from Lemma 5.1 that
Hi:r+1<i<nh?¢S2,} >t forany D € D,. (5.10)

Thus if 7 — |[Tp] > 1, for any D € Dy, we have from Proposition 5.2, Egs.(5.9) and (5.10)
that

|Supp (D)| = dim (B3, ..., R2)
= Hisl<i<n R ¢S
=l 1<i<n B ¢S+ {irrrlsisn b ¢S}

2 N+t

Therefore it is sufficient to show that r ~ || > n; for any D € D,.
For each i (r +1 <14 <n),if h] ¢ SP, then i ¢ Ar, by Lemma 5.3, which means

{itr+1<i<nh]¢S2yC{r+1,7+2,...,n}\ Ay, = A%. (5.11)

Thus we see from Eqs.(5.10) and (5.11) that |A% | > ¢ for any D € D;. Moreover, by
noting that T, C {1,2,...,7}, we have

(T, :DeD}c{Tc{1,2,...,r}: Ay >t}
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Therefore for any D € D,

T—”ITD| 2T—max{|TD/]:D’€Dt} -
>r—max{|T|: T C{1,2,...,7},|A}| > t} = m,

which completes the proof. 0

By applying Proposition 5.1-(i) to this theorem, we immediately obtain a slightly

improved bound.

Corollary 5.1 For C, and n;, let ; :==n; + 1 and
7, = max{n +t,7,_,+1},t=2,3,...,n—1.
Then di(C,) > 7, for 1 <t <n—r. O

Theorem Theorem 5.1 may look like a paraphrase of the original problem into an
equally difficult question because we have to take all subsets Ts in {1, 2,...,7} to calculate
Eq.(5.8). However, as shown in the next theorem, we can obtain a further information on

the generalized Hamming weights of C. via Theorem Theorem 5.1.

Theorem 5.2 For C,, let A; == {r+1,r+2,...,n}\A; (i = 1,2,...,7) and gp(C;) =
max{|A4;]| : 1 <i<r}. Then d(C;) =7+t forallt, gg(C,) +1 <t <n—r.
(Proof) Let T be a subset of {1,2,...,r}. Since A C A; for all i € T, [A}] < g5(C)
for any 7. So there is no T'(# 0) C {1,2,...,r} such that |A%| > gg(C,) + 1. Thus, for
t > gp(C,) + 1, s = r in Bq.(5.8) and we have d;(C;) > r +¢.

On the other hand, d;(C;) < r +t by Proposition 5.1-(ii). ~ O

4
N

Remark 5.2 For given B and r, it is easy to calculate A; (1 < ¢ < r) by using, for
example, Gaussian elimination. Thus it is relatively easy to obtain gg(C;) in Theorem 5.2.
By the same reason as mentioned in Remark 5.1, gp(C;) also depends on B and the order

of h;’s in B. : O

An [n,n—7] code C is called the ¢-th rank MDS if an equality holds in the generalized
Singleton bound, that is, d;(C) = r 4+t [42], and some suflicient conditions for the ¢-th
rank MDS are discussed in [41]. Since any [n,n — r] linear code C, can be expressed as in
Definition 5.2, we see from Theorem 5.2 that C, is the ¢-th rank MDS for ¢g(C;) +1 <
t < n —r, which gives a new type of sufficient condition for the t-th rank MDS codes.
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5.3.2 A lower bound for generalized Hamming weights of dual

codes

Here we investigate generalized Hamming weights of Ct.
Theorem 5.3 Define {61,0s,...,0:} (6 < d;41) by
{61,02,...,6:} :={1,2,...,n}\ {n+1-7,},2].

Then dy(CH) > S for 1<t <r.
(Proof) We have from Corollary 5.1 that

n+l-d,(C.)<n+1-7, (5.12)

for 1 < v < n—r and in particular with equality for g5(C;)+1 < v < n—r by Theorem 5.2.
By Proposition 5.1-(i) and (iii), d;(C;") is the ¢-th smallest element in

{1,2,...,n}\ {n+1—-d,(Cr)}}Z]

and &, is the ¢-th smallest element in {d1,ds,...,6,}. Therefore we have from Eq.(5.12)
that d,(Ct) > & (1 <t <r). O

Corollary 5.2 Let

n—r—gp(C)+1, fort=1,
8y = ¢, : for2<t<r—-m, +1,
n—r+t, forr—m;+2<¢<r

{

Then d,(C) > &, with equality for r — 7, +2 <t < 7.

(Proof) (i) In the case t = 1: By Corollary 5.1 and Theorem 5.2, we can write

{TL +1- du(cr)}g;{
={1,2,...,n—r—gp(Cr),n+1—dgyc,)(Cr)-.,n+1—di(Cr)}.

Hence by Proposition 5.1-(iii) di(C;") is not less than n —r — gp(C;) + 1.

(ii) In the case 2 <t < 7 —7; + 1: Trivial from Theorem 5.3.

(iii) In the case 7 —7; +2 < t < r: We have max{n+1—d,(C)}}=7 = n+1—di(Cr)
by Proposition 5.1-(i) and n + 1 — di(C;) < n — 7, + 1 by Corollary 5.1. Thus we have
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from Proposition 5.1-(iii) that all integers 4 such that n — %, +2 < ¢ < n are not included
in {n+1—d,(C,)}p=], that is, {n -7 +2,... ,n} are included in {d;(C;*)};_; and are the

largest 7, — 1 elements in {1,2,...,n}. Therefore, by Proposition 5.1-(i), we have

{TL - ﬁl + 27 s ,TL} = {dt(C'l:L)}::r——'Th-F?

and d,(CH) =n—r+t. O

5.3.3 Comparison of the proposed bound with the order bound

In this subsection, we compare the proposed bound with the order bound [8] from some
technical points of view.

(a) A major advantage of the proposed bound would be an introduction of gp(C})
which, as shown in the next section, gives a rather fine range of ¢ for which RS, RM and
AG codes are t-th rank MDS.

(b) It is seen that the class of codes to which the proposed bound can be applied is
wider than that for the order bound.

We can see that the order bound can not be applied to all linear codes since 1t requires
an order function which must satisfy some specific conditions and therefore can not always
produce a basis of I which includes the vectors of a parity check matrix of a given linear
code as its first 7 elements. It is also noted that no concrete procedure to construct an
order function for a given code is presented in [8].

On the other hand, the proposed bound can be computed for any linear code because

a basis B = {hi, hs,..., hn} of F' can be obtained by simply adding independent vectors

to the vectors of a parity check matrix of a given linear code.

(c) As for the tightness of the bounds, as we show some numerical examples in the
next section, the proposed bound has given no worse value so far than the conventional
ones including the order bound.

However, it seems difficult to make a general comparison between the two bounds and
we must leave it for further study to clarify the tightness of the bounds.

(d) Finally, we shall roughly compare the computational complexity to calculate these
two bounds.

As is seen from Eq.(5.8), the proposed bound needs to verify whether |A%] > ¢ for
all subsets T7s of {1,2,...,7} and find the maximum value of |T| with [A7| > ¢ The
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complexity to verify if [A%| > ¢ for T is proportional to |T'|. Since the number of subsets
T’s of {1,2,...,r} with [T| =14 is C), the complexity is proportional to Zf:li(;) which
increases as r increases and does not depend on t. It is noted that for ¢ > gg(C,) + 1,
the proposed bound requires no calculation as Theorem Theorem 5.2 gives the exact value
di(C,) = r +t for the generalized Hamming weight.

On the other hand, the order bound needs to evaluate a function, denoted by a(4y, €5,
..., 4) in [8], for all t-tuples (41,4s,...,4) such that 4; € {r + 1,7 +2,...,n} and 4; <
ly < --+ < &, and to find the minimum value of a(¢1,¥s,...,¢;). Provided that an order
function is given, the complexity to calculate a(4y,4s,...,4;) for a t-tuple (41, £a,...,4) is
proportional to £. Since there are (”;r) such ¢-tuples, the complexity is proportional to
t(";”), which increases as r decreases, and increases with ¢ for 1 <t < (n —r+1)/2 and
decreases with t for (n —r+1)/2<t<n-—r.

As an example, Y7, z(j) and t(”:r) are compared for n = 64 in Figs. 5.1 and 5.2. We |
can see from Fig. 5.1 that the computational complexity for the proposed bound is smaller
than or comparable to that for the order bound when the rate of a code is relatively large
(i.e., for a smaller r), and the complexities for the two bounds are complementary with
respect to 7.

In Fig. 5.2, we compare the complexities of the two bounds for r = 8 and 16. Fig. 5.2
shows that the complexity for the proposed bound is much less than that for the order
bound in most of ¢.

It is noted again that while the complexity for the proposed bound is drawn for

whole range of r and ¢ in Figs. 5.1 and 5.2, respectively, no computation. is required for

4

5.4 Applications

In this section, we apply Theorem 5.1 and Theorem 5.2 to a couple of representative codes,

i.e., Reed-Solomon codes and Reed-Muller codes.

64



20

U
-

- Complexity (log;g)

1 10

T T

j{:32
.}316\‘\

Order bound "~
1=8 R

“““““

i 1 1

Proposed bound
(for t<gp(C,)+1)

20

30

40 50

Number of parity check symbols r

Figure 5.1: Comparison of complexity (1)




20

Complexity (log)
S

r==8
----------- ~...._Order bound
---------- =16
r=16
r=8
Proposed bound
(fOIl' t<gB(Cr):" 1)

10 20 30 40
t(1<t<64-r)

Figure 5.2: Comparison of complexity (2)

66

50




5.4.1 Reed-Solomon codes
Let o be a primitive element of Fo= GF(q) and n := ¢ — 1. We set the basis of F" as
B = {hy, hy,...,h,} where
hi = (1,071, 0D ,an D61y ¢
Then C, becomes the [n,n — 7,7 + 1] Reed-Solomon (RS) code.
For each h; (1 <1 <),
hi % h] — (1, ai—l—j—ﬂ, aZ(i-i—j—Z), . ,a(n—l)(i+j—2))
:hi-i—j—la j:1,2,...,n—i+1,

which implies that p(h; x h;) = ¢+ j — 1. Moreover, it can be easily verified that for each
h; (1 <4 <), (hs, h;) are all well-behaving for j = 1,2,...,n — ¢4 1. Thus we have

Azz{z,z—i—l,,n}
and
Ai={r+1Lr+2,...,n}\A; =0

for all ¢ = 1,2,...,r. Therefore, by the definition, we have ¢gg(C;) = 0.
By Theorem 5.2, it holds that d;(C,) =r+tforallt (1 <t<n-r), which implies
that RS codes are the first rank MDS codes. This is a well known fact [41,42].

5.4.2 Reed-Muller codes

Let R be the polynomial ring over F' := GF(q) with m variables, i.e., R := F[X;, Xy,
.., Xm]. We also let P be the set of all distinct points of F™, that is, P = {P}, P,
..., Py} where n = ¢™. For f € R and P, let ¥(f) := (F(Py), f(Py), ..., f(P.)). The map

¥ R— F™ is a surjective homomorphism of F-algebra [8].
We define deg(f) := >, 4 for a monomial f = X}'X2--- Xi» € R and deg(f) :=
max{deg(f;)} for f =3; fi, where fi’s € R denote monomials.

Definition 5.5 [8] The g-ary Reed-Muller code of order » and in m variables is defined by

RM,(u, m) = {¢(f) : f € R,deg(f) < u}.
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A monomial [T, Xf‘ € R is said to be reduced if 0 <4, < g—1forall £ (1 <£<m).

There are ¢™ (= n) reduced monomials in R, and it is shown in [8] that
RM,(u, m) = span{¥(f) : f € R is a reduced monomial with deg(f) <u}.  (5.13)

In [8], graded lezicographic order, which is one of the monomial orders on R [1], is
employed to construct from {4 (f) : f € R is a reduced monomial} a basis of Reed-Muller

code.

Definition 5.6 (Graded lexicographic order <gp)[1] For f; = [, X;¢ and f; =
[T, X3 in R, we say f; <cr fj if (i) deg(fi) < deg(f;), or (ii) deg(f;) = deg(f;) and

fi <u fj, where <, denotes a lexicographic order [1], ie., fi <v f; if, in the vector

(j1 —%1,J2 — @2, . -, Jm — im), there exists nonzero entry and the left-most nonzero entry is
positive. O
Write

{f € R: fis areduced monomial} = {f1, fo,..., fa} = I

with f; <aqr fi+1 and n = ¢™, and define

B = {hi,hs,....ha}, hi=3(f).
We also let T'y(u) := {f € I'y : deg(f) < u}. Then it is obvious from Eq.(5.13) that

RM,(u, m) = span{y(f) : f € Ty(w)} = (h1,ha, ..., i)
where k := |I';(u)|, and have our final result as follows.
‘Proposition 5.3 [8] The dual code of RM(u,m) is RM,(m(g—1) —u —1,m). a
By this proposition, we see that

RM,(u, m) = (h1, h, ..., h,)" = C,

where 7 := [T,(m{g — 1) —u —1)].

Theorem 5.4 Consider C, = RM,(u, m) where r = |T'y(m(q — 1) —u —1)|. Let Q) and R

be integers such that
mg—1)—u—-1=Qg—-1+R, 0<Q0<R<qg-—2. (5.14)
Then g5(C,) = ¢™ — 1 — (¢ — R)¢™ (@D 4 1. (Proof is given in the Appendix 5A.1.) O
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A method to compute t-th generalized Hamming weights for RM,(u, m) has been
shown in [42] for ¢ = 2 and in [8] for arbitrary ¢. But no explicit condition on ¢ for
RM,(u, m) to be t-th rank MDS has been giveh yet in terms of parameters of RM codes
such as ¢, v and m. On the other hand, we can get from Theorem Theorem 5.2 and

Theorem 5.4 an explicit condition: RM,(u, m) is t-th rank MDS for ¢ satisfying

¢"—r— (- R +2<t<n—r

where 7 = |Ty(m(g — 1) —u — 1)] and Q and R are as given in Eq.(5.14).

Numerical Examples Here we consider RM;3(2,3) and RM;3(3,3). As described above,
we have n = 3% = 27, RM3(2, 3) = Cy7 and RM3(3, 3) = Clo.

For Cy7, @ and Rin Eq.(5.14) are Q@ = R =1 and gp(Cy7) = 5. Hence dy(Cr7) = 17+t
for 6 < t < 10 by Theorem 5.2.

For Cyo, @ and R in Eq.(5.14) are Q =1 and R = 0 and therefore gg(Cyo) = 9. Thus
d;(Cro) = 10 + ¢ for 10 <t < 17 by Theorem 5.2.

For these two codes, we see from Examples 5.13 and 5.14 in [8] that gp(Ci7) and
gs(Cho) give the maximum range of ¢ for which d;(C;) = r -+t holds.

5.5 Generalized Hamming weights of codes on affine
algebraic varieties

In the preceding sections, we only assumed that we are given a sequence of vectors B,
Which is a basis of F™ and whose first n—k elements constitute the row vectors of a parity
check matrix of the [n, k] code C. In this section, we add some structure of codes, say, a
monomial order and Grobner basis, by restricting C, to codes on affine algebraic varieties
given in Section 2.3. Then we can define an upper bound of gg(C,) for the given monomial
order. Especially, by taking a monomial order such as C; agrees with the AG code on Cly,

then we show that gs(C,) is upper bounded by the genus of the curve C.

69



5.5.1 Bound for generalized Hamming weights of codes on affine

algebraic varieties

We consider the code C; on a given affine algebraic variety V = {P,Py,...,P,} C F"
for fixed monomial order < on N§. Let R := F[X), Xs,...,X,] be the polynomial ring
in s variables. For a basis {fi, fo,..., fa} (fi < fix1) of R(V) := R/I(V) over F, let
B ={hy,hy,...,h,}, hi :=9(f;). Then B becomes a basis of F" over F and code C, can
be defined as in Definition 5.2.

In the following, we show that 7; in Eq.(5.8) and ¢gg(C;) in Theorem 5.2 depend only
on a given monomial order < and any choice of a basis of R(V) including the order in it
does not effect to 1, and gg(C;).

By Proposition 2.4-(ii) and Proposition 2.5-(iii), mdeg(f;) € A(V), (i = 1,2,...,n),
which implies {mdeg(f;)}7=; C A(V). And since mdeg(f;) # mdeg(f;) (¢ # j), we have
[{mdeg(f)}2] = n= |A(V)]. Thus

{mdeg(f,) zr'L:l = (V) = {)‘17 A2a ceey A'rl}

where A;’s are given in Eq.(2.9).
Set
By = {b1, by, ..., by}, by = ¢(X™)

and consider A; given in Eq.(5.2) for B and By.

Lemma 5.4 (h;, h;) (h;,h; € B) is well-behaving if and only if (b;,b;) (b;,b; € By) is
well-behaving.

C(Proof) Assume that (h;, k;) (h;,h; € B) is well-behaving. Since mdeg(f;) = A; (1 =
1,2,...,n), plh;) = p(b;) =1 (1=1,2,...,n). Thus

b; x bj = (Z auhu) * (Z bvhv>
u=1 v=1
= Y owphurhy, 0y, by, € Foa; #0,b; # 0. (5.15)
1<u<i-1,

1<w<y

Since (h;, h;) is well-behaving, Bq.(5.15) implies that p(b; * b;) = p(h; * h;) for all 4 and
j such that 1 <+¢,57 <n. Thus

,U(bu * bv) - p(h’u * hv) < p(h'i * h’]) = p(bi * b])

70



forall v and v with 1 <u <4, 1 <v <jand u+v <i-+j. Thus (b;, bj) is well-behaving.

The proof for the converse assertion is exactly same. O

We see from Lemma 5.4 that A;, and therefore, A7, A} and A; depend not on the choice -
of B but only on a monomial order <. Thus 7; in Eq.(5.8) and gg(C;) in Theorem 5.2
also depend only on <. We write 7, and g,(C,) for given < instead of 7; and gp(C;),

respectively, and call a lower bound of generalized Hamming weight
dt(CT> > Tto +1

bound for generalized Hamming weights of codes on affine algebraic variety for given mono-

mial order <.

5.5.2 Upper bound of gg(C,) for codes on Cy

We consider the case in which V is the set of all rational points on the curve Cyp except
Q. Let R := F[z,y] and
V = {(z,y) € F*: h(z,y) = 0} (5.16)

where h(z,y) is the defining polynomial of Cy given in Eq.(2.4)

Definition 5.7 For positive integers a and b and monomials 2%y, 22y% € R, we say that

gyt < 2297 if (i) aiy + bj1 < aiy + bja, or (ii) aiy + bjy = aiy -+ bj and 4; > i, O

It is shown in [23,24,26] that <, is a monomial order on K and we can take n

monomials {fi, fa,..., fa} in R as a basis of R(V), where fi <a fix1 (0 = 1,2,...,n —

.1). Now, for these fi’s, let h; == ¥(f;), B := {hi,ho,..., hn}, and construct C; as in

Definition 5.2.

We define a semigroup S, associated with Cgp by
Sop = {ai +bj:i,7€ No}
It is known that |Ng \ Se| = (@ = 1)(b—1)/2 = g.

Lemma 5.5 For f;, fr € B(V), if 7(f) — 7(f;) € S, then there exists f; € B(V) s.t.
p(fif;) = k. (Proof is given in Appendix 5A.2.) 0
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Lemma 5.6 For f;, fi € B(V), if there exists some f; € B(V) such that p(f;f;) = k and

(f;, f;) is not well-behaving, then 7(fi)—7(fi) € No\Sas. (Proofis given in Appendix 5A.3.)
(]

By Lemma 5.5 and Lemma 5.6, we obtain the following theorem on the relation

between gg(C,) and g.

Theorem 5.5 Let g be the genus of the curve Cpp. Then gp(C;) < g (1 <7 < n).

(Proof) By the definitions of A; (Theorem 5.2) and A; (Eq.(5.2)), if k'. € A, thenr+1<
k <nand (i) k # p(fif;) for all j =1,2,...,n, or (i) for f; such that k = p(f;f;), (fi, f;)
is not well-behaving. We have from the contraposition of Lemma 5.5 for the case (i) and

from Lemma 5.6 for the case (ii) that
A C i+ 1<k <n,7(fe) = 7(£) € N\ S

This implies that
| Al SN\ S| =9 foralli=1,2,...,r

and therefore gg(C,) < g. O

Consider AG code on Cy;, denoted by Cp(D,G). Then it is shown that C, =
Cr(D,G)* where r is the dimension of Cr(D, G) [26]. For the generalized Hamming weights
of AG code C(D,G), the following proposition is known.

Proposition 5.4 [27,41,47] If deg G > 29 — 2, the AG code Cr,(D,G) has dy(C (D, G)) =
n — k +t for all ¢ such that g + 1 < ¢ < k, where % is the dimension of Cr(D, G). O

It is also known that Cp(D, @)t = Cr(D, H) for some divisor H (see [38] for the
detail). Thus we have the translation of Proposition 5.4 for the dual code of C1(D, G).

-

Corollary 5.3 Notations are as above. If degH > 2g — 2, the dual of the AG code
C1(D,G)* (= CL(D, H)) has di(Cr,(D,G)*) = k +1t for all £ such that g+ 1 <t <n—k,
where k is the dimension of C.(D, G). O

By Corollary 5.3, we have dy(C,) =7+t for g+ 1 < ¢ < n —r where g is the genus
of Cg. On the other hand, we see from Theorem 5.2 and Theorem 5.5 that d;(C,) =r+1¢
for gg(C,) +1 <t <n—r with gg(C,) < g. Thus we can conclude that gg(C;) gives the
range of ¢ not narrower than that given in [27,41,47], for which the generalized Singleton

bound holds with equality.
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Table 5.1: The values for gg(C,) of Hermitian code on z° + y* +y = 0 over GF(2*) with

order <, in B .
r 112,3/4,5,6(7,...,47|48/49, 50,51|52|53|54, 55]56{57|58, 59{60|61, 62|63

g(Cr)|0] 3| 5 6 5 6 |54 6 514 3 (2] 1 |0

Numerical Example 1 Let a = 4,b = 5 and consider the curve defined by h(z,y) =
x5 4+ y* 4+ y over GF(2*%). This curve is known as a Hermitian curve and its genus is g = 6.
The values of gg(C,) obtained from its definition given in Theorem 5.2 are listed in
Table 5.1. We can see from Table 5.1 that g5(C,) < gforr=1,...,6,48,52,53,56,...,63.
For these r, the range of ¢t for which d;(C,) = r + ¢ holds is wider than that given in

27,41, 47).
0

The following example shows that the order of elements of B led by a monomial order

does not always give the best value of gg(C,).

Numerical Example 2 Let o be a primitive element of F, := GF(2°) and consider a

code on affine algebraic variety
V = {(07 0)7 (O’ 1)7 (17 OZ), (13 CYQ)’ (1) O{4), (Ol, 045), (O!Q, as)) (a47 aﬁ)}
= {Pl,Pz,.‘.,Pg}.

We employ a monomial order on R defined by Definition Definition 5.7 with @ = 3 and .
b= 4. Then a basis of R(V) is given by'

{1,$,y7$2,$y,y2,333>$2y} = {fl)f?a v 7f8}

and we have
B ={hy,hs,..., hs},
hi = P(fi) = (fi(P), fi(R2), .-, filPy)).
The values of gg(C;) obtained from the definition given in Theorem Theorem 5.2 are
95(C1) = 0,95(C2) = -+ - = gp(Cs) = 2,
gs(C7) = 1.

1 A basis of R(V) obtained in [36] always consists of monomials of the form ?C = f, where ?G denotes

the remainder on division of f by Grébner basis G of I(V).
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For any basis B’ = {h},h),...,hg} of F® which is obtained by changing the order of

elements of B, such that
<h,,1, hlz, SRR hf,.)l_ = (hl, hg, e ,h.,.)'L = Cn

we can verify by computer search that gg(C;) < gp(C;) for r =1,2,...,5 and 7, while for
‘7 =6, we can find that B”’s given by '

{h1, b3, ho, b, hs, ha, by, hs},
{h1, hs, hs, hy, he, hy, by, hs},
{h1, hs, h3, hy, ho, hs, iy, hs},
{h1, ho, hs, hg, hy, hs, by, hg}

yield g (Cs) = 1 < gg(Cs). Moreover, we can show that these four B"’s are not obtained
from a monomial order considered in [36].

(a) We first show that {fi, f2,..., fs} is the only set of monomial in R with ¥(f;) = h;
and f;i=Fi_ (i=1,2,...,8).

Let F; := {f; +h : h € I(V)}. Then since I(V) is the kernel of ¢ : R — F®, it is
obvious that 9(f) = h; if and only if f € F;.

Choose next an arbitrary monomial f] € F; (i =1,2,...,8) such that {f], f3,..., fs}
# {fi, f2,- .., fs}. Then {f!, fs ..., fi} is also a set of monomials in R with ¥(f]) = h;.
We show that f] = ﬁG (i=1,2,...,8) cannot hold for this {f, f5,..., f4}-

Let f; # f;. Then since ?}-G = f—jG by Proposition 5 in [36] and ?;G = f; by the
footnote on p.73, we have f—]‘G = f; # f;- Thus we can conclude that {f1, f2,..., fs} is the
only set of monomials in R such that U(f;) = h; and f; = 7 (i=1,2,...,8).

“ (b) In order to verify if there exists a monomial order which leads any of the above
four bases, it is sufficient by (a) above to examine whether the set {fi, fo,..., fs} with
its order so changed as it gives each of the above four bases satisfies the condition of a
monomial order.

Note that for f,g € R and h € R\ {0}, any monomial order <y must satisfy that
fh <um gh if f <u g. It is easy to see that none of the above four bases satisfy this
condition. In fact, for the first basis, for example, we must have y < z and z%y > 2* at the
same time, which contradicts the condition for a monomial order. Thus we can conclude

that the above four bases are not obtained from a monomial order treated in [36]. O
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5.6 Conclusion

In this chapter, we have introduced a lower bound for the generalized Hamming weights of
arbitrary linear code and its dual in terms of the notion of well-behaving. The proposed
bound can be obtained only from the basis B of F}' whose first r elements constitute the
parity check matrix of the code and requires no other structure of the code. We have also
- shown that any [n, k] linear code C is the ¢-th rank MDS for gg(C) +1 < t < k where
g5(C) is uniquely determined from B. Finally, we have applied our results to RS codes,
RM codes and codes on affine algebraic varieties. Then we have given explicit formulae of
gs(C) for RS and RM codes and shown that 7, and gp(C) depend not on the choice of B
but on the monomial order. Especially we have shown that gg(C) < g holds for AG codes

on C,; where g is the genus of Cl.

Appendices

5A.1 Proof of Theorem 5.4

Iy, I'y(u) and B with graded lexicographic order are as defined in Subsection 5.4.2.

Lemma 5A.1 A pair (h;, h;) (hi,h; € B) is well-behaving if and only if f;f; = fif;,

where f is a reduced polynomial® of f.

(Proof) Assume f;f; = fif; and note that since

“and fufy € T, we have p(h,*h,) < p(hyxh;) for any h,, h, € B ifand only if f, fy <cL fifj
and fuf, # fif;- Thus we show that fuf, <ar fifj and fufy # fif; for every u, v such that
1<u<g,li<v<jandu+v<i+j.

By the definition of T, fu <ar fi (resp. fy <ar fj) for 1 <u <4 (resp. 1 <wv < j)
and the equality with respect to <gr holds only when u = ¢ (resp. v = j). Since <q, is a

monomial order, if f, <qr fi (resp. fu <aL fj) then fuf; <gu fif; (vesp. fufo <cr fufj)
[1], which implies that

fufo <cr fufi <av fif; (5A.1)

2 A polynomial in R is called reduced if it is a linear combination of reduced monomials. For every

polynomial f € R, there exists a unique reduced polynomial f such that ¥(f) = ¥(f).
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fori<u<iandl <v<j. InEq.(6A.1), fufs =cL fif; holds only when v =t and v = j,
but which is impossible for u and v with u +v <1+ 7.

Finally, as f <qr, f for any monomial in R, we have f,f, <cu fif; for u and v which
satisfy 1 <u <4, 1 <wu < jand u+v < i+ j. Forsuch u and v, Julv # fifj is trivial.
Therefore it is concluded that (h;, h;) is well-behaving.

Conversely, let f; == XUX2... Xi» and f; := X' XJ .- XJr, and assume that

Fif; # fif;. Then there exists a nonempty set
R:={0:1<2<mig+js>q}
For each £ € R, let 7, and j; be integers such that
i+ jp=te+Je—(q—1), 0<4<1i,0<5; < Je

For these 7}, and jj, define

. ﬁ X e ip for £ ¢ R,
u £y —

=1 iy for L€ R,

f = ﬁ XU gy ge for L & R,

= g, for L e R.

Since f, # fi, fv # f; and fu <aL fi, fo <cr fj, we have 1 < w <+, 1 < v < j and
w-v < i+ j. For these f, and f,, we also have f,f, = fif;, which implies that (h;, h;) is
not well-behaving. 0

Since f € T, is a reduced monomial, 0 < deg(f) < m(g—1) for all f € T,.
‘Definition 5.8 For each A; defined in Eq.(5.2), we define
Al ={lc A;:deg(fe) =6}, 0<d<m(g—1).
il
It is obvious that A; = UMYV A? and Af (6 =0,1,...,m(g—1)) are mutually disjoint.
Definition 5.9 For given f; € Iy, define i, as the integer such that

Jimax = max%GL{f ely: deg(f) = deg(fi)}’

where maximum is taken with respect to <qr.. 0O
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For given f; € I'y, let Q) and R be integers such that deg(f;) = Qg — 1)+ R, 0 < Q,
0 < R < ¢ — 2. Then by the definition of graded lexicographic order, f;, ., is expressed as

Fimne = XTI XEIXE (5A.2)
By the definition of A; (Eq.(5.2)) and Lemma 5A.1, A; is rewritten as
Ai={k:k€{0,1,2,...,n} such that fy = fif; where f; € I'g and fif; = fif;}-
Moreover, for f; = [T7, X}¢, we can write

A = {k ke {0,1,2,...,n} such that fj —'—-fifj
where f; = [, XJ,0< je<q—1—-in€=1,2,...,m}.  (5A.3)

Hereafter, we determine the number i* (1 < i* < r) for C; = RM,(u,m) (r =

[T, (u(g — 1) — u — 1)]) which satisfies

|Ai<| > | A, foralle,1<i<r
Then gg(C,) = | A;+| by the definition.
Lemma 5A.2 Foralli € {1,2,...,n},

A} > A |, 6=0,1,...,m(qg—1).

tmax

(Proof) Step 1. At first, we fix ¢ and 6. Let f; = 52, X}t and define the subset J? of
{0,1,...,¢— 1}™ by

Ji6 = {(jlan)"'ajm) 10 SJ@ S q— 1 #7:3762 1727"')m)27gz:1j£ :5— deg(fl)}

By Definition 5.8 and Eq.(5A.3), we see that |A{| = |J?[|. Thus we show that |J7| > |7 |-
Fix ¢, and & (1 < 4, < £, < m) and define the subsets J? (w) and J(w,7) of J? by

Jf(w) s {(jl,jZ, s ,jm) € sz :jel +j€'z = w}7
Jf(w,]) = {(j1,j2,. .. ;]m) & Jf(w) Ijgl :j}

Since 0 < jp, <qg—1—1, (v=1,2), wehave 0 <w < 2(qg — 1) — (ig, +14,) and

2(g—1)— (3¢, Fity)
J? = J2 (w).

w=0
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7
(.

Moreover, J¢(w)’s are mutually disjoint for w = 0,1,...,2(g — 1) — (ig, + ig). Thus

2(q—1)—(¢¢, +ie,)

= X Rl (5A.4)

w=0

On the other hand, for fixed w, J/(w, 7) is defined for j such that
0<j<qg—1—igand 0<w—3<qg—1—ip, (5A.5)

Thus
S (w) = U T w,5).
0<ji<g—1—71,,
0fw—~jlg—1—ig
It is obvious that, for fixed w, J¢ (w, j)NJ¢ (w, ') = O for j # j', and |J] (w, )|’s are constant

for all j satisfying Eq.(5A.5). Therefore, |J¢(w)| can be expressed as
T} () = N@)|J} (@, )] (5A.6)

where j,, is an arbitrary integer satisfying Eq.(5A.5) and N (w) is the number of j’s satisfying
Eq.(5A.5) for given w.
Let Omin = min{g—1—1g,g—1—14g,} and omay = max{g—1—ig,q—1~— ie, }- Then

it is easily verified that N(w) is expressed by using g, and w as

w1 for 0 < w < Omin,
N(w) =< Omin +1 for omin +1 S w < Opax — 1,
2(g — 1) — (i, + 1) —w+ 1 for omax <w < 2(q — 1) — (G, +1s,)-

By these expressions and Egs.(5A.4) and (5A.6), we have

Omin Omax—1
=S @+ DI )l + 2 (i + DI (w,50)]
w=0 W=0min+1

2(q—1)—(i¢, +ie,)
+ Yo @2 =1) = (g + i) —w + DT (@, 40)]-

W=0max

(5A.7)

Step 2. In this step, we also fix ¢ and ¢. Since Eq.(5A.7) does not depend on the order of

G in (31,99, .. ,4m), We assume that 4, > ipyy (£=1,2,...,m — 1) when we consider |J?|.
Let £ (1 < ¢; < m) be the smallest integer such that 75, < ¢—2 and £ (1<t <m)

be the largest integer such that i, > 1. Since we assume that i, > i1, we have the

following three cases.
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(i) The case £; > €. This corresponds to (i1,%2,...,im) = (¢ —1,...,¢4 = 1,0,...,0)
where the number of ¢ — 1 is Q and Q(g — 1) = deg(f;).

(ii) The case £; = £;. This corresponds to (i1,42,...,im) = (¢ —1,-- .-,q -1,R,0,...,0)
where the number of ¢ — 1is Q, 1 < R < ¢ — 2 and Q(gq — 1) + R = deg(f;).

(iii) The case £, < fy. All (i1,%s,...,4,;) other than the cases (i) and (ii) fall into this

case.

We show that if £; < £, there exists 7' ( 1) (1 < 4" < n) such that deg(f;) = deg(fs)
and |J7| = |J321.

Let
ig for€=1,2,...,m,€¢€1,€2,

fpi=1( g+ 1 for =1y,
ig—1 for & =15,

and fi = [, XZ/‘. Since it holds that 0 <4, < ¢ -1, fi € I';. Moreover,

deg(fi’) = sze = Z i + (iel + 1) + (7:32 - 1) = Zif = deg(fi)'
=1 £=1, £=1
L£ 0,8

For this fy, we define J§, J(w) and Ji(w,j,) similarly to J?, Ji(w) and J¢(w, ju)

(3

above. It is noted here that for fixed w, there exists j, and j/, for 4, and 7, which satisfy

Eq.(5A.5) and |J¢(w, ju)| = |3 (w, 5.)|. Hence by Eq.(5A.7), we have

q—=1—ig, q—2-1%y,
= 5 (wHDE i)+ S (g i) ()]

» Q(q‘l)—(ill'}‘ifg)
+ Z (2((]%1)— (iel +i52) —~w—{—1)],]i6(w7jw)|

w=g—1—1g,

q—l—i/ll q—z_ilzz
| @D+ S (g )T (w, 5]

w=0 w:q—i’l1
2(4_1)#(7:[1 +il2)
+ > (2g-1) = (@ i)~ w+ DT (w, 5L)]

m:q—l—i'z2

= ((q—1=ie) + DI (=1 =g, 50)| = (g — (i, + D)|T2(g — (iey +1),50)]
- (q - (7:31 + 1))l‘]z(§(q —2- (ib - 1)).742)'
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+(2(g—1) = (iey +ie) = (4= L= ig) + DI (g~ 1~ e, )]

g—ig,—2
+ 3 | (wdw)l
w=g—ig,
q—ig,—2
= (g =1 = gy, )| + T8 a = 1= gy, d) + D2 1T (@, d0)
w:q——zgl

> 0.

Step 8. Let £, and £> be integers defined in Step 2. For given f; = [T~ X 2‘, if there exists
no ' (# 1) such that deg(f;) = deg(fv) and |J¢| > |J¢|, then by Step 2, we can conclude
that ¢; > ¢. This means (i1, %2, o Jim) = (g—1,...,¢ —1,R,0,...,0) where the number
of g—1is Q, 0 < R < ¢g—2 and deg(f;) = Q(g— 1)+ R. Therefore by Eq.(5A.2), fi = fimax-
Finally, by noting that the above discussion holds for any 4 and 4, we have the lemma.

O

Lemma 5A.3 For 4,5 € {1,2,...,n} such that deg(f;) < deg(f;), we have Ay, D Aj...

(Proof) It is sufficient to prove it for the case when deg(fi) + 1 = deg(f;). By Eqgs.(5A.2)
and (5A.3), A

Tmax

is rewritten as

Ai.. = {k:k€{0,1,2,...,n} such that fx = fi,..fu Where
fu= XX SE - Xm0 <ugur S g — 1 ~R

0<u<g—1forf=Q+2,Q+3,...,m}

Note that by changing the condition on ug41 as 0 < ug4 < g — 2 — R, we obtain the
exactly similar expression for Aj, .. and these expressions for A;_,, and A, .. immediately

DA O

Jmax®

“imply A

2max

(Proof of Theorem 5.4)
By noting that deg(fr41) = deg(f;) + 1, we can write

deg(fr) m(g—1)
A= U Af)U U Af).

6=0 d=deg(fr+1)

Since deg(fe) < deg(fy41) for £=1,2,...,7, we have

deg(fr)
U A\ Nr+1,r+2,...,n} =0
5=0
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On the other hand,
_ m(g—1) :
A= U A c{r+1,r+2,...,n}
l:deg(fr+1)
Thus
A={r+1,r+2,..,n}\A={r+1,r+2,...,n}\ A
and |4 =n—1— A4

For i < r, we have from Lemma 5A.2 that

ey e 3
IAZI = Z lA'Zl 2 ’ Z Aimax] = l imaxl‘
d=deg(fr+1) d=deg(fr+1)
Moreover, for 2 < 7,
lKimaxl Z |7\—Tmaxi = IK"'l

by Lemma 5A.3. Thus |A;] > [A,] forall 1 <i <.
Finally, |A,| is equal to the number of (j1,J2,- - -, Jm) # (0,0, ..., 0) satisfying

jge=0for£=1,2,...,Q,
0<jor1 <g—1—-H,
0<je<qg—1for£=Q+2,Q+3,...,m.

Thus |A,] = (g — R)g™ @) — 1 and we have

gB(Cr) =n—7T— IK‘I‘!

=n—r—(g= R)g™ @ +1.
0
5A.2 Proof of Lemma 5.5
It immediately follows from Eqs.(2.9) and (2.10) that for any element f € R(V),
Fe (XM, X2 XN o mdeg(f) X Ay = mdeg(X™)
and
fe (XM x* xre1) o omdeg(f) < Ay, (5A.8)

where (f1, fo, ..., fi) indicates a linear space spanned by fi, f2, ..., fi.
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Lemma 5A.4 For V given in Eq.(5.16), let B(V') be the basis of R(V) given in Eq.(2.10)
with a monomial order defined in Definition 5.7. Denote f; € B(V) as f; = z%y™ (i =
1,2,...,n). Then m; < aforalli=1,2,...,n.

(Proof) Since f; = a%y™ € B(V), (¢, m;) € A(V) by the definition of B(V). Let f =
h(z,y) where h(z,y) is given in Eq.(2.4). Then f € I(V) and mdeg(f) = (0,a). Assume
m; > a, then

mdeg(f;) = (£;,m;) = mdeg(f) + (&, m; — a).

This implies mdeg(f;) & A(V) by Eq.(2.8), a contradiction. ' : O

Lemma 5A.5 Let f € F[X] be a nonzero monomial such that 7(f) < 7(f;) for some
fi € B(V). Then p(f) < i.

(Proof) By Definition 5.7 and (f) < ¥(f;), we have mdeg(f) <q mdeg(f;). Furthermore,
by noting that mdeg(f;) = mdeg(f;) by Proposition 2.5-(i), we have from Lemma 2.2-(i)
that

mdeg(?) jab mdeg(f) ~ab mdeg(fl) = mdeg(fz%

which implies p(F) < p(f;) = ¢ by Eq.(5A.8). O

Lemma 5A.6 Let f € F[X] be a nonzero monomial such that 7(f) = 7(f;) for some

fi € B(V). Then p(f) = i.
(Proof) If f = f;, then p(f) =i. Thus in the following, we assume that f # f;.
Denote f := zfy™ and f; := zby™ (¢, 4, m, m; > 0). Since P(f) = ¢(f:), we have

a(l — £;) + b(m —m;) = 0. (5A.9)

\,If ¢ = ¢;, then m = m; and f = f;. Therefore, £ # ¢; and m # m;.
In Eq.(5A.9), since a and b are relatively prime, we have alm —m; and b|£ — £;. In
addition, since f; € B(V), we have m; < a by Lemma 5A.4. Thus, noting m,m; > 0, there

exists a non-negative integer s such that
m—m; = as, L — {; = —bs. (bA.10)

For1 < k<s=(m-ms)/a,let

{[k] == £; — bk, } 7 (5A.11)



Then it holds that 7(zfklymkl) = T( fi) for k = 1,2,...,5. In what follows, in order to
show that p(zfy™) = p(ztllymll) = i, we show that p(zf*lyml) =i for k=1,2,...,5 by
the induction on k.

(i) For k£ = 1: Since y* = apg., (h(z,y) — ap0)2° — I (z,y)) by Eq.(2.4), we can write

mf[l]ym[l] — xE[l]ym[l]—aya

= gy sy U2 h(z, ) — o, cpoy Ty
Oy D Oy ey, . (5A12)
0<uy,
ptv<h,
ap+br<ab

For the first term of the right hand side of Eq.(5A.12), we see zflym™U=¢h(z, y) € I(V). For
the second term, we have from Eq.(5A.11) that gfU+eymil-e = ghiym — f; And finally,
for each terms in summation of the third term in Eq.(5A.12), by noting that au +bv < ab,

we have

r(gHrymil=etvy — gp[1] + bm[1] + ap + bv — ab
< al[l]+bom[1l] = 7(f).

Thus by Lemma 5A.5, p(zfU+nymlll-e+v) < ¢ for all p and v. From the above discussion,
we conclude that p(zfty™l) = 1.

(ii) Assume that p(zf*ly™*) =i for k < s. As seen in Eq.(5A.12), we can also write

zZ[k—}—l]ym[k—}-l] — a(_ofa):lie[kﬂlym[k“]’ah(iv,y) . a(—(ﬁa)a(b)0)$£[k+1]+bym[k+1]—a
—y D Oy Ty e,
0< gy
ptr<b,
autbr<ab

(5A.13)

From the similar discussion to the case k = 1, we have gfk+tymlktli-ap (5 4) € h(z,y) and
p(glet1l+pymlk+il—atv) < ¢ for all p and v.
Moreover, we have from Eq.(5A.11) that
Ok +1)+b=0 —b(k+1) +b=£[k],
mlk+ 1] —a =m; +a(k + 1) — a = m[k].
Thus p(mm) = P(m) = ¢ by the hypothesis of the induction. Then we

conclude p(Wm) =i and complete the proof. 0
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(Proof of Lemma 5.5) .
Since 7(fi) = 7(fi) € S, there exists a monomial f € F[X] with (f) = 1(fe) =7(f2),
and we have 7(fif) = 7(fi). Thus it follows from Lemma 5A.6 that '

p(FiT) = k- (5A.14)

Let j := P(?) and note that f; € the followiné three cases may be

possible.

<: N

(1) 7(f) = 7(f;), then f; = f € B(

(ii) 7(f) < 7(f;), then p(f) < j by Lem Qn‘tradicting with the assumption

j = p(f)-

(ili) 7(f) > 7(f;), then by the definition of
(a, € F). Since 7(f,) < 7(f;) for v =1,2,.

E

can be expressed as f = Y7 _ o f,

45 and 7(f;) < 7(f), we have

(1) < TS <m(fif) = 7(fe)y v = 1,2, 4.

Thus p(fif,) < k for v =1,2,...,7 by Lemma 5A.5. Therefore

p(fil) = p(fif) = max{p(fif.) :v=1,2,...,j} <k,

which contradicts with Eq.(5A.14).

5A.3 Proof of Lemma 5.6

We prove the contraposition. If 7(f¢) —7(f:) € Sab,’ by Lemma 5.5, there exists f; € B(V)
\’such that p(fif;) = k. Thus it suffices to show that (f;, f;) is well behaving.
For u,v with 1 <u <4, 1<wv<jandu+v <1i+], it is obvious from the definition
of 7 that
T(futs) S 7(fi) +7(f5)

and equality holds only when u = ¢ and v = J. Thus 7(f.f,) < 7(fif;) = 7(fi) and
p(fuls) < p(fifi) = k. / 0
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Chapter 6

General Conclusion

In this dissertation, we have discussed various bounds; offlinear codes and their applications
to algebraic geometry codes.

In Chapter 3, we have compared the parameters of AG codes on C,, with those of
BCH codes. From this comparison, we have drawn a necessary condition under which AG
codes can be better than BCH codes. More precisely, in order for AG codes on Cy to
have better parameters than those of BCH codes, it is necessary that the number of check
symbols of AG codes on Cy, is not less than min{g + a,n — g} where n and g denote the
code length and the genus of Cg, respectively.

In Chapter 4, we have discussed the dimension of subfield subcodes of arbitrary linear
codes. First, we have proposed a lower bound for the dimension of subfield subcodes which
exceeds the bound given by Stichtenoth. Next, we have improved the proposed bound by
restricting the codes to AG codes on C,. It has been also shown that calculating this
. improved bound is much easier than calculating the true dimension from the parity check
matrix by Gaussian elimination‘ Finally, we have shown through an example that the
improved bound for the dimension of subfield subcodes of AG codes on C, can exceed the
true dimension of a shortened BCH code with the same code length and designed distance,
while the conventional bound cannot. This implies that by using the improved bound,
some codes which were regarded as inefficient by conventional estimates are rediscovered
to be good codes.

In Chapter 9, we have investigated a lower bound for the generalized Hémming weights
of linear codes. Conventional lower bounds are only applicable to some special classes of

codes or require some structures of codes, while the proposed bound can be applied to
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arbitrary linear codes and requires only a basis of F' whose first n — & elements constitute

the row vectors of parity check matrix of the [n, k] code. We have also derived a sufficient

condition for a linear code to be t-th rank MDS.

The newly obtained results in this dissertation have shown some directions of deriving

linear codes with good parameters. However, there is still room for further studies. To

conclude the dissertation, we list some problems not yet solved.

(1)

(ii)

In order to design AG codes on C,, with desired parameters, not only the necessary
condition derived in Chapter 3 but also a sufficient condition which can be easily

verified is required.

The lower bound for the dimension of subfield subcodes of AG codes on Cy given in
Chapter 4 is easily calculated from a, b, ¢ (the order of the field over which subfield
subcodes are defined) and n (code length). In order to determine n, however, we
need to fix a defining polynomial of C,, and calculate rational points on it, which
requires not a small amount of computation. Therefore a lower bound which is
expressed without the code length n as its parameter and can be calculated with less

computational complexity is desired.

The bound for the generalized Hamming weights proposed in Chapter 5 depends on
the order of elements in B. It has not been clarified which order makes the proposed
bound tighter. A bound which does not depend on the order of elements in B is also

desired.
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