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Abstract
We propose a robust spoken term detection method against
word recognition errors using a combination of phone-based
and word-based recognition. Conventional methods based
on similar frameworks are problematic because phone-based
recognition produces a large number of insertion errors. In our
method, different substitution penalties are assigned for phone
pairs to reduce such errors. We evaluated our method using
the corpus of spontaneous Japanese. When recall was fixed at
50%, precision improved to 4.4 points above detection using
only word-based recognition. We also report here on the ef-
fectiveness of optimization of the combination weight for each
keyword.
Index Terms: Spoken term detection, Phone recognition, Word
recognition

1. Introduction
In recent years, the amount of multimedia data has been rapidly
increasing. User’s demand for effective information retrieval is
also increasing. Effective multimedia information retrieval, not
only of text, but also of sound, image, and video, is in strong
demand.

In this paper, we focus on spoken term detection from
speech data, where each query consists of one keyword. In this
simple framework, user can identify the times at which a key-
word occurs through all the speech data. We use lecture speech
data as examples of speech data. Since lecture speech data are
very spontaneous, more recognition errors occur than during the
read speech, such as those in news programs. We thus need to
find a robust keyword detection method against recognition er-
rors. To do this, a combination of sub-word based recognition
and word-based recognition has been extensively studied[1, 2].
Logan et al. used sub-word units generated from phone ex-
pressions and was in favor of a combination of word and sub-
word level indexing[1]. Yu et al. proposed a method using
a combination of word-based and phone-based recognition[2].
They also proposed a two-pass system in which an approximate
match is first executed on an entire set of documents to produce
a small collection of documents. A costly detailed phonetic
match is then executed for a few documents in the collection.
In their work, time alignment between a phone lattice and a
phone sequence of a keyword was executed to detect the frame
periods of keyword utterances from phone-based recognition
results[3]. These studies combining phone-based recognition
with word-based recognition mainly focused on detecting out-
of-vocabulary (OOV) keywords and did not aim at improving
detection performance in general. This is because phone-based
recognition produces a large number of insertion errors. To im-
prove phone-based recognition, we assign different substitution
penalties for phone pairs. We also combine phone-based and
word-based detection to improve speech detection performance.

We carry out our detection experiments under the condition that
there is no OOV keyword to confirm the effectiveness of our
method.

Word recognition accuracies for keywords may differ - var-
ious keywords are easily recognized, but others are not. In the
latter case, phone-based recognition plays a more important role
in our framework. We therefore discuss optimizing the combi-
nation weight for each keyword.

This paper is organized as follows. In Section 2, we intro-
duce a conventional phone-based detection method. In Section
3, we explain our method for reducing insertion errors. In Sec-
tion 4, we explain the fusion method, and in Section 5 we dis-
cuss the effectiveness of the proposed method. Finally, Section
6 concludes this paper.

2. Detection algorithm using phone-based
recognition

First, we explain the detection algorithm using phone-based
recognition proposed by Young et al.[3], which we use as a
baseline phone-based recognition algorithm. This algorithm
calculates confidence measure if a keyword appears from the
frame period of a phone lattice. This calculation is made using
time alignment between the frame period of the phone lattice
and the keyword phone sequence.

Let the phone sequence of a keyword be p1 . . . pN , where
N is the number of phones in the keyword. In executing the
time alignment, the cumulative function C(i, e) is prepared.
This function returns the best path score for a fraction of key-
word phone sequence p1 . . . pi(i ≤ N) with end time e. With
this function, frame-based time alignment can be defined as:

∀t C(0, t) = 0 (1)

C(i, e) = max
b

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(i− 1, b) + V (b, e, pi)
C(i− 1, b) + (e− b)Ps

+ maxz V (b, e, z)
C(i, b) + (e− b)Pi

C(i− 1, e) + Pd

, (2)

where V (b, e, p) is the log-likelihood score for an arc with its
beginning frame b, its end frame e, and its phone hypothesis p.
Penalties for phone substitution, insertion, and deletion are Ps,
Pi, and Pd, respectively, and C(N, t) is defined as the likeli-
hood of the phone sequence ending at time t.

Next, a confidence measure for each phone sequence is cal-
culated. The confidence measure of a keyword hypothesis with
its beginning frame b and its ending frame e is calculated as:

PI =
10C(N,e)

ML(b, e)
, (3)

where ML(b, e) is part of the maximum likelihood score from
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frame b to e. Hypotheses are ordered by the confidence measure
of the sequence.

3. Reducing insertion errors
The phone-based detection algorithm explained in Section 2
tends to produce a large number of insertion errors. We pro-
pose a method to decrease them.

3.1. Different substitution penalty using KLD

In the algorithm explained in the previous section, phone substi-
tutions are permitted for only a limited number of phone pairs.
If we further assign different substitution penalties for different
phone pairs, we expect an improvement in phoneme recognition
performance. Here, we determine the substitution penalty for
each phone pair by using Kullback-Leibler divergence (KLD)
between the two phone models[4].

First, for KLD between two GMMs s, s̃ is approximated
using unscented transform[5] as [6]:

DKL(s||s̃) ≈ 1

2L

M∑
m=1

ωm

2L∑
k=1

log
p(om,k|s)
p(om,k|s̃) , (4)

where L is the dimension of an acoustic feature vector, M is
the number of mixtures, ωm is the mixture weight of the m-
th Gaussian component in the GMM, and om,k(1 ≤ k ≤
2N) is the k-th sigma point of the m-th Gaussian compo-
nent. We select om,k = μm +

√
Nλm,kum,k , om,k+N =

μm − √
Nλm,kum,k(1 ≤ k ≤ N) as the sigma point,

where μm is the mean vector of the m-th Gaussian compo-
nent, λm,k, and um,k is the k-th eigenvalue and eigenvector
of the covariance diagonal matrix of the m-th Gaussian compo-
nent, respectively. Note that KLD is asymmetric; for example,
DKL(s||s̃) �= DKL(s̃||s).

After KLDs between all GMMs are calculated, the phone
KLD for each phone pair is approximated by using dynamic
programming. Using this KLD, the substitution term P ′s(a, b)
from phone a to phone b is expressed as:

P ′s(a, b) = C(i− 1, b) + (e− b)Ps ·KLD(a||b)
+max

z
V (b, e, z). (5)

3.2. Reducing number of hypotheses

The phone-based detection algorithm explained above produces
a large number of hypotheses. We reduce the number of hy-
potheses by selecting the hypothesis with the largest value of
confidence measure among hypotheses with similar frame peri-
ods. Defining whether a pair of hypotheses is similar from the
viewpoint of the frame period is needed. Here, two hypotheses
A and B are defined as similar if A and B satisfy:

min(eA, eB)−max(bA, bB)

max(eA, eB)−min(bA, bB)
> τd, (6)

where bA and eA are the beginning and end frames of A, bB

and eB are the beginning and end frames of B, and τd is the
threshold for the selection. A smaller τd reduces the number of
hypotheses.

4. Combination of word- and phone-based
approaches

By allowing a few recognition errors, phone-based detection
is expected to detect the correct frame period for a keyword,

whereas word-based detection cannot detect such a period. On
the other hand, phone-based detection produces significantly
more insertion errors than word-based detection. We thus com-
bine phone- and word-based detection to bolster detection per-
formance.

4.1. Word-based detection

To retrieve a keyword using word-based recognition, first, the
1-best word recognition results with beginning and end frames
from time-alignment information are stored. Next, if the key-
word is present in the 1-best results, the frame periods corre-
sponding to the keyword are stored with the information about
their frame periods.

To calculate the confidence measure of each word hypoth-
esis, we use a likelihood average of the corresponding frame
periods. Let the maximum of this averaged likelihood in all the
word hypotheses be lmax, and the likelihood of word hypothesis
I be lI . The confidence measure for I , WI is then expressed as:

WI =
lI

lmax
. (7)

4.2. Fusion method

We combine word- and phone-based detection results by using
the confidence measures. If hypothesis I obtained by word-
based detection and hypothesis J obtained by phone-based de-
tection are satisfied by:

min(eI , eJ)−max(bI , bJ )

max(eI , eJ)−min(bI , bJ )
> τm, (8)

where bI and eI are the beginning and end frames of word hy-
pothesis I , bJ and eJ are the beginning and end frames of phone
sequence hypothesis J , and τm is the threshold, then I and J
are combined to one hypothesis K. The frame period of K
is the average of I and J , and the confidence measure for this
combination is calculated by:

MK = WI
λ · PJ

(1−λ), (9)

where PJ is the confidence measure of phone sequence hypoth-
esis J calculated by Eq.3, λ is a fusion weight that satisfies
0 ≤ λ ≤ 1. If a hypothesis in either detection cannot find any
hypotheses in the counterpart, the confidence measure for the
counterpart has a very small value, D.

5. Experiments
5.1. Experimental conditions

We evaluated the proposed method using speech data from aca-
demic and extemporaneous lecture speaking data from the cor-
pus of spontaneous Japanese (CSJ) [7, 8]. The number of lec-
tures is 2701, and the total length of the data is about 530
hours. The database was divided into two parts to achieve a
good balance of the same kind of lectures. We applied cross-
validation using these two databases for our evaluation. The tri-
phone acoustic model was constructed by using a training set.
The language model for phone-based recognition was a simple
grammar representing phone connectability in Japanese (Figure
1), and the language model for word-based recognition was a
trigram constructed using the training set. We used HTK[9] for
phone-based recognition and Julius[10] for word-based recog-
nition. The model and decoder used for each recognition are
shown in Table 1.
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Consonant Vowel

Other

Figure 1: The grammar network used in phoneme recognition

Table 1: Model and decoder used for each recognition

Recognition Type Word Phoneme

Acoustic Model Triphone
Language Model Trigram Simple Grammar

Recognition Decoder Julius HTK

In our experiments, we selected keywords for our evalu-
ation in the following way. We first calculated tf-idf[11] of all
the words in the database, and then words with higher tf-idf than
a predetermined threshold were selected as keywords. Then, to
increase the reliability of the results, we excluded those words
having a number of occurrences less than 100, and we further
excluded particles, auxiliary verbs, and fillers. We prepared two
kinds of evaluation sets. Set A was relatively small; the test set
consisted of those lectures in the CSJ test set, which consists
of 31 lectures. The keywords were those with the 100 largest
tf-idf. Set B was large; the other half of the training set in the
two-fold cross validation was used. One consisted of 1350 lec-
tures, the other consisted of 1351 lectures. The keywords were
those with the 1000 largest tf-idf. It should be noted there were
no OOV keywords in our experiments.

The “correct” frame period for each keyword used in our
evaluation was generated using Viterbi forced alignment. In our
evaluation, if the frame period of a hypothesis and the correct
frame period were superposed, even if only slightly, detection
was regarded as successful. We evaluated the detection results
in terms of mean average precision (MAP), precision, and re-
call. Mean average precision was calculated using the mean of
an average precision for each keyword, and the average preci-
sion API for keyword I was calculated as:

API =
1

NI

MI∑
k=1

k

rI,k
, (10)

where NI is the number of correct periods of keyword I , MI

is the number of correctly detected periods, and rI,k is the rank
of the k-th detected correct period of keyword I . Mean aver-
age precision is often used in video information retrieval. In
calculating precision and recall, we evaluated only those hy-
potheses having a confidence measure larger than threshold τf .
By changing τf , the precision and the recall are controlled.

5.2. Results

5.2.1. Detection results using phone-based recognition

We first evaluated the detection method using phone-based
recognition with Set A. We compared the results of the method
in which different substitution penalties are used for each phone
pair (KLD) with results of the method in which such penalties
are not used (Baseline). In all experiments, the number of hy-

Table 2: Detection results using phoneme recognition

Method MAP Precision (%) Recall (%)
Baseline 0.365 31.8 66.2

KLD 0.364 31.7 65.5
Word recognition 0.546 69.3 63.9

Figure 2: Fusion results of phone- and word-based detection

potheses reduced using the method explained in 3.2. Threshold
τf used to evaluate precision and recall was 10−22. The detec-
tion results are shown in Table 2. In this table, we also show the
results of detection using word-based recognition. Results show
that KLD failed to significantly improve performance. This is
because, since the size of the generated lattice was too large
and correct phones were almost always present, there were few
cases in which KLD was effective. Compared with the detection
results using word-based recognition, the recall of phone-based
detection was higher, whereas the precision of phone-based de-
tection was much lower. Clearly, the problem with regard to
insertion errors still remained.

5.2.2. Fusion results

Next, we evaluated the results of the combination. The evalu-
ation set was Set B. Parameters used with the combination are
D = 10−1000, τm = 0.3. The mean average precision val-
ues with different fusion weights λ are shown in Figure 2. It
should be noted that when we used λ = 1, only word-based
detection was used. These results show that the combination of
phone- and word-based detection significantly improved MAP.
When we combine phone- and word-based detection results at
λ = 0.9, MAP is the highest; 0.550 higher than that of the
word-based detection results, 0.475.

A precision-recall curve when MAP is the highest is shown
in Figure 3. The optimal value of λ for Base+Word was 0.9.
When recall was fixed at 50%, precision improved by 4.4 points
for detection using word-based recognition only. This shows
that the combination method effectively raised the ranks of the
correct hypotheses.

Several previous studies reported that the combination of
phone- and word-based detection did not outperform word-
based detection when only in-vocabulary keywords were used
(e.g. [1]). In our experiments, the size of the phone lattice con-
structed for each utterance was very large; the average branch-
ing factor for each node was about five. Therefore, our method
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Figure 3: Precision-recall curve of fusion results

Figure 4: Relationship between fusion weight λ and number of
keywords

was able to find the correct hypothesis in the phone lattice even
when the word-based recognition failed. This might be one of
the reasons that our method had better accuracies with the com-
bination. On the other hand, it should be noted that our method
required a larger amount of computational resources than the
conventional methods.

5.2.3. Weight control for each keyword

We evaluated the method, Base+Word, for each keyword. We
optimized the fusion weight λ for each keyword by changing 0
to 1 by 0.1. For each value of λ, the number of keywords with
an optimal average precision value is shown in Figure 4. The
results show that, while most keywords had larger weights on
word detection results, some keywords had larger weights on
phone-based detection results. These results show that optimiz-
ing the fusion weight for each keyword is effective. Mean av-
erage precision improved to 0.555 by using optimal λ for each
keyword. The F-measure also improved from 64.2 to 65.1 by
using optimal λ and the confidence measure threshold τf for
each keyword.

6. Conclusion
We have developed a spoken term detection method using a
combination of phone- and word-based recognition. To reduce

insertion errors, we applied this method to a detection algo-
rithm. Assigning different substitution penalties for phone pairs
in the phone lattice was introduced. We evaluated these meth-
ods using CSJ. When the recall was fixed at 50%, the precision
of the combined approaches improved to 4.4 points above the
precision level obtained only using word-based detection. We
also discussed optimizing the fusion weight and the confidence
measure threshold for each keyword.

In the future, we plan to use the phone language model
for detection to improve performance and include OOV key-
words for our evaluation. In addition, reducing the computa-
tional costs of the time alignment is strongly needed. For exam-
ple, using Confusion Network[12], which compresses the lat-
tice, might be effectively included without decreasing the per-
formance of our proposed method. There is also potential in ex-
ploring whether the optimal fusion weight and confidence mea-
sure threshold can be estimated automatically.
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