
論文 / 著書情報
Article / Book Information

題目(和文) 大規模計算システム向け自動故障解析

Title(English) Automated Fault Localization in Large-Scale Computing Systems

著者(和文) 丸山直也

Author(English) Naoya Maruyama

出典(和文) 学位:博士（理学）,
 学位授与機関:東京工業大学,
 報告番号:甲第7145号,
 授与年月日:2008年3月26日,
 学位の種別:課程博士,
 審査員:松岡 聡

Citation(English) Degree:Doctor of Science,
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第7145号,
 Conferred date:2008/3/26,
 Degree Type:Course doctor,
 Examiner:

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Automated Fault Localization in
Large-Scale Computing Systems

by

Naoya Maruyama
naoya.maruyama@is.titech.ac.jp

Submitted to the
Department of Mathematical and Computing Sciences,

Graduate School of Information Science and Engineering,
Tokyo Institute of Technology

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

March 2008

c© Copyright by Naoya Maruyama 2008
All Rights Reserved

Abstract

This dissertation presents two scalable, automated approaches to simplifying fault
localization in large-scale computing systems that view localization as anomaly
detection in system behaviors. Both approaches always capture system behaviors
by obtaining function call traces, and identify anomalous behaviors through au-
tomatic data analysis of the collected traces. To find anomalies in scalably and
automatically, they assume processes in typical distributed software systems have
behavioral similarities, and find violations in the assumed similarities as anoma-
lies.

The first approach, outlier-detection-based localization, localizes faults by as-
suming that the target system consists of distributed processes with similar be-
haviors. Specifically, once a failure occurs, it identifies anomalous processes and
functions by comparing the failure traces and finding outliers among them. Traces
are compared by using their function-execution times. By finding outliers based
on these times, this approach can localize faults such as performance bugs, dead-
locks, and livelocks.

The second approach, model-based localization, localizes faults by assuming
that all processes exhibit similar behaviors to those observed in the past. By us-
ing traces collected during normal operations, it derives an execution model that
estimates the call probability of each function. Once a failure occurs, it finds
anomalous processes and function calls by comparing the failure traces against
the derived model. We consider the following cases anomalous when: 1) high-
probability functions are not called, and 2) low-probability functions are called.
This approach is especially effective in localizing program logic bugs by finding
these functions.

Experimental studies done on real-world large-scale environments indicate the
effectiveness of the proposed techniques. Our outlier-detection-based localization
almost automatically found the causes of several nondeterministic failures in a
distributed cluster middleware running on a 129-node production cluster. The
model-based localization also substantially simplified the localization process of
a failure that occurred in a three-site, 78-node Grid environment.

Acknowledgments

This dissertation would not have been possible without the expensive support that
I received from various individuals in both research and non-research matters.
Although I cannot possibly acknowledge everyone that have contributed, I can
extend my special thanks to a few.

First, I would like to thank my dissertation advisor Professor Satoshi Mat-
suoka. His timely and effective mentoring played an immense role in enabling
me to pursue my research goals and establish my career as a researcher in com-
puter science. Throughout the years I have spent as a graduate student within his
research group, he has always been supportive and encouraging and given me nu-
merous opportunities of interacting with prominent researchers in various fields.

The other members of the dissertation committee, Professors Masataka Sassa,
Etsuya Shibayama, Osamu Watanabe, and Shigeru Chiba, provided me with in-
sightful comments and questions on my research. Their feedback enabled me to
think about my research from various different perspectives, and to improve the
overall quality of this dissertation.

I have also been fortunate to have had many gifted graduate students as col-
laborators and friends. Many thanks go to the former and present members of my
research group at the Tokyo Institute of Technology, especially, Hirotaka Ogawa,
Fuyuhiko Maruyama, Hidemoto Nakada, Toyotaro Suzumura, Satoshi Shirasuna,
Hiroyuki Komatsu, Yoshiaki Sakae, Hideyuki Jitsumoto, and Shinichiro Takizawa.
They made my graduate student years much more interesting as well as enjoyable.

I have also had many experiences with interacting and working with various
researchers and students. My first research collaboration was with Professor Hide-
hiko Masuhara of the University of Tokyo. Through his guidance, I first learned
about how a computer scientist should think in pursuing solutions to intellectually
challenging problems. I also enjoyed discussing various topics with Professor
Shigeru Chiba of the Tokyo Institute of Technology. I have been repeatedly im-
pressed by his insightful comments on a wide variety of research topics.

Professor Bart Miller and his computer sciences research group at the Univer-
sity of Wisconsin, Madison kindly hosted me as a visiting graduate student from
September 2004 for one year (Thanks again to my dissertation advisor for giving

i

me such an invaluable opportunity). It was then that I was first exposed to interna-
tional research environments. Without such experiences, my interests and career
directions would have been more insular and confined to domestic research op-
portunities. In particular, I have truly enjoyed collaborating with Alex Mirgorod-
skiy. I was impressed with his deep understanding of low-level programming
techniques and insights into system software, and admire his “magic” dynamic
instrumentation technique. The first part of the contributions of this research is
from my collaboration with him and Professor Miller. My life in Madison, which
was my first long stay in the USA, was also supported by my many friends there,
especially Eli Collins, Matt Legendre, Jaime Frey, and Hao Wang. I continue to
miss the beautiful lakes, gorgeous summer weather, as well as the freezing winter
weather, the delicious Babcock ice cream, and Madison’s academic atmosphere.

I also received support from the CREST Mega-Scale project in both research
assistance and funding. The project members, especially Professors Hiroshi Nakashima,
Hiroshi Nakamura, Taisuke Boku, and Mitsuhisa Sato, provided me with a wide
variety of discerning suggestions in my discussions with them throughout this
research.

Case studies using real-world production systems were extremely valuable for
assessing the effectiveness of our proposals, and their results actually allowed us
to gain useful insights. The Global Scientific Information and Computing Center
(GSIC) at the Tokyo Institute of Technology kindly allowed us to apply outlier-
detection-based fault localization to their SCore cluster environment. The InTrig-
ger distributed computing platform by the Info-Plosion project also enabled us
to evaluate our model-based fault localization. I wish to thank the InTrigger de-
velopment team, especially Professor Kenjiro Taura, Hideo Saito, and Yoshikazu
Kamoshida for their efforts in developing such a large-scale playground for com-
puter science research. Cooperation with both GSIC and the InTrigger team has
greatly strengthened the impact of this dissertation.

Last, but not least, I wish to thank my family for their unconditional sup-
port. My parents are likely to know little about what I have done in this research;
nonetheless, they have unreservedly believed in me throughout my prolonged
study. For the last three years, I have also received the highest degree of support
from my wife, Akiko, in almost everything except the research itself. Without her
continuous encouragement and belief in me, my final and most difficult years in
completing this dissertation would have been much more daunting and less stim-
ulating. I am genuinely grateful to her for her understanding and encouragement
throughout.

ii

Contents

1 Introduction 1
1.1 Difficulty in Fault Localization in Large-Scale Computing Systems 1
1.2 Approach . 3

1.2.1 Outlier-Detection Based Fault Localization 4
1.2.2 Model-Based Fault Localization 5

1.3 Contributions . 7
1.4 Dissertation Outline . 8

2 Background 10
2.1 Definitions of Faults, Failures, Errors, and Fault Localization . . . 10
2.2 Today’s Large-Scale Computing Platforms for HPC 11
2.3 Fault Characteristics in Large-Scale Computing Systems for HPC 13

3 Related Work 17
3.1 Approaches Based on Automated Data Analysis 17

3.1.1 Approaches Based on Flow Analysis 17
3.1.2 Approaches Based on Spatial Similarities 19
3.1.3 Approaches Based on the Historical Similarity 20
3.1.4 Approaches Based on Supervised Classification 20
3.1.5 Other Automated Approaches 21

3.2 Other Approaches to Fault Localization 22
3.2.1 Replay-Based Distributed Debugging 22

3.3 Efficient Techniques of Recording and Representing System Be-
haviors . 23

3.4 Scalable Techniques for Performance Analysis 24
3.5 Approaches to Fault Localization of Sequential Programs 25
3.6 Similar Approaches to Different Problem Domains 27

3.6.1 Security Issues . 27
3.7 Summary . 28

iii

4 High-Level Overview of Our Proposed Approaches 30
4.1 Design Goals . 30

4.1.1 Automated Analysis . 30
4.1.2 Fast, Scalable Analysis 31
4.1.3 Localization of Unknown Faults 31

4.2 Observations and Assumptions 32
4.2.1 Spatial Similarities . 32
4.2.2 Historical Similarities 33

4.3 Overview of Proposed Approach 34
4.3.1 Data Collection: Always-on Function Call Tracing 34
4.3.2 Fault Localization through Anomaly Detection 38

5 Outlier-Detection-Based Fault Localization 40
5.1 Process-Level Localization . 42

5.1.1 Fail-Stop Problems . 42
5.1.2 Non-Fail-Stop Problems 43

5.2 Function-Level Localization . 51
5.2.1 Fail-Stop Problems . 51
5.2.2 Non-Fail-Stop Problems 51

5.3 Experimental Results . 52
5.3.1 Overview of SCore Environment 52
5.3.2 Function Tracing in SCore Environment 53
5.3.3 Network Stability Problem 55
5.3.4 Scbcast Problem . 57

5.4 Summary . 60

6 Model-Based Fault Localization 62
6.1 Model Derivation . 65

6.1.1 Function-Call Tracing 66
6.1.2 Decomposing Traces into Execution Units 66
6.1.3 Process-Model Derivation 68
6.1.4 Global-Model Derivation 69

6.2 Model-Based Fault Localization 70
6.2.1 Suspect-Score Calculation 71

6.3 Prototype Implementation . 73
6.3.1 Trace Collection . 74
6.3.2 Non-Blocking Concurrent Trace-Buffer Pool 74

6.4 Evaluation . 75
6.4.1 Partial-Message Receive Bug in MPD 76
6.4.2 Model Derivation . 77
6.4.3 Localization through Suspect-Score Computation 78

iv

6.5 Summary . 80

7 Discussion 82
7.1 Comparison of Outlier and Model-Based Techniques 83
7.2 Limitations . 85

7.2.1 Limitations Derived from Assumptions 85
7.2.2 Fault Localization in Broader Problem Domains 85

7.3 Possible Approaches to Overcoming the Limitations 86
7.3.1 Online Approach to Modeling and Anomaly Detection . . 86

8 Conclusions 88
8.1 Summary of Contributions . 88
8.2 Directions for Future . 90

v

List of Figures

2.1 Average and maximum processor counts of machines ranked in
TOP500 lists from June 2000 to November 2007. 12

4.1 Textual representation of function call traces. 35

5.1 Overview of the outlier-detection-based fault localization. 41
5.2 Simple example of function profiles. 45
5.3 Comparison of the Manhattan and Euclidean distance metrics. . . 47
5.4 Example of the unsupervised trace ranking. 48
5.5 Example of one-class trace ranking. 50
5.6 Scored trace on node n014 visualized with Jumpshot [15]. 56
5.7 Suspect scores in scbcast problem computed by unsupervised al-

gorithm. 58
5.8 Suspect scores in scbcast problem computed by one-class algorithm. 58
5.9 Contributions of functions made to the suspect score of n129. . . . 59
5.10 Fragment of scored trace from node n129. 59

6.1 Overview of Model-Based Fault Localization. 63
6.2 Example of trace decomposition into execution units. 67
6.3 Example process grouping in master-worker system. 71
6.4 Sample normal model and its trial unit. 73
6.5 Example usage scenario of trace-buffer pool. 75
6.6 Performance overhead due to function-call tracing. 78
6.7 Suspect scores for execution units in trial traces. 79

vi

List of Tables

4.1 Comparison of Outlier-Detection-Based and Model-Based Tech-
niques. 39

6.1 Process-model generation configurations and results. 77

vii

Chapter 1

Introduction

System failures have been one of the biggest obstacles in operating today’s large-
scale computing systems. Fault localization, i.e., identifying direct or indirect
causes of failures, is a complicated and time-consuming problem, and thus au-
tomating such cause identification processes represents an important research chal-
lenge. This dissertation shows that anomaly-detection-based techniques can au-
tomatically localize important classes of faults in large-scale systems, allowing
problem analysts to focus on significantly smaller parts of the overall system.

1.1 Difficulty in Fault Localization in Large-Scale
Computing Systems

Fault localization in large-scale computing systems, such as clusters and Grids, is
a notoriously difficult problem to solve. The two main reasons for this difficulty
are:

• Scalability barriers imposed by ever increasing scale of modern HPC sys-
tems and

• Rare, nondeterministic faults magnified by diverse system configurations
using commoditized software and hardware components.

Finding the root cause of a particular failure is becoming more challenging as
system scale increases. The TOP500 list as of November 20071 shows that 86%
of total systems ranked on the list have more than a thousand processors. For
example, the number of processors in the world’s fastest supercomputer on the
list, the IBM Blue Gene/L at Lawrence Livermore National Laboratory (LLNL),

1http://www.top500.org/stats/list/30/procclass

1

http://www.top500.org/stats/list/30/procclass

has reached hundreds of thousands. The consequences of this trend are twofold.
First, most conventional methods in these large-scale systems, such as examining
crash dumps or various system logs, or attaching to faulty systems with interac-
tive debuggers, are not always feasible in practice because they inevitably require
manual input. A crash dump can provide a snapshot of system behaviors imme-
diately before a system crashes, and can provide useful information on system
diagnosis on a single machine. However, on clusters with thousands of machines,
where the number of crash dumps would also be in the thousands, simply having
such a large amount of data would be too overwhelming to extract any useful in-
formation. Logs could reveal the history of critical system behaviors, but, as is
the case with crash dumps, they alone do not always provide sufficient visibility
into system behaviors for localizing faults. Also, interactive debuggers represent
a proven technology as effective debugging tools for a single process; even with
multiple processes, debuggers with a parallel extension allow multiple processes
to be introspected simultaneously as in single-process debugging [54, 90]. How-
ever, while they are indeed effective in examining particular program states, they
are of no help to analysts in finding where they should examine faults. Thus,
finding their root cause in such a large number of processes remains a difficult
problem. In fact, Oliner et al. reported that root causes of approximately 17%
of failures were not determined in the Blue Gene/L [66]. Second, timing-related
bugs, more likely to occur as the scales of systems increase, can preclude the use
of these manual approaches due to their non-negligible perturbations.

Allowing diverse system configurations also presents several difficult chal-
lenges to software reliability [34, 61]. First, it makes standard engineering dis-
ciplines such as in-house pre-release testing less effective. Since real production
systems are too varied, it is unlikely to have all the same testing environments as
diverse as real production systems. Thus, even if a software component works
flawlessly within testing environments, this does not necessarily mean that it will
work as well on production systems. For example, as discussed in Chapter 6, a
popular parallel-programming library was observed to fail to operate in a Grid
environment, whereas this problem did not occur while running within a single
cluster. Such environment-dependent faults are hard to eliminate with conven-
tional pre-release in-house testing because of the difficulty of reproducing them.

Second, such faults need to be localized in particular settings due to their
dependence on these specific environments. However, in reality, the actual ad-
ministration policies in these environments might preclude such time-consuming
post-mortem analysis as that involved in manual diagnosis with an interactive de-
bugger, since rapid recovery is typically preferred by merely restarting production
systems to thoroughly diagnose their faults, which requires extra downtime. As
such, analyzing crash dumps or various system logs post-mortem is typically the
only possible approach in such environments; however, as previously stated, sim-

2

ply having such a voluminous amount of data does not necessarily lead to rapid
fault localization.

Several trace-based techniques of detecting anomalies have been proposed to
tackle these problems with fault localization [8, 17, 42, 60, 71]. However, the
main limitation with these approaches has been that they employ a centralized
algorithm to find anomalies, assuming that traces distributed over remote ma-
chines can be collected by a centralized trace analyzer with no limits in scalability.
For example, Magpie identifies correlated system events occurring in distributed
nodes using several manual and automatic techniques, and allows one to under-
stand high-level control and data flows spread across distributed nodes [8]. Al-
though such a centralized approach could allow us to comprehend the distributed
system as a whole, and not just a mere collection of uncorrelated multiple pro-
cesses [8, 17, 42, 60, 71], their application to the previously mentioned large-scale
current HPC clusters is still unclear.

1.2 Approach
To simplify fault localization in large-scale computing environments, this disser-
tation proposes two scalable, automated techniques of fault localization where lo-
calization is regarded as the detection of anomalies in system behaviors. Both
the outlier-detection-based and model-based techniques capture system behav-
iors by always recording the function call traces of the system being observed,
and identify anomalous behaviors by automatically analyzing data from the col-
lected traces. Always-on tracing allows system behaviors, including those that are
rare and nondeterministic, to be recorded. The key challenge in achieving such
trace-based fault localization, therefore, is how to develop a scalable, automated
technique of detecting anomalies that can effectively localize faults in large-scale
environments.

To meet this challenge, we use a behavioral rule that holds during normal op-
erations, but does not when failures occur. Once a failure occurs, we find behav-
iors violating the rule by automated data analysis of function traces, and identify
anomalous symptoms correlated with the failure. Furthermore, to achieve scala-
bility, we design the data analysis algorithm so that it can operate on the scale of
current and future large-scale computing systems.

This dissertation presents two derivations of this general approach. Specifi-
cally, for behavioral rules, we exploit two observations in the behaviors of typical
distributed software for large-scale systems, i.e., spatial and historical similari-
ties.

Spatial similarities Typical distributed software for clusters and Grids, such as
job schedulers and parallel file systems, consist of a small number of col-

3

lections of identical programs running on each member node. Any software
that employs a master-worker architecture should consist of two identical
process groups, i.e., the master and the rest of the processes. Even software
with a more complicated hierarchical structure should also have a small
number of process groups.

Historical similarities Many distributed systems consist of member processes
that exhibit similar execution behaviors to themselves in the past. The
reason behind this is that they typically employ event-driven architectures,
where several different event-processing routines are multiplexed into a sin-
gle event loop. For example, a batch-job scheduler for clusters could em-
ploy a daemon process on each node whose responsibilities include moni-
toring jobs under the node and handling requests from the master job sched-
uler. A typical software architecture for such purposes would model job-
status changes and incoming requests from the master as events, and con-
sist of an infinite loop of event-processing routines. Thus, we could expect
that member processes in the long run would exhibit similar behaviors to
themselves in the past by running the same routines in an infinite loop.

Based on the observation of spatial similarities, we propose the first local-
ization technique, outlier-detection-based fault localization, which is specifically
targeted to cluster-type distributed systems [58]. It uses the observation of spatial
similarities as a behavioral rule, and considers rare behaviors that are different
from the majority, thus violating the observation, as anomalies. The second pro-
posed technique, model-based fault localization, assumes the observation on his-
torical similarities of processes in distributed systems [52]. It considers behaviors
that are not observed before, thus violating the observation, as anomalies. Note
that both techniques share the same principle: they obtain function call traces from
running systems, and attempt to identify anomalies by finding violations against
their respective behavioral rule. The rest of this section overviews both methods.

1.2.1 Outlier-Detection Based Fault Localization
The first method assumes spatial similarities are being observed, which allows us
to view the localization problem as an outlier-detection issue. That is, we local-
ize anomalous processes and functions by finding a process or a small group of
processes that exhibits significant deviations from the rest of them. More specif-
ically, outlier-detection-based fault localization consists of two steps. First, it
executes process-level localization that finds an outlier process by comparing the
per-process function traces of the failed run. Second, it applies function-level
localization to the trace of the identified process to locate the most anomalous
function.

4

This dissertation presents techniques of comparing traces for both fail-stop
anomalies and for non-fail-stop anomalies. Fail-stop anomalies are a common
case of faults in distributed environments, where an anomalous process stops ex-
ecution prematurely while the others are still running. For example, such cases as
infinite blocking on system calls and termination due to illegal operations would
identify themselves as fail-stop anomalies. We find such anomalies by detecting
the earliest last timestamp in the per-process traces of the failed run. While this
technique is very simple, we demonstrate its effectiveness through a case study
with a real production system in Chapter 5. For more complex, non-fail-stop
anomalies, we use the following technique of trace comparison.

For non-fail-stop, latent anomalies, we find them by locating behavioral out-
liers, i.e., processes that have substantial differences in function-call traces com-
pared to others. To do so, we apply a distance-based outlier-detection tech-
nique [9], where the pair-wise distance is defined by the difference in the execution
times of functions. For a given pair of per-process traces, we give a long distance
when one of the pair takes substantially longer to execute a certain function, or,
even longer when they execute different functions. Finally, based on the distance
definition, we identify outlier processes by finding a trace or a small group of
traces that is significantly far from its kth nearest neighbor.

Once an anomalous process is found, we find the functions that best explain
its outlierness to further assist the problem analyst in localizing the fault. Specif-
ically, for the fail-stop case, we report to the problem analyst the function of the
last trace entry of the anomalous process. For a non-fail-stop case, we rank the
functions appearing in the trace according to their contribution to the distance to
the kth nearest neighbor, and report the highest-ranked function to the problem
analyst. In other words, the function with the largest difference in its execution
time between the anomalous process and its kth nearest neighbor is considered to
be the most suspicious.

Unlike the second approach described below, this localization approach does
not require prior learning of the normal execution behaviors of the target sys-
tem. Instead, it only performs post-mortem analysis of the traces of the failed
run with no a priori knowledge on the target system (i.e., unsupervised analy-
sis [85]). However, if we already have prior traces collected from previous runs,
we can improve localization accuracy by excluding outlying but legitimate pro-
cesses from further localization (i.e., one-class analysis [87]). We show its effec-
tiveness through several case studies with a large real-world production cluster.

1.2.2 Model-Based Fault Localization
Based on the observation of historical similarities, the second approach localizes
faults by modeling normal execution behaviors and detecting violations in fault

5

traces against the model. Specifically, we first learn per-process function-calling
behaviors, and generate a concise per-process model called a process model. Next,
we aggregate all process models into a single global model that reflects the behav-
iors of the overall system, and deploy to all nodes of the target system. Finally,
once a failure occurs, we detect anomalies in the failure traces by comparing them
with the global model, and report the detected anomalies to the problem analyst
for further analysis of the root cause.

We focus on a class of distributed systems that employ an event-driven archi-
tecture, and design an accurate model specifically targeted to the class. To derive
the process model, all the function traces are first divided into sub-traces, or ex-
ecution units, based on their associated event sources, and then a different model
is derived for each event source. Of various types of events, this dissertation fo-
cuses on network events, which we believe would be the most important events in
distributed computing systems. The source of network events is their connection;
thus we treat a sequence of function calls corresponding to the same network con-
nection as a single execution unit. Next, we derive a model for each connection
by constructing a call tree for every function appearing in its associated units, and
assigning each function an estimated probability of occurrence. We estimate the
probability of a function by dividing the number of its occurrences by the total
number of the same events. For instance, if a function always appears when a
message arrives at a connection, we give a function probability of 1. Note that
creating separate models for different connections can improve the accuracy of
estimating the probability, since different connections are likely to have different
function-calling behaviors. Finally, we derive the global model by merging the
process models whose processes are inferred to have played the same role in the
system.

Once a failure occurs, we assist human analysts by localizing the root cause of
the failure by comparing its failure traces with the derived model. Given failure
traces, we first divide them into execution units as we did in deriving the model.
For each execution unit, we compute a suspect score that quantifies how likely a
particular part of call traces is correlated with the failure. Functions with a small
probability in the model yield high suspect scores when called. Frequently called
functions in the model also yield high scores when not called. Finally, we report
the execution units annotated and sorted with the suspect scores to the human
analysts, assisting them to narrow down the localization process to a small part of
the entire system.

Note that, since only locally observable information is used, i.e., function-call
traces, both modeling and detection of anomalies can mostly be decentralized, al-
lowing good scalability to be achieved with increasing system scale. Specifically,
our modeling requires globally coordinated operations only when gathering the
process models to generate the global model. Fault localization using the global

6

model can be performed locally by deploying the model to all the nodes in ad-
vance. As previously discussed, this decentralized approach differs from many of
the previous approaches that reconstruct distributed flows by matching distributed
logs and traces [8, 17, 42, 60, 71].

The observation behind the approach is that many anomalies manifesting them-
selves over distributed nodes still exhibit locally observable deviant behaviors as
well. For instance, a bug discussed by Reynolds et al. prevented an event-handler
function from being called, failing to serve incoming requests [71]. Also, the
Tokyo Stock Exchange, one of the largest stock exchange markets in the world,
suffered from a severe service outage from February 8, 2008 for three consecutive
days [89]. It was reportedly caused because a certain part of newly allocated mem-
ory was not initialized. While we do not know the internal logic of the memory
initialization, it is likely that a certain function related to initializing the memory
area was not called only at the failed case. These behaviors could be detected by
only using locally observable information, i.e., function-calling behaviors in these
particular examples.

1.3 Contributions
This thesis presents several contributions towards automated fault localization in
large-scale computing environments. Among them, the primary contributions are
as follows:

• We propose two automated fault localization approaches based on anomaly
detection in per-process function call traces. The outlier-detection based
approach uses an unsupervised, distance-based outlier-detection technique
to find anomalous processes and functions in the target system. We also
present an extension of the technique that exploits past knowledge on sys-
tem behaviors for more accurate and precise localization. The model-based
approach further extends the use of past data: It derives a concise execu-
tion model that reflects normal system behaviors using past traces collected
during the system operates correctly. When a failure happens, it compares
the traces of the failed run against the derived model and automatically finds
anomalies by detecting deviant behaviors in the failed run. Both approaches
are based on their respective similarity assumption to detect anomalies, i.e.,
the spatial similarity for the outlier-detection based approach and the histor-
ical similarity for the model-based approach. We present discussions on the
difference of the two approaches in Chapter 7.

• We show the effectiveness of our proposals through several experimen-
tal studies that apply them to failures in large-scale computing environ-

7

ments. Our outlier-detection based localization almost automatically found
the cause of several nondeterministic failures in a distributed cluster mid-
dleware running on a 129-node production cluster. The model-based local-
ization also significantly reduced a localization process of a fault that often,
but not always, happens in a three-site, 78-node Grid environment.

1.4 Dissertation Outline
This dissertation is divided into eight chapters. The rest of it is structured as
follows:

Chapter 2: Background To set the context, we first provide definitions of key
terms used throughout this dissertation, and describe target environments,
i.e., large-scale computing environments, and typical faults in such environ-
ments.

Chapter 3: Related work Next, we review related studies in such areas as fault
localization, fault detection, statistical techniques for detecting anomalies,
and performance debugging. We specifically focus on issues of the previ-
ous approaches with respect to scalability and automation. We also review
approaches similar to ours, but applied to different problem domains such
as viruses and intrusion detections.

Chapter 4: High-level overview of proposed approaches To tackle the problems
stated in this chapter, we propose two approaches to fault localization. This
chapter presents the underlying ideas and observations behind the approaches.

Chapter 5: Outlier-detection-based fault localization The first fault-localization
approach is based on outlier detection in the member processes of the sys-
tem being observed. This chapter describes the algorithm and experimental
evaluation of the outlier-based fault localization.

Chapter 6: Model-based fault localization The second approach to localization
derives a model reflecting the execution behaviors of the target system, and
localizes faults by detecting violations of the derived model in failure traces.
This chapter presents the algorithm and an experimental evaluation with
real-world faults in distributed environments.

Chapter 7: Discussion Next, we discuss what we have learned through research
on this dissertation, including the limitations of the approaches and possible
solutions to them. We also compare the proposed approaches in terms of
their applicabilities and limitations.

8

Chapter 8: Conclusions Finally, we summarize the contributions made by this
dissertation and discuss possible directions for future research.

9

Chapter 2

Background

This chapter sets the context of our research by presenting the definitions of sev-
eral key terms and introducing target environments, i.e., modern large-scale com-
puting systems. Finally, we review several examples of faults occurring in various
large-scale environments reported in the literature to enable a better understanding
of the characteristics of faults.

2.1 Definitions of Faults, Failures, Errors, and Fault
Localization

This dissertation refers to several standard terms in the field of dependable com-
puting systems [6, 82]. We briefly introduce their definitions to avoid confusion
in the rest of this dissertation. For more complete explanations, refer to Avizienis
et al. [6] and Steinder and Sethi [82], among others.

Failures in system components are states that occur when they generate exter-
nally visible incorrect output [6]. Errors denote a class of system states that cause
a discrepancy between a real computed output and a specified correct output. An
error can cause subsequent errors in the same component, or a failure, if it mani-
fests itself as visible to outside components. An error is initially caused by a fault
within the same component or external input. A causality path is a directed path
from a fault to errors to a failure.

For example, consider a situation where a Web server occasionally fails to
return correct responses due to a coding bug. Here, the state failing to return
correct responses is a failure of the Web server; the bug is the cause of the failure,
thus it is a fault. The bug might cause different discrepancies in the Web server
other than dropping user requests; these are errors caused by the bug. Note that
the Web server does not always fail to operate even if a fault is present in the code.
Such faults are called dormant; they are present in a system but do not manifest

10

themselves to the system. In the Web-server example, if the bug is not exercised
by incoming requests, the system exhibits no failures; thus the bug is dormant.
When it actually causes a failure, it becomes active.

Fault localization is a term that refers to the process of deducing the exact
source of a failure from the set of observed failure indications [82]. In other
words, it identifies the causality path from a fault to its failure using observed
failure symptoms. Note that we use the term in a weaker sense, i.e., narrowing
the causality path to a small set of possible locations. Other closely related terms
used in this dissertation are fault detection and failure detection. The former refers
to the process of capturing unintended behaviors that may or may not lead to
errors and failures; the latter refers to the detection of occurrences of externally
visible faults. Fault localization itself does not detect failures, but only attempts
to identify possible causes of a given failure that is detected by a failure detection
mechanism. This dissertation explores techniques of simplifying fault localization
for given failures while minimizing the human effort involved.

2.2 Today’s Large-Scale Computing Platforms for
HPC

Large-scale supercomputers are the most common platforms for high-performance
computing. As can be seen from the TOP500 lists 1, the trend toward improving
supercomputing performance has been to increase the number of processors by
employing a scalable system architecture, such as through clustering and mas-
sively parallel processing (MPP). Figure 2.2 traces the development of average
and maximum processor counts of machines ranked in the TOP500 lists from
2000 to 2007. The average number of processors increased approximately 14
fold, from 231 in June 2000 to 3296 in November 2007; the maximum number
increased approximately 20 fold, from 9632 to 212992.

Cluster supercomputers are the current most common architecture. In fact,
more than 80% of machines ranked in the TOP500 list as of November 2007 are
clusters. One example of the largest clusters is the TSUBAME supercomputer at
the Tokyo Institute of Technology [24]. It consists of 655 Sun Fire X4600 nodes,
each of which is equipped with eight AMD Opteron dual-core CPUs, resulting in
10,480 cores in total. The nodes are interconnected with Voltair Infiniband net-
works, and are further powered by ClearSpeed CSX600 accelerator boards. The
supercomputer also supports high-performance access to 1 PB of storage with
the Lustre parallel file system [18]. It uses a mixture of various standard-based
software components, including, among others, SuSE Enterprise Linux as a com-

1http://www.top500.org/

11

http://www.top500.org/

1e
+

02
1e

+
03

1e
+

04
1e

+
05

1e
+

06

N
um

be
r

of
 p

ro
ce

ss
or

s

max
average

06/2000 11/2001 06/2003 11/2004 06/2006 11/2007

ASCI Red

BlueGene/L

Figure 2.1: Average and maximum processor counts of machines ranked in
TOP500 lists from June 2000 to November 2007.

pute node OS, RedHat Enterprise Linux as a storage node OS, Lustre parallel file
system for scalable high-performance storage, Sun Grid Engine for distributed re-
source management, and various other ISV applications. This multi-vendor hard-
ware and software organization exemplifies a commoditized component architec-
ture that can complicate the diagnosis of problems in such dynamic environments.

Massively parallel processing systems (MPPs) are also a popular supercom-
puting architecture that are typically more powerful than the abovementioned
cluster supercomputers. The Blue Gene/L supercomputer by IBM at LLNL con-
sists of more than a hundred thousand nodes, and was the fastest supercomputer
in the Top500 supercomputer list as of December 2007 [25]. The Earth Simula-
tor consists of 640 compute nodes, each of which is equipped with eight vector
processors, reaching 5,120 vector processors in total [80]. It had been the fastest
supercomputer from 2002 to 2004 on the TOP500 list by achieving 35 GFlops 2.

Grid computing is another viable large-scale computing platform. It allows
heterogeneous, geographically distributed computing resources to be used se-

2http://www.top500.org/system/ranking/5628

12

http://www.top500.org/system/ranking/5628

curely and in coordination. For example, InTrigger provides a large-scale com-
puting platform for researchers in various fields. It consists of more than 300
compute nodes distributed over six Japanese universities and laboratories (as of
December 2007) with further extensions planned [75]. Other examples include
Grid’5000, DAS-3, Grid3, and EGEE. A French project called Grid’5000 has
been providing a large-scale Grid computing platform consisting of a collection
of computing clusters distributed across nine French universities and laboratories,
featuring more than 3000 processors in total as of December 2007 [14]. A unique
characteristic of Grid’5000 is that users have complete control of compute nodes
from their operating systems to the application software by having had a scalable
remote mechanism for system installation provided to them. DAS-3 is another
Grid infrastructure distributed over five sites in The Netherlands, providing 272
compute nodes in total [67]. Furthermore, DAS-3 and Grid’5000 are now be-
ing interconnected to provide a more powerful larger-scale platform. Grid3 is a
US Grid infrastructure consisting of more than 30 sites and 4500 CPUs. It pro-
vides large-scale computing resources mainly for physics experiments [23]. The
EGEE project also provides a very large-scale Grid infrastructure, which consists
of 41,000 CPUs distributed over 240 sites across 45 countries in Europe and other
regions [29].

Most of these supercomputers and Grid infrastructures share the same rea-
sons for difficulties with fault localization, i.e., system scale and diversity. The
prevalence of these large-scale platforms makes automated fault localization more
important and even essential to achieve reliable and dependable computing with
them.

2.3 Fault Characteristics in Large-Scale Computing
Systems for HPC

Gray reported on failures that affected Tandem fault-tolerant systems [33]. He
roughly classified failures into four categories: administration, software, hard-
ware, and the environment, where their ratios corresponded to 42%, 25%, 18%,
and 14%. He suggested that the most important area for improving system avail-
ability was to reduce administrative mistakes, while hardware failures could be
mitigated through redundancy as is done in Tandem systems. Although his sur-
vey dates back 20 years, the situation in today’s computing systems has not dif-
fered much. Administrative mistakes can even be more problematic since current
systems are much more complex from both hardware and software perspectives.
Furthermore, large-scale systems for HPC, such as supercomputers, usually do
not benefit from hardware fault tolerance mechanisms such as redundant compute

13

nodes due to increased cost; thus, hardware can be much more problematic. The
rest of this section reviews some published studies on faults occurring in large-
scale environments.

Schroeder et al. reported on failures that were manually recorded over nine
years in 20 different systems at LLNL, and categorized the root causes into six
factors: human, environment, network, software, hardware, and unknown [77].
The number of nodes in the systems that they studied varied from just one to
1024, with the number of processors ranging from four to 6152. In their classi-
fication, hardware was the largest source of failures, ranging from 30% to more
than 60% depending on what systems were studied, followed by software (5% to
24%). Another noteworthy finding was that the ratio of failures whose cause was
not identified ranged from 20% to 30%, close to the ratio of software failures but
less than that for hardware. Such a high ratio illustrates the difficulty of localizing
faults in large-scale systems. They also reported that failure rates varied signif-
icantly across systems, ranging from only 17 failures per year to an average of
1159 failures per year, and that these rates were approximately proportional to the
size of each system.

Liang et al. investigated failures observed in the Blue Gene/L at LLNL for
100 days [46]. Their findings included temporal correlations of memory-related
failures and spatial correlations of network-related failures, e.g., an intermediate
network switch failing to function would cause all child nodes connected to other
nodes with the switch to be unreachable. They presented techniques of predicting
occurrences of failures by exploiting these correlations. While the techniques
presented this dissertation generally focus on software faults, such correlations
would also be useful for fault localization.

Oliner et al. also reported on failures occurring in five supercomputers, in-
cluding Thunderbird, Red Storm, Spirit, and Liberty, which are located at Sandia
National Laboratories (SNL), and the Blue Gene/L at LLNL [66]. The machines
differ greatly in process counts, ranging from Liberty’s 512 to Blue Gene/L’s
131072. They collected standard system logs that were available by default in
these systems for durations ranging from 104 to 558 days, and classified the alerts
into three types of hardware, software, and indeterminate. In contrast to the study
by Schroeder et al., the most common category was software (64%), followed by
hardware and indeterminate, both of these accounted for approximately 17% of
failures approximately. This could be because of the difference in log collection
methods; the data studied by Schroeder et al. were in a database that collected
failures reported manually by system administrators, while the data studied by
Oliner et al. were from computer-generated logs. However, both of them reported
that approximately 20% of failures had root causes that were unknown. They
also suggested that the system logs that they studied did not always contain suffi-
cient information for localizing faults, which supports and motivates the need for

14

collecting richer, more detailed information such as function call traces.
Faults occurring in Grid environments have also been studied and published

in the literature. Kola et al. reported on faults observed in a Grid computing
platform at the University of Wisconsin-Madison [43], which uses idle comput-
ers distributed across the campus, running the Condor distributed resource man-
agement system [49]. Various anomalies involving both software and hardware
caused the observed faults, including corrupted data due to faulty hardware, hang-
ing processes, misleading return values, misbehaving machines, and unavailable
resources. They found the cause of hanging processes was related to an NFS op-
eration, but the exact cause is still unknown. An application was found to return
values indicating success even when it actually failed. Misbehaving machines ac-
cepted jobs but did not completed or return the results. Unavailablity of resources,
such as intermittent network outages, also caused failures in jobs scheduled to use
resources that became unavailable. They reported that most of these faults took a
long time to diagnose due to the scale and distribution of the platform.

Another study on faults in Grid environments was presented by Medeiros et
al. [53]. They reported the results of surveys given to actual Grid platform users
and operators asking about experiences with and management of failures. The
survey found that configuration errors due to operator mistakes were the most
frequent causes of failures, while the second-most frequent causes of failures were
software bugs in middleware and user applications, followed by hardware faults.
These results are consistent with the studies on supercomputer faults previously
discussed. Another interesting answer in the surveys was that the most difficult
problem in fault management was localizing them, which supports the problem
statement and motivates our proposal for automated fault localization.

It can be helpful to know what effects these faults have on the observable
states of applications to localize those occurring in these environments. If anoma-
lous behaviors similar to the known effects of a fault are observed, the cause of
failure could be narrowed down to the fault. Lu et al. studied what effects tran-
sient software and hardware memory errors had on MPI applications [21]. To
study such effects, they injected faults into application programs using MPICH,
a popular MPI implementation. They injected bit flips into the memory area of
user applications, and modified receive packet payloads by trapping the recv sys-
tem call. Their overall results revealed that the applications studied were largely
affected by the injected faults, including incorrect outputs, application crashes,
and hanging applications. Thus, such anomalous behaviors could be inferred as
having been caused by corrupt memory data. Their technique can be classified as
a supervised method of learning to build an expert system for localizing known
faults, while our techniques are more oriented toward localizing unknown faults.

In summary, we can see that faults do occur more frequently in larger-scale
systems and finding the root cause of a fault is indeed an important issue, as indi-

15

cated by the ratio of undetermined failures and the surveys obatained by Medeiros
et al. These observations motivate the need for more advanced techniques of lo-
calizing faults than the standard approaches currently employed such as manual
printf debugging.

16

Chapter 3

Related Work

This chapter describes past research efforts related to this work. We first intro-
duce past approaches on fault localization in distributed systems in Sections 3.1
and 3.2. The former describes the differences in automated approaches and the lat-
ter in the other approaches, especially focusing on scalability and automation of
analysis. Other key aspects of our research include efficient and effective record-
ing of system behaviors and scalable analysis of recorded behaviors. We intro-
duce research on both areas in Sections 3.3 and 3.4. Although the target problem
domain is the distributed computing area, this research is also related to fault lo-
calization in sequential programs; we review past projects on that research area in
Section 3.5. Finally, we survey data-analysis-based approaches in other problem
domains, such as intrusion detection, in Section 3.6. We conclude this chapter by
summarizing the related work in Section 3.7.

3.1 Approaches Based on Automated Data Analysis

3.1.1 Approaches Based on Flow Analysis
Identifying distributed control and data flows is a common approach in the trace-
based automated performance and logic debugging, and thus many flow-based
approaches have been proposed. They, however, have differed in their specific
algorithms for doing so; we will first review several such approaches, and describe
the key differences between our approaches and theirs.

MagPie by Barham et al. recovers distributed flows by using a user-written
application-specific event schema [8] and an instrumented OS kernel and other
middleware layers. Their schema is a set of rules to separate and join individual
events observed in distributed components. To find anomalies in the recovered
flows, they use cluster analysis [40], where the distance of a pair of flows is de-

17

fined as their string-edit distance in the textual representation of the flows and the
difference in resource usage.

Kiciman and Fox and Chen et al. presented a fault management framework
that can detect failures and localize their faults by automated analysis of dis-
tributed flows [16, 17, 42]. Their techniques assume that the system being ob-
served has naturally observable user request flows, such as RPC-based systems.
For example, an algorithm targeted to HTTP-based distributed systems uses HTTP
request logs to recover user-request flows in Web-server farms. Another algo-
rithm is based on the assumption that the target system uses a high-level com-
ponent framework, such as J2EE, and an underlying framework implementation
was modified to record component interactions. By collecting these data, their
analysis algorithm based on probabilistic context free grammar (PCFG) automat-
ically learns correct flow models, and detects failures by finding deviations in ob-
served flows from the learned models. Finally, to find the root causes of a detected
failure, they correlate the failure with particular components by analyzing recov-
ered flows with several statistical techniques, such as cluster analysis and decision
trees. While their framework covers both failure detection and fault localization
in request-reply based systems, their applicability to other types of systems is un-
clear In fact, the authors themselves discussed an example of such limitations,
where a single unit of work incurs multiple RPCs [42].

Based on our earlier collaboration [58], Mirgorodskiy presented another trace-
based flow-recovering algorithm that imposes little manual burden by using au-
tomated binary instrumentation across node boundaries [60]. For all send and
receive calls, the code inserted by his instrumentation records the size of the mes-
sage sent or received, allowing post-mortem analysis to correlate trace records in
separate processes. Similar to this work, he uses function call traces, and quanti-
fies the differences between identified function-call flows to find anomalous calls.

Reynolds et al. proposed an approach, called Pip, to assisting application
programmers to detect unexpected system behaviors [71]. Similar to our model-
based approach, they first infer the expected program behaviors from test runs that
include interactions between distributed components, and generate textual repre-
sentations of the expected behaviors. The auto-generated expectations, which the
programmers can extend for more accurate analysis, are checked against the traces
of trial runs.

Aguilera et al. [2] presented two statistical algorithms that require no a priori
knowledge on the target system, while trading off the accuracy of the recovered
flows. One of the two algorithms, called the nesting algorithm, is based on the
assumption that the flows to be recovered are derived from RPCs, and it stitches
together the calls by finding the parent callers of all RPCs. Another algorithm,
called the convolution algorithm, is not based on the assumption of RPC-based
systems, and find more free-form message flows by statistically computing the

18

correlation of arriving and leaving messages on each node in distributed systems.
The key difference between these past projects and ours is that our approaches

do not use distributed flows, but, instead, exploit the observations that allow local
behaviors to be viewed as effective data analysis units as discussed in Chapter 4.
Namely, our outlier-detection-based approach uses the observation on spatial sim-
ilarities, and detects anomalies in the per-process traces by comparing them. Our
second approach, the model-based approach, is based on the observation on histor-
ical similarities, and detects anomalies by comparing their past behaviors. While
their flow-recovering algorithms work in a centralized fashion, we designed the lo-
calization algorithm in the model-based approach to be mostly decentralized. As
shown by Roth et al. [72], decentralized processing is essential to work at scale of
today’s HPC systems, including the 106,496-node BlueGene/L at LLNL and the
655-node Tsubame supercomputer at the Tokyo Institute of Technology [24].

Another notable difference is that flow-based approaches require the correla-
tion of message send and receive operations to be determined by message count-
ing [60] or tagging [16, 17, 30, 42]. While counting is relatively simple to im-
plement, it cannot be used for UDP connections since messages can be reordered
and dropped. Message tagging works for both TCP and UDP connections, but the
perturbation due to embedding tags into all messages can be too large to capture
nondeterministic, timing-related bugs.

3.1.2 Approaches Based on Spatial Similarities
Other approaches related to the outlier-detection-based method include those by
Zheng et al. [98] and Arnold et al. [4]. Zheng et al. presented an anomaly detection
algorithm that is also based on the assumption on spatial similarities [98]. Unlike
the outlier-detection-based approach, they use standard performance metrics, such
as CPU and memory load. We could also improve the usefulness of our approach
by using such metrics as well. For instance, bugs such as memory leaks would
manifest themselves clearly in the memory-usage metric. However, their method
can only reveal process-level anomalies, unlike our function-level analysis that
identifies anomalous functions.

Arnold et al. proposed a bug detection method using stack trace sampling [4].
Similar to this work, their primary focus is scalability with increasing numbers
of nodes. Thanks to MRNet, a tree-based overlay network [73], they achieve
very low-latency collection of samples of call stacks from thousands of processes;
we could also make use of such a scalable overlay network to generate a global
model. They aggregate the call stacks of all processes into a single call graph by
allocating the same node for the same function called in multiple processes, and
attributing all edge with cumulative call counts over the distributed processes. By
reducing the call stacks over a large-number of processes into a concise single call

19

graph, they aim to reduce the problem exploration space into a small manageable
class. A key difference between their approach and ours is that, since they use
a sampling-based analysis, it is difficult to capture rare, nondeterministic faults,
such as timing-related bugs.

3.1.3 Approaches Based on the Historical Similarity
Comparing performance metrics data across time is another often used technique
to find anomalous behavior. Yuan et al. presented a technique of detecting anoma-
lous application performance by comparing observed performance values with
their moving-window averages [95]. For example, consider a scientific applica-
tion that executes the same loop iteratively until some conditions are met. Many
such applications should complete a nearly-constant number of iterations per a
unit of time. Thus, if the application executed a much different number of iter-
ations than the average, such behaviors could indicate an anomaly affecting the
application performance. However, raw performance metrics such as CPU and
memory loads can be affected by not only the application itself, but also back-
ground management tasks that are typically activated by system tools such as
cron at some fixed intervals. Since the performance perturbation by periodic back-
ground tasks is generally unavoidable, they filter out such legitimate perturbation
by using Fourier transform. More specifically, their anomaly detection first con-
verts collected performance data from the time domain to the frequency domain
by Fourier transform, and then filters out those frequencies that have high am-
plitude. Finally, the filtered performance data is then converted back to the time
domain.

While their approach can be effective for detecting anomalous application per-
formance even with background noises, it requires to know a performance metric
that nearly stays constant over the course of its execution. Such metrics may be
easily found for simply structured applications; however, it does not necessarily
exist for more general distributed applications, and even if it exists, its discovery
inevitably requires internal knowledge on the application.

3.1.4 Approaches Based on Supervised Classification
Another approach related to fault localization is supervised classification, e.g., the
work done by Cohen et al. [20], Yuan et al. [96], and Vetter [92]. Cohen et al. pro-
posed an algorithm to predict the occurrence of high-level performance faults, or
SLA violations, from raw system performance metrics, such as CPU loads, cache
miss ratios, and memory usage [20]. In the offline stage, they train a SLA violation
model that predicts the occurrence of particular violation and provides a correla-
tion of the SLA with system performance metrics by using a variant of Bayesian

20

networks, called Tree-Augmented Naive Bayesian networks [28] with normal and
failure profiles. At run time, the model can quickly predict SLA violations and
their correlated performance metrics.

Yuan et al. also proposed a supervised classification algorithm for quickly
determining the causes of problems using system call traces [96]. They train a
correlation model using the system call traces of both normal and failed runs.
They derive the model by discretizing the traces into N-grams and by applying
a Support Vector Machine (SVM) classification technique [12]. At run time, as
in Cohen et al., given a failed system call trace, their derived model can locate
the specific system-call sequence of a particular known failure, and identify the
learned cause of the sequence.

Vetter proposed a supervised technique of finding communication inefficiency
in cluster environments [92]. Similar to the detection of SLA violations by Cohen
et al. [20], it derives a classifier that notifies of the occurrence of inefficient com-
munications in parallel-program executions. It trains a decision tree by learning
sample traces of normal and inefficient parallel programs that contain well known
patterns of inefficient communications in message-passing parallel programs, in-
cluding “late send” and “late receive”.

These supervised approaches are closely related to our model-based approach,
since it also learns a model through sample runs. A key difference with our ap-
proach and the above supervised approaches, however, is that we do not require
the execution data of failed runs for model learning. Supervised classification
generally requires a large volume of sample data from all classification categories
to learn accurate and robust models, i.e., the execution data for both normal and
failed runs in the above cases. Furthermore, they require samples for each specific
category of faults for failed runs. Our model learning, conversely, only requires
traces of normal runs, which is an important property for localizing rare, nondeter-
ministic faults. Taking sample traces of nondeterministic behaviors ahead of time
is difficult in a probabilistic sense. Nonetheless, our approaches are orthogonal;
once the trace is collected, we could improve the usefulness of model-based fault
localization with their techniques of known-problem diagnosis.

3.1.5 Other Automated Approaches
A tool for measuring performance, called Paradyn, by Miller et al. aims to au-
tomate the localization of performance bottlenecks in parallel applications [55].
Paradyn’s Performance Consultant module automatically searches for possible
bottlenecks by dynamic binary instrumentation of parallel programs. Performance
Consultant first finds the cause of a performance problem by testing pre-defined
hypotheses on performance data gather by instrumented parallel programs. One
example hypothesis is: “When synchronization blocking time is greater than 20%

21

of the execution time, the cause of the bottleneck is synchronization.” Having
identified the cause of the problem, Performance Consultant further automates lo-
cating the bottleneck by dynamically narrowing down instrumentation points into
finer-grained candidates for bottlenecks.

Their use of hypotheses are similar to our assumption of observations in our
approaches: we also initiate localization by finding violations of observations.
However, a key difference is that our observations are more abstracted. We only
claim that all member processes should behave similar to one another or their
behaviors in the past, while their hypotheses include more concrete facts about
program behaviors, such as “20%” in the above example. Part of the reason for
the difference is that our objective of localization is to find anomalies, while theirs
is to discover more specific performance problems. Of course, having specific
knowledge on faults would improve localization accuracy; however, deriving such
knowledge is not trivial, or may even be impossible for rare, nondeterministic
faults. Our contribution, compared to theirs, is that such hard-to-anticipate faults
can be localized using simpler observations even without more specific knowl-
edge.

3.2 Other Approaches to Fault Localization

3.2.1 Replay-Based Distributed Debugging
Replay debugging can be a powerful debugging technique by allowing the user to
examine not only arbitrary program states as when a symbolic debugger, such as
GDB [27], is used but also at arbitrary times by rewinding and forwarding execu-
tions [30, 31, 50, 76, 81]. Konuru et al. presented such a debugging technique for
distributed Java applications[45]. By modifying a standard Java Virtual Machine
(JVM), they record all run-time events that are required to deterministically replay
the executions later, including thread scheduling switches, synchronization oper-
ations, and establishing and closing network connections. The recorded execution
can be replayed later in exactly the same order as the original. Another replay
debugger, called liblog, by Geels et al. provides replay debugging for C/C++

native distributed applications by using a user-level library interpositioning tech-
nique [30]. The liblog debugger records all the interactions that all processes
perform during recording, even incoming network messages for complete deter-
ministic replay, without any modifications to the underlying operating system or
application code. They also presented an approach that allows the user to vali-
date global predicates on data and control flows that involve distributed processes,
e.g., a predicate that states an overlay ring topology must always actually form a
ring [31]. WiDS Checker by Liu et al. also provides replay-based debugging for

22

applications written with their own API for constructing distributed applications
called WiDS [50]. It is more powerful than Friday because WiDS allows appli-
cations to be simulated and thus WiDS Checker can search for possible predicate
violations with brute force simulation runs.

Compared to fault localization based on automated data analysis replay debug-
ging can be seen as an orthogonal technique: Once a suspicious symptom is found
with our anomaly detector, further root-cause identification could be greatly eased
with the use of such replay debuggers, if they could be applied with affordable
overhead. While tools being able to completely replay executions of distributed
systems with both deterministic and nondeterministic behaviors can be very useful
for debugging complex systems, their application is restricted to lightly loaded ap-
plications due to its comprehensive recording of states. Replaying a large number
of processes with a single process as in WiDS Checker also limits its application
to executions with a small number of processes. While Liu et al. showed that
their technique can replay multiple processes efficiently, their evaluations are lim-
ited to cases using very small numbers of processes such as four. In addition, as
suggested by Geels et al. [31], simply being able to replay a buggy distributed ap-
plication cannot always help the programmer detect its bugs, due to the daunting
complexity and scale of the target application.

Automated predicate checking by Friday and WiDS checker partially solves
this problem; however, deriving effective predicates still requires a priori, expert
knowledge, and even worse, predicates to check the absence of emergent misbe-
haviors are even harder to derive, if at all possible. Our anomaly detection could
come into play here; anomalies found with our techniques could be an effective
starting point for more thorough diagnosis with replay debugging.

3.3 Efficient Techniques of Recording and Repre-
senting System Behaviors

Raw traces, no matter whether they are textual or binary, are unstructured, vo-
luminous, and difficult-to-comprehend. Thus, any form of trace analysis can be
divided to confront two common challenges: efficient trace recording and effec-
tive information retrieval from the traces. We review related work on these issues
in the rest of this section.

Reiss et al. presented two modeling schemes for function call traces, the first
based on context-free grammar (CFG) and the second based on finite state au-
tomata (FSA) [69]. Their main objective is to compact voluminous traces by
detecting those that are repetitive. To do so, CFG-based modeling repeatedly
finds a frequent sequence of traces, and assigning a new non-terminal to it. FSA-

23

based modeling assigns a node to all traces, but, at the same time, merges any
pair of nodes whose trailing k traces are the same. They demonstrated that both
approaches are quite effective in compacting traces in various applications.

Similar compaction schemes could also have been used in our approaches;
however, merging traces could sacrifice the resolution of localization. In our ap-
proach based on outlier detection, we derive a time profile for each per-process
trace, which is a vector of the normalized time spent in each function (see Chap-
ter 5). If two functions are merged into a single non-terminal or state, as in Reiss
et al., we need to merge the execution time information of both functions as well,
decreasing the resolution to differentiate which function is the true source of the
anomaly. The same problem could also appear in our model-based approach.

Verbowski et al. presented a technique of compacting traces online for always-
on tracing of persistent-state interactions [91]. Examples of such traces include
I/O access to files, changes to operating-system configurations, and process man-
agement. Based on their observations on the characteristics of such traces, they
achieve highly-efficient trace formatting and its compression algorithm, which al-
lowed traces to be collected from more than 10,000 machines and an 8TB RAID
system to retain the traces of a window for one month. The key observation allow-
ing such compaction is similar in our observations on function-call traces. That is,
while there can be a huge number of persistent-state interactions, the number of
distinctive traces is typically much smaller (This was only 0.2 to 5.4% in their case
study on a large Web-server farm.). Unlike this work, they further reduce the stor-
age requirements by applying a standard block-compression algorithm; we expect
such an approach would also be effective in our normal-trace collection phase as
well, although this needs to be evaluated.

3.4 Scalable Techniques for Performance Analysis
Another related research area, especially with the model-based approach, is scal-
ability for analyzing performance in large-scale HPC systems [3, 10, 32, 36, 72].
Manually finding performance bottlenecks in current large-scale machines is a
daunting task; we review past approaches that simplify such analyses through au-
tomation.

Roth et al. presented a scalable framework for analyzing performance [72].
They collect performance profiles at run time by constructing a tree network of
distributed nodes using MRNet [73, 74]. Their highly decentralized framework of
analysis allowed searches by Paradyn [55] to find performance bottlenecks with
moderate loads on CPUs and networks even in more than a thousand processes,
whereas a centralized analyzer could not handle such a large number of processes.
A tree-based overlay, like MRNet, would also be useful in our derivation of global

24

models, even though we have not yet seen bottlenecks in collecting process mod-
els.

While Roth et al.’s technique exploits the parallelism in the target computing
environment to manage a large volume of performance data, others have reduced
the volume by using data mining methods, such as cluster analysis. Nickolayev et
al. presented a cluster-analysis-based technique to reduce the volume of execution
traces at run time [64]. The traces are clustered into a small number of groups, on
a premise similar to our observation of spatial similarities, and only cluster cen-
troids are saved into storage. Ahn et al. presented a technique based on data min-
ing to analyze performance counter values in large-scale computing systems [3].
Extracting useful information from performance counter values taken during ex-
ecutions of parallel programs is not a trivial task because the volume of collected
performance data can be overwhelmingly large. They found that clustering data
can reduce the exploration space into a manageable size, allowing the analyst to
quickly discover performance bottlenecks. Huck et al. further advanced such per-
formance analysis by integrating various data-mining methods into Tuning and
Analysis Utilities (TAU), which is a framework for analyzing the performance of
parallel applications [36, 79].

Geimer et al. proposed a parallel algorithm for finding communication pat-
terns that have sub-optimal performance [10, 32]. They use the same set of nodes
as the target system, and attempt to discover inefficient communication patterns
scalably by replaying all communication events on the same node and identifying
distributed message correlations. We could have used such a parallel correlation-
based technique in our model derivation phase as well. For example, while the
current modeling assigns a single model to each network connection, we could
have differentiated function-calling patterns by using the call stack of the sender
as a key. By doing so, we could have generated a model for a pair made of a
unique connection and its sender (see Section 6.1), which would have improved
the accuracy of the resulting model. However, this in turn would have required
distributed message correlations to be found by methods such as message count-
ing and tagging. Since the overhead incurred by message correlation can be too
large to detect timing-related bugs, the effectiveness of correlation-based analysis
applied to our problem domain remains unclear and is a subject for future work.

3.5 Approaches to Fault Localization of Sequential
Programs

We review several related research efforts on automated fault localization in se-
quential programs. While our approaches, especially that based on the detection

25

of outliers, share some key techniques for localizing faults, the key difference is
that, while their approaches only need to consider intra-process exploration space
as possible locations of faults, we have to search through different processes as
well, which can be tens of thousands in modern large-scale environments. The
rest of this section elaborates on the similarities and differences between their
efforts and ours.

Dickinson et al. presented a technique based on cluster analysis to help the
system developer examine the reports from beta testing [22]. Similar to this work,
they instrument the target program so that it generates function call profiles. The
program testers run the instrumented version to collect per-process call profiles.
Similar to Arnold et al. [4] and Ahn et al. [3], their objective is to automatically
reduce the exploration space by aggregating a large number of profiles into a con-
cise summary. They use cluster analysis so that the developer can only examine
a small number of profiles in each cluster, instead of all the testing reports. How-
ever, theirs still requires per-process profiles for all clusters to be manually ex-
amined, while ours further automates the localization of faults into function-level
granularity.

Renieris et al. proposed a nearest-neighbor based technique to aid the ana-
lyst in localizing faults using known-normal and known-abnormal execution pro-
files [70]. They localize faults by detecting differences between the behaviors of
a failed run and those of its nearest-neighbor normal run. While we do not as-
sume that we know whether each process executed normally or abnormally, they
require such knowledge on every execution profile. Examining all processes to
label whether they are normal or abnormal would be too costly in large-scale
computing environments without automated techniques like ours.

Cooperative Bug Isolation by Liblit et al. [47, 48] determines the predicates
in program executions that correlate with the failure of the program. For exam-
ple, it uses a predicate that the return value of a certain function will always be
greater than 0. They instrument the target program to evaluate a wide range of
fine-grained predicates, such as where a branch is taken or not taken, and record
their results at run time. Unlike our tracing approaches, theirs is based on sam-
pling to record fine-grained predicates with little performance overhead at run
time. Furthermore, they distribute sampling to the actual users of the program to
collect sufficient sample data to derive reliable statistical results while keeping the
overhead low.

Compared to our approaches, we could improve the accuracy and resolution
by considering finer-grained execution traces than function-level traces. For ex-
ample, the return values of certain functions in C-based applications could become
effective indicators of faults, since such applications typically return non-zero or
negative values on failure. However, sampling does not ensure that the execution
data will always be captured when failures occur, which is important in localizing

26

nondeterministic faults. Although the chance of selecting the specific samples can
be increased with the distributed sampling approach, it is still unclear how effec-
tive the cooperative approach would be for general distributed computing systems.
Another difference is that our analysis does not require processes to be identified
as normal or abnormal, which is especially important in large-scale environments.

3.6 Similar Approaches to Different Problem Domains
This section reviews several related research projects that employ various data
analysis techniques that are similar to ours but for different problem domains.

3.6.1 Security Issues
One of the most important security problems is to detect malicious executables,
often sent to computer users as email attachments. Traditional techniques use a
database of known-normal and known-malicious programs to identify the signa-
tures of these malicious programs. They generate binary scanners with the signa-
tures that classify programs as malicious or benign. While such techniques can
very effectively classify known executables, generating effective scanners for un-
seen new malicious executables is still difficult, and requires expert knowledge
and significant manual effort.

Schultz et al. presented a data-analysis-based method of automatically gen-
erating malicious executable classifiers [78]. They use supervised classification
techniques with sample programs that were malicious and benign, including an
inductive rule learner and Naive Bayes learners. To train classifiers, they extract
executable features for classification by finding several static properties as DLL
calls, ASCII strings, and bytecode sequences. Their experimental evaluation using
publicly-available Windows executables demonstrated significant improvements
over traditional techniques.

Their classification technique is similar to our model-based technique since
both of them use previously available information to train a model for detecting
problems in the future. The major difference between their method and ours is
which program properties to use to derive the model. As previously described,
they only use statically available information, while we monitor run-time behav-
iors by tracing function calls. While using only static information is important
for being able to detect malicious executables without actually executing them,
we do not have such restrictions since our purpose is to automate the localization
of faults post-mortem. Monitoring run-time behaviors allows us to capture actual
fault behaviors that may be impossible to detect using only static information,
especially those that are nondeterministic.

27

Detecting malicious attacks, i.e., intrusion detection, is another important prob-
lem in the security domain. Wagner et al. presented a technique of generat-
ing an intrusion detection system (IDS) [93]. Their technique is aimed at de-
tecting the execution of corrupted code through the exploitation of buffer over-
runs and other security holes in normal applications. To do so, they generate
a model that describes the normal execution behavior of the application being
observed by statically analyzing the executable code. Specifically, they use sev-
eral forms of automata, including nondeterministic finite automata (i.e., regular
languages) and pushdown automata (i.e., context-free languages), and demon-
strated that for moderately-sized applications their models effectively detected all
the attacks tested. The major difference between their research and ours is the
objectives: detecting executions of unknown code versus localizing faults such
as logic and performance bugs. For example, they only consider application’s
system calls to detect malicious executions, since they assume that executions of
unknown code would depend on using certain system calls. While we agree that
their assumption is valid to attain their objective, it is too simplistic for localizing
program logic bugs and performance problems, since they can manifest them-
selves without perturbing system calls. Another difference is the data for learning
models: source code versus call traces. Using only source code is advantageous
in the sense that it does not require actual executions of applications, and detect-
ing unknown executions of system calls would be feasible even only with source
code, as demonstrated by their evaluation results. However, it is difficult to infer,
for example, how long a function execution would take by only using such static
information, and thus we expect that using only source code would be of limited
effectiveness in localizing faults.

3.7 Summary
The contributions of this dissertation have been build on previous work in vari-
ous fields, especially fault localization, execution logging, system behavior learn-
ing, and scalable techniques of performance analysis. First, we reviewed the
most closely related research area, i.e., fault localization, particularly focusing
on the scalability and automation. Most of the previous approaches on this sub-
ject have attempted to recover distributed flows from distributed traces in deter-
ministically [8, 16, 20, 42, 60, 71] or statistically [2]. As we have discussed,
however, they have not addressed the scalability issue that arises when doing so
in large-scale computing systems consisting of thousands of machines. Correlat-
ing local events to build distributed flows in such large-scale environments is no
trivial task. Although the technique of parallel analysis of MPI traces proposed
by Geimer et al. [32] could help to some extent, it is still unclear whether such an

28

approach would be possible with an affordable overhead in more complex systems
software.

Other automated approaches that are similar to this work include those based
on similarities and supervised classification, although our approaches requires less
manual effort. While not as automated as them, replaying distributed applications
is another focus of much research in fault localization. Techniques such as Fri-
day [31] and WiDS Checker [50] are indeed powerful debugging tools for applica-
tion programmers; however, they have the same scalability issue as the flow-based
approaches.

We have also reviewed previous work on recording and representing system
behaviors, scalable performance analysis, and detection of intrusions and mali-
cious executables. In particular, the studies on increasing the scalability of vari-
ous online performance analysis [3, 10, 32, 36, 72] had inspired and affected our
particular focus on the scalability of fault localization.

29

Chapter 4

High-Level Overview of Our
Proposed Approaches

To tackle the problems stated in Chapter 1, we propose trace-based approaches
to fault localization that simplify the identification of root-causes in large-scale
computing environments. This chapter first discusses the design goals that we
set to solve the problems in Section 4.1. Section 4.2 elaborates on several key
observations and assumptions on the target environments that we exploit to design
our localization techniques. Although these prerequisites limit the application of
our approaches to environments where they can actually hold true, we argue that
they are sufficiently common to assume without significantly reducing the real
usefulness of our proposals. Finally, in Section 4.3, we present an overview of our
approaches that achieve automated fault localization in large-scale environments
by taking advantage of the observations and assumptions.

4.1 Design Goals
Fault localization in large-scale environments presents several difficult challenges,
including scalability barriers and diversity in commoditized component systems
(see Section 1.1). To solve these challenges, we have set three design goals,
namely, 1) automated analysis, 2) fast, scalable analysis, and 3) localization of
unknown faults. The rest of this section discusses these goals in more detail.

4.1.1 Automated Analysis
The first goal is to automate fault localization to the extent possible. In large-scale
computing environments, one of the most dominant approaches is still to localize
faults by ad-hoc logging of various system states that are explicitly inserted by the

30

programmer. Effective localization with such manual logging requires extensive
knowledge about the internal architecture of the system being observed. Even
if logs are a valuable source if properly collected, identifying effective system
states to record and extracting useful information from the recorded logs remain
to be a tedious manual task. Worse, since the identification of important states is
neither trivial nor easy, manual logging tends to result in either too verbose or too
little content, both of which do not provide effective means for fault localization
per se. The ever increasing scale of modern HPC systems can further increase
the difficulty of extracting useful information, since the volume of collecting logs
from the system increases as the system scale becomes larger.

Unlike these existing approaches, we set a goal where fault localization has
to be automated to the utmost extent. The manual collection of system logs as is
done in many practical cases is so ad-hoc and tedious that it is not a viable option
for our purposes.

4.1.2 Fast, Scalable Analysis
The second goal is fast, scalable analysis in current and future large-scale envi-
ronments, which can be as large as tens of thousands of machines. As discussed
in Section 3.1.1, the dominant approaches recover distributed flows by analyzing
system execution traces deterministically or statistically. A critical limitation in
these approaches is their applications in large-scale systems. For example, a sim-
ple implementation of a message-tagging-based algorithm for recovering flows
would first collect each per-machine (or per-process) trace into a central reposi-
tory to match sender and receiver tags. However, collecting and matching traces
from tens of thousands of processes in a central repository is not likely to scale
well. Specifically, reading through the traces and matching tags would take linear
time with the increasing number of processes. While this might not be a prob-
lem in relatively small-scale environments where the number of machines ranges
from tens to hundreds, it could impose prohibitively large costs in present and
future large-scale environments.

Unlike these past approaches, we set our goal to achieve fast, scalable analysis
with no scalability barriers even with tens of thousands of machines. Distributed
flows could be effective sources for localizing faults, especially those that man-
ifested themselves over distributed components; however, such analysis is not
likely to scale well in the large scale environments that we envision.

4.1.3 Localization of Unknown Faults
The third goal is to localize faults that have been little or never observed before.
Such faults are more difficult to diagnose than known faults, since problem ana-

31

lysts may not have much past experiences that could be exploited to localize them.
Large-scale systems are more prone to intermittent, timing-related faults that only
occur very infrequently; thus, being able to localize such faults is an important
criterion for localizing faults in large-scale systems.

As discussed in Chapter 3, some previous research projects have demonstrated
the effectiveness of supervised learning of system behaviors in fault localiza-
tion [20, 92, 96]. For example, decision trees, which can be trained using both
success and failure execution logs, can provide useful indications about the faulty
system properties [92]. Other supervised techniques of learning, such as support
vector machines and naive Bayes classification have also been demonstrated to
be effective for finding the causes of several types of failures [20, 96]. However,
the limitation of these supervised approaches is that they require to obtain a large
volume of training data from both succeeded and failed executions. Observing
many instances of succeeded executions may be implemented for systems that are
already deployed to real production environments, if not trivial. However, pro-
duction systems should not frequently yield failures, making it time-consuming
to obtain a sufficient volume of failure training data. In addition, since large, real
production systems are inherently complex, the number of failure patters are also
large, making the data collection for effective training further difficult.

Instead of attempting to obtain training data of both succeeded and failed exe-
cutions, we design analysis algorithms so that they do not rely on the availability
of failure data. This design decision allows us to avoid anticipating possible faults
beforehand and to develop localization algorithms that can be used for unknown
faults.

4.2 Observations and Assumptions
To accomplish fault localization while achieving these three design goals, we ex-
ploit the following two observations on large-scale computing systems, i.e., spatial
and historical similarities.

4.2.1 Spatial Similarities
The observation of spatial similarities is that many classes of distributed software
for clusters and Grids, such as job schedulers and parallel file systems, consist of
a small number of collections of equivalent programs running on each member
node. For example, typical clusters for HPC consist of a single master node and
a collection of compute nodes, and use a master-worker parallelization scheme to
coordinate the compute nodes. A master-worker system designates a single pro-
cess running on the master node as a master process and lets it manage worker

32

processes running on the compute nodes. For example, a batch job scheduler
for clusters, called Torque [19], consists of a master process called pbs server

and per-node worker processes called pbs mom. The pbs server process han-
dles incoming user requests to submit new jobs, query job statuses, and withdraw
submitted jobs. These requests are then forwarded to the appropriate pbs mom

processes, which manage jobs under their own node, and return the answers to
the pbs server process. Another example of the master-worker architecture is a
parallel-job manager, called the Multi-Purpose Daemon (MPD), which is shipped
with a popular Message-Passing Interface (MPI) implementation (MPICH) [35].
MPD consists of a collection of equivalent daemon programs running on each
node and connected to one another through a ring-topology network. One of the
daemons in the ring operates as the master process, and handles user requests and
spawns specified parallel jobs in the managed nodes by forwarding the requests to
the worker process in the ring network.

4.2.2 Historical Similarities
The observation of historical similarities is that each process in target systems is
likely to behave similarly to the way it did in the past. This observation is based
on a common event-driven software architecture for network systems. An event
is a software abstraction that notifies changes in some internal or external states.
In typical event-driven distributed systems, each member process would run in-
finitely executing event handlers for new events. For example, each worker in a
master-worker system would execute event handlers to serve incoming requests
from the master process. We expect that these systems would exhibit similar be-
haviors to those they had in the past, since their behaviors could be characterized
by the continuous execution of the event handlers.

Note that specific mechanisms for event handling can vary from system to
system since modern operating systems support several programming models for
such operations. One of the most commonly used is the select system call [83]
to multiplex the processing of multiple events into a single event loop. The pro-
cess would block on a call to select to wait for status changes in resources
associated with the given file descriptors, and for each file descriptor whose status
was changed, it would execute the event handler itself or spawn a new process or
thread to execute the handler on behalf of itself. Another common mechanism is
to use polling to detect new events, e.g., using the poll system call [83]. While
specific implementations would differ as described above, our observation of his-
torical similarities would still hold true.

33

4.3 Overview of Proposed Approach
We propose two techniques of localizing faults in distributed systems, i.e., outlier-
detection-based and model-based techniques. The underlying approach of both
techniques is to automate the fault-localization process through the detection of
violations against the above observations in system behaviors. Specifically, to lo-
calize a given fault, we start with either of the above observations of similarities,
monitor the system by collecting execution data where we expect that the obser-
vation should hold true if the system operates normally (data collection), and then
find violations, or anomalies, in the behaviors against the observation (anomaly
detection). If we find any violations, we consider them as symptoms of the fault,
and report them to the problem analyst, potentially ordered by the anomalous-
ness of each symptom. The rest of this section first describes the data collection
mechanism in more detail, and presents a brief overview of the anomaly detection.

Note that we do not advocate that the process for identifying the root cause
could be completely automated; rather, our aim is to significantly simplify the
current manual process through our automatic techniques of detecting anomalies.
Part of the objectives of this dissertation is, therefore, to explore effective tech-
niques of anomaly detection for localizing faults, and study their effectiveness
when applied to real-world systems.

4.3.1 Data Collection: Always-on Function Call Tracing
We decide the methodology for data collection based on four criteria. First, it has
to be implemented without much manual effort to make the localization process as
automatic as possible. Second, collected data have to exhibit similarities in obser-
vations of normal operational states, since this is one of the primary assumptions
that our anomaly detection techniques are based on. Third, they have to reveal
information that permits problem analysts to effectively identify the root cause
and take corrective steps, even for unknown faults. Fourth, the performance over-
head due to data collection has to be kept minimal, since too much overhead could
preclude our technique from being applied to performance-sensitive systems.

Considering these criteria, we record function calls by always-on tracing as
depicted in Figure 4.1. Each line represents an entry for a call to or return from
a function whose address is specified in the second column. The other columns
represent the process and thread IDs of the thread that executed the call or return
at the time specified in the last column. Note that while the figure illustrates the
traces in textual form, our prototype actually generate them in a more-concise
binary format.

The primary reasons to perform always-on function tracing are four-fold. First,
we can expect that function-call traces would exhibit spatial and historical simi-

34

ENTER 0x819967c pid 5095 tid 4 timestamp 12131002746163258

LEAVE 0x819967c pid 5095 tid 4 timestamp 12131002746163936

ENTER 0x819967c pid 5095 tid 4 timestamp 12131002746164571

LEAVE 0x819967c pid 5095 tid 4 timestamp 12131002746165197

ENTER 0x819967c pid 5095 tid 4 timestamp 12131002746165828

LEAVE 0x819967c pid 5095 tid 4 timestamp 12131002746166395

LEAVE 0x80de590 pid 5095 tid 4 timestamp 12131002746166938

ENTER 0x819967c pid 5095 tid 4 timestamp 12131002746167573

LEAVE 0x819967c pid 5095 tid 4 timestamp 12131002746179202

ENTER 0x80de750 pid 5095 tid 4 timestamp 12131002746180027

ENTER 0x811b070 pid 5095 tid 4 timestamp 12131002746180691

ENTER 0x8138710 pid 5095 tid 4 timestamp 12131002746181359

LEAVE 0x8138710 pid 5095 tid 4 timestamp 12131002746185934

...

Figure 4.1: Textual representation of function call traces. Each line represents
an event entering or leaving the function specified by the second column. The re-
maining six columns show the process and thread IDs of the thread that generated
the trace, and the timestamp when the trace was recorded.

larities, since they reflect the control flow of a monitored process. Simple master-
worker-based distributed systems would consist of two classes of processes, i.e.,
the master and worker processes. While the master and the workers would ex-
ecute different functions, all the workers would execute mostly the same set of
functions, exhibiting spatial similarities in function traces. Besides, event-driven
software architectures in many distributed systems would have certain patterns
of function calls that are derived from the event-processing functions. Such pat-
terns should appear repeatedly in the course of executions of the target system,
exhibiting historical similarities in function traces.

Second, function-level data collection is often a good balance between data
granularity and collection overhead. Being able to locate anomalous functions
was indeed effective in identifying the root causes of faults in the experimental
studies presented in Chapters 5 and 6. Function traces can often be obtained
with an acceptable performance overhead. Again, one experimental study that we
conducted with the SCore cluster-management system indicated that the end-to-
end slowdown of applications in the NAS Parallel Benchmark (NPB) suite [94]
was less than 1% while SCore daemons were being traced.

Third, function traces are relatively easy to obtain compared to finer-grained
information such as branch-level or basic-block-level tracing. While collecting
such finer-grained information would be possible by instrumenting programs or

35

executing them under modified interpreters, modern programming languages, es-
pecially VM-based ones such as Java and Python, often provide built-in function-
tracing capabilities, thus allowing applications to be traced semi-automatically
with little changes to application code. Furthermore, even gcc, a popular C com-
piler [26], provides a function-call hook mechanism as a compile-time option.
Alternatively, we can use binary instrumentors, such as Dyninst [11], Pin [51],
and Valgrind [63], to generate function traces of binary programs.

Fourth, we believe that always-on tracing is the only viable option to accom-
plish localization of unknown faults. Always-on recording of execution behaviors
eliminates the necessity of reproducing faults to localize, which will significantly
simplify the difficulty of localizing unknown faults. However, the performance
overhead due to always-on tracing might preclude the use of our techniques in cer-
tain systems, depending on particular proving points and techniques. For example,
function call tracing might cause a prohibitively high overhead in CPU-intensive
scientific applications. Yet, even in scientific applications, function-call tracing
of I/O-intensive applications that spend most of their execution time blocking on
I/O operations would not cause too high an overhead. Moreover, much of the
distributed middleware for clusters and Grids, e.g., batch job schedulers and inter-
site authentication services, are lightly loaded in terms of CPU usage. In fact, as
previously noted, the decrease of application performance while the SCore dae-
mons were traced was less than 1%. This dissertation explores how applicable the
trace-based always-on monitoring we propose is within the context of large-scale
computing systems.

In addition to always-on function-call tracing, we considered several alterna-
tive methods of collecting execution data; however, none of them does not meet
the design goals.

Collecting Data at Different Granularities

We considered finer-grained data collection, such as tracing basic blocks, branches,
and even instruction counters; however, they would have caused a significantly
larger performance overhead than function tracing, restricting application only to
less-lightly loaded systems. Such large overheads could be reduced by sampling
data collection as in Liblit et al. [47, 48]. However, sampling in turn makes it
difficult to capture system behaviors induced by rare faults.

We also considered tracing coarse-grained information, including nodes, pro-
cesses, and software components, as has previously been done [8, 17, 42]. While
such coarser-grained tracing would reduce the performance overhead, it would in
turn reduce the effectiveness of locating root causes.

36

Using Standard Performance Metrics

Other easily obtainable data include standard performance metrics, such as the
CPU load, memory usage, and network I/O, since operating systems usually pro-
vide standard interfaces to collect such metrics (e.g., the uptime command in
Unix variants). However, the main drawback compared to function-call traces is
that, even if a performance anomaly were found in such performance metrics, it
would be difficult to correlate this to specific locations of programs, such as func-
tions. Thus, correcting detected anomalies would require additional localization
steps. Nonetheless, we might be able to find a wider variety of performance bugs
by extending function-call tracing with these performance metrics. Specific tech-
niques and evaluations of this extension are beyond the scope of this dissertation
and remain a subject for future work.

Post-Mortem Fault Reproduction with Less Run-Time Monitoring

Any system monitoring inevitably incurs some degree of overhead in end-to-end
user-perceived performance, and should be avoided if the best achievable effi-
ciency is the most critical concern. Furthermore, the longer the system is mon-
itored, the more data the analyst needs to examine. In particular, performance-
sensitive production systems might favor minimal run-time monitoring, and, if a
failure occurs, find its cause by reproducing the exactly same behavior with more-
extensive data collection.

However, such post-mortem fault reproduction is not a trivial task even for
system experts due to the following two reasons. First, since any additional prob-
ing inevitably disturbs the original system execution behaviors, reproducing the
exactly same fault as the original would require carefully-selected probing points,
perhaps in a trial and error manner. In fact, nondeterministic, timing-related bugs
might not appear at all while the system were monitored. Second, even if it could
reproduce a particular fault, it might take very long time for the fault to appear
again. A fault that occurs in an extremely small probability might take days or
even longer to manifest itself in the system. The long downtime due to its repro-
duction would not be an acceptable option in most of real production systems.

Replay debugging tackles this difficulty of reproducing faults by recording all
nondeterministic events, such as network message ordering and random number
generation, and replaying them deterministically. However, reproducing latent
faults that only occur long after the system is started would still take a consider-
able amount of time. Combining state recording with process checkpointing as in
Geels et al. [31] could reduce this reproduction time, but the large overhead due
to checkpointing would limit the application to very lightly loaded applications.

37

4.3.2 Fault Localization through Anomaly Detection
We present two fault localization techniques that detect anomalies in function
traces by assuming either of the above observations of similarities. The first tech-
nique, outlier-detection-based fault localization assumes spatial similarities, and
automatically detects anomalies by finding outlying processes in the per-process
traces as follows. When a failure occurs in the system being observed, it collects
all the per-process function traces, and analyzes how long each process spent exe-
cuting a particular call stack by simulating the calls and returns of the process.
Based on the time spent in each call stack, it then maps each trace to an N-
dimensional Euclid space, where N is the number of distinctive call stacks. It
finally finds outlying processes by detecting traces that are isolated from the rest
of the traces [9, 68]. Chapter 5 presents more details on this technique.

The second technique, model-based fault localization, assumes historical sim-
ilarities, and detects anomalies by finding differences between each process’s be-
haviors in normal runs and failed runs. To find differences, it derives an execution
model that reflects the normal execution behaviors of the target system. To de-
rive a model, it uses known-normal traces collected while the system operates as
intended. When a failure occurs, it detects anomalies by finding different function-
calling behaviors between the learned model and the failure traces. Note that un-
like the outlier-detection based technique, it requires an a priori learning phase be-
fore it is able to localize faults. However, once the models are learned, it operates
in a completely decentralized way without interacting remote components. Thus,
it can achieve more rapid and scalable localization than the outlier-detection-based
approach, which requires process-by-process comparisons. Chapter 6 presents
more details on this technique.

Table 4.1 compares the two techniques with respect to our design goals, i.e.,
1) automated analysis, 2) fast, scalable analysis, and 3) localization of unknown
faults (see Section 4.1). The technique based on outlier detection is superior to the
model-based one to attain the goal of automated analysis, since the latter requires
a model to be generated a priori with known-normal execution traces, while the
former operates without requiring such preparations. However, we expect that
the model-based technique will outperform the outlier-detection based one to at-
tain the speed and scalability goals because once a model is learned, anomaly
detection is a completely localized per-process operation. However, the technique
based on outlier detection needs to compare per-process traces, which can be as
many as tens of thousands in large-scale environments. Finally, our case studies
presented in the subsequent chapters demonstrated that 1) function tracing can
capture unknown, non-deterministic faults in large-scale environments; and 2) de-
tecting anomalies in such data can substantially simplify fault localization of such
faults.

38

Table 4.1: Comparison of Outlier-Detection-Based and Model-Based Tech-
niques.

Design Goals Outlier Detection Modeling

Automated analysis Good Moderate
Fast, scalable analysis Moderate Good
Localization of Unknown Faults Good Good

39

Chapter 5

Outlier-Detection-Based Fault
Localization

The outlier-detection-based technique simplifies fault localization through a three-
step automated process as outlined in Figure 5. Each step performs the following:

Step 1: Data collection The first step involves collecting per-process function-
call traces from the system being observed, as described in Section 4.3.1.

Step 2: Process-level localization The second step finds anomalous processes in
the collection of distributed processes by analyzing per-process function
traces. To do so, it exploits the observation of spatial similarities: We
consider processes whose behavior is significantly different from the rest
anomalous. As we discussed in Section 4.2.1, many classes of distributed
systems for clusters and Grids should exhibit similarities, often because of
the master-worker architecture employed to organize distributed processes.
Based on the similarity assumption, we discover anomalous processes by
finding the earliest last timestamps or applying a distance-based outlier de-
tection method. The former aims to localize fail-stop faults, while the latter
aims to localize non-fail-stop faults. In distance-based outlier detection, we
map each per-process trace into an Euclid space, and define a suspect score
based on the distance to the kth nearest neighbor. We consider traces that
have the highest suspect scores anomalous.

Step 3: Function-level localization The final step finds the functions, or call stacks,
that best explain the anomalousness in the processes detected at the second
step. For fail-stop faults, we report to the problem analyst the last trace entry
of the fail-stop process. For non-fail-stop faults, we calculate the contribu-
tion made to the suspect score of each function, and report to the problem

40

Outlier!Outlier!
proc

trace

proc

trace

proc

trace

proc

traceproc

trace
proc

trace

proc

trace

proc

trace

proc

trace

proc

trace

proc

trace

proc

trace

proc

trace

proc

trace

proc

traceproc

trace

proc

trace
proc

trace

proc

trace

proc

trace

proc

trace

Func
Suspect Score
Contribution

f5

f4

f3

f2

f1

f5

f4

f3

f2

f1

Data Collection Finding Anomalous
Processes

Finding Anomalous
Functions

Figure 5.1: Overview of the outlier-detection-based fault localization. The
first step, annotated with “Data Collection”, involves collecting function-call
traces from the target application. The next step, annotated “Finding Anoma-
lous Processes”, localizes the fault to the anomalous processes. The final step,
annotated with “Finding Anomalous Functions”, ranks the functions according to
their contribution to the suspect score.

analyst the functions ordered by the contributions to emphasize more suspi-
cious ones.

We evaluate how effective the proposed technique is by applying it to local-
ize real faults that occurred in a 129-node production cluster running the SCore
cluster middleware [39]. Our fault-localization technique successfully identified
several anomalous function-call behaviors observed while the system was oper-
ating incorrectly, which led us to find unknown bugs. These results suggest that
our proposed technique as well as observing similarities are effective in real-world
computing systems.

The rest of this chapter first describes the details of the techniques for process-
level and function-level localization in Sections 5.1 and 5.2. We also discuss the
scalability of process-level localization with respect to the number of processes in
Section 5.1. Finally, we present our experimental results in Section 5.3, followed
by a brief summary in Section 5.4.

41

5.1 Process-Level Localization
To locate anomalous processes, we use two algorithm: 1) the identification of the
process that stopped generating traces first (Section 5.1.1), and 2) the identifica-
tion of processes whose traces are the least similar to those of the other processes
(Section 5.1.2). The first technique locates processes with fail-stop problems; the
second focuses on non-fail-stop problems. As noted in Section 2.1, both tech-
niques involve the assumption that a failure itself has been detected by an external
failure-detection mechanism (see Section 2.1 for the definition of “failure detec-
tion”), and attempt to find the processes that caused the given failure. To do so,
we first apply the localization for fail-stop problems to the traces collected when
the failure occurred, and determines whether the failure is actually fail-stop. If
not, we use the second localization algorithm to find behavioral anomalies.

5.1.1 Fail-Stop Problems
The first technique finds outlying processes by comparing the last timestamp of
all per-process traces. If one process or a small number stopped generating traces
significantly earlier than the others, the function that generated the last trace record
may be correlated with the root cause of the problem. For example, application
crashes or infinite blocking in system calls would manifest themselves as such
fail-stop symptoms. Such outlying processes are likely to be of interest to the
problem analyst.

To find a fail-stop process, we first adjust the last timestamps of the processes
so that they can be comparable with one another. Since a timestamp is recorded
by reading a cycle counter in the CPU of each local node, we convert it to the
local clock time by using the gettimeofday system call. Of course, local clocks
can differ in distributed nodes, and thus simply comparing them could produce
wrong results. We assume that they are well synchronized through such time-
synchronization protocols as NTP [56]. Minar reported that only 10% of 647,401
nodes on the Internet had an offset more than 20ms, and only 1% have offset
greater than 1s [57] . We expect that in a cluster environment the possibility
of offset being greater than 1s can be negligible if NTP is properly configured.
We conservatively assume that the resolution of local clocks is as coarse as one
second.

Next, we compute the mean and standard deviation of the adjusted timestamps,
and find the earliest timestamp among them. If the earliest timestamp is substan-
tially different from the mean with a small standard deviation, we decide that the
failure is caused by a fail-stop fault. For example, if the earliest timestamp is
several minute earlier than the mean with a standard deviation of less than a few
seconds, we determine that the process with the earliest timestamp is an outlier.

42

Otherwise, we assume that the problem is caused by a non-fail-stop fault, such as
performance degradations, livelocks, deadlocks, and infinite loops. We localize
them with the second technique, which analyzes the whole traces of processes to
find outliers.

Scalability with Number of Distributed Processes Computing the average and
standard derivation of the last timestamps of all processes can be implemented by
gathering all the timestamp data to a single node and simple arithmetic operations
with the gathered data. With a tree topology, the gather operation can be done in
O(n log n) steps, where n is the number of processors. Computing the difference
between each timestamp and the average takes O(n) floating-point subtractions.
Even if n were as large as hundreds of thousands, it would only take a millisecond
or less with a modern CPU. Thus, we expect that the number of processes is
unlikely to cause scalability problems in this algorithm.

5.1.2 Non-Fail-Stop Problems
To find outlying processes that exhibit non-fail-stop behavior, we look at the dif-
ference in the execution time spent in each function. Specifically, we define a
pair-wise distance metric that estimates dissimilarity between two traces accord-
ing to the function-execution time. Then, we compute a suspect score for each
trace by employing an algorithm for distance-based outlier detection [9, 68]. The
suspect score of a trace quantifies the difference between the trace and a collection
of traces that we consider normal. Since we assume the spatial similarity about
process behaviors, we consider that the higher the score is, the more likely the
process is to have caused the fault. Thus, the goal in this step is to compute the
suspect score for each trace and to construct the trace ranking by using the score.

While this approach attempts to narrow the root cause of a failure down to a
small number of outlier processes, false positives are possible if legitimate pro-
cesses exhibit outlying behaviors. For example, in a master-worker style dis-
tributed application, the master process would execute different functions from
the workers, and thus would have a large distance to any of them. The above
approach to outlier detection, while it does not require any a priori knowledge
on the target system (i.e., an unsupervised algorithm), would consider the master
process an outlier.

Our extension of the unsupervised approach attempts to eliminate such false
positives by exploiting previous traces, if available. When constructing a trace
ranking, our one-class [87] algorithm considers an outlier trace normal if it has a
similar past trace. For example, if previous traces include a similar trace to that of
the master process, the one-class algorithm gives the master process a low suspect

43

score so that it is not considered an outlier. The rest of this section describes the
pair-wise distance metric and our uniform analysis framework that handles both
the unsupervised and one-class ranking.

5.1.2.1 Pair-wise Distance Metric

The process behavior that we exploit in this step is how each process spent its
execution time in functions. We assume the spatial similarity with respect to the
function execution time behavior. Thus, we define the distance of two processes
so that it reflects the dissimilarity with respect to the behavior. Specifically, we
first summarize the raw trace of a process into a function profile that represents
the function execution times. The profile for process h is a vector, p(h), of length
F, where F is the total number of functions in the application.

p(h) =

(
t(h, f1)
T (h)

, . . . ,
t(h, fF)
T (h)

)
(5.1)

Here, t(h, fi) represents the time spent in function fi by process h, and T (h) the
total execution time of the process, i.e., T (h) =

∑F
i=1 t(h, fi). The ith component of

the vector represents the fraction of the time spent in function fi by process h.
Unlike the coverage profiles used in the model-based approach presented in

Chapter 6, the above function profile uses time profiles. While time profiles may
be more suitable for localizing performance faults, they can be more prone to false
negatives if the function has high variability in its execution time. For example,
assume that a function is always called and takes a time of nearly zero seconds
to several minutes. In time profiles, even if the function is not called (thus zero
execution time), it can be marked as normal, since the ordinary execution time
ranges points near to zero. In contrast, coverage profiles only retain the fact that
the function is always called; thus, the absence of calls is immediately determined
as unusual. In our analysis framework, the specific definition of the distance met-
ric is replaceable; both the time and coverage metrics can be used in the same
manner as described below.

Based on the function profiles, we can define the distance between two pro-
cesses by the Manhattan distance of the profile vectors. A profile vector, p, is a
point in F-dimensional Euclid space, where F is the number of functions in the
application. Let δ(g, h) be the vector of the component-wise difference, δi(g, h),
of the two profiles, p(g) and p(h). The distance between the two profiles, d(g, h),
is defined as:

d(g, h) = |δ(g, h)| =
F∑

i=1

|δi(g, h)| (5.2)

That is, the distance between two vectors is the sum of the component-wise dif-
ference between the two vectors.

44

0.5

1.0

A

B

p(g) = (0.7, 0.3)

0

0.5

1.00.7

0.3

p(h) = (05, 0.5)

),(hgδ

Figure 5.2: Simple example of function profiles. The points p(g) and p(h)
represent the profile vectors for the process g and h. The arrow from p(g) to p(h)
represents the difference vector between the two points.

Figure 5.2 illustrates a simple case, where the application only has two func-
tions, A and B. The two processes of the application depicted in the figure are the
processes g and h, whose profile vectors correspond to (0.7, 0.3) and (0.5, 0.5).
The profile vector (0.7, 0.3) means that the process spent 70% of the time in func-
tion A and 30% in function B. The distance between g and h is thus calculated
as:

d(g, h) = |(0.5 − 0.7, 0.5 − 0.3)|
= |−0.2| + |0.2|
= 0.4

(5.3)

We will next describe call-stack profiles, an extension of function profiles with
context-sensitive analysis, and compare the Manhattan distance and other distance
metrics.

Call-Stack Profiles Instead of function profiles, we can use call-stack profiles
as well. We can differentiate each function call based on its call stack, since we
can simulate the call stack of the process from the function trace. For example,
assume that an execution trace contains two stacks to function C: (A → B → C)
and (D → E → C), where (A → B) denotes a call from A to B. We can consider
these two stacks as two different functions, f1 and f2. The time t(h, f1) attributed
to f1 is equal to the time spent in C when it was called from B when B was called
from A, and the time t(h, f2) is equal to the time spent in C when it was called
from E when E was called from D. By differentiating the functions by their call
stacks, the derived context-sensitive profiles can be more precise summaries of
the execution behaviors of the application. Since the algorithms presented below

45

are independent of the type of profile used, we will refer to the components of
profile vectors as functions for simplicity of presentation. Section 5.3 presents
experimental results for the stack-based method.

Manhattan Distance vs. Other Distance Metrics As previously described, we
use the Manhattan distance as the distance metric for function profiles, rather than
other metrics, such as the Euclidean distance (i.e., the square root of the sum of the
squares of the component-wise differences). Both the Manhattan and Euclidean
distances are special cases of the Minkowski distance [40]:

dm(g, h) = (
F∑

i=1

|δi|m)1/m (5.4)

However, we use the Manhattan distance because in the function profile space
there should be no shortcuts for calculating the distance between two points in the
function profile space. To illustrate this, Figure 5.3 depicts an example scenario,
where profile g spent 100% of its execution time in function A, profile h spent 50%
in each of A and B, and profile k spent 100% in function C. With the Manhattan
distance, the distance between g and h is calculated as d(g, k) = 2, and the distance
between h and k is also d(h, k) = 2. The fact that the two distances are the same
is intuitive; after all, both processes g and h share nothing with process k with
regards to their execution-time distribution. In contrast, the two distances with the
Euclidean metric are not the same: d(g, k) is

√
2, while d(h, k) is

√
1.5. The other

distance metrics derived from the Minkowski metric have the same disadvantage
compared to the Manhattan distance.

5.1.2.2 Unsupervised Trace Ranking

The unsupervised trace ranking computes suspect scores with traces collected
when the application failed, but with no previous traces. To compute scores with
no a-priori knowledge, we employ an unsupervised algorithm for detecting out-
liers, called the k-nearest neighbor (k-NN) [68]. The k-NN finds outliers based on
the distance between each data point to the kth nearest neighbor in the data set.
We define suspect scores by the distance to k-NN and compute the trace ranking
as follows.

First, we determine the value of k, which is the threshold between normal and
outlier traces. Too large values of k could cause normal traces to be marked as
outliers, while too small values could miss true outliers. For example, assume
that a fault affected t processes of the application so that their behaviors were
substantially different from the others, yet similar to one another. In that case, any
values of k less than t are likely to miss k anomalous processes. Since we have no

46

0.5

0.5
1.0

1.0

A

B

C

p(h) = (0.5, 0.5, 0.0)

p(g) = (1.0, 0.0, 0.0)

p(k) = (0.0, 0.0, 1.0)

0

d2 d1

0.5

1.0

Figure 5.3: Comparison of the Manhattan and Euclidean distance metrics.
The three points are the profile vectors for processes g, h, and k. The axes repre-
sent functions, A, B, and C, that the application executed. The arrows annotated
with d1 and d2 indicate the distances between p(g) and p(k) defined by the respec-
tive Manhattan and Euclidean distance metrics.

knowledge on the actual number of affected processes, we cannot determine the
minimum value that k should be greater than. However, since the assumption in
this approach is that most of the processes in the application behave similarly, we
can expect that normal processes can be clustered into a small number of tightly
formed clusters. Thus, relatively large values of k would still be able to classify
normal traces correctly. In fact, in our experimental studies, we have observed
that the algorithm worked well for all k’s larger than 3 and up to |T | /4, where |T |
is the number of traces, T . Thus, we use |T | as the value of k in this study.

Next, for each trace g, we find k-NN, gk ∈ T − {g}, by computing a sequence
of traces gi ∈ T − {g}, 1 ≤ i ≤ |T | − 1 based on the distance from g.

Td(g) =
〈
g1, g2, . . . , g|T |

〉
, s.t. d(g, gi) ≤ d(g, gi+1) (5.5)

Thus, gk is the k-th component of the sequence above. The suspect score, σ(g),
for trace g is then defined as the distance to k-NN:

σ(g) = d(g, gk) (5.6)

We compute the ranking of traces based on the σ(g) and further localize the fault
into specific anomalous functions by the third step described in Section 5.2.

47

h2 g

g2

h

g1
h1)(gσ

)(hσ

, : normal traces, : normal traces : anomalous traces: anomalous traces

Figure 5.4: Example of the unsupervised trace ranking. Each object represents
the trace of a failed run of an application process. The open triangles and circle
designate that these objects are normal, while the closed rectangles are anomalous.
g is one of the true anomalous traces, while h is a normal trace, even though it is
an outlier. The arrows for g and h represent the distances to k-NN, where k = 2.

Figure 5.4 illustrates an example suspect-score computation where a majority
of traces are located closely within a small area and three traces are far away from
the majority. Assume that the right-most one, g, is a true anomaly; g1 is the first
and g2 is the second nearest neighbor. Assume that we set k = 2. The suspect score
of g is the distance between h and h2, which is annotated with σ(g) in the figure.
As can be implied from the figure, σ(g) is one of the largest in the traces depicted;
thus, trace ranking results in a successful identification of the true anomaly, g. The
left-most, on the other hand, trace illustrates a false-positive case; assume that the
trace, h, is an outlier, but is a correct trace. Again, trace h1 is the first h2 is the
second-nearest neighbor of trace h. The suspect score of h is the distance between
h and h2, annotated with σ(h), and, although legitimate, it is also relatively large
compared to those of the other traces. The resulting ranking causes the trace to be
incorrectly marked as anomaly.

In our experimental studies, the unsupervised algorithm presented here have
successfully computed high trace ranks for anomalous processes. However, as
in the previous example, we also observed that some legitimate processes did re-
ceive a high suspect score; e.g., the master process in a master-worker system
was given a high score, causing it to be considered as an outlier. Any such legit-
imate processes that have larger suspect scores than the true anomalous process
are false positives for the problem analyst. We reduce the false-positive rate by
using another ranking algorithm, which is described below.

48

5.1.2.3 One-Class Trace Ranking

The one-class trace-ranking algorithm computes suspect scores using previous
traces in addition to traces collected when the fault occurs. We call the former
reference traces, and the latter trial traces to avoid confusion. By using reference
traces, the one-class algorithm aims to mark unusual, but correct traces as normal
traces, thus reducing the false positive rate.

As reference traces, we use not only known-correct traces, but also any traces
that have behaviors that are of little interest to the problem analyst, no matter
whether they are correct or incorrect. For example, finding a behavior that com-
monly appears as a result of many classes of different faults would not help the
analyst to localize a particular fault. We include such traces, if any, to improve the
precision of localizing faults.

Note that our use of the term one-class classification is not correct in the
strictest sense. One-class classification generally refers to classifying a single
class and distinguishing it from all other data by only using sample data from
the classified class [87]. In the domain of anomaly detection, the classified class
means the set of correct behaviors of the application; thus, analysis using both
correct and incorrect traces does not mean one-class classification. Below, we
use the term in the sense where we detect any behaviors that are of interest using
available traces, no matter whether they are correct or incorrect.

The one-class ranking computes a suspect score for each trial trace by taking
the minimum of both the k-NN in the trial set and the nearest neighbor in the
reference set. For each trial trace, g, we compute the suspect score, σ(g), as
follows. First, as in the unsupervised ranking, it first finds the k-NN in the trial set
(i.e., gk ∈ Td(g)). Next, we find the trace, r1, in the reference set, R, that is nearest
to the trial trace:

r1 = argmin
r∈R

d(g, r) (5.7)

Based on gk and r1, we define the suspect score, σ, for trace g by the minimum
distances to them:

σ(g) = min{d(g, gk), d(g, r1)} (5.8)

By taking the minimum, we can ensure that all traces are given as low a suspect
score as in the unsupervised-ranking case. In addition, if the reference set includes
correct, but unusual traces, we can award low scores to traces similar to these
unusual ones as well. The problem in unsupervised ranking is that a legitimate
outlier can be assigned a high suspect score since it has few similar traces; we
avoid such false positives by considering the distance to the nearest neighbor in
the reference set as well.

Figure 5.5 illustrates an example of computing the one-class suspect score,
which is based on the previous unsupervised example, but has several reference

49

h2 g

g2

h

g1
h1)(gσ

)(hσ

, : normal traces, : normal traces : anomalous traces: anomalous traces
, : reference traces, : reference traces

r1

Figure 5.5: Example of one-class trace ranking. Each object represents a trace
of an application collected from previous runs or from the diagnosed failed run.
As in Figure 5.4, the open triangles and circle designate that the objects are nor-
mal, while the closed rectangles are anomalous. Unlike the unsupervised example,
this case also includes reference traces, which are designated in gray.

traces added from previous runs (shown in gray). As we can see from the fig-
ure, σ(g) has the same value as the unsupervised case since there are no reference
traces close to g. Thus, we can assign a high trace rank to g in this case as well.
However, unlike the unsupervised case, the suspect score of the unusual, but cor-
rect trace, h, has a closely located reference trace, annotated with r1. Thus, we
assign a low value to σ(h), as indicated by the distance between h and r1.

Scalability with Number of Distributed Processes Both the unsupervised and
one-class algorithms scale well with the increasing number of distributed pro-
cesses, because the suspect scores of all traces can be computed in parallel as
follows. First, we compute the time profile for each process in parallel by ex-
ploiting the underlying distributed nodes. Each node computes the profile for the
process that was running on the node. Next, each node exchanges the computed
profile with the rest of the nodes. Such all-to-all data gathering can be performed
in O(log n) steps, where n is the number of processes, using the recursive doubling
algorithm [88]. The amount of data exchanged depends on the number of distinc-
tive functions or call stacks appearing in the profiles. In our case studies, we used
a 10-MB fixed-length buffer, and observed a typical number being in the hundreds.
Therefore, the data size exchanged at each step would be as large as n KB, which
would take less than a second to transfer among cluster nodes interconnected with
a Gigabit Ethernet. Next, each node computes the suspect score for its process
by using either the unsupervised or one-class algorithms, which takes O(n) com-
parisons of the profiles. Finally, we gather the scores computed in parallel to a

50

central location, and compute the ranking for the processes by sorting them. The
scores can be gathered in O(log n) steps and sorted in O(n log n) steps. All in all,
the dominant step in terms of computational complexity is the final sorting step;
however, in practice, we expect that the profile exchange step would take longer
even for as many processes as a million. In fact, sorting a million floating-point
values on a machine with a dual-core 2-GHz CPU with 3 GB of RAM took only
half a second. Overall, we expect that the profile comparison at each local node
would be the most dominant step, and thus the localization time for the proposed
algorithms would increase linearly with the number of processes.

5.2 Function-Level Localization
The final step of our analysis localizes the fault at hand to specific functions or
call stacks. We will describe a function-level localization algorithm for each of
the fail-stop and non-fail-stop faults. For the former, we assume that the previous
step found anomalous processes whose last timestamps are substantially earlier
than the rest. For the latter, we find anomalous functions or call stacks for the
processes with the highest suspect scores. We present the problem analyst with
the functions found in this step to assist further manual diagnosis.

5.2.1 Fail-Stop Problems
For a fail-stop fault, we present the problem analyst with the function that gen-
erated the last trace entry in the anomalous process identified by the previous
step. The information should be useful for faults such as application crashes and
deadlocks. For example, illegal memory access such as dereferencing NULL in C
programs would result in a crash. Our analysis attempts to pinpoint the specific
function that performed the illegal access. As another example, let us suppose that
a process had infinitely blocked on a synchronization primitive (i.e., a deadlock);
our analysis would locate the function that resulted in this infinite blocking. For
non-fail-stop problems, we use the following analysis.

5.2.2 Non-Fail-Stop Problems
To localize a fault down to anomalous functions, we find the functions that con-
tributed most to the ranking of traces in the last step. For all anomalous processes,
we compute a sequence of the functions, fi ∈ F, 1 ≤ i ≤ |F|, ordered by the dif-
ference to the nearest-neighbor process. The functions that have the largest differ-
ences explain why the process is an outlier; by presenting the function sequence,

51

we can expect that the problem analyst can focus on more suspicious functions
first, possibly resulting in faster determination of the root cause.

We compute the function sequence as follows. As previously described, the
suspect score of trace g is defined as the distance between g and another trace h
that is either the k-NN or the nearest-reference trace, depending on the specific
algorithms employed to compute the trace ranking. Thus, from Equation (5.2),
the suspect score, σ(g), is defined as

∑F
i=1 |δi(g, h)|, where δi(g, h) is the difference

between the i-th components of p(g) and p(h). Based on the component-wise
differences, we can compute the sequence of functions, Fδ(g), for process g as:

Fδ(g) =
〈

f1, f2, . . . , f|F|
〉
, s.t. δi(g, h) ≤ δi+1(g, h) (5.9)

5.3 Experimental Results
To evaluate how effective the approach based on outlier detection discussed above,
we conducted a case study with a distributed cluster management system called
SCore [39]. The installation of SCore on a public computational cluster at the
Tokyo Institute of Technology has suffered from occasional failures with varying
symptoms. Here, we will first present an overview of SCore, and then describe
how we collected function-call traces from it. Finally, we will describe how we
localized two representative faults: the network stability problem and the scbcast
problem.

5.3.1 Overview of SCore Environment
SCore is a large-scale parallel programming environment for clusters, consisting
of a single master node and multiple compute nodes. It provides job-execution fa-
cilities for several parallel-programming paradigms, including MPI, PVM, OpenMP,
MPC++, and distributed shared memory, with the support of distributed schedul-
ing, checkpointing, and migration. It is implemented mainly in C++ user-level
code with several kernel-level extensions, and has a large code base; it has had
more than 200 KLOC in 700 source files as of version 5.4.

The user of SCore submits a job to the central job scheduler with a description
specifying its hardware and software requirements. The scheduler matches the re-
quirements and available computing resources, and starts the job on the allocated
resources. SCore uses a per-node daemon process, scored, to spawn and man-
age jobs on remote nodes. It monitors the jobs under its node, and redirects their
output to the user’s terminal.

SCore implements a heartbeat mechanism that periodically checks the liveness
of the scored on each node. All scored processes running on the compute nodes

52

and the sc watch process on the master node form a ring-topology network by be-
ing connected to one another. The sc watch process on the master node sends an
initial heartbeat packet to its neighbor scored process. Each scored, receiving a
heartbeat packet from a neighbor, forwards the packet to another neighbor, which
should finally return to sc watch through the ring network. sc watch waits for
the packets to be returned by another neighbor scored with a timeout of a speci-
fied duration (ten minutes, by default). If it does not receive any heartbeat packets
for the duration, it assumes that a scored in the ring has failed and automatically
attempts to kill and restart all scored processes. Note that the heartbeat mecha-
nism does not know the specific daemon that caused the timeout or the reason for
this.

In three months of monitoring the SCore environment, we witnessed several
timeouts. The system administrator of the cluster quickly identified the root causes
for some of the timeouts by manually examining various log messages and the
status of hardware. We applied our framework to analyze the other timeouts,
where manual efforts were not able to identify the root causes, using the tracing
mechanism described below. We report the results of analysis in the following
sections.

The platform for the cluster is as follows. It consists of 129 compute nodes
with a dedicated master node, running the SCore v5.4. Each node runs Linux
v2.4 (Red Hat v7.2) on dual Pentium III 1.4-GHz processors with 1 GB of RAM.
The compute nodes are interconnected with both a 100BASE-TX Ethernet and
Myrinet2000.

5.3.2 Function Tracing in SCore Environment
We take the function-call traces of all scored processes running on the compute
nodes to analyze the SCore environment. We modify scored to write a trace
statement into a trace buffer before and after each function call. To modify the
program, we instrument each function-call site using a dynamic binary instru-
mentation tool called spTracer [59]. spTracer injects an instrumentation agent
to the process in a similar manner as the process hijacking technique described
by Zandy et al. [97]. Once injected to the target process space, it rewrites each
function-calling instruction to a jump instruction to a trampoline. The trampoline
is an instruction sequence that in turn calls the original target function as well
as executes tracing routines before and after the call. The agent performs the in-
strumentation incrementally: once activated, it modifies each call site only in the
currently executed function so that at every call site the process yields control to
the agent. Each time the agent is activated again, it rewrites the call site to the
jump instruction to the trampoline, and modifies the target function in the same
manner as the caller. By incrementally following the control flow of the appli-

53

cation, it reduces perturbation due to dynamic instrumentation, since doing all
functions at once could pause the execution of applications for a non-negligible
duration, especially for large programs.

We create a fixed-length circular trace buffer on an IPC shared memory seg-
ment; the instrumented scored writes a trace entry at each function call and return
into the trace buffer. By limiting the length of the buffer to a fixed size (10 MB
in this particular study), we avoid exhausting the free memory available on each
node. Every time the traced process reaches the end of the buffer, it continues to
write traces by overwriting the oldest entries. By allocating the chunk of memory
for the trace buffer on a shared memory, we retain the contents of the trace buffer
even if the application process suddenly exits. This property is especially impor-
tant in our case study; common failures in the SCore environment did not cause
the operating system to crash, but the scored daemons did.

As illustrated in Figure 4.1, each trace entry consists of five fields, including
the trace type, function address, process ID, thread ID, and timestamp, with an
optional variable number of fields. The type of trace is either call or return; the
combination of the process and thread IDs uniquely designates the thread that
generates the trace; the timestamp field holds the value of the processor-cycle
counter; and the optional fields are used for recording argument and return values
for particular functions, such as the return value from system calls. Our 10-MB
buffer usually held a 10-minute execution of scored.

The automated localization starts operating once a failure is detected; for the
SCore environment, we extended sc watch so that when a timeout occurs (i.e., a
failure), it dumps the contents of the trace buffer into the local disk on each node.
The automated analysis in turn collects all dumped trace files from the compute
nodes and start applying the analysis previously described.

While our tracing framework can be used for almost all types of applications
with no a priori internal knowledge or special annotations, we make two assump-
tions to simplify recording two of the above trace fields: thread IDs and times-
tamps. First, the technique of obtaining thread IDs depends on specific thread
libraries used in target applications; thus, we need to know how to collect thread
IDs in the employed threading library. scored is a multithreaded program im-
plemented with its custom threading library MPC++ [38]. In this experimental
study, we extend spTracer to be able to trace MPC++ programs. However, in
general, we can see that such use of a custom thread library is rare: For exam-
ple, the majority of multithreaded programs for Unix systems may use the POSIX
Threads API [13], where thread IDs can be obtained with the pthread self func-
tion. Thus, by supporting a small number of commonly used libraries, we can
expect that many applications do not require such application-specific extensions
as MPC++ support for scored. Second, our current prototype takes timestamps
by reading the processor-cycle counter for a minimal performance penalty being

54

imposed. We use the timestamps for calculating the time spent in functions and
computing the function profiles for traces, as defined by Equation (5.1). Here,
we assume that the cycle counter increases regularly; therefore, the absolute du-
ration for each increment of the counter must be the same. While this assumption
has been valid on traditional processor architectures, this is not necessarily so on
current modern processors with dynamic voltage and frequency scaling (DVFS),
where the clock speed can change dynamically. While our experimental plat-
form did not have the DVFS technology in place, we will explore alternative low-
overhead timestamping techniques in future work.

5.3.3 Network Stability Problem
The network-link stability problem exhibited the following symptoms. The sys-
tem stopped scheduling jobs, and sc watch detected a timeout after ten minutes
and restarted the scored daemons on all nodes without errors. As failures oc-
curred multiple times in two months, it was imperative to find their causes.

Our earliest last timestamp approach described in Section 5.1.1 determined
that the failure exhibited a clear fail-stop behavior. We identified that host n014
stopped generating trace records more than 500 sec earlier than any other host in
the cluster. We examined the last trace entry on host n014 and found that scored
terminated voluntarily by calling the score panic function and eventually is-
sued an exit system call. Figure 5.6 visualizes the trace on node n014 with
the Jumpshot tool [15]. In the figure, each rectangle represents a function call
with the execution time indicated by the width. However, we could not find the
caller of score panic because the trace buffer was of fixed size. The entire buffer
preceding score panic was filled with calls to myri2kIsSendStable, evicting
the common caller of myri2kIsSendStable and score panic from the buffer.
Future versions of our tracer will address this limitation by maintaining a call
stack for the most recent trace record and reconstructing the call stacks for earlier
records.

For the problem at hand, we used the source code of scored to find that
score panic and myri2kIsSendStable were called from freeze sending.
The scored calls freeze sending each time a running thread yields its exe-
cution so that there are no more in-flight messages on the node’s Myrinet-2000
NIC. The freeze sending repeatedly checks the existence of in-flight messages
by calling myri2kIsSendStable in a loop until it returns true. However, if the
check count exceeds one million, freeze sending assumes that a network error
has occurred and aborts by calling exit. Our findings analyzing traces matches
the case when in-flight messages were in fact never completely delivered. We
reported the results of our analyses to the SCore developers. Their feedback con-
firmed our findings. They had observed such symptoms in Ethernet-based net-

55

���������	
�����	
����	��
��

Figure 5.6: Scored trace on node n014 visualized with Jumpshot [15]. Each
rectangle represents a function call with its execution time indicated by the width.
Nested rectangles mean nested function calls. The blue rectangles illustrate the
large number of calls to myri2kIsSendStable, and the pink one the call to
score panic.

works, but our report informed them that there is a similar problem in Myrinet
networks.

These results illustrate the difficulty of building robust distributed systems dis-
cussed in Section 1.1. That is, our finding on faults in the mechanism of detect-
ing timeouts was behavior that had been unexpected by the SCore developers.
They have changed timeout detection so that it was more conservative in the latest
versions of SCore. This change included a call to function usleep to suspend
execution for 100 ms each time myri2kIsSendStable is called. The SCore de-
velopment team informed us that the aim of this change was to adapt the timeout
mechanism of freeze sending to the modern faster CPUs. They suggested that
the old timeout mechanism should work in our environment, which uses Pentium
III 1.4GHz CPUs. However, with the results of our analysis, we suspect that either
their estimates could have been wrong or there is another unknown bug in SCore.

In summary, our automated analysis accurately helped identify incorrect as-
sumptions or the existence of yet-unknown bugs. Although we only inspected
a small part of SCore’s source code, the analysis automatically identified the
crashed node and the suspicious function, score panic, with no a priori knowl-
edge on the internals of SCore. Furthermore, the number of functions that needed
to be manually examined was only three—score panic, myri2kIsSendStable,
and freeze sending—out of the total of 2319 functions in scored.

56

5.3.4 Scbcast Problem
Another problem occurred when an SCore component called scbcast stopped
responding to requests from scored. The scbcast component serves as a broad-
casting proxy for monitoring information collected from all scored daemons
running on compute nodes. SCore provides a client program that connects to
scbcast to retrieve the information, rather than contacting individual scoreds
directly.

While this technique eliminates some of the load from scored processes, it
introduces another potential point of failure. Our automated analysis that is de-
scribed below revealed a bug in the scored that caused the entire SCore sys-
tem to stop functioning. We have identified that the bug was initiated by the
anomalous behavior of an scbcast process that stopped responding to incoming
requests from scoreds. The automated restart by sc watch was ineffective to
rectify this case: Every time scored daemons were restarted, they immediately
stopped functioning as the anomaly in scbcast persisted even after the scoreds
were restarted. As a result, the system administrator had to manually restart all
SCore components without knowing which component was the root cause of the
problem. Here, we will explain how our analysis revealed that the problem was
caused by the combination of the bug in scored and the anomalous scbcast.

First, we decided that the problem did not exhibit a fail-stop behavior. All
nodes terminated at similar times—the maximum difference between the last times-
tamps was only 20 sec; the earliest process terminated less than a second earlier
than the second earliest. Therefore, we decided that the problem was a non-fail-
stop problem, which led us to use the trace-ranking algorithms.

To identify the anomalous scored daemons, we first applied the unsupervised
ranking algorithm based on call-stack profiles with the results shown in Figure 5.7.
For each point, the x-coordinate corresponds to the name of the node where a
scored daemon ran, and the y-coordinate corresponds to its suspect score. As
we can see, the suspect scores of node n116 and n129 are substantially higher
than those of the other nodes. To further narrow down anomalous nodes, we used
the set of traces in the previous network stability problem as reference traces.
Figure 5.8 shows the results for the suspect scores computed with the one-class
algorithm. Here, only node n129 has a substantially higher score than those of
the others, while node n116 has been assigned a score as low as the others. These
results allowed us to focus further on the behavior of node n129.

To find the cause of the anomaly in node n129, we applied function-level
localization that finds the call stacks making the largest contributions to the sus-
pect score. Figure 5.3.4 shows the contribution of each call stack, where the x-
axis corresponds to a call stack (i.e., fi in Equation (5.9)), and the y-axis corre-
sponds to its contribution (i.e., δi(g, h) in Equation (5.9)). As we can see, the call

57

n
0
0
2

n
0
0
5

n
0
0
8

n
0
1
1

n
0
1
4

n
0
1
7

n
0
2
0

n
0
2
3

n
0
2
6

n
0
2
9

n
0
3
2

n
0
3
5

n
0
3
8

n
0
4
1

n
0
4
4

n
0
4
7

n
0
5
0

n
0
5
3

n
0
5
6

n
0
5
9

n
0
6
2

n
0
6
5

n
0
6
8

n
0
7
1

n
0
7
4

n
0
7
7

n
0
8
0

n
0
8
3

n
0
8
6

n
0
8
9

n
0
9
2

n
0
9
5

n
0
9
8

n
1
0
1

n
1
0
4

n
1
0
7

n
1
1
0

n
1
1
3

n
1
1
6

n
1
1
9

n
1
2
2

n
1
2
5

n
1
2
8

Node names

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

S
us

pe
ct

 s
co

re

node n129

node n116

Figure 5.7: Suspect scores in scbcast problem computed by unsupervised
algorithm. Each point corresponds to a scored daemon, where the x-coordinate
represents the name of its node, and the y-coordinate its suspect score.

n
0
0
2

n
0
0
5

n
0
0
8

n
0
1
1

n
0
1
4

n
0
1
7

n
0
2
0

n
0
2
3

n
0
2
6

n
0
2
9

n
0
3
2

n
0
3
5

n
0
3
8

n
0
4
1

n
0
4
4

n
0
4
7

n
0
5
0

n
0
5
3

n
0
5
6

n
0
5
9

n
0
6
2

n
0
6
5

n
0
6
8

n
0
7
1

n
0
7
4

n
0
7
7

n
0
8
0

n
0
8
3

n
0
8
6

n
0
8
9

n
0
9
2

n
0
9
5

n
0
9
8

n
1
0
1

n
1
0
4

n
1
0
7

n
1
1
0

n
1
1
3

n
1
1
6

n
1
1
9

n
1
2
2

n
1
2
5

n
1
2
8

Node names

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

S
us

pe
ct

 s
co

re node n129

Figure 5.8: Suspect scores in scbcast problem computed by one-class algo-
rithm. Each point corresponds to a scored daemon, where the x-coordinate rep-
resents the name of its node, and the y-coordinate its suspect score.

58

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
C

on
tr

ib
ut

io
n

function __libc_write

function __select
the rest of the functions

Figure 5.9: Contributions of functions made to the suspect score of n129.

Figure 5.10: Fragment of scored trace from node n129.

stack annotated with libc write, which corresponds to output job status

→ score write short→ score write→ libc write, made a substantially
larger contribution to the suspect score than those of the others. Visualization with
the Jumpshot tool further revealed that scored entered score write and started
calling libc write in a loop, never returning from score write. Figure 5.10
illustrates the particular part of the entire trace. As a result, sc watch received no
patrol message for more than the timeout duration (10 min), and restarted scored

processes. However, the restarted scored daemons exhibited the same behavior:
Node n129 immediately blocked again on the call to libc write. The problem
was fixed only after all SCore services were restarted manually. We can see that
the scoredon n129 was a true anomaly; our outlier-detection approaches were
able to locate it, and the maximum-component approach found the correct symp-
tom in the scored functions. Inspecting all traces manually would have required
substantial amounts of effort.

Examination of the source code revealed that scored was trying to write a
log message to a socket connected to the scbcast process. While it usually

59

completes immediately, it had not returned for 11 min in this particular case.
The libc write function kept blocking instead of returning even though the
amount of data to be sent was relatively small (the maximum message size was
512 bytes). A write to a socket blocks if the message does not fit into the send
buffer of the socket [83]. In turn, the send buffer can fill up if the remote peer
(scbcast) does not read from the socket for some time. Therefore, if scbcast
froze or the network connection to its node went down, all scored processes that
sent job statistics to scbcast would eventually have entered an infinite loop.

Note that scbcast was not traced in this case study. As a result, we cannot
determine why it stopped reading data from the scored packet. However, part
of the problem is on the scored side—we believe that scored should be better
prepared for handling error conditions when writes to the scbcast connections
start blocking. Entering an infinite loop on such an event should be considered as
a bug and our analysis proved useful in identifying its location. We reported the
bug and it is being fixed for a future release of SCore.

To understand why node n116 is an outlier in the unsupervised algorithm,
we found that the call stack making the largest contribution to its suspect score
was fepio read→ ult idle hook→ select. Node n116 spent most of its
time in fepio read, repeatedly calling ult idle hook and select. From the
trace records on the repeated calls to select, we suspected that it had been
expecting incoming messages that had never arrived. By consulting the source
code, we identified that it had in fact been waiting for a message from the scored
on n129, which had been blocking on libc write. Thus, the outlying behavior
of n116 was caused by the true anomaly in n129. To understand why the one-
class algorithm gave 116 as low a score as the other nodes, we examined the
reference trace that was the closest to 116, and found that it also spent most of its
time in the same call stack. This result indicates that this behavior is common to
failures in SCore; indeed, further examination of the source code revealed that this
behavior appeared every time each scored failed to forward keep-alive messages
at regular intervals. Since such unusual, but common behavior is not as relevant to
the problem at hand as that more specific to the problem, our one-class algorithm
proved effective in achieving more precise localization.

5.4 Summary
We have presented our automated approach to the localization of faults based
on the detection of outliers in function traces. For fail-stop problems, we com-
pare the last timestamps and finds the trace with significantly earlier timestamps.
Deadlocks and crashes would often exhibit fail-stop behaviors. For non-fail-stop
problems, we compare the time spent in each function to find outliers in failed

60

runs. We compute trace ranking with the unsupervised and one-class algorithms.
The former operates only with the set of traces collected from the problem at
hand, while the latter improves the precision of analysis by avoiding uninteresting
traces that do not need to be considered as outliers. We have presented the results
of our several-month case study in a real production cluster with two sample prob-
lems: the network stability and scbcast problems. These results demonstrated the
effectiveness of our techniques in fault localization.

The case studies presented in this chapter also indicate a limitation with the
outlier-detection-based approach. The fact that the one-class ranking algorithm
successfully eliminated uninteresting behaviors from the trial traces implies the
effectiveness of comparing behaviors across time. However, it also presents a
new problem on maintaining a possibly very large collection of past behaviors.
In the scbcast problem, we used as a reference a set of traces that was collected
when a failure occurred; however, only using traces from one failure might prove
insufficient for other scenarios. For example, if traces from N different failure
instances are collected, we would end up having an N-times large set of reference
traces. Furthermore, larger-scale systems would magnify the problem as clusters
would be ten times larger, or even scales of a hundred times compared to our
testbed would be commonplace.

This observation motivated our second approach, which is based on historical
similarities in process behaviors. It efficiently summarizes past behaviors as exe-
cution models by learning function call behaviors during normal operations, and
finds anomalous behaviors by comparing failure traces with the derived models.
We describe the algorithm and experimental studies involved in this approach in
Chapter 6.

61

Chapter 6

Model-Based Fault Localization

To localize faults in distributed systems, our second approach learns normal be-
haviors from execution histories and detects deviations from learned past behav-
iors. Specifically, as in the outlier-detection-based approach, it collects the per-
process function-call traces of target systems. Using the collected traces, it per-
forms two phases of analysis: pre-failure model derivation, and anomaly detec-
tion in the failure traces using the derived model. The first phase, using traces
collected under normal operations, automatically derives an execution model that
reflects the normal function-calling behaviors of the target system. When a failure
actually happens in the learned system, the second phase finds violations in the
traces against the derived model. By doing so, it locates specific calling sequences
in the traces that are highly correlated with the failure.

The key challenge in attaining such model-based localization of faults in large-
scale computing systems is then how to perform the model derivation and fault
localization using models in an automated, scalable manner. Learning accurate
models requires to identify self-similar, repetitive behaviors in target systems.
While repetitive behaviors can be assumed to exhibit historical similarities, au-
tomatically identifying similar behaviors in raw function-call traces is not trivial.
Often raw traces are very large in size since typical processes in our target domain
do not start and stop frequently as in desktop applications, but rather always run
with little downtime. Furthermore, as previously stated, such model derivation
must work at scale. For example, the InTrigger distributed computing platform
consists of six clusters distributed among Japanese universities and research lab-
oratories. Decentralization and scalability are key factors in analyzing faults that
occur in such distributed environments.

To tackle this challenge, we exploit two observations on typical software ar-
chitectures and fault characteristics in distributed systems. First, many of the dis-
tributed software for clusters and Grids, such as batch job schedulers and parallel
file systems, consist of processes that employ an event-driven architecture, where

62

Process

Tracer

Process

Tracer

ModelModel Process

Process
Process

Process

Process
Process

Tracer

Tracer
Tracer

Tracer

Tracer
Tracer

Process

Tracer
Call

TraceCall
Trace

Call
TraceCall

TraceCall
Trace

Call
Trace Call

Trace

Call
Trace

Call
TraceCall

Trace

Call
Trace

Call
Trace

NormalNormal TrialTrial

Model
construction

Anomaly
Detection

Figure 6.1: Overview of Model-Based Fault Localization. Model-based lo-
calization derives a model that represents the normal function-calling behaviors
of the processes of the target system using normal traces. It localizes a fault by
comparing the derived model with the trial traces.

several different event-processing routines are multiplexed into a single event
loop. For example, a batch job scheduler for clusters could employ a daemon pro-
cess on each node whose responsibilities include job monitoring under the node
and handling requests from the master job scheduler. A typical software archi-
tecture for such purposes would model job-status changes and incoming requests
from the master as events, and consist of an infinite loop of event-processing rou-
tines. Second, we have observed in our case study presented in Chapter 5 and
the results by other researchers [71] that many anomalies that were observed to
manifest themselves over distributed nodes also exhibited locally observable de-
viant behaviors. For instance, one bug reported by Reynolds et al. [71] caused an
event handler function not to be called, failing to serve incoming requests; such
behaviors could be detected only using locally observable information, namely
function-calling behaviors in this particular example.

Based on the above observations, our approach models system executions by
first learning per-process function-calling behaviors, and then aggregating them
into a single model that represents the behaviors of the entire system. Specifi-
cally, for each member process, we generate a concise per-process model called
the process model from its function call traces. Unlike the previous approaches
that attempted to reconstruct distributed flows by matching distributed traces [8,
17, 42, 60, 71], we only use local information to generate the process model to
eliminate centralized bottlenecks.

To derive the process model, we first decompose the overall function traces
into sub-traces, or execution units, based on their associated event sources, and

63

then derive a model for each event source. This paper focuses on network events
among various event types, which we believe would be the most important events
in distributed computing systems. The event source of network events is their
connection; thus, we treat a sequence of function calls corresponding to the same
network connection as a single execution unit. Next, for each connection, we
derive a model by constructing a call tree consisting of every function appearing
in its associated units, and assigning each function an estimated probability of
appearance. We estimate the probability of a function by dividing its number of
occurrences by the total number of occurrences of the execution units for the same
connection. For instance, if a function always appears when a message arrives at
a connection, we give the function a probability of 1. Creating separate models
for different connections improves the accuracy of estimating probabilities, since
different connections are likely to have different function-calling behaviors. Fi-
nally, we derive the global model by merging process models whose processes are
inferred to have played the same role in the system.

We aid human analysts in localizing the root cause of a fault by comparing its
traces with the derived model. Given failure traces, we first decompose them into
execution units as in the model derivation. For each execution unit, we compute a
suspect score that quantifies how likely a particular part of the call traces was cor-
related with the failure. Functions with low probabilities in the model yield high
suspect scores when called in failures. Frequently called functions in the model
also yield high scores when not called. Finally, we report execution units ranked
with suspect scores to the human analyst, narrowing further manual localization
down to a small part of the overall system.

This approach is especially effective in localizing program logic bugs For ex-
ample, assume that an application performs an operation when receiving user re-
quests. Typical request handling involves executing certain functions depending
the types of the requests: every time a user request arrives at the application, some
functions for the particular request type should be called. However, if the applica-
tion failed to correctly serve a request, some of the functions for the request type
might not be called. The model-based localization could detect such behaviors
as anomalies; the problem analyst would be able to determine the source of the
failure automatically.

For example, a failure occurred at the Tokyo Stock Exchange on February
8, 2008 caused a part of its commercial services unavailable for three consecutive
days [89]. It was reportedly caused because a certain part of newly allocated mem-
ory was not initialized. While we do not know the internal logic of the memory
initialization, it is likely that a certain function related to initializing the memory
area was not called only at the failed case. These behaviors could be detected as
anomalies by generating a model reflecting the correct memory initialization and
comparing the failure traces with the derived model.

64

Both our modeling and fault localization operate in a mostly decentralized
fashion. In the model-derivation phase, only the derivation of global models re-
quires a centralized operation that is globally coordinated, while the derivation of
process models analyzes raw traces in parallel using the same set of nodes as the
target system. Once the global model is derived and deployed to each local node,
our fault localization requires no remote operations. Therefore, our method can
achieve higher scalability compared to the previous approaches based on central-
ized algorithms [8, 17, 42, 60, 71].

We applied our proposed method to localizing a known nondeterministic bug
in a distributed job manager. Experimental results on a three-site 78-node dis-
tributed environment demonstrated that our method quickly locates an anomalous
event that is highly correlated with the bug. Specifically, without our automated
trace analysis, we would have needed to examine all traces of 78 nodes account-
ing for a complete 70-second run. Our analysis narrowed the localization only to
traces from two nodes for less than a second, significantly reducing the burden of
fault localization.

The rest of this chapter explains the details of model derivation in Section 6.1
and fault localization using models in Section 6.2. We then introduce our proto-
type implementation of the proposed technique in Section 6.3, and experimental
evaluation results using the prototype in Section 6.4. We conclude this chapter
with a summary in Section 6.5.

6.1 Model Derivation
Our execution modeling aims at detecting program logic anomalies. A logic
anomaly is a situation where an intended operation is not performed or a non-
intended operation is performed. Such misbehaviors often lead to different func-
tion coverage. For instance, a bug discussed in [71] caused an event-handler func-
tion not to be called. Another example is a bug that caused a hang in a distributed
job manager discussed in Section 6.4. The bug caused a function to be called that
had never been called in normal operations.

We derive the execution model so that it can find quantitative differences be-
tween traces with such logic anomalies and normal traces. To do so, we consider
the following two classes of functions as having higher levels of suspicion:

• Functions that are rarely called in normal operations, but are called when a
failure occurs and

• Functions that are often called in normal operations, but are not called when
a failure occurs.

65

Our model quantifies how such properties hold between normal and failure traces
with the estimated function-call probabilities. We compute the probabilities by
obtaining known-normal function-call traces from the same system under nor-
mal operation states. Using the collected normal traces, we derive the execution
model via the following three-step process: 1) decomposition to execution units,
2) derivation of the process models, and 3) derivation of the global model. The
result of this process is a global model consisting of multiple process models,
each of which reflects the normal function-call probabilities of a particular pro-
cess group. The rest of this section describes the details for each step.

6.1.1 Function-Call Tracing
Similar to the outlier-detection-based approach, we use per-process function-call
traces for learning execution models. A trace entry consists of four fields—type,
timestamp, caller, and callee—and a variable number of optional fields. The type
field consumes one byte and designates the type of the entry; there are currently
three types: call, return, and exception. To simplify modeling and anomaly detec-
tion, we also encode unique identifiers for particular functions such as connect
and recv. The timestamp field records the value of the CPU cycle counter, and
consumes seven bytes. The caller field records the address of the caller and the
callee that of the callee. The size of the fields depends on the architectures: two
bytes on the x86 architectures and six bytes on its 64-bit extension x86-64. Note
that while the x86-64 architecture allows 64-bit addressing, the current available
products do not use the two top-most bytes [1, 37]. We omit those two bytes
to reduce the size of traces. The optional fields encode the parameter and return
values for particular functions. For example, we record the value of the file de-
scriptor parameter of the recv system call to accomplish the trace decomposition
described in Section 6.1.2. The largest optional field in our current implementa-
tion is 128 bytes for recording ready file descriptor numbers on returns from the
select system call. Overall, the total size of a trace entry ranges from 16 to 148
bytes.

6.1.2 Decomposing Traces into Execution Units
Once function traces are obtained, we decompose them into sub-traces, or ex-
ecution units, based on their associated events, assuming that the target system
employs an event-driven architecture. By separating event-handling routines into
different execution units, we aim at improving the resulting accuracy of the de-
rived model. Of the various events in distributed systems, this dissertation focuses
on network events such as arrivals of incoming messages since they are one of the
most representative classes of events in distributed systems. Figure 6.2 illustrates

66

call main
do initialization
while (1)
call select
for each FDs
if FD is ready for recv
recv from FD
call handler for FD

end
end
do finalization
exit

ha
nd

le
r

ha
nd

le
r

m
ai

n
lo

op
in

iti
al

iz
er

fin
al

iz
er

Figure 6.2: Example of trace decomposition into execution units.

an example of such trace decomposition. Note that a program can include regions
that are not related to any meaningful network events. For example, the function-
calling behaviors in the program initialization and finalization parts should not
depend on any incoming messages. We also identify such parts as different units.

We will now discuss how we decompose traces into execution units by the
following three-step process of automated trace and program analyses. Here, we
describe an algorithm for programs that use the select system call for event
multiplexing. It should also be able to be easily extended to other event-processing
frameworks, such as polling.

Step 1: Identification of event loop Since we assume that our target system
uses select to multiplex message-handling routines, we can also assume that the
event loop must include calls to select and recv. Based on this, we can find the
event loop as follows. First, we detect loops at run time by detecting recurring call
stacks in the function traces. We consider the call sequence inside the recurring
stacks as a loop body trace. Next, of the detected loops, we locate the loop that has
calls to select and recv in its body by analyzing the program source or binary
code, and determine this as the event loop.

Step 2: Identification of handler units We decompose the traces inside the
loop at every call to accept or recv, and determine a sequence of trace entries
from a call to the next as a handler unit. The trace decomposition at recv calls

67

assumes that a single event-handling routine starts by first receiving a message and
performs any operations according to the content of the received message without
receiving further data from the connection. Note that a recv system call can only
return a partial message when the given receive buffer is too small to copy the
whole message. Thus, a typical use case of the API repeats a call to recv until no
more data is available on the connection. We treat consecutive calls to recv with
the same file descriptor as a single recv call.

Step 3: Identification of other units The part of traces from the very beginning
of the program to the start of the event loop should represent the initialization of
the program, which typically includes such operations as listening-port setup and
event-handler registration. We call the part the initializer unit. In addition, the
function calls made after the event loop until the termination of the process should
represent its finalization; we call this part the finalizer unit.

6.1.3 Process-Model Derivation
A process model consists of the call trees of the functions in the decomposed
execution units. We derive the process model in the following automated means
of analysis. Note that this model is derived in the same node as each target process,
making it completely decentralized.

First, for each unit, we construct a tree representing function calls from the
starting function of the unit. Each node n corresponds to a function call annotated
with its call site s and callee function g, denoted as s → g. Call site s denotes a
unique location in the parent node’s function, f . The path from the tree root to
each child node corresponds to a function call stack executed at its trace-collection
time. We allocate different nodes to calls from different call sites to the same
function, i.e., if n = s1 → g and m = s2 → g, then n , m. However, we allocate a
single node to multiple calls to the same function from the same location, to avoid
the tree from growing excessively large due to a large number of loop iterations.

Next, we merge the handler units based on their associated connections so
that the process model has a unique sub-model for each event source. We define
the equivalence of connections by their call stacks to the connection-establishing
functions, including bind, connect, listen, and accept of the Berkeley Socket
API. Specifically, let h be a handler unit, and c be the connection from which
the unit received a message. Let s be the call stack to one of the connection
establishing functions for c, denoted as s = {n0, . . . , nk}, where the stack originates
from call tree node n0 and ends with nk. Let S (c) be the set of all the call stacks, s,
associated with connection c, i.e., S (c) = {si}. We assume that two connections, c1

and c2, are equivalent if and only if their associated call stacks are the same, i.e.,

68

S (c1) = S (c2). Based on this relation of equivalence, we categorize handler units
into multiple groups where handler units in the same group have an equivalent
connection. We create a single call for each group tree by merging the trees of the
member units.

The observation behind the above merging of handler units is that if two con-
nections are established by the same call stacks, we could expect that the handler
units associated with them should include similar function calls. This is not neces-
sarily the case; for example, if multiple connections are established by a single call
site to connect in a loop with different socket descriptors, and these connections
are actually related to different roles in the program. However, we expect that
such a program structure would be rather rare; in fact, our case study presented in
Section 6.4 exhibits no such behavior.

Finally, we annotate each node of the call trees by its estimated call probability.
We estimate the probability of a node by counting the number of occurrences of
execution units where the call-stack path of the node appears. Let f and g be
calls in a tree where f is the parent of g. Also, let n f and ng be the number of
execution units where f and g appear. We estimate the occurrence probability of
g as pg = ng/n f . Note that we do not consider how many times a node appears in
a unit (i.e., frequency), but only whether it appears or not (i.e., coverage). Thus,
ng is always less than or equal to n f .

6.1.4 Global-Model Derivation
Once process models are created, we gather them to a central location, and merge
them into a single global model so that it includes the function-call behavior of
all member processes. The reason to merge process models is for scalability with
respect to the number of processes. The space cost to retain individual models,
e.g., for hundreds of thousands of processes would be prohibitively high. For
example, in our case study explained in Section 6.4, the size of process models
was approximately 40 KB, reaching 4 GB with a hundred thousand processes.
However, there would be significant duplication in learned models; not all pro-
cesses would perform different operations, but several processes would play the
same role in the system, thus generating similar function-call traces. For example,
typical distributed software for clusters would employ a tree-style network topol-
ogy with varying tree heights to organize each member process, where each node
would have a different role depending on its depth in the tree. A leaf node process
would only communicate with its parent process, while an internal node process
would communicate with both its parent and child processes. The tree root pro-
cess would be responsible for overall system management, such as responding
incoming user requests and dispatching requests to the child nodes.

To derive a concise global model where these duplicated behaviors are re-

69

moved, we categorize processes into groups where their roles could be expected
to be the same inside each group. We infer the role of each process by the network
connections established in its initializer unit. For example, in the tree-topology
organization, the root process would establish connections by accepting requests
from its children, while the leaf processes would do so by connecting to their par-
ent. By looking at the call stacks that established connections during the process-
initialization stage, we define the equivalence relation between processes, and de-
rive a single model for equivalent processes. More specifically, we identify such
call stacks in the initializer unit by locating calls to bind, connect, listen, and
accept. Let S (p) be the set of those stacks of process p. We call S (p) the process
signature, and define the equivalence of processes p and q by the equality of their
signatures S (p) and S (q).

Figure 6.3 illustrates an example process grouping in a master-worker system.
The master process, which performs operations written in the nearby rectangle,
alone forms a process group. The italicized lines, including listening to connec-
tions from clients and workers, denote the process signature calls for the master
process. The three worker processes, on the other hand, form a single process
group, since they execute the same signature functions, i.e., connecting to the
master.

Once the process models are categorized into groups, we merge the models
in each group into a single process model as follows. First, we merge all initial-
izer and finalizer models by aggregating the respective trees and annotating each
tree node by the mean probability of the originates nodes. Next, we merge the
handler models by finding matching pairs as in the handler-unit grouping in the
process-model derivation. More specifically, for each handler model, we deter-
mine whether there is another handler model that has the same associated connec-
tion. If such a model is found, we merge the pair of models into a single handler
model in the same way as the initializer and finalizer models. Otherwise, we copy
the model to the resulting merged model as is.

6.2 Model-Based Fault Localization
Once the global model for a target system is derived, we deploy it to all local
nodes so that following model-based localization can be applied in a decentral-
ized way. When a failure occurs in the system, we compute a suspect score that
quantifies the correlation of an execution unit in the traces with the observed fail-
ure by comparing the unit with the pre-deployed model. Our scoring algorithm
described below yields high suspect scores to units whose behaviors have greatly
deviated from the learned normal model. Finally, we gather the scores to a central
location and report the scores sorted in decreasing order to the problem analyst so

70

Worker

1. start execution
2. connect to master
3. call select
4. receive
5. back to 3

Master

Worker

1. start execution
2. connect to master
3. call select
4. receive
5. back to 3

Worker

1. start execution
2. connect to master
3. call select
4. receive
5. back to 3

1. start execution
2. listen to clients
3. listen to workers
4. call select
5. accept or recv
6. back to 4

Client

Process
Group

Process
Group

Figure 6.3: Example process grouping in master-worker system. Each of
the master and worker processes performs the operations described in the nearby
rectangle, where the italicized lines denote the process signature calls.

that more suspicious parts of the program can be prioritized in further localization.

6.2.1 Suspect-Score Calculation
We compute the scores by using the following three-step decentralized process:

Step 1: Decomposing traces Decompose the traces into execution units in the
same way as in model derivation.

Step 2: Finding corresponding process model Find the process group with the
same process signature. If no such corresponding process group is found,
report the process as an anomaly to the analyst. If found, proceed to the
next step.

Step 3: Finding corresponding execution models For each trial unit, find the
corresponding execution model in the process model as follows. For both
initializer and finalizer units, locate initializer and finalizer models, respec-
tively. For each handler unit, find the handler model with the equivalent

71

connection, where the equivalence of connections is defined in the same
way as is done in the model-derivation phase. If no corresponding handler
model is found, mark the unit as an anomalous unit. If found, compute its
suspect score by comparing the unit with the found model.

For anomalous processes and units whose corresponding models cannot be found
in the above steps, we highlight them by assigning a maximum suspect score of 1,
since such unknown behaviors should be of interest for the problem analyst. We
compute the other units’ anomaly scores with the algorithm described below.

We consider the following functions more suspicious: 1) those with higher
probabilities of occurrence, but not called when a failure occurs, and 2) those with
lower probabilities of occurrence, but called when a failure occurs. Thus, our goal
in designing the suspect-score calculation is that it gives higher values to those
functions considered more suspicious.

First, we construct a call tree from the given trial unit, u, in the same manner
as in the model derivation. Next, we compute commonality and minimum differ-
ence sets of the nodes in the model and trial tree. Let M and T be the sets of
nodes that appear in the model and trial units, respectively. We define common-
ality, M ∩ T , by the standard definition of the set commonality. Let us introduce
minimum difference, M ⊕ T , to filter out duplicate contributions to the suspect-
score calculation. For example, suppose that there is a call stack f → g → h in a
model, where g is called by f and h is called by g. In this case, if g is not called
in a trial unit, h must not be called either. Since the absence of h is a direct effect
of the absence of g, the former absence should not be of interest in assessing the
difference between normal and anomalous executions. Based on this observation,
we define the minimum difference as a set of nodes that only appear in either of
the two sets, but excluding nodes whose parent is also included in the minimum
difference set. For example, in Figure 6.4, the commonality of the trees includes
the nodes labeled a, b, and c; the minimum difference only includes nodes d and
e.

Next, we define an effective node set, E, as the union of the commonality and
minimum difference sets, i.e., E = (M ∩ T) ∪ (M ⊕ T), and call the nodes in E
effective nodes. For every effective node n ∈ E, we compute suspect score ∆(n)
as:

∆(n) =

1 − p(n) if n ∈ M ∩ T
p(n) if n ∈ M ∧ n < T
1 if n < M ∧ n ∈ T

(6.1)

For example, if a function was called 90% of the time when the system was oper-
ating normally and was also called when a failure occurred, we give a ∆ of 0.1 to
that node. Node b in Figure 6.4 illustrates such a case. In contrast, if that function

72

a (1.0)

b (0.9) e (0.3)

c (0.8) d f (0.5) g (0.9)

(a) Normal Model

a

b e

c d f g

(b) Trial Unit

Figure 6.4: Sample normal model and its trial unit. In the left tree, the value
in the parentheses of each node shows its estimated probability. Dotted edges and
nodes indicate that such nodes and edges do not exist in that tree. Gray nodes
indicate commonality, while nodes with double lines indicate the minimum dif-
ference.

was not called in the given trial unit, we give ∆ of 0.9. This scoring scheme meets
the design goal for suspect scores.

Finally, we define suspect score ∆(u) for given unit u as:

∆(u) =

∑
n∈E ∆(n)
|E| (6.2)

In other words, we use the average of the scores of all nodes in the common-
ality and minimum difference sets as the suspect score of the unit. Since we
only consider the effective nodes, we avoid having non-interesting calls affect the
overall scoring. For example, we compute the suspect score of the trial unit in
Figure 6.4(b) as:

∆(u) =

∑
n∈E ∆(n)
|E|

=
∆(a) + ∆(b) + ∆(c) + ∆(d) + ∆(e)

5
=

0.0 + 0.1 + 0.2 + 1.0 + 0.3
5

= 0.32

(6.3)

6.3 Prototype Implementation
To collect function-call traces, we implemented a tracer for C and Python pro-
grams as well as a non-blocking concurrent trace-buffer pool. The buffer pool

73

allows both traced processes and trace readers to access trace data in a concurrent,
non-blocking fashion. Below, we describe their implementation details.

6.3.1 Trace Collection
Our current implementation supports tracing of function calls in C and Python
programs as well as dynamic library calls. For tracing C programs, we currently
use the compile-time function-call instrumentation available in the gcc compiler,
which requires recompilation of the traced program by the gcc compiler. We are
planning to use binary instrumentation tools, such as Dyninst [11], for greater
flexibility.

For tracing Python programs, we use the debugging API, sys.settrace,
which is available in the standard Python implementation. Almost no modifi-
cations to the traced program are required; we use our own Python code that sets
our tracing functions to be invoked each time when the traced process makes calls
and returns, and then calls the original starting function of the target program.

For tracing dynamic library calls, we use the library preloading mechanism
available on standard Unix and Linux systems so that our library wraps the target
library calls. This technique requires no modifications in the traced program, but
needs to set the environment variable, LD PRELOAD, to include our tracer library.
The wrapper functions, upon being called by the target, generate trace entries
before and after calling the real library functions.

6.3.2 Non-Blocking Concurrent Trace-Buffer Pool
To make a trace buffer accessible from both a traced process and trace readers,
we inject a shared library into the process using the dynamic library preloading
mechanism. The library, upon being loaded, allocates a shared memory region of
specified size, and divides it into sub-buffers. Each sub-buffer is in either a free
or written state, enqueued to either a free or written queue. The traced process
records its traces into free buffers, while trace readers consume the traces from
written buffers. Figure 6.5 illustrates an example where a buffer pool is used by a
single traced process and three reader processes.

The trace library initially adds the sub-buffers to the free queue for write
accesses from the target process. The target process, instrumented to generate
function-call traces using the methods described above, obtains a free buffer from
the free queue in the pool, and starts executing its functions, appending call traces
to the buffer. Every time when the traced process finds that the current buffer
becomes out of space, it obtains the next available free buffer from the pool. Si-
multaneously, multiple trace-reader processes can attach to the pool and obtain
the written buffers for read access. After a reader process has finished reading

74

Process

Tracer

Process

Tracer

Buf Buf BufBuf Buf Buf

Buf Buf BufBuf Buf Buf

Written buffer queue

Free buffer queue

Buffer pool

Buf

ReaderBuf

ReaderBuf

ReaderBuf

Figure 6.5: Example usage scenario of trace-buffer pool.

its buffer, it return the buffer to the pool, which then becomes available as a free
buffer.

When a traced process attempts to obtain a free buffer, but no more such
buffers are currently available, it gives up generating traces for a specified num-
ber of calls and returns, instead of blocking on a free buffer becoming available.
It retries to obtain a free buffer after a specified count of calls and returns. This
non-blocking scheme aims to minimize perturbation to the traced process, while
sacrificing the completeness of the trace.

6.4 Evaluation
To evaluate the effectiveness of the proposed approach, we applied our prototype
fault localizer to a known bug in a distributed job manager called MPD. MPD
spawns a parallel job on a specified set of machines, monitors the job status, and
returns the output of each process to the user. It is shipped with MPICH2, a
standard implementation of the Message Passing Interface (MPI), and used by a
wide variety of parallel programming users [35].

A user of the distributed computing platform called InTrigger reported a hang
of MPD when he had tried to run a small MPI program. InTrigger is a large-scale
computing platform consisting of six clusters distributed over Japanese universi-
ties and national laboratories. We applied our localization method to MPD run-
ning on the InTrigger platform, and successfully identified an anomalous event
that was highly correlated with the bug. The rest of this section describes the
experimental setup and the fault localization results of the bug.

75

6.4.1 Partial-Message Receive Bug in MPD
MPD manages all nodes by running daemon processes that are connected by a
ring-topology network. When a new parallel job is submitted to the system, it
spawns a specified number of processes by forwarding the job information over
the ring network. The network is also used to coordinate the ready state of all
processes to start execution.

A reported hang occurred when a user submitted a small MPI program using
MPD version 1.0.5p4 running on multiple distributed clusters. Although the MPI
program is a very small test program that runs flawlessly within a single cluster,
using multiple clusters prevented the program from starting, and it apparently
hanged up during its job-startup stage. Further examination by the user through
printf-style message logging revealed that one of the MPD job manager daemons
erroneously closed a connection in the ring-topology daemon network, causing all
the daemons to infinitely wait for a particular message that should have been sent
over the ring connection. The reason for the connection reset turned out that one
of the calls to recv function in the socket API silently ignored its return value.
The call expected to receive eight bytes every time when a message arrived at
the connection, but in fact it sometimes received partial messages, which in turn
caused the daemon to close the connection, because it erroneously determined
that an error had occurred in the system. Of course, this assumption does not
necessarily hold in distributed environments, yet, since MPI is mainly used in
tightly connected single-site clusters, the bug had not been reported before.

This particular fault exhibits several common properties that make fault local-
ization particularly difficult in such large-scale environments. First, it is nonde-
terministic: in some runs, the daemons always received completely formed mes-
sages, allowing jobs to be successfully started even on multiple clusters. In fact,
the greater the number of nodes, the more often the fault occurred, requiring scal-
able localization techniques. Second, since it is a timing-related bug, use of an
interactive debugger, if possible, would significantly reduce the chance of repro-
ducing the bug, although debugging with as little overhead as printf-style mes-
sage logging still allowed the bug to occur. Third, this is not a fail-stop, but a
silent bug. Although the ring topology was not operating correctly after the bug
occurred, each daemon was still in a normal state, waiting on the event-processing
loop. While the examination of the call stack of a failed process would be an ef-
fective debugging technique in many cases, it would not help reveal the root cause
in this case; the stack trace would look normal since waiting on the event loop is
a legitimate operation.

76

Table 6.1: Process-model generation configurations and results.

Application # nodes Time (sec) Trace Size (KB) Model Size (KB)

CPI 58 0.95 949.2 43.8
CG Class C 4 127.75 448.8 43.4
IS Class A 8 3.29 483.7 43.7
CG Class C 16 58.31 566.9 43.5
MG Class B 32 2.16 682.9 43.7
LU Class D 32 1782.85 939.7 43.6
BT Class D 49 1223.16 1395.3 43.6

6.4.2 Model Derivation
We generated the global model from normal traces of MPD executions on a single
cluster as follows. First, we traced MPD on seven different configurations using
a simple MPI program called CPI and the NPB [94] as sample parallel jobs. CPI,
shipped with the MPICH itself, calculates the value of π by using a Monte Carlo
method. For the buffer pool on each node, we allocated ten sub-buffers of 1MB, or
10MB in total. We obtained per-process function-call traces using an online trace
reader that saved the content of the written trace buffers to its local disk. Next, on
each local node, we generated a process model for each trace using our prototype
model generator. Next, we gathered the process models into a central repository
and generated the global model. Below, we describe the detailed results for model
derivation as well as the performance overhead caused by function tracing.

6.4.2.1 Process-Model Derivation

Table 6.1 lists the seven configurations and their results in process model genera-
tion. We executed traced MPD processes on different numbers of nodes, each of
which hosted a single MPD process. The three columns for time, trace size, and
model size list the averaged values for all the nodes. Because we implemented the
model derivation as a Python program, and the derived process models were thus
Python objects, we measured their sizes by serializing them to binary data. We
can see that, while the execution times vary significantly, the sizes of the result-
ing process model are very similar, suggesting that the MPD processes exhibited
repetitive function-call behaviors and our modeling efficiently encoded their be-
havior without substantially duplicating information.

To study the performance impact that MPD tracing had on the application pro-
grams, we compared their execution times with and without our tracing enabled.

77

CG
class C
4 procs

IS
class A
8 procs

CG
class C

16 procs

MG
class B

32 procs

LU
class D
32 procs

BT
class D
49 procs

CPI
58 procs

Pe
rf

or
m

an
ce

 d
ec

re
as

e
ra

tio
 (

%
)

0
1

2
3

4
5

6
7

Figure 6.6: Performance overhead due to function-call tracing.

In Figure 6.6, the y-axis shows the relative performance when executed under our
tracer compared to normal executions. The overhead ranges from approximately
0% to 7%. while such a small overhead does matter for extremely performance-
critical systems, we expect that such small perturbation would be affordable in
many cases, considering the effectiveness of our fault localization presented be-
low.

6.4.2.2 Global-Model Derivation

We gathered all the 199 process models into a central location, and generated the
global model including the overall behaviors of MPD processes. The resulting
model was 171KB in size with only three different process groups. Although we
aggregated such a large number of process models with different runs, this result
again suggests that our model derivation was efficient in terms of disk space.

6.4.3 Localization through Suspect-Score Computation
We obtained a set of per-process trial traces by reproducing the bug on three geo-
graphically distributed clusters in InTrigger, called hongo, chiba, and okubo. We
started traced MPD processes with the sample MPI program CPI on 78 nodes
spanning the three distributed clusters, and determined that the system hung up
after no output was observed for approximately 70 sec. We stopped the system by
killing all the daemons. Out automated analysis decomposed the trial traces into
execution units and computed the anomaly scores.

78

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Elapsed Time (sec)

S
us

pe
ct

 S
co

re

Figure 6.7: Suspect scores for execution units in trial traces.

Figure 6.7 shows the scores of all units plotted at their corresponding times-
tamps. We can see that the beginning and ending of the run had significantly
deviant behaviors, while the rest did not exhibit any interesting behaviors. We
can see that the most interesting unit is the one with the maximum score plotted
near the beginning of the run, since the earlier a deviant behavior occurs, the more
likely it would be correlated with a failure. We find that the particular unit is a
handler unit that was notified of a connection-reset event. The reason for the high
suspect score of the unit is that the reset event had never been observed in the
normal traces. From the trace entries before the unit, we found that the other peer
of the connection was running on node hongo102 in the hongo cluster, while the
unit itself was on node chiba121 in the chiba cluster. Another high-score dura-
tion before the end of the run turned out to be caused by our abrupt killing of the
daemons.

To identify why the connection was reset between chiba121 and hongo102,
we manually examined the MPD source code and the trace entries in hongo102
around the time when the reset event occurred. We found that hongo102 had
closed the connection in function handle lhs input of the MPDMan class, and
that the function closed this because a call to recv dict msg of MPDSock failed.
The trace entries for the calls from recv dict msg included a call to recv that ac-
tually received only three bytes of data from the connection, while recv dict msg

79

expected eight bytes. As a result, because of the partial-message receive bug, the
execution of recv dict msg failed, causing handle lhs input to close the con-
nection.

This case study suggests the effectiveness of our support for fault localiza-
tion. Although the buggy recv call was not able to be pinpointed, our suspect
score ranking identified the connection reset event observed by the connection
peer process as the most suspicious event. Without our automated trace analysis,
the problem analyst would have needed to examine all the traces of the 78 nodes
accounting for the complete 70-sec run. Our analysis narrowed the localization
down to only the traces of two nodes accounting for less than a second, signifi-
cantly reducing the manual burden imposed by determining the root cause of the
failure.

6.5 Summary
We presented our model-based approach to fault localization that aims to help
the human analyst narrow down the area of the manual localization process into
a small fraction of the overall system. Our method consists of two parts: pre-
failure model derivation and model-based anomaly detection. The first part col-
lects function-call traces from all processes and derives an execution model that
reflects the function-calling behaviors of the target system. When a failure oc-
curs, we compute the suspect scores of all execution units in the failure traces.
The suspect score, ranging from 0 to 1, quantifies how likely the execution unit
is correlated with the failure. Our claim is that the analyst can substantially re-
duce the burden imposed by fault localization by prioritizing execution units with
higher suspect scores. Our preliminary experiment with a distributed job manager
supported this claim: Our method narrowed down the bug-finding process of a
70-sec faulty run on a 78-node distributed platform into just sub-second behaviors
involving only two nodes.

There are several issues that remain to be resolved. First, we will explore
online approaches to model derivation and suspect-score calculation. Our cur-
rent method dumps function-call traces into local disks by running an online trace
dumper in the background of the target process. This scheme was effective for
the presented experiment with MPD; indeed, we observed that a 24-hour run of
MPD with continuous execution of the NPB benchmark programs generated only
5.5GB of traces per node, which is far smaller then the current standard capacity
of HDDs. Yet, retaining traces of long-running applications inevitably exceeds
disk space capacity, no matter how large it is, at some time in the course of execu-
tion. To keep the space overhead at a minimum, we will explore online modeling
and suspect-score calculation (see Section 7.3.1 for a more detailed discussion).

80

Second, we will study how long it takes to collect sufficient traces to learn a model
with acceptable accuracy. In the case study, we collected the traces of seven runs,
whose execution times ranged from approximately a second to 30 min. While
these seven runs were sufficient for the particular failure, larger, more complex
systems could need more normal trace data before their models were stabilized.
We will study the speed of the model stabilization speed by varying the normal-
data collection time. Third, we intend to apply our technique to localizing faults
in different distributed systems. Specifically, for each different target system, we
are planning to investigate 1) whether the assumed event-driven architecture holds
or not, 2) how concise our modeling can encode its behaviors, and 3) how effec-
tive the model can be in localizing faults on the system. Different systems could
employ different event-handling mechanisms, such as polling and signals. We
need to extend our current modeling to support behaviors involving such event-
handling mechanisms. Also, more-complicated control flow might be observed in
different systems because of non-serial program executions using various mecha-
nisms, such as multithreading, exceptions, and non-local jumps using the setjmp
and longjmp functions. We intend to develop methods of capturing and modeling
of programs involving such control flow as well.

81

Chapter 7

Discussion

For the problem stated in the beginning of this dissertation, i.e., difficulties in lo-
calizing faults in large-scale computing systems (see Section 1.1), this dissertation
presented an automated approach to with two different techniques, each of which
exploits similarities across processes or time. We designed both techniques to re-
duce the burden on fault-localization processes in large-scale computing systems,
particularly HPC clusters and Grids. We demonstrated the effectiveness of both
techniques in localizing faults in these environments through several case studies.

The two main reasons for these difficulties are the scale of modern comput-
ing systems and rare nondeterministic faults. The model-based technique par-
ticularly focuses on the first reason; by deriving an execution model reflecting
locally observable normal system behaviors, it detects anomalous behaviors from
fault traces with no remote communications required. While it does not learn dis-
tributed behaviors across multiple nodes, our claim is that many faults would also
exhibit locally observable anomalies; thus, detecting these anomalies might not
be able to pin-point the exact root cause of a fault, yet they could narrow down
further fault localization to a smaller part of the entire system. Our case study with
the MPD partial-message receive bug supports this claim; although our automated
analysis was not able to find the exact location of the bug, the analysis results did
detect locally observable anomalies that were effective in finding the root cause.

Our always-on tracing approach aims at solving the second reason for the
difficulties in localizing faults—rare nondeterministic faults. Function-call tracing
allows us to examine the control flow of a target process even when such faults
occur. While the performance overhead due to tracing calls and returns could be
too large for some performance-critical applications to afford, we believe that a
decrease in performance by a few percent, as was the case with the experimental
case studies, would be sufficiently small for a wider class of applications.

The trace-based approach, however, does have limitations due to possible trace
loss. The tracing technique presented in Chapter 5 used a fixed-length wrap-

82

around trace buffer where old traces were overwritten by new ones. Thus, while
it kept the trace size constant, the behaviors that could be identified from the trace
were limited by the buffer size. Since having a sufficiently large buffer for arbitrary
long-running systems is impractical due to its disk space cost, it cannot help but
lose information on earlier system behaviors. Thus, if a fault is a slow-developing
problem that makes itself visible as a failure far later than the initial occurrence,
we may miss the original anomalous event of the problem due to buffer overwrite.
Thus, once the system starts misbehaving, the key to successful localization de-
pends on how early the buffer content can be dumped to a file. This problem is
less critical for fail-stop faults, such as the network-stability problem in SCore,
since no new traces are added to the buffer, preserving the precise behavior of the
process when the fault occurs; however, this does matter for non-fail-stop prob-
lems, such as the scbcast problem. In the scbcast case, we relied on the native
timeout detector, sc watch, which was shipped with the original SCore system,
to detect failures and initiate trace dumping.

In the model-based technique, we introduced a concurrent trace buffer to save
traces while they were being collected from the target system. This scheme al-
leviates the problem by exploiting local HDDs, whose data capacity should be
much larger than the main memory. As mentioned in Section 6.5, the trace size
for a 24-hour run of MPDs was approximately 5.5 GB, while the size of a single
platter of today’s HDDs can be as large as 334 GB, expected to hit 500 GB in the
near future [5]. Thus, keeping traces for several days of a run would be feasible,
allowing those faults that occur within such a time frame to be diagnosable with
our technique.

A more fundamental approach to trace-size growth is to process the data on-
the-fly and to only retain information of interest, instead of simply dumping all
traces to disks. Our model-based technique would be particularly suitable for
such an online scheme because of its decentralized localization and concurrent
trace buffers. We will further discuss an online approach in Section 7.3.1.

The rest of this chapter discusses the similarities and differences between the
two proposed techniques of localization and their limitations when applied to a
broader class of faults. Finally, we present a possible approach to addressing the
current limitations.

7.1 Comparison of Outlier and Model-Based Tech-
niques

The outlier-detection and model-based techniques are two instantiations of detect-
ing anomalies exploiting similarities observed in distributed computing systems.

83

The advantages of the former over the latter include: 1) no a priori processing,
such as the model training, and 2) the ability to detect performance anomalies
through time profiles. Unlike the former, the latter derives an execution model
only taking function-call coverage into account; since a performance bug that
manifests itself as an anomalously longer execution time of a particular opera-
tion would not change its function-call coverage, the latter could not detect such
behaviors as anomalies.

In contrast, the advantages of the latter over the former include: 1) more scal-
able localization through the completely decentralized algorithm and 2) no as-
sumptions regarding spatial similarities. Outlier-based analysis requires pair-wise
comparison of all per-process traces, which would be even more problematic as
system size grows. While the latter also requires gathering per-process data (i.e.,
process models) to a central repository, this is only required for the pre-fault model
derivation phase; localization of faults does not require such global operations at
all. Furthermore, a model derived in a smaller-scale system can be applied to lo-
calize faults in larger-scale systems; the MPD case study presented in Section 6.4
actually exploited this advantage: we derived a model using a single cluster, and
localized the bug that was only observed on multiple-cluster environments.

The second advantage—no assumption regarding spatial similarities—simplifies
the false-positive problem that the unsupervised ranking algorithm suffered when
localizing the scbcast problem (see Section 5.3.4). Although the one-class algo-
rithm alleviates the problem using previously collected traces, its effectiveness is
limited by how thoroughly the previous traces cover anomalous behaviors, which
is likely to require a very large collection of traces. Unlike the compact model
derivation in the latter technique, we did not explore this problem in the study;
indeed, this is one of the problems that motivated the model-based technique.

While both techniques have advantages and disadvantages, we could devise
yet another technique that exploits both of them. That is to say, to find anoma-
lous behaviors, we could compare fault traces with both those of other processes
and their execution models. For example, assume that a majority of distributed
processes exhibited an unknown but legitimate behavior. The model-based local-
ization would find the behavior in a decentralized way but would determine it as
anomalous since it was unknown. However, we could use the outlier-detection-
based localization to further improve the accuracy of localization; we could gather
only the traces for the behavior to a central location, and further localize the prob-
lem by the outlier-based technique. In this case, second-phase localization could
determine the behavior as normal since it was observed in a majority of processes.
As such, by the combination of the two techniques, we expect that we could fur-
ther reduce the number of false positives. Further studies toward this direction
remain a subject for future research.

84

7.2 Limitations

7.2.1 Limitations Derived from Assumptions
Our localization approach assumes that the target system mostly works as in-
tended, but suffers from rare occurrences of faults. More specifically, in the
outlier-detection based technique, we assume that the majority of involved pro-
cesses operates properly, but a small number exhibit anomalous behaviors. In-
stead, if the majority exhibited anomalous behavior, we would end up giving
“normal” annotations to their traces since they were not outliers. Although our
technique could not localize the cause of problems with such symptoms, it could
still help the problem to be understood to some extent. If no outliers were found,
all the processes should have exhibited a small number of behavior patters. Such
patterns could be identified by using data clustering methods such as hierarchical
cluster analysis [40] as done by Dickinson et al. [22]. The problem analysis would
only need to examine a small number of traces for each behavior pattern.

The model-based technique assumes that each process operates properly most
of the time so that we can derive the execution model reflecting the normal be-
haviors of the system. Therefore, it is not particularly effective in early phases of
software development where prototypes still fail most of the time. Yet, it could be
useful to diagnose common situations with software problems that occur due to
differences in underlying environments, as in the localization of the MPD partial-
message receive bug.

Another assumption that can limit the application of our proposal is the man-
ifestation of faults as control-flow changes. If no changes occur in function-call
traces, but only exhibit more subtle misbehaviors, such as silent data corruption,
we will not be able to detect anomalies. Although this assumption has been valid
in our case studies, more thorough evaluations with a wider variety of systems are
necessary for assessing how applicable this assumption is.

7.2.2 Fault Localization in Broader Problem Domains
This dissertation addressed localization of a particular class of faults, i.e., anoma-
lies in distributed middleware-type software. While that is an important class
of problems, anomalies in other domains, such as hardware, more performance-
oriented scientific programs, and operating system and kernel code, can be sources
of reliability and dependability issues as well. Although we believe that the gen-
eral idea underlying anomaly-detection-based localization could be effective in
other domains of faults, we would face different challenges in particular fault do-
mains. For example, incorrect program results could be caused by not only logic
software bugs, but also extremely high CPU temperature through bit-flip faults,

85

requiring monitoring of various system properties. Excessively slow responses
from a remote peer could be caused by various misbehaviors, such as intermedi-
ate overloaded routers, excessive CPU load of the peer, and misconfigured routing
tables. How system behaviors should be modeled to localizing such diverse faults
is still unclear and remains a subject of active research [61, 82].

The recent trend towards virtualization can further complicate problem diag-
nosis due to the added abstraction layer between bare metal hardware and oper-
ating systems. For example, virtual-machine-based cluster-computing environ-
ments, i.e., virtual clusters [65, 86], are a promising approach to future HPC
computing platforms on Grids, since they could achieve more efficient, flexible
use of distributed computing resources. However, problems occurring in such
environments could be caused by virtualization layers as well as original system
components, or even worse, mixtures of these. Localizing faults in such broader
domains also requires further research.

7.3 Possible Approaches to Overcoming the Limita-
tions

7.3.1 Online Approach to Modeling and Anomaly Detection
As previously discussed, one possible approach to fault localization in long-running
systems is online system modeling and proactive, autonomous detection of anoma-
lies. By processing raw traces on-the-fly and only retaining derived models for
later localization of faults, the trace-size-growth problem inevitable in any post-
mortem analysis techniques, including ours, could be avoided. Furthermore, by
proactively finding anomalous behaviors, non-fail-stop system faults could be de-
tected and analyzed without manual assistance; our current techniques require
initial notification of failures from other sources (i.e., the default timeout detec-
tor in the SCore case or manual termination of the non-responsive system in the
MPD case). Such proactive detection of faults would play an important role in
autonomic system management [41].

Of our two techniques, the model-based one would be more suitable for such
online schemes than the outlier-detection-based one thanks to its decentralized na-
ture of fault localization. A model-based technique adapted for online processing
would derive models while simultaneously finding anomalies in a running pro-
cess. We could flag as an anomaly an execution unit with a suspect score larger
than a given threshold. It would initially generate many false alarms due to lack of
learned behaviors; however, over time, it would eventually observe most normal
behaviors, and then generate fewer and fewer false alarms. How long it would take
to derive false-alarm-free models would depend on the complexity of the target

86

program and the sensitivity of fault detection defined by the anomaly threshold.
As a program becomes larger, it tends to exhibit more types of behaviors, requir-
ing a great deal of training data. Also, the lower the suspect-score threshold, the
more alarms it would generate, whether true or false, resulting in a smaller preci-
sion ratio. The higher the threshold, on the other hand, the more likely it would
miss true anomalies, resulting in a smaller recall ratio. Finding the right balance
of recall and precision is a common problem in any kind of information retrieval
from a large volume of data, and generally depends on the particular system being
observed.

Implementation issues in accomplishing such an online approach include the
computation and memory cost in analyzing continuously generated data. This
should be kept as low as possible to minimize perturbation to the system, while
still presenting rich diagnostic information when it misbehaves. Given the recent
trends toward higher parallelism with multi-core CPUs and Chip Multithread-
ing Technology (CMT) [44, 62], however, we can envision that a helper thread
running on an idle core could monitor and learn the behaviors of other threads
for diagnosing problems. The availability of idle resources generally depends on
the parallelism of applications running on the CPU; however, we expect that it
would be acceptable in many situations to allocate part of the resources for such
purposes, particularly because of the usefulness of being able to localize faults
quickly and automatically.

87

Chapter 8

Conclusions

This dissertation discussed our studies on fault localization in large-scale comput-
ing systems. This chapter concludes the dissertation with a summary of contribu-
tions and a discussion on directions for future research.

8.1 Summary of Contributions
This dissertation presented two trace-based fault-localization approaches for large-
scale computing systems. Both approaches assume similarities in process exe-
cution behaviors and localize faults by finding anomalous behaviors that violate
these similarities.

The first approach finds outliers in a distributed collection of identical pro-
cesses by assuming spatial similarities, i.e., that normal processes should exhibit
similar behaviors to one another. Specifically, it first performs process-level local-
ization to find faulty processes in the target system, for which we have presented
two techniques, the first for fail-stop faults and the second for non-fail-stop faults.
For fail-stop faults, we find an anomalous process by finding the process with
the earliest timestamp, since fail-stop faults are often caused by a misbehaving
process causing the other processes to stop functioning. For non-fail-stop faults,
we find outliers by examining behavioral differences in more detail. That is, we
first compute the time profile from each per-process trace that quantifies how long
the process spent in each function, and then compute the suspect score that reflects
how its time profile is different from the rest of the processes. Finally, we find out-
liers by locating the processes with the largest scores. Having found suspicious
processes, we locate the most suspicious functions by finding either the function
of the last trace entry or the functions that made the largest contributions to the
suspect score.

This approach is especially effective for such faults as performance bugs, live-

88

locks, and deadlocks. In other words, any misbehavior that affects execution times
abnormally would be detectable since it should manifest itself as an outlier.

We evaluated the proposed technique by localizing faults in a production-
cluster environment consisting of 129 nodes. The cluster used the SCore distributed-
computing middleware for managing parallel-job executions. The cluster had ex-
perienced occasional crashes and hangups in SCore without the reasons being
evident. We collected the function-call traces of the SCore processes and ana-
lyzed their fault traces with our automated two-step localization. The results suc-
cessfully identified the causes of fail-stop faults and non-fail-stop ones with little
manual assistance, suggesting the effectiveness of the proposed technique.

The second approach finds anomalous behaviors by assuming historical simi-
larities, i.e., that each process exhibits repetitive, self-similar, behaviors. The first
phase in the process derives a concise execution model reflecting the normal be-
haviors of the target system. To do so, we collect per-process function-call traces
while the target operated as intended, and construct a process model for each
process, which describes how the process behaved on receiving network mes-
sages. Specifically, we automatically identify which functions were called when
a message arrived at each network connection, and construct a call tree for each
connection. We annotate each tree node with an estimated call probability by
counting the number of occurrences in the collected traces. The final output of the
model-derivation phase is a global model that aggregates all the process models
by merging them for the processes with the same estimated role. We consider two
processes to have performed the same role if they operated with the same set of
network connections. To localize a fault, we deploy the derived global model in all
participating processes, and collect function-call traces as in the model-derivation
phase. We next compute how differently each process responded to incoming
messages by comparing the collected traces with the derived model. We consider
a function suspicious in the two cases when: 1) its estimated probability was low,
yet it was called in a failure run, and 2) its probability was high, yet it was not
called. Finally, as in the outlier-detection based technique, we compute a suspect
score for all call trees to quantify its likelihood being the root cause of the failure,
and present the scores to assist the problem analyst in diagnosing the fault.

This approach is especially effective in localizing program logic bugs For ex-
ample, assume that an application performs an operation when receiving user re-
quests. Typical request handling involves executing certain functions depending
the types of the requests: every time a user request arrives at the application, some
functions for the particular request type should be called. However, if the applica-
tion failed to correctly serve a request, some of the functions for the request type
might not be called. The model-based localization could detect such behaviors
as anomalies; the problem analyst would be able to determine the source of the
failure automatically.

89

To evaluate the effectiveness of the proposed technique, we applied our pro-
totype model-based localizer to a known bug in a distributed job manager called
MPD. The job manager operated as intended on a single-cluster environment, but
hanged up nondeterministically if executed on geographically distributed multi-
ple clusters. We collected its normal by running it on a single cluster and fault
traces by running it on a distributed environment with three clusters. We derived
its execution model from the normal traces and found an anomalous execution
unit of a single MPD process in the fault traces by computing their suspect scores.
Further manual examination with source code revealed that the unit erroneously
closed a connection with other processes, causing the entire system to block in-
finitely. These results demonstrate how effective the model-based technique is in
localizing faults in large-scale computing systems.

8.2 Directions for Future
Our work is by no means complete. Our ultimate goal is to accomplish fully auto-
mated fault localization for a wider variety of systems and, moreover, autonomic
fault recovery for certain classes of problems. Specifically, we intend to continue
our research in the following directions.

• Autonomic fault detection. Online system modeling and anomaly detection
as discussed in Section 7.3.1 would allow us to detect faults in autonomi-
cally. Our ultimate goal in this direction is to eliminate human interactions
as much as possible, while keeping false positive and negative ratios low.

• Autonomic fault recovery. Once a fault is detected in a system, simple fault
recovery would terminate and restart it from the very beginning. Another
technique could use checkpoint and restart techniques for retrying faulty
operations. Specifically, our model-based localization would identify when
the system starts misbehaving; thus, by restarting the system from a check-
point saved before the identified fault occurred, it could be re-executed
from a normal state and the anomalous operation reattempted. Although
this scheme could not avoid deterministic faults, it might be effective for
nondeterministic faults, which do not necessarily occur.

• Whole-system fault localization. Thus far, our study has focused on localiz-
ing faults in user-level distributed software; we have not yet explored faults
in operating systems or in interactions of operating systems and user-level
components. Another direction would be to construct a model describing
whole-system behaviors and to capture similarities across a variety of such
components. To achieve that end, system virtualization, such as Xen by

90

Barham et al. [7], as well as kernel-level system instrumentation, such as
Kerninst by Tamches and Miller [84], might come into play. For example,
a hypervisor could monitor the behaviors of a virtual machine by instru-
menting the guest OS as well as the applications running atop it. The real
challenge would be how to correlate various events across multiple software
layers on a single machine as well as among multiple distributed machines.

In conclusion, we stress that even in large-scale computing systems automated
fault localization is indeed effective, although it might not completely eliminate
manual effort. Our sincere hope is that such automated localization will emerge
to play a more important role toward achieving autonomic computing systems.

91

Bibliography

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Vol-
ume 2: System Programming, September 2007.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds,
and Athicha Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP’03), pages 74–89, 2003.

[3] Dong H. Ahn and Jeffrey S. Vetter. Scalable analysis techniques for mi-
croprocessor performance counter metrics. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing (SC’02), pages 1–16, Los Alami-
tos, CA, 2002.

[4] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory Lee, Bar-
ton P. Miller, and Martin Schulz. Stack Trace Analysis for Debugging Large
Scale Applications. In International Parallel and Distributed Processing
Symposium (IPDPS’07), pages 1–10, 2007.

[5] Nikkei Electronics Asia. 3.5-Inch HDD Capacity to Hit 500GB/Platter
in 2008. Available at http://techon.nikkeibp.co.jp/article/

HONSHI/20070926/139720/, Oct 2007.

[6] A. Avizienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of De-
pendability. Technical report, Department of Computing Science, University
of Newcastle, 2001.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP’03), pages 164–177, 2003.

[8] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
Magpie for request extraction and workload modelling. In 6th Symposium on

92

http://techon.nikkeibp.co.jp/article/HONSHI/20070926/139720/
http://techon.nikkeibp.co.jp/article/HONSHI/20070926/139720/

Operating Systems Design and Implementation (OSDI’04), pages 259–272,
2004.

[9] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in
near linear time with randomization and a simple pruning rule. In KDD
’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 29–38, 2003.

[10] Daniel Becker, Felix Wolf, Wolfgang Frings, Markus Geimer, Brian J. N.
Wylie, and Bernd Mohr. Automatic Trace-Based Performance Analysis of
Metacomputing Applications. In Proceedings of the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’07), pages 1–10, Long
Beach, CA, March 2007.

[11] Bryan R. Buck and Jeffrey K. Hollingsworth. An API for Runtime Code
Patching. Journal of High Performance Computing Applications, 14(4):317–
329, 2000.

[12] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[13] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

[14] Franck Cappello, Eddy Caron, Michel Dayde, Frederic Desprez, Emmanuel
Jeannot, Yvon Jegou, Stephane Lanteri, Julien Leduc, Nouredine Melab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, and Olivier Richard.
Grid’5000: a large scale, reconfigurable, controlable and monitorable Grid
platform. In Grid’2005 Workshop, Seattle, USA, November 13-14 2005.
IEEE/ACM.

[15] Anthony Chan, David Ashton, Rusty Lusk, and William Gropp. Jumpshot-
4 Users Guide. http://www.mcs.anl.gov/perfvis/software/

viewers/jumpshot-4/usersguide.html, 2008.

[16] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric
Brewer. Pinpoint: problem determination in large, dynamic Internet ser-
vices. In Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN’02), pages 595–604, June 2002.

[17] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson,
Armando Fox, and Eric Brewer. Path-Based Failure and Evolution Manage-
ment. In Proceedings of the 1st USENIX/ACM Symposium on Networked

93

http://www.mcs.anl.gov/perfvis/software/viewers/jumpshot-4/usersguide.html
http://www.mcs.anl.gov/perfvis/software/viewers/jumpshot-4/usersguide.html

Systems Design and Implementation (NSDI ’04), San Francisco, CA, March
2004.

[18] Cluster File Systems, Inc. Lustre file system. http://www.clusterfs.

com, 2008.

[19] Cluster Resources, Inc. Torque resource manager.
http://www.clusterresources.com/pages/products/

torque-resource-manager.php, 2008.

[20] Ira Cohen, Moises Goldszmidt, Terence Kelly, Symons Julie, and Chase Jeff.
Correlating Instrumentation Data to System States: A Building Block for
Automated Diagnosis and Control. In Operating System Design and Imple-
mentation (OSDI’04), pages 231–244, Dec 2004.

[21] Charng da Lu and Daniel A. Reed. Assessing Fault Sensitivity in MPI Ap-
plications. In ACM/IEEE SC 2004 Conference (SC’04), 2004.

[22] William Dickinson, David Leon, and Andy Podgurski. Finding failures
by cluster analysis of execution profiles. In Proceedings of the 23rd In-
ternational Conference on Software Engineering (ICSE), pages 339–348,
Toronto, Ontario, Canada, May 2001.

[23] Catalin L. Dumitrescu, Ioan Raicu, and Ian Foster. Experiences in Running
Workloads over Grid3. In Hai Zhuge and Geoffrey Fox, editors, 4th Interna-
tional Conference on Grid and Cooperative Computing (GCC’05), number
3795 in Lecture Notes in Computer Science, pages 274–286. Springer, 2005.

[24] Toshio Endo and Satoshi Matsuoka. Massive supercomputing coping with
heterogeneity of modern accelerators. In Proceedings of the 22nd IEEE
International Parallel and Distributed Processing Symposium (IPDPS’08),
Miami, FL, USA, April 2008. To appear.

[25] NR Adiga et al. An Overview of the Blue Gene/L Supercomputer. In Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomputing (SC’02),
pages 1–22, Nov 2002.

[26] Using the GNU Compiler Collection. Free Software Foundation, Inc, 2007.
http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/.

[27] Debugging with GDB. Free Software Foundation, Inc, 2007. http:

//sourceware.org/gdb/current/onlinedocs/gdb.html.

[28] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network clas-
sifiers. Machine Learning, 29(2-3):131–163, 1997.

94

http://www.clusterfs.com
http://www.clusterfs.com
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/
http://sourceware.org/gdb/current/onlinedocs/gdb.html
http://sourceware.org/gdb/current/onlinedocs/gdb.html

[29] Fabrizio Gagliardi, Bob Jones, François Grey, Marc-Elian Bégin, and Matti
Heikkurinen. Building an infrastructure for scientific Grid computing: status
and goals of the EGEE project. Philosophical Transactions: Mathematical,
Physical and Engineering Sciences, 363(1833):1729–1742, August 2005.

[30] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay De-
bugging for Distributed Applications. In Proceedings of the 2006 USENIX
Annual Technical Conference, pages 289–300, 2006.

[31] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion
Stoica. Friday: Global Comprehension for Distributed Replay. In Proceed-
ings of the 4th USENIX Symposium on Networked Systems Design & Imple-
mentation, pages 285–298, 2007.

[32] Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable
Parallel Trace-Based Performance Analysis. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface: 13th European PVM/MPI
User’ s Group Meeting, volume 4192, pages 303–312, 2006.

[33] Jim Gray. Why Do Computers Stop and What Can We Do About It. In
6th International Conference on Reliability and Distributed Databases, June
1987.

[34] Steven D. Gribble. Robustness in Complex Systems. In Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages
21–26, 2001.

[35] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Computing, 22(6):789–828, Sep 1996.

[36] Kevin A. Huck and Allen D. Malony. PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing. In Proceedings of
Supercomputing 2005, Nov 2005.

[37] Intel Corporation. Intel 64 and IA-32 Arhictectures Software Devleoper’s
Manual Volume 1: Basic Architecture, August 2007.

[38] Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka, Motohiko Matsuda, Hiroki
Konaka, Munenori Maeda, Takashi Tomokiyo, Jorg Nolte, and Mitsuhisa
Sato. MPC++. In Gregory V. Wilson and Paul Lu, editors, Parallel Pro-
gramming Using C++, pages 427–466. The MIT Press, 1996.

95

[39] Yutaka Ishikawa, Hiroshi Tezuka, Atsushi Hori, Shinji Sumimoto, Toshiyuki
Takahashi, Francis O’Carroll, and Hiroshi Harada. RWC PC Cluster II and
SCore Cluster System Software—High Performance Linux Cluster. In Pro-
ceedings of the 5th Annual Linux Expo, pages 55–62, Raleigh, NC, May
1999.

[40] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

[41] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, Jan 2003.

[42] Emre Kiciman and Armando Fox. Detecting application-level failures in
component-based Internet services. IEEE Transactions on Neural Networks,
16:1027–1041, Sept 2005.

[43] George Kola, Tevfik Kosar, and Miron Livny. Faults in Large Distributed
Systems and What We Can Do about Them. In Proceedings of 11th Euro-
pean Conference on Parallel Processing (Euro-Par 2005), Lisbon, Portugal,
August 2005.

[44] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara:
a 32-way multithreaded Sparac processor. IEEE Micro, 25(2):21–29, 2005.

[45] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. Deterministic Replay
of Distributed Java Applications. In Proceedings of the 14th International
Symposium on Parallel and Distributed Processing (IPDPS’00), page 219,
2000.

[46] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette,
and Ramendra Sahoo. BlueGene/L Failure Analysis and Prediction Models.
In Proceedings of the International Conference on Dependable Systems and
Networks (DSN’06), pages 425–434, June 2006.

[47] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug iso-
lation via remote program sampling. In Proceedings of the ACM SIG-
PLAN 2003 conference on Programming language design and implemen-
tation (PLDI’03), pages 141–154, 2003.

[48] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jor-
dan. Scalable statistical bug isolation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementa-
tion (PLDI’05), pages 15–26, Chicago, IL, USA, 2005.

96

[49] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, pages 104–111, June 1988.

[50] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. Wids checker: Com-
bating bugs in distributed systems. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI’07), pages 257–270, April 2007.

[51] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI’05), pages 190–200, Chicago,
IL, USA, 2005.

[52] Naoya Maruyama and Satoshi Matsuoka. Model-based fault localization in
large-scale computing systems. In Proceedings of the 22nd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’08), Miami,
FL, USA, April 2008. To appear.

[53] Raissa Medeiros, Walfredo Cirne, Francisco Brasileiro, and Jacques Sauve.
Faults in Grids: Why are they so bad and What can be done about it? In
Fourth International Workshop on Grid Computing, page 18, 2003.

[54] Microsoft Corporation. Parallel Debugging Using Visual Studio 2005.
http://www.microsoft.com/downloads/details.aspx?FamilyID=

798b01f3-2bad-41c7-a34a-c2a6e6f9d535, Nov 2005.

[55] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall. The Paradyn Parallel Performance Measurement
Tool. IEEE Computer, 28(11):37–46, 1995.

[56] David L. Millis. The network computer as precision timekeeper. In Precision
Time and Time Interval (PTTI) Applications and Planning Meeting, pages
96–108, Reston, VA, Dec 1996.

[57] Nelson Minar. A survey of the ntp network, December 1999.

[58] Alexandar V. Mirgorodskiy, Naoya Maruyama, and Barton P. Miller. Prob-
lem Diagnosis in Large-Scale Computing Environments. In Proceedings
of the 2006 ACM/IEEE conference on Supercomputing (SC’06), Tampa,
Florida, November 2006.

97

http://www.microsoft.com/downloads/details.aspx?FamilyID=798b01f3-2bad-41c7-a34a-c2a6e6f9d535
http://www.microsoft.com/downloads/details.aspx?FamilyID=798b01f3-2bad-41c7-a34a-c2a6e6f9d535

[59] Alexander Mirgorodskiy and Barton Miller. Autonomous analysis of inter-
active systems with self-propelled instrumentation. In MMCN 2005: 12th
Multimedia Computing and Networking, San Jose, CA, January 2005.

[60] Alexander V. Mirgorodskiy. Automated Problem Diagnosis in Distributed
Systems. PhD thesis, University of Wisconsin-Madison, 2006.

[61] Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems. In
Proceedings of the ACM SIGOPS European Conference on Computer Sys-
tems (EuroSys’06), pages 293–304, Leuven, Belgium, 2006.

[62] Robert Mullins. Introducing the next hot multicore chip de-
sign. available at http://www.pcworld.com/article/id,136214-pg,
1/article.html, Aug 2007.

[63] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the ACM SIG-
PLAN conference on Programming language design and implementation
(PLDI’07), pages 89–100, San Diego, California, USA, 2007.

[64] O. Y. Nickolayev, P. C. Roth, and D. A. Reed. Real-Time Statistical Cluster-
ing for Event Trace Reduction. The International Journal of Supercomputer
Applications and High Performance Computing, 11(2):144–159, 1997.

[65] Hideo Nishimura, Naoya Maruyama, and Satoshi Matsuoka. Virtual Clus-
ters on the Fly — Fast, Scalable, and Flexible Installation. In Proceedings of
the Seventh IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’07), Rio de Janeiro, Brazil, 2007.

[66] Adam Oliner and Jon Stearley. What Supercomputers Say: A Study of
Five System Logs. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN’07), pages 575–584, Edinburgh, UK,
2007.

[67] DAS-3 project page. The distributed asci supercomputer 3 (DAS-3). http:
//www.cs.vu.nl/das3/, 2007.

[68] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient al-
gorithms for mining outliers from large data sets. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data (SIG-
MOD’00), pages 427–438, Dallas, Texas, 2000.

[69] Steven P. Reiss and Manos Renieris. Encoding program executions. In
Proceedings of the 23rd International Conference on Software Engineering
(ICSE’01), pages 221–230, Toronto, Ontario, Canada, 2001.

98

http://www.pcworld.com/article/id,136214-pg,1/article.html
http://www.pcworld.com/article/id,136214-pg,1/article.html
http://www.cs.vu.nl/das3/
http://www.cs.vu.nl/das3/

[70] Manos Renieris and Steven P. Reiss. Fault Localization With Nearest Neigh-
bor Queries. In 18th IEEE International Conference on Automated Software
Engineering (ASE’03), pages 30–39, Oct 2003.

[71] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,
Mehul A. Shah, and Amin Vahdat. Pip: Detecting the Unexpected in Dis-
tributed Systems. In Proceedings of 3rd Symposium on Networked Systems
Design and Implementation (NSDI), pages 115–128, San Jose, CA, May
2006.

[72] Philip C. Roth and Barton P. Miller. On-line Automated Performance Diag-
nosis on Thousands of Processes. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’06), pages 69–80, New
York, NY, USA, March 2006.

[73] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A Software-
Based Multicast/Reduction Network for Scalable Tools. In Proceedings of
ACM/IEEE Conference Supercomputing (SC’03), page 21, 2003.

[74] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. Benchmarking
the MRNet distributed tool infrastructure: lessons learned. In Proceed-
ings of 18th International Parallel and Distributed Processing Symposium
(IPDPS’04), page 272, Santa Fe, New Mexico, April 2004.

[75] Hideo Saito, Yoshikazu Kamoshida, Shogo Sawai, Ken Hironaka, Kei Taka-
hashi, Takeshi Sekiya, Nan Dun, Takeshi Shibata, Daisaku Yokoyama, and
Kenjiro Taura. InTrigger: A Multi-Site Distributed Computing Environment
Supporting Flexible Configuration Changes. In IPSJ Sig Technical Report
HPC-111, pages 237–242, Aug 2007. In Japanese.

[76] Yasushi Saito. Jockey: user-space library for record/replay debugging. In
Sixth International symposium on automated and analysis-driven debugging
(AADEBUG 2005), pages 69–76, Monterey, CA, Sep 2005.

[77] Bianca Schroeder and Garth A. Gibson. A Large-Scale Study of Failures
in High-Performance-Computing Systems. In International Conference on
Dependable Systems and Networks (DSN’06), pages 249–258, June 2006.

[78] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo.
Data Mining Methods for Detection of New Malicious Executables. In Pro-
ceedings of IEEE Symposium on Security and Privacy, Oakland, CA, May
2001.

99

[79] S. Shende and A. D. Malony. The TAU Parallel Performance System. In-
ternational Journal of High Performance Computing Applications, 20(2):
287–331, 2006.

[80] Satoru Shingu, Hiroshi Takahara, Hiromitsu Fuchigami, Masayuki Yamada,
Yoshinori Tsuda, Wataru Ohfuchi, Yuji Sasaki, Kazuo Kobayashi, Takashi
Hagiwara, Shin ichi Habata, Mitsuo Yokokawa, Hiroyuki Itoh, and Kiyoshi
Otsuka. A 26.58 tflops global atmospheric simulation with the spectral trans-
form method on the earth simulator. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing (SC’02), pages 1–19, Baltimore, Maryland,
2002.

[81] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. Flashback: a lightweight extension for rollback and deter-
ministic replay for software debugging. In Proceedings of the USENIX 2004
Annual Technical Conference, pages 29–44, 2004.

[82] M. Steinder and A.S. Sethi. A Survey of Fault Localization Techniques in
Computer Networks. Science of Computer Programming, 53(2):165–194,
November 2004.

[83] W. Richard Stevens. UNIX Network Programming: Neworking APIs: Sock-
ets and XTI, volume 1. Prentice Hall, 2nd edition, January 1998.

[84] Ariel Tamches and Barton P. Miller. Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels. In 3rd Symposium on Operat-
ing Systems Design and Implementation (OSDI’99), pages 117–130, New
Orleans, Louisiana, Feb 1999.

[85] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

[86] Masaki Tatezono, Naoya Maruyama, and Satoshi Matsuoka. Making Wide-
Area, Multi-Site MPI Feasible Using Xen VM. In Workshop on XEN in HPC
Cluster and Grid Computing Environments (XHPC’06), Sorrento, Italy, Dec
2006.

[87] David M.J. Tax. One-class classification; Concept-learning in the absence
of counter-examples. PhD thesis, Delft University, June 2001.

[88] Rajeev Thaku and William D. Gropp. Improving the Performance of Collec-
tive Operations in MPICH. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface (10th European PVM/MPI User’s Group

100

Meeting), volume 2840/2003 of Lecture Notes in Computer Science, pages
257–267, Venice, Italy, September 2003. Springer.

[89] Tokyo Stock Exchange, Inc. Measures Taken for Preventing Recur-
rence, etc. Concerning the Derivatives Trading System Malfunction.
Available at http://www.tse.or.jp/english/news/200802/080222
a.html, February 2008.

[90] TotalView Technologies, LLC. TotalView Debugger Users Guide. http:

//www.totalviewtech.com/, 2007.

[91] Chad Verbowski, Emre Kcman, Arunvijay Kumar, Brad Daniels, Shan Lu, ,
Juhan Lee, Yi-Min Wang, and Roussi Roussev. Flight Data Recorder: Mon-
itoring Persistent-State Interactions to Improve Systems Management. In
7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’06), 2006.

[92] Jeffrey Vetter. Performance analysis of distributed applications using auto-
matic classification of communication inefficiencies. In ICS ’00: Proceed-
ings of the 14th international conference on Supercomputing, pages 245–
254, Santa Fe, New Mexico, USA, 2000. ACM Press.

[93] David Wagner and Drew Dean. Intrusion detection via static analysis. In
R. Dean, editor, Proceedings of IEEE Symposium on Security and Privacy,
pages 156–168, 2001.

[94] Parkson Wong and Rob F. Van der Wijngaart. Nas parallel benchmarks ver-
sion 2.4. Technical Report NAS-02-007, NASA Ames Research Center,
2002.

[95] Lingyun Yang, Chuang Liu, Jennifer M. Schopf, and Ian Foster. Anomaly
detection and diagnosis in grid environments. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing (SC’07), Reno, NV, November
2007.

[96] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang,
and Wei-Ying Ma. Automated Known Problem Diagnosis with Event
Traces. In Proceedings of the 2006 EuroSys conference, pages 375–388,
2006.

[97] Victor C. Zandy, Barton P. Miller, and Miron Livny. Process hijacking. In
Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing (HPDC’99), page 32, 1999.

101

http://www.tse.or.jp/english/news/200802/080222_a.html
http://www.tse.or.jp/english/news/200802/080222_a.html
http://www.totalviewtech.com/
http://www.totalviewtech.com/

[98] Ziming Zheng, Yawai Li, and Stephane Zhiling Lanteri. Anomaly Localiza-
tion in Large-Scale Clusters. In Proceedings of the IEEE International Con-
ference on Cluster Computing (Cluster’07), pages 322–330, Austin, Texas,
Sep 2007.

102

