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0. INTRODUCTION

Brouwaer [ 2 ] proved the famous Brouﬁer's fixed point theorem:
Let K be the closed unit sphere of E® and 7T bg a coﬁtinuous mapping
of K into itself, Then T has a fixed'point-in X.
| Schauder [37] extended ‘this theorem: ' Let K be a coﬁpact‘convex i
-subset of a normed lineér spacé X and T be a continuous mapping of
K into K. Then T has a fixed point in K.

Next, Tychonoff“[hoj‘generalizeduthefSohauQértéhfixed”poipt
theorem: Let K be a compact convex subset of a locally convex ..~
linear topological space X and T be a continuous mapping of K into
iteself, Then T has a fixed point in K.

Up to the present, it was not known, even for the one- dimensio=~
nal case, whether evéry two commuting continuou$ functions has a
common fixed point. Recently, Huneke [21] showeéfthat'itiis not
true.

However, if we consider é commutative family of linear continu-
ous mappings, we know the following theorem provedAby Kakutani [24]
and Mafkov [30]: Let'K be a compact convex subset of a locally
convex iinear'topological space X and F be a commuting family of
linear continuous mappings of K into itself. Then F has a common
fixed poiét in K. : |

This was generalized by'Day,[9;}: Let K be a‘compact convek‘
subset of a loéally cdnvex‘iinear topological space X and F be a
semigroup of linear continuous mappings of K into itself; If r,
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when regarded as an abstract semigroup, is amenable, or even if it
has a left invariant mean, then there exists in K a common fixed
point of the family F. .

| On the other hand, recently,’Broner‘[ z213.C4)[53.061 071,
Edelstein [14] [15] [16], Kirk [26] [27] [281, de Marr [10],
Petryshyn {331 (341, and others proved the fixed point theorems
'for nonexpansive mappings (i.e. mappings which do not increase
ldistances) in a Banach space. - Among fhém, de Marr proved a fixed »
point theorem for commutative families of nonexpansive'mappingsAof
a compact convex subset of a Banach space into itself.

In chapter 1 of this paper, Qe extend de Marr's fixed point
theorem: iet K be a nonempty compact convex subset of a Banach
" space B and S be an amenable semigroup of nonexpansive mappings of
K into itself, Then S has a common fixed point in K. The method
of the proof of this theorem was afterward employed by Mitchell in
his paper [31].
In chapter 2 of this paper, wé shall introducé a concept .. -

- of convexityiin a metric space and study the general properties of
the space, by name a convex metric space. Patiéﬁlarly'we check '
-whethér-convex metric spaces possess the properties whichqa convex
subset of a Banach épace must do. And also, as an extensisn of a
strictly comvex Banach space, we introduce a concept of strict
convexity in a convex metric space and study the properties of the
space. Furthermore we formulate.fixed point theorems for'
nonexpansive mappings in a;convex metric space defined gbove‘and.
prove them. Cons;quently, theselgeneralizé fixed point thcorems

which have been proved by Browder [ 31, Kirk [26], de Marr [10]



and the author;~see chapter 1...

In ¢hapter 3 of this paper, we investigate more detailed -
properties of a convex metric space., In the previous chapter, we
introduced concepts of a condition (C), normal structure and strict
convexity having connection with fixéd point theorems for nonexpan-
sive méppings. S0, one of the aims of this chapter is to obtain a

"sufficient condition for g‘condition (C), normal structure and
v-atrict convexity. In fact, we show that if a convex metric Gpace
is uniformly convex,thénfthe'space‘ppsseéseé'these conditions. Fur-
thermore we discuss fixed point theorems for noneipansive mappings
in a uniformly convex metric space, too, ’ ‘

If we turn our attention to that a nonexpansive mapping is
connected with only the metric of the operating space, the questioﬁ
natuFally ariges as to whether this is true if one consider fixed
point theorems for nonexpansive mappings in a usual metric space.

In chapter 4 of fhis paper, we show that the -answer is affirma-
tive for the case when a family of nonexpansive mappings is finite
and commutative. “

In chapter 5 of this paper, we discuss the'b}operties of inva=
riant ideals for amenable semigroups of Markov operators bn c(x),
where C(X) is the Bénach algebra of continuous complex valued
functions on a compact Hausdorff space X. Recently, by Schacfer .
[35] [36] and Sine [38], some properties on invariant ideals have .
been investigated for the case when a family of Markov operators
is the semigroup generatedfby a single operatér.l ~The results .
obtained by Schaefer and Sine can be extended in obvious way to an -

amenable semigroup of Markov operators on C(X). For example, we

‘-v3'.- .



can extend the notation of ergodicity of Markov operator T on C(X),
defined first for the case of theasemigfoup generated by T; that
is, an amenable semigroup = = LT} is ergodic if and oniy if for

f € C(X), the convex tlosure colTf : Te Z} of {Tf :+ T€ & }.conta-
ins an invariant function g for all T in & . Thus, iﬁ 82 of this
chépter; we give a fepresehtation theorem for maximal ideals inVé—a
#iant under eaéh T'in L. In 83, we prove that an amenéble S e
semigroup &= {T) is ergodic.if and only if invariant functions
under each T in & separate ihvariant probabilities unéer each v
adjoint operator T of T in 2., Finally, we obtain a‘charactpriza
ation of maximal ideals invariant under each T in & . This is a
generalization of Schaefer's result [35].

"In chapter 6 of this paper, we investigate the ergodic theory !
for amenable semigroups &. of positive contractions T on LL1(X,%,m)
where (X,% ,m) is a measure space. So far, various necessary and
sufficient conditions for the existence of invariant measure
equivalent to m have been obtained by several authors for fhe case
when a family of positive contractions on Ll(X,jﬁ,m) is the semi~-
'group generated by a single operator; that is, there are several
conditions obfained by Hopf [19], Dowker [11] [12], Calderon [8 ],

Hajian-Kakutani [17], Sucheston [39], and others for the case of : -

an operator which arises from a measurable transformation, and by
Ito [22] and Hajian-Ito [18] for the case of an operator which'
arises from a Markev process. TFurthermore, these have been
extended elegantly by Neveu5[32] for the casevpf a positive contr-
actibn operator on“Ll(X,35,m). ;On‘the other hand, the pointwise

ergodic theorem and the mean ergodic theorem also have chn‘~
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obtained by several authors for the case when a family of positi?e
contractions is the semigroup generated by a single operator; that
is, at first, Birkhoff [ 1] proved-it for point transf§rhations
with an invariant a-finitevmeasure. For Markov processes, Kakutani
[25] proved it for a finite invariant measure and for bounded
functions. Hopf [20] extended it to & finite invariahf measure -and
functions in LL(X, & ,m). Dﬁnford-Schwartz (L3] proved it for a o-
finite invariant measure'andlfunctions'ih (X, & ,m).

Main results in this chapter are the following; atAfirst, we .
find necessary and sufficient conditions for the eiistence of a
strictly positive element which is invariant under eaqh T in 53.
Secondly we‘find several equivalent conditions for no existence of
non trivial and non negative element in Ll(x,ﬂf,m) which is invari-
an£ under each T in & . Finally, we extend 'the:efgodic theoren:
obtained by Birkhoff,”to an amenable semigroup, which has been
proved for a single positive contraction T with a strictly positive
invariant function in IL1(X,J ,m). |

In chapter 7 of this paper, we turn our attention to the mean"
ergodic theorem. That is, at first, we generalize the above
theorem t6 extend the result obtained by Hopf [20]«'. Furthermore
we will find a suffiéient condition for ergodicity of an amenable |
semigroup of positive contractions on LI(X, % ,m), which is weaker
than the condition of the above theorei. And we obtain a projectionf

whisch is useful . for investigating the ergodic theory; This is
a generaligation of Ito's résult [23]. PFinally, by using the above
theorem, we shall gbtain a characterization of extreme pdints of

{frewl . £z0, £l =1, T£=£, T€eL}. This is a generalization of

3 o ! -5-‘. K . 7



the result obtained by Schaefer [35] for the case of a single
“positive contraction opefator.

In chapter 8 of this paper, wé shall prove the adjoint ergodic
theorem for amenable semigroups of opetators on a Banach space.
. In chapter 6, we introduced én order on an émenable semigroup by
using the property which the semigroup must possess. By using. " -
“this, we shall prove the above adjoint ergodic theorem. This is

a generalization of the result obtained by Lloyd [29].

| The author wishés to express his hearty thanks to Professor H.
Umegaki, Professor T, Shimogaki, and the menbers of their seminars
for many kind suggestioné and advices in the course of preparing

the present paper.

January 1971
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Chapter 1

FIXED POINT THEOREM FOR’AMENABLE SEMIGROUPS

OF NONEXPANSIVE MAPPINGS

.A ‘ll -



. FIXED POINT THEOREM FOR AMENABLE SEMIGROUPS

OF NONEXPANSIVE MAPPINGS

l,',_Introductign. _

Let K be é subset of a Banach space B. ‘A mapping & of k into B
is said to be'nonexpansive if for each pair of,eleménts x and y of
K, we have N osx=ey I Sl x=y Il & |

Kakutani [5] and Markov [7] proved the féllbwing théonem;.Let"K
be a compact convex subset of.a'locally convex linear topological
space B and S be a commuting family of linear continuous mappings
of K into itself. Then S has a common fiied point in K. Day.[2]
showed that this is true even if S is an amenable semigrdup.

On the other hand, de Marr [3] proved a fixed point theorecm forv
a family of nonlinear mappings: Let K be a nbnempty compact convex
subset of a Banach spdce B. va S is a'nonempty‘commutative family .
of nonexpansive mappings of K into itself, then the fémily 5 has a
common fixed point in K. L

The question naturally ariseé as to whether this is true if one
considers an amenable semigroup of nonexpansive,mappingé.

In this paper, we shall show that the answer is affirmative.
2,4 . Preliminaries,

Let S be an abstract semigroup and m(S) be the space of al;v
bounded real valued functions of S, where m(S) has the suprehum'
norm. An élemgnt Aem(S)* (the dual space of m(8)) is mean on m(S)
if A(e) = UMl = 1. where e denotes the constant 1 function on S,

A mean A is left [right] invariant if

- 12'-’11



AM1sf) = A(£) [ Mrsf) = A(£) ]
for all f em(s) and 5 €3, where the left [right] translation 1 (rg]
of m(S) by s is given by (1,f)(s ) = f(ss’) [ (rgf)(s’) = £(s’s) J.
An invariant mean is a left and a right invariant mean. A scmigroup
that has a left invariaﬁt mean [right invariant mean] is called left
amenable [right amenable]. A semigroup that has an invariant mean

is called amenable,

Let M be a nonempty éompaét'Hausdorff space andHC(M) be the
space of bounded continuous regl valued functions on M. The norm -
will be the supreﬁum norm. Let S be a bemlgroup of continuous mapp-
ings of M infto M and deflne a mapping Us for each s 1n S from c(M)
into C(M) by attaching to each f€ C(M), the function Ugf on M such
that (Usf)(xﬁ = f(sx) for each x in M.

We shall prove the. following Lemma by using Day's fixed pdint

theorem [2].

- LEMMA 1. - Let M be a nonempty compact Hausdorff space and S be
an amenable semigroup of continuous mappings of M into M, Then,.
there exists L* € C(M)* (the dual space of C(M)) such that
L*(e) = lL*ll = 1 where e is the constant 1 fuﬁction on M and

L*(Ugf) = L*(f) for all £€C(M) and s €S.

Proof. Let KLC(M)] = {LecON* : L{e)=lLl=1 } . Since Us for
each s in § is a linear mapping of C(M) into itself such that
Us(e) = e and [Usll =1, a mapping Us* that is given by
(Ug*L)(F) = -L(U;f) for all LGC(M)* and fe C(M) is a weak*~cont1nu-

ous affine mapplng of K[C(M)] into itself.

a1 e



1f {Ug* : s€S ) is an amenable semigfoup, from Day's fixed
point theorem [2], there exists L*€ K[C(M)] such that

L*(f) for all f€C(M), We shall show that -

il

(Ug*L*) (£)
{Ug* : s€S Y} is an amenable semigroup. Since the mapping ¢ of § -
onto { Ug* ¢ 5€8 } that is given by o(s) = Ug* for each s in S is

a homomorphism, {Us* : seS} is an amenable semigroup from [1].
The following lemma was proved by de Marr in [3].

LEMMA-2. .(de Marr), Lef B be a Banach space and let M be a
nonempty compact subset of B‘gnd let co M,Pe the closed convex hﬁll
of'M. Let @ be the diameter of Me If f > O , -then there exists an
element ueco M such that |

sm){ﬂx—ﬂl:xeM}'<f.
3. . Main theoren,

THEOREM 1., . Let K be a nonempty compact convex subset of a
. Banach space B and S be an amenable semigroup of nonexpansive mapp=-
ings of K into itself. Then there exists an element z in K such -

that sz = z for each s in S.

Praof. By ﬁsing Zorn’s lemma, we can find a minimal nopcmpty
compact convex set XCK such that X is invariant under each s in S;
If X consists of a single point, then the theorem is proved.

By using Zorn’s lémma again, we can fihd a minimal nonempty -
compact set MCX such that M is invariant under éach s in S, AWé;f
will now show that M = {sx!{JCEFI} for each .s in S, ‘ | ‘ e

Since the semigroup of restrictions of all mappings s in S to M :

is amenable [1], by Lemma 1. there exists an element L* in K[C(M)]

- 14 <



such that L*(Usf) = L*(f) for all feC(M)., The Riesz theorem
asserts that totheelement.L*, there corresponds a unique probabili=

ty measure. m on M such that
L*(f) = 5 £ dm
: dnT

for each £ in C(M),

Since M is a compact metric space and m is a probability measure
on M, there exists a unique closed set FCM called suppdrt‘of m
satisfying (i) m(F) = 1, (ii) if D is aﬁy closed set such that
m(D) = 1, then FCUD, More’0ve_r'»F is the set of all poin{: x € M- having
the property that m(G) > O for each open‘set G confaining x. It is
obvious that F is céntained in s(M) for each s in S, since each s in
S5 is a measurable transformation of M into M and hence
m(sM) = m(M) =1 ., Lét lg be the characteristié‘%ﬁnction of the

cloéed ‘subset F in M. ‘Since for each s in 8

1

a(F) = { 1p(x) am

1]

fnlf(sx) dm = m(s'F),

it is clear fhat F is contained in s(F) for each s in S. Therefofe‘
F is invariant under each s in 8,
If M contains more than one point, by using Lemma 2.  there
exists an element u ih the closed convex hgll of M such that
P = sup { lu=x| : xe M} < ¥
-where ¥(M) is the diamétgr of M. B

Let us define

" Xo = N{yex : llx-ylige},
v ,X‘M )

then X, is the nonempty closed convex proper subset of X such that

4l
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s(Xs) CXp for each s in S, This is a contradiction to the mihnimali=

ty of X. Therefore M contains énly one peint which is a common
fixed point for the semigroup of nonexpansive mappings of K into

itself.

COROLLARY 1. (de Marr). Let K be a compact convex subsct of a
Banach space B and S be a family of commutative nonexpansive

mappings of K into itself. Then S has a common"fixed point in Ko~

Proof. Since a commutative semigroup is an amenable semigroup,

Corollary is obvious from Theorem.l.l.

REMARK 1. . Theorem 1." is true even if § is a left amenable

semigroup. We can discuss the above by using purely metric methods;

t

‘see [6] [8].
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Chapter 2

A CONVEXITY IN METRIC SPACE AND

NONEXPANSIVE MAPPINGS, I
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e A CONVEXITY IN METRIC SPACE AND -

NONEXPANSIVE MAPPINGS: I

1. Introduction. .

Recently, Browder [1], Kirk [6], de Marr [4] and the author [7]

proved some fixed point theorems for nonexpansive mappings (i.e. -
mappings which do not increase distances) in. a Banach space. - ..
In this paper, we shall discuss thémﬂin.certain metric space.
At first, we shall introduce & concept of‘convexity in a metric B
space and study the properties of the space which we call a convex
metric space. Fuxthermore, we formulate some fixed point,theoéems

for nonexpansive mappings in the space and prove them.

Consequently, these generalize fixed point theorems which have

been proveéd by Browder, Kirk, de Marr and the author in the papers

listed above.

2., Definitions and propositionsg. - -.

‘Let:X 'be ‘a 'metric. space and K be a subset of X. ‘A mapping T ca

of K into X is said to be nonexpansive if for each pair of

1

elements x and y of K, we have d(Tx,Ty) S d(x,y) .

Definition 1. A convex metric space X is a metric space such

that satisfies the following conditions:
(1) there exists an operation W(x,y;A)€X for all x, y €X
and A ( OSAS1 ), ,_ ‘
h f

(2)‘ A(u,W(x,y4A)) S Ad(u,x) + (l¥k)d(u§yf- for all " ue€X,

»
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A Banach space and each of its convex subsets are of course,
convex mefric spaces. But a Fréchgt spéce is nof necessary a
convex meéric space. There arée many examples of convex hetric

- spaces which are not imbedded in any Banaéh space. We give two

preliminary examples here,

EXAMPLE 1. Let I be the unit interval [0,1] and X be the
family of closed intervals [a;,b;] such that 0g£a,4b.81 . For
CIi= [ag,b,d, I;= Cay,b; ] and A ( OSAS1 ), we. define a mapping W by
' w(I;,I}.K) = [Xag+(l-K)aj,KbL+(l~K)b)j

+ and define a metric d in X‘by the Hausdorff distance, i.e.

d(I“Ii) = 8sup {linf{la-—b{l}-inf“a-cul } .
acl bel; cc;i

EXAMPLE 2. We consider a linear space L which,iébalso a
 metric space with the following properties: ' Q{
(1) For x, yeL, d(x,y) = d(x-y,0);:

(2) For x, yeL and A ( OSASL ),

IA

d(Ax+(1~A)y,0) & Ad(x,0)+(1-A)d(y,0)

A subset K of a éonvex metric space X is said to be convex if
W(x,y,\) €K for all x, ye€K and A ( 0SAS1l ). The following °

three Propositions are easy.

PROPOSITION 1. Let X be a convex metric space and = .

= o=



{Kw 3 aeA.} be & family of convex subsets of X, then

NyepKx 18 also a convex subset of X. .

PROPOSITION 2., Let X be a convex metric space, then
S(x,r) = {yex : d(x,y) <}
and S(x,r) = {yex + a(x,y) =1}

are convex subsets of X.

PROOF. For y, z € s(x,r) and A (0=Aas1), there
exists W(y,z,\) ¢ X. Since X 1s a convex metric épace;
a(x,W(x,z,A)) = Ad(x,y) + (1-A)d(x,z)
) ' < Ar + (l=A)r = f.
}Therefore W(y,z,k)le s(x,r).

Similarly, S(x,r) is a convex set,

PROPOSITION 3., Let X be a convex metric space, then
. ~d(x,y) = d(X,W(X,y,}\)) + d(W(x,y,A),y)
o for x,yeX and A(Os=A=1),

PROOF. Since X is a convex metric space, we obtain
d{x,y) = d(x,w(x,y,A)) + d(W(x,y,A),y)
A(x,x) + (1-A)d(x,y) + Ad(x,y) + (1-A)d(y,¥)

A

= M(x,y) + (1-A)d(x,y) = d(x,;¥),
~n~f9r X, y € X and ‘Ay. Therefofg
: -~ d(x,y) =.d(x,w(x,y,}\)) + d(W(x,y,2),y)
Cfor x, yeX and A,

Let E be a nonempty bounded closed convex subset of a convex ™

- metric space X. Let.
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Re(B) = sup { d(x,y) : yeE },
R(E) = inf { Rz(E) : xeE },
Ec = { x€E : Ry(E)=R(E) }.

DEFINITION 2. A convex metric space X will be .said to
satlsfy a condition (C) if every bqundéd decreasing net of non-

empty closed convex subsets of X has a nonempty intersection. .

We obtain the following Proposition from Definition 2,

. Proposition 1 and Proposition 2,

PROPOSITION 4. If X satisfies a condition (C), then E, is

nonempty, closed and convex,

PROOF. Let E,(x) = { yeE : d(x,y)= R(E)+K1/’n } for n =1,
2,3,*++ and x € X, It is easily seen that the sets

 f:Cn = /\er En(x) form a decreasing sequenéé Sf nonempty closed

convex sets, and hence f\:;l Cn is nonempty, closed and

: , . oQ
convex. On the other hand Egy = /\n;lcn.

For 'Ec:x , we denote the diameter of E by. a(B). 4 point
‘ x ] -1s.a diametral point of E provided
sup { d(x,y) : yeE } = §(E).

- DEFINITION 3. A convex metric space is said to be have
normal structure if for each closed bounded convex subset B
1HM°f X which contains more than one point there exists X € E

;;?Whlch is not & diametral point of E.

It 1s obvions from the following Proposition that a compact
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convex metric space has normal structure.

PROPOSITION 5. Let X be a convex ‘metric space and let M be
a nonempty compact subset of X and let K be the least closed -
convex set contailning M, If the diameter of M, denoted by
S.J(M), is positive, then there existsv en element u & K such

that sup { d(x,u) : xeM.‘} < S(m).

PROOF. ®Since M is compact, we may find x3, Xp € M such
'that d(x1,x2) = 9(M). Let Mo €M be maximal so that

o MOD{ xi,xa } and d(x,y) or §(M) for all x, y ¢ M, .
It is obvious ‘that Mo iIs finite. ILet us assume .'

Mg = {‘xl,xz,--o,xn } . Since X is a convex metric space, we

- ean define

W(xloxat 1/2)0
W(xy)'l' v3),

Y1
Y2

i

L
LJ

Ypao= W(xn—l’yn-B’ 1/ n-1),
Yp1= W(xps¥, 50 1/0) =

Since M is compact, we can find y, £ M such that
A(¥osyp-1) = sup {dlx,ypq) & xeml,
+ Now, by using the condition (2) of convex metric space, we

obtain

1 -1
(¥os¥na1) & TUYosx)* =0y, ¥n-2)

. L n-2

, -1
= -I'l'd(yoixn)"- I ( “‘-d(yo’xn_l)+ d(yovyn 3))

= .-.r:.l.-l.d(yé ,xn? +-%—d(yo,xn_l) ¥ Eigd(yo o}’n.?3)

| L ¥ 2 S



L R ern) = S
é""" ] é M *
D 1l Yo Xk ‘

Therefore 1f A(¥os¥p-1) = & (M), then we must havé

a(y,ox,) = S (M) >0
for all k =.l,2,3,"',ﬁ » Which nmeans that Yo € My by
definition of Mg. But, then we must have ‘yo = X, for some

x =1,2,3,"**,n , which is a contradiction, Therefore

sup { d(x,yqu-1) : xeM }‘= A(YosTp-1) < & (M).

As an expension of the case in Banach space, we introduce

a concept of strict convexity in a convex metric space.

DEFINITION 4. A convex metric space X‘is sald to be strictly
 ’i:convex 1f there exists a unique element 2z e.X sucﬁ that
53 ;Ad(x,y) = d(z,y) and (1-A)d(x,y) = d(x,z) for all X, y € X
 and A(O=As=1).

We héve seen from Proposition 3 that
a(x,y) = d(x,W(x,y,N)) + d(W(x,y,A),y)
m}for eéch pair of e}emehts x and y of a convex metric space and
: all real numbers A ( O = A =1 )., Purthermore, from
| d{x,W(x,y,A)) .3 ad(x,x) + (1-A)d(x,y)
o | ) (1-M)a(x,y)
~ and A (x,y,A),y) = Ad(x,y) ,

]

1% 1s obvious that W(x,y,A) 1s an element of X such that
m 4sat1sfies / |




(1‘)\)d(x:y) = d(x,W(x,y,}\))
and A(x,y) = a(W(x,y,A),y) .

2, FIXED POINT THEOREMS.

Now, we will prove fixed point thebrems for nbnexpansive
mappings in convex metric,Spaces. . 4
| We can show the validity of the following Theorem by.thew
method of Kirk [5]. However, for the sake of completeness,

we glve the proof, v

THEOREM.1. Let X be a convex metric spaée, and suppoée that
| X satisfieé a condition (O); Let X be a nonempty bounded

- closed convex subset of X, and supposed that ‘K has normal
structure, If T 1s a nonexpansive mapping‘of K into itself,

then T has a fixed point in X.

_ PROOF.~ Let @ ve a family of all nonemptyhclosed and convex
-subsets of K, each of which is mapped into itself by T. By'(C)
and Zorn’s lemma, P has a minimal element .E. Ve show that~E--
consists of a single‘point.. | |

Let x & Eg. Then d(Ix,Ty) = d(x,y) = R (%) for all S
¥ e E, and hence I(E) is contained in the spherical ball |
S(2(x),&(E)). since T(ENS) € ENS, the minimality of E
loplies BCS.. Hence Rp(x)(E) = R(E) . sSince R(E) = Ry(E)
- for all x e E, Rp(x)(E) = R(E) . Hence T(x) € Eo and’
- (BE) C Eg ﬁy ?rbﬁosition 4 Bge @ o o
1r z, w e Bc , then d(z,w) = RZ(E) = R(Q)- Hence,

<
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S(B;) = R(E) = Ru(E) < S(E). Since this contradicts the
minimality of E, §(E) = O and E consists of a single point,

We prove the following

THEOREM 2. Let X be a strictly convex metric space which
satisfies a condition (C), and K be a nonempty bounded closed
convex subset of X, and suppose thét K has normal structure. i*¢/
If jF is a commuting family of nonexpansive mappings of K into |
4tself, then the family has a common fixed point 1n K.

PROOF. If T is a}nonexpansive mapping 1n‘a'stfictly coﬁvex
metric space, the fixed point F of T 15 a nonempty closed
convex set., 1In fact, as W(x,y,A) ¢ X for x, y € P and A
(0=&As31), by . Proposition 3 |
a(Tx, T (x,5,0))) + a(2(ilx,7,0),15)
a(x,W(x,y,0)) + d(w(x, Ysd), y)

i

d(Tx,Ty)

1/

= d(x,y)
and hence by strlct convexity of‘th; Space
T(W(x,¥,A)) = W(x,y,A) . This implies that F is convex.
Let F,; be the fixed point sets.of Tq e‘?
If weP,, then for any a’ N
| TaTa,u =TTQ,TG u=1T,u
;.e.,, Ta,u lies in Fa and each Ta’ maps Fy into ltself.
Ifzwe are given a finite sequence «ay, ai, **+*, Gy, and
consider T, as a nonexpansive mapping of Fu N\ Fx,MNeee NFom
into 1tse1f it follows from Theorem 1 that f\k~1ﬂFGk P o
Henoe by a condition (C), the family {Pal}’ has a nonempty

intersection, but this consists of the common fixed point.

QG —



In the general case the fixed point set of a noneéxpansive -
mapping is not convex, However, we Will'prove.the following
Theorem by assuming compactneés. Before the proof of Theorem,
we define the following o -

B DEFINITION 5, Let K be a compact convex_mgtric space., Then
e family % of nonexpansive mappings T of x;:'lir’lto 1tself 1is
sald to have fixed point propérty ;ﬁﬁK if‘thefe existsva ’
‘compact subset M of E such that M = { T(x) : xeM } for each
T € jﬁ whénever there-exists a compact coﬁ#ék Subset‘Efof*K

such that E is invariant under each T fﬁ.i;

THEOREM.E. Let X be a convex metric space‘qnd X be a compact
convex subset of X. If F 4is a family of nonexpansive
- mappings with fixed point property in K,'then'tge family f?

has a common fixed point in K;

PROOF. By using Zorn’ s 1emma,‘w¢kcan findha minimal nonempty
compact convex set E C K such that E is invariant under each
T ¢ EF « If X consists of a single point,‘then Theorem is -
proved. o e -

By hypothesis, there exists a compact subset M of E such that

= {T(x) ¢+ xeM } for each T ¢ %, .

If M contains more than one point, by Proposition 5 there
exists an element u 1n the least convex set containing M such
that P = sup { a(u,x) & xen } < S(M) ‘
where S(M) is the‘diameter of M.,

Let us define . |

= {yeE-d(x.y) e }.

st
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then Eg is the nonempty closed convex proper subset of E such
that T(E,) C B, for each T in J .. This is a contradiction
to the minimality of E. .

De Marr [4] showed that 'a commutative family of nonexpansive
mappings of K into itself.has fixed point property in K. The
following Theorem asserts that this is true even if one

"considers a left amenable semi group of nonexpansive mappings.

THEOREM 4. Lét K be a compact convex metric space. 1f %
‘is a left amenable semigroup of nonexpansive mappings T of K
 into K, then the family F has fixed point property in K.

PROOF. Let E be a compact con&eg éubset'of K suct that E 1s
invariant under each T in S . By ﬁéing,Zornfs lemma, wWe can
find a minimal nonempty oompact_set_‘M CﬁE such that M is
invariant under each T in % . ' 

Let C(M) be the'space of boundedzcontinuoﬁs real valued
functions on M.and 0(M)¥ be the dual space of C(M)rand
Klo(M)] = { nec(m)* & n(e)=lTl=1 } Wﬂere e denotes %he constant
1 function on M, |

Since the semigroup of restrictions of mappings T to M 1is
left amenable , by’[3] there exist an element LY e K[Cc(M) ]
such that L*(Upf) = L¥(f) for all f e C(M) and T ¢ F
where UTI denotes'an;element;ofic(M);such~that' . |
(Upf) (x) = £(Ix) for each x in M, The Riesé theorem asserts
that'to the element'L*, there corrésponds,a ﬁnique'probabiiity'

measure m on M such that
- f ‘
: =. f dm
L (f) = Ju
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for each f in C(M). .

Since M in a compact metric space‘and m is a probabiiity
f;,measure én M, there exists a unique élosed set F<: M called

. support of m satisfying (1) m(F) =1, (11) "if D 1s any
v;closed set such thatv m(D) =1 , thén FC Di.

it is obvious that F is containéd.in T(M) for each T 1n‘?; ,
'éince each T in F is a measurable,transfbrmatioﬁ of M into M ‘
j.:amd hence m(T(M)) = m(M) =1 . | |
Let ;{F is the characteristic function of ‘ihe closed subset

F in M. Since for each T in

1 = n(F)

H

fM Xr(x) dm = '(.M Ap(T(x)) dm

m(1"1F) , | |

1t is clear that F is contalned in T71(F) for each T in K .
Therefore F-1s invariant under each T in 5§‘.‘ This lmplies
T(M) = M for each T in F , R |
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3. APPLICATION.

Let K be a compact”convex4subéethofxa Banach space X and 2
be the family of all nonexpansive méppings of K into itself.
Then, for each pair of elements U and V of & the.expression :
D(U,V), defined by L

D(u,V) = sup'{ lux -Vl : xeKJ
is a metric on 2. and also for any real nuﬁber Avsuch that
0mAS1, the expressioh,w(U,V,A). defined by
W(U,V,A) (%) = AMUR) + (1=A) (Vx)

1szznonexpansivelmappipg of K5iﬁt6 ipself.-

LEMMA., The family 2, with metric D and operation W is

a cmpact convex metic space.

PROOF. We will show that the fanily & with metric D and
operation W satisfies the condition (2) of convex metric .
space. In fact, for elements U, V and T of 2, and any real
number A such that (0 = A =1 , | |

p(T,i(U,V,a)) = sup { Il Tx - WUV, | § x €K}

=sup { Al Tx - Ux ||
# (-l k- Vx s xek}
2 AD(T,U) + (1-A)D(T,V) .
We will .show that the family 2. with metric D is compact.
Let { U, J be a sequence of nonexpansive mapplngs of Z:"

Then we show that there exists a subsequence { Uy} of {'ﬁn}‘

such that U, converges to a point of o .

Let Ay be & 1/nnet of Kand N= X {a, tn=1, 2, *++}
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Then 1t 1s obvious that there exists a subsequence {Uk:} of

- Un.} such that Upx for every X in N converges to a point of

K. We show that Uz converges to a point Uz for every z of

K. Let z' any point of K and € be any’given positive number,
then there exists x e N such that i z.-.x | s e/3 . Now,
since'ﬁkx converges, there exists a positive 1n£éger ko such
that | “ |
I Uz = Uz I =1l Uyz - Ukt*"
+ 0 Ux = Tpex o+ ka_é Uyz
Sz -x i+l Ugx-Uxllellx-al
=2¢e/3+¢e/3+¢e/3=¢€. |

if k¢, ka > k, . Hence Uxz converges 1o a point of X.
1 'Let us define Uz = lim Uz for e&ery z of K. Then it is
obvious that U is a nonexpansive mapping; We will(show-ﬁhat
- the convergenée is uniform. Let ¢ be any positiVé number and
choose n, such that 1/ny = ¢/3 ¢ & , then Ay, contains a
" point x such that | x - z | = /3 . Now k, exists such that
I Ugx - Uex | S e/3 for all x in Ay when Ky, Kz > Ky .
~ Thus ko is independent of z and H"th - Ukgz I = & when
kK, kg > X, « This shows uniformity of the convergence.

Therefore, there exists a subsequence { Uk}- of'{t&l} such

that Uy converges.. This completes the proof,

THEOREM.5. Let K be a compact convex subset of a Bahach
space a‘,nd’ & be the .compact convex metric space of all non-
expansive mappings of K into itself.andjﬁp be a family of non=
expansive mappings of %, into itself. If F nas fixed point |

L



property in 2 , then jF has a common flxed nonexpanslve

 mapping in Z, .

PROOF. Theorem is obvious from Theorem 3 and Lemma.

The author wishes to express his hearty thanks to Professor

(1]

(2]

£3]

(4]

(5]

(6]

H. Umeéaki for many.kind_suggestions;
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A CONVEXITY IN METRIC SPACE AND

NONEXPANSIVE MAPPINGS, II

1. Introduction.

In the previous chapter, we defined a space with a convexity in
a metric space, by name a convex metric space, and invéstigated the
'propertieé of the space. Furthermore, Qé considered concepts of a
céndition (C), normal structure and strict convexity'having‘conneé-
tion with fixed point theorems for nonexpansive maﬁpings.

One of the aims of this chapter is to obtain a sufficient condi~
tion for a cbndition (C), normal structure and strict convexity;
that is, we shall show that if a convex metric space is uniformly
* convex, then the space satisfies these conditions.A Consequently,
fixed point theorems for nonexpansive mappings obtained in the pre-
vious_chaptertwill be‘praved in a&’uniformlyucoﬁvex metric space,

too.

The author wishes to express his hearty thanks to Professor Hi
Umegaki, Professor T, Shimogaki and Mr. Y. Kijima for many kind

suggestions and advices.

“

2., Uniformly convex metric space.

Let C be a subset of a convex metris space. Then co(C) is the

closure of the least convex set containing C. The folléwing défis.

nition is the most~ important one in this chapter.
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DEFINITION, A convex metric space X is-said to be uniformly
convex if for . e >‘O, x6X , yeX, zeX , and r > O , there

exists a(ec) > O .such that
a(z,Wix,y31/2)) € r(l-a) < r
whenever d(z,x) $r , d(z,y) Sr , and d(x,y) 2 r.ec .

The following Theorem is the most important théorem,invthis'

chaﬁter. ’

THEOREM 1. Let X be a -uniformly convex metric space, and-:

suppose that X is complete. Then X satisfies a condition (C).

Proof. Let {Cplbe a decreasing sequence of nonemﬁty bounded
. closed convex subsets of X. If for every n, J3(Cp) & O , there

exist xn,fyne(} such that

alxnayn) 2 J(cn)‘/é .

UA

Since Ad(zn,'xn) s FJ(cy) , dlzy,yg) 3(Cy) for’all =z, €C,; and
the spéce is uniformly convex,
(2 Wixy ,¥n31/2)) £ 5(Cu) (1 =) < 5(Cy)
i.e., there exist: ué ¢Cn  such that
a(xnyun) & F(Cn)(1-a)

for all x,€Cy, . Let

1 :

Cn = {un, Un+ls Uns2y -}

1

Then it is obvious that Crl1 4 O, CI!‘LD Ch41  for every n. And hence

—_— — 1 e '
co(C}l) 0, cq(Cn) > co(C;+l) .
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Similarly, there exist u; £ 56(0;) C C, such that

!

aly,,ua) § (6 (1= o)

R
for all y, € co(Cp)

Thus we obtain u;, u;,-- <+« and EB(Ca),”EB(Cﬁ),- cer o It is
. , S | —, 2 , :
obvious that Cpn 2 co(Cy) D co(Cy) D>+ --- and J(To(Ci)) = 0

~as me-rea. Since X is complete, there exist ¢y ¢ X such that
Nmcolcy) = {en}
for all n. By

N 3olcm) D Nu SolCne1)

~we obtain ¢ =cp =Cy = ... . Therefore, c¢ ¢ C, for all n,

and hence N\, Cp % ¢ . Even if {C, : veA } is a decreasing net,

we can prove.Theorem l'by using the same method.

The above Theorem and the following Lemma are used in the proof

of Theorem 2.

LEMMA 1. Let X be a convex metric space, and suppose that X
satisfies a condition (C). Let C be a nonempty bouﬁded closed .
convex subset of X, [Then for all x&X y there exists u€C such
- that | |

“d(x,u) = inf {d(x,y) : yeC } .
Proof. Let r = inf {d(x,y) : yeC } and

’Un ={veX ﬁ(X¢V) S-r+l/n }.

It is easy that the sets C, = i,NC fdrm a decreasing sequence
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of nonempty bounded closed convex sets, and hence by a condition (C)

NpCn®® . Let wue NpCh . Since d(x,u) £ r+1/n for every

n, d(x,u) = r . This completes the proof.
We also obtain the following Corollary from the above Lemna.

COROLLARY 1. Let X be a convex metric space, and suppose that
X satisfies a condition (C). Let C be a nonempty closed conﬁex N

subset of X. Then for xcX, there exists ucC such that

d(xyn) = inf {d(x,y) : yeC}..

Proof. Let yeC and r = d(x,y) . Then ﬁ(x,r)lﬂ C is a non-

-

empty bounded closed convex subset of X, The Corollary is obvious

A

from Lemma 1. ) , v

THEOREM 2. Let X be a unifbrmly convex metrigwspace, aﬁd
suppose that X is complete, Let C be a nonempty closed convex
subset of X. Then for xeX, there exists a unique élement ueC such
 that |

d(x,u) = inf {d(x,y) : yeC } ..

Probf.l The existence of ucC is obvious from Theorem 1 and
Corollary 1. That wueC is unique is evident from a uniformly
convexity of the space. In fact, if there exist u,, u,eC such '

that

Cd(xyuy) £ dlxyu,) = inf {d(x,y) & yeC } ’
then : S |

a(x,W(u, 4,31/2)) < alxyu,) = dlxyuy) .
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The following Lemma will be helpful in proving Theorem 3.

LEMMA 2. A uniformly convex metric space X has normal

structure.

Proof. Let C be a bbundea closed convex subset of X which .. .
contains more than one point. Let J(C) be a diaﬁ?ter;of'c. Then
" there exist x, yeC such that d(x,y) g J(C)/2 .‘ Since
q(z;x) g J(c) , alz,y) & J(C) for aii zeC  and the space is
uniformly convex, . .‘

a(zW(x,y51/2)) € F(O)(1-0) < T(C)

for some a > 0 . Therefore the space has normal structure.

Now, we formulate a fixed point theorem for nonexpansive mapping

in a uniformly convex metric space.

THEQOREM 3. . Let X be a uniformly convex metric space, and
suppose that X is complete. Let K be a nonempty bounded closed
convex subset of X. If T is a nonexpansive mapping of K into itself

then T has a fixed point in K.

Proof. It is obvious from Theorem 1, Lemma 3, and Theorem 1 in

the previous chapter..

We see from following Lemma that a uniformly convex metric space

is a special type of a strictly convex one.

LEMMA 3. A uniformly Fonvex metric space X is strictly

convex.,

Proof. Let us assume that there exist X,y X,eX and A (0SAZ1)
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such that
)\d(x“-xl) = d(x,,y‘) = d(x| ’yz_) ,
(1-M)dlx 4%x3) = d(xz’y‘) = dlx,,30)

for some distinct points ¥, , y,cX . It is obvious that there
exists ¢ > 0 such that }
d(y‘ ,yz) g )\d(xl ,Xz)'C .

By

and a uniform.convexity of the space, we obtain
(i) d&x,,W(V.gy;;l/a)) § (1-M)dlx, 4%, ) (1-a) < Adlxy,%,)
for some ~; >0 . Similarly, there exists a' > O Asuch that
(2)  dlx (Y, 1¥7251/2)) $ (1-A)alx, yx,) (1=at)
| IRCESLIENTRIF
By (1) and (2), -
d(x,,w(y,,y,;l/a)) +’d(W(Y.}Y;31/2);X;)
< AA(x, 9x,) + (1-A)d(x, 4%,)
= d(x, yXa) «
This is a contradiction. Therefore, we complete the proof.

Now, by using Theorem 1, Lemma 2, and Theorem 2 in the previous

‘chapter, .we shall obtain the following fixed point theorem.
THEOREM 4. - Let X be a uniformly convex metric space, and:
suppose that X is‘pomplete.‘ Let K be a nonempty bqun@ed.clqsed

convex subset of X, If JF .is a commufing family of nonexpansive

mappings of K into itself, then F has a common fixed point in K.



v

COROLLARY 2 (Browder [1]). Let B be a uniformly convex Banach

space and K be a bounded closed convex subset of B. If F is a

commuting family of nonexpansive mappings of K into itself, then J

has a common fixed point in K.

Proof, Since K is a bounded closed convex subset of a uniformly

convex Banach space, K satisfies all the conditions of Theorem k4.

Hence Coroilary 2 is true.

(1]

t2]

(33
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FIXED POINT THEOREMS FOR NONEXPANSIVE MAPPINGS

IN METRIC SPACE

le. IptrOductiono

Let K be a subset of a metric space X with a metric d. A mapp-.

ing T of K into X is said to be nonexpansive if for each pair x, y
. of elements in K, -d(Tx,Ty) §'§(x,y) . | |

Recently, several fixed point theorems for nonexpansive méppings
in a Banach space have been derived by Beiluce and Kirk [{] [2],
Browder [(3],-de Marr [4], Kirk [6] and the author [T]. Ih the abo?e
papers, they have proved the fixed point theorems by assuming the
convexity for domains of nonexpansive mappinésJ

In this paper, we shall show fixed point theorems for nonekpan-'
sive mappings without assumption of convexity; that is, Qe shall
prove fixed point theorems for nonexpansive mappinés in a metric
space under certain conditions. At first, we shall prove a fixed .
point theorem for a single nonexpansive mappings. Secolndly, by

using this theorem, we shall obtain a fixed point theorem for a .

family of finite commutative nonexpansive mappings.,

The author wishes to express his hearty thanks to Professor
H, Umegaki, Professor T, Shimogaki and Mr. Y, Kijima for many kind
suggestions and advices in the course of preparing the present .

paper., . . i

-42 -



2e Definitions and lemmas,.

Let X be a metric space. A subset F of X is said to be admigsi-
ble if it is an intersection of closed spheres {6&6 X ¢ alx,y) §cw}A;
y€X, 0<c Sew, For this admissible set, we define the“ following;

Ry(F) = sup {d(x,y) : y€F },
R(F) = inf {Ry(F) : xeF },

Fo = {xeF : Re(F)= R(F) } .

DEFINITION 1, A metric space X is said to have a conditidn
(C) if every bounded decreasing net of nonempty admissible subsets

of X has a nonempty intersection,
We obtain the following Lemma from the above definition.

LEMMA 1. Let F be a nonempty bounded admissible subset of X.

If X has a condition (C); then F, is nonempty and admissible.

Proof. Let F(x,n) = {yeF : d(x,y) Sr+l/n}. It is obvious :

that the set C, = Nyer F(x,n) from a decreasing sequence of non-
[ .

empty admissible sets, and hence /\n_(cnz Fe. is admissible and by

(C) nonempty.

DEFINITION 2, An admissible set SCX is said to have normal
structure if for each bounded admissible subset H of § which

contains more than one point, there is some point x ¢H which is not

a diametral poinﬁ of H.

The following Lemma will be helpful in ﬁroving Theorem 1.
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LEMMA 2. Let F be a bounded admissible subset of X which con-
tains more than one point., If F has normal structure, then

J(F.) < §(F) , where J(S) denotes the diameter of a.set S.

Proof.v'By normal structure, F contains at least one nondiame-
tral point x. Hence Ry = J(F) . If z and w are any two points of
Fe, then

Mzm)éamp{ﬂzq):yéF}»sRﬂF)=R@).

—

Hence ‘we have kak) < R(F) § Ry(F) <‘ J(F) .

3, Fixed point theorems.

-

THEOREM 1. Let X be a metric spase, and suppose that X has a
condition (C), Let K be a nonempty bounded admissible subset of X,
and suppose that K has normal structure. 'If T is a nonexpansive

mapping of K into itself, then T has a fixed point in K,

Proof. Let @ be a family Qf all nonempty admissibie subsets of
K, each of which is mapped into itself by T. Then @ has a minimal -
element F. | | o

Let us assume that F contains more than one point,

Let xe€F, o+ Then B

d(Tx,Ty) & d(x,y) £ Ry(F) = R(F)

for all yeF , and hence T(F) is contained in the spherical ball
U(Tx,R(F)). Since T(FAU) CFAU , the minimality of F implies
FCU., Hénce, Tx €Fq and.Fc is mapped into itself; by Lemma ig
fi‘-ﬁ . If J(F)> 0 , then F. is properly contained in F. This

is a contradiction. IHence F consists of a single point.

e =



Theorem 1 asserts that a suffici§gt condition for which anmonex-
pansive mapping has a fixed point is that the domain of the mapping
has normal structure . However, it is not known whether norﬁal
structure is a necessary condition for the existence of a fixed
point or not. We shall conjecture from the foilowingvexémplcs that
normal structure is a nécessary condition for the existence of a

- fixed point.

EXAMPLE 1. Let Klz (0,11V[2,3] . It is obvious that K has

P “ieeaea, not normal structure. In fact, {1,273 is.
2 | o admissible, but { 1,2} has not a nondiametral
; P ; ‘ . .
; e : point in it. Let T be a mapping of K into K
‘ -.:y:ou....?—--—: ‘ :
e i i : such that Tx = 2 for x€ [0,1] and Tx = 1
° Y 3

for xe [2,3]. ‘Then‘T«is a nonexpansive mapp=-
ing of K into itself, Since K is compact, it is obvious that 'K has

a condition (C). Clearly T has not a fixed point.

EXAMPLE 2. Let K= {z=(cosB,5in®) : 0560< 2w} and

T(2)

é a(z; ,2,) = ‘/(cose‘-cosel)?+ (sin9|—sin9,_)". ‘
k3

A K has not normal structufe. But, since K is

compact, K has a condition (C), Let.

Tz = (cos(a-r“76),sin(e-r376)). Then T is a

nonexpansive mapping of K into itself. Clearly, T has not a. fixed

‘point in K.

The following Theorem is a generaliiation of Theorem 'l. Con- -

sequently, it is a generalization of Belluce and Kirk’s result il
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obtained in a Banach space.

THEOREM 2.  Let X be a metric space, and suppose that X has
a condition (C). Let K be a nonempty bounded admissible subset of
X, and suppose that K has normal structure. If F is a finite

commuting family of nonexpansive mappings of K into itself, then

% has a common fixed poinf,in K.

Proof., Let X be a family of nonemét& bounded admissible
subsets of K, each of which is invariant under each T€F . By
Zorn’s lemma and a condition (C), we can-find a minimal element X*
of .

Let & ;{T,,T,,“~,T*} and W = {x €X* : mT15'ﬁhx=x}.
By Theorem 1, W # ¢ . Furthermore T,W =W for i=1,2,+-+,n.

In fact, if =xeéW, T;x = th‘Tl-~'T“x = T‘Tz;--TnTLx O Y
T¢xéW ., Inversely, if _xew,' T,T,_?-‘ TeqTippm" Tyx €W  and hence
X = T T Tyr ot TiqTow o TX e .

Let H be the least admissible set containing W, Since X* is admis-
sible, HCX* . By normal structure,.i contains a point x such
that _

sup {d(x,2z) : z €H } =r < J(H)
provided J(H) > O ; Let

C = (\ZC}I{XQX* : d(x,z) Sr § .

Then C is a nonempty admissible subset of X* and moreover

C= 1,y {xext s Dixy2) Ex } = C

In fact, if xeC'., d(x,z) S for all zeW. , and hence

" U(x, r)DW . BSince H is the least admissible set containing W,
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U(x,erH , and hence da{x,z) £ r for all z¢H . Inversely, it
‘is obvious that CCC* ,
By C = ¢’ and
d(T;cyz) = a(Tic,Tew) S dle,w) $r
for ceC, 2z=T;w, z,weW, and i=1l,2,:--,n , iwe have - TLCCC and
hence bj the minimality of X*, C = X* . Since |
J(H) = 3(CNH) £ r < J(H) ,

C = X* is impossible. Hence o(H) = O , so H consists of the

desired fixed point.

COROLLARY 1.(Belluce and Kirk). Let B be-a Banach space, and
'K be a nonempty weakly compact convex subset of B and'subpose fhat
K has normal structure. If & is a finite commutative family of
© nonexpansive mappings of K into itself, theﬂ % has‘a éommon fixed

point in K.

Proof, Since K is a nonempty weakly compact convex subset of B
and has normal structure, K satisfies all the conditions of "

Theorem 2., Hence, Corollary 1 is true. : ' | .
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INVARIANT IDEALS FOR AMENABLE SEMIGROUBS
OF MARKOV OPERATORS

B or s T L
1, Introduction,

- Let X be a compact Hausdorff space and let C(X) be the
Banach aigebra of continuous real or compiex valued functions
Aon X, with supremum‘norm.'.We denote by C(X)* the strong dual
of Banach space C(X). A Markov operator on C(X) is a conti~-
nuous linear mapping of C(X) into itself such that Te = e
and Tf 2 0 whenever f =0 , Where e denotes the constant 1
function on X. ILet 2, be an amenable semigroup of Markov
operators T of C(X) into itself. Some properties on invariant
1deals have been 1ﬁvestigated by Schaefer [5], [6] and Sine_ .~
(7] for the case when‘zz is the semlgroup generated by a
single Markov operator T. These results can be extended in
obvious way to an amehable semigroup of Markovvoperators on
C(X). For example, we can extend the notion of ergodicity of
Markov operator T on C(X), defined first for the case of the
semigroup generated by T in [(5]; that 1s, an amenable semi=-
group ¥,= {T} is érgodic if and only if for each f €C(X) ,
the convex closure co {Tf : TeZ} of‘ {1f : TeL} contains
an invariant function g for all T« % . 1In fact, this inva-
riant function is unique in co{Tf : Te® }. Thus, in this
paper, we generalize essentially ;esults in [5] and [6] by a
modification of previous papers; that is, in §2 we give a

representation theorem for maximal ideals invariant under each
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element T of an amenable semigroup.2 . lIn.§3 we prove that an
amenable semigroup ¥, ={T} is ergodic if and only if invariant
functions. under each T in Y. separate invariant probabilities
under each the adojoint operator ™ of T in 3 .and then prove
the bijective correspondence, for ergodic amenable semigroup
"EL ={7Y}, between the family of maximal ideals invarianﬁl'
under each T in 2, and the extreme points of the sét of proba-

‘bilities on X invariant under each T*,

The author wishes to express his hearty thanks to

Professor H, Umegaki and Professor T. Shimogaki for many.kind

suggestioné and advices,




2. Representation theorem.

Let & be an abstract semig“roup and m(g)’ be the space of
all bounded real valued fuﬁctions of .20, with supremum norm,
An element pe m('z.)* ( the dual space of m(% ) ) is mean on
m(2) if yx(e) = “t‘ll:l.' . A mean P 1is leftv[ right ] inva-
riant if W(lgf) = p(f) C [-J(rsf) = y(f) ] for all fen(Z)
and seg , where the left [ right ] translation 1s [ rg ] of
Am(Z) by s is given by (lgf)(s’) = f(ss’) [‘(rsf)(sj),
= f(s’s) ]. An invariant mean is a left and a right invari- W%
ant mean., A semigroup that has a left invarianf mean [ right
invariant ﬁlean ] is cailed left amenable [ right amenab-lé I .
A semigroup that has a invariant mean is cé.lled amenable,

At first, we shall prove the f'ollowing i.énima by using
Day’s fixed point theorem [2]. o

LEMMA 1. Let {T} = % ©be an amenable s'e‘mlgroup of
Markov operators on C(X), then there exists ¢ & C(X)* such
that U$U=1, ¢=20 and T%=} for each TeZ ', where 7% 15 the
adjoint of T. '

Proof. K = { ¥eC(X)™: (vi=1, Y20 } is a compact ‘
and convex.set, Since {T%} = Z* ‘is an amenable sémi-.
group of affine w u-continuous mappings of K into itself,

,from Day’s fixed point theorem, there exists 4> ec(x) such
that M>u=1, $z0.and T$=¢ for all Te 2 .

In imitation of (5], we obtain the-follow‘ing two Defis

“ -52 -



nition and two Lemmas.

DEFINITION 1. Let {T}= 5, be an amenable semigroup of
Markov operators on C(X). A {T}-ideal is a closed proper '
ideal in C(X) which is invariant under each Ted .. A {T}-
ideal 1is sald to be maximal if 1% is not properly contained 1n'"

any other {T}-ideal.

L DEFINITION 2, {T}= T 1is said to be irreducidble if
there exist no {T)}~-ideals distinct from (o).

13 R

LEMMA 2. {7} = 2 possesses at least one maximal {T}-~
ideal, and each {T}-ideal is contained in some maximal {T}-

ldeal.

LEMMA 3. Let J be a {T}-ideal and denote‘by q the canoni-
cal mapping of C(X) onto G(X)/J. Then I —» q(I) 1is a bijec=-
.tive map of the set of all {T}-1deals contai%@ng J onto the
set of all {TJ}-ideals, where T; 1s a operator induced by T
on C(X)/J and a {T}-ideal I is maximal if and only if {T;} 1s

irreducible.

Since the above two Lemmas are clear, we do not give the .

proofs,

If ¢ is an element of c(x)¥, I¢ denotes a ideal
{fec(x) ¢+ $(Ifl1)'= 0}, where |f] is a function such that
I£1(x) = [£(x)] for xeX . |

THEOREM 1. Let {T} = Z be an amenable semigroup of
Markov operators on C(X) and let I be a maximal { T}-ideal,

Cog.



then there exlsts a normalized positive measure ¢ e G(X)*

such that I =1I4 and T'¢ =¢ for all T€¢3 .

Proof. Since {77} 1s the amenable semigroup of Markov
operators on C(Sy) where Sy denotes the support of I, it .
follows from Lemmajl that there exists a}normalized positive ,
measure $ e O(SI)* such that TI*"?:? for TE€Z .
| Now, since I is maximal and hence {Tr} is irreducible,'
I$ = (o). Therefore; 1f q denotes the caponical-mapping of
C(X) onto O(X)/I, ¢ = $'°d is a positive measure-ﬁp X such
that I = Ip.. T%¢ = ¢ for each Té& & follows from

% () = ¢(11) = Foa(£) = §(TE41) |
= §(Ty(£+1)) = T3 § (£+I) = § (£+1)
= §oq(f) = ¢(£)
for all fe C’(X).

3. Ergodic amenablé semigroup.of Markov operators,

Schaefer in [5] defined that a bounded operator T on a
Banach space E 1s called ergodic if for each xe E, the convex
- closure K(x) of the orbit (x, Tx, T%x, o+0) coﬁtains a fiied
vector‘xo of T, We extend this and give the following
Definition. o | |

DEFINITION 3. Let {T} =3 be a semigroup of bounded
operators on C(X). {T) = % is said to ‘be ergodic if for
each f€&0(X)., the convex closure ¢o { Tf 1 Tel ) of

{1f:Tel) contains an invariant'funcéion g for all

Te & .
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L.

If a semigroup { T} = & 4s amenable and { 7f : T & X ]

weakly compact, then {1} =2 1s of course ergodic.

THEOREM 2. Let {T} 3-2‘ be an amenable semigroup of
Markov obera’cors on C(X) and ergodic. Then there eSciSts a
positive projection P from C(X) onto-

P ={ feC(X) .:‘Tf.= f for each T'é A
such that Pe = e and PT = TP = P for ail Ted .

Proof. Let T é&C(X) .~  Since {T)} = & 1is ergodic, there

exists geco { Tf :+ T €&} such that Tg = g for all
ref . For £> 0o , there exists Tq, Tz;...., Tp
cand o, O **°,%n wWith oG»o0 , ZF o = 1l such *Bhat
hg-Lef|l <€ -

‘and we have f : ;
le(x) - Lo ITuf(x) |4 &
for xeX and Te&l .

If [ 1s an invariant meén on nu(y,), we denote

HT(h(T)) = tA(h) where he m(Z)o:dwe obtain

£ 2 sw | g(x) = & oTTef(x) | |

l' prl e(x) = 2 dgTTLf(xjx)l |
| &(x) = S po(1£(x)) |

| g(x) = Sogpp(2e(x)) |

= | ;s(X) - yi(Tf(X)) o -

Therefore, &(x) = Hp(Tf(x)) for each xe&X .
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Defining (Pf)(x) = Mp(Tf(x)) , we obtain Theorem. In .fact,d
for To6 % , Plof(x) = Pp(ITef(x)) = Pp(Tf(x)) = Pf(x)

and hence Pl =P .

COROLLARY 1. Let P be the above projection, then P* is

the mepping of C(X)* onto L |
{4>:T‘P ¢foreachme2} |
Moreover, $ e c(X)* 15 invariant under each 1¥*e X. i1f and

only if it is invariant under p¥

Proof. Since PT = TP = P for each T€E and
Pfe co { If TIéZ} for each £ &C(X) , we obtain Corollary.

We recall that K is the set of positive normalized
measures of C(X)* and F is the set of functions invariant

under each Tel . " An element of K is calldprobability.

COROLLARY 2., Let P the above projectidn“and let
7] = {éeX: T = ¢ for each Te 5 )
Then, for distinct elemehté $,¥ve P, there exists an 1nva,; :
riant function g€ F such that ¢ (g) % ’\Hg); ' U=

Proof. If ¢ %+ , there exists £ €C(X) such that
$¢(f) ¥ t(f). From ' | |
$(2£) = P*¢(£) = ¢(£) F () = Pp () = ¥ (P£),
if Pf = g , we obtain Corollary, )

We can “px;ove“ the converse of Corollary 2.
THEOREM 3. Let {T} =2 be an amenable semigroup of

~
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Markov operators on C(X). Suppose that for distinct elements
¢4+ YeZ, there exists an invariant function f{€F such that

: #(f)*.-'ir(f) . The.n .]ZS {T}is eréodic;

Proof. Tor xé€X, dx denotes the point measure at x.
{rdx : Te¢ T} is invariant under each T,€ & and so is the weak*-
X ) 0 ,

closed convex hull w*Co {T*Jdx : Teé S Jof {TJx : Te¢ £} . Since

&* = {T*} is amenable, by Day's fixed point' theorem [2], Sj‘ = {VT*} .

has an invariant probabiiity measure ¢ in W*co {T*dx : TeT] .
From = T*Jx(f) = Tf(x) = £(x)- for all f€F, we obtain that the
" invariant measure & is unique in w*Go { T*dx 1 Te } . The |
weak*~continuity of the m,épping x-—-)éxfollows from the facts that
£(x) = T*(£) = 4(f) for f&F and that invariant functions
separate invariant probability measures. Defining Pf(x) = ¢4(f)
for each f eC(X), we obtain Pf €C(X). Now, we show that for each
feC(X), Pf is a {T}Y} ~invariant function and Pf is‘ contained in
o {Tf : Te £}, In fact, for ¢€C(X)*, lethff be a unique |
invariant measure in w*Co {T*¢ : Te £}, Then we obtain P*{’ﬁ-’ Qé
from that invariant functions separate inVariant'prdbability
measures. On the other hand, we obtain T*Q = QT* = Q@ for 2l1l T
in & . ﬁ Hencev, we have T*P* = P*T* = P* . By using this, it
follows that for each f € C(X), Pf is a {T}-invariant function,

If Pf is not contained in Go {Tf : T €T}, there exists ¢ €C(X)*

such that $(Pf) > sup [ ¢(Tg) : geco {Tf : T€S} ] . From
sup [ $(g) t geGo {Tf : T€ T} 1 &¢(pL) ,
we obtain a contradiction. Hence fox; each f «C(X), Pf is

contained in 6 {Tf : T € 2},
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Since this is true for each Te 3 , 1t follows that
' "{T’i, = % 1is ergodic. S

The following Theorem 1s an extension of theorem 2 in -[5].

. THEOREM 4. Let {7} = ¥, be an amenable semigroup of

Markov operators on C(X) and ergodlc and let
3 ={¢eK : ™6 = ¢ for each Te & }
Then, ¢ — I¢ 1s a bijective mapping of the set ex‘§ of
extreme points of ® onto the set of maximal {T}-ideals.
g 1is simplex inthe semse of [4] and ex § is weak'=-closed,

Moreover, every {T}-ideal of th'e form Ig (¢¢@) is the inter-
‘section of all maximal {T7}-1deals containing it.

Proof. To show that & is simplex in the semse of [4], S
it is sufficlent that ¢+ is Piinvariant whennever ¢ is.
since %20 and ¢'2¢ , PY*20 and P¢T 2 ¥ =4

and hence P¢*x= &%, Therefore, (P ¢*- $*)(e) = o shows

Since an element of @ is invariant under P*, it follows
that ex® 1s weak*-compact.

The remainder is obvious from Theorem lr,ACorollary 1 lan’d

[5].
: . REFERENCES
(1] DAY, M. M., Amenable semigroup. Illinois.-J. Math.

58 -~



2]

31

4]

(5]

(6]

(7]

1 (1957), 509-544.

DAY, M. M., Fixed point theorems for compact convex

sets, Illinois J. Math, 5 (1961), 585-590,

DUNFORD, N., AND J. T. SCHWARTZ, .Linear operator, -
Part 1. Interscience, New York (1958).

PHELPS, R. R., Lectures on Choquet’s theorem. Van
Nostrand (1966). | | | | »

SCHAEFER, H. H., " Invariant ldeals of pos}tive
operators in C(i).'l. I11linois J. Math, 11 (1967),}
703-715. | ;

SCHAEFER, H. H;, Invariant ideals of positive
operators in G(X). |l. Illinois J, Math, 12 (1968),

- 525-538,

SINE, R., ‘Geometric theory of a single Markov
operator. Pacific J. Math, 27 (1968), 155-166.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.,

p

~59 -



Chapter‘ 6

INVARIANT FUNCTIONS FOR AMENABLE SEMIGROUPS

.

OF POSITIVE CONTRACTIONS ON Lt




INVARIANT FUNCTIONS FOR AMENAELE SEMIGROUPS
OF POSITIVE CONTRACTIONS ON Lt

1, Introduction.

Let (X,% ,m) be a o-finite measure space and ¥, be an amenable
semigroup of‘positive contractions on L1(X,$ ,n) = 1. In this
papér, we are interested 1n flnding necessary and sufficient con-.
ditions for the existence of é strictly posltive element which is
invariant under every element T in an amenable semigroup of posi-
tive contractions on L1 and obtalning a generalization of well
known ergodic theorem proved for the case when 2, is the semigroup
generated by a single positive contraction T on 1. so far vari-
ous necessary and sufficient conditions for the existence of
lovariant measure equivalént to m have been obtained by several
authors for the case when ¥, is the semigroup generated By a sin-
gle positive contraction T on Ll; that 1s, there are several con-
ditions obtained by Hopf [I2], Dowker [5] (6], Célderén (2],
Hajlan-Kakutanl [wjvfor the case of an operator which ariées from
a measurable traﬁg?grﬁgg?ggfoghéngb Ito (4] and Hajlan-Ito [N] for
the case of an operator which arises from a Markov process. Fur=-
thermore, these have been extended eiegantly by Neveu [wJ}for'ﬂhe
case of a positive contraction on Ll. In this paper, we extend
some results obtained by Neveu [I6] to an-amenab}e semigrbup of
positive contractions on Ll. ~i0n the other-hahd, the efgodic "
theorem also has been obtained by several authors for the case':

when % is the semlgroup generated by.a:singie"operator. "It was
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first proved by BirkoffAfor point transformations with an invari-
ant o-finite measure. For Markov processes, Kakutani [15] proved
it for a finite invariant measure and for bounded functions,
Hopgxg&tended it to.a finite invariant measure and functions in
L, Dunford—Schwarzﬁ?%oved it for a o~finite invariant measuse
and functions in L1,

‘Main results in this paber are the following; at first, wve
find necessary and sufficlent conditions for the existence of a
strictly positive element whi&h is invariant unded%very T in Y, ;
see Theorem 1, Secondly, ﬁe find necessary and sufficient
conditions for the existence of no positive element in Ll which is
invariant under every T in J) ; see Theorem 2, Finally, we extend
the well known ergodic theorem to an arbltrary amenable semigroup
which has been proved for a single positivé contraction T with a
strictly positive invafiant function in Ll; see Theorem 3. It is

interesting to note that éssentially same results (Theorem 1) were

performed by Y., Ito (Brown University) in Japan.

The author wishes to express his hearty thanks to Professor ’
H. Umegakl and Professor T, Shimogaki for many kiﬁd suggestions

and advices in the course of preparing the present paper.
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2. Preliminaries.

Let 2, be an abstract semigroup and m(Z) be the space of all
bounded real valued functions on & with the supremum norm. For
each s € 2. and fem(%.), we define elemehts fg and £% in m(%)
given by fg(t) - f(st) and £f(t) = £(ts) for all t€ . 4n
element t‘\em(Z)* (the dﬁal‘ space of m(E,))iis called mean on .
m(S,F.) if ((tA(l = t*(l) =1 . A mean/':is. called left [right] invari-
ant 1f W(fg) = W(£) [ J(£8) = p(£) ] for all fem(y) and se S .
An invariant mean 1s a left and a right invariant mean. A semi~"
group that has a left 1nvariaﬁt mean [right invariant mean] 1is
called left amenable [right amenable]. A sem;group that has an
invariant mean is called amenable. Let T be an amenable semi-
group; then TsnN2t +¢ and sTNONtE *‘4’. for all s, t € 2.
So, if we define an order t=2s by te FsU{s}, Zis a .

directed set.

LEMMA 1. Let 3 be a. semigroup and M be f.he, closed linear
span.. of the subset { fo-f, £5%-f ; féIM(Z)and se 2, } of m(R).
Then, 2 is amenable if and only if 1 is not contained inm M. If.
¥, is an amenable semigroup with the order defined by the abov'e
and £ is ‘an element of rﬁ(z.), then we have

sup 1nf £(t) € W(f) & inf sup £(t)
s st 8 sab

for any invariant mean M on m(3).

Proof. If 3. 1s amenable, by definition there exists an '
invariant mean j on m(%). Since tl(f) =0 /for all feM, it is
obvious that 1 1s not contained in M. On:the other hana, if 1 1s .
not contained in M, then there exists an element ré n()¥* such

that Upll = j(1 ) =1 and (f(£) =0 for all feM. Therefore, %

[
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has an invariant mean. Let ¢ be a real number satisfjing

¢ < sup inf £(t).
s sat

Then there exists an element u such that ¢ < f(ti) for all t=u.
Since fY(t) = f(tu) > ¢ for all t€ 3, and r« is an invariant mean
on m(%), we have M(f) = r(fu) = r\(c) =c . Therei‘oi‘e,

sup inf f£(t) = t&(f).
s s<t ‘

Similarly, we obtain
[(£) & inf sup £(t).

Throughout this paper, let (X,% ,m) be a finite or o-finite
measure space.and let L' = I} (X, % ,n) and L®= Lo(X, % ,m) be
Banach spaces,with their fespective norms defined as usual,., Since
L™ 1s the dual space of Ll, we use this duality to write < f, h >
for fi“h dm , where feill and he L™, A notation lyp is the chara-
cteristic function of a measurable set F., Let T be a linear
operater on LY, then we denote the adjoint operater by T*., If T
is a positive contraction on Ll, then T* is also the positive |

contraction on L™, The following Lemma was proved by Neveu [i6].

LEMMA 2. Let A be a positive linear form defined on I*; that
is, let Xe€ (L“)f. Thén there exists the largest element geLl
such that the form_induced by 1t on I verifies g:;A:..~M6reover;'
the complement G = { x : g(x) =0 J of the support of g is the
largest set in % for which there exists a positive function heLf -
with h>0 on G and A(h) = 0 . In particular, if g>0 , then’
AMh)> O for every helf, h+0 . Ifi‘ g =0 , then A(h) »=’O for at
least one h€L™ such that h>0 . - o e
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3, Pinite invariant meamures.

The main part of the following Theorem was proved by Neveu [(6]
for the case when 2, is the semigroup generated by a single posi-

tive contraction T on Ll. The proof is similar to that of Neveu.

THEOREM 1. Let ¥ be an amenable semigroup of positive conte
ractions on 1l and £ ve an'arbitrary.but fixed element of Ll such
that £>0 (a.e.). Then, the following conditions ai‘e eqﬁivaient:

(1) there exists go:—Ll sugh that g>ﬂ0.'(a.e.) ahd.Tg-_-.g for all
T in 2 ‘

(2) Af heL¥ and inf < Tf, h >
T .

i

O;, then ‘hn=0 (a.e.);

(3) it hé L:.oand sup inf < Tf, h > =0 , 'then. h=0 (a.e,) ;

' S ©SeT ,

(4) if heLy and pp< Tf, h > = 0 for an invariant mean p on
n($), then 0=0 (awe.) 5 |

(5) if heLlTand 0630 {Th: Te 2}, then .h=O (a.e.)
( here co B .1s the closed convex hull of BCL®™ in the sense of
L%norm ); | .

(6) if helL¥ and 2:0T§h {2 for some sequence {Tc} in 2.,'!: B
then h=0 ; ' ) |

(7) Af h €LY and Z:oﬂ.‘i:h< 00 for some sequence { T¢} in 3.,
then h=0 ;

(8) ESOT;_f = 00 for any sequence {T.} in & ; | | e

(9) if Fe G and S;T*lpﬁ 1+e for some sequence {T;} in &,
then F==? ( here ¢ denotesran arbirary but fixed strict positive |

real number ).
Proof, (1)=>(2). Let £ and f, be strictly positive functions
in 1}, Since fo<af+(fg—af)* for any real number,
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{ Tfo, h >€La< If, h >+ll(fo—af)+ﬂ‘ ] huco
and hence if inf ¢ Tf, h >=0 , it is seen that '

inf < Tfg, h >=0.,
T ’ :

If we take fo=g , we obtainA < g h>=0 and hence h=0 (a.e.).:
(2)=»(3) 1s obvious. o
(3)=>(4) 1s obvious from Lemma 1.

- (4)=>(5). Let heL: and oeco{1% : 'J‘e ?_,} Then, for
€>0 , there exists an element z o{ T*h (2‘ it o=l and 0€ o for
each ¢ ) such that , |
e 2,{1‘%&@*{11 floo Il £ 11y .
Now, we have

e 20l l(Zo(Th“oo
| 2SIélplleu‘ UZo( T: hum

B ! ‘n *
= sgp < T, g o(LT;.h >

2[~AT<Tf, 2‘ (I¥h >
“il“( T¢Tf, h >

e=1

—f“.‘.t‘<Tf h)-—r\T(Tf h»> .,

Therefore, [ < ?f, h >=0 ., We obtain h=0 (a.e.) .by (4).
(5) =(6). Let hé}L? and EL:,\ T?h < 2 for some sequence {1}
in 2. From the following inequalities |

_Z‘mThQ w & TS o,

it is seen that 0€T6{Th : T € &}, Therefore, we obtain
h=0 by (5).
(4) =(1). We define A by A(h)= My ¢ Tf, b > for all heL%
It is obvious that A 1s &.positive linear form satisfying |
lAUﬂ\$~uffthum.
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Also, for any he L™ and T,€ %,

i

MTgh) = Mg < Tf, Tgh > = Mg ¢ TeTf, b >

RPp < 2f, b > = A{h) .

Since Ats(L”):., there exists the~lafgest element g in Ll'by -
lemma 2. This element g is invariant under each T.in 57, In facf,

| < Tg, b > =<g T >'SMT*) = Alh)
holds for every positive ‘he L{°and. hence - ’I'gs.A Th‘s :.mph.es ‘
Tg< 4. On the other nand, since T'1 <1 and }\(T 1) ', we-
have (A-g)(T*1) ‘< (A=g) (1) and hence -< Tg, 1 > =< g 1> .
Therefore, Tg = g for all T in ¥. Now, we show g >0 (a;e.)‘.
By (4), if heL{ and h#0 , ' | |

© 0< Pp<f, h> = A(n) .

On the other hand, suppose that G = {x: g(x)=0 } is nonempty.
Then, by Lemma 2, there exists heL¥ such that h >0 on ¢ and

Ah) =0 . -$his is a contradiction. Therefore,»G==¢ and hence
we have g > 0 (a.e,) . | | ‘ - '

(6)=»(2). The proof has need of the following Lemma which is

a generalization of lemma 3 in [l6].

LEMMA 3, Let h be an element in L such tdat 0<h<1 and

sup'inf‘<fo, h>=0,
S S<T

then, there exists for each &>0 an element hy in. L} such that
hy€£h, <f, h=-hs ><J and Zwo Lh;é. 1 for some sequence
{ Ty I=Te8T,&--} in &

Proof. Let f and f, be strictly positive elements in nl,
Then, since;the condition sup inf <,Tf, h» =0 implies

sup inf < Tfy, b > =0,
S S&T | _

we can choose U;€ %, 1nduotively such that® < f, U1h » < 5/ and

»
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¢ AU U1+94"' Ugt - +Ujn Ut U+ 1) £, U}"h > < 38,
Define '
hg

00

»
)_Zg.o(U)-ﬂU).-« U Ujeg Uy Uy + """‘?‘U)‘HU}'+ Uje )"0
5
=0

(U; U..r“U +U. v.‘ cUgt e - +U)+I)*U~.H h .

and then hy = ( h-h, )+' . Obviously, O<«£hgsh- and hyzah-hg .
We will show that < f, h—hy><§ . In fact, ‘

¢ f, h=hg> |
' * .. ¥
2 <.f, }S;o(u ;U U‘+4U)-~---U1+~---+U)-+I) Ut B2
- )5; < (U ----U"+U}~---Uz+~ U+I)f, Ufiih o
m - .
< 4 229 = &,
Jj=o

To finlish the proof of Lemma 3, it suffices to show that

Pyyk = BotUe byt Um.Um) Dt (g™ u—x) hypel
for all nonnegative integers L, k. The sufficlency of the above °
inequality is clear by taking I=Ty, Ty=Uj, To=UpU;, <-eenny |
’.I.‘é,zUJ;UJ-_.,--' Uj,=--- and =0 and letting koo,
It 1s obvious that F;,o% 1 for all L. Assume that the

inequality 1is true for all ¢ and for the value k-1, From‘

% *
Fook = BytU0e) (hs+Unghs+ - + (Vg " Uea) " Ba)

L »*
By +Uier (BstUpppeg Dt -+ (Upre Uieirt) “bg)

i

*
hs"'Uu.-‘ F‘ h...“ »
we obtain that Fi, %1 on {x: =07} .. On the other hanQ,\ =
we have that on { x : h;(x)>0 }, h,; = h—ho amd hence

: * ,

Fiog = Ds+ Upyligt oo b (Uppem |‘.+l) =5
§h5+UL+th"‘““°"*’(U..+k“ R
2 hy+ hy = h <1 . '

This completes the proof of Lemma 3,.:
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We prove that (6)=>(3). Let h be an element in L} such that

sup inf ¢ Tf, h > =0 .
S 5«7l

Wwe can assume without loss of generallty that 0O£hs<gl and

sup inf < Tf, h > =0 .,
S S8sT

By Lemma 3, there exists hyeL% such that my<h |
¢ £, h-h5 ><J and £ o,Tihgs<l for some sequence {T;Jin &,
Since (6) implies hg=0 , we obtain < £, h »<Jd for all J> 0.
Therefore, we have h=0", |

(2)=>(8). Let {Ti)be a sequence in S. and fo be a positive
element in LIAL™. If we defime helL’ by h=fo(l+Ti0ef)
with the convention (+°°)“=0, then obviously h(E:_:oT‘._f)é_‘fo with

the convention 0+00=0 and hence

00 oo ©o
jhz T f dn = Eo gh'Tg_f dm = 2 < T.f, H > L o,

wad Lso

Therefore, 1inf < I;f, h > =0 and hence we obtaln h=0 | by (2).
(8)=>(7). Let h be an element in L% such that S..,Tih< eo
for some sequence [{T¢} in ., and f, be a strictiy positive element

in 1A L% If we define f‘e Li by

% =1
£f'=£4(1+ 2. 0ch)

cQ
s

then £/ is strictly positive and £’ 2\___an

[

h)£f, . Therefore,

we obtaln :
/ Lot 2 oo ’

ez atn) an = ((27287) 0 an < o0

=0

and hence h =0 by (8).
{7)=(6) and (7)=>(9) are obvious.
(9)=>(3). Let be an element in LY such that

sup inf ¢ Tf, h > =0 ..
S SaT . ’

If P={x : h(x)>a } where a is a strictly positive number,;

then we obtain
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sup inf < Tf, 1p > = 0 .
S S&T

Let €, €/>0 and o ==¢cc’/1+¢e . From Leuma 3, there exists
n5€LP such that hs<h , < f, h-hy>< 5 and 5.0, Irhy<1l for
some sequence {T¢} in 5, . If Pg,es :{_.x : hs(x)>1/1+e } , then
Fe,e/ is a subset of F satisfying <« f,‘lFf'lFe,e,~><:e’ and

3 e Tilpe, o S14€ . | |
Therefore, we obtain Fg¢ ¢/ =4 from (9) and‘hqnce F = Q .

Finally, since a was arbitrary, we obtain h=0

" The following Theorem 1s'a counterpart to Theorem 1l; that is,
we obtaln necessary and sufficient conditions for the existence of

no invarlant measure weaker than m,

THEOREM 2. Let 2 be an amenable semigroup of positivevcontra-
ctlions on L% and f be an arbitrary but fixed element in L1 such
that £2>0 (a.e.) . Then, the following conditions are equivalent'

(1) if geL]_i. and . Tg=g for all T 1n s, then g=0 ;'

(2) there exists he€L™ such that h>0 and |

" inf < Tf, h > =0 ;
T

(3) there exists heL®™ such that h>0 and

sup inf ¢ Tf, h > = O';
S S<7

(4) there exists heL™ such that h>»O0 and
I“T <Tf, h>=0
where [4+1s am inva‘riant‘ mean on m( ) k;
(5) there exists he&L®™ such that h >0 and"
| ' | oeco{T™h 1 1T}
(6) there exists he€L® such that h>0 and 3 tep T h<2
for some sequence {T;} in ¥ ; | |

(7) there exists heL®™ 'such that h>0 and £ (e Trh<
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for some sequence {T¢) in &
(8) Z;:o f< oo for some segence { T¢ ] in & ;
(9) there exist positive real numbers My 4o and elements

Fpt X in % such that & 7, T¥lp, < 1+M; for some sequence {1}

in 3, .

Proof, (1)=»(2), (3) or (4). Let A(h) = Mp < If, b > for
all he€eL®™, Then AG(L“): . PFrom i,emma 2, we can find geL%
such that g<A and Tg=g for all Te% . Since (1) is valid,
g=0 . Therefore, by Lemma 2, there exists h €L such that
h>0 on X:{x:g(x)zo}‘and '

= A(h) = Pp < If, h >

2sup1nf<tnf h > 2 inf < Tf, h>20.
S S<T 7

(4)=> (3)-‘-?‘(2)‘ is obvious.

(2)=>(1). Let £, £,>0 be elements in LL. Since the condi-

tion 1inf < Tf, h > = O 4implies’

inf < Tf, h > =0 ,
T :

by taking f,=g , we obtain
igf(Tg,h):(g,h>=0‘.

Therefore we have g=0 .

(5)=>(4) and (6)=»(5) are obvious from (4)=>(5) and (5)=>(6)

in Theorenm 1.

(3)=>(6). The proof has need of thé follwing Lemma.,

LEMM 4. TLet h be a element in L™ such that 0<h<1 and

sup inf < If, h > =0 ,
., S BS4&T

then there exists an element h’e 1"_."°' such that 0<h’<h and

2.:;:01‘:1’1’ < 1 for some sequence {T;}4 I=T,4T¢%-*'=}in DA
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Proof., Let f,vfo be strictly pbsitive elements im Ll. Then,

since the condition sup inf < Tf, h > = 0 1implies

sup inf < Tfo, h > = 0.,
5 B8« - .

we cen find U< $ inductively such that < £, Uh > <1/2% and
(U Uy == U riqe Ugee- t U, Upgt Uy +1)E, U >4 27,

FOI’ Lzl, 2’ A define

- | .
— - LR A - *
hy = )?2:,( U Uy = G+ Uy U+ - -+ U U5 )7
m . I3 - . * *
= )?;_:_( Uy Uy = Uy ¥ U= U ----+U)~+I)._ Ujer B
and hyy = ( h=hg )% . Obviously, O<&hgi<h and - =

n,ixh—h; for all L. We can find show by the method of Lemma 3
that ¢ £, h—hg-t> €27 for all L, Define h'e LY by
N |
r 1
h' = 2 — h -t
om0 2“' 2 .
Then, we have { x : W (x)>0F = U {x: hl-;(x)>0~} and®
i <

e
{'e\- 1“;-‘-:0}

Therefore, we obtain h' >0 (a.e.) . Also, we can show by the’

h dm 5&f(h~h2{) dm < -,-j-‘-_

method of Lemma 3 that-
: e ¥ * s
Fioke p = Byp*Uon Bgop (TogUem ) Bgmp o
l + (UB.k"' U\‘.ﬂ)*hz"r < 1

for all nonnegative integers ¢, k and a fixed nonnegative integer
p. Therefore, taking ¢ = 0 and Te=I, T\=U;, --+*, $j=U3U}ﬂ~--U4?
and letting ke , we obtain Z v,::., Tth 9P < 1 for all p. There-
fore, Z::o T:h',é. 1 .. This completes the proof of Lemma 4,

The proof of (3)=>(6) is obvious from iemma 4, (6)=>(7) is
also clear, (7)=>(8) is obvious from (8)=(7) in Theorem 1.

-9
’

(8)=>(2). Let {T.} be a sequence in $ such that & ., T.f
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If we define h = fo( 1 +Z . 2oT¢f ) where f, is a strictly
positive element 'in Llr\ L°°, then h 1s strictly positive and

inf < Tf, h > = O
T

In fact, from h( T feeTif ) < £y , we obtain

S<Tf h><«><».

(V. X.)

!l

fh( ? ceolLf ) dm

(3)2(9). Let h be an element in L *such that 0<h<1 and

sup inf < If, h > =0 .
S ST ’

Then by Lemma 4, there exists . h’e L™ such that 0<n'<n and

2% h” <1 for some 'I=T.O£T, < ---- . Since h’ is strictly

positive, there exist positive real numbers My 1 oo s‘uc_‘h that
{x:n’(x)>1/1+M 31T x

we can also show that Z;,:., Tlen < 1+M, . In fact, since

(14 My)h' 21p, , .

Loy S (1+My) B2, Tih’ <

S14M, .
(9)<> (6). Let My Too and Py 1 X be positive real numbers and
elements in % such that Z .'_:p T’{lpn s_i+Mn for sequence {Tg}
in &, If we choose k, such that 1+M, < 28 and define
, . : «

h= 2

n=o

oRntM 1P Pt

then hkis strictly. positive and 2::0 T':h <2 . 1In fact,

[-- TR )
S emgTih = o Z zk“*% 1p, - Fn.,)
= ! (< T?_-IF = P ) &

n RmtM T - m 2k=

EDA 2h_‘_h(1+Mn) < L =

2 .
“ -

This completes Theorem 2,
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L, Ergodic theorem.

In this section, let (X,% ,m) -be a finite measure space. The
following Theorem is a generalization of the well known ergodic
theorem for the case when 2 is the semigroup'generated by a sin-

gle positive contraction T in L1,

THEOREM 3. Let (X,% ,m) be a finite measure spaceb and® & be
an amenable semigroup of positive conﬁractions T on L' and S0Lpose
that T1 = 1 for all T in Z'. If f€L! and
D =1{A: T*1p = 1p, T€ %}, then the conditionaliexpectation
E(£]1¥%) of f with respect to 9% is contained in 6o §Tf : T ¢ s 3

where co B is the closed convex hull of BC.Ll in the sense of.L'~

norme.

Proof., Since T*1 =1 for all Tin &, it is qbvious that
Xe®. That B ic a o-field is obvious from that
Bp ={4a : T1a = 1p } for each T in & is a a-fieid. We will
show that {Tf : T€R} is weakly sequentially compact. To show .
this, it suffices to show that the countable additivity of the
integrals Tf dm is uniform with respect to T in &, (See p.292
in (83.) .

‘Let fa=min ( £, nl ) for all n=1l, 2, -+++ and ¢ > 0.
Since £“f f , by the Lebesque's convergence theorem, there
exists a positive integer n, such that [If =fy ll| < e/2n, .

Fix this positive integer ny and determine a positive number

v=¢/2n, « If m(E) < J , we have

‘=4



< Tf, g > £ < Thy 4 1g >+ < TE-Tly,, 1g >

HA

< Tngl)y 1g > + IT(£=fn)) !l

HA

n,m(E) + [f-Lfp,ll

AN

e/2 + /2 = &

for all T in &, Therefore, it follows that the countable additi-
yity of the integrals fg Tf dm is uniform with respect to T in &,
Since {Tf : T€ L} is weakly sequentially compact, it follows that
So{rs : T¢2] is weakly compact. (See p.i30 and pol3h in [8].)

On the other hand, since {Tf : Te £} is invariant under each T in
Z. and each T in & is weakly continuous énd linear, co {Tf:Té,S..}

is aiso invariant under e;ach T in &+ Now, by using Day's fixed

point theorem [4), we can find an element uéco {Tf : Te T} such
that Tu = u for all T in & . We will show that this.element u
is P -measurable. Let a be a real number, then it is obvious that

T(u=al) = u=al for all T in & . Therefore,
+ - v & -
(u=al)y = (u=al) = T™Mu=al) - T(u-al) .

By positivity of T, we obtain that

(u~al) € Mu-a1) and (u-al) S T(u-al) .
Hence, it follows by, Tl € 1 +that
(u-al) = Mu-a1)" and (u-al) = T(u=-al) . \

Therefore,

{74

T min ( 1, n(u=al)") <" min ( 1, n(u=arl)
for all n=1, 2, ... and hence

T min ( 1, n{u~al)t)

[t}

"min'i‘( 1, n{u-al)t) .‘

\
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(See p.l6 in [9].) Since min ( 1, n(u-a1)") 11 as n —peo ,
{uw>al

we obtain that Tl{u>a? = lfu>a1 for all T in &, Therefore, u

is ¥ ~measurable. By using this, we will obtain that u is i

T™L =1, we obtain

HA

{h ~measurable, In fact, since T*l(u>a§

l‘u>a)T*1{u>a} = l(u>af

and hence

I (1{u>a1_ 1{u>a1T'1{u>a}) dm

m((u>a‘) - flfu>a3T*l{u>a3dm'

m( (u>a}) - f Tl{u>a}l {u>a1 dm

i

m({u>a§) - m({u>a‘) =0 ,
Therefore, we have

1‘u>af = 1(u>atT*l(u>a$ '

On the other hand, since

43 *' _ )
éT 1&u>a)dm = g’l‘l‘lé‘u%& an

=Y % am = m({uw>al)

= (g - e

we obtain T*l{u>af = l€u>a¥ . Therefore u is g%rmeasurable. Now,
we will show that u = E(ﬂ@). Let A %é} and 3}3 gé'l‘éf be an

| elemen in co "‘Tf : Ttﬁ.i y:here %ipk @ =1 and g0 for
i‘l, 2' -h e Then

-~ oy sl
< T Ay TiTy 1> = < 1y Tla>

)

- .
= Wy M < £, 154> = < £, 1A > -

-
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44
If 2,

<u, 1l4>=<1f, 15> . On the other hand, we know that

oy T¢f => u  in the sense of Lj-norm , 1t'follows that

H

< £, 1a>= <EB(EIB), 1> .,
Therefore, ‘ '

<Cu, 1pa> = <EHf@L]A>
for all A€l . Since u is B-measurable, we obtain that

u.= E(£f|8B) .

REMARK. = It 1s obvious that u is’a,unique;invariant funetion
in Co{Tf : T¢ 2} . For the case when & is the semigroup genew -
) -l
rated by a single positive  contraction T on Ll, 1/n 5:“=02&f

tends to E(f|¥) in the sense of Il-norm.
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ERGODIC THEOREMS FOR AMENABLE SEMIGROUPS

OF POSITIVE CONTRACTIONS ON Ll

l. Introduction.

In (8], Schaefer defined that a.boﬁnded opérator T on a Banach
space B is called ergodic if for each I €3B, the convex élosufe
co (£, Tfy - "} of the orbit {f, £, - ;-'} contains a fixed vector g
of T, It.is well known that this fixed vector is unique in
co{f, Tf, --- } whenever {T0 : neN } is equicontinuous [7, p.8-113.

Now, we can extend the notation of ergodicity defined for the case

~of the semigroup generated by a single Operaﬁor T to an amenable .
semigroup £ = {T} of operators on B. However, it is not known . |
whether for f €B, a fixed vector g in co {Tf = Te €} is unique or
not. |

In this paper, at first when (X,F ,m) is a finite measure space,

we prove that an amenable semigroup & = { T} of positive contractions.

on L'(X,% ,m) with a strictly positive function g invariant under 7
in % is ergodic and for each f€L'(X,%¥ ,m), a fixed vector u in:
co{rtr : Te L} is uniqﬁe and it can be represented as the conditio-
nal expeqtation of f relative to a subfield\of‘f . This theorem has
been already proved by the author [11] for the case when g is the
constant function 1. Seco ndly, we shall find a sufficient condi-<’

tion for ergodicity of an amenable semigroup of positive contrac-

tions on L1, which isvweaker than the conditin of the above theorem.

Finally, we obtain a characterization of extreme points of

~ . " ey " E
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{rert ¢ ryo, lfll=1, Tf=r, T¢T} of LY(x,% ,m). This is a genera~-
lization of the result obtained by Schaefer [8] for the case of the

semigroup generated by a single operator T.

The author wishes to express his hearty thanks to Professor H.
Umegaki and Professor T.GSimogoki for many kind suggestions and .

advices in the course of preparing the'present paper.

2. Ergodic theorems, -

We extend the notation of'ergodicity‘definedvfor the‘case'of'the
semigroup generated by a single operator T on a Banach space to an
amenable semigroup of operators on Bj; that is, an amepable semigroup
£={T} of operators on B is ergodic if and only if for each f €B,
the convex c¢losure co L Tf : TeZ} of {Tf : Te%) contains an invar-
iant vector u for all T in & . |

Throughout this paper, let (x, % ,m) be a finite ﬁeaéure space .
and let L' = LY(X,¥ ,m) and L* = I™(X,% ,m) be Banach spaces of all
real valued F -measurable functions on X, with their respective -
norms defined as usual. Since L® is the dual space of L', we use -
this duality to write < f, h > for .ff‘h dm , where fé L' and he L“.
A notation ly is the charaéteristic function of a measurable set I .
A positive contraction operator T on L1 is a linear mapping of L';'
into itself such that Tl €1 and Tf 3 O for £ 2 0 and we will
dénote by T ={T} an amenable semigroup of positive contractiong
on L. |

The following Theorem wag proved by the author in tll]. We will

use this for proving Theorem 2.
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THEOREM 1. Let (X,% ,m) be a finite measure space and &= {T}
be an amenable semigroup of positivg contractions on L' and suppose
that TL = 1 for all T'in & o Then &= {T} is ergodic. If féL'
and % ={AeF : T*1, = 1y, Té€ =}, then a fixed funcfion u-is
unique in co {Tf : T« % } and the function u is the conditional

expectation B(f|% ) of f with respect to W .

We sketch the proof. It is obvious that # .is o-field. By
showing that for each fé L', '{,‘I‘f : TeZ]) is weakly sequentially
compact, we can obtain that E:'c'.; {Tf + Te 2-‘} is weakly compavc’c. Now
by using Day's fixed point theorem, we can find a function »
ue & U1f ¢+ TeT) such that Tg = g for all T in & . Finally, we
will show tha't this function u is 7} ~-measurable and

<u, 1y >=<E(LIB), 1 > .

Therefore, we obtain that wu = E(£I®) ; see [11]. s

THEOREM 2.  Let (X,% ,m) be a finite measure ‘space and let
2 ={T} be an amenable semigroup of positive contractions on L' and
suppose that there exiéts ge L' such that g >0 and Tg =g for-
all T in %, Then & ={T)} is ergodic, If fé€ L' , then a fixed
function u ;'Ls unique in o {Tf : T € £} and the function u é¢an be
represented as the function g E(L£|B)/E(gl¥) where |

B ={Ac¢F s T*1y = 1, T} .

Proof. If w(B) = IB g dm for BeF , ¥ is a measure equiva=-
lent to m. Now, we define operators U by
U(h) = T(hg) g~

for he L' (X,% ,¥), we obtain that {U} is an amenable semigroup of
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positive contractions on L‘(X,S- yW). In fact, since T*1L =1,

§un aw

1

' g T(hg) g g dm

gh'g dnm

i

( 5 av

il

for all positive functions hé L‘(X,? ,t.') and he‘nce U ié a.contrac—' y
tion on L'(X,¥ ,¥). It is obvious that U is 'positive‘an.d {ul is
an amenable semigroup; sée [1j. |

Now, by using Theorem 1, -’we obtain that {,U) is ergodic and if
neL'(X,% ,¥), a fixed point v is unique in 56 {Uh : U€{U}} and
the function.v can be repfesented as thevconditioﬁal expectation
E(h| By) of h relative to By where By = {A€F : Ul = 1,, U€{Ul},

By using this, we have £ = {T} is ergodic and if feLl, a fixed

point u is unique in ¢o {Tf : T€¢ T} . Finally, we show’ that u can

be represented as the function g E(£|®)/E(glB). In fact, if

Ae By, from

: f h-U*ly dv g T(hg)~g’l-l~ g dm

f hg T*1p dm

S. h«lp-g dm

i

Sh-lA dv

It

for all helL!'(X,% ,V),' we obtain that Be Py . Similarly, we have
that if A€ By, Ae B . Therefore, we obtain M= Wy « Since
E(hiBy) = E(h|®) is @ -measurable, for. our proof it is sufficient

to show that E(h|®) B(glh) = E(hg|®). This equality is obvious
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from

(, 20i®)5gi®) an = [, B:IB).g an

i

§A E(h|®%) qv.

EA hrdv -

1]

it

gA heg dm

i

_(A E(hg|® ) dm’

for all A€W . This completes the proof,

The above Theorem is a generalization of Hopf's result and the
following Theorem is a generalization of Ito's result pbﬁained for
the case when = {T} is the semigroup generated by a single

operator T on Ll,

.

THEOREM 3. Let (X,f‘,m) be a finite measurevspace and let
¢, = 1T} be an amenable semigroup of positive contractions on L‘
; and suppose that there exists ge.L' such that g > 0 and
’{ Tg ¢ T€ 2(} is uniformly integrable, then & = {T} is ergodic.
If fel!, then a fixed point u is unique in &0 {rf : TeZ } . If'
u=Pf, P is a positive projection of L! onto ‘

" {fer' :7f =f, TeL}

such that P = TP = PT for all T in & .

Proof. For each fe&Ll, we will show that {Tf : Te¢ L } is
weakly sequentially compact. To show this, it suffices to show
that the countable .additivity of the integrals [ g Tf dm' is

uniform with respect to T in & . (See p.292 in [3].) Let g be an
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element in L1 such that g.> 0 and{Tg : T€ %} is uniformly inte-
grable and f, = min( f, ng ) for all n=1, 2, +-+-* , Let ¢ > O,
Since fnf'f + by the Lebesque’s convergence theorem, there exists
a positive integer ng such that || £ - £y | <e/2 . TFix . this
positive integer ngy and determine a positivevnumber 3= 3¢>0
such that < Tg, 1lp > < ¢/2n, whenever m(E) < § .

Then; we have

< Tf, 1y > £ < Tfy 4 1g > + < TE-Tf,,, 1g >

A

< T(-ﬁog), 1g > + I ©(f=£q,) I3

HA

n,< Tg, 1g > + I £-£, -1y
< e/2 + e/2 = ¢

for all T in & ., Therefore, it follows that. the countable additivi-

ty of the integrals §E Tf dm is uniform with respect to T in & ,

Since {Tf : Te¢ &} is weakly sequentially compacﬁ,‘it follows that

colTr : TeL} is weakly compact. (See p.430 and p.434 in [3].)
On the other hand, since {Tf : T« £} is invariant under each T in
£ and each T in & is weakly continuous and linear, co { Tf :Teg .

is also invariant under each T in & . Now, by using Day’s'fixed

point theorem [2], we can find an element u€éo {Tf : T¢Z 3} such _

that. Tu = w for all T in & . We will show that this fixed element
u is unique in S {Tf : Te L} . Let ¢ >0 and h&l™. Then

there exists an element

n
B o Tif ‘§.‘ « = 1l-and % % O for each i )
[ 2 :

such that

" ; :
lla%mf-uﬂfﬂhh< £ o~
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Now, for an invariant mean rton 2 4 we have

¢ 2o I Earmle-w -l n

iy

~M

> sup | < &lo«cmm(f-u), h> |
"

> 1 pp< T IR (£-u), B> |

ey o
= | é*;t‘m<TT,~,(f-u),h>] . R . v

=] Se fp< T(£-u), h > |

it

it

| Pg< Tf-u, b > |

| Pp< Tfy, b >~ <wu, b > ..

i

Therefore, |Jp< Tf, B > =< u, h > for heL” and we obtain that
u is unique in 53{ Tf : TS} . That P2 = P is obvious from

< PPf, h > = Pp< TPE, h > = WM< PE, T*h > .

4

Pr e, Tofy T*h > = fip Pa,< Tof, h >

i

1]

Peg Tofy b > = <Pf, b > .

Finally, we obtain P = TP = PT from

< TPf, h >

1

< Pfy, T*h > = Pg< Tof, T*h >

i

P TTof, h > = il Tpfy, b >

= < Pf, h >
and
< PTE, h > = Mgl LT, h>= pg Tofy b >

<

#

<Pf,h> .
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3, A .characterization of extreme points.

A subset A of Ll is called solid if f€A and lgl < 1£1
E;GIJ ’ imbly that g€ A « A band A in It is a closed solid vector
subspace of Ll. The smallest band4BA containing a subset A of Ll is
called the band generated by A [7, p{209]. The following Theorem
ja a generalization of Schaefer’s result [8] obtained for the case
when = {T) is the semigroup generated by a single positive contra-

ction operator T on L1,

THEOREM 3. Let & = (T}.be an amenable semigroup of positive
contractions on L} and ergodic and define |
" = {felL' : £30, lfll=1, Tf=f, T€Z } .

There exist minimal bands % (0) invariant under T in & if and only
if the set § has extreme points, and the 1atter are in one—to-one
correspondence with the former by virtue of g —b Bg s where Bg

denotes the band in Ll generated by {g ).
Proof. We need two Lemmas.

LEMMA 1. Let £ ={T} be an amenable semigfoupvof positive
contractions on L1 and suppose that there exist no non-trivial bands
invariant under T in'% . Then the space of fixed points for all T

in & is at most one-dimensional.

Proof, Let Tf = f for all T in & . Since T is positive and
gt o £~ = f =Df = TEY - PE7,

¢~ for all.T in & . Hence it

174N

we obtain that é rf* and £

i

tt
follows by Tl £ 1 that re® ?f and TE™ = £~ for-all T in &,

In fact, we have that
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2%

f’(Tf*-f*):dm = ng“ dm - gf* dm

(@]
IA

17aN

s‘f*dm- ff+dm=00

Since the bands By and By~ generated by {f*} and {£”} are invari-
ant under T in & and lattice disjoint, we obtain that either

f* =0 or else £~ =0, Thus the fi%ed space is a totally orderd
vector lattice and hence, since it is Archimedean, at moét onéé

dimensional.

LEMMA 2, Let & = {T} be an amenable semigroup of positive
contractions on L' and ergodic. If g is an extreme point of & and

f is a fixed function under T in & and contained in the weakly

~ closed band gé generatedvby fgy sy then £ = cg for some real

number ¢ .

Proof. Let O0Sf < g and £ 4$£ 0 . Since g is an extreme

point and

-f
v lgegl
el lg=£ll

g = Izl

we obtain that f = cg for some c. More generally, suppose that
0 £ If] £ kg for soe real number k, From

f* + f [l € kg ,

i

HA

we have f*/k § g and £°/k £ g . Hence we obtain f = cg for
some real number c.
Now, since £ = {T} is ergodic, there exists the projection P

as in the proof of Theorem 3. This projecéion P maps Bg onto

{cg ¢ 'céR] and hence ;-'P(Eg) = {cg : c&R 3.

38w



Now, we prove Theorem 4. Let g be an extreme point of & and
P be the projection as in the proof of Theorem 3, Suppose that D

ig a band invariant under T in & and (0) & DCBg . From Lemma 2 ,

Since D % 0 and &

[

{T} is ergodic, it follows that DNn@ = {g} .
Hence g€D and D = BS .‘ '

Converéely, let B be a minimal band % (d) invariant'undef T in
"% o The restriction of T to B satisfies the hypothesis of the .
Lémma 1 and hence Bng is' a singléton g If g =of + @f; for
some f, , f,€6 @ and &+ p =1, =82 O s we have g 2 f, .and

8 ;‘f; + Since B is solid, we obtain f, , f, € B, This is a contra-

diction. Therefore, g is an extreme point,
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ADJOINT ERGODIC THEOREM FOR AMENABLE

SEMIGROUPS OF OPERATORS

1. Introduction.

In [é], Lloyd proved the follohing theorem:
Let {T(t) : 0 <t < e } be a semigroup of operators on a

Banach space B such that

M=T1im || T(t) || < 00 .
ted oo

Then there exist operators P* ¢ L(B*) (not necessarily adjoints |
of operators in L(B)) in the closed convex hull of

{T(t)* : 0<t <o} in L(B*,B) with the property.
T(t)*P* & P*T(£)* =DP*, 0 < t < oo,

This theorem is very ﬁseful in: the ergodic theory of Mérkov
processes.

In this paper, we shall extend Lloyd's theorem to the case of
an amenable semigroup by considering an order that the semigroup
must possess. Consequently, fhis is vefy ugseful in the ergddic

theory for amenable sémigroups of positive contractions on L1,

The author wistes to express his hearty thanks to Professor H..
Umegaki and ProfessorvT. Shimogaki for many kind suggestions and

advices,’
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2. Preliminaries,

i Lgt 2 be an amenable semigroup, then it is well known
that s A Lt % é$ and s AtE ¢ for all s, t €., So, if
we define an order 5 St by te€s T W{s} on &, S is a
directed set [8]. | |

Throughout this paper; we shall consider an amenablg semigroup

with the‘order defined by the above.

ii. Let B be a Banach sﬁace and B* be the dual space of B,
then we shall denote by <‘f,‘h > the value of f€B at h €B* and |
denote by L(B) [ L(B*) ] the set of all bounded linear operators on
B[ B*j, with operator norm topology. Paticularly, we denote by -
L(B,B*) [ L(B*,B) ] the set L(B) [ L(B*) ] with the weak operator

fopology determined by B* [ B ].

LEMMA 1 (Arens [1]). The closed unit ball of L(B*) is a

compact set in L(B*,B).

3. Adjoint ergodic theorem.

At -first, we shall prove the adjoint ergodic theorem for an
amenable semigroup of operators on a Banach space by considéring

the order induced above., -

THEQREM 1. Let €= {T} be an amenable semigroup in L(B) such
that

M = inf sup | Tl € e .
g S 8T .

' Then there exists an,opefator P*€ L(B*) “in the closed convex hull
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of {1 : Tew} in L(B*,B) such that T*P* =P*. for all TeZ.
Such an operator is a projection onto the subspace of vectors invar-

iant under all T* in 35*.

s

Proof, Let ¢ > O , then there exists 5o € & such that

A

“T”{M"’Cs Se. T .

Denote by K(S,) the convex hull of the sét {r* : 5 <7, Tew},
and by K(S,) the closure of K(So) in L(B*,B). By Lemma 1, K(Se)
is a compact convex subset of 'the multiple M+ ¢ of the closed unit
ball in L(B*,B). » i

Since U*Te™ = (TeU)*  for ’i‘,*e {T* : S,&T, TeLT } and Ue &
it follows ’c‘hat the set {T* 1S, 8T, Tew} is invariant under all
U*e z-f. And since each U* in &* is linear and continuous with
L(B*,B)-topology, K(S,) is also invariant undef U*€ &.*. Now, by
using Day's fixed po‘ik‘r’itw ‘t‘;"huewérém, we obtain P*e K(S,) such that
T*P* = P* for all Pin . We ’shall show that such an operator is
a projecti;)n. Let {.'V'.}.'V'}"Eé a generalized sequence in K(S,) conver-

ging in L(B*,B) to P*€ K(S,). That is,

P* , we obtain that

for f€B and heéB* . From VgP*

lim < £, VP*h >

H

<.f, P*L >

.'n

lim < f, P*h >

<f, P*h > .,

Therefore, P* is a?p;‘ojeqtipn, Suppose that h, is such that

T*h, = hy for T*e T* and < f, Vyh > = < f, P*h > for f&B




and heB* . Then from

< fy P*h, > = 1im < £, Vyho >

H

lim < £, .h°>
‘:<f’ha>,

it follows that P* is a projection onto the subspace of vectors .

invariant under all T* in &*,

COROLLARY 1. Let &= {T} be a commutative semigroup in L(B)
such that

1

M= inf sup | T Il < o0 .
.8 SST

Then there exists an operator P* € L(B*) in the closed convex hull
of {T* : Te L} in L(B*,B) such that - P*T* = T*P* = P* for all T
in & . Such an operator is a projection onto the Subspace'of

vectors invariant under all T in %* and has the norm [[P*ll S M .

Proof. It is sufficient to show that [[P*Il £M . In fact,
let {Va} be a generalized sequence in K(S,) converging in L(B*,B)

to P*€ K(Se). Then from
Lim< £, VyT*h > = < £, P*T*h > = < £, P*h >

it follows that {V“T*} is a generalized sequence in L(B*,B) to P*,

, Therefore it follows that |IP*|| £ M .

The above Theorem and Corollary have many applications in the

ergodic theory of various fields.
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