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Abstract

The segmental eigenvoice method has been proposed to pro-
vide rapid speaker adaptation with limited amounts of adapta-
tion data. In this method, the speaker-vector space is clustered
to several subspaces and PCA is applied to each of the resulting
subspaces. In this paper, we propose two new techniques to im-
prove the performance of this segmental eigenvoice approach.
First, we propose a soft-clustering method in which each el-
ement in a speaker vector can be assigned to more than one
cluster. Second, those elements far apart from any of the clus-
ters are removed. Our experiments using the JNAS and S-JNAS
databases show that the proposed method outperforms both the
original eigenvoice and the segmental eigenvoice methods, e.g.,
3.3% average improvement when only 10 utterances are used
for adaptation.
Index Terms: principal component analysis, speaker adapta-
tion, eigenvoice, parameter space clustering

1. Introduction
Many effective speaker adaptation techniques have been pro-
posed, including such popular approaches as maximum a pos-
terior (MAP) estimation [1], maximum likelihood linear re-
gression (MLLR) [2], and eigenvoices [3]. It is well-known
that eigenvoices are the most effective among them when the
amount of adaptation data available is extremely small, for ex-
ample, a few utterances. In the eigenvoice method, mean vec-
tors of all the states in all the HMMs from one speaker form
a supervector, which we call a speaker vector. Then, principal
component analysis (PCA) is applied to a set of speaker vectors
from many speakers. In this paper, we focus on improving this
eigenvoice-based technique.

Due to the high dimensional nature of speaker vectors, co-
variance matrix estimates needed for PCA may be unreliable.
Thus, researchers have focused on improving the performance
of eigenvoice techniques by using more robust estimates of
covariance. For example, in the segmental eigenvoices ap-
proach [4], speaker vectors are first clustered structurally into
several clusters; a cluster is constructed for each feature stream,
or for each dimension in feature vectors, or for each state in
HMMs, etc. PCA is then applied to each segment independently
(this is equivalent to forcing the covariance matrix to be block
diagonal, with each block corresponding to one segment). This
method, however, has three problems which can lead to perfor-
mance degradation. First, since it mainly uses structural clus-
tering rather than correlation-based clustering, the correlation

among the elements in the speaker vector might not be well pre-
served in the resulting clusters. Second, while some elements
may have strong correlation to more than one cluster, each ele-
ment should be assigned to only one cluster. Third, while there
exist outlier elements which have no correlation to any other
elements, they must be assigned to one of the clusters.

In this paper, we describe two new techniques to improve
the performance of this segmental eigenvoice approach. First,
we propose a soft-clustering method in which each element in
the speaker vector can be assigned to more than one cluster.
Second, those elements far apart from any of the clusters are
removed before applying PCA.

It has been proved that elements closer to each other in a
speaker vector tend to have larger correlations. For example,
Shinoda et al. used the symmetrized Kullback-Leibler diver-
gence as a distance measure for clustering the elements in struc-
tural MAP adaptation and proved its effectiveness [5]. Here,
instead of using structural clustering, we propose using this dis-
tance measure in order to cluster the elements of a speaker vec-
tor.

This paper is organized as follows. Section 2 briefly sum-
marizes the eigenvoice and the segmental eigenvoice methods.
Section 3 proposes the soft-clustering and the outlier removal.
Section 4 describes the experimental results in a large vocab-
ulary recognition task, including the comparison between the
segmental eigenvoice method and the proposed method. Sec-
tion 5 is the conclusion of this paper.

2. Eigenvoice

Eigenvoice-based adaptation consists of two steps. In the train-
ing step, we obtain a set of eigenvectors, which we call eigen-
voices, applying PCA to data obtained from a large number of
training speakers. In the adaptation step, the model for a new
speaker is constructed on-line by projecting the speaker’s data
to the subspace spanned by the eigenvoices.

2.1. Training step

In the training step, using the speaker-independent (SI) HMM
for N speakers as the initial model, we make a speaker-
dependent (SD) HMM for each of the N speakers. From each
SD model, we extract a supervector which we call a speaker
vector, which consists of the means of the Gaussian mixture
in all the HMM states for that speaker. Speaker vector xp of
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speaker p is

xp = (μt
p,1, · · · ,μt

p,m, · · · ,μt
p,M )t, (1)

where M is the number of Gaussian mixture components over
all HMM states, μp,m is the mean vector of m-th mixture com-
ponent of speaker p, and t indicates transposition. Then the
covariance matrix C corresponding to the N speaker vectors
used for training is

C =
1

N

NX

p=1

(xp − x̄)(xp − x̄)t, (2)

where x̄ is the average of speaker vector. We apply PCA to this
covariance matrix C and select a number of eigenvectors with
the large eigenvalues.

2.2. Adaptation step

In the adaptation step, a model for a new speaker is constructed
using a small amount of data from the speaker. It is assumed that
the speaker vector x̂ of a new speaker is well represented by a
linear combination of a small number of eigenvectors (eigen-
voices) (ek, k = 1, · · · , K)

x̂ =

KX

k=1

ωkek + x̄, (3)

where ωk is the weight coefficient for the k-th eigenvector.
Maximum likelihood estimation is used to estimate the ωk for
each new speaker, using data available for adaptation. This es-
timation process is called maximum likelihood eigen decompo-
sition (MLED) [3].

2.3. Segmental eigenvoice

Recently, the segmental eigenvoice method [4] was proposed as
an improvement to the eigenvoice approach. In this method, the
training step is modified so that the speaker vector is first seg-
mented into several “sub-vectors”. These sub-vectors are gen-
erated by grouping together components of the original feature
vector that has some common structural characteristics (e.g., in
terms of phonology or feature type). In the adaptation step, the
weight coefficients are estimated by MLED independently for
each sub-vector or cluster and the estimated speaker vector for
the new speaker is simply obtained by concatenating the speaker
sub-vectors (one per cluster). This method suffers from per-
formance degradation due to the three problems mentioned in
Section 1.

3. Proposed method
We propose two new techniques to improve the performance of
the segmental eigenvoice approach. Here, we assume that the
mean of each mixture component in Gaussian-mixture HMMs,
μp,m in Eq.(1), forms one data point whose dimension is the
same as the input feature vectors, and carry out clustering to
all the data points. It should be noted that our method is more
general in the sense that we can use any definitions of a data
point other than a mixture component.

In the following, we first explain a soft-clustering method in
which each element in speaker vector can be assigned to more
than one cluster. Then, we describe how to remove those ele-
ments far apart from any of the clusters.

Cluster 1

Cluster 2

d

Figure 1: A soft-clustering example. A speaker vector is first
segmented into elements with equal dimension and close ele-
ments to each other are clustered. Elements in the same cluster
are then concatinated to form a sub-vector of the speaker vector.
In this example, the dimension of each element is two and the
number of clusters (i.e., sub-vectors) is two. “×” represents an
element, “●” is a center of a cluster and d is a predetermined
threshold for the distance between elements. Elements having
smaller distance than d to two clusters are assigned to both of
those two clusters. Elements having larger distance than d to
any clusters are labelled as outliers.

3.1. Soft clustering

We propose a soft-clustering method that allows one element in
the speaker vector to be assigned to more than one cluster. In
this method, Gaussian mixture components of all the states of SI
HMMs are clustered by k-means [6] clustering. As the distance
measure, we use the average of symmetrized Kullback-Leibler
divergence (KLD) D(P, Q), which is defined as follows

D(P, Q) =
DKL(P ||Q) + DKL(Q||P )

2
, (4)

where P and Q are Gaussian distributions and DKL(P ||Q) is
KLD from P to Q. If the distance between a mixture and a
cluster is less than the predetermined threshold, the mixture is
assigned to the cluster. If there is a mixture far apart from any
of the clusters, it is labelled as outlier. An example of this soft-
clustering is illustrated in Figure 1.

3.2. Modification of covariance matrix

In the next step, we modify the elements of the covariance ma-
trix according to the result of soft clustering. First, all the out-
lier elements are set to zero, i.e., we ignore the corresponding
crosscorrelation terms in the covariance matrix. Second, for
each pair of mixtures which do not belong to the same cluster,
the elements of the covariance matrix which correspond to this
pair are also set to zero. Finally, we apply PCA to the result-
ing covariance matrix. This process is illustrated in Figure 2. It
should be noted that, unlike the segmental eigenvoice method,
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Cluster 1

Cluster 2

0 0

0

0 0

outlier

Figure 2: Covariance matrix after the modification process de-
scribed in Subsection, when the number of clusters is two.

our method does not increase the number of weight coefficient
to be estimated in MLED process. We expect this method to be
robust when the amount of adaptation data is extremely small.

4. Experiments

4.1. Experimental Setup

We evaluated the proposed method in phoneme recognition us-
ing monophone HMMs. We compared the performance of our
method with that of the speaker-independent (SI) HMMs, that
of MLLR [2], and that of the segmental eigenvoice method.

We used two Japanese databases, JNAS [7] and S-JNAS [8].
JNAS consists of read speech of news paper articles. S-JNAS
uses the same language resources as JNAS but consists of the
speech data from elderly speakers. Each utterance in those
databases correponds to one Japanese sentence whose duration
is one to three seconds. JNAS consists of 266 (133 males and
133 females) speakers, each of which utters 150 sentences. S-
JNAS consists of 300 (150 males and 150 females) speakers,
each of which utters 200 sentenses. As training data we used
522 (222 in JNAS and 300 in S-JNAS) speakers’ utterances.
As adaptation data we used 20 utterances from 44 (22 males
and 22 females) speakers, who were not involved in the training
data. As test data we used another 50 utterances from the same
speaker as those in the adaptation data.

We trained SI HMM which has 43 monophones, three states
for each monophone, and one mixture for each state. A fea-
ture vector consists of 12 dimensional MFCCs, 12 dimensional
ΔMFCCs, and Δpower. In the segmental eigenvoice method
and the proposed method, all 129 mixtures (43 phonemes × 3
states × 1 mixture) are classified to 2, 4, and 8 clusters. The di-
mension of a speaker vector was 3225 (43 phonemes × 3 states
× 25 dimensions). In the phoneme recognition, we employed a
simple grammar representing Japanese syllable structure.

Figure 3: Comparison with the conventional methods when the
number of utterances for adaptation is changed. Original is the
original eigenvoice method, Segmental is the segmental eigen-
voice method, and Proposed is our proposed method with soft
clustering.

4.2. Comparison with the other eigenvoice methods

We first compared our method with the segmental eigenvoice
method. In both methods, we used a set of 50 eigenvectors in
total as the eigenvoice. In the segmental eigenvoice method, the
symmetrized KLD was used as the distance measure for com-
parison with the proposed method. In both methods, the num-
ber of clusters was two. The threshold for the distance used in
the proposed method was determined by our preliminary exper-
iments using the test data. We observed that the difference of
the threshold value did not influence the recognition accuracies
so much.

The evaluation results with different numbers of utterances
for adaptation are shown in Figure 3. The result showed that
the performance of the segmental eigenvoice method was not
as good as the original eigenvoice approach. This may be
because the loss of the correlation information between those
mixtures separated to different clusters deteriorated the perfor-
mance. The performance of the MLLR method was not better
than SI HMM using 1 and 3 utterances for adaptation, since the
amount of data was too small. The performance of the proposed
method had the best accuracy among all methods. This result
confirmed the effectiveness of the proposed method.

4.3. Number of clusters

Next, we evaluated the proposed method with different number
of clusters. Here, the number of eigenvectors in eigenvoice was
fixed to 50 and the number of clusters was changed from 1 to 8.
The threshold was optimized in the same way as in the previous
experiment. The evaluation result is shown in Figure 4. The
accuracies of the proposed method in all cases were better than
the original eigenvoice method. When the number of clusters
was four, the recognition accuracy was improved by 3.3 points
using 10 utterances for adaptation.

We analyzed the relationship between the number of clus-
ters and the phoneme accuracy. First, Cluster 1 and Cluster
2 had the same result, since the threshold in Cluster 2 was a
relatively large value and one cluster was totally contained in
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Figure 4: Recognition accuracies with different numbers of
clusters. Original is the original eigenvoice method and Cluster
1, 2, 4, 8 are the results with the proposed method.

another dominant cluster. Second, the difference between Orig-
inal and Cluster 1 was more than that between Cluster 1 and
Cluster 4. In Cluster 1, the improvement obtained by the pro-
posed method came from the removal of outliers. This effect
was much larger than the improvement obtained by increasing
the number of clusters from 1 to 4. In our analysis of the clus-
tering results, the 2nd states of four long vowels /a:/, /i:/, /e:/,
/o:/, the 3rd state of /q/ (double consonant), the 1st and the 2nd
states of /silB/ (silence before an utterance), the 2nd and the 3rd
states of /silE/ (silence before an utterance), and the 2nd and the
3rd states of /sp/ (short pause) were categorized as outliers. In
the 2nd states of long vowels, since they are the center states,
the acoustic characteristic of speech tend to be steady. The fea-
ture values for Δ MFCCs and Δ power tends to come close to
zero. This might be the major reason that the distance of these
mixtures and each cluster becomes large. The phoneme such
as /q/, /silB/, /silE/, and /sp/ mostly represent silence, and thus,
they have little speech characteristics. Third, the performance
of Cluster 8 was worse than that of Cluster 4. This may be
because the mixtures which should be outliers tended to be as-
signed to some clusters when the number of clusters increased.

4.4. Performance for each speaker

Finally, the effect of the proposed method for each speaker was
compared with the original eigenvoice. The result is shown in
Figure 5, where 10 utterances were used for adaptation. The
number of clusters in our method was four which gave the best
performance. The result showed that the proposed method was
effective for all speakers, especially for those speakers having a
relatively small improvements by the original eigenvoice.

5. Conclusion

In this paper, we have proposed a soft-clustering method in
which each Gaussian mixture component is assigned to more
than one cluster by using the distance between mixtures. In
addition, those mixtures far apart from any of the clusters are
labelled as outlier. We implemented the proposed method by
changing the value of the elements of the covariance matrix for
speaker vectors. The result of our experiments showed that the
proposed method was better than the original eigenvoice and the

Figure 5: Improvement obtained by the original eigenvoice and
the proposed method for each test speaker. Here the point means
the improvement in phoneme accuracy (%) from the result by
SI HMM.

segmental eigenvoice methods. The phoneme accuracy was im-
proved 3.3 points from the original eigenvoice on average using
10 utterances for adaptation. The result also indicates that the
removal of the outlier mixtures was more effective than the soft
clustering.

In future, we would like to apply our method to triphone
HMMs. Since we can make the covariance matrix very sparse
by using our techniques, it is expected that we can implement
our eigenvoice method without much effort. Also, distance
measure among the elements in the speaker vector should be
investigated further.
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