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Abstract— Since speech is highly variable, even if we have a
fairly large-scale database, we cannot avoid the data sparseness
problem in constructing automatic speech recognition (ASR)
systems. How to train and adapt statistical models using limited
amounts of data is one of the most important research issues in
ASR. This paper summarizes major techniques that have bheen
proposed to solve the generalization problem in acoustic model
training and adaptation, that is, how to achieve high recognition
accuracy for new utterances. One of the common approaches is
controlling the degree of freedom in model training and
adaptation. The techniques can be classified by whether a priori
knowledge of speech obtained by a speech database such as those
spoken by many speakers is used or not. Another approach is
maximizing “margins® between training samples and the
decision boundaries. Many of these techniques have also been
combined and extended to further improve performance.
Although many useful techniques have been developed. we still
do not have a golden standard that can be applied to any kind of
speech variation and any condition of the speech data available
for training and adaptation.

[. INTRODUCTION

Recent advances in automatic speech recognition (ASR)
can be attributed to the use of the statistical pattern
recognition paradigm [12, 22, 32]. In this framework, the true
joint distribution of a word sequence, W, and its
corresponding sequence of acoustic vector observations, X, is
assumed to be modeled by a true parametric probability
density function:

PWw.x) = P(x) A(W). )

and the full knowledge of the parameters, A and 7, of the
above distributions is known. Then an optimal decoder
(speech recognizer) which achieves the expected minimum

word error rate and gives the recognized string, W , becomes
the following maximum a posteriori (MAP) decoder:

W= argnax AHX) = agnax B(OY) BB @)

Since we do not know the true parametric form of P(W, X)
and we do not have the knowledge about its true parameter
values, the parameters are estimated from a large set of
labeled speech and text training data.

There is a widely known phenomenon: “There is no data
like more data.” Since speech implicitly contains a large
number of sources of variations, we always have a data
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sparseness problem. Every time we start a new speech
recognition task, we begin with a relatively large recognition
error rate, and it decreases with the progress of the project.
Figure | shows the progress of various DARPA projects. The
decrease of the error rate for each task has been achieved by

the increase of task-dependent database along with
technological progress.
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Fig. 1. History of DARPA speech recognition benchmark tests (ATIS: Airline
Travel Information System, WSJ: Wall Street Journal, NAB: North American
Business).
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Fig. 2. Word error rate (WER) as a function of the size of acoustic model
training data (8/8 = 510 hours) [13].
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Figure 2 shows the relationship between error rate and the
size of the acoustic model training corpus in the case of
Japanese spontaneous speech recognition using the Corpus of
Spontaneous Japanese (CSJ) [13, 15]. The full size of the CSJ
training corpus is approximately seven million words, and the
figure shows that the error rate does not converge even when
the full size is used for training. It has also been found that
spontaneous speech contains substantial variations not present
in read speech, and it is therefore more difficult to collect
spontaneous speech data with enough coverage [15, 16].
Even if we have a large corpus, we cannot avoid the data
sparseness problem in speech recognition, especially for
spontaneous speech.

Figure 3 shows an example of a simple 2-category
classification problem: salmon and sea-bass classification by
two features of lighmess and width [9]. The linear model
shown in Fig. 3(a) looks too simple to achieve good
classification, but the complicated model shown in Fig. 3(b) in
which all the waining patterns would be separated perfectly is
not likely to classify new samples with high accuracy. This is
the issue of generalization, and it is unlikely that the complex
model would provide good generalization — it seems to be too
much tuned to the particular training samples. This is called
over-tuning. The model shown in Fig. 3(c) although having
slightly poorer performance on the training samples is
preferable for novel patterns to the models in Figs. 3(a) and
3(b).

How to avoid over-tuning and solve the generalization
problem is one of the most important and also difficult issues
in speech recognition. Unfortunately this problem has no
theoretical solution, since in principle “there is no data like
more data”. One of the common empirical approaches is
controlling the degree of freedom in model training. This is a
version of Occam’s razor, that is, the simplest model that
explains data is the one to be preferred. Another approach
focuses on maximizing “margins” between the well-classified
training samples and the decision boundaries [9].
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Fig. 3(a). Two features of lightness and width for sea-bass and salmon, and a
linear decision boundary [9].
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Fig. 3(b). An overly complex decision boundary which leads to perfect
classification of the training samples but would lead to poor performance on
furure patterns, The test point marked “?” is evidently most likely a salmon,
whereas the complex decision boundary shown leads it to be classified as a
sea-bass [9].
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Fig. 3{c). A decision boundary which might represent the optimal radecff
between performance on the training set and simplicity of classifier, thereby
giving the highest accuracy on new patterns [9].

II. MODEL ADAPTATION

Because of the variation of speech, there always exists
some mismatch which causes a distortion between the trained
model and the test data. A conceptual illustration is shown in
Fig. 4 [32]. DI, D2 and D3 characterize the distortion in the
signal, feature and model spaces, respectively. These
mismatches arise from various sources of variations as shown
in Fig. 5.
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Fig. 4. Mismatch between training and testing [32].
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Fig. 5. Main causes of acoustic variation in speech.

In order to reduce the mismatch, two major classes of
statistical techniques have been investigated [22]: adapting
model parameters with labeled data, and compensating signal,
feature and model distortion using testing data, among which
the former class is more powerful and flexible than the latter
class.

Model adaptation can be classified into supervised and
unsupervised adaptation. In the supervised case, we use text
or correct transcriptions for the utterances as supervision
information, and it is always difficult to obtain a large number
of such utterances. In the unsupervised case, since we do not
have correct supervision information, we usually use ASR
results, that is, recognition hypotheses, as supervision
information. Unsupervised adaptation is useful, since we can
use the utterances for recognition themselves as utterances for
adaptation.  However, since the recognition hypotheses
include recognition errors, the model parameters are adapted

using not only the correct labels but also the errors. Therefore,

not only the limited amount of utterances but also the

recognition errors included in the hypotheses cause difficulties
of the unsupervised adaptation.

Unsupervised adaptation can be classified into on-line
adaptation and off-line adaptation. In the on-line adaptation,
the model is updated incrementally using each utterance. A
common strategy for off-line adaptation is the batch-mode
adaptation approach where a set of utterances for recognition
are decoded and then a model is updated using all the
hypotheses. The process is often iterated several times for
higher recognition performance [39]. In both on-line and off-
line adaptation, a problem exists in that, when the adaptation
is iterated, the errors are reinforced during the iteration. This
is more significant for the batch-mode adaptation, since the
decoding and update steps are repeated using the same data.

Adaptation methods can also be classified into those for
environmental speech variation and others. The
environmental variation consists of additive noise and
recording as well as transmission distortion, including
microphone variation. These can generally be modeled by
additive and multiplicative distortion in the spectral domain,
except for room reverberation with a long time constant which
cannot be modeled independently for each frame. Many
useful model adaptation and compensation methods have been
proposed for additive and multiplicative distortion in the
spectral domain [8, 51]. Major sources of speech variation
other than environmental distortion include gender, speech
rate, vocal effort, regional accents, and speaking style, and
therefore there is no simple model for covering these
variations.

This paper targets general adaptation methods which can be
applicable to a wide range of variations, mainly focusing on
speaker-to-speaker variability.

ITI. GENERALIZATION PROBLEM

In speech recognition, it is very important to deal with the
generalization problem in both model training and adaptation
to reduce the effect of hypothesis bias and allow robust
estimates using a limited amount of data. Since the amount of
data that we can use for adaptation is usually small and also
variable from several words or a single sentence to multiple
sentences, how to properly solve the generalization problem in
the adaptation process is much more difficult than that in the
training process.

Adaptation is usually performed based on the maximum
likelihood estimation or the maximum a posteriori (MAP)
estimation, but the discriminative estimation techniques [22,
24], such as minimum classification error (MCE) [28, 36],
maximum mutual information (MMI) [42, 73], minimum
phone error (MPE) [46, 72, 76] and closely related minimum
word error (MWE), are also used. The discriminative
estimation techniques are more heavily biased towards the
supervision hypothesis, which causes a serious problem in
unsupervised model adaptation.

How well will our system generalize to new patterns? As
already described above, a major approach for generalization
is controlling the degree of freedom of the model so that the
trade-off between a complicated model and a constrained



model is optimized. This can be done with or without using
our a priori knowledge. The methods which do not rely on
using a priori knowledge can be classified into those directly
controlling the degree of freedom and those using some
parameter smoothing. Another relatively new approach is to
maximize “margins” between the training samples and the
decision boundaries.

This paper overviews techniques to deal with the
generalization problem that have been investigated in acoustic
model training and adaptation, mainly focusing on adaptation
techniques.

IV. CONSTRAINING THE DEGREE OF FREEDOM BY USING A
PRIORI KNOWLEDGE

Various methods have been proposed for constraining the
degree of freedom in HMM adaptation using a priori
knowledge of speech. The a priori knowledge is obtained
from our general knowledge about speech or from training
data, such as those spoken by a large pool of speakers or
under various environmental conditions.

A. VIN

Vocal tract length normalization (VTN) is one of the
simplest constrained models for speaker variability, and
therefore it has been widely investigated. Two methods have
been commonly used; piecewise linear or bilinear warping in
the frequency domain [71] and the speaker-specific Bark/Mel
scale warping [33]. Although the VTN can significantly
reduce the speech recognition error rate, when other general
adaptation methods are applied or gender-dependent models
are used as a baseline, the effectiveness of the VIN often
becomes minor.

B. Correlation

Pair-wise correlation between the mean vectors can be used
to enhance estimation of the mean parameters of some speech
units even if they are not directly observed in the adaptation
data and therefore the recognition rates are significantly
improved [10]. This approach has been extended and
combined with the MAP approach as described below [26].

C. MAP and Bayesian estimation

Maximum a posteriori (MAP) estimation algorithms [23]
have been widely adopted and successfully applied to model
adaptation, typically speaker adaptation of HMMs. In this
method, the model parameters are regarded as random
variables whose joint prior probability density function (pdf)
is assumed. The MAP estimate of the parameter vector is
defined as the mode of the posterior pdf given the adaptation
data. The improvement obtained with MAP estimation is
significantly larger than that obtained with maximum
likelihood (ML) estimation, especially when the amount of
adaptation data is relatively small. It is well known that, since
MAP estimates are asymptotically equivalent to ML estimates,
the resulting recognition performance is similar to that of
speaker-dependent (SD) HMMs when the amount of data
becomes large.

Although the Bayesian estimation is not included in the
MAP estimation, they are strongly related [68]. The mean
value obtained by the Bayesian estimation is equivalent to that
obtained by MAP estimation, while the variance obtained by
the former method is the summation of the variance of mean
values and the true variance. The true variance, however, is
usually unknown in real problems. Since the Bayesian
estimation is more robust than the MAP estimation, it is more
effective when the adaptation data is limited. However, the
Bayesian estimation is computationally much more expensive
than the MAP estimation, and, since the effectiveness of
variance adaptation is relatively small, the difference in the
adaptation performance is usually minor.

D, EMAP and OB methods

Since the MAP approach is not capable of improving
recognition accuracy when only a small amount of data is
available, several algorithms supplementing this technique
have been developed. The extended MAP (EMAP) method
[77] and the quasi-Bayes (QB) technique [26] with correlated
mean vectors are extensions of the MAP approach. They
increase the recognition rates by taking into account the a
priori knowledge in the correlation between the parameters
modeling different speech units. QB learning was developed
for adapting the mixture coefficients of semi-continuous
HMM (SCHMM) parameters and then extended to
incremental adaptive learning of all of the continuous density
HMM (CDHMM) parameters. All mean vectors are assumed
to be correlated and have a joint prior distribution. Based on
the theory of recursive Bayesian inference, the QB algorithm
is designed to incrementally update the hyper-parameters on
the approximate posterior distribution and the CDHMM
parameters simultaneously.

E. Jacobian approach

The Jacobian approach is one of the analytic approaches to
adapting models under an initial condition to a target
condition, assuming that the variation can be analytically
modeled and the difference between the two conditions is
relatively small [53, 54]. In this approach, changes in the
environment, such as noise, and changes in the resultant
acoustic model are related by Jacobian matrices, and the
adaptation is performed by simple matrix arithmetic.

F. Eigen-voice

This method was proposed for speaker adaptation using a
limited amount of data for each new speaker [31, 41]. In this
approach, speaker-dependent models from many speakers are
created and the principal component analysis (PCA) is carried
out for model parameters of all the speakers. The lower order
eigen-vectors are selected as eigen-voices. For a new speaker,
weights for each eigen-voice are estimated in a maximum
likelihood estimation to be used for model adaptation.

G. Multiple modeling (multi-style training)

Ensemble of models specialized to specific conditions, such
as gender, age, speaking rate or spontaneity, can be trained
and then be used within a selection, competition or else



combination framework [2, 40]. When multiple modeling is
available, all the available models may be wused
simultaneously during decoding, as done in many approaches,
or the most adequate set of acoustic models may be selected
from a priori knowledge, or their combination may be handled
dynamically by the decoder. Dynamic Bayesian networks
(DBN) have been used as described below to handle
dependencies of the acoustic models with respect to auxiliary
variables, such as local speaking rate, or hidden factors related
to a clustering of the data.

The multiple models can be prepared using a clustering
technique, and the optimal model for input speech is selected
(cluster-based model selection) [30, 44]. Speaker clustering
has been mostly employed in this scheme. Various automatic
clustering techniques have been used. Clustering training data
at the utterance level provides better performance than that at
the lecture level [62].

H. Cluster adaptive training (CAT)

In contrast to speaker clustering where a particular cluster
is selected as the speaker model, a linear interpolation of all
the clusters is used in this approach [19]. To simplify the
estimation process, the component weights and variances are
tied over all the speaker clusters. For any particular speaker a
set of interpolation values, the weight vector, is estimated. An
explicit set of means per cluster or cluster dependent MLLR
(maximum likelihood linear regression) transforms (see Sec
V-B) of some canonical model are used. In both cases simple
closed-form ML estimation can be performed. CAT is
mathematically similar to the eigen-voice method, since both
express the model means of the new speaker as linear
combinations of some basis vectors representing
“prototypical” speakers.

I.  Bayesian networks

Bayesian networks provide a mechanism whereby different
factorizations of a joint distribution can be specified by means
of a directed graph [3, 78]. This approach can express all the
details of a speech recognition system in a uniform way using
only the concepts of random variables and conditional
probabilities. ~ Although a powerful set of computational
routines complements the representational utility of Bayesian
networks, a difficulty exists in that a huge amount of
computation is needed for model parameter training to realize
high flexibility in the network. So far Bayesian networks
have been successfully applied to relatively small ASR tasks
[29, 35, 60, 61].

V. CONSTRAINING THE DEGREE OF FREEDOM WITHOUT USING
A PRIORI KNOWLEDGE

The following methods have been proposed for
constraining the degree of freedom in HMM adaptation
without using any a priori knowledge of speech. These
methods have an advantage in that they are general enough to
be applied to any variation of speech, including the effects of
various noise and channel distortion.

Ameong them, transformation-based approaches are widely
used, in which the number of free parameters is limited by

tying the HMM parameters or by applying some constraints
on the parameters. They include cepstral mean normalization
(CMN), Signal bias removal (SBR), maximum likelihood
linear regression (MLLR), and vector field smoothing (VFS).

A. Structural approach

The use of structure to aid unsupervised adaptation started
with the hierarchical codebook adaptation algorithm which
was originally proposed for VQ-based speech coding and
recognition [11, 65]. In this method, a set of spectra in
adaptation speech and the reference codebook elements
(centroids) are clustered hierarchically by increasing the
number of clusters as shown in Fig. 6. Based on the deviation
vectors between centroids of the adaptation frame clusters and
the corresponding codebook clusters, adaptation is performed
hierarchically from small to large number of clusters, that is,
from the global variation characteristics down to the local
ones. The spectral resolution of the adaptation process is
therefore improved accordingly.

The proposed method was extended to continuous mixture-
density HMM-based speech recognition systems [37]. The
mixture-mean bias estimation, in which the biases are shared
by the mixture-density distributions in the same cluster, is
used for the model transformation, and the number of biases
(i.e. the number of clusters) increases as the number of
estimation iterations increases. The iteration is stopped when
the adaptation becomes sufficiently precise.

In [58, 59], tree-based hierarchical priors were used in
bottom-up supervised training of HMMs. This method has
been applied to various methods, including SMAP and
SMAPLR methods as described in the next section.

Speaker-independent
codebook

¢ Training
¢/ utterance  \: -

Fig. 6. Hierarchical codebook adaptation algorithm maintaining continuity
berween adjacent clusters [11] (u,,: centroid of the mth codebook element
cluster, v,,! centroid of corresponding training speech cluster, p,,; deviation
vector between these centroids, ¢ codebook element}.

B. MLLR

MLLR is one of the most widely used transformation-based
approaches, in which originally the mean vectors of Gaussian
distributions in HMMs were modeled using an affine
transformation [34]. The MLLR was extended to also update
the Gaussian variances, and re-estimation formulae were



derived for these variance transforms [21]. In the MLLR
framework, the Gaussian distributions in HMMs are clustered
into several classes, such as phone classes, and one
transformation is shared in the distributions in each class. The
number of classes needs to be controlled according to the
amount of data to avoid the data insufficiency problem.

Rather than using a static prior set of classes, a more robust
estimation can be obtained by the use of regression class trees
[17, 58]. The regression class tree is constructed by clustering
together Gaussians that are close in the acoustic space, in such
a way that similar components are transformed using the same
transformation.  This is based on the same idea as the
structural approach described above. A binary regression tree
can be constructed using a top-down splitting algorithm with a
Euclidean distance or a symmetrized Kullback-Leibler
divergence/distance. First, all Gaussians in the model set are
assigned to the root node of the tree. At a given level of the
tree, each node is split into two child nodes until a desired
number of leaves is obtained. The partition of each node is
performed by distributing the Gaussians in the two child
nodes in such a way that the sum of the distances to the
centroid node is minimized for each node. The terminal nodes
(leaves) of the wee specify the base regression classes, and
each Gaussian in the model set is assigned to one of these base
classes.

During adaptation, the available data is aligned with the
model set and the occupancy counts (number of observation
vectors aligned with a given Gaussian) are computed for each
base regression class. If a base regression class has sufficient
data, a transform matrix is then estimated. If there is no
sufficient data in a given node, observations of child nodes are
pooled in its parent node. This process is repeated until
sufficient data is collected and then the transformation matrix
is estimated. Finally, all Gaussians assigned to a base
regression class are transformed using the same matrix.

C. Signal bias removal

The signal bias removal (SBR) [49] corresponds to a
special case of MLLR where the transform matrix is the unit
matrix and only the bias vector is estimated and used, that is,
the transformation is just a parallel shift. This method was
originally proposed to normalize multiplicative distortion in
the spectral domain by a bias in the cepstral domain.

D. CMLLR

Constrained maximum likelihood linear regression
(CMLLR) uses the same transformation matrix for the
covariance matrices and the mean vectors of HMMs [6, 18].
This method can be used not only for model adaptation but
also as a feature adaptation technique that estimates a set of
linear transformations for the features. WNote that due to
computational reasons, CMLLR is usually implemented for
diagonal covariance, continuous density HMMs.

E. Interpolation

In order to solve the problem that features which do not
appear in adaptation data cannot be adapted. interpolation
techniques have been introduced [56], in which the bias of a

parameter having no adaptation data is estimated by
interpolating the biases of nearby parameters. This method
asymptotically approaches the ML estimation when the
amount of adaptation data is increased.

F. Vector field smoothing (VFS)

This method assumes that the correspondence of feature
vectors between various conditions, typically between
different speakers, can be viewed as a kind of smooth vector
field [43]. Based on this assumption, the correspondence
obtained from the adaptation is considered to be an
incomplete set of observations from the continuous vector
field, containing observation errots due to the insufficiency of
the adaptation data. To achieve better correspondence as well
as reduction in error, both interpolation and smoothing of the
correspondence are introduced into the adaptation process. To
make this method effective, it is important to control the range
of smoothing according to the size of adaptation data.

G. Ensemble methods

Ensemble methods in machine learning that use multiple
classifiers can also be used to alleviate the generalization
problem in adaptation. Recently, cross-validation (CV)
adaptation and aggregated adaptation algorithms have been
proposed for batch-mode unsupervised adaptation [63, 64].
The latter algorithm is based on the idea of the bagging
approach. In both algorithms, the adaptation utterances are
split into X exclusive subsets, each with roughly the same size.
In the CV adaptation, the adaptation utterances used in the
decoding step and those used in the model updating step are
separated based on the K-fold CV technique as shown in Fig.
7. K sets of recognition hypotheses are made using the
separate adaptation utterance sets. Each of the K models is
then adapted using different K-1 sets of hypotheses, and each
adapted model is used to decode the utterance set that was not
used to adapt the model. This process is repeated until the
results converge.

Iterate

K} | Evaluation speech data

Speech recognition

Recognition
results

Recognition
hypathesis

Fig. 7. Unsupervised cross-validation (CV) adaptation [63].

In the aggregated adaptation, each adaptation utterance set
is decoded N times using separate models. Initially, these &V
models are made by copying the initial model. Each of the N



models is adapted using N x K° (K'<K) sets of hypotheses.
The X’ subsets are randomly selected. The adapted N models
are used to decode each set of adaptation utterances. This
process is repeated until the results converge.

Any kind of conventional adaptation techniques, such as
the MLLR method, can be used in the model adaptation step
in both algorithms. Since the proposed methods can suppress
the negative effects of recognition errors included in the
hypotheses for adaptation, they achieve significantly better
results than a normal batch-mode unsupervised adaptation
method, and the CV adaptation is more efficient than the
aggregated adaptation.

VI. COMBINATIONS AND EXTENSIONS

Many of the above mentioned methods have been
combined and extended to further improve the performance of
adaptation using a limited amount of data.

A.  ML-based combinations

The ML-based adaptation techniques, such as MLLR, have
been extended to incorporate the MAP estimation criterion.
The maximum a posteriori linear regression (MAPLR)
algorithm [5, 66] improves MLLR in a way similar to MAP
enhancement over ML for HMM parameter estimation. The
SMAP approach combines MAP and a structural approach.
Combination of MLLR and MAP [7] and MAP and VES [69,
70] have also been investigated. SMAPLR is the combination
of MAP, affine transform, and a structural method [67].
Combination of MLLR and the eigen-voice method has also
been investigated [4].

B. SMAP

Shinoda et al. [57] proposed a structural maximum a
posteriori (SMAP) approach to improve the MAP estimates
obtained when the amount of adaptation data is small. A
hierarchical structure in the model space is made, and the
priors corresponding to child nodes in the tree are derived
from the parent node making it possible to specify all the
priors for all the parameters in a large collection of HMMs to
perform efficient and effective adaptation as shown in Fig. 8.
Results of supervised adaptation experiments showed that
SMAP estimation significantly reduced error rates when short
utterances were used for adaptation and that it yielded the
same accuracy as MAP and ML estimation when the amount
of data was sufficiently large. The recognition results
obtained in unsupervised adaptation experiments showed that
SMAP estimation was effective even when only one utterance
from a new speaker was used for adaptation.

C. N-best based method

In order to reduce the effects of recognition errors in the
hypothesis obtained for an input utterance in the instantaneous
unsupervised adaptation, an N-best list based scheme was
proposed [37], which uses MAP estimations of mean biases.
Smoothed estimation and utterance verification were also
introduced. Experimental results show that this method is
effective in improving the recognition accuracy especially for
difficult speakers.

Layer1 ———-
(root)

Fig. 8. Tree structurg for Gaussian pdfs in continucus density HMMs used in
the SMAP method. For simplicity, the case when the dimension is one (scalar)
is shown [57].

An N-best list based Bayesian framework for MLLR affine
transforms has been investigated in [75] for the unsupervised
instantaneous adaptation.

D. Discriminative approach based combination

A supervised speaker adaptation method combining MAP
and MCE estimation has been proposed to alleviate the over-
tuning problem [36]. In this method, speaker-independent
HMM parameters are first adapted to a new speaker by MAP
estimation and then modified using MCE estimation. By
using this combination, the HMM parameters after the MCE
estimation fall into ome of the local minima near the
parameters adapted by MAP estimation. Since the MCE
estimation directly aims at minimizing the recognition error
but the results tend to be heavily biased towards the adaptation
data, the combination is effective in improving the recognition
accuracy.

E. Bayesian discriminative adaptation (Discriminative MAP
estimation)

Raut and Gales [50] has investigated a MAP Bayesian
approach for unsupervised discriminative adaptation. The
Bayesian framework can reduce the hypothesis bias and
makes the discriminative adaptation less sensitive to
supervision hypothesis errors. Moreover, this Bayesian
approach allows robust estimatdon of discriminative
transforms even with a limited amount of data. This makes it
possible to use them for instantaneously adapting model
parameters.

F. [-smoothing

I-smoothing was proposed for smoothing discriminative
training criteria using statistics for ML estimation (MLE) [47].
[-smoothing is a way of applying an interpolation between
MLE and a discriminative objective function in a way which



depends on the amount of data available for each Gaussian. I-
smoothing improves MMI estimation test-set performance at
the cost of training set accuracy i.e., it yields improved
generalization.

G. Large-margin discriminative training

Recently, much progress has been made to further improve
the generalization ability into the discriminative training
process by incorporating a “margin”, that is, the distance
between the well-classified samples and the decision
boundary. One such approach is to maximize the margins
directly using the gradient descent or semi-definite
programming when the training set error rate is low. An
alternative method is to optimize some form of combined
scores of the margin and the empirical error rate. Yu et al. [74]
has shown that the sigmoid bias in the conventional MCE
training can be interpreted as a soft margin, and proposed a
practical optimization strategy that increases the margin (the
sigmoid bias) incrementally over epochs in the MCE training
process so that a desirable balance between the empirical error
rates on the training set and the margin can be achieved and
verified by cross validation.

Heigold et al. [25] and Saon et al. [55] have recently
proposed formulations of modified MPE and MMI that bring
these methods into the space of large-margin based methods,
while preserving standard optimization methods suitable for
large-scale discriminative training. In these formulations,
hypothesis strings with Aigh error are artificially given better
scores during the training procedure. Intuitively, “good”
strings with low errors will have to work harder to beat the
high error “bad” strings during training, but as a result such
good strings will be more likely to be recognized during
testing [38]. It has been shown that the proposed criteria are
equivalent to Support Vector Machines with suitable smooth
functions, approximating the non-smooth hinge loss function
or the hard etror (e.g. phone error) [25].

VII. CONFIDENCE MEASURES

Confidence measures (CMs) are widely used in un-
supervised adaptation to select more reliable speech segments
from a recognizer’s output [27]. One important issue is that
the operating point during the verification stage should be set
up to guarantee a low false acceptance rate. A CM can be
computed for every recognized word to indicate the likelihood
that it has been correctly recognized, or for an utterance to
indicate how much we can trust the results for the utterance as
a whole. The posterior probability in the standard MAP
decision rule is widely used as a CM, since it is an absolute
measure of how good/reliable the decision is. However, it is
very hard to estimate the posterior probability in a precise
mammer due to its normalization term in the denominator. In
practice, many different approaches have been proposed to
approximate it, ranging from simple filler-based methods to
complex word-graph-based approaches.

The CM problem is sometimes formulated as a statistical
hypothesis testing problem, especially under the framework of
utterance verification which is a post-processing stage to

examine the reliability of the hypothesized recognition result.
In this framework, two complementary hypotheses, namely
the null hypothesis Hy and the alternative hypothesis H, are
proposed. Then Hj is tested against H; to determine whether
the recognition result should be accepted or rejected.
According to Neyman-Pearson Lemma, under some
conditions, the optimal solution to this testing is based on a
likelihood ratio testing (LRT). Similarly to the posterior
probability, the major difficulty with LRT is how to model the
alternative hypothesis which usually represent a very complex
and composite event, where the true distribution of data is
unknown. In practice, a general background model.
hypothesis-specific anti-model, a set of competing models, or
a combination of all the above is adopted to model the
alternative hypothesis.

VIII. SPECIAL TRAINING METHODS FOR THE MODELS USED

FOR ADAPTATION

In order to make the adaptation processes more effective or
to keep the consistency between the training and the
adaptation processes, special training methods, instead of
simply using a speaker/environment-independent model, have
been investigated.

A, Adaptive training

Originally a speaker/environment-independent model was
commonly used as the canonical model. Recently, since the
majority of training databases have multiple speakers or
acoustic environments, the adaptation scheme to be used in
recognition has also been used during training. This is known
as adaptive training [1, 48]. In the case of speaker adaptive
training (SAT), the parameters for speaker-dependent model
are estimated in the following process. First, a mapping from
the parameters of the model created for each individual
speaker to those of an initial model (speaker-independent
model) is estimated. Second, this estimated mapping is used
to map the utterance data for each speaker. Third, this
mapped data is used to train the speaker-dependent model.
This process is iterated until convergence. By using such
adaptive training it is possible to build canonical models
which only represent variability from individual speakers
rather than the variability over all speakers in the training
database.

B. Acoustic factorization

This technique attempts to explicitly model all the factors
that affect the acoustic signal [52]. By explicitly modeling all
the factors the trained model set is expected to be used in a
more flexible fashion than in standard adaptive training
schemes. Since an individual model is trained for each factor,
it is possible to factor-in only those factors that are appropriate
to a particular target domain, for example the distribution over
all training speakers. The target domain specific factors are
simply estimated from limited target specific data, for
example the target acoustic environment. Gales [20]
investigated a particular form of acoustic factorization that
uses MLLR as the speaker transform and CAT as the noise
transform.



IX. CONCLUSION AND FUTURE WORKS

Although many important scientific advances have taken
place in automatic speech recognition research, we have also
encountered a number of practical limitations which hinder a
widespread deployment of applications and services. In most
speech recognition tasks, human subjects produce one to two
orders of magnitude fewer errors than machines [45]. One of
the most significant differences exists in that human subjects
are far more flexible and adaptive than machines against
various variations of speech, including individuality, speaking
style, additive noise, and channel distortions. How to train
and adapt statistical models for speech recognition using
limited amount of data is one of the most important research
issues.

This paper has summarized major techniques that have
been proposed to solve the generalization problem in acoustic
model training and adaptation, that is, how to properly control
the degree of freedom of the model or maximize “margins” to
achieve high recognition accuracy for new utterances.
Although various useful techniques have been proposed, we
have not yet obtained a universal method which can be used
for every condition of variations and the amount and quality
of data for training and adaptation.

What we know about human speech processing and natural
variation of speech is very limited. Tt is important to spend
more effort to clarify especially the mechanism of speaker-to-
speaker variability, and build a method of simultaneously
modeling multiple sources of variations based on the
statistical analysis using a large-scale database. It is also
important to develop a seamless adaptation method which is
applicable to a wide range of the amount of adaptation data.

Significant advances in speech recognition are not likely to
come solely from research in statistical pattern recognition
and signal processing. Although these areas of investigation
are important, the most significant advances in next
generation systems will come from studies in acoustic-
phonetics, speech perception, linguistics, and psychoacoustics.
Future systems need to have an efficient way of representing,
storing, and retrieving various knowledge resources required
for natural speech conversation [14].
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