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INTRODUCTION

"Mathematics and practice do not always go hand in hand,” some
people say. “For instance, in practice one and one does not always make
two. Let us consider the situation that two persoms work. If they do
the work of three persons with a united effort, then one and one makes
three. If each is a hindrance to the other and they do the work of one
and a half persons, then one and one makes one and a half. In mathematics,
however, one and one always makes two." (So mathematics goes for little.(?))
There are certainly the cases where one and one does not make two
and it is certain that in mathematics the equation 1 + 1 = 2 always
holds. But the author states that it is possible in mathematics that
one and one does not make two, and he states that the concept of fuzzy
measures is one of the mathematical tools for that.
A fuzzy measure is a monotone set function which is not always

additive. With a fuzzy measure p, the above case is expressed as

. follows:
u({a}) =1,
u({pl) =1,
p({a, b}) = 3 (in the former case) or 1.5 (in the latter case),

where a and b stand for the two persons. The non-additivity of fuzzy
measures, i.e., p(A U B) # u(A) + p(B), expresses the cases where one
and one does not make two.

This dissertation discusses fuzzy measures and fuzzy integrals with
respect to fuzzy measures. It comsists of two parts. Part T discusses
pseudo—additive measures (Sugeno and Murofushi [22]), which are special

fuzzy measures with the property:



L(A U B) = u(A) + p(B) whenever A 0 B = §,
where + 1s a pseudo—additon. A pseudo-addition is an operation with
the property that one and one does not necessarily make two, that is,

the equation 1 ¥ 1 = 2 does mnot necessarily hold. Part IT discusses

general fuzzy measures.

The concept of fuzzy measures was proposed by Sugeno [21] for a
mathematical expression of fuzziness in contrast to fuzzy sets. Fuzzy
sets are sets without precise boundaries (Zadeh [25]), for inétance, "the
class of real numbers which are much greater than 1" or "the class of
beautiful women.” A fuzzy set A on a universal set X, where X is an
ordinary set with a precise boundary, is characterized by assigning the

grade f5(x) of "x € A" to each point x of X. By contrast, a fuzzy
measure on X is characterized by assigning the grade MKy(A) of certainty
of "x € A" to each subset A of X, where x is an ill-located point of X.
Dubois and Prade [6] illustrated these two fuzziness as follows .

"X is supposed to be a set of pieces of furniture. Both points of
view correspond to the following situatious:
% Fuzzy set : thevage of each item is precisely known. fg(x) is an
assessment of the answer to the question : 'you know the age of x ; do

you comsider it is 01d?' A is the fuzzy set of old pieces of furmiture.

% Fuzzy measure : the age of each item is unknown. HIy(A) is an assessment

of the answer to the question : "By looking at x, do you consider it is
more than 200 years o0ld?' A is the non fuzzy set of pieces of furniture
being exactly more than 200 years old.”

We now state the mathematical definition of a fuzzy measure. Let

(X, %) be a measurable space. In [21] a fuzzy measure on X is a set



function p : & » [0, 1] with the following properties:

(F1) (@) =0, X)) =1,

(F2) A, BeX and Ac B & p(A) < p(B),

(F3) {Ag) cX and Ay + A &> p(Ap) 4+ p(A),

(F&) {Ap} cX and Ay + A => u(ap) v pla).

The main features of thié measure are non-additivity and monotonicity.

(In the sence of the above definition the set function y on page 1 1is

not a fuzzy measure since it does not satisfy the condition that H(X) =1,
But this condition is pot essential and we remove it in the text.)

By the definition the fuzzy measure is an extension of the probability
measure, and therefore the former is more flexible than the latter. This
implies that the fuzzy measure is applicable to ambiguous circumstances.

In this regard, the fuzzy measure interests many scientists,
engineers, and mathematiciams. They have made many studies concerning
theory and épplications: classification of fuzzy measures, fuzzy integrals
with respect to fuzzy measures, fuzzy modelliﬁg of subjective evaluation
based on fuzzy measures.

Let us survey classification of fuzzy measures. Since a fuzzy
measure is a general set function which has only momotonicity, the
concept of fuzzy measures includes various non-additive set functions.

A belief function (Shafer [20]).is a set function b defined as

follows.
(1) b(P) =0, b(X) =1; 0<b(a) <1 VA
o] : '
(2) b(Ap U Ag u see U Ay) > T b(A3) - I b(Af 0 Aj) + ess
= i=1 1<

+ (-1)"Ip(A; 0 Ay oeee 0 AL



b(A) is interpreted as a grade of belief that a given element of X
belongs to A.
Shafer [20] defined a plausibility measure Pl by
P1(A) =1 - b(A®).
A plausibility measure Pl has the property:

o)
P1(A; N Ap 0 so+ 0 A) < T PI(A1) = I PL(Af U Aj) + eoo
— =1 i<

+ (-1)"LP1(A; U Ay U eee U A,
Plausibility measures and belief functions have been introduced by
Demps ter [5] under the names upper and lower probabilities, induced from
a probability measure P on a set Y by a multivalued mapping I' from Y to

X ; for every Ac X P1(A) and b(A) are defined by

P1(A) = P(A*)/P(X*),

b(A)

P(A* )/P(X*),
where A* = {y € Y|y n A # @} and Ax = {y ¢ YTy # B, Ty c A}.
A possibility measure proposed by Zadeh [26] is a set function I

defined by

(A) = f
(4) ;JK (%),

where £ is a function from X into the uﬁit interval [0, 1], i.e., a
membership function of a fuzzy set. II has the following property:
IN(Au B) =TI(A) v II(B),
where v stands for maximum. Sugeno [21] called this property F-additivity.
A possibility measure is a particular case of plausibility measures.
A necessity measure is a set function N defined by
N(A) = 1 - II(AS);
the necessity N(A) of an event is the grade of impossibiiity of the

opposite event. N has the following property:



N(A 0 B) = N(A) A N(B),

where A stands for minimum. Shafer [20] introduced this measure under
the name a consonant belief function; a necessity measure is a particular
case of belief functions. Dubois and Prade [7] named this measure a
necess ity measure.

Sugeno [21] investigated the following fuzzy measure:
ga(A U B) = gp(A) + g (B) + Agy(A)gp(B) whenever A n B = @,

where =1 < A < «», The operation (s, t)~ s + t + Ast is called a
A—addition.
Banon [1] investigated the relation between the above fuzzy

measures and summarized it in a figure (Fig. 1).

plausibility
possibility
g)~—measure
A0 A=20 A<O
(probability)
necessity fuzzy measure
belief
except Dirac measure
Fig. 1 The inclusion relatiomship between the various classes of

fuzzy measures on a finite set X except Dirac measures.



Dubois and Prade [8] and Weber [24] investigated the fuzzy measures

with the property (D):
() W(A U B) = p(A) L p(B) whenever A N B = @,

where L is a t-conorm. A t~conorm is a binary operation on [0, 1]
satisfying certain conditioms (Schweizer and Sklar [18]); the A—-additions
and the max operation V are t-conorms. Weber [24] called a set function
satisfiying (D) l-decomposable.

Dubois and Prade [8] further investigated the fuzzy measures with

the property:
B(A N B) = u(A) T p(B) whenever A U B = X,

where T is a t-norm. A t-norm is a binary oberation on [0, 1] such that
sTt=1-8)1l (1 -t) for some t—conorm 1 [18].

A Now let us survey integration with respect to fuzzy measures. The
integral with respect to probability measures is Lebesgue integral.
Since fuzZy measures are non—additive, the ordinary definition of Lebesgue
integral does not apply to fuzzy measures. Sugeno [21] proposed another
integral, "the fuzzy integral,” for an integral with respect to fuzzy
measures. The fuzzy integral f f op of a measurable function
f : X» [0, 1] with respect to a fuzzy measure u is defined by

f fou= sup [aArpUxlEx)D>al)],
ae[0,1] , -
where A stands for minimum. This integral as an expecfation of f has
nice properties. But it is not an extension of Lebesgue integral while

the fuzzy measure is an extension of the probability measure. That is,



if P is a probability measure, the fuzzy integral with respect to P does
not coincide with Lebesgue integral with respect“to P;

ff oP# [f dp.
Coms idering good properties of Lebesgue integral, we want an extended
Lebesgue integral for fuzzy meaéures.

Weber [24] definedran extended Lebesgue integral with respect to
1-decomposable measures in case where | is a continuous Archimedean t-
conorm. If | is a contimuous Archimedean t—conorm, then | is expressed
as

s Lt=g"(g(s) + g(t)),
where g is a nondecreasing continuous function on [0, 1], which is called
an additive generator, and g* is a pseudo~inverse of g [18]. Weber's

intégral is defined as

[£1w=2g"(ff da),

where p is an ordinary measure for which p = g*oﬁ. Kruse [12] defined

an integral with respect to g\ in a similar manner:

[ £ dgy = &*([ &(f) dgy),

where g is the additive generator of )\~addition and‘éx is an ordinary
measure for which gy = g*igx‘ If | has no additive generator, that is,
L is non—-Archimedean, then Weber's and Kruse's integrals cannot be
defined.

Weber [24] pointed out that a functional defined by Choquet [3]
can be regarded as an integral with respect to fuzzy measures. This

functional is defined by

(C)f £ dp = j: u({xlf(x) > r}) dr.



Weber called it Choquet's integral. This integral is an extension of
Lebesgue integral. Dempster's upper and lower expected values [5] of a
nonnegative function are Choquet's integrals.

Héhle [10] defined another integral. His integral of a simple

function
n 3 o
h=§b11}3_ (0 <by <bp < e*e<by, Bj NBy=¢ for i # j)
is defined as
n m m-1
L bl k(U Bi) = p( U Bj)l,
m=1 i=0 i=0

n
where Bg = X — U Bj. We denote the characteristic function of a set B
i=1

_ 1 X € B,
1B=
0 otherwise.

Héhle's integral is also an extension of Lebesgue integral.

We have had many studies also concerning applicatioms (Sugeno [21],
Seif and Aguilar-Martin [19], Ishii and Sugeno [11], Onisawa, Sugeno,
Nishiwaki, Kawai, and Harima [16]). The concept of fuzzy measures has

been applied mainly to fuzzy modelling of subjective evaluation.

In Part T of this dissertation we comsider a set function U on a
o~algebra X of sets with the following properties:
(s1) (@) = o.
(s2) If A eX, BeX, and A < B, then u(A) < w(B).

(S3) If A eX, BekX,and A "B =@, then p(A U B) = p(A) + p(B).



(s4) 1f A, <X and Ay, 4+ A, then A,) 4 WA).

The condition W(X) = 1 is not essential. The condition (F4) does not
fit (83) (see Puri and Ralescu [17] and Section 1.2 in Part I of this
dissertation). For instance, a possibility measure does not satisfy
(s4) [17]. A pseudo—addition is defined as a binary operation on [0, «]
characterized by the above four conditions. It is a continuous
"t=conorm” defined on [0, ®]. A pseudo—additive measure is defined as

a set functiqn with the above properties if tis a pseudo—addition.

The class of pseudo—additive measures is large (Fig. 2).

ps eudo—additive measure plausibility
(p(X) = 1)

poss ibility

ghr-measure

A>0 A=0 A<O
(probability)

necessity

fuzzy measure except
belief

Dirac measure

Fig. 2 The inclusion relationship between the class of pseudo—-

‘additive measures and the other classes of fuzzy measures.
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As previously stated, Weber and Kruse defined integrals for
continuous Archimedean t—conorms. We shall deal with non—Archimedean
case; we define an extended Lebesgue integral with respect to pseudo-
additive measures and a pseudo—addition is generally non—-Archimedean.
We consider a multiplication-like operation " consistent with a pseudo-
addition +. And we define the integral by substituting the addition +
and the multiplication ° in the definition of Lebesgue integral for ¥
and :, respectively. The resulting integrals include not only Lebesgue
integral but also the fuzzy integral with respect to F-additive fuzzy

measures.

Considering the original features of fuzzy measures and the argument
at the begining of this Introduction, the condition (S3) is too strong.
For a given-$, ifF1%1 = 3, then one and one always makes three. But
we can easily imagine a situation expressed by the following fuzzy
measure U:

p({ah) = p)) = pleh) =1,
p({a, b}) = 3,

P({a, c})

It
—
o
wu
.

This fuzzy measure.l does not satisfy (S3). It is also necessary to
study general fuzzy measures; Part II gives results of the study. In
Part II, in addition to the condition u(X) = 1 and (F4), we remove (F3)
from the definition of fuzzy measures; a necessity measure, which is a
meaningful set function, does not satisfy (F3).

Part II discusses representation of fuzzy measures and Choquet's
integral. It is suggested by H8hle [9]. Its essence is that a fuzzy

measure M on a O-algebra 3 is expressed in terms of a measure m on a



d-algebraﬁé and a mapping H : X +’Q such that
p(A) = meH(A) Y A 2.

Demps ter's induction of upper and lower probabilities by a multivalued
mapping is a particular case of this representation. Choquet's integral
is not only definable fof all fuzzy measures but also reasonable. 1In
addition, this integral is closely related to the representation of fuzzy

measures .

Lastly we state the constitution of this dissertation. As
previously stated, it consists of two parts. Part T discusses pseudo-
additive measures and integrals with respect to pseudo—additive measures.
Part II discusses general fuzzy measures and Choquet's integral.

The following diagram expresses the interdependency of sections in

Part I. (A dashed line indicates a minor dependence.)

In Chapter 1 pseudo-additions are characterized (§ 1.1) and pseudo-
additive measures are defined by using pseudo—additions (§ 1.2). Section
1.3 shows that, for a pseudo—additive measure satisfying a certatin

condition, the universal set can be partitioned by the values of the

11
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pseudo—additive measure. In Chapter 2 a multiplication—~like operation
" comsistent with a pseudo—addition ¥ is characterized (§ 2.1 and §2.2)
and the extended Lebesgue integral is defined using " and ¥ (§2.3).

Section 2.4 and Section 2.5 show that Radon—-Nikodym~like theorems hold.

The comnstitution of Part II is a little complicated. The following

diagram expresses the interdependency of sections in Part IT.

4.5

In Chapter 3 in Part II we discuss the representation of fuzzy measures
by additive measures (§ 3.2) and give an interpretation to general fuzzy
measures (§ 3.3). Chapter 4 discusses Choquet's integral as an integrél
with respect to fuzzy measures. Section 4.3 shows that Choquet's
integral is closely related to the representation of fuzzy measures. 1In
Section 4.4 concrete examples show Choquet's integral to be realistic.
Tn Section 4.5 we derive Choquet's integral from the representation of
fuzzy measures. Section 4.6 discusses "conformability," which is a
binary relation between measurable functions. If there is this relation
between two functiomns, they have interesting properties. 1In Section 4.7

the concept of null sets in fuzzy measure theory is proposed. Section



4,8 discusses some special fuzzy measures and Choquet's integral as an

expectation.

13



PART I

PUSEUDC—~ADD ITIVE MEASURES AND INTEGRALS
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CHAPTER 1 PSEUDO~-ADD ITIVE MEASURES

§ 1.1 PSEUDO-ADDITIONS

As mentioned in Intfoduction, in Part I we consider a set function
with the properties:
(s1) K@) = 0.
(s2) If A €X B €X, and A < B, then pA) < u(B). |
(s3) If A eX, BeX and A NB =, then pA UB) = p(A)+ uB).
(s4) 1f {a,}X and A, t A, then uA,) + u(a).
For the consistency with the conditions (S1) - (S4), it is necessary
th;t a binary operation F satisfies the followings:

(P1) s+ 0=0%+s = S,

(P2) (s+t)FTu=s% (£t+u),

~

(P3) s <s'andt<t' = s+ t<s'F ¢,
' R ~ "~
(P'4) s, tsandt tt = s +t +ts+t.
For the sake of simplicity we put a stronger condition
(P4) s *s and t. >t = (sn ¥ tn) > (s " t)

n n

in place of (P'4). (P4) is very natural for an operation-i on [0, =].

1.1.1 DEFINITION. A binary operation F on [0, =] satisfying (PL) = (P4)

is called a pseudo—addition.

The ordinary addition + satisfies those conditions, that is, the
pseudo—addition is an extension of the ordinary addition.
A pseudo—addition can be represented by a family of one-place

functions.



1.1.2 DEFINITION. Let {(ag, By) : k € K} be a family of dis joint open
intervals in [0, «] indexed by a countable set K. For each k g K,
associate a continuous and strictly increasing function

gk ¢ lok, Bl » [0,=].

We say that a binary operation + has a representation

{<(ax, Br)> 8kx> : k £ K}
iff

{ g (8, (s) + g, () s, ) € Loy, Bl
max(s, t) otherwise,

where g; is the pseudo-inverse of 8> which is defined by

gy (s) = g ' (min(s, g, (B)))-

For example, the ordinary addition + has the representation
{<(0,=), T>}, where T(s) = s, Vg g€ [0,»], and the binary operation
v , i.e., max, has the representation $, that is, it has no (o, Br)-

The next theorem holds (Mostert and Shields [15] and Ling [137]).

1.1.3 THEOREM. A binary operation is a pseudo—addition iff it has a

representation {<(ax, Bx), 8> : k £ K}.

As a corollary of this, we obtain that a pseudo-addition is
commutative. Throughout the rest of Part I, ¥ is used as a pseudo-
addition and {<{(a, B), g,> : k e K} is a representation of ¥. The
set of all idempotent elements with respect to + is denoted by I, that
is, I =1{s | s s = s}, Obviously I is a closed set aﬁd

I = [O> m] - kgK(OCk’ ﬁk)'

We write

16
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n
i=1
and
o n
E %y = lim Z Xq -
i=1 O>e =]

1.1.4 DEFINITION. A half open interval (g, fr] is called nilpotent
iff, for each s ¢ (ak, Pk], there is a positive integer n such that

ns = B, formally,

n
) s = Bk-
i=1

It is easy to show that (a, Bx] is nilpotent iff g (B;) < =.
Obviously {0} u (ak"Bk] is a submonoid of ([0, =], i) for

every k g K.

1.1.5 DEFINITION. For each k ¢ K, we introduce a function

Bt {0} v (o, Byl » [0, ]

defined by

Then the pseudo-addition on {0} u (ay, Pr] is expressed by

s :|: t = é;(-ék(s) + gk(t))s

where gi is defined by

gi(s) s >0,

EE(S) ) { 0 s =0

These functions Ek and g; will be used in the succeeding sections.



§1.2 PSEUDO-ADDITIVE MEASURES
Let (X, X) be a measurable space.

1.2.1 DEFINITION. A set function p: % » [0, « is called a pseudo-

additive measure (with respect .PE'T') iff p,satisfies the following

conditions:
(1) 9 (¢> = Os
(2) A, BeXand AnB=0¢ = pA uB)= ya)+ «(B),

(3) {Ap} ¢ X and Ay + A = plAy) + p(A).

We write a pseudo—additive measure with respect to ¥ as a
F-measure for short and call the triplet (X, X, p) a F-measure space.
Obviously the ordinary measure is the pseudo—additive measure with

respect to the ordinary addition +. In the sequel we shall write

@

[ov] (o]
U, n, etc. in place of y, v, n, etc.
n n n=1 n=1 n=l

L
n
By the difinition, a $-measure p is monotone :

A, BeX and A c B = p(A) < p(B).

It is also o-pseudo—additive :

~
{AL} is a dis joint sequence of sets inX = p(u Ay) = 5 p(Ay).
n n
It is easy to show that a f-measure is not always continuous from above.

However the next theorem holds.

1.2.2 THEOREM. If p is a +-measure on X and if {A,} is a decreasing

sequence of sets in ¥ such that lim p(A,) = 0 or lim u(An)yé I, then
11> S>o

18
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lim p(Ap) = p(nAy).
n>«o n

Proof. TIf lim p(A,) = 0, then, since O < p(mM,) < p(A,) for every n,
nr>eo - n -

lim p(Ap) = p(n Ay) = 0. Assume that a = lim p(A,) is not idempotent.
nre n . nro

Then there exists k ¢ K such thata & (o, By), and there exists a
positive integer N such that uw(Ayx) € (ax, PBx)- Since {Ay - Ay} is an
increasing sequence, and since for N < n |

R(Ay) = p(A)) + w(Ay — A,
it follows that

H(AN) =a+t I-L(AN - SAH):

as n > ®. On the other hand, obviously

A) = w(n A )+ plAc - 0 A).
pay) = w0 8 F utay - 1Ay

Therefore, if p(Ay — M A,) < oy, then

joi)
Il
=
~
=3
~
|

= u(n A ).
st

Furthermore, if u(AN

i
=2
=g
=
~
v

ok, then

a=g&%w@w>-%me—g%»>=mg%y



§ 1.3 DECOMPOSITION THEOREM
We define a concept substitute for o-finiteness.

1.3.1 DEFINITION. Let p be a *-measure on (X, X). p is said to be
o-decomposable iff it holds that ifP is a class of mutually dis joint

non-null sets in ¥, then 0 is countable.

1.3.2 PROPOSITION. o-finiteness of an ordinary measure p implies its o—
decomposability.
Proof. Let()a be a class of mutually dis joint non-null sets. Since p 1is

o-finite, there exists a sequence {Bn} such that X = U B, and
n

u(B,) < = for n =1, 2, s+« . We write, for n, m =1, 2, see |
i?’m = {aeP w(B /2" <p(an B) < u(Bn>/2m"1}~

. D m - EP .
Since fn,m has at most 27-1 elements, _(p —num n,m 1s countable.
. s
The converse of this proposition does not hold, because, if 3¢
= {X, 0} and p(X) = =, then p is not o-finite but og-decomposable. We
shall show the precise relation between ¢—finiteness of an ordinary

measure and its o—decomposability.

1.3.3 DEFINITION. For every k £ K we defineq/(/k(p) (or(M) to be a class
of all those sets A € X with the following properties:

(WK-1) BeX and Bc A = u(B) ¢ {0} v (ay, Bkl,

20



(WK-2) there exists a sequence {B,} ¢ X such that A = B

U By
n
and U(Bn) < Bk for n = 1,, 2, 2se
Similarly (V\/rl(p.) (Or(-WI) is defined to be a class of all those
sets A ¢ X satisfying

(WI) BegX and Bc A = p(B) ¢ I.

1.3.4 DEFINITION. f‘or A, B ¢ X, we denote u(B - A) = 0 by A « B [p],
and p((B-A) U (A-B))=0byA =5 [p]. Let & cX and M el

We say that M is p-maximal El_('j iff C ¢ M [pu] for every C ¢ é

1.3.5 _Iﬂmi_A If 4 is a o-decomposable F-measure on ’\L/ and if & is a
subclass of X satisfying the following conditions:

(L) & + 4,

(L2) Ceé andD cC[u] = D e,

L3) {Cp} c & = Uy e E,
then C has a p;-maximal set M and

Ael & AcMI[p].

Proof. Let[D be a set of all classes comsisting of mutually dis joint
non-null sets in C. If ﬂ) = ¢, then any element M e ¢ is p-maximal in
€. Let us assumel # ¢. D is inductively ordered with respect to
class inclusion. By Zorn's lemma there exists a maximal element o@O in
[D. Since p is o-decomposable, QE’O is countable, so if M = U ﬁo, then
Mel.

We show that M is p—ma?cimal in (b, Let us assume that there exists
C ¢ C such that p(C = M) > 0. Since C-M ¢ C, 590 u {C = M} is greater
than @0 in [D This contradicts the fact that »9’0 is maximal in [D

The second assertion is obvious-.



1.3.6 THEOREM (DECOMPOSITION THEOREM). If p is a o—-decomposable -
measure on (X, ¥), then the followings hold:

(1) For every k € K Wy has a p-maximal set Wy. QW& also has a u~
maximal set Wy.

(2) W NWyr =@ [p] for k # k", and Wp "W = @ [p] YV k eXK.

(3) X= UW, U Wy [p].
cex 1 [#]

Proof. (1) It is easy to show that Qvi and qVk satisfy the conditiouns

(L1) = (13) in Lemma 1.3.5. Hence ﬂw& and ﬁvk have p-maximal elements Wy
and Wy, respectively.
(2) Let A =Wg N Wyr. Since A & Wy, there exists {B,} < X-

such that U By, = A and p(B,) € {0} U (o, Bi) for n =1, 2, see . On
n

the other hand, the fact that B, € A € QVI implies B, & ‘W, that is,
p(B,) € I. Therefore it follows that p(B,) =0 for m = 1,2, eee | and

hence that p(A)

0. Similary W N Wyr = @ [p] for k # k'.

(3) Let E =X - [kngk UwWrl. If E e Wy, then E ¢ Wy [p], and so

p(E) = 0. We now assume that E # 4&&, then there exists a subset A of E
such that p(A) € (o, Byr) for some k € K. We write

E={BeX| Bc A and u(B) < oyl
Then it is easy to check that £ satisfies (L1) - (L3) in Lemma 1.3.5.
Let M be a p-maximal element in & and let B = A - M. Obviously u(B) =

u(A) > 0 and B E(ka. Since B © E, this contradicts the definition of E.

By this theorem the relation between o-finiteness of an ordinary

measure and its o-decomposability is made clear.

22



1.3.7 PROPOSITION. If p is an ordinary measure on (X, %), then p is o-

finite iff p is g—decomposable and Wy = @ [p].

Proof. Suppose that y is g-finite. By Proposition 3.2, u is o=

decomposable. Since I = {0, =} in this case, obviously Wy = @ [p].
Couversely suppose that p is g-decomposable and Wy = ¢ {pl. In the

reprsentation of the ordinal addition, we have K = {0} and (ap; Bo) =

(0, =). By the previous theorem, we have X =Wqg U Wy = Wg [p], that is,

X ¢ Ao It follows from the property (WK-2) of<vvo>that p is o-finite.

~
Lastly we show a correspondence of a +-measure with an ordinary

measure.

1.3.8 THEOREM. Let (X, X, p) be a F-measure space. If X has the
property (WK-1) for some k ¢ K, there exists an ordinary measure p such
that ='§;oa. Moreover if X has the properties (WK-1) and (WK~-2),
i.e., X E(VVk, then y is g—finite and unique.

Proof. Let

Ao

A e X ¢ p(a) <prls
\)i = {u Ay : Ay g_)io, fornm=1, 2, ... } and
n

B=X- A

If {Ap} and {By} are mutually dis joint sequences of sets in.JdO and

u A, = u By, then
n m

v g.oop(A ) = 3 gop(u (A, n B))
Z Broulay, oy Brou o n m

= g WA a B )]
E k[g BASn m
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- - i
) gy 08 [Z 84,0 (A n B )]
= Sk°Bkl Sk By, i

X §k°u(An n Bm>
m

o,

T g op(B ).
o kOB Py

Therefore we can define & by

= gren(a,), for A = U Ay,
n n

n(A) = where {A,} CJ40 is mutually dis joint,
©, _ for A ¢ B

We show that p is an ordinary measure on X . Obvious ly p(9) = 0.

Let {A;} be a dis joint sequence of the sets in X. If U A, € 3,
n
then there exists a positive integer m such that Ay « B . Thus p(u Ay)
n
= o = 7 p(A,). Let us assume that U A, € A . Then there exists a
n n

dis joint sequence {R,} C._540 such that U A, = U By. Since A, n By ¢ §40
n m

for n, m = 1, 2, v..,

p(u Ay) = p(u By)
n m
= % §k°u(Bm)

= 3% gou(u A_n B )
mkp'nn m

= ¥ gpou(A_n B)
n,m k n m

% pAL)-.
n

- %k
It follows from the definition of p that p = g ou. If X e {Mfk, then,

since L= _, I is o-finite and unique.
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CHAPTER 2 INTEGRALS WITH RESPECT TO PSEUDO-ADDITIVE MEASURES

§2.1 MULTIPLICATIONS I

It is natural to assume that an integral of a function

‘a if x €A,
f(x) =

0 if x £ A,

with respect to a ¥-measure b depends only on a and p(A). We introduce
a binary operation © called a multiplication and express the integral of
f by a « p(A). Furthermore we require that the indefinite integral with
respect to a }-measure is also a +-measure. So we set up the following
conditions for *

ML) as (s Ft)=(a T 8)+ (a T t);

M2) a<br=> a-s<b-s,

M3) a*s=0 éﬁ?’ a=0o0rs =20,
(M4) there exists a left ideﬁtity element, that is, 1e e [0, o],

v s € [0, =], e ° s = s,
(M5) 0<a<lw» a,»a and s, > s tﬁ> (an . sn) > (a : s),

and (+ =) s =1lima - s.
asxo

2.1.1 DEFINITION. We call a left operation * on (10, =], ) satisfying

(M1) -~ (M5) a multiplication consistent with ¥.

For example, the ordinary multiplication, denoted . , is one of the

multiplications consistent with the ordinary addition +, and both A (min)
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and * are multiplications consistent with Vv (max).

The next theorem shows the structure of a multiplication on [og, fil-

2.1.2 THEOREM. If T is a multiplication consistent with i, then there
exists a family of nondecreasing continuous functiomns {hk: k € K}
satisfying

~

(1) a-+ s

g ¥ (h (a) g (s)) Ya>0,V¥s ela, Bl

(2) hyp(e) =1,
(3) 0< h(a) <= for 0 <a< =

(4) if (ayx, Bk] is nilpotent, then for O <afe hla)=1.

We cannot characterize the structure of a multiplication on I, the

set of all idempotent elements. But by the above theorem, if
kgK[ak’ Bk] = [0: m]:
then, for every idempotent element s,

0 a =0,

s a > 0.

Tn the rest of this section we prove Theorem 2.1.2. First we prove
a sequence of lemmas. Assume that a composition (a, s)t+ (a 3 s) has the

properties (M1) - (M5).

~

2.1.3 LEMMA. If s is idempotent, then so is a - s.

Proof. Tt follows from (M1) that

(a A s) F (a A s) = a < (s Fs)=a T s,
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2.1.4 LEMMA. a P @ = g for every a > e, where e is a left identity.
Proof. If e = ® it is trivial. So assume that e < ®, and assume that
there exists a number a € (e, ®) such that a B o # @ - By (M2) we have

~

that a . % >e G = % Then it follows from (M5) that there exists

a number ag such that e é ag < a and Q. < (ao . ak) < Bk' This

contradicts Lemma 2.1.3. Therefore a B e = o for e { a < ® and’

=)' @ = lin @ © 9) = .
aoo

" 2.1.5 LEMMA. a . Bk = Bk for 0 < a < e.

Proof. Similar to the previous lemma.
.1.6 LEMMA.
2
(1) T = glng(s)), Vs £ (o, Bl
=1 B\ N8 ’ ke Pkide
@) Te By Vs e (o, Bl

~

(3) a® @s)=I(a%s), Ya,scelo0, .
] J

Proof. Trivial.

2.1.7 LEMMA. a - B, = B, for a > e.
Proof. Let e { a < ®. Since a Bk-z e - Bk = Bk and a ¢ @ = @,

there exists a number s € (0, Bk] such that a - x = Bk. Hence

a .« Bk =a s (Z s)
J
=I (a® s)

J



it
Ing]
=P

and

(+ = % B = lnm (a+ B)

a+oo
2.1.8 LEMMA. a B @ = @ for 0 < a < e.
Proof. Let us assume that there exists a mumber a such that 0 < a { e

A

% # % . It follows from the monotonicity of « that a P a < o

. >

and a

Since a = Bk = Bk’ there exists a mumber s € (ak, Bk) such that

: = & .,
a s K Hence
as B =a B (Zs)
]

(a " s)

[l
o M Y

This contradicts the fact that a . Bk = Bk.

Proof of Theorem 2.1.2. By previous lemmas we obtain the fact that, if

a € (0, ®) and s & [, Sk]’ then a - s € [a)s Bk]° We define a
function fi : (0, ®) * (%, Bkl by

fk(a) = min{s | a v s = Bk}a
Let a € (0, ®) and s, t € [®}, Br]. Suppose that grls) + gr(t) <

gr(fr(a)). We obtain
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gr(s) + gr(t) < grlfy(a))

Cﬁ? s ; t < fk(a)

A

r%} a + (s ¥ t) < Bk
= (a-s)+ (a- t) < B
= g la - s)+ gla - t) < gy

Therefore it follows from (M1) that

g.(a © gr(g () + g () = gla ~ 8) + gla~ £)
We introduce into this equation the notations

v =g (s), W= g (t), Egu) = g(a - g(w).
We have

Eq(v + w) = Ey(v) + E;(w).

Since the continuity of gp.and (M5) imply the continuity of E,, there

exists a function hy such that

E,(v) = h(a)v  for 0 < v < gp(fy(a)),

so we have

o
0
i

= g;(hk(a)gk(s)) for o, <s < f,(a).

By (M5) and the continuity and monotonicity of gk, the above equation holds
for ap < s £ By (M2) and (M5) imply that hy is continuous and

nondecreasing. So we define hp(®) = lim hy(a), then we obtain
a’r®
~ *
a s = g (hy(a)g(s))

for a € (0, ] ands € [%, Byl.
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We next show (3). If hy(a) = 0, then

a B =g My (@ (B)) = g

and this contradicts that a B = B If hk(a) = «, then, for every

s € ((Xk, Bk]:
~ . % *
a s § = gk(hk(a)gk(S)) = gk(m) = Bk,

hence a c o = lin a . s = f and this contradicts that a . A = Qe
k s+at+0 k? k k

In addition, (2) follows from (M4).

Lastly we prove (4). Let (oi, Bk] be nilpotent. It is sufficient
to prove that, if a ¢ (0, e] and s ¢ [ak, Bk], then a - s = s. Assume
that there are numbers a £ (0, e] and s ¢ [ak, ﬁk] such that a f s #s.

Since a T s { e+ s =s, we have a’t s < s, that is, gy (a . s) < gk(s)a

If we write v = gr*(gr(Br) — gk(s)), then

LI

g(a - s)+g(a- t) <gla-s)+ gt

L

= gk(a

< gk(sk)’

s) + gk(Bk) - gk(s)

therefore
Bk>(305)+(aa t)=a.(s+t)=a‘.ﬁk=5ke

This is a contradiction. The proof is now camplete.



§ 2.2 MULTIPL ICATIONS II

1f, for every idempotent element x,

then the converse of Theorem 2.1.2 holds.

2.2.1 PROPOSITION. Let e be a number in (0, «] and let {hp : k € K} be

a family of nondecreasing continuous functions on (0, =] satisfying

(1) h(e) =1,
(2) 0< hg(a) <= for 0 < a < =
(3) if (ay; Byl is nilpotent, hy(a) =1 for 0 < afe.
If
0 if a =0,

a+s = s if a > 0ands ¢ I,

o
A%

g*(hp(aley(s))  if 0 ands e [a, Bkl,
then « is a multiplication consistent with ¥.
Proof. It is easy to check that T satisfies the conditioms (M1) - (M5).

If + has no nilpotent interval, there is a multiplication with good

properties.
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2.2.2 PROPOSITION. If + has no nilpotent interval, and if

ass = ] if a > 0 ands e I,

gr*(a gr(s)) if a >0 ands € [, Bl,

then - is a multiplication consistent with F with the following

properties
(a + b) T s=(a-s) F m* s),
(ab) Ts=a-< (b< s).

Proof. Trivial.

Throughout the rest of Part I, the symbol Y is used as a multiplica~-
tion consistent with i, and {hy : k & K} is a family of functions
satisfying the conditions (1) - (4) in Theorem 2.1.2. We further define
hk(O) = ( v k € X for convenience.

The next proposition is used in the following sections-.

2.2.3  PROPOSITION.

(1) If aj € [0, @] andsy ¢ {0} v (o, Byl for j =1, 2, °<¢ , n, then

g
~—
w
®

. Sj) e {0} U (o), Byl

and

~—
o8]
(3N
°

~ —% 10 -
s5) = B (2 (@ B (o )
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(2) 1If aj e [0, =] and sy el for j =1, 2, see , n, then

o
jEl(aJ . sj) e I.
Proof. (1) The first assertion is trivial. We have
n
~ —% 0 _ _% -
2 (ag o g) = B(E BB (i Dgi(s )

J

Hence if hk(aj)ék(sj) < ék(Bk) for every j, then we obtain

o

~ —%, 1 —
; oy e s g) = BCL i (ay)y (s )

Let us assume that hk(ajo)ék(sjo) 2_§k(5k) for some jo‘
Then

n_ _x - -
jElgkogk(hk(aj)gk(s J)) 2 gk( Bk)

and
o - -
jzlhk(aj)gk(sj) > 8 (By)-
Therefore
by
RACTREE A ? - B E B )

(2) Trivial.
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§ 2.3 INTEGRALS

Now we define the integrals with respect to the *-measures. We develop
a theory in a similar manner with to the ordinary integral theory.

Let (X, X, W be a F-measure space.

2.3.1 DEFINITION. For a nonnegative simple fumction

aj if x EAj j=1, 2, ees n,
f(x) =

0 otherwise,

where Aj € X, 0 Laj< = for j=1, 2, ==+, n, and

Ay N Ay = ¢ for i # j, we define the integral of f over B g X as

)
o]

L2}

0o,

=

]
[T e I~
W

. . 0 B).
H(AJ B)

For a nonnegative measurable function f on X, we define the integral of

f over B ﬁ,zlas

[ £du = Lim [p £rdn,
n
where {fn} is a sequence of nounegative simple functions such that

fa(x) * £(x) for every x € B.

Obviously this integral is well-defined. Note that the definition
depends on the choice of a multiplication ..

We define the characteristic function of A £X by XA ¢

-

e if x € A,

Xp(x) = é
0 if x £ A,



where e is the left identity of the multiplication ?; the characteristic

function y, also depends on the choice of a multiplication *. This

integral has the same properties as Lebesgue's one.

2.3.2 PROPOSITION. Let A, B € X and let f and g be nonnegative

measurable functions on ¥X.

(1) £<g a.e. > [ f dp < f g dp.

~ ~

(2) AnB=9 = [ypfde = [, fap + [pfdnp

—_— )

(3) xa du = p(a).

—

(4) [fdu=0=> £=0 a.e.

(5) [y £ du=[ CGguof) du
(6) The monotone convergence theorem; if {f,} is a sequence of
nonnegative measurable functions on X such that

fa(x) * £(x) a.e., then
[ £ dp= lim [ £, dp.
nro

~

(7) If v(A) = IA f du for every A X, then v is a Y-measure on (%, ).

We omit the proof. From Proposition 2.2.2, the next proposition

follows.
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2.3.3 PROPOSITION. Assume that F has mno nilpotent interval, and further

assume
0 if a =0,
a+s = ] if a > 0ands g I,
gi(agk(s)) if a>0ands e [q, Rl

Let f and g be nonnegative measurable functions, and let 0 < a, b 5_@,

then
(1) [ (af + bg) dp = (a B [ £ dyp) ¥ (b . [ g dp),

(2) 1if w(A) = [y £ dp for every A ¢ X, then

A~

f g dv = f (g ) dp.

Lastly we show a relation between an integral with respect to some

~
+-measure and a Lebesgue integral.

2.3.4 THEOREM. If X has the property (WK-1) for some k ¢ K, and if p is

—% _
an ordinary measure such that p = gyop, then, for every nonnegative

measurable function f on X,
~ % _
[ fap = 8k(f hyof di) .

-k
Proof. By the left continuity of g and the monotone convergence
theorem, it is sufficient to prove the theorem for a simple function f.

If f(x) = 0 for almost all x ¢ X, it is trivial. So let

as if xeg As for j =1, 2, eee, n,
] J
f(x) =

0 otherwise,
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where W(Aj) > 0, 0 <aj< = for j=1, 2, e=«, n, and Aj N Ay = § for

i # j. Then we have

-% 1 -
= gk(jglhk(aj)gk°H(Aj>)

and
—% - —%, 1 -
B(f hieo dR) = B hye(a pRA))-
If_§k°u(Aj) = ﬁ(Aj) for every j, then the theorem follows. So let us
assume that
gkou(Ajo) # u(Ajo) for some j,.
In this case (og, By] is nilpotent. By the proof of Theorem 1.3.8; we

have gy op < B and u(Ajo) = By- Thus

n - n -
jﬁlhk(aj)u(Aj) 2 jzlhk(aj)gk"“(Aj)

Z-hk(ajo)gkou(Ajo)

2> gr(Br)-

Therefore

[ £ au =8y = &(f byof di).

The proof is complete.
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§ 2.4 RADON-NIKODYM=-LIKE THEOREM I

We now prove a Radon-Nikodym—like theorem for the integral defined
with a certain multiplication.

The next lemma follos from 1.3.5.

2.4.1 LEMMA. If p and v are $-measures on (X, %), and if p is o=
decomposable, then the class of y-null sets, {A e ® 1] v(A) = 0}, has

a p-maximal set N.

‘We call the set N a p~maximal v-null set.

Throughout this section, we assume that a multiplication satisfies
the following conditions:
(A1) a - s =s Ya>0,Vs eI,

(A2) if (o, Byl is not nilpotent, ;iﬁoa 5= q Vs e (g, Bls

(A3) (o) * s =8 Ys e (@, B)s VK eKe

2.4.2 THEOREM. (Radon-Nikodym—like theorem I)
If p and v are F-measures on (X, X£), and if p is g—decomposable,

then there exists a function f such that, for every A ¢ X,

fa £ dp = v(A)
iff the following conditions are satisfied:
(1) ) =0 = (&) =0,
(2) for every k ¢ K, if A sd%ﬁg(u), then v(A) ¢ {0} U (aks Bkl
(3) if (ak, Bx] is nilpotent and A E(VV£(M), then p(A - N) < y(A - N),
(4) if A (W), then p(A - N) = y(a - N),

where N is a p-maximal y-null set.



In the rest of this section we prove this theorem. We first

cons ider(\/\fk(p).

2.4.3 LEMMA. Let (ock, 5k] be not nilpotent. If p and v are :——measures
on (X,X), if p is o-decomposable, and if X giﬁ'\,/‘k(p,), then there exists

a function f such that, for every A ¢ x

fA f du = v(A)
iff the following counditions are satisfied:

(1) wA) =0 = wA) =0

(2) v(A) £ {0} U (o, Bx] for every A £ X.

Proof. The necessity is trivial, so we prove the sufficiency. By

Theorem 1.3.8 there exist ordinary measures p and v such tﬁat p o= E;oﬁ,
v = —é{:o\-) and . is o-finite. Since v is absolutely continuous with
respect to p, there exists a function f such that, for every A a%,
IA? di = V(A). By the assumption (A2) the range of hy is [0, =],

hence there is a measurable function f such that f = hyef. Therefore

for every A e &

IA f dp = E;:UA_E dn]
-, -

= B (3(A))

= y(A).
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2.4.4 LEMMA. Let (ak, Bk] be nilpotent. If u and v are ;mmeasures on
(X, X), if p is o—decomposable, and if X EC&V%(u), then there exists

a function f such that, for every A e X,

fo £ dp = v(a)
iff the following conditions are satisfied:

(1) p(A) =0 => vy(a) = 0,
(2) v(A) £ {0} v (ax, Bkl for every A e (X,
(3) if N is a p-maximal v-null set, then for every A el

v(A - N) > p(A - N).

- - —% -
Proof. Let p and V be ordinary measures such that p = g ol and

Ea

~

v ='§§o$. First suppose that IA f dp = v(A) for every A ¢ . (1)
and (2) are trivial. Since hy(a) > 1 for a > 0, and since f(x) >0

for almost all x € X -~ N, we have

v(A = N) = fpy £ dp

—% -
= Byl [ay Dyof di
> Bl [py 401
= B (BA - M)

= p(A = N).

Conversely suppose (1) = (3). Similarly to the previous lemma we

obtain a function  such that, for every A ¢ @, [o T di = V(A).



Since (A - N) < WA - N) for every A ¢ X, F(x) > 1 for almost all

0 for almost all x g N. Therefore

x € X - N. And obviously f(x)
there is a measurable function f such that f = hy°f. Hence it follows

that, for every A & X,

Il

IA f dp v(A).

Next we consider‘ﬁV}(u).
2.4.5 LEMMA. If A ¢ AV}(u) and if £f(x) > 0 for almost all x ¢ A, then

Ja £ du = n(a).
Proof. By the assumption (Al), for every a g (0, =],

~

[y a du=atp(a) = u(a).

Hence for every positive integer n,

[o £ a0 = Jantepr/m} £ @0+ Janfgci/n) £ a0

|v

[an{£>1/n} 1/ du

(A n {f > 1/n}),

so we have

fao £ dp > Llim p(A 0 {£ > 1/n}) = p(ad.

n>w

On the other hand,
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Ja £ du < Jy =) du = p(a).
The proof is complete.
2.4.6 LEMMA. If p and v are +-measures on (X, X)), and if X ¢ “W&(u),
then there exists a function f such that, for every A ¢
Jao £ du = v(a)
iff V(A - N) = p(A — N) for every A e X,

where N is a p-maximal v-null set.

Proof. If fA f dp= v(A) for every A ¢ af, then, since f(x) > O
for almost all x ¢ X = N,
V(A - N) = [pon £ dp = p(A - N)

for every A € x.

On the other hand, if V(A - N) = p(A - N) for every A ¢ X, and if
f is a measurable function such that f(x) = 0 for x ¢ N and f(x) > 0 for
x € X - N, then

fA f dp = v(d)

for every A ¢ x.

Now Theorem 2.4.2. follows from the above lemmas and Theorem 1.3.6.



§ 2.5 RADON-NIKODYM~-LIKE THEOREM II

If kU lax, Bkl = [0, =], then the assumption (Al) in the previous
ek

~
section is satisfied. However, for example, if + is v, i.e., max, then

(Al) means that, for every s € [0, =]

A 0 if a =0,
a « 5 =

s if a > 0.

and this multiplication is not natural. So in this section we prove a
Radon-Nikodym—like theorem for v-measures; a v-measure is called
F-additive in [21].

Let p be a g—decomposable v-measure on (X, £) and let v be a
v-measure on (X, X) such that v(A) = O whenever p(A) = 0. Let a ¢ [0, =]
and ¢.(a) be the class of all those sets A g X that v(B) > a 5 w(R)
for every measurable subset B of A. It follows from Lemma 1.3.5 that
&(a) has a p—maximal set. We denote the p-maximal set of t(a) by

[v/plCa).

2.5.1 LEMMA. If 0 <a<b<w and if A « [v/p](a) = [v/p](b) and

<b s op(a).

A e X, then a « p(A) < v(A)

Proof. Let A c [v/pl(a) = [v/pl(b). It is sufficient to prove that
v(A) <D A pn(A). Let £ be the class of all those sets C ¢ £ that C c A
and y(C) < b N p(C). 1In the same way as the proof of Lemma 1.3.5, we
obtain a set M ¢ £ such that, if C ¢ ¢ and C n M = ¢; then u(C) = O.
Therefore we have A =M c [v/p](b) [pl- It follows from the

definition of A that p(A — M) = O, and hence that v(A) <b B pn(A).
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2.5.2 DEFINITION. We say that a nonnegative real number s is

multiplicatively finite, m—finite for short, if limOa T s =0. A
a»+

measurable set A is called m—finite (with respect to p) if p(A) is

m~finite, and a v-measure p on (X,X) is called g-m—finite if X is a

countable union of m-finite sets.

2.5.3 THEOREM. (Radon-Nikodym—like theorem II).
If pis a om~finite ¢-decomposable v-measure on (X, %) and if v is a

v-measure on (X, X), then there exists a function f such that

~

IA £ dp = v(4) for every A g L
iff, for every m—finite set A with respect to p
v(A) < (+=) T p(a).

Moreover if every positive m—~finite number is right reducible (that is,

if s is positive m—-finite, then the equation a Ts=b"s implies

that a = b), then the function f is unique in the sense of a.e.

Proof. If A e X and if [j £ dp = v(A), then

(+) * n(A).

v(a) < [y Ge) du

Conversely suppose that y(A) S_(+m):p(A) for every m~finite set A.

We may assume that X is m-finite. We write

jas
1l

n [\)/“](J/Zn) - [V/M]((J+ 1)/21’1) for mn, j = O: 19 23 vee

and

a=
It

w = [v/plFe) (= X = g Hﬂ [pl).
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For n = 0, 1, 2, »++, we define

_ h|
j/2", x e H for j = 0, 1, 2, ees
fplx) =
Fo X € Hyp
and
f(x) = 1lim f,(x).
n->co

We shall prove that, [, £ du = v(A) for every A & L.

Let A g K.

A

fa £ dp = linm [p £, dp
o

= 1lim [fAnHmfn du v vijnHJnfn dp]

n>«

- Lim ([ WA 0 BT v G2 A 0 E)1)

N>

< 1lim [v(A 0 Hy) v v v(A N Hi)]
n>w ]

= y(A).

We show the converse inequation: fA f du‘z_v(A)¢

Obviouély we have

v(A) = v(A n Hy) v ; v(A n Hg),

Hence, if y(A) = yv(A n H,), then

~

[af dv2 [aon £ du

= (+w) + p(A n Hy)

v(A n Hy)



= Vv(A).
So let us assume that V(A) > V(A N Hy ) and let ¢ be an arbitrary

number such that V(A) > ¢. Then there is an integer jg such that

N
v(A N HOO) > c. Since

h| 2] 251
ANHY = (A0 Hg1) U (AN By ) [p]

and

A 2] 2541
V(A N Hp) = v(A 0 Hyp1) VvV v(A N Hyy ),

there exists a sequence {jn} such that

B i
AﬂHmmCAﬂHnn[u] form > n
and

h| k|
v(A N Hnn) = y(A N HOO) for n =1, 2, so¢
3 . . ;
Let s = (A N Hnn), a, = Jn/zn and b = (j, + 1)/2™ for n =1, 2, e« .

The sequence {sn} converges since it is nonnegative and nonincreasing.

Obviously {an} and {bn} converge to the same number. By Lemma 2.5.1,

~

In . ) .
we have a, © s, S_v(A n Hn ) Sibn ¢ S, In addition s, is m—finite

~

for n =1, 2, *°* . It follows from these facts that lim (a, P s,) =
nso

3
= y(A N HOO), and hence, that there is an integer m such that

(jm/Zm) B p(A N H;m) > ¢. Therefore we have
fa £dp> [p £y du

- 3
(/2™ © pea 0 B™

Y%
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Concequently it follows that

& fde_WAL

~ ~

We now prove the second assertion. Suppose that ﬁA fdys= IA g dp
for every A € ¥. Let P be a set of all pair (r, s) of nonmnegative

rational numbers such that r > s, and let
Ar,s = {x | £(x) > >s > g(x)}

for every (r, s) £ P. Since
/ £ dp > rdp=1 - plA_ )
Ar,s _'fAr,s r,s
and

~

g du < s dp » wlAL L)
fAr,s "IA r,s M,

]
n

it follows from the assumption of right reducibility that H(Ar,s) = 0,

Therefore

i
o

p({x | £(x) > g(x)})

and similarly

it
o

p({x | g(x) > £(x)})

hence £f = g a.e. The proof is complete.

A

If is A, i.e., min, the integral with respect to a v-measure is

the fuzzy integral in the semse of Sugeno [21]

[a £ du = fp fou = sgp ) [o v p({x | £(x) > a} n A)].

aef[0,=
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In this case every number in [0, «] is m~finite. We have the following

corollary.

2.5.4 COROLLARY. Let a multiplication % be A, If p is a og-decomposable
v-measure on (X, X) and if v is a v-measure on (X, X ), then there

exists a function f such that
fA f du = v(Aa) for every A eX
iff v(A) < u(A) for every A & x .

If a multiplication is the ordinary one, then m—finiteness is

equivalent to finiteness.

2.5.5 COROLLARY. Let a multiplication ~ be the ordinary one. If p is
a odecomposable o—finite v-measure on (X, #*) and if v is a v-measure on

(X, ), there exists a function f such that
fA f dp = v(a) for every A e X

iff v(A) = 0 whenever p(A) = 0. Moreover the function f is a.e. unique.



PART II

FUZZY MEASURES AND CHOQUET'S INTEGRAL
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CHAPTER 3 FUZZY MEASURES

§ 3.1 FUZZY MEASURE SPACES

3.1.1 DEFINITION. A fuzzy measurable space is a pair (X, &), where X
'is a non—empty set and X is a class of subsets of X containing the empty
set @ and the whole set X. If (X,X) is a fuzzy measurable space, an

element of &L is called a measurable set.

3.1.2 NOTATION. Phrases of the following form will be frequently
encountered: the class of subsets & is closed under ( ***), where the
parentheses contain the symbols of set-theoritic operations, followed by
the letters f, ¢, or m, which indicate respectively: fini.te, countable,
and monotone. Two examples will suffice to make this usage clear: "& is
closed under (VYf, Nc)” means that a finite union, or an countable inter—
section of elements of ¥ belongs to &. " Z is closed under (Un, )"
means that the union of a monotone sequence of elements of ¥ belongs to
X, and that the complement of any set in £ belongs to x.

The closure of a class of subsets & under (Yc) [resp. ()],

{n:lAn [resp. n21An] | A, € £}, is denoted by Fs [resp. Xgl.

3.1.3 DEFINITIONS. Let (X, &) be a fuzzy measurable space. A fuzzy
measure W on £ (or on (X, X)) is a set function p : X » [0,] with the
properties:

0

(1) W

?

(2) wA) < W(B) whenever A < B.
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A triplet (X, &, H) is called a fuzzy measure space.

An ordinary measure space is a fuzzy measure space.

3.1.4 DEFINITIONS. Let (X, ¥, W) be a fuzzy measure space.

(1) p is said to be continuous from below if, for every increasing

sequence {A,} of sets in Z for which A, * A € X, we have u(Ap) * WA).

(2) u is said to be conditionally continuous from above if, for every

decreasing sequence {An} of sets in ¥ for which A, VA € & and for
which u(Ap) < = for at least one value of m, we have P(A;) ¥ u(A).

(3) @ is said to be continuous from above if, for every decreasing

sequence {A,} of sets in X for which Ay v+ A £ L, we have B(A,) + WA).

The next result 3.1.5 is an extension theorem for fuzzy measures.
Batle and Trillas [2] gave the first half of the next theorem and pointed
out that its proof is very similar to that of a theorem in the theory of
capacities (Choquet [4] and Meyer [14]). This applies to the proof of

the second half.

3.1.5 THEOREM. Let (X, &, W) be a fuzzy measure space and be closed

under (Vf, nf).

(1) ([2]) If p is countinuous from below, then there exists a unique

fuzzy measure P} on &g such that L is continuous from below and WA) =
u(A) for A e Z.

(2) If p is countinuous from above, then there exists a unique fuzzy

measure QI on 555 such that | is continuous from above and WA) = WA)

for A e X,
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§ 3.2 REPRESENTATION OF FUZZY MEASURES
3.2.1 DEFINITIONS. Let (X, ) be a fuzzy measurable space and (Y, Qd;) an

ordinary measurable space. A mapping H : X » Q«} is called an interpreter

(for measurable sets) if H satisfies the following conditions:

(1) mWo)y =9,
(2) H(A) < H(B) whenever A < B,

Y.

3) HEX)

A triplet (Y,dj, H) is called a frame of (X, &) (for representation) if H

is an interpreter from & to Y.

An interpreter H is said to be continuous from below [resp.

continuous from above] if, for every increasing [resp. decreasing]

sequence {A,} of for which A, * A ¢ X [resp. A, VA € Z1, we have

H(A,) * H(A) [resp. H(A,) + H(A)].

The following proposition is obvious.

3.2.2 PROPOSITION. Let (X, @) be a fuzzy measurable space, (Y, (%, m) be
an ordinary measure space, and H : & ~» OJ be an interpreter. Let M be a.
set function on X defined by

b(A) = m(H(A)) YA e &,

that is, WK makes the following diagram commute:
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Then P is a fuzzy measure on Z. Moreover, if H is continuous from
below [resp. continuous from above], then U is continuous from below

[resp. conditionally continuous from above].

3.2.3 DEFINITION. Let (X, Z, p) be a fuzzy measure space. A quadruplet

(Y, Y4, m, H) is called a representation of u (or of (X, Z, W) if

(Y,CQ, m) is an ordinary measure space and H is an interpreter from ¥ to

% such that p(A) = m(H(A)) VaceX.

The concept of the representation was proposed by H8hle [9]. The
above definition is a generalization of his; in his definition

Y = {0,1}% , H(A) = {y £ Yly(A) = 1}, and w(X) = 1.

3.2.4 THEOREM. For every fuzzy measure U, there exsists a representa-
tion of P. Moreover, if U is continuous from below [resp. continuous
from above],>then there exsists a representation of M such that H is
continuous from below [resp. continuous from above].
Proof. Let (X, X, 1) be an arbitrary fuzzy measure space. Let Y be the
open interval (0, WX)) in the real line, Q{ be the class of all Borel.
subgsets of ¥, and m be Lebesgue measure on Q{. We define an interpreter
H : 55 > Qd by

H(A) = (0, WA)) VYA e

Then (Y,Q%,In, H) is a representation of Y. If W is continuous from
below, then obviously H is continuous from below.
Suppose that P is continuous from above. If WX) < «, let Y be the

closed interval (0, p(X)], and if u(X) = =, let Y be the interval (0, «).



Qa( and m are defined in the same way as above. Now we define H by

(0, w(A)] if wa) < =,
H(A) =
(0, =) if p(A) = =

Then, since W is continuous from above, H is also continuous from above.
3.2.5 NOTATION. If (Y, (Q, m) is an ordinary measure space, we denote
the measure algabra associated with (Y, CQ, m) by (qé(m), m). If (Y,Qa(,

m, H) is a representation of a fuzzy measure, we denote byn% the o

algebra generated by {H(A)|A & X }.

3.2.6 DEFINITION. Let Ry = (¥1,Qy, mi, Hy) and Ry = (Y2, Yz, mp, Hp) be

representations of a fuzzy measure [. Rj and Ry are said to be equivalent

if there exists an isomorphism T from ((1’;81 (m]_), ml) to @Z(mz), m2) such

that TeH; = Hgp. That is, the following diagram commutes :

-~ T ~
(U (mq)- > Yomy)
Hy Hp
my x my
W
[0,=]

A fuzzy measure generally has infinitely many and mutually non—

equivalent representations. We give a simple example.
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3.2.7 EXAMPLE. Let X = (x;, %}, &= 2%, Y = {yg, vy, v95 v3 %

and (]4= 2Y, We define an interpreter H : ¥ "@," as follows:

H(P) = @,
H({x1 ) = {yg, v1 }s
H({x2}) = {yg, v21,
H(X) = Y.

Let L be a fuzzy measure on 2% such that 0 < I ;1) < W(X) and

0 < {XZ}) < w(X). Then it is clear that the system of equalities

mg + my = w({x H
mQ + mo = u({xo2hH
mg + m] + mp + m3 = w(x)

has infinitely many solutioms (mg, m], mp, m3) under the condition

mg, mp, mp, m3 > 0. For any nounegative éolution (mg, m1, mg, m3), if

m is the measure on 2Y defined by m({yi}) =my; 1=20,1, 2, 3, then

(v, 2Y, m, H) is a representation of W. In addition, if (mg, my, my, m3)
and (m, m{, mb, m}) are different nonnegative solutioms, then the
representations (Y, 2Y, m, H) and (Y, 2Y, m', H) are not equivalent,
where m and m' are the measures associated with (mg, mj, mp, m3) and

(mf, m{, mH, m3), respectively. Therefore W has infinitely many

and mutually nonequivalent representatiouns.

We shall prove that, for any fuzzy measurable space (X, Z), there
exist a frame (SX,)SX, Hy) of (X, &) such that, for any fuzzy measure U
on & and for any representation R of P, there exists an ordinary measure

my on,gx such that (Syg,.8x, mg, Hg) is a representation of p which is
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equivalent to R.

3.2.8 DEFINITIONS. Let (X, ¥) be a fuzzy measurable space. A semi-
filter in (X, ®) is a subclass O of ¥ with the properties:
(1) ¢ £6,Xc¢e8,
(2) Aed AcBeX = Beb
We denote the set of all the semi-filters in (X, &) by Sgx and
) Sx
define a mapping Hy : & > 2 © by
Hg(A) = {B]a € 8} Yy A e .

We denote by 3y the oc-algebra generated by {Eg(a)iA € Z}. The triplet

(SX’ng’ Hy) is called the universal frame of (X, &) for representation.

Sy is non-empty since the classes {A € Z|A # ¢} and {X} belong to

Sg- It is clear that Hg is an interpreter from X to Jx.

3.2.9 THEOREM. Let (X, &, B) be an arbitrary fuzzy measure space. For
every representation R = (Y,(Q, m, H) of U, there exists a measure mg on
Ax such that (Sg, 8x, mp, Hx) is a representation of P which is
equivalent to R.

Proof. TFor each v £ Y, we define a subclass T(y) of L by

w(y) = {A e£ly € H(A)}.
By the definition of an interpretation H, T(y) is a semi-filter in
for every y € Y. Hence we can regard T as a mapping from Y to Syg.
Since for every A £ & and for every y €Y
y € 1_10HX(A) = Wy) e Hy(A)
& A e W(y)
& ¥ £ H(A),



it follows that H T_‘loHX, and hence that 7 is measurable. Let mp be
the image measure meT L. Then it follows that K = moH = mo'\:"loHX = mpoly,

(Sx, Xng mg, Hx) is a representation of u.

and hence that Ry

1

By showing that T - can be regarded as an isomorphism from (_XX(mR),

mp) to (@(m), m), we prove that Ry is equivalent to R. Since
-1 = 1 ~1 :
T(E AF) =T (E) AT (F) VE,F ey,

it follows that, for E, F &8y

mg (B AF) =0 & a(7E) A THE)) = 0.

Therefore 1

is a one—to-one homomorphism from (QX(mR), mR) to (%((m), m);
note that this q:j is not /% Hence in order to prove that vl is an
isomorphism from (SX(mR), mR) to (-’@(m), m), it is sufficient to prove
that @ =Q;,io, wherely, is the c-subalgebra {T_I(E)IE S,,SX} of (%( Since

H = '!I—loHX, it follows that {H(A)|A € &} <« qjlo, and therefore, since i

is generated by {(HA)|A e E ), that@ CQJO., Let_,&o be the o-subalgebra
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{E slgxltfl(E) EQ’;}} of ,Xxe Since H = T_loHX, it follows that'{HX(A)lA e &)

<80, and therefore, since_,gx is generated by {HX(A)IA e L}, that &g :IXXP
This implies that T_l(E) e@ VE €35, i.ec,(‘;}o C@, and hence we

have Q:] = qjo.

The next result follows from 3.2.4 and 3.2.9.

3.2.10 COROLLARY. ([9]) For every fuzzy measure i on (X, #£), there
exists a measure m ondyx such that (Sy,.dx, m, Hy) is a representation

of U.

Theorem 3.2.9 and Corollary 3.2.10 imply that the universal frame



(SX,,XX, Hy) is sufficient for representation of fuzzy measures om

(X, Z).

We next consider representation of continuous—from-below fuzzy

measures .

3.2.11 DEFINITION. Let (X, Z) be a fuzzy measurable space. An lower

semi-filter in X is a semi~filter A with the property:
If (A} c& -8 and A, + A, then A £ 6.

We denote the set of all the lower semi-filters in Z by Sx and define a
mapping Hy by

Hy(A) = {6 e SxlA € 6} ¥ aced
We denote by,_&( the o-algebra generated by {_H_X(A)IA e},

Sy is non—empty since the class X - {#} belongs to Sg. It is clear
that Hg is a continuous-from—below interpreter form Z into)g_x. In the

same way as 3.2.9, we have the next theorem.

3.2.12 THEOREM. Let (X, &, 1) be a fuzzy measure space and U be
continuous from below. For every representation R = (Y,q?/, m, H) of n
for which H is continuous forom below, there exists a measure mp such

that (Sx,.3x, mp, Hg) is a representation of W which is equivalent to R.

3.2.13 COROLLARY. For every continuous—from-below fuzzy measure U on
(X, ), there exists a measure m on Jx such that (Sy, &x, m, Hg) is a

representation of U.
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The same argument applies to continuous-from—above fuzzy measures.

3.2.14 DEFINITION. Let (X, ) be a fuzzy measurable space. A upper

semi-filter in & is a semi-filter 6 in X with the property:
¥ {a,} < 6, A eX, and Ay ¥ A, then A € 6.

We denote the set of all the upper semi-filters in & by Sy and define a
mapping Hy by

THy(A) = {8 £8xla e 6} YA e X.

We denote by fx the c-algebra generated by {Hx(A)|A &X}.
Sy is non-empty since the class {X} belongs to Sg. It is clear

that Ty is a continuous—from-above interpreter form & into gx-

3.2.15 THEOREM. Let (X, &, u) be a fuzzy measure space and P be
continuous from above. For every representation R = (¥, 0;}, m, H) of u
for which H is continuous forom above, there exists a measure mg such

that (Sy, &x, MR, Hyx) is a representation of W which is equivalent to R.

3.2.16 COROLLARY. For every contimuous—from—above fuzzy measure U on '
(X, Z), there exists a measure m ongx such that (Sg, &x, m, Hg) is a

representation of p.
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§ 3.3 AN INTERPRETATION OF FUZZY MEASURES

A fuzzy measure is a sort of "measure.” ‘Therefore a fuzzy measure
u on X must measure a certain attribute of Z, and faithfully represent
the properties of the attribute. In this section, we consider what

situation a fuzzy measure expresses. We begin with examples.

3.3.1 EXAMPLE. "A WORKSHOP". Let X be a finite set of the workers in
a workshop and suppose that they produce the same products. For each

A € 2X, we consider the situation that the members of A work in the
workshop. A group A may have various ways to work: various combinations
of joint work and devided work. But suppose that a group A works in the
most efficient way. Let B(A) be“the number of the products made by A

in one hour. Then U is a measure of the productivity of groups: the
attribute of 2% in question is the productivity. By the definition of

u, the following statements are natural:

(1) we) =0,

(2) A<cB 5 pAa) < uBd).

That is, W is a fuzzy measure on 2%,

U is mnot necessarily additive. Let A and B be dis joint subsets of
X, and let us consider the productivity of the coupled group A U B. If
A and B work separétely, then R(A YV B) = u(A) + W(B). But, since they
generally interact on each other, the equation may not always hold. The
inequality Ww(A UV B) > w(A) + W(B) shows the effective éooperation of
members of A U B. The converse inequality u(A VU B) < p(A) + W(B) shows

the incompatibility between A's operations and B's, that is, the



impossiblity of separate working. For example, the incompatibility is
caused by insufficient equipments and/or insufficient workstations in
the workshop: sufficient equipments and/or sufficient workstations make
separate working possible. As a matter of fact, A U B may have both
effective cooperation and incompatible operation. Therefore if the
degree of the effectivercooperation is greater than that of the
incompatible operation, the inequality p(A U B) > p(A) + p(B) holds.
If it is not the case, the converse inequality holds.

Now let X = {x], %7} for the sake of simplicity. The same argument
is applicable to the case where A = {x7} and B = {x9}. Let mp, mj, my,
and m3 be the measures of the productivity corresponding to the incompat-
ible operation, x1's compatible operation, x's compatible operation,
and‘the effective cooperation, respectively. One's compatible operation
means the operation not prevented by the other'’s operation. We can
simply imagine the case where there are two workstations to do a certain
job. While the incompatible operation means that there is only one work-
station for two workers and they have to use it in series.

Then U can be represented as follows:

w(9) = 0,
w({x1}) = mg + my,
(3.1)
w({xz}) = mg + my,
n({xy, x9}) =mg+ my + mpy + m3.
‘Fig. 3.1 illustrates Eq. (3.1), where the measures of the productivity
are represented with area.
We denote the index set by Y, i.e., Y = {0, 1, 2, 3}, and an

interpreter H : 2% 5 0¥ by

61



62

M3

Fig. 3.1 Illus tration of Eq. (3.1).

Fig. 3.2 The interpreter H (Venn diagram).



H(P) = @,
H({x }) = {0, 1},
(3.2)
H({xo }) = {0, 2},
H({Xl, Xz}) = {0, 1, 2, 3}
Then U is exressed as
WA = I m v oA e 2%, (3.3)

ien(a)t
If we define an ordinary measure m on 2X by

m(E) = T my VE e 2%,

jeg *

then (Y, 2Y, m, H) is a representation of .

If (Y,Qé, m, H) is a representation of a fuzzy measure, we call an
element of Y a feature in respect of the attribute (or a feature for
short). 1In this example "a feature in respect of the attribute” means
"a feature in respect of productiyity", since the attribute in question
is productivity. For example, 3 € Y is the feature of the effective
cooperation of %] and x9. In general if i € H(A), we say tha; iis a
feature of A, or A has the feature i. Then Eq. (3.3) expresses that the
measure of A equals the sum of all the measures mi's of the features of
A. In addition, we call the set H(A) of the features of A "A in the
attribute”.

Note that the interpreter H from 2% to 2Y does not preserve the
operations U and N but the inclusion < This is because of the
interactions 0 and 3 € Y between Xy and x9.

We give another example.

3.3.2 EXAMPLE. "A RARE BOOK". Suppose there is a rare book consisting

of two volumes. We denote the first volume and the second volume by xy
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and x9 respectively. Suppose that there is a secondhand bookseller who
buys them at the prices:

R({x; }) dollars per first volume,

w({xy9}) dollars per second volume,

u({xl, Xz}) dollars per set of two volumes.
Since he sets a high valué on a complete set, there holds

p({xg, x91) > w({x H + w{xy ).

We define the set of features Y by Y = {yl, Y25 y3}, and an interpreﬁer

H: 2X » 2Y and a measure m on 2Y as follows:

H(P) = @,
B D) = fy1),
H({x,}) = {yy},
H(X) = ¥,
and
() = w(Gy D,
a(lya)) = u(lxg}),
n(ly3}) = w(®) = w(lx H) - uClxp .

Then (Y, ZY, m, H) is a representation of WP. We can say that m({yl})
is the value of xj, m({ys}) is the value of xy, and m({y3}) is the value
of being a complete set, in other words the increment of price caused by

being a complete set.

The same argument applies when we discuss weight of objects.

3.3.3 EXAMPLE. “WEIGHT OF OBJECTS". Let X = (x7, xp, °*°, x,} be
a set consisting of n objects, and let W(A) be the weight of A & 2%.
Obviously p is an additive measure, which is a special fuzzy measure.

Since the elements of X are not interactive, the weight of A is

64



characterized only by each element contained in A. Therefore we define
the set of the features by Y = {y1, y2, °***, yn}, where yj; e Y means
a feature “"containing xj." Since H(A) must satisfy that
x; €A & y; e HA) VA e 2%,

H(A) is defined by H(A) = {yilxi g A}. If we define a measure m on ZY
by m({y; D) = ul{xy D V yi € Y, where m({y;}) represents the increment
of weight caused by the feature y;, then we have

B(A) = m(H(A)) Y A e 2%,
that is, (Y, 2Y, m, H) is a representation of y. The mapping H : 2K
2Y is a Boolean algebra isomorphism. That is, H(A) is not distinguished

from A. In case of ordinary measures, the distinction between "2X" and

“2X in the attribute”, i.e. 2Y, is unnecessary.

Now we describe a general case. We consider to measure an attribute
of 2% by a set function p. We assume that the subsets of 2% interact on
each other, and we distinguish "2X in the attribuge" from "2X.” That is,
we do not assume the mapping H : 2X 5> 2Y to be a Boolean algébra
is omorphism.

We explain in detail. ‘First suppose it is possible that H(A) u H(B)
; H(A VU B). This means that A U B can have a feature which meither A
nor B has. Such a feature can be called a cooperative action of A and B.
The set of the cooperative actions is H(A U B) - [H(A) u H(B)]. Secondly
suppose that the condition A N B = ¢} unnecessarily means that H(A) n H(B)
= ¢. The set H(A) n H(B) represents the overlap of A and B in the
attribute, which is interpreted as an incompatibility Between A and B or

as common features between A and B.

Accordingly we assume that H satisfies only the conditioms:
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(1) H(P) =9,

(2) AcSB =» H(A) < H(B),

3) HX) =Y,

that is, H is an interpreter. (1) means that the empty set has no
feature in respect of the attribute. (2) means that, if A < B, then B
has all the features of A. (3) means that only the features of the
subsets of X are considered. It is not a very essential condition from

a mathematical point of view.

For each feature y £ Y, let My be its measure, and suppose

w(A) = VA e 2,

) m
y€H(A) y
i.e., the measure W(A) of A is the sum of all the measures of the

features of A. Let m be an ordinary measure on 2Y defined by

n(E) = I m VE € oY,
vy €E y

Then we have that
w(A) = m(H(A)) VA e 2% | (3.4)
Obviously this set function W is a fuzzy measure and (Y, 2Y, m, H) is a

representation of U.

Finally we state the difference between a fuzzy measure and an
ordinary measure. The separateness (no interactions) of the subsets of
X brings an ordinary measure, while their interaction brings a fuzzy
measure. The identity of "2X" and "2¥X in the attribute"” brings an

ordinary measure, while these distinction brings a fuzzy measure.

3.3.4 REMARK. We can express these relations in other words. We

need a preparation for that. Since
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w(A U B) - u(B) = m(H(A U B)) - m(H(B))

m(H(A U B) - H(B))

= % My,
yeH(A U B)
y£H(B)

L(A U B) - u(B) is a meaningful quantity, which is the measure of the
difference between A U B-and B in the attribute, or the sum of the
measures of the features of A U B which B does not have. This quantity
is interpreted as the effect of A joining B. Let us fix a set A. If p
is an ordinary measure, then for every B for which A n B =@, u(A u B)

- w(B) is equal to the comstant p(A). But if p is a fuzzy measure, this
is not true; the value p(A U B) - u(B) depends on B. Therefore we can
state the difference of a fuzzy measure from an ordinary measure. For an
ordinary measure, the effect of A joining B does not depend on B. For a

fuzzy measure, the effect depends on B.



CHAPTER 4 CHOQUET'S INTEGRAL AS AN INTEGRAL WITH RESPECT TO

FUZZY MEASURES

§ 4.1 MEASURABLE FUNCTIONS

4.1.1 DEFINITIONS. Let (X, #) be a fuzzy measurable space.

A c-measurable [resp. o—measurable] function f on X is a function

f : X +[0,%] such that {x|£(x) > r} [resp. {x|f(x) > r}] € X
Y r € [0,). A function f is said to be measurable if f is c-measurable
or o-measurable. For the sake of convinience, we frequently denote

{x|f(x) > r} and {x|f(x) > r} by {£ > r}and {f > r}, respectively.

Note that we deal only with nonnegative functions. It is obvious
that the caracteristic function 1, of a measurable set A is both
o-measurable and c-measurable.

Since the following propositions afe very elementary, we omit the

proofs.

4.1.2 PROPOSITION. If (X, &) is a fuzzy measurable space and if X is
closed under (Ym) [resp. (Mm)], then c-measurability [resp. o-

measurability] implies o-measurability [resp. c-measurability].

4.1.3 COROLLARY. Let (X, ) be a fuzzy measurable space. If X is a
monotone class, i.e., & is closed under (VYm, ™m), then c-measurability

and o-measurability are equivalent.
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4.1.4 PROPOSITION. Let ¢ : [0,®] > [0O,®] be a right [resp. left]
continuous non-decreasing function. If f is a c-measurable [resp.

o-measurable] function, then ¢of is c-measurable [resp. o-measurable].

4.1.5 COROLLARY. If f is a c-measurable [resp. o-measurable] function

and a > 0, then af and (f + a) are c-measurable [resp. o-measurable].

4.1.6 PROPOSITION. Let (X, Z) be a fuzzy measurable space.

(1) Let % be closed under (Uf). If f and g are both c-measurable
[resp. o-measurable], then f V g is c-measurable [resp. o-measurable].
(2) Let X be closed under (Nf). If f and g are both c-measurable

[resp. o-measurable], then £ A g is c-measurable [resp. o-measurable].

4.1.7 PROPOSITION. Let (X, Z) be a fuzzy measurable space and & be
closed under (Nf, Uc). If £ and g are c-measurable [resp. o—measurable]
functions on X, then (f + g) and fg are c~measurable [resp. o-

measurable].

4.1.8 PROPOSITION. Let (X, £) be a fuzzy measurable space and {fn} a
sequence of c-measurable [resp. o-measurable] functions on X.

(1) If X is closed under (M) [resp. (Um)] and if £, ¥+ £ [resp. £, * £],
then f is c-measurable [resp. o-measurable].

(2) If Z is closed under (Nc) [resp. (Yc)], then inf £, is c-measurable
{resp. sup f,; is o-measurable].

(3) 1f ¥ is o-lattice, i.e., X is closed under (Y%, ), then

(lim inf f4) and (lim sup fp) are measurable.
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§ 4.2 CHOQUET'S INTEGRAL

4.2.1 PROPOSITION. Let (X, ¥, W) be a fuzzy measure space and f a

function on X which is both o-measurable and c-measurable. Then
u({xlf(x) > r}) = W&xlfx) > )

except at most countable Qalues of r.

Proof. The monotonicity of W implies that the functions p({E>rhH

and p({f > r}) are non-increasing. In addition, we have

p(lE > rd) <u(lE>eh) < 1%$ wi{f >s}) Yr efo,=.
S

Therefore the assertion follows.
By virtue of 4.2.1 we can define Choquet's integral as follows:

4.2.2 DEFINITION. Let (X, X, W) be a fuzzy measure space. Choquet's
integral of measurable function £ with respect to W, denoted by

(¢)f £ du, is defined by

f f? p({xlf(x) > r}) dr if £ is o-measurable,

(©f £ ap =
) f? p({xl£(x) > r}) dr if £ is c-measurable.

4.2.3 PROPOSITION ([3]). Let (X, X, B) be a fuzzy measure space and f
a measurable function. If, for every r ¢ [0,=)

- w{f>h if f is o-measurable,

F(r) =
n( (£ Z_r}) if f is c~measurable,

then

(©)f £ au = [?r ar(x).

The integral in the right side is Stieltjes integral.
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Since the following proposition is very elementary, we omit the

proof.

4.2.4 PROPOSITION. ((1) - (3) are shown in [3].) Let (X, X, k) be a
fuzzy measure space. Let f and g be measurable functions and {fn} a
sequence of measurable fﬁnctions.
(1) £<g implies (O)f £ dp< (C)f g dp
(2) (¢)f af du=a (c)f £ dp Y a>o.
(3) If u is an ordinmary measure, then Choquet's integral coincides with
Lebesgue integral; (C)f f dp = f f dup.
(4) (C)f 15 du = na) YA eX.
(5) 1If p is continuous from below, then f,, * f implies that

(0)f £y dp t (O £ dn.
(6) Let U be conditionally continuous from above. 1f fn ¥ £ and if for
at least one value of m f is bounded and p({f; > 0}) < =, then

¢y £ dp ¥ (C)f £ du.

The next proposition shows an expression of Choquet's integral of a
prop p q g

simple function. We omit the proof.

4.2.5 PROPOSITION. Let (X, X, 1) be a fuzzy measurable space. Every

simple function f on X can be written as

n
£= IZ(a; -aj-1)1p,, (2.1)
i=1 i

where 0 = ag < aj £ °°** < a; and A; @2 Ay » °°° 2 Ay. Choquet's integral
of a simple function f written as (2.1) with respect to U can be written

as
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() £ de= 7 (ag ~aj-1) WA7)- (2.2)

'l s
HL\/J

4.2.6 REMARK. If we assume a fuzzy measure to be continuous from below,
then we can define the integral like Lebesgue integral: for a simple
function f defined as (2.1), we define the integral of f as (2.2), and

for a ﬁon—simple measurable function f, we define the integral of f as
(Of £ du = 1in (Of £, dn,
n>e®
where {fn} is a sequence of simple functions such that for every x £€X

£.(x) + £(x).

Since fuzzy measure is generally non—additive, also Choquet's
integral is generélly non-additive. Concerning the additivity of

Choquet's integral, the next theorem holds.
4.2.7 THEOREM ([3]). Let (X, X, W) be a fuzzy measure space.
1) (©f (F+g) dn < (0] £ an+ (0)f g an
for every pair (f, g) of measurable functions if and only if
uw(A U B)+ u(A N B) < WA+ WB) YA eX, VB eX
(2) (©f (F+g)dp > (Of £ du+ (0)f g dp
for every pair (f, g) of measurable functions if and only if

WA U B)+ m(A N B) > wA)+ w(B) YA eX, VB ek

In Section 4.6 we shall discuss the additivity again.



§ 4.3 REPRESENTATION OF CHOQUET'S INTEGRAL

4.3.1 PROPOSITION. Let (X, ¥) be a fuzzy measurable space and (Y,CQ, H)
a frame of (X, X) for representation. TFor every function f on X which

is both o-measurable and c-measurable,
sup {rly e H({f > 1)} =sup {rly e H({E >} Vy ev.

Proof. This assertion is immediate from the monotonicity of the

interpreter H.

4.3.2 DEFINITION. Let (X, X) be a fuzzy measurable space and (Y,‘Q, H)
a frame of (X, X)) for representation. For every measurable function f
on X, we define a function h(f) on Y by, for every y €Y,

sup {rly € H({f > £})} if f is o-measurable,

h(£)(y) = i
. sup {rly e H({f >rh} if £ is c-measurable.

We regard h as a mapping and call h the interpreter (for measurable

functions) induced by H.

By virtue of 4.3.1, an interperter for measurable functioms is well-
defined. The interpreter h induced by an interpreter H can be regarded
as an extension of H; we can easily obtain that h(l,) = 1H(A) VA eZ.

This is the reason h has the same name as H.

4.3.3 PROPOSITION. Let (X,X) be a fuzzy measurable space, (Y,(b, H) a
frame of (X, X) for representation, and h the interpreter for measurable

functions induced by H. For any measurable function f, h(f) is a
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measurable function on (Y,(H).

Proof. Let f be an o-measurable function on (X, X). It follows from

4.3.2 and the monotonicity of H that
{ylh(E)(y) > r} = v H(x]f(x) > s}) ¥r e[0,=).
sor
Since H({x|f(x) > s}) ¢ Qg Vs €[0,® and since‘g is oc-algebra, it
follows that {y|h(f)(y) > r} € %‘ Y r € [0,=), and hence that h(f) is

measurable. If f is c-measurable, similarly h(f) is measurable.
The following theorem is the main result in this section.

4.3.4 THEOREM. Let (X, X, W) be a fuzzy measure space, (Y, Yy, m, H) a
representation of i, and h the interpreter for measurable functions
induced by H. For any measurable function £, Choquet's integral of f
with respect to.u is equal to Lebesgue integral of h(f) with respect to
m:

(¢)f £ du = [ h(f) dm.

Proof. Let f be an o-measurable function on (X, Z). Since

l%'m W{E >sh) <m((E) >N < WE>r)) Vr efo0,%],
s r

and since W({f > r}) and m({(h(f) > r}) are non—increasing functions
on [0,»®), it follows that
p({f > r}) = m(h(£) >r})
except at most countable values of r. Therefore we obtain
J2 ulE > e}y dr = [§ath(E) > ) dr.
Since m is an ordinal measure, it follows that

(¢&)f £ du = [ h(f) dm.
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4.3.5 REMARK. Let (Z, %) be a fuzzy measurable space. We denote by
F(Z) the set of all the nonnegative o-measurable functions on Z, and by

L(z) the set of all the mappings ¢ : [0, «) > Z with the property:
d(r) = U o(s) Vreflo, .
s>T

It is easy to check the followings. The mapping f > f*, where f € F(Z)
and £*(r) = {x|f(x) > r} Yr [0, ), is a bijection from F(Z) onto
L(z), and its inverse mapping is ¢ > *d, where ¢ £ f(Z) and *&(z) =
sup {rlz e ¢(r)}.

Now let us recall the proof of the previous theorem. Then we can

say that the following diagram is "almost” commutative.

[0,%)

Strictly speaking, since Hef* £ £(Y), the diagram is not commutative.
But, if H is continuous from below, in this case W is also continuous
from below, then it is commutative, that is, the equation h(f) = *(HDf*)‘
holds.

For c-measurable functions, the similar argument applies.

The next result is concerning an interpreter for measurable function

associated with a universal frame for representation.

4.3.6 PROPOSITION. Let (X, Z) be a fuzzy measurable space, (Y,(Q, H) a

frame of (X, X), and (Sx, 9%, Hx) the universal frame of (X, Z). Let h



and hy be the interpreters induced by H and Hy, respectively. Let 7 be
a mapping from Y into Sy defined in the proof of Theorem 3.2.9:
w(y) = (A eZly e n(a)} VYy e¥V.
Then, for every measurable function f on X,
h(£)(y) = hx(£X(«y)),

that is, the following diagram commutes:’

Proof. Trivial.

The next proposition shows expressions of h(f) for a simple function
f. In 4.2.5, we pointed out that every simple function f can be written
as
!
f = .Z (ai—ai_l) 1A.’ , (351)
i=1 i
where 0 = ag < a; £ *** < ajand A] 2 Ap 2 **° 2 A;. It is easy to show

that a simple function f written as (3.1) is rewritten as

s}
f = Vai 1A B (3s2)
i=1 i

4.3.7 PROPOSITION. Let (X, X) be a fuzzy measurable space, (Y,(Q, H) a
frame of (X, X) for representation, and h the interpreter for measurable
functions induced by H. If f is a simple function defined as (3.1),

then
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h(f)

[
[ nei=]

(ay = aj-1) 1H(Ai)

i=1

Va1
Voas .
=11 H(A)

Proof. Trivial.

An interpreter h has another expression.

4.3.8 ©PROPOSITION. Let (X, ¥, W) be a fuzzy measure space, (Y,CQ, m, H)
a representation of U, and h the interpreter for measurable functions
induced by H. For any measurable functioﬁ f,
h(f)(y) = sup inf f(x) Yy Y.
A:yeH(A) xc=A

Proof. Let y be an arbitrary element of Y and a = sup inf f£f(x).
A:yeH(A) x€A

We may assume that f is o-measurable; the same proof applies to the case
that f is c-measurable. Suppose that a > s. Then there exists A £ ¥

such that y € H(A) and ini f(x) >s. Since £f(x) >s VY x €A,
XE

it follows that y € H(A) < H({f > s}), and hence that h(f)(y) > s.
Therefore h(f)(y) > a. Now suppose that h(f)(y) > t and let B = {f > t}
Then by the definition of h we have that y € H(B). Therefore it follows
that .

t < inf f(x) < a,
— x€B -

and hence that a > h(f)(y). The proof is complete.

The above proposition will be used in Section 4.6.
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§ 4.4 AN INTERPRETATION OF CHOQUET'S INTEGRAL

We again consider the examples "A WORKSHOP" (Example 3.3.1) and

"A RARE BOOK" (Fxample 3.3.2). The two examples show that Choquet's

integral is meaningful.

4.4.1 EXAMPLE. "A WORKSHOP" (continued from 3.3.1). Let X = {x1, x9,

*se, x,} be the set of the workers. Suppose that each worker x; works

f(xi) hours a day

from the opening hour. Without loss of generality,

we can assume that f£(x1) £ f(xp) < <*=° < £(xy).

Let us aggregate the working hours of all the workers in the

following way. First the group X with n workers works f(x;) hours,

next the group X - {x7} = {xp, x3, =°°°, x,} works £(xp) - £(x1) hours,

then the group X = {x1, xp} = {x3, x4, °°°, x,} works f(x3) — £(x3) hours,

°es  lastly one

since a group A <

worker x,, works f(x,) = f(xp.1) hours. Therefore,

X produces the amount u(A) in one hour,; the total

number of the products produced by them is expressed by

£(x1 ) (X)

i=

where f(xg) = 0.
with respect to U

simple functions ).

+ [f(Xz) - f(Xl)]u(X - {Xl H
+ [£(x3) = £(x)IMX - {x1, x2})

+ LI ]

t+ [f(Xn) - f(Xn_l)]U-( {Xn})g

= B EGry) = Gl min, 00, %)),

This amount is nothing but Choquet’s integral of f
q g

(see 4.2.5, an expression of Choquet's integral of
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4.4h.2 EXAMPLE. "A RARE BOOK" (continued from 3.3.2). A certain person
sells f(x;) first volumes and f(xp) second volumes to the s econdhand
bookseller. We may assume that £(x]) S_f(xz). Then, since hé sells
f(x7) complete sets and [£(x9) = £(x1)] second volumes, and since wA)
is the price of A, he gets

£(xpuClxy, x1) + [£(xp) - £(x) Il h)

dollars. This is also Choquet's integral.

Choquet's integral reflects the interaction of subsets. Let us

compare Choquet's integral of
n
£ =2 (ag —aj-1) 1a
i=1 i
where 0 = ag < ayp £ *** < aj and Ay 2 Ay 2 *°° 2 Ay,
n
(o)f £ dp = .Zl(ai - aj-1) WAD), (4.1)
1=
with the quantity

n .
.Zlai B(A; - Ajy1), (4.2)
l=

where A4y = #. The quantity (4.2) is the classical integral which is

based on another expression of £ in the form:

n
f = .Z ailB

i=1 i’

where Bj = Ay = Ajy1, Apt1 = @ and By * By =@ for i # j. Let us recall
that a fuzzy measure reflects the interaction among subsets (see Section
3.3). Considering that Bi's are pairwise dis joint, this merit of U is
not utilized at the quantity (4.2). On the contrary, Aj's used in (4.1)

are not dis joint: they form a monotone sequence Aj 2 Ag = *°° 2 A,. (If
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there are no interactions among the subsets, that is, W is an additive
measure, then the integral (4.1) coincides with the quantity (4.2). See
4.2.4 (3).)

We can interpret Choquet's integral (4.1) according to Remark 3.3.4.

The integral (4.1) is rewritten as

(o) £ dp =
i

[ =)
s

aj[ B(A;) = wWA+1)1, ‘ (4.3)

where App; = @, Since Ay is the dis joint union of Ajpq and By, WA;) -
H(Aj41) means the effect of B; joining to Ajyy (see 3.3.4). Then the

integral (4.3) is the sum of all aj unit's effect of Bj joining to Ajt+7-

We can consider that the expression (4.3) is based on the of f in the form

)ol
£ = Tag(ly -1 ).
g=1 A Ay

Next we consider an interpreter h for measurable functions. Let us
recall the example "A WORKSHOP" (Example 3.3.1 and Example 4.4.1). Let
X = {x, x9} again and let f(x1) = ay, £(x9) = a9, and aj < ap. Then,

since Y = {0, 1, 2, 3} (see 3.3.1), we have

h(£)(0) = ay,
h(£)(1) = a1,
(4.4)
h(£)(2) = ay,
h(£)(3) = a1,
and
[ h(f) dn = a; m({1, 3)) + a, m({0, 2})

a1 m(Y) + [ap — aj] m( {o, 2}

o)f £ dp.

Cons idering that
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0 £Y is the feature "the imcompatible operations between x; and %",

1 €Y is the feature "the compatible operations of x1",

2 €Y is the feature "the compatible operations of %",

"

3 €Y is the feature "the effective cooperation between xi and x2",
Eq. (4.4) is convincing.
In the case of the éxample "A RARE BOOK" (Example 3.3.2 and Example

4.4.2), since f(x1) < £(xy), we have

h(£)(y1) = £(x1),
h(£)(y2) = £(x2),
h(£)(y3) = £(x1),
and '
[ n(g) dn = £(x1) m({yy, y3H + £(x2) m({y2 D

£(x1) m(Y) + [£(xg) - £(x)] m(lyy}H)

(c)[ £ dup.

Therefore, considering the interpretation of Y and m (see 3.3.2), the
values of h(f) are also convincing.

Let (X, ¥, B) be a fuzzy measure space, (Y, %, m, H) a representation
of B, and £ an o-measurable function on X. (The same argument applies
if f is c-measurable.) Let ypo be an arbitrary element of Y. Since

h(f)(yo) = sup {rlyg € H({f > r})}, we have

yo € H({E > £ }) ¥ r < h(£)(y0)
and

yo £ H({E > £}) Vr > h(£)(yp)-

That is, {f > r} has the feature yg for r < h(f)(yg), and {f > r} does
not have the feature yg for r > h(f)(yg). Hence the value h(f)(yg) is

just the value the function f brings on the feature ygQ.
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§ 4.5 DERIVATION OF CHOQUET'S INTEGRAL

In Section 4.2 we defined Choquet's integral and then in Section
4.3 we considered the relation between Choquet's integral and the
representation of fuzzy measures. By contrast, in this section we derive
Choquet's integral from the representation. We deal only with a finite
set X and the power set 2X of X as a fuzzy measurable space.
First we define the notation used here as follows: let Z be a
non—-empty finite set,
M(Z) : the set of all the ordinary measures on ZZ,
FM(Z) : the set of all the fuzzy measures on 2Z,
F(Z) : the set of all the nounegative functions on Z.
Let X be a non—empty finite set. We consider a mapping
I : F(X) x FM(X) % [0,»] and deduce that
I(E,w) = (O)f £dp ¥V EeFRE Y pemEX)
from certain conditions.
The following condition (CO) means thet I(f,u) is expressed by a

representation of u.

(CO0) TFor every frame (Y, 2Y, H) for which Y is finite, there exists a
mapping M :F(X) » F(Y) such that

I(f, meH) = [ n(f) dm VEferX VYm M)
In order that I(f,u) is regarded as an extended Lebesgue integral
of £ with respect to W, the following three conditions are necessary.

(Cl) For a given f = al, € F(X), and for given iy, W € FM(X), if

b(A) = Bo(A), them I(f,um) = I(E,m).



(C2) For a given i € FM(X), 1f u is an additive measure, then
I(E,w) = [ £ dp V£ e F(X).
(C3) For given f, g € F(X), if f(x) < g(x) Y x € X, then

I(f,u) < I(g,u).

(Cl) means that the value I(alp, B) depends on M(A), and not on
{u(B)IB # A}. (C2) means that the mapping I is an extention of

Lebesgue integral. (C3) means the mounotonicity of the mapping I.

4.5.1 THEOREM. The mapping I : F(X) X FM(X) + [0,*] satisfies the
conditions (CO) - (C3) iff

I(E,0) = (O)f £dp YV F eF(X) V pe mEX).

In the rest of this section we prove the above theorem. It is

obvious that, if
I(E,w) = (Of £ dn Y £ eF(X) Y uoe M),

then the mapping I satisfies (CO), (Cl), (C2), and (C3); we have shown
in Section 4.3 that Choquet's integral éatisfies these conditions. We
shall prove the converse.

Corollary 4.2.10 implies that, for a given finite set X, there
exist a frame (Y, 2Y, H) of (X, 2X) such that Y is a finite set and

(Y, 2Y, H) has the following property (U).
(U) For every U € FM(X), there is m € M(Y) such that p = m5H.

Note that, if X is finite, then Sg» the set of all semi~filters in ng

S

is also finite and y = 2 X; (8¢, 2 X, Hy) satisfies the above condition

(see Section 4.2). That is, we can use the above property (U).
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(CO0) implies that there exists a mapping m : F(X) > F(Y)

I(f, meH) = [ n(f) dm VE er(X) Vm e M(Y).

By the property (U), in order to show that

I(f,p) = (O)f £dp Y £ e F(X) Y p & (X)),

it is sufficient to show that
[ n(E) da= (C) £ d(meH) VY £ = F(X) Y m £ M(Y).
The conditions (Cl), (C2), and (C3) can be rewritten as (D1), (D2),

and (D3), respectively:

(DL) TFor a given £ = alp € F(X) and for given mj, mp € M(Y), if
mo(A), then

[ n(E) dmy =

my (A) =
(D2) For a given m € M(Y), if aoH is an additive measure on ZX,

[ n(£) dmj.

then
[ n(£) dn = [ £ d(meH) V£ & F(X).
(D3) TFor a given £, g £ F(X), if £(x) < g(x) Y x £ X, then
Ym e M(Y).

S nE) dn < n(g) dm

By Theorem 4.3.4, in order to prove this theorem, it is sufficient

to deduce from (D1) - (D3) that m is the interpreter induced by H.
it is sufficient to prove that

That is, by Propositom 4.3.7,

n n
n( vaqly )= Vvayl
T
where 0 { a; {ap < *** < ayand Aq; 2 Ay 2 *°° 2 Ay, We do it by
Let Z be

proving a sequence of lemmas.

The most important tool we use here is a Dirac measure.
The

a non—empty finite set and let zg be an arbitrary element of Z.



Dirac measure 520 focused on zy is an ordinary measure on 2% defined

by, for every A € 22,

"1 zg €A,
By0(8) =
0 ZO /: A.

620 has the following important property:

[ £ a8,,=£z0) V£ eF2).

4.5.2 LEMMA. Let us assume (D2). If f =

i
;—-—4<5

ajlp. € F(X), where a3 < aj
i

L **+<aj yand Ay 2 A, 2 *°° 2A,, if _ M(Y), and if Mol is an

additive measure on 2X, then

~

- n
= Voa, .
Proof. By an easy calculation, we obtain

n ~ n ~
fizvlailﬂ(Ai) dn =i§1(ai - ay_1) m(H(A;)),

and

~ n ~
['£ dmem) = % (a; = a;_1) m(H(A)),

where ag = 0. It follows from (D2) that
[ n(e) dn = [ £ dmom).

The proof is complete.

4.5.3 LEMMA. For every yy € Y and for every A, € ZX, there exists
m € M(Y) such that moH is an additive measure on 2k and

m(H(Ao)) = 6}7 O(H(AO)) ’
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where 5y0 is the Dirac measure focused on yg.

Proof. Let yj € Y and let Ay € 2%, 1f yo € H(Ap), let x5 € Ag, and if
vo £ H(AQ), let xg € X = Ag. Let 6X0 be the Dirac measure focused on
Xgp- By the prqperty (U) there exists mn o€ M(Y) such that 6XD = moH.
Then we have

m(H(ap)) = 8, (4g)= & (H(Ap)).
Since & = moH is an additive measure, the proof is complete.

Xg

4.5.4 LEMMA. Let us assume (Dl) and (D2). If f = al, € F(X), then

nf) = alH(A)‘
Proof. Let yo be an arbitrary element of Y. By the previous lemma,
there is n e M(Y) such that aoH is an additive measure on 2% and
m(H(A)) = <5YO(H(A)). (5.1)

Then it follows from (D1) that

[ ncey agy = [ ) dm. (5.2)
By 4.5.2 we have

[ n(e) dn = [ alyg,y dn. (5.3)
Eq.(5.1) implies that

[ algeyy du = [alyey 48 (5.4)

Y0
By (5.2), (5.3), and (5.4) we obtain

[ n(E) déy0 [ alg(a)y déyos

hence

n(£)(yo) = alya)(vo)-

4.5.5 LEMMA. The condition (D3) is equivalent to the following

condition:



1f £(x) < g(x) ¥ x £X, then
n(E)(y) < n(g)(y) Vye¥x.
Proof. If ygp €Y and if 5y0 is the Dirac measure focused on yg, then
[ ace) doy = n(E)(y0)-
Therefore the condition
[n(f) an < [ n(g) dm Y m e M(Y)
is equivalent to the condition
n(E)(y) < n(e)(y) Yy e¥.
Thus the lemma follows.

In the rest of this section we assume (D1) - (D3).

’ n
4.5.6 LEMMA. If £ =.VlailA. € F(X), where aj € ap < *** < ap and A} >
- i= i o

n
Ap 2 **% 2 Ag, them W(£) > Vajlu(a )
l= l

Proof. Since f > ajly 1 =1, 2, °<°, n, it follows from Lemma 4.5.4
i

and Lemma 4.5.5 that

'ﬂ(f) _Z n(ailA_) = ai]'H(A,) for 3. = 1_9 2’ ce: n.
i i
Thus

n
nf) > va;l .
Zoyot H(Ai)

For any two set functions V] and V9 with the same domain, we define
vi + v9 and Vi - Vo by
(vi + v2)(A) = vi(a) + w(4)

and
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(vi = v2)(A) = Vvi(A) - V2(A)

in an ordinary way.

4.5.7 LEMMA. TFor every yg € Y, there exists m € M(Y) such that

(m+ & )oH is an additive measure on 2X  where & 1is the Dirac
Yo ’ Yo
measure focused omn yq-.

Proof. Let M, be the counting measure on ZX, that is, uc(A) is the

number of the elements of the subset A. Note that . is an additive
measure on 2%, Let ¥g & Y, 6y0 be the Dirac measure focused on yg,
and p = - (&, °H).

o= e (yo)

L is a fuzzy measure on 2X.  Since

(A - 1 yo € H(A),
w(A) =
B (A) otherwise,

we have

Be(A) = 1< wA) < p(a) Y A = 2%
Since H. is the counting measure,

uc(A)_S uC(B) -1 whenever A i B.
Therefore

n(a) < p(B) whenever A i B.

0-0=0.

In addition, (@) = be(P) - 6yO(H(¢))
By the property (U), there is m € M(Y) such that p = meH.
Since
e = B+ (<3y0°H>
=(meH) + (éy oH)
0
=(m + & )eH,

the proof is complete.



Proof of Theorem 4.5.1. It is sufficient to prove that, if

"
|

=8

i <3

o

ailAi € F(X), where aj < ay € *= < ap and A} Ay 2 <o+ 2 A,

then

n
n(f) = Vv a;l .
i=1 © H(AD

Let yg be an arbitrary element of Y and let 6y0 be the Dirac measure
focused on yp. By the previous lemma, there is m & M(Y) such that
(m + 6y0)oH is an additive measure om 2X. Then it follows from Lemma

4.5.2 that
fn
J’ (f) d(m+ (SS, ) = .V ale(A,) d(m } 6}7 ).

Hence
[ () dm+ [ n(£) agy
Q
fn 1 dm + fn 1 dsé (5.5)
= vV oaj m vV oaj . .
j=1 1 H(Ai) j=1°1 H(Ai) Y
On the other hand, it follows from Lemma 4.5.6 that
’ n
[ n(E) dm > [ Vazlges y dm (5.6)
- i=1 i
and
f ey as, > IV
v
" To+= "=

1 dd, . 5.7
i ai H(Ai) Yo (5.7)

1
By (5.5), (5.6), and (5.7) we obtain
5 v 5

Therefore

n
n(f)(yg) = i:lailﬁ(Ai)(Yo)n
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§ 4.6 CONFORMABILITY

4.6.1 DEFINITION. ULet f and g be fuctions defined on a set X. f is

said to be conformable to g if

f(x1) < £(x2) = glx1) < &(xp) V x1, x2 X

We write £ ~ g when £ is conformable to g.
Obviously the relation ~ is reflexive, symmetric, and not transitive.
4.6.2 PROPOSITION. Let ¢ be a nondecreasing function defined on the

real line. Then f =~ ¢of for every function £f.

Proof. Trivial.

4.6.3 COROLLARY. Let f be a function and a be a real number.
(1) £ ~a.
(2) £ ~af for a > 0.

(3) £ ~(f+ a).

4.6.4 PROPOSITION. Let f, g, and h be functions with the same domain.
Let S(<, *) be a two—-place function which is nondecreasing in each
place. If f ~g and £ ~h, then £ ~8(g, h).

Proof. Trivial.

4.6.5 COROLLARY. Let f, g, and h be functions with the same domain.
If £ ~g and £ ~h, then f ~(g+ h), £ ~(g Vh), and f ~ (g * h).

Moreover if g and h are nonnegative, then £ ~ (gh).
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4.6.6 LEMMA. Let f and g be nonnegative functions with the same domain.

The following conditions (1) — (3) are equivalent.
(1) £ ~g.
(2) TFor s, t € [0, =)

{xlf(x) > s} © xlg(x) > t} or {xlg(x) > t} < xl|f(x) > s}.
(3) For s, t £ [0, @) |

{xlf(x) > s} = {xlg(x) > t} or {xlg(x) > t} < xlf(x) > s}
Proof. (1) = (2). Let s and t be arbitrary nonnegative real nﬁmbers.
Let us assume that {f > s} £ {g > t}. Then there exists xg € {f > s}
such that xg £ {g > t}. Suppose that x & {g > t}. Since g(xq) < g(x)
and £ ~ g, it follows that f(xp) < f(x), and hence that x € {f > s}
Therefore {g > t} < {f > s}.

(2) = (1). Let us assume that there exist x, x' € X such that
f(x) < £(x') and g(x') < g(x). Then there exist real numbers s and t
such that f(x) <s < f(x') and g(x') < t < g(x). Since x £ {g > t}
and x £ {f > s}, it follows that {f > s} £ {g > t}. Similarly it
follows that {f > s} P {g > t}. This is a contradiction.

Similarly (1) is equivalent to (3).

4.6.7 THEOREM. Let f and g be measurable functions on a fuzzy
measurable space, and § : {0,*] X [0,®] > [0,®] be a continuous two—place
function which is nondecreasing in each place. 1If f and g are both
o-measurable [resp. c—-measurable], and if £ ~ g, them S(£f, g) is o-
measurable [resp. c—measurable].

Proof. We prove only the case that f and g are both o—measurable. The

proof of the other case is similar. For convenience we denote the sets

{(f > s}, {g> t}, and {s(f, g) > r} by Fg, Gt, and H., respectively.



Let r be an arbitrary nounnegative real number. Let

s = inf {a|Fq < Hyl,

i

t = inf {B|Gg < H.}.
By the previous lemma, we can assume that Gy < Fg without loss of
generality. Since Fg is a measurable set, in order to prove that

S(f, g) is o-measurable, it is sufficient to prove that Hp = Fg. Since

Fg = Y Fg and Fgq < Hy for a> s, it follows that F

c H..
a>s r

S

Suppose that @ < s and 8 < t. Then F i H,. and Gg ; H.. Without
loss of generality, we can assume Fg © GR. Then there exists xg € Fg — Hye
and we have S(2, B) < S(f(xg), g(x0)) { r. It follows from the
continuity of S that S(s, t) < r.

Suppose that x £ Fg. Then, by the assumption G¢ < Fg, wevhave
f(x) < s and g(x) < t. 1t follows that

S(f(x), g(x)) < S8(s, t) £ r,
and hence that x £ Hp. This implies that Hy < Fg, and hence we have

Hy = Fg. The proof is complete.

4.6.8 COROLLARY. Let f and g be measurable functions on a fuzzy
measurable space. If f and g are both o-measurable [resp. c-measurable],
and if f ~g, then £ + g, fg, £ v g, and f A g are o-measurable [resp. c-

measurable].

4.6.9 L1EMMA. Let f and g be functions defined on a set X. If f ~g,

then, for every A < X,

inf [f(x) + g(x)] = inf £(x) + inf g(x)
X€eA X EA X €A

and
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sup [f(x) + g(x)] sup f(x) + s‘R g(x).
XEA X EA

Proof. Let s = inf f(x) and t inf g(x). Obviously
X EA X €A

inf [f(x) + g(x)] > s + t. For an arbitrary positive number £, if we
X €A -

write B = {x £ Alf(x) < s + &/2} and C = {x ¢ Alg(x) < t + £/2}, then,

since f ~ g, it follows that B N C # @, and hence that inf [£(x) + g(x)]
X €A

< s+ t+ & Therefore inf [f(x) + g(x)] = s + t.

x €A

Similarly the other equality follows.

4.6,10 THEOREM. Let (X,Jﬁ) be a fuzzy measure space, (Y,(Q, H) a frame
of (X,X) for representation, and h the interpreter for measurable

functions induced by H. If £ ~ g, then

h(f + g) = h(£f) + h(g).

Proof. We use Lemma 4.3.8:

h(£)(y) = su inf f£(x).
A:yEHr(JA) X €A

For each A £ &, let F(A) = inf £(x) and G(A) = inf g(x). The fact that
X €A X €A

f ~ g implies that F ~ G, i.e.,
G(A) < G(B) whenever F(A) < F(B).

By the previous lemma we obtain that for every y €Y

i

h(f + g)(y) 1nf [f(x) + g(x)]

A: yEH%A)

aryBitay K TOO T i 89l

A y%ﬁ?A) [F(A) + G(A)]



sup F(A) + sup G(A)
A:y=H(A) A:yeH(A)

h(£f)(y) + h(g)(y)-

4.6.11 THEOREM. Let (X, X) be a fuzzy measurable space, (Sx, .8g, Hx) a
universal frame of (X, X) for representation, and hy the interpreter for
measurable functions induced by Hy. For given measurable functions f
and g, if they are both o~measurable or both c-measurable, then the

following conditions are equivalent to each other.

(1) £ ~g¢g.
(2) hy(f + g) = hy(f) + hyx(g)-
(3) TFor every fuzzy measure W on (X,X),

() (fF+g)du=(0)f £du+(C)f g dp.

Proof. (1) = (2) follows from 4.6.10. (2) = (3) follows from 3.2.10

and 4.3.4. Hence it is sufficient to prove that (3) E> (1). Suppose
that £ # g. Then there exist two points x] and x2 in X such ;hat
f(xy) < £(x9) and g(x1) > g(xp). We define a set function n on £ by
1 if xy £ A and x9 £ A
u(A)={ VA X,

0 otherwise

Then P is a fuzzy measure. By an easy calculation we obtain that

(c)f (£ + g) dp = min [£(x7) + g(x1), £(x9) + £(xp)],

() £ dp

(©)f g an

f(x1),

g(XZ) 3
and hence that
() (£+g)dn> (c)f £dp+ () g du.

The proof is complete.
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§ 4.7 NULL SETS

The concept of "almost everywhere” is one of the most important
concepts in the ordinary measure theory. It is defined by the concept
of "null set.” A mull set is defined as a measurable set of measure
Zero.

But this definition of null sets is unsuited for fuzzy measures.

If u is a fuzzy measure, then it is possible that there exist measurable
sets A and B such that M(A) = WR) = 0 but R(A VU B) > 0. Are these sets
suited to be called null sets? Furthermore the fellowing example shows
that there exist measurable functions f and g such that f = g a.e. in

the sense of ordinary null sets but (C)f f du # (C)f g du.

4.7.1 EXAMPLE. Let X = {Xl’ Xz} and U a fuzzy measure on 2X defined

Cas B({x;}) =0, B({xp}) = 0, and B(X) = 1. Let £f(x1) = 0, f(x2) =1,
g(x1) = 2, and g(xp) = 1. Then f = g a.e. in the ordinary sense, i.e.,

b({f 4 g}) = u({xy}) = 0. But we have (C)/ £ db = 0 and (C)f g du = 1.

We should generalize the definition of mull sets.

4.7.2 DEFINITION. Let (X, &, W) be a fuzzy measure space. A subset N
of X is called a null set if, for every pair (A, B) of measurable sets,
A B UN implies U(A) < K(B).

A proposition P(x) concerning the points of X is said to be true almost
everywhere (or a.e. for short) if there exsists a null set N such that

x € X - N implies that P(x) is true.



Note that a mull set is not always measurable.

4.7.3 TPROPOSITION. Let (X, %, W) be a fuzzy measure space.
(1) The empty set is a null set.
(2) If N e X is a null set, then R(N) = 0.

(3) A subset of a null set is a null set.

The following proposition makes the definition of null sets

comprehens ible.

4.7.4 TPROPOSITION. Let (X, X, W) be a fuzzy measure space, X be closed
under (Uf), and N € L. Then the following conditions (1) and (2) are
equivalent.
(1) N is a null set.
(2) w(a UN) = wA) YA e
Proof. (1) = (2). Since (A UN) <A UN, by the definition of null
sets we have B(A UN) < (A). Hence it follows from the monotonicity
of B that W(A U N) = WA).

(2) = (1). Let A, BeX If A <BUN, then BA) < KB UN) =

MB). Hence N is a null set.

4.7.5 COROLLARY. Let (X, %, B) be an ordinary measure space and N e X.

Then N is a null set if and only if WN) = 0.

4.7.6 COROLLARY. Let (X, &, p) be a fuzzy measure space. If £ is
closed under (UY), then a finite union of measurable null sets is a null

set. Moreover, if X is closed under (%) and if W is continuous from
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below, then a countable union of measurable null sets is a null set.

4.7.7 TROPOSITION. TLet (X, &, u) be a fuzzy measure space and N < X.
N is a null set if and only if, for every pair (A, B) of measurable sets
AnN <R dmplies p(A) < p(B).

Proof. Since A c R UN <& A nN <P, our assertion is immediate

from 4.7.2.

Proposition 4.7.8 and Corollary 4.7.9 are dual of 4.7.4 and 4.7.6,

respectively.

4.7.8 PROPOSITION. Let (X, &, p) be a fuzzy measure space, F be closed
under (0f), and N© ¢ Z, Then the following conditions (1) and (2) are
equivalent.

(1) N is a mull set.

(2) p(A n NS) = p(A) YA e

4.7.9 COROLLARY. Let (X, Z, u) be a fuzzy measure space.

(1) Let ¥ be closed under (nf). If {Njli =1, e, n} is a finite

n
sequence of null sets such that N, e@ 1i=1, eos, n, then U N; is a

null set.
(2) Let & be closed under (nc) and i be continuous from above. If {N,}

«©
is a sequence of null sets such that Nnc ed n =1, 2, ee»  then Uan
n=

is a null set.
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4,7.10 LEMMA. . Let (X, X, U) be a fuzzy measure space, N a null set, and
g7 ={anwela eX}. Then (N°, X7) is a fuzzy measurable space and

there exists a fuzzy measure P~ on ¥ such that
BO(A D NC) = B(A) YA X

Proof. It is obvious that (N©, X7) is a fuzzy measurable space. It

follows from 4.7.7 that
B(A) = W(B) whenever A N NC =R N NC,
Therefore we can define a set function b~ on Z~ by
RO(A N NC) = pua) YA e,
and obviously b~ is a fuzzy measure.
4,7.11 DEFINITION. ULet (X, X, W) be a fuzzy measure space, N a null
set, and X~ = {ao " NC|A €X}. The fuzzy measure b~ on (M€, 2"") defined

by

LA N NC) = p(A) Y A eX

is called the restriction of U to (N¢, &) (or to N¢).

4.7.12 LEMMA. Let (X, &, 1) be a fuzzy measure space, N a null set, and

u” the restriction of W to N¢. For any measurable function f,
(o) £ du = (c)f £]lx¢ dp”,
where f|N¢ is the restrictiom of f to NC.

Proof. Let f be an o-measurable function. The same proof applies to
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the case that f is c=-measurable.

(o) £ du W{f > r}) dr

] I
— S—
=7 o g

p({f > r} ") dr

R ({(EIne) > r}) dr

o
By
o8

il

(c)/ fINc du”.

4.7.13 THEOREM. Let (X, Z, W) be a fuzzy measure space. If f and g are
measurable functions such that f = g a.e., then

f £ an = (¢)f g an.

Proof. Let N be a null set such that £f(x) = g(x) Y x € N¢. Let K™ be

the restriction of B to N¢. Then it follows from 4.7.12 that

(o) £ au = (c)f flxe ap’

o) glwe ap’

(o) g du .

The next result follows from 4.6.11 and 4.7.12.
4.,7.14 THEOREM. Let (X, &, 1) be a fuzzy measure space. If f and g are
measursble functions such that f ~ g a.e. and f + g is measurable, then
©f (£+g)an= (o) £+ (o) g an,

where £ ~ g a.e. means that there exists a null set N such that

g(xl) S_g(xz) whenever f(xl) < f(xz) Lyl X1, Y Xy € N©.
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§ 4.8 EXPECTATION

4.8.1 DEFINITION. A fuzzy measure p is said to be normalized if p(X)
= 1. Choquet's integral of a measurable function f with respect to a

normarized fuzzy measure is called the expectation of f.

4.8.2 DEFINITIONS (Tsukamoto [23]). Let (X, X) be a fuzzy measurable

space. Let Bc ¥Xand B # . The 0-1 possibility measure focused on B,

denoted by IIg, is a set function on Z defined by, for every A £ &
1 if A n B # 4,
Mg(A) =
0 otherwise.

The 0-1 necessity measure focused on B, denoted by Np, is a set function

on X defined by, for every A ¢ £

1 if B c A,
Ng(A) =

0 otherwise.
The following proposition is obvious.

4.8,3 TPROPOSITION. Let (X, Z) be a fuzzy measurable space and B a
non—empty subset of X.
(1) 1p and Np are normalized fuzzy measures on Z.

(2) If A e Land A ¢ X, then T(A) + Np(a%) = 1.

(3) If {AyIn e A ¢ @ and U Ay X, then Tp( U Ay) = v IIg(4y).
M aep Mo ned M aen D

(4) If {AyIN e A} ¢ X and n Ay e X, then Np( n Ay) = A Ng(ay).
A aep M0 neh M ep DM

(5) TFor every fuzzy measure p on Z,

p is normalized <& Ny < p £ Iig-



4.8.4 PROPOSITION. Let (X,Z) be a fuzzy measurable space, B a non-—

empty subset of X, and f a measurable function.

(1) (©)f £ dlly = sup £(x).
XEP

(2) (C)f f dNp = inf f£(x).
xEB

(3) For every normalized fuzzy measure i,
inf f(x) < (C)f f dp < sup f(x).
- — x&X

xeX X

Proof. (1) Let a = sup f(x). Then it follows that
- . XER

(C)f £ dly = [? Tp({xl£(x) > r}) dr = [2 dr = a.

(2) Similar to (1).
(3) The assertion is immediate from (1), (2), and the fact that

Ny < v £ Tge

The assertion (3) shows that Choquet's integral with respect to a
normalized fuzzy measure is suited to be called expectation.

A similar argument applies to a probability space.

4.8.5 DEFINITIONS. Let (X, &, P) be a probability space and B a non~

null measurable set. The essential 0-1 possibility measure focused on B,

denoted by ess.lly, is a set function on X defined by, for every A &€ X

1 if P(A N B) > O,
ess.lIg(A) =
0 if P(A 0 B) = 0.

The essential O-1 necessity measure focused on B, denoted by ess.Np, is

a set function on X defined by, for every A X

101
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1 if P(P - A) = 0,
ess -NB(A) =
0 if P(B - A) > O.

Let P be a fuzzy measure on f, we write n < P if p(A) = 0 for every

measurable set A for which DP(A) = 0.

Tsukamoto's Gy-measure and Ge~measure [23] are the essential 0-1
possibility measure focused on X and the essential O-1 necessity measure

focused on X, respectively.
The following proposition is obvious.

4.8.6 PROPOSITION. Let (X, X, P) be a probability measure space and
B a nmon-null measurable set.

(1) ess.HB and. ess .Np are normalized fuzzy measures on Z.

(2) ess.llp < P and ess.Np << P.

3) ess.HB(A) + ess.NB(AC) = 1.

©

(4) ess.lp( VU Ay) = V ess.Ip(A,).
n=1 n=1

(5) ess.Np( N Ay) = 7 ess.Np(Ay)
n=1 n=1

(6) TFor every fuzzy measure H on F,

(K(X) = 1 and ¥ << P) &S ess Ny < B < ess. Iy,

4.8.7 TPROPOSITON. Let (X, &, P) be a probability space, B a non-null
measurable set, f a nonnegative measurable function on X.

() (C)f £ d(ess.HB) = ess sup f(x).
xEB
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(2) (¢)f £ d(ess.Np) = ess inf £(x),
xeP

where esg inf f(x) is defined as the dual of ess sup f(x), that is,
xeB xeB

ess inf f(x) = sup {r|P({f < r}) = 0}.
XeP

(3) For eﬁery normalized fuzzy measure p on X for which p << P,

ess inf f(x) < (C)f f du < ess sup f(x)-
xeR - - xeB

Proof. Similar to 4.8.4.
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CONCLUSTION

We gave two interpretations to the non—additivity and monotonicity
of a fuzzy measure; one is that the fuzzy measure is characterized by a
pseudo~additivity (Part I) and the other is that the fuzzy measure is
characterized by an interpreter H, which reflects the interaction of
subsets (Part II). On the basis of the interpretations we defined two
different fuzzy integrals. We expect that these integrals will be
applied to various problems.

We should continue this research. There are problems for solution;
how to integrate a function which is not nonnegative, Radon—Nikodym—like

theorem for Choquet's integral, etc.

Choquet's integral is suitable for the interpretation that a fuzzy
measure expresses the interaction of subsets (Section 4.4 in Part II).
On the basis of this the author thinks the following application. Let
us consider data {(fi, ri)[i =1, 2, °°**°, n}, where f; is a nonnegative
function on a finite set X and rj is a nonnegative real number which can
be regarded as a representative value of fj. Let us assume that Choquet's
integral model expresses a relation between fj and ry such that

ry = (C)f f; dp i=1, 2, °**, n.

Then, by identifying U, we can analyze the interaction among subsets

of X.

There are many sides to the set R of all real numbers: a totally
ordered set (R, <), an additive group (R, +, 0), a field (R, +, %, 0, 1),

a one—dimensional vector space over the field R, a topological space, a



metric space, etc. In addition we can induce other mathematical
structures to R. The set RT of all nonnegative real numbers is a subset
of the set R.

An ordinary measure is nonnegative real-valued and defined by
addition. RT as its range is generally regarded as the positive comne
of the one-dimensional ordered vector space R. We do not regard K" as
a subset of the field R since the multiplication X as a binary operation
on Rt is meaningless; for instance, a product of length and length is
not length. (The multiplication x as a bilinear mapping is meaningful;

a product of length and length is area.)

A fuzzy measure is nonnegative real-valued and defined only by order
relation. Then a question arises: what is the structure of RY as the
range of the fuzzy measure? By the monotonicity of the fuzzy measure,

R* is at least an ordered set. However, we can consider richer structure.

In Part I we gave an amswer to the above question: ®" is an ordered
monoid (R+, 3, 0) with a left operation . In Part II RT is the positive
cone of the one—dimensional ordered vector space R. This is a particular
case of the answer given in Part I; T and ° are the ordinary addition +
and the ordinary multiplication -, respectively.

There may be other amswers. If the structure of Rt is fixed, there
is the problem: how to integrate a function. There is probably more
than one solution. Therefore the author thinks that the two approaches

reported here are natural but they are two out of many.
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