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the set of real numbers.

the m—dimensional Euclidean space with the norm

m ? -~ _
=zt = ¢ 2 Zf')liz For every z=(zl,22,...,zm) EERm.

j=1

the set of complex numbers.

the absolute value of a number Z & C.

“the imaginary unit , i.e., 12 = -1.

the conjugate complex number of a number Z EEC.
the real part of a number Z & C.

the imaginary part of a number Z(E C.

the m-dimensional complex space with the norm

m
Nzl = ¢ 5 7.7 472

: - m
i ;L for every A~(Zl’22""’zm)€5 c.

the interior of a subset A of R™ or C™.
the closure of a subset A of R™ or C™.
the boundary of a subset A of R™ or C™.

m

the convex hull of a subset A of R™ or C™,

the difference set ( x €A : x ¢ B 3.




W(g,d)=r{cos(2rq/d) + 1 sin(2ﬂq/d)}65 C for a positive constaht o
every positive integer d, and a=1,2,...,d.
wla,d)={r cos(2rxq/d), r sin(2ng/d) EiRz for a positive constant r,

every positive integer d, and g=1,2,...,d.

U(q,d)={xER2: x=(a cosf, a sin8), 02ax2r, | 8-2nq/d| £n/2d3

for a positive constant r, every positive integer d, and

a=1,2,¢..,d.
J, (k) t the Union Jack triangulation of RN with the grid
: size 1 [291.
; J3 : fhe Union Jack triangulation of Rsz(O,ij with
the continuous refinement of grid size [29].
Pd : the class of monic polynomials of degree d in one

complex variable with real coefficients.
rank M: the rank of a matrix M.

det M : the determinant of a matrix M.



Chapter 1. Introduction

We shall employ the symbols R™ and c™ for the m-dimensional
Fuclidean and complex spaces, respectively. UWhen m=1, we simply
write R (the set of all real numbers) and C (the set of all complex
numbers) instead of R1 and Ci. We say that a map Q:c™ - C
is a polynomial if Q(Z) is the sum of terms each of which has

the form

where A is a real or complex constant, bk a non-negative integer

(k=1,2444++,m), and Z=(Zl,Z2,...,Zm) is a vector of complex
valued variables. The degree of the term is defined to be the sum
of the b, ‘s; the degree of the polynomial Q is the maximum of the

k

degrees of the terms.

Let F=(F,,Fyy.eesF2:C" = C" be a map such that each j-th

1’
component Fj is a polynomial. We call such a map F a polynomial

map. We shall consider the system of eguations
(1.1) F(z=0, z&c™.

If we take m=1, then we have an ordinary algebraic equation in

one complex variable Z, i.e.,



(1.1 agz%a 2% e e 7ea g = 0,

where the Ak (k=0,1,...,d) are real or complex numbers. In this
paper, we study a homotopy method for finding all solutions to
the system of eguations (1.1) or the equation (1.1)"., The method
developed in the field of fixed point and complementarity

theory which was originated by Lemke and Howson [19] and Scarf
[271. For a survey of this field see, for example, Allgower

and Georg [2,3]. There are two types of homotopy methods:

a continuation (predictor—corrector) method and a simplicial
(integer labeling or vector labeling) method. A vector labeling
method is also called a PL (piecewise linear) method. We have
three purposes in this paper. First, we propose an efficient PL
method for finding all solutions to (1.1). Second, we report
some coﬁputationa] results for the PL method. Third, we study

a continuation method for finding all complex solutions to

(1.1) in the case that all the coefficients are real. These
results have already been pub]ishea in Kojima and Mizuno [133,
and Mizuno [21,22,231. The paper [23] is a revised version

of [221.

Kuhn reported the first application of a fixed point
computing method to an algebraic equation in one complex
variable. He proposed an integer labeling method for
approximating a solution of an algebraic equation in [173,

and later modified and improved the method so that it could



efficiently approximate all solutions in [183. Kojima, Mishino,
and Arima [161 later introduced a PL homotopy method and
reported some numerical experiments.

For approximating all solutions of a system éF polynomial
equations in several complex variables, Drexler [61 and.Chou,
Mallet-Paret, and Yorke [5] proposed a homotopy continuation method.
Garcia and Zangwill [10,11] also showed that the basic idea common ly
used in fixed point computing methods could be applicable to a
certain class of systems of equations which includes systems of
polynomial equations. They proposed a PL homotopy method for
approximating all solutions. Their method is purely theoretical
and not suitable for computer implementation.

Now we shall show an outline of a homotopy method [5,101 for
finding all solutions to (1.1). Let G=(Gl,62,...,8m):cm - c™"
be an auxiliary polynomial map such that all the solutions to

the system of equations
(1.2) G(=0, z &c”

are known. We give an example of G in Section 2.1 (see (2.3)).
The system (1.2) is then continuously deformed into the system
(1.1)., To achieve this, we define a homotopy H:c™X[0,1] - cm

between the two maps F and G by

(1.3 H(Z,t)=(1-t)F(Z)+tG(Z) for every (Z,t) &€ Cc™xro,13,

P
|



and consider the system of equations
(1.4) H(Z,t)=0, (Z,t)> & c™xCo,13.
Thus the system (1.2) is continuously deformed into the system

(1.1), through the system (1.4) as the homotopy parameter t

decreases from 1 to 0. Let [l denote the set of all solutions

. to the system (1.4), i.e.,
9
{1.3) M= {(Z,t)éz c™xro,131 : H(Z,t>=02.
Suppose that
(1.6) 0 is a regular value of H,
and
(1.7 the set 1 is bounded.
QQ : Chow, Mallet—Paret, and Yorke [3] showed that the condition (1.6)

holds for almost all the complex coefficients of the polynomial maps
F and 6. In Section 2.1, we will propose a sufficient condition

for (1.7). Under the condition (1.6), the set II consists of a
disjoint union of smooth paths. Chow, Mallet-Paret, and Yorke [3]
and Garcia and Zangwill [10] proved that those paths are monotone

with respect to t because the map H(.,t) is analytic. Since each



path is bounded and monotone, 1t has one end point 1in cM X {02

and the other end point in cMx¢13. We immediately see that
(v,1) € Tl for every solution Y of (1.2}, and that if (Z,0) < 1,
then 7 is a solution of (1.1). Therefore, if we trace Il from a
known point (Y,1) until the homotopy parameter t attains 0, we can
calculate a solution Z of (1.1). Repeating the same procedure
from all solutions of (1.2), we compute all solutions of

(1.1). This is an outline of a homotopy method.

Generally, the set Il can be very complicated. So we need a
numerical approximation procedure for tracing [1. Garcia and
Zangwill [101 proposed a PL approximation of M. In the case of
the PL method, we do not need the condition (1.4), In Section 2.1,
we explain their idea. Although their idea gives us a theoretical
foundation for approximating all the solutions of (1.1),
their method is difficult to implement on 2 computer.
Using their idea, Mizuno [21] extended the PL homotopy method
of Kojima, Nishino, and Arima [16] so that it could apply to the
case of several variables. He also gave a first report of
computational results for the PL homotopy method of finding
all solutions to (1.1), Then Kojima and Mizuno [15] improved
the PL homotopy method by utilizing a carefully chosen auxiliary
map. The computational results of [15] and t21] indicate
that the new method [15] is superior to the old one (211,

The abouve mentioned methods are applicable to polynomial

maps with complex coefficients. Additionally, Mizuno




22,231, Saigal [261, and Zangwill [341] have examined the

case where all the coefficients are real. Such a case often

occurs. For example, the stationary condition for minimizatibn

of a real valued polynomial objective function in several

real variables turns out to be a system of equations, and

global and local minima correspond to certain real solutions

of the system (see Problems 3 and 4 of Section 2.4), Zangwill

£341 aﬁplied a homotopy method to the minimization problem of a
“?3 polynomial function. But, as pointed out in [31, his idea has

a weakness. Saigal [261 proposed a PL homotopy method for finding

all real solutions to (1.1)7 in some interval. Mizuno [22,23]

studied the solution set
S = ((Z,t) & C™X(0,1): H(Z,t)=0 2

in the case that all the coefficients of polynomial maps F
and G are real. Note that S is the solution set of (1.4} in

Q§ the open set C"X(0,1). There are two distinctive features
of the solution set S, First, it can happen that the So]utién
set S does not form a disjoint union of smooth paths and has
bifurcation points, i.e., the condition (1.6) does not hold,
for any small real perturbation to the coefficients of the
polynomial maps F and G. Second, the solution set enjoys a
certain symmetry, i.e., if a point belongs to S then its complex

con jugate does. When we trace a path numerically, the first



property may cause some difficulty but the second will be
useful., Mizuno [22,23] analyzed S in detail and proposed
an efficient homotopy continuation method for Fiﬁding all
complex solutions of (1.1)’. Kawada [12] reported that the new
homotopy continuation method consumed about a half of CPU time
of the usual one.

The remainder of this paper is organized as follows: In

Chapter 2, we resview the results of Kojima and Mizuno [15].

In Section 2.1, we show an outline of the method proposed by
Garcia and Zangwill [101 and a basic idea of our PL homotopy
method. The PL homotopy method utilizes a carefully chosen
auxiliary map and a new triangulation. In Section 2.2, we
provide the auxiliary map. The map is neither analytic nor
continuous. But it has trivial zero points and is linear in

a neighborhood of each zero point. The linearity guarantees
that zero points are unchanged by a PL approximation of

the auxiliary map. In Section 2.3, we construct the new
triangulation which consists of two copies of the triangulation
J3 [297. The new triangulation was devised to increase
computational efficiency. A new PL homotopy is also defined
in Section 2.3. In Section 2.4, we report’some computational
results. In Section 2.5, we give some remarks on our
algorithm and point out the difference between the PL homotopy

methods of Mizunmo [21] and Kojima and Mizuno 153,



In Chapter 3, we review the results of Mizuno [22,231. In
Section 3.1, we inuvestigate the solution Set‘S in the case of
m=1 and real coefficients. The homotopy map H is represented
as H(x+iy)=h1(x,y,t)+ih2(x,y,t), where hi and h2 are polynomial
maps from RZXEO,lj into R, Since all the coefficients of F
and G are real, there is a polynomial map h3 FEom R2XE0,1]
into R such that hz(x,y,t)=yh3(x,y,t). Then the solution set

S is divided into two sets:

SR = Clx+iy,t) € CX(0,1)1 hy(x,0,£)=03,
SC = {(x+iy,t)€E(3X(O,1): hi(x,y,t)=0, h3(x,y,t)=0}.
Using this division we make the structure of S clear. In Section

3.2, we propose a new homotopy method for finding all solutions of
F(Z)=0 by using the nice structure of S. In Section 3.3, we study
the solution set S in the case of several variables and real

coefficients.

- 11 -



Chapter 2. A _PL method for finding all solutions

2.1, Backaround and basic idea

In this Section, we first outline the method proposed by
Garcia and Zangwill [103, and then present the basic idea
of our method. Suppose that each component Fj of a map

F=(F,,F ..,Fm):Cm - CM has the following form:

172"

d.
(2.1) F.(Zy =Z. 4 + P (D)
J J J

’ m
for every Z=(Zy 3 Zyr e Z) ech,

where dj is a positive integer and P=(P1,P2,...,Pm):Cm - Cc" is

an analytic map; P needs not be a polynomial map for the time being.

Garcia and Zangwill [10] imposed the following condition on the
map P
(2.2) If IZjl - +o on a sequence, then

d.
IPA(ZY/Z. 91 =0
J J

on an infinite subsequence.

For example, 1f each Pj is a polynomial map with a degree less
than dj’ then (2.2) is satisfied.
Let rr be a positive number. We define an auxiliary

polynomial map G=(Gl,62,...,Gm) by

-2 -



d. d.
(2.3)  6,(Z) = Z, o for j=1,2,. 00 ,m,

and consider the system of equations (1.2). Each J—th component
equation Gj(Z)=O involuves only the complex variable ZJ’ and

it has dj distinct soclutions
P{COS(zﬂq/dJ) + i Sin(zﬂq/dj)} ‘FOI"‘ q:1,2,cQtydjo

Hence the entire system (1.2) has d1d2...dm distinct

solutions. For every positive integer d and g=1,2,...,d, let
(2.4) W(g,d)=r{cos(2nqg/d) + i sin(2rq/d)>,

Let

(2.5) A={(q1,q2,...,qm)= qj=1,2,...,dj (j=1,2,.00,m)3,

(2.6) Y =(w(q1,d ),w<q2,d2>,...,u<qm,dm>)

I i
for every I=(q1,q2,...,qm) E A,

Then the set of solutions to the system (1.2) can be written as
CYI:I 651\}. Each YI will serve as an initial point bf the
method. |

Now we consider the homotopy‘(1.3)? the system of equations

{1.4), and the solution set (1.35). The condition (2.2) which

- 13 -



we have imposed on the map F ensures the boundedness (1.7,

fis pointed out in the Introduction, we need a numerical
approximation procedure for tracing the solution set [T. Garcia
and Zangwill [10] proposed a PL approximation of I[I. In their‘
method, the m—dimensional complex space C™ is identified

with the 2m—dimensional Euclidean space Rzm, and the homotopy
H, the maps F and G in C™ are converted into the homotopy h,

the maps f and g in Rzm, respectively. That is, we define

h(z,t)=(h1(z,t),h2(z,t),...,hm(z,t)),

hj(z,t)=( re HJ(Z,t), img HJ(Z,t)) (j=1,25¢00,m),
for every (z,t)=(zi,22,...,zm,t)(g RszEO,lj such that
_ . 2 .
z,=CreZ,, ing Z) E RS (j=1,2,.00,m),

where re Z and img Z denote the real and imaginary part of

Z €EC, respectively. The maps F:Rzm - R2m and g:Rzm - R2m
are similarly induced from the maps F:c™ -» ¢™ and G:C™ - c™.

Thus we obtain the systems of equations

(2.7)  f(z)=0, =z &R,
(2.8)  g(z)=0, =z & R®",
(2.9)  h(z,t)=0, (z,t) € R?™x[0,11,

- 14 -




which are equivalent to (1.1), (1.2) and (1.4), respectively.

Specifically, we see that

(2.10) the system (2.8) has exactly d1d2...dm distinct solutions

yI=(u(q1,d1),w(q2,d2),...,w(qm,dm))
(I=(qy 40y evsq) &N

where

(2.,11) wl(g,d)=( re W{qg,d), img W(g,d))

=(r cos{2nrnqg/d), r sin{(2ag/d)).

2m 2m

X[0,13 » R is a homotopy

5 RZM ind g:RE™ o REAM e,

We also see that the map h:R

between the maps F:Rzm

h(z,£)=(1-t)f(z)+tg(Z) for every (z,t) & R?™XC0,13.

The conversion above from the systems (1.1), (1.2) and (1.4)
in the complex space C™ into the systems (2.7), (2.8) and (2.9)
‘in the Euclidean space RZm makes 1t possible to apply the
results and technigues developed in the fixed point and
complementarity theory. The homotop} h has a distinctive
feature: for every té;[O,l] the Jacobian of the map
h(.,t):R2m - R2m evaluated at each z €5R2m is nonnegative.
We can derive this feature from the fact that for every t E}CO,i]

the map H(‘,t):Cm - c" is aha1yfic. We shall assume that

- 15 - .



(2.12) 0 is a regular value of the map F:Rzm - Rzm, 1.4,

the Jacobian of ¥ is nonzero at each solution z of (2.7).

Since the map f=h(.,0) has a nonnegative Jacobian everyuwhere,

{2.12) 1s equivalent to

(2.13) the Jacobian of f is positive at each solution z of (2.7).

The assumption (2.12) also implies that each solution of (2.7) is

isolated. On the one hand, from the boundedness (1.7), we have that
(2.14) +the solution set of (2.9) 1s bounded.

Specifically all the solutions of (2.7) lie in a compact set.

Hence we obtain

(2.15) +the system (2.7) has at most a finite number of solutions. |
f

By the construction of the map g=h(.,1), we can also show that

{2.16) +the Jacobian of g is positive at esach solution Y1 of (2.8).

The properties (2.13), (2.14), (2.15) and (2.16) will play

important roles in the discussion below.

- 16 -



Let
(2.17)  A=((z,t) ERZ™X[0,1] : h(z,t)=03.
Obviously, A can be written as

A={(z 250000z ,t) € RETXL0,17 2=(re Z,, ing Z)
(G=1,2, 0 00sm), (ZyyZh0ee o2 ot) €12, |

where [l is defined by (1.5)., If we impose the regularity condition
(1.6), we can prove that A consists of d1d2...dm distinct smooth
paths each of which connects a known solution Y1 of (2.8) with
an unknown solution of (2.7). See Fig.l1. In this case, one can
employ continuation methods (see, for example, Allgower and Georg
£2] and Chow, Mallet-Paret, and Yorke [41). Li and Yorke [201 have
reported a computational experiment of a continuation>method
applied to Wilkinson’s polynomial. We shall approximate A by
disjoint PL paths below. The regularity condition (1.6)
will be unnecessary.

Using a uniform triangulation K6 of Rsz[O,lj such

2m 2m

that each wvertex lies in either R X{02} or R X{1}, we

approximate the homotopy h:RszEO,ll - R2m by a PL homotopy

h5:R2mX[0,1] - RZm‘ -Here 6 represents
8
sif max {luj—vjl T o E}K , (Ul’u2"'°’u2m’t) EEU,

(Vl,VZ,o.o,'\)zm,S) 60’ j:1’2’000,2m}o

- 17 -



Fig.l.. . Solution set A .

Ny
>

Fig.Z,,. Solution set a*
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We call 8 the grid size of Ké. The PL homotopy h5 satisfies

(2.18) lim h2(z,£)=h(z,t) for every (z,t) ERsz[O,lj.

810
Hence, if 820 is sufficiently small then the solution set N
of the system

(2.19) h%z,0=0, (z,t) € R°™XC0,1]

approximates the solution set A of the system (2.%2). UWe now
assume that 0 is a regular value of the PL map hs. Then, as
is well known in the fixed point and complementarity theory, A¥
consists of PL paths and loops which are disjoint.

Suppose that & is sufficiently small. Then we can foresee
from (2.18) that the properties (2.14) and (2.153) will be

inherited from the system (2.9) by its PL approximation (2.19).

More precisely, we have, for each k=0 and 1,

(2.20) the system hé(z,k)=0 has the same number of solutions
as the system h{(z,k)=0, and a small neighborhood of a
solution of the latter system contains a unique solution
of the former system,

and

(2.21) the solution set A* of the system (2.19) is bounded.

- 19 -



Furthermore, by using the properties (2.13) and (2.14) we can

prove that

(2.22) each solution of hé(y,l):O is connected with a
solution of h5(2,0)=0, and vice versa, by a

PL path in A* (see Fig.2).

Consequently tracing all the PL paths which start from solutions
of ha(y,1)=0 until we attain the hyperplane Rsz{D}, we
approximate all the solutions of (2.7). This is an outline of
the PL method proposed by Garcia and Zangwill [103.

In order to implement the method described above on a
computer, we need to determine a grid size & for which (2.20),

(2.21), and (2.22) hold. HoweQer, they did not show how to

Z2m 2m

determine such a grid size. Since the map hé(.,l):R - R

is a PL approximation of the map g:Rzm - RZm which has
been induced from the simple auxiliary polynomial map G given by
(2.3), it is possible to calculate a grid size 8§ such that
(2.20) holds for k=1. In fact, we can apply the results on PL
approximation of PCl maps given by Kojima [143., See also Kojima,
Nishino, and Arima [14] and Mizuno [211].

It seems difficult, however, to calculate a grid size §
which ensures (2,20) For k=0 and/or (2.22) unless we know
detailed information about the Jacobian matrix of the map f in a

neighborhood of each solution of the system f(z)=0 (see Kojima [14]

and Saigal [251). Furthermore, if two distinct solutions of f(z)=0

-~ 20 -



are close to each other, we are forced to choose the grid size 8§
small enocugh to separate them. In such a case, we have to consume
a great number of pivot operations to trace PL paths. TherefTore,
we must say that the method involuves these difficulties and
computational inefficiencies although it certainly gives us a
theoretical foundation for approximating all the solutions of
F(Z)=0. In their paper [113, Garcia and Zangwill extended the
method to a more general class of systems of equations. But the
difficu]ties pointed out above have not been solued.

In our approach, we shall overcome those difficulties by
utilizing Eaves—Saigal continuous deformation technique [7]. This
technique was effectively used in the method proposed by Kojima,
Nishino, and Arima [16] for approximating all solutions of an
algebraic equation in one complex variable., Our method is based
on the Master Thesis by Mizuno [21] in which he extended the
method to systems of polynomial equations in several variables.
Another important feature of our method is the use of a carefully

~oL2m 2m

chosen auxiliary map giR -+ R with the property that the system

g({z)=0 has the same solutions as the system g{z)=0. The map
g is neither analytic nor continuous. But it is linear in a

A

neighborhood of each solution of the system g(z)=0. In Mizuno

213, g{z)=0 has been used as an auxiliary system. Compared

R2m N R2m

with the map g: naturally induced from the simple
polynomial map (2.3), we can take a larger grid size & such

that (2.20) holds for k=1 (see Section 2.5).



Now suppose that F=(F1,F2,...,Fm):cm -+ ™ is a polynomial
map. For each i=1,2,404,m, let dj denote the degree of
Fj and Ej the polynomial map which is the sum of all terms of
Fj with the degree dj‘ In the remainder of this chapter, we

shall assume the condition that

(2.23) for each fixed t €&10,13, the system of equations
d. A
tZ, P (1-0F () = 0 (J=1,2,000sm)

has only the trivial solution Z=0.

It can be readily verified that if the polynomial map F has the
form (2.1) for some polynomial map P=(P1,P2,.‘.,Pm) then the
condition (2.2) implies (2.23) above.

Taking t=0 in (2.23), we see that the system E(Z)=O has
only the trivial solution 7=0. This ensures that the system
F(Z)=0 has exactly dle”'dm distinct solutions if the
assumption (2.12) is satisfied (Garcia and Li [91). The
condition (2.23) also implies (2.14).

In our method, we shall construct a PL homotopy map
50 :R2M% (0,251 = RZ™ which satisfies the properties (2.24),
(2.25), (2.27), and (2.28) below, where 5* is a positive

number.

(2.24) The system ¢5(2,5*)=0 has exactly d1d2"'dm

distinct known solutions Y1 (1 651\).

(2.25) 1im ¢5(z,t)=F(z) for every z EERzm.
t !0

- 22_




Let

(2.26) X=C(z,t) €R*"X(0,s" 1 6% (z,t)=00.

By (2.24), we see (yI,s*) & X for every 1 & A, Let )(I
denote the connected component of X which contains (yl,s*).
As is well known, each XI forms a PL path under a regularity

assumption.

(2.27) Each path XI starting from (yl,s*) converges to

some (z*,O).
1t follows from (2.25) that z* is a solution of f(z)=0.

(2.28) For every solution z* of f(z)=0, there is a unique path

. %
XI which converges to (z ,0).
Therefore, tracing all the PL paths by applying complementary

pivoting to the PL system d>5(z,t)=0, we can calculate

approximations of all the solutions to f(z)=0.
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2.2, fn auxilia

ry map and its PL approximation

For every p

Vig,d)=<{

ositive integer d and g=1,2,...,d, let

X E}R2: x={a cosf, a sinb),

0£a&2r, | 6-2nq/dl &r/2d7.

Fig.3 shows the sets V(g,d) for d=4 and q=1,2,3,4. Fach V{(q,d)

forms a closed f

an shaped neighborhood of the point w(q,d) defined

by (2.11). It is easily verified that the minimum distance from

the point wlg,d)

(2.29)  infllx—wla,d) bt x & Via,d)> = r sin(n/2d).

Let

to the boundary of Vi(g,d) is r sin{zn/2d), i.e.,

(2.30) ¢i{x3;1)=x-(r,0) for every x EERZ,

and for every 1n

¥ {x;d)=<

2 2

teger d22, define the map ¢ (.;d):R™ = R™ by

((a cos(8-2ng/d)-+, a sin( 8-2xq/d))

if x=(a cosf, a sinf) &V(a,d) for some a=1,2,...,d,

(adcos(dQ), adsin(dg))

¥iF x=(a cosf, a sinf) &iV(q,d) for any q=1,2,...,d.
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w(l‘

V(2,4)

w(2=,4)

W(3j

Fig.3. ,:V(4,4), q=1,2,3,4.

Yy

N

A

Fig.4. The image of V(q,4) (gq=1,2,3,4)
under the map w(f,‘-;é).
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Fig.4 1llustrates the image of the sets Vig,4) for ag=1,2,3,4 under
the map ¢ (.3473 each V(a,d) is mapped onto the fan shaped reglon

which is congruent to V(g,d) itself. More precisely, we have

cos{2ng/d) sin(2na/d? X,
(2.31) t¢(x3d)=

~sin(2rqg/d) cos(2rna/d} |x~

for every x=(x1,x2) E}V(q,d)

(d=1,2,o¢¢ ; q=1,2,"0yd)0

Hence ¢(.3d) is affine on each Y(q,d). Note that the 2X2 matrix
appearing 1in the right side of ({2.31) is an orthogonal matrix with
the determinant 1. fs for polints X outside of V(g,d) for any

q=1,2,..dy we have that

(2.22)  $ixzdr=(re X%, img w3y 1f x=(re X,img X), X €C

(d:2,3,000 )o
By (2.30), {2.31) and (2,32), we further obtain that
(2.33) {x:EERz: P (x3d)=0>r = {wla,d): g=1,2, 40 0,d2 (d=1,2,400

and that
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(2.34) +the Jacobian of the map ¢ (.,;d) at w(g,d) is +1
(d=1,2,44+ 3 a=1,2,...,d).
' Now we are ready to construct the map ;:Rzm - Rzm.
Let dj be the degree of the j—th component Fj of the polynomial
map F=(Fy,Fyye..,F 2:C" = C" (j=1,2,...,m). For every

z=(21,22,‘..,zm) EERzm, define

(2.33) gj(z)=¢(zj;dj) (j=1,2,¢04,m),

g(Z)'—'(gl(Z),gz(Z), .o ,gm(2)>0

Let Jl(k) denote the Union Jack triangu]étion [29]0 of the

k-dimensional Euclidean space with the grid size 1. For each 0 >0,
let

pJ ()=(Cox: x € o)t 0 SRS
Using the triangulation DJ1(2m) of Rzm, we shall approximate the
map g:Rzm - R2m by a PL map gD:Rzm - R2m in a standard

A

way: let gp(v)=g(v) for every vertex v of DJ1(2m) and then extend

A

the map gp affinely on each 2m—dimensional simplex ¢ of DJl(Zm).
The remainder of this section is devoted to proving the following

result.
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Theorem 1. Suppose

(2.36y 0< p = (r/V2) Sin(R/Zdj) (j=1,25c0esm)e

Then we have :

(2.37) (z € RZ™ gP(z)=03 = Cypr T EAY

and that

(2.38) 1if a >m—-dimensional simplex ¢ 65 DJl(Zm) contains a Y1
for some I EE:K, then the Jacobian of the affine map

gp | ¢ (the restriction of gp to O) 1S one.

(See (2.5), (2.10) and (2.11) for the definition of A and yI)

Proof. Let d!D(.;dj):R2 - R2 denote the PL approximation of the
map $(.3d;) on the triangulation pJ, (2) of RZ (j=1,2,. .. m).

Then we have

(2.39) gP(z)=¢(z.3d )
J J J

'FOI'q every Z'—'(Zl,zz,...,zm) ERzm (j=1,2’ooo,m)o

This equality follows from the structure of the Union Jack

triangulation J1(2m). Hence we see

(2 ERM™: gP(z)=03 = 2z CRZ™: z=(z, 20000 02) s

nbp(zj;dj)=0, §21,2, 000 mds

On the other hand, it follows from the definition of

yp (I € A) (see (2.10)) that
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{yI: I EE/\} = {z EER2m: z=(21,22,...,zm), zj=w(q,dji,.

q=1,2,...,dj, ,j=1,2,..¢,m}.

Therefore, in order to establish (2.37) and (2.38), we only

need to show

(2.37)" {x ERZ: ¢ (x;d)=0) = Cwla,d): q=1,2,...,dY (d=1,2,.00 )

and that

(2.38)" if a 2-dimensional simplex 0O EE;IJl(Z) contains a w(qg,d)
for some g=1,2,...,d, then the Jacobian of the affine map
P (A1 o is one (d=1,2,... ).

If d=1, then, by (2.30}), we have

P (x31)=00(x;1)=x-(r,0) for every x E}RZ.

Thus (2.37)° and (2.38)° follow directly. Hence we have only to

deal with the case d22. By (2.31), we first observe that

(2.40) if o EDJ1(2> is contained in V(qg,d) for some
a=1,2,+..,d, then @2 (x;d)=¢(x;d) for every x Co.
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Since the diameter of each @ EEDJ1(2) is not greater than

- sin(7/2d) by the assumption (2.36) and the minimum distance
from w(g,d) to the boundary of Vig,d) is r sin( m/2d)
(see(?2.29)), we see if wlajd) GECTQZDJl(Z), then oC_V(g,d).
Hence, by (2.34) and (2.40), we obtain (2.38)° . Furthermore,

it follows from (2.33) and the argument above that
(x € R?: 9P (x;d)=0)> DCula,d)i a=1,2,...,d3.
What we have left is to show
(x € R%: 0P (x3d)=0> Clwla,ddt a=1,2,...,d.
Suppose that o P (x ;d)=0. Let 0 be a 2-dimensional

simplex oF/DJ1(2) which contains x . If g’ C Vlqg,d) for some

a=1,2,..+,d, then by (2.33) and (2.40), «’ must coincide with
wig,d). Hence, it suffices to derive a contradiction from the

assumption

(2.41) 0'CL V(a,d) for any a=1,2,...,d.
Let

U(p)={x6R2: ¢(x3;d)sp > 0 for every p ERz,
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where p+*qg denotes the inner product of p €5R2 and g €5R2.

Then for every nonzero p EERZ, we have

(2.42) U (Jel Ut=p) = ¢l Up) |J Ut-p) = R?,

bd U(p) = bd U(-p),

where cl A and bd A denofe the closure and boundary of a set A,
respectively. On the one hand, if o'C_ U(p) for some nonzero
p E}Rz, then we would have & °(x";d)+p>0, a contradiction to

¢ P (x"3d)=0. Hence U'(ZfU(p) and J'QZ:U(—p) for any nonzero

P EERZ, which together with (2.42) imply

(2.43) o’ () bd U(p) # & for any nonzero p & RZ.
Specifically, we have

(2.44) o () bd UC(1,00) # ¢ and ¢’ []bd UC(0,1)) + ¢.
Let

d
B,=bd UC(1,00) [} ¢ |] int Vea,d)3,
g=1

B,=bd U((l,O))\Bl.

2

See Fig.5. By a simple calculation, we see
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Fig.5.

pd U((0,1)), B, and B, (d=4).
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minC I x-y It x € bd UC(0,1)), ¥ € B,

= r tan{ n/2d) > r sin{wn/2d).
Since the diameter of each O EEIJJi(Z) is not greatek than
r sin(xn/2d), it follows from the ineguality above that if
g r]bd Ut(n,12)# ¢, then o r182=¢. Hence, by (2.44) and the
definition of Bl and 82 above, we must have
o () bd UC0,1)#¢ and o’ []|B,#¢.
From U'(W Bl#=¢, we can assume without loss of generality that

o' [ bd UC(1,00) [] int V(d,d) # ¢.

Thus we obtain the situation illustrated by (a) or (b) of Fig.é.

Finally, we can easily verify that if (a) occurs, then
o’ [} bd U(=sin(r/2d), cos(r/2d))) = &

and that if (b) occurs then
o’ [] bd Ul(sin(/2d), cos(m/2d))) = ¢.

This contradicts (2.43), and completes the proof.
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.—-—‘—"""-‘_-' :

»dU((0,1))

(a) . : bd U(( -sin(w/2d) ,cos(@/Zd) ).
' «——V(4,4) :
B .
1! - bd U((0,1))
o’ fe e —————— ‘ \
(b) . bd U(( sin(x/2d), cos(n/2d) ).

_ Fig.b6.
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2.3. A PL homotopy

2m Zm

In order to construct the PL homotopy ¢15:R X(D,S*] - R
which satisfies (2.24), (2.25), (2.27) and (2.28), we need a

triangulation with a continuous refinement of grid size. Here we

shall make use of the triangulation J3 of RnX(O,lj given by

Todd [29]. First we introduce some notations. Let
£, = 27K (k=0,1,2,... ),
Sk = 3*tk (k:0’1,2,000 ),
st = (s t k=0,1,2,... 3,
s? = (1,23,
s3 = (¢, : k=
- tko k_0’1,2,000 }, .
s =st{ys?| s>

Let 0 be an (nt+l)-dimensional simplex of J3. Then there
exists a nonnegative integer k such that every vertex of o lies
in either the hyperplane RnX(tk} or RDX(tk+1}. Hence the
vertices of 0 are written as

(uo,tk),...,(up,tk),

n+1l

pt+l
(U ,tk+1)’ooo,(u ’tK+1)‘
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*® ,
Let o denote the convex lull of the points

(UO,Sk)’ e ,(Up,Sk),

+ +
(up 1,Sk+1),...,(un 1’Sk+1>'

Obuiously, we see that O forms an (n+1)-dimensional simplex

in Rn+1. If J is a triangulation of a subset of Rn+1 and a, b

are real numbers with alb, we shall employ the symbols JCa,bl]

SR s T 5 i e

for the collection (T EE\H ¢ (CR"XLa,bl) of (n+1)-dimensional

simplices.

Let k1 be a nonnegative 1nteger and s =) - Define

1

and L of (h+1)-dimensional simplices

the collection Li, L2, L3

as follows:?

1

L= co®r o EuLly, L1100,
3tk
L2 = J (n+1d01,23,
L3 = JB’ 4
E
L= LtyLry s

Fig.7 illustrates L for the case n=1 and k;=2. L, L, 8
24 L are triangulations of RTX[2,s"1, R"X[1,23, R"X(0,1]
and RNX(0,s 1, respectively. (When k, =0, we have Li=¢ 0
Each vertex of Lj lies in the hyperplane R"X{s} for some

S EESJ (j=1,2,3), We also see that the.intersection of the

triangulation L with each hyperplane RTX{s) (s EES) induces a

Union Jack triangulation with the dimension n, which we will
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» Fig.7; The triangulation. 1, for the case n=1 and kl=2b. )
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denote by L{s). Specifically, L(S*) coincides with the

-k
Union Jack triangu]ation with the orid size 2 s 1e€4y

(2.45) orid L(s) =2 ~.

It should be noted that the grid size of L(s) increases as S
% .
decreases from s to 2, and it decreases to 0 as s decreases

from 1 to O

oo ST e ST SR A e e T P -

1im grid L{s)=0.
s10

These properties will contribute to the computational
efficiency of our method.

For every positive number 6, let

5L=CC(0z,8): (z,£) Eods o &L,
5L(s)=(C( Bz, 1)t (z,8) Cod: 0 EL(Y (s c sy, 3

sLizcc( 62,801 (z,0) oy o CLIY (j=1,2,3).
That is, 6L (6L(s) or 5Lj) is a triangulation which is a
reduction (if 6<1) or expansion (if 8§>1) of L (L(s) or Lj)

along the first n axes 21,22,...,zn. I+t follows from

(2.45) that

orid BL(s¥y =2 L&,
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We are now ready to construct the PL homotopy map @6:
*
Rsz(O,s 1 - R2m‘ Let n=2m. For every vertex (u,s)

of 6L, define

A

5 olw) if s Esl,
d (u,s)= 3
f(u) if s &5°7,

and extend the map @6 affinely on each simplex ¢ of 0L;

5 2m+1 6 . .
6% =z,t) = = 2.6%w!,sh
j=0°

for every (z,t) EEtJ satisfying

2m+1 . 2m+1
(z,t) = 2 2 .(ut,st, z A, =1,
=0’ =0

lj 2 0 (j=0,1,...,2m+1),

2m+l  2m+1
, S

where (uo,so),(ul,sl),...,(u )} are vertices

of 0.

Theorem 2. Suppose that conditions (2.12), (2.23), and

(2.46 0 < p =2 15 = (r/Vﬁ)sin(ﬁ/ZdJ) (j=1,2,.{.,m),
hold and also that the set X defined by (2.26) does not intersect

with any face of dimension less than 2m of any 0. E}ﬁL {(regularity

condition). Then (2.24), (2.23), (2.27), and (2.28) hold.

- 39 -



Proof. By construction, we know

~

(2.47) gp(z) = ¢>§(z,s*) for eQery z EER2m.

Hence (2.24) follows directly from Theorem 1. Suppose that

(z,s) EEO'and S 65(0,1]. Then, by the definition of the map

@6, we see
]
® (z,8) & colf(u): (u,t) & o),
where co A denotes the convex hull of a set A. Hence

¢5(z,5) converges to f(z) as s—=2+0 because the diameter of

the simplex 0 converges to zero as s—+0 and f is continuous.
Since (yI,S*) €E>( is a boundary point of the set

R2mX(0,S*], we know, under the regularity condition,

that each connected component XI of X which contains (yI,s*)

forms a PL path. By using a similar argument as in [16] we can

prove (2.27) and (2.28), UWe shall outline the proof below.

The details are omitted here.,

{i) We shall show that RCC:T"X(O,S*] for some compact
2m

subset [N of R Assume on the contrary that there exists

a sequence {(z",s”)> € X such that Izl »+o as p-+w,

p

Let o7 be a (Z2m+l)-dimensional simplex of 8L which

contains (zp,sp) (p=1,2,... ), and let
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P = (2 ERT™: (2,50 € 0Py (p=1,2,... ).

Then, by the construction of the PL homotopy ¢75, we can find a

sequence {(tP2 65[0,1] such that
0 E+tPlco gl + (1-tP)lco FC Py

or equivalently

(2,48) 0 &tPco gj(rp)} + (1-tP)¢co Fj(rp)}
( j =1,2,0c0’m )o
For p=1,2,... , let Z(p)=(Z(p)

Z(p) ..,Z(p)m) be a

1’ 2
point in C™ such that z?=(re Z(p) ;, img Z(p) ) (j=1,2,...,m),
and TP be a subset of CM such that Tp={(zl,22,...,zm):

ijcre Zj,img ZJ)’ (21,22,.‘.,21_") E Tp}o For every
i=1,2,...,m, let Gj be a map from C™ into C sSuch that

~ ~ , Pal , 2

gj(z)=(re GJ(Z), img GJ(Z)) if 22(21’22""’Zm) ER m,

Z=(Zy v Zoy e v esZ ) & c™ and z, =(re Z_, img Z_ ) for

k=1,25444.sms Then we can convert the inclusion relation (2.48)

in the Euclidean space into the relation in the complex space

(2.49) 0 € tP(co GJ(Tp)} + (1-tP)<{co chTP>}
( j:1’2,000,m )o
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Since the diameter of each subset TP of c™ is bounded by

[/2m 6 and P E 00,17 (p=1,2,.00 )s BY taking an appropriate
subseqguence i ¥ necessary, we can assume without loss of

generality that all points in the set (Z/ W Z(p) s Z & 17>

~

converge to a common nonzero Z as p7t® and that e

conuverges to some t E}[O,l] as pt o, Recall that +he degree

of each FJ is dj and Fj denotes the po]ynomia1 which is

the sum of all the terms of F. with the degree d.. Also we ;?
~ d. J J f@
have GJ(Z)=ZJJ (1if dj>1) or Zj—r (1f dj=1) for every

d.
z €c" with 17 | 52r-. Hence, dividing (2.49) by 1Z(p2 | 4 and

taking the limit as p2t+®, we obtain

~ad ~ oA~
thJ + (A-0)F ((2) = 0 (j=1,2,.00,m)e
This contradicts the assumption (2.23). Thus we Have shown

(2.50) >(C:I“X(O,5*] for some compact subset [T of Rzm.

(ii) We have seen in Section 2.1 that (2.13) and (2,19)
hold under the assumptions (2.12) and (2.23). Let 21’22""’2p
denote all the distinct solutions to the system £(z)=0. By

applying the results on PL approximations of smooth mapplngs

given 1n Section 3 of Kojima [141, we can find a s E}SS such that

(2.51) X r‘Rsz(O,s] consists of p paths, say

Xll,XZ',...,Xp' which are disjoint with each other,
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(2.52) each path Xj' converges to (zJ,O),

and that

(2.53) if (z,9) € X" for some j=1,2,...,p (or equivalently
¢>5(z,;)=0), then the Jacobian of the map d>6(.,;):
R2m - R2m at z is positive.

Let XJ* denote the connected component of X which contains
XJ' (j=1,2,+.45p0). Then it follows from (2.53) and the

regularity assumption that
* * . .
XX N %X =0e if j #* k.

This can be proved by applying the index (or orientation) theory
(Eaves and Scarf [81). Furthermore, since XJ*C: X<::r"X(O,S*],

ZmX{s*}.

each path Xj must originate from a point in R
This implies that esach Xj coincides with some XI’ and

we have shown (2.28),

(iii) By Theorem 1 and the equality (2.47), we see that

the Jacobian of the map ¢6(.,s*):R2m - R2m is
positive at every Y1 (1 65:@). Hence, by using the same
index theoretic argument as above and XIC::}:C:I"X(O,S*],

we obtain

X, (1% = ¢ if 1 #1° and (2.27).
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The theorem above provides us with an algorithm that
approximates all the solutions to the system f(z)=0. Namely,
trace all the PL paths XI starting from the known point
(yI,s*) (1 EEIK) until they hit the hyperplane Rsz{tk}
for a sufficiently large k3 if (z,tk) €£>(I, then z 1s an

approximate solution of f(z)=0. The practical procedure for

tracing XI is done by applying complementary pivoting to

che PL system @ 0(z,5)=0, (z,9) € RZ™X(0,s7 7.

The a]gorithmkinvolves the parameters r, 0 and kl; § is
determined by 6=2 1D. We shall explain the role of these
parameters. For the time being, we assume that r and £ are
Fixed, and focus our attention to the parameter kl. First we
observe that as the homotopy parameter t decreases from 2 to 1,
the map ®5(.,t):R2m - R2m is continuously deFormedVFrom
a PL approximation ¢6(.,2) of ; into a PL approximation

@5(.,1) of f. Hence, we will trace a path XI from an

approximate solution of ;;(z)=0 to an approximate solution of g
£(z)=0., If the grid size of the triangulation 5L2 of RszE1,2]
is too small, we have to traverse a great number of small
simplices along the path XI until it hits the hyperplane
Rsz{l}. This causes a computational inefficiency. The

role of the parameter kl is expznding the small initial grid
size p up to the grid size 0=2 1D of 8LLC1,2] in order to

increase the computational efficiency when p is too small.




Because of the same reason as above, we want to take »
as large as possible. But Theorem 2 requires us to take 0 not
areater than the number minj{(r/V§5Sin(ﬂ/2dj)}. Hence we
shall fix o at this number.

By the construction of the PL homotopy d>5, we also see that

each map d>6(.,t):R2m *‘Rzm (t 65[2,5*]) approximates
~ . 2m 2m
the common map g:iR - R although the accuracy may

%
become lower as the homotopy parameter t decreases from s to
2. Hence, unless k1 is too large, each path XI starting
from the point (yI,s ) is expected to penetrate each layer

REM %[5 1 (k=1,2,...,ky) of the triansulation

k? k-1
5LE2,5*] almost vertically and encounters a relatively small
number of simplices.

The parameter r determines fhe location of all the initial
points (yI,S*} (1 &A) from which the path XI will start.
It should be also noted that the initial grid size p which we

have fixed at minj{(r/Vg)sin(n/Zdj)} changes in proportion

to the parameter r.



2.4, Computational results

The algorithm was coded in Extended FORTRAN (MELCOM-COSMO
700), and was applied to six problems (Prob]eﬁs 1-4 described
below). We used double precision arithmetic (mantissa of

length 15 decimal places and exponent in the range 10_?8

through 10?4) for Problems 2-6, and quadruple precision @

arithmetic (32 decimal places and 10—?8 through 10?d’

respectively) for Problem 1. Changing the values of the
parameters r and k1 for some of the problems, we examined their
effect upon the computational efficiency. We stopped the
iteration for trgcing g_path XI when the path attained the
hyperplane Rsz{tk}’SucB that the grid size of its
triangulation L(tk) is less than 10_? or when all the

absolute values of the components of the map f evaluated at the

10

latest approximate solution become less than 10 *°.

T

In Tables 1-9, we employ the following notation:

~ ~

#g: the total function evaluation of the map g.

#f: the total function evaluation of the map F.
PIVY (j=1,2,3): the number'oF (2m+1)-dimensional

simplices of triangulations 5Lj (j=1,2,3) which were

met by the paths XI (1 EEA), i.e., the total number
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2m

of pivot iterations which were consumed in R XE2,S*],

RZM% (1,27 and RA™

X(0,13, respectively.
T.PIV: the sum of PIV! s (j=1,2,3), and the number in
the bracket denotes the mean value per a path, i.e.,

T.PIV/(d,d

1 20“dm)o

The first three examples are algebraic equations in one

complex variable,

Problem 1 (Wilkinson’s polynomial of the degree 20 [321).

20
F(zy = T1 (z+5) + 272321% o
=1
Li and Yorke [20] also solved this problem. They reported
that more than 9000 derivative evaluations were consumed to
calculate all solutions. We spent about 4000 evaluations of f

and g (see Table 1). But this comparison may not be fair

because the starting points were different,.

Problem 2 (Degree 80 Taylor expansion of cos(Z) centered at Z=0).

40
F(z) = % (-1)kz2k

k=0

/(2k)t = 0,

This problem was suggested by Dr. Tanabe [281. We got 20

real approximate solutions and 40 complex ones using the algorithm

(see Table 2).
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Problem 3.

F(Zy = £ 7~ = 0.
k=0

Obviously, we see

501

F(Z) = (Z - 1/(z - 1) if Z ¥+ 1.

Hence the solutions are
cos(2nk/501)+1i sin(27nk/501) (k=1,2,...,300).

We were able to approximate all the solutions by the algorithm
{see Table 3.

From the results given in Tables 1 and 2, we may conclude?

(2.54) the total number PIVl of pivot operations consumed when

the paths lie in Rsz[Z,s%] increases as kl does.

(2.55) the total number PIU2 of pivot iterations consumed when

the paths lie in RZmXEl,ZJ is much affected by the
choice of the parameter r and the grid size 9§ of 5L2,

and if r is fixed and 8 is not too large, then it is

inversely proportional to 0.
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(2.96) the total number PIV3 of pivot iterations consumed when

2m

the paths lie in RT"X({(0,1] increases as & does‘

When & is too small, the number PIV2 becomes very 1arge.

K ‘
In that case, we should increase 0§=2 1(r/V§)5in(%/2d) to

some extent by controlling the parameters k1 and r.

Next we shall show computational results on unconstrained
nonconvex minimization problems (Problems 4 and 5). Let ®(z)
denote a objective function to be minimized in the m—dimensional
. Euclidean space, and D®(z) the gradient vector at z. As is well
known, if the objective function © attains the minimum value at

z then i1t must be a solution of the system of equations:
(2.57) D®(z) =0, =z &RM,

We have computed all the solutions to the system (2.537) in the

complex space, 1.e., all the solutions to the system:
(2.57)° D®&Z) =0, Z&cC™

If a minimum point exists, it must be a real solution of the

system (2.57)7.,



Problem 4 (Minimization problem in two variables).

Minimize ®(x,y) = alxd+a2yd+a3x3+adx2y+a5xy2

3
+a6y +a?x2+a8xy+a9y2+a10x+a11y,

where the constants Bs8ys0eesdyy are given 1in Table 4.

The system D®(X,Y)=0 has nine solutions for each data
(4-1, 4-2, 4-3) 1in Table 4. In Table 5, we have shown only the
real solutions obtained and the values of the objective function
corresponding to them. These points are either local (global)
minimum (L.MIN or G.MIN), local (global) maximum (L.MAX or G.MAX)
or saddle point (SADDLE) solutions. The type of each stationary

point is shown in the column “TYPE'. We took r=4 and k1=0.
Problem 5 (Minimization problem in three variables).
Minimize ®{x,y,z) = xa+yd+za+(x+y+z+1)3.
We took r=4 and k1=0. We got 27 complex solutions to

D@(X,Y,Z)=0 among which three are considered to be real. These

three points are shown in table 6.
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Problem 6 (System of polynomial equations in 5 complex variables).

2 .
+(Zl+22+23+2d+25

(5=1,2,3,4,3).

F.(Z) = 7. )-2Z.—a = 0
J J J

The computational results are shown in Tables 7, 8 and 9 when
a=10, a=4, and a=4.1, respectively. In all cases, the system
F(Z)>=0 bas 32 real solutions and no complex solutions.

When we take a=4, the Jacobian matrix of F at a solution
(1,1,1,1,1) has rank 1. Thus the system is highly degenerate

around this point, and we can not guarantee theoretically that

the algorithm computes all the solutions. Nevertheless, we did
obtain all the solutions. Among the 32 paths, 16 ones converge
to the degenerate solution (1,1,1,1,1). We required a large

number of pivot iterations because these 16 paths are very
complicated.

When we took a=4.1, we got 16 solutions around the point
(1,1,1;1,1). In this case, the total number of iterations is

much less than the case a=4.
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r 8 g ve | pvt| prv? | piv T.PIV
4 0.222 |21666 | 22415 0| 43114 557 | 44001 (2200)
4 7.101 |.1809| 2674 | 1317 940 | 2146 | 4403 ( 220)
4 56.81 | 2186| 3546 | 2093 125 | 3434 | 5652 ( 283)
16 0.888 | 5032 | 6178 0| 10121 | 1009 |11130 ( 557)
16 7.101 | 1140 | 2778 637 9061 | 2240 | 3838 ( 192)
16 56.81 | 1630| 3614 | 1540 115 | 3509 | 5164 ( 258)
64 3.551 925 | 2992 ol 1923 | 1914 | 3837 ( 192)
64 7.101 | 516| 2815 44 867 | 2340 3251 ( 163)
64 56.81 | 1023 3699 934 115 | 3593 | 4642 ( 232)
Table 1. Problem 1.
r 8 ¥g B prvl| prv? | PIv? T.PIV
32 0.444 |12548 | 15783 ol 24096 | 3828 | 27924 (349)
32 1.777 | 5234| 8149 | 2679 | 5548 | 4749 | 12976 (162)
64 0.888 | 5338 | 11215 0| 12184 | 3971 | 16155 (202)
64 1.777 | 2989 | 8762 167 | 5797 | 5389 | 11353 (142)
128 1.777 | 6699 | 14471 "o 15299 | 5464 | 20763 (260)
128 3.554 | 3640 | 16697 168 | 6536 13226 | 19930 (249)
Table 2. Problem 2.
r 8 ¥ |- e | vt prv? | p1v° T.PIV
1 0044 | 10107 | 26630 | 1137 | 14346 |16491 | 31974 (64)
Table 3. Probl‘em. 3.
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Problem 4.
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Problem ay a, aj a, ag a6‘ aq ag aq a1 211
4 -1 1| 1| -1 ] -1 1] -1 -1 1| -1 1] -1
4 - 2 1 1| -4 -2 2 4 -6 -8 -6 0 0
4 -3 4 8 |- -1 2 11 -2 |-16 | -8 |-16 2 | -1

Table 4.  The céefficients of Problem 4.
, . Real Solutions Function
Problem | T.PIV X e Value TYPE
o 1.0000 1.0000 ~1.0000 I, .MIN
. 11091

4 - 1 0.7913 1.0422 ~0.9873 SADDLE

(121) :
~1.2502 1.7236 ~7.9683 G.MIN
4.2389 1.7852 ~173.50 | G.MIN
1103 | ~0-5000 0.5000 ~0.3750 SADDLE
4 - 2 ' 2.0000 | -2.0000 ~16.000 SADDLE
(123) | 0.0000 | 0.0000 0.0000 L.MAX
~1.7852 | -4.2389 | -173.50 G.MIN
1.4961 1.1631 -34.134 L.MIN
~-0.2113 1.0936 -10.823 SADDLE
~1.1372 0.9465 ~15.321 L.MIN
1041 1.4659 | -0.3805 ~14.749 SADDLE
4 -3 0.0744 | -0.0503 -0.0996 L.MAX
(116) | =1.2721 0.3870 ~13.622 SADDLE
1.4544 | =0.5983 ~14.839 I .MIN
0.2704 | —0.8445 —4.0241 ' | SADDLE
~-1.5781 | -1.1541 -39.575 G.MIN

Table 5.




Real Solutions ~Function )
T.PIV x Yy z ) Value TYPE
—~0.4492 | -0.4492 | -0.4492 .080 ADDLE
7037 9 0 0 1 s
-0.2772 ~O.2772 50.2772 0.0225 L..MIN
(261) . i ; . i
—6.0236_ -6.0236 -6.0236 -1025.1 G.MIN
Table 6. Problem 5.
r |k, 8 ¥g £ prvt | prv? | p1vi T.PIV
110 0.5 3475 7959 0 6137 4812 | 10949 (342)
112 2.0 1989 6965 1011 1789 5669 8469 (265)
210 1.0 1178 6713 0 2148 5249 7397 (231)
211 2.0 1199 6819 ,408 1372 5744 7524 (235)
410 2.0 995 7110 0 1918 5698 7616 (238)
411 4.0 929 7201 408 899 6334 7641 (239)
Téble 7. Problem 6 (a=10.0).
r kl 8 #6\ £ PIVl PIV2 PIV3 T.PIV
210 1.0 1718 | 49063 0 4420 45780 | 50200 (1569)
Table 8. Problem 6 (a=4.0).
r |k, ) g - #f prvt | pv¥ | PIV T.PIV.
210 1.0 1677 | 16905 0 4226 | 13803 | 18029 (563)
Table 9. Problem 6 (a=4.1).
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2.5, Remarks

As we have observed in Section 2.2, the auxiliary map

~ _2m 2m

g:R - R

and its PL approximation have a separable
structure (see (2.35) and (2139)). If we make use of this

structure effectively, we can save some of the pivots and

function evaluations of g which will be used when a PL path XI

2mXE2,s*]. See Kojima [133 or Todd [£30,31]1 for more

traverses R
detail. In the computational results given in Section 2.4, we
did not utilize this structure.

In the algorithm developed in Mizuno [21], the auxiliary

2m which is induced from the simple polynomial

2m 2m

map g:Rzm - R
G:C™ - C™ defined by (2.3) was used instead of ;:R = R
Except for this point, his algorithm is the same as ours. It
was shown that if the initial grid size P is not greater than
minJ(O.Sr/dj) then his algorithm approximates all solutions of
the system of polynomial equations F(Z)=0 under the same
hypothesis as assumed in this paper. It should be noted that if

maxdeZZ, then the initial grid size D=minj{(r/V§551n(x/2dj)}

of our algorithm satisfies the inequalities

min . (1.0r/d.) = p = min (1.12r/d.).
J J J J
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Hence the initial grid size given in [211 is about a half of ours.
Another disaduantage of his algorithm lies in the fact that
solutions of the PL system gp(z)=0 are not known explicitly
although it has d1d2"'dm distinct solutions in neighborhéod

of Y1 (1 651\). So we have to compute the initial points from
which the PL path }(I (I & A) start.

We could modify our algorithm in some ways. First, recall
that the parameter r determines the location of solutions to the
system ¢(2j;dj)=0 and its PL approximation dfp(zj;dj)=0.

We have taken a common r for all j=1,2,...,m. This 1is only for
simplicity of notation, and we can take distinct r corresponding
to each j. Also, we may choose distinct initial grid sizes Dj
for each coordinate j.

For the numerical stability of the algorithm, it is useful

+to employ the maps F':RZm *’Rzm and g':Rzm - R2m
defined by
f(z) if If(x>0 = 1,
£ (z) =
flz)y/ (=) 1l otherwise,
A gl(z) if gtz =1,
g’ (z) = A ~
glz)/ lgtz)ll  otherwise,
2m 2m ~oa2m Zm

instead of using fiR - R and giR - R themselves.

It can be easily shown that the sequence of simplices which

will be generated remains unchanged theoretically. If the
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system of equations to be soluved has a larger degree, the norm
of the maps f and g may become very large along a path XI.
In such a case, this technique stabilizes the numerical pivot

operation. We used this technique in the numerical experiments

whose results are shown in Section 2.4.



Chapter 3. Polynomials with real coefficients

3.1. The case of one variable

Let d be a positive integer and Pd be the class of monic
polynomials of degree d with real coefficients, that is, Tor

each F eiPd, there are aJ €ER (j=1,2,.4.,d) such that

d

Fe(7y = 79 + 5,7971

Z + ... +t a 7 + ay

a4 d-1

for each Z eC.

We define a standard homotopy H:CX[C0,13 — C between two

1,h2) be the map of

R2X[0,1] into R2 such that H{x+iy,t) = hl(x,y,t) + ihz(x,y,t)

polynomials F and GEPd by (1.3). Let (h

for each (x,v,t) E RZX[0,13. We use the symbol Z for the
con jugate complex number of Z & C. Since the coefficients of
F and G are real, we have H(Z,t) = H(Z,t) for each

(Z,t) ©€CXL0,11, which implies
(3.1)  hy(x,0,¢) = 0 for each (x,t) & RXLO0,13.

Hence we can define a map h:iRX[0,1] =@ R by hix,t) = Hix,t)

for each (x,t) GEFQXED,lj. From (3.1), there is a polynomial

.RZ2X[0,11 = R such that

h3 _
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(3.2) hz(x,y,t) = yhg(x,y,t) for each (x,y,t) EER2XE0,13.

We define some solution sets as follows:

(3.3) S = {(Z,t) ECX(0,1) : H(Z,t) =0 3,

(3.4) SN = ((x,t) ERX(0,1) : hix,t) =0 3,
3.5) € = (kv ©) € CXC0,1) 1 hy Oy, )20, hyGoy, =02,
3.¢6) s° = ((Z,t) €5 : DH(Z,t) = 02,

YA

where Dz denotes a partial derivative with respect to Z., If we
regard R as a subset of C, SR is a subset of S. From the

above definitions, we easily see that

(3.7 s = st |Js5,
(3.8) (Z,t) €5 if and only if (Z,t) & st.

In Theorem 3, we shall show some other distinctive features of
the solution sets (3.3), (3.4), (3.5), and (3.46) under the

Fo]]owing two conditions.
(3.9) F(Z)=0 and G(Z)=0 have no common solutions.

(3.10) O E}RZ is a regular value of the map

ho)iR2X[0,11 = R? on RZX(0,1).

(hl’ 3
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Remark . We shall show that (3.10) holds for each F EEPd

and almost all G EEPd. We define a polynomial G :I:XRz - C
by G(Z,a,b)=G(Z)+aZ+b and a homotopy H CX[O,l]XR2 - C by

H(Z,t,a,b)=(1-t)F(Z)++tG(Z,a,b). Since H is a polynomial with
real coefficients for each (t,a,b) EE[O,l]XR2, we have a map

2 2

(hyshy) tREXCO,1IXR? = RZ such that

H(x+iy,t,a,b)=h1(x,y,t,a,b)+iyh3(x,y,t,a,b)

for each (x,y,t,a,b) ERZXL0,1IXR%.

As in CA], the transversality theorem of [1] shows that 0O EER2

1s a regular value of (hl’h3) on R2X(0,1) for almost

all (a,b) ERZ,

Let w be a homeomorphism (resp. a diffeomorphism) of

the interval (0,1) into CnXRk, then the set {(w(p):0<p<1

is called a path (résp. a smooth path). If the point

lim w(p) (or lim wi(p)) exists, it is said to be an_end point

pl0 ptT1

of the path. If Dpwi(p) has a (nonzero) common sign for all
the points on a path, the path is said to be (strictly)
monotone with respect to the i-th component. Let w be a
homeomorphism (resp. a diffeomorphism) of the unit circle

k

I={(x,y):x2+y2=1} into C"XR"™, then the set {u(p)uoégl}

is called a loop (resp. a smooth loop). We define the

following sets:
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s = (e, 0) €% 1 D A > 000,
SR = (Got) €8° 1 DAt < 003,
sCF = ((xtiy,0) €sY 1y > 0 3,
sC™ = ((x+iv,t) €sC 1y < 0.

Theorem 3.. Under the conditions (3.9) and (3.10), the

following results (3.11)-(3.18) hold:

(3.11)

(3.12)
(3.13)
(3.14)

(3.15

(3.16)

The difference set S\SO consists of a disjoint union

of smooth paths which are strictly monotone with respect

‘to t. We call a connected component of S\SO an arc.

Moreover each arc has two end points in the set
Q= {((Z,1): G(Z)=03 LJ{(Z,O): F(Z)y=0> LJSO.

SO consists of at most 2(d-1) points.

SR consists of a disjoint union of smooth paths.
SC consists of a disjoint union of smooth paths and
loops.

s8 = sR[) sC.

For sach point (ZO

,to) EESO, there are exactly four

arcs 81C::SR+, SZC::SR_, S3C::SC+ and SdC::SC—

0

having the end point (Zo,t )  such that either

0 0

(a) 8, |J §,CRX(t7,1) and sy U s, Cxco,t)

or

0 0

(b) S, |J S, CRX¢0,t) and S5 |Js,CCCx(t™, 1),

Moreover S, = HZ,t): (Z,t) 683}.
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(3.17) For each solution a of G(7)=0 (resp. F(Z)=0) with
multiplicity m, there are m arcs in S\SO with the end
point (a,1) (resp. (ax,0)).

(3.18) The number of arcs in S\S° is at most Sd-4.

R <C

The solution sets S, S, S and SO have a structure

such as illustrated in Fig.8.

Proof of (3.11). From the definition of SO, 0 is a regular

value of H on the difference set CX(O,l)\SO. Hence

S\SOI consists of a disjoint union of smooth paths which are
strictly monotone with respect to t, because the map H 1is
analytic ([53,0101). Since H(.,t) EEPd for each t &[0,11,
the solution set S is bounded and each arc has two end points
which do not belong to S\SO but satisfy H(Z,t)=0. Hence

the two end points lie in the set Q.

Proof of (3.12). Suppose that (Z,t) EESO, then we have

(3.19) H(Z,t) = (1-t£)F(Z) + tG(Z) = 0,

(3.20) D H(Z,t) = (1-t)D

yA

7 F(Z) f tDZG(Z) = 0.

From these equalities, we have

(3.21) F(Z)DZG(Z) - G(Z)DZF(Z) = 0.
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We denote the left side of (3.21) by Q(Z). By the condition
(3.9), the polynomial Q(Z) is not identically zero. Since F
and G are monic polynomials of degree d, the degree of Q(Z)

is at most 2(d-1). Thus the number of solutions to (3.21) can
not be greater than 2(d-1). For each solution to (3,21), at most
one £ €(0,1) satisfies (3.19) and (3.20) under the condition

(3‘9)0

Proof of (3.13). UWe have t=F(x)/(F(x)~G(x)) for each x &R

such that F(x)#6(x), By the condition (3.9), we have the result,

Proof of (3.14). (3.14) is a direct consequence of the

condition (3.10).

Proof of (32.15). From (3.2) and the Cauchy-Riemann conditions,

we have

(3.22) DZH(x+iy,t) = Dyhz(x,y,t) + lihz(x,y,t)
= yDyhg(X’}”t) + h3(x’y,t) + inth(X’y,t)

for each (x,y,t) € RZXC0,11.

Suppose that (x0+iy0,t0) éESO, then we have

(3.23) y°h3<x°,y°,t°> =

H(x0+iy0,t0)

1
o]
-

i

(3.24) D 0.

z



Assume that y0¢0, then from (3.22), (3.23) and (3.24), we

see that

0

0 0 _ 0
Dyh3(x sy st ) = th

3(x0,y0,t y = 0.

Sinée we also have thl(xo,yo,t0)=0 and Dyhl(xo,yo,t0)=0

from (3.24), it follows that

0

rank D (h (xo,yo,to),h3(x0,yo,t ) < 1.

(x,¥,t) 1

This contradicts the condition (3.10). Thus we have y0=0,
e, (x2,t9 € SR, From (3.22), (3.24) and ¥0=0, we have

hs(xo,yo,t0)=0, ive., (x2,t9) €sC.

Now suppose that (x0+iy0,t0) EiSR{W SC, then y0=0 and

(x9,59,¢9)=0. From (3.22), we have D H(xO+iy?,+%)=0,

h z

3
ive., (x9+iy9,:0) &30,

Proof of (3.16). Let (x3,t9) €sY. Then from (3.13) and

(3.15), there are ekactTy two arcs 81 and 82 in SR\SO with

the end point (x2,t0). Similarly, from (3.14) and (3.15)
there are exactly two arcs 83 and S4 in SC\SU with the end
point (xo,to). Since (Z,t) EESC if and only if (Z,t) E}SC,

- we have Sd={(2,t):(z,t) 6583}. From (3.11), the arcs are
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strictly monotone with respect to +. Hence there are two cases:

0

(a) s5s,Eex,t0),

0

(b) S5 s, CXt7, 1),

The homotopy invariance theorem [24] shows that if (a) occurs,
then 81 L]SZC::RX(tO,l), and if (b) occurs, then
81 LJSZC::RX(U,tO). It is easily verified that one of the sets

81 and 82 is contained in SR+ and the other in SR—.

Proof of (3.17). Using the homotopy invariance theorem, we can

also prove (3.17).

Proof of (3.18). From (3.11), each arc has two end points in the

sets SO, ((Z,1): G(ZY=02 or {(Z,0): F(Z)=03. From (3.12).and
(3.16), the number of end points in SO is at most 2(d-13 X4,
From (3.17), the number of end points in {(Z,1): G(Z)=0> and

{(Z,0): F(Z)=0) is 2d. Hence the number of arcs is at most

(2(d-1)X4 + 2d¥/2 = 5d ~ 4.
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3.2. A computational method

Suppose that all solutions of G(Z)=0 are known and single.
Using the nice structure of the solution set S which we have
shown in the preceding section, we propose an efficient method
for finding all solutions of F(Z)=0. The method consists of
two phases, Phase I and Phase II. In Phase I, we find all
complex (not real) solutions and a half of real solutions by
tracing the arcs in SR+ and SC+. In Phase II, we find the
other half of real solutions by tracing the arcs which belong
to SR— and have end points in RX{0>. Note that no complex
arithmetic is needed uwhen we trace the arcs in SR+ and SR—.

We define the sets

R+},

i
5
M

+
EOQR )

+
E1(R )

(Z,0) is an end point of an arc in S

¢+ (Z,1) is an end point of an arc in SR+}.

i
)
~

In the same way, we also define the sets EO(R_), El(R—),

+ - - :
EO(C ), El(C+), EO(C ) and El(C ). Let 9, (J=1,2,‘..,d1)

_be real solutions of G(Z)=0 and a; (j=d;+1,d;+2,...,d +d,)
be complex ones such that img qj>0. Since aj (j=di+1,d1+2,
...,d1+d2) are also solutions of G(Z)=0, we>have d1+2d2=d.

Suppose that

ay > 95 Do Y qd1 .

T8



Then we can easily show that

D G(qj) >0 if jisoddand 1l £ j S d

1’
G(qj) (0 if jisevenand 1l & j & d

zZ

DZ 1°

Hence we have

+ : . :
EliR )y = ( qj s j is odd and 1 i»J §-d1 2 5%
E,(RTY = ¢ a; ¢+ is even and 1 S | £ d,3, -

+ = . < .

- = P . T <
Ei(C ) < qj : d1+1 £ j = d1+d2 R

We denote the number of elements in El(R+) by do, that 1s,

d0=d1/2 (if d is even) or do=(d1+1)/2 (if d is odd).

First we explain Phase I in which we will find the points

(RYY, E.c*) and E-(CT). From (3.11), (3.16), and (3.17)

0 o 0

in Theorem 3, we can easily verify the following corocllary.

in E

Corollary 4. Let S+=SR+ LJSC+lJ SO then S+ consists of

a disjoint union of d0+d2 piecewise smooth paths Qj (j=1,2,

...,d0+d2) each of which is monotone with respect to t and

has one end point 1In {Ei(R+) LJEl(C+)}X{1} and the other end
: : + +

point in (Eq(R™) |J Eq(C )3 %03




Let q EEEl(R+) LJEl(C+)’ then there is a piecewise smooth
path Q5" and an r C EG(RT) J Ex(C™) such that (a,1) and (r,0)

are end points of Q. Let

(z4,tg) = (a,1),
a Ns® = <= L) § k=1,2,..0,mm1 and

> t > * * * > t

t 2

1
(Z ,t ) = (r“,O)
m m

for a positive integer m. For each k (12k=m), there is an

arc Sk in SC+ or SR+ having the end points (zk_l,tk_l) and
(zk’tk)' Assume that (zk~1’tk—1) is a known point. Since

the arc Sk is a subset of a smooth path or loop s* in S

SC, we will trace the arc from the starting point (Zk-l’tk*l)
to the direction in which t decreases. By (3.11) and (3.16),
the arc Sk attains the point (zk,tk) if and only if t attains

0 (k=m) or t increases (kZm-1) while we move along s*. Since
the point (zo,to) is known, we can find all the points (zk,tk)
(k=1,2,...,m) by repeating the above procedure. Note that if
SkC::SC+ for some k<m, then S C::SR+ In such a case,

two arcs in SR\SO have the end p01nt (Zk’tk)' We shall

show which arc is Sk+1' If F(zk)>0 then Sk+1C::0—w,zk)X(O,tk),
and if F(z

<0 then S C::(zk,+°°)X(0,tk) (see Fig.9, where

k k+1
+ (resp. —) denotes the region on which h{z,t) has a pbsitive

(resp. negative) value ). Tracing all the piecewise smooth path
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(Zk,tk) , _ (Z ,tk)
/"‘O“'\ | = '
~\\\ - o .
N g |
N _
0 0
SR+ . : SR— P —— —

Fig.9.
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Q's from the points in El(R+) and El(C+>’ we can obtain all the

points in EO(R+), EO(C+), and.SO. Since z EEEO(C_) if and

only if z EEEO(C+), we can also obtain all the points in EO(C—)'
Now we shall show Phasé-II of our method. In this phase,.u§

shall find all points in EO(R—). For each point x EEEO(R—),

there 1s an arc Sl(Z:SR— having the end point (x,0). The other

end point (x0,t9) of S, lies in either 57 or E;(RTXC1).

Hence if we trace all the arcs in SR— from the starting points

in 80 and Ei(R_)X{l}, we will find all the points.in EO(R_)X(O}.
However, some of the arcs have no énd end points in EO(R~)X{O}.
Now we show how to defermine which arcs in SR_ have an end point
in EO(R—)X{O}. Let @ be an orthogonal projection of RX[O0,11

onto R, i_oeo,

w{x,t) = x for every (x,t) EEF?XEO,l],

w(U) = { x ¢ (x,t) EEU > for every UCTRXLO0,11.

R+

First we observe that each connected component of @(S ) or
w(SR~) forms an open bounded interval. Since we have traced
all the piecewise smooth paths Qj's in Phase I, we already

know the set thR+). lLet

w(S~T) = Jszl (ay;_qsa5))

where m is a positive integer and a1<a2<...<a2m {see Fig. 10).
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Then we have
_ + + 0
(3.25) (ag,ay,..00a, > = E,(RD [JEGRD [Jots™,
We easily see that
w(SR—) r](a a..) is empty for every j=1,2,...,m
2j_1’ 2J s » ’ ’

w(SR—) r](aZj’a2j+1) is an open interwval

for every j=1,2,...,m—1,
Fig: 11 shows cases that can not be occur.,

Lenma 5. For each fixed j (15jSm-1), let 5,C s*” be a

unigue arc 1in (a2j,a2j+1)X(O,i)C::RXEO,i]. Let (xl,tl)

and (x2,t2) be end points of SJ such that #1>t2. Then

X2 € EL(RT) if and only if the set

i} - 0
A= RNy ey, 02 U0 Neay ay 03

consists of the single point Xy e

Proof. Note that Xy and X, are members of EO(R—)’ El(R~)’

or @(s®). From (3.25), we have that (a y () ws®r=9.

| 2j*%2j+1
So the two end points lie in bd{(azj,a2j+1)X(D,1)}. Thus‘x1 and

X5 are members of the set
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Conversely each member of A  is an end point of Sj‘ Hence A
consists of the two points Xy and X Therefore we have the
result.

In Lemma 5, we have shown a necessary and sufficient
condition an arc in SR- r](al,azm)X(O,i) to have an end

point 1in EO(R_)X{O}. ‘We have the following lemma about arcs

in s () ((-=w,a,) ] Cay »0)3X(0,1).

Lemma 6. (i) If d is odd, then we have
0(s®y [ ct=w,a) |J (a, ,+0)) = 6.
(i1) If d is even, then we have
0(s® Nea, +e) = o,
w(SR“) r‘@—m,al) is an open bounded interwval.

Let 81CSR‘ be a unique arc in (-®,a,)X(0,1)C  RXLO,11.

1
Let (xl,tl) and (x2,t2) be two end points of Sl such that
ty>ty.  Then x, CEG(R) if and only if the set

A= By R[] (-o,2y03 | € Cayd [N sy

consists of the single point Xy o
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Proof. (i) Assume that d is odd. Then there are <y EER

and €5 EER such that

h(x,t) < 0 for every x < ¢y and t &L[0,17,

h(x,t) > 0 for every x > c, and t € ro,11.
Hence the result is evident (see Fig.12 (1)).

(ii) Assume that d is even. Then there are ¢, EER and o GER

such that

hix,t) > 0 for every x < cq and t €£E0,1],

hix,t) > 0 for every x 7 Co and t &[0,13.

Hence the first result is evident (see Fig. 12 (ii)), In the
same way as we have obtained Lemma 5, we can show the second

result.

From the above two lemmas, we will determine which arcs
in SR‘ have end points in EO(R—)X{O}. Tracing these arcs
until they hit t=0, we will find all the points in EO(R_).
Note that we also know the interval [a,.,a,. 31 which

2i'°2;5+1
contains a point of EO(R—)' So we»wi]] find every points of
EO(R—) by any method for finding a 5o1ution of an equation

in a given interval, for example, the bisection method.
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3.3, The case of several variables

In this section, we list some properties of the solution set
to a homotopy equation between polynomial systems in m variables.
Let F and G:c™ - C™ be polynomial maps with real
coefficients. We define a homotopy H between F and G by
(1.3). Since the coefficients of F and G are real, we can
define a polynomial h of R™X[C0,1] into R™ by
h(x,t)=H(x,t) for each (xyt)fzfanEO,ij. We define some

subsets of CmX(D,i) as Tollouws:

S = { (Z,t) EC™X(0,1) : H(Z,t) =0 7,
SR = ¢ (1) ER"X(0,1) & hix,t) =0,
$0 = ¢ (Z,£) €5 & det DH(Z,E) =07,

&€ = (0 ES 1 (2,0 TN ).

We assume that
(3.26) 0ER™ is a regular value of h on ‘R™Xx¢0,1),

(3.27) O EECm is a regular value of H on (C™R™»X(0,1),

(3.28) the solution set [l is bounded.
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By adding a linear term AZ+b to G, the transversality
theorem [11 shows that (3.26) and (3.27) hold for almost all
ACR™™ and bER™. A sufficient condition for (3.28)
has been given in Chapter 2. Under thé above three conditions,
we can prove the properties (3.11), (3.17) in fheorem 3 and
the following results:

(3,29) &Y

consists of a finite number of points.

(3.30) SR consists of a disjoint union of smooth paths and
loops.

(3.31) sk,

(3.32) For each (Z,t) GESO, let V be an open neighborhood of
7 in C" such that el V3x{ed () S=(Z,t), where cl V

denotes the closure of V. Assume that the degree of

the map H(.,t) on V with respect to 0 is k (k>1),

then there are exactly 2k arcs 81, 82,..., S2k
having the end point (Z,t) such that
81’ 82C8R9
C
83, Sa,OQ-Q SZkCS )
Sy, = CZyyeeerZypt) (ZysevorZpt) Eszj_l}
j=2'3,0t0,ko

(3.33) Assume that F and G are gradient maps of polynomial
functions. Then the signs of the eigenvalues of th

stay constant on each arc iR SR\SD (C21).,
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Since the map H is analytic, (3.27) implies (3.31) (E31).
The proof of (3,32) is outlined as follows.
The homotopy invariance theorem 241 shows that there
are k arcs, having the end point (Z,t), in c™x¢0,t) and
™%X (t,1), respectively. From (3.30) and (3.31), SR contains two
of the arcs. Since the coefficients of F and G are real, we have

the last k-1 equalities.
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