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Abstract

In this thesis, we study the security property for encryption and signature schemes, called
“anonymity.” Roughly speaking, it is said that an encryption scheme provides the anonymity
when the eavesdropper, in possession of a ciphertext, cannot determine who is the receiver
of the ciphertext. That is, the receiver is anonymous from the point of view of the eaves-
dropper. For signature schemes, it is said that a signature scheme provides the anonymity
when it is infeasible to determine who produced the signature. Some signature schemes
with special functionality, such as undeniable and confirmer signature schemes and ring
signature schemes, require the anonymity property.

In the first half of this thesis, we study the techniques which can be used to obtain
the RSA-based schemes with the anonymity property. In order to construct the schemes
for encryption or signature with the anonymity property, it is necessary that the space of
ciphertexts or signatures is common to each user. We propose two techniques for anonymity,
and by using these techniques, the space of ciphertexts or signatures of RSA based schemes
can be common to each user. We also construct the schemes for encryption, undeniable and
confirmer signature, and ring signature, by applying our proposed techniques, and show
the advantage and the disadvantage of the previous and our proposed schemes.

In the second half of this thesis, we carry on further research with respect to the
anonymity property of encryption schemes. We first construct a family of Paillier’s trap-
door permutations with a common domain, and propose the schemes for public-key en-
cryption with our proposed families of trap-door permutations. We next propose a new
security notion for public-key encryption with anonymity, called “strong anonymity,” and
show the relationships between the data-privacy and the key-privacy for public-key encryp-
tion schemes. Furthermore, we propose a new security notion of plaintext awareness in the
two-key setting, called PATK, and show that PATK implies IK-CCA, which is considered
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as the required security level with respect to the anonymity property. We also propose the
first generic conversion scheme for the anonymity from IK-CPA, which is a weaker secu-
rity notion than IK-CCA, to IK-CCA. Finally, we formalize a special type of public-key
encryption schemes called a universally anonymizable public-key encryption scheme. We
then propose the universally anonymizable public-key encryption schemes based on the
ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP, and

prove their security.
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CHAPTER 1

Introduction

In this thesis, we study the security property for encryption and signature schemes, called
“anonymity.” Roughly speaking, it is said that an encryption scheme provides the anonymity
when the eavesdropper, in possession of a ciphertext, cannot determine who is the receiver
of the ciphertext. That is, the receiver is anonymous from the point of view of the eaves-
dropper. For signature schemes, it is said that a signature scheme provides the anonymity
when it is infeasible to determine who produced the signature. Some signature schemes
with special functionality, such as undeniable and confirmer signature schemes and ring
signature schemes, require the anonymity property.

In Chapters 2 to 5, we study the techniques which can be used to obtain the RSA-based
schemes with the anonymity property. We propose two techniques for anonymity. We also
construct the schemes for public-key encryption, undeniable and confirmer signature, and
ring signature, by applying our proposed techniques.

In Chapter 6, We construct a family of Paillier’s trap-door permutations and that with a
common domain. We also propose the schemes for public-key encryption with our proposed
families of trap-door permutations.

In Chapter 7, we propose a new security notion for public-key encryption with anonymity,
called “strong anonymity,” and show the relationships between the data-privacy and the
key-privacy for public-key encryption schemes.

In Chapter 8 we propose a new security notion of plaintext awareness in the two-key
setting, called PATK, and show that PATK implies IK-CCA. We also propose the first
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generic conversion scheme for the anonymity from IK-CPA to IK-CCA.

In Chapter 9, we formalize a special type of public-key encryption schemes called a
universally anonymizable public-key encryption scheme. We then propose the universally
anonymizable public-key encryption schemes based on the ElGamal encryption scheme,

the Cramer-Shoup encryption scheme, and RSA-OAEP, and prove their security.

1.1 Techniques and Schemes for Public-Key Encryption and
Signature with Anonymity

1.1.1 Background

We review public-key encryption, undeniable and confirmer signature, and ring signature,

and the anonymity properties for them.

Public-Key Encryption In 1976, Diffie and Hellman published the idea of public-key
cryptography in their famous paper [36]. They introduced a public-key method for key
agreement which is in use to this day. In addition, they described how digital signatures
would work, and proposed, as an open question, the search for such a function. The first
public-key cryptosystem that could function as both key agreement and as digital signature
was the RSA cryptosystem published in 1978 by Rivest, Shamir, and Adleman [75]. The
RSA cryptosystem provides encryption and digital signatures and is the most popular and
widely used public-key cryptosystem today.

Until up now, many public-key encryption schemes have been proposed, and the security
notions for public-key encryption have also been proposed. A convenient way to define the
security notions for public-key encryption is by considering separately the various possible
goals and the various possible attack models, and then obtain each definition as a pairing
of a particular goal and a particular attack model.

The classical security goal (requirement) of public-key encryption schemes is that it pro-
vides privacy of the encrypted data. Popular formalizations such as the indistinguishability
of encryptions by Goldwasser and Micali [48], or the non-malleability by Dolev, Dwork,
and Naor [37]. The indistinguishability (IND) formalizes that an adversary, given a ci-
phertext ¢, is not able to learn any information about the plaintext. The non-malleability
(NM) formalizes that an adversary’s inability, given a challenge ciphertext ¢, to output
a different ciphertext ¢’ such that the plaintexts m, m’ underlying these two ciphertexts
are meaningfully related. (For example, m’ = m + 1.) It captures a sense in which ci-
phertexts can be tamper-proof. On the other hand, popular formalizations of the attack
models are the chosen plaintext attack (CPA) and the adaptive chosen ciphertext attack
(CCA). Under the CPA setting, the adversary can obtain ciphertexts of plaintexts of her
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choice. In the public-key setting, giving the adversary the public key suffices to capture
this attack. Under the CCA setting [73], the adversary gets (in addition to the public key)
access to an oracle for the decryption function. The only restriction is that the adversary
cannot ask ¢ to the decryption oracle. (The attack is called adaptive because queries to
the decryption oracle can depend on the challenge ¢.) From the above argument, we can
consider four security notions, IND-CPA, IND-CCA, NM-CPA, NM-CCA. Bellare, Desai,
Pointcheval, and Rogaway [4] discussed the relationships between these security notions.
The widely admitted appropriate security level for public-key encryption is the indistin-
guishability against the adaptive chosen ciphertext attack (IND-CCA). There are many
public-key encryption schemes proved IND-CCAZ2, such as [26, 7], etc.

Bellare, Boldyreva, Desai, and Pointcheval [3] proposed a new security requirement of
the encryption schemes called “key-privacy” or “anonymity.” It asks that the encryption
provide (in addition to privacy of the data being encrypted) privacy of the key under which
the encryption was performed. That is, the receiver is anonymous from the point of view
of the adversary.

Anonymous encryption schemes have many applications. For example, anonymous en-
cryption schemes have arisen in the context of mobile communications. If a mobile user
uses an anonymous encryption scheme, he can keep his identity private from an eaves-
dropping adversary. A particular case of this is anonymous authenticated key exchange
protocol such as SKEME (Krawczyk [57]). The encryption scheme in SKEME must have
the anonymity property. Anonymous credential system (Camenisch and Lysyanskaya [15])
enables users to control the dissemination of information about themselves. It is required
to be infeasible to correlate transactions carried out by the same user. They use a ver-
ifiable circular encryption scheme that needs to have the anonymity property. Sako [77]
proposed an auction protocol. They express a bid as an encryption of a fixed message,
with the key to encrypt it corresponding to the value of the bid. In their scheme, if the
encryption scheme has the anonymity property, the value of the bid is protected from the
other bidders.

A simple observation that seems to be folklore is that standard RSA encryption, namely,
a ciphertext is ¢ mod N where x is a plaintext and (N, e) is a public key, does not provide
anonymity, even when all moduli in the system have the same length. Suppose an adversary
knows that the ciphertext y is created under one of two keys (Np,ep) or (N, e1), and
suppose Ny < Nj. If y > Ny then the adversary bets it was created under (Np,eq), else
the adversary bets it was created under (Np, eg). It is not hard to see that this attack has
non-negligible advantage. To construct the schemes with anonymity, it is necessary that
the space of ciphertexts is common to each user.

In [3], Bellare, Boldyreva, Desai, Pointcheval provided the key-privacy encryption
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scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [7], Fujisaki,
Okamoto, Pointcheval, and Stern [43]), and made the space of ciphertexts common to each
user by repeating the evaluation of the RSA-OAEP permutation f(z,r) with plaintext z
and random r, each time using different r until the value is in the safe range (See Sec-
tion 3.2.). For deriving a value in the safe range, the number of the repetition would be
very large (the value of the security parameter). In fact, their algorithm can fail to give a

desired output with some (small) probability.

Undeniable and Confirmer Signature Digital signature is an important tool for re-
alizing security in open distributed systems and in electronic commerce as they guarantee
the authenticity of data. In the common model, a digital signature can be verified by
everyone (universal verifiability) and therefore its validity cannot be denied by the signer
(non-repudiation). However, the universal verifiability property of digital signatures is not
always a desirable property. For example, consider the situation that a signature contains
some confidential agreement or private or personal information. In these case, limiting the
ability of third parties to verify the validity of signatures is an important goal.

Undeniable signature proposed by Chaum and Antwerpen [22, 20] is a solution to this
problem. Undeniable signature scheme is non-self-authenticating signature scheme, that is,
the signatures can only be verified by conducting a confirmation protocol with the signer,
assuming the signer participates. However, if a signature is only verifiable with the aid of
a signer, a dishonest signer may refuse to authenticate a genuine document. Undeniable
signature solves this problem by adding a new component called the denial (disavowal)
protocol in addition to the normal components of signature and verification. Chaum also
provided confirmer signature [21] which is undeniable signature where signatures may also
be verified by interacting with an entity called the confirmer who has been designated
by the signer, and many undeniable and confirmer signature schemes have been proposed
[47, 63, 16, 45]. The standard security requirements for undeniable and confirmer signature
are the unforgeability of signatures, and the correctness and soundness of the confirmation
and denial protocols.

In 2003, Galbraith and Mao proposed a new security notion of undeniable and confirmer
signature named “anonymity” in [44]. Informally, this security property is as follows.
Imagine a system with n users and suppose an adversary is given a valid message-signature
pair and is asked to determine which user generated the signature. By running signature
confirmation or denial protocols with a given user (or their designated confirmer) one can
determine whether or not the user generated the signature. An undeniable or confirmer
signature scheme has the anonymity property if it is infeasible to determine whether a

user is or is not the signer of the message without interacting with the user or with the
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n — 1 other users, with a given message-signature pair. In [44], Galbraith and Mao pointed
out that the RSA-based undeniable and confirmer signature scheme proposed by Gennaro,
Krawczyk and Rabin [47] does not satisfy the anonymity property, and provided a new
undeniable and confirmer signature scheme with anonymity. Since their scheme is based
on the RSA function, it is necessary that the space of signatures is common to each user,
similar to the case of public-key encryption schemes with anonymity. They made the space
of signatures common to each user by encoding the message to an N-ary representation and
applying the standard RSA permutation to the low-order digits where NN is a public key
for each user (See Section 4.2.). This technique was originally proposed by Desmedt [35].

Ring Signature The general notion of group signature was introduced by Chaum and
van Heyst [23]. In such a scheme, a trusted group manager predefines certain groups of
users and distributes specially designed keys to their members. Individual members can
then use these keys to anonymously sign messages on behalf of their group. That is, the
receiver of the signature can verify that it is a valid signature of the group, but cannot find
which member of the group produced the signature (anonymity). Though the signatures
produced by different group members look indistinguishable to the verifiers, not to the
group manager who can revoke the anonymity of misbehaving signers.

In 2001, Rivest, Shamir, and Tauman [76] proposed the notion of ring signature schemes.
These are simplified group signature schemes which have only users and no managers.
Unlike group signature, ring signature has no group managers, no setup procedures, no
revocation procedures, and no coordination. The signer does not need the knowledge,
consent, or assistance of the other ring members to put them in the ring. All the signer
needs is knowledge of their regular public keys. To produce a ring signature, the actual
signer declares an arbitrary set of possible signers that includes himself, and computes the
signature entirely by himself using only his secret key and the other’s public keys. Then,
the receiver of the signature can verify that it is a valid signature of the ad hoc group,
but cannot find which member of the group produced the signature. Here, since the group
manager does not exist, no one revoke the anonymity of the actual signer (unless he decides
to expose himself).

They also proposed the efficient schemes based on RSA and Rabin. In their RSA-based
scheme, the trap-door RSA permutations of the various ring members will have domains
of different sizes. This makes it awkward to combine the individual signatures, so one
should construct some trap-door one-way permutation which has a common domain for
each user. Intuitively, in the ring signature scheme, Rivest, Shamir, and Tauman solved this
problem by encoding the message to an N;-ary representation and applying an standard

RSA permutation f to the low-order digits where NV; is a public key for each user (See



CHAPTER 1. Introduction

Section 5.2.). This is the same kind of the technique employed in the undeniable and
confirmer signature by Galbraith and Mao. As mentioned in [76], for deriving a secure

permutation g with a common domain, the domain of g would be 160 bits larger than that

of f.

1.1.2 Owur Contribution on Techniques

From the previous results mentioned above, we can find two techniques, repeating, expand-

ing for anonymity of cryptosystems based on RSA.

Repeating Repeating the evaluation of the encryption (respectively the signing) with
plaintext x (resp. message m), random r, and the RSA function, each time using
different r until the value is smaller than any public key N of each user.

In [3], Bellare, Boldyreva, Desai, and Pointcheval used this technique for the encryp-

tion scheme.

Expanding Doing the evaluation of the encryption (respectively the signing) with plain-
text z (resp. message m), random r, and the RSA function, and expanding it to the
common domain.

This technique was proposed by Desmedt [35]. In [44], Galbraith and Mao used this
technique for the undeniable signature scheme. In [76], Rivest, Shamir, and Tauman

also used this technique for the ring signature scheme.

In this thesis, we propose two new techniques for obtaining the anonymity property of

RSA-based cryptosystems.

An RSA Family of Trap-Door Permutation with a Common Domain We first
consider an underlying primitive element common to the key-privacy encryption and the
ring signature schemes, that is, families of trap-door permutations with a common domain.
As we have seen before, for a standard RSA family of trap-door permutations denoted by
RSA, even if all of the functions in a family use RSA moduli of the same size (the same
number of bits), it will have domains with different sizes. In this thesis, we construct an
RSA family of trap-door permutations with a common domain denoted by RSACD. The
domain and range of RSACD are common to each user when each user has an RSA modulus
of the same size. We also prove the properties of RSACD, that is, we show that the #-partial
one-wayness (Roughly speaking, given a function f and an element y = f(z), it is hard
to compute a 6 fraction of the most significant bits of x.) of RSACD is equivalent to the
one-wayness of RSACD for 8 > 0.5, and that the one-wayness of RSACD is equivalent to
the one-wayness of RSA. Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the
f-partial one-wayness of RSA is equivalent to the one-wayness of RSA for 6§ > 0.5. Thus,
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RSA is O-partial one-way RSACD is f-partial one-way

l I [43] this thesis] l I [this thesis]

_—

RSA is one-way RSACD is one-way

Figure 1.1: Relationships between RSA and RSACD for 6 > 0.5.

the relations in Figure 1.1 are satisfied for § > 0.5. From these relations, we have that the
f-partial one-wayness of RSACD is equivalent to the one-wayness of RSA. This property is
useful to construct the public-key encryption scheme with anonymity.

By using the RSACD function, we propose a new technique for obtaining the anonymity

property.

RSACD Doing the evaluation of the encryption (respectively the signing) with plaintext

x (resp. message m), random r, and the RSACD function.

The Sampling Twice Technique We next propose a new technique for obtaining the
anonymity property of RSA-based cryptosystems, called “sampling twice.” We propose
an algorithm ChooseAndShift as follows. It takes two numbers x1,x2 € Zy as input and
returns a value y € [0,2%) where | N| = k, and if 21 and x5 are independently and uniformly

chosen from Zy then y is uniformly distributed over [0, 2).

Algorithm ChooseAndShifty ,(71,2)
if (0 < @p,20 <28~ N)
1 with probability
return
r1 + N with probability
elseif (28 — N < 21,29 < N)

return

NI—= NI—=

else
y1 < min{xy,x2}; y2 « max{xy, w2}

%%% Note that 0 < y; < 28 — N and 28 — N < yo < N. %%%

Y1 with probability (% + Q,ﬁl) X %
return{ y; + N with probability (3 + 2,;’\frl) X %

Yo with probability % — 2,5&

By using the algorithm ChooseAndShift, we propose the sampling twice technique.

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice

with plaintext = (resp. message m), random 7 and 79, and the RSA function, and
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H Repeating Expanding RSACD Sampling Twice
Encryption Bellare et al. this thesis this thesis this thesis
Undeniable and Confirmer Signature | this thesis | Galbraith et al. - this thesis
Ring Signature this thesis Rivest et al. this thesis this thesis

Figure 1.2: The previous and our proposed schemes.

applying our proposed algorithm ChooseAndShift for the two resulting values.

1.1.3 Owur Contribution on Schemes

We then propose the schemes for encryption, undeniable and confirmer signature, and ring
signature, by applying our proposed techniques. More precisely, we propose the schemes
for encryption and ring signature with the RSACD function, and those for encryption,
undeniable and confirmer signature, and ring signature with the sampling twice technique.
We also prove the anonymity property and other required security of the schemes. Un-
fortunately, we have not succeeded to construct the undeniable and confirmer signature
scheme with anonymity by applying the RSACD function.

Furthermore, we present the previously unproposed schemes with the anonymity prop-
erty by applying the repeating and expanding techniques. We also prove the anonymity
property and other required security of the schemes (See Figure 1.2.).

We summarize the (dis)advantage of the schemes with four techniques.

The scheme with repeating is efficient with respect to the sizes of ciphertexts and
signatures, the computational costs to encrypt messages and to sign messages in the average
case, and those to decrypt ciphertexts and to verify signatures. However, it is inefficient
with respect to the computational costs to encrypt messages and to sign messages in the
worst case. In order to obtain the anonymity property, it is necessary for each user to
choose a public key with almost the same size.

The scheme with expanding provides anonymity even if each user uses the public key of
different length. It is efficient with respect to the computational costs to encrypt messages,
to sign messages, to decrypt ciphertexts, and to verify signatures. However, the sizes of
ciphertexts and signatures are larger than those of the other schemes.

The scheme with RSACD is efficient with respect to the sizes of ciphertexts and signa-
tures, and the computational costs to encrypt messages and to sign messages. However, it
is inefficient with respect to the computational costs to decrypt a ciphertext and to verify
a signature. In order to obtain the anonymity property, it is necessary for each user to
choose a public key with exact the same size.

The scheme with sampling twice is efficient with respect to the sizes of ciphertexts and



1.2. A Family of Paillier’s Trap-Door Permutations and its Applications to Public-Key
Encryption with Anonymity

[68] [this thesis]
RSAy isone-way .~ Paillier is one-way PCD is one-way
I l [43] I l [this thesis] I l [this thesis]
RSAy is Paillier is PCD is
f-partial one-way f-partial one-way f-partial one-way

Figure 1.3: Relationships between RSAy, Paillier, and PCD for 6 > 0.5.

signatures, the computational costs to decrypt ciphertexts and to verify signatures, and the
computational costs to encrypt messages and to sign messages in the worst case. However,
the number of exponentiations for encryption or signing is two, while that of the other
schemes is one or 1.5 in the average case. Similar to the scheme with RSACD, in order to
obtain the anonymity property, it is necessary for each user to choose a public key with

exact the same size.

1.2 A Family of Paillier’s Trap-Door Permutations and its
Applications to Public-Key Encryption with Anonymity

Background. In [68], Paillier provided a public-key encryption scheme based on the

problem of computing high-degree residuosity classes modulo N? where N is a typical

RSA modulus. His encryption scheme is based on the permutation (m,r) — ¢™r" mod

N2, Paillier proved that his encryption scheme is IND-CPA if and only if the Decisional

*
N2>

modulo N? or not) is hard, and that the Decisional Composite Residuosity Problem is hard

Composite Residuosity Problem (given w € Z%,,, to decide whether w is an N-th residue
if the RSA problem is hard. Paillier also provided a trap-door one-way bijective function,
and proved that the function is one-way if and only if the problem of extracting N-th roots
modulo N is hard.

Our Contribution. In this thesis, we focus on the four techniques described above in
the case using the Paillier’s bijective function instead of the RSA function. We slightly
modify his function and construct a family of Paillier’s trap-door permutations denoted by
Paillier. We also construct a family of Paillier’s trap-door permutations with a common
domain denoted by PCD, and prove the relations in Figure 1.3 for 6 > 0.5. Here, RSAN
denotes an RSA family of trap-door permutations with the fixed exponent N.

We prove that the one-wayness of Paillier is reduced to that of PCD. The proof is similar
to that for RSA and RSACD. On the other hand, we cannot prove the partial one-wayness
of Paillier by directly applying a similar argument for that of RSA in [43]. Furthermore,
although the construction of PCD is similar to that of RSACD, we cannot prove the partial
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one-wayness of PCD by directly applying a similar argument for that of RSACD.

We also apply Paillier and PCD to encryption, and obtain Paillier-OAEP (OAEP with
Paillier’s trap-door permutation) with repeating, that with expanding, that with sampling
twice, and PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common do-
main). We prove that the anonymity and the indistinguishability of Paillier-OAEP with
repeating, that with expanding, and that with sampling twice can be reduced directly
to the f-partial one-wayness of Paillier. We also prove that the anonymity and the in-
distinguishability of PCD-OAEP is reduced directly to the 6-partial one-wayness of PCD.
From the relations in Figure 1.3, our proposed schemes provide the anonymity and the

indistinguishability assuming that RSAy is one-way.

1.3 Relationships between Data-Privacy and Key-Privacy

Background. We have considered two kinds of security notions, data-privacy and key-
privacy. Popular formalizations for data-privacy, such as indistinguishability (IND) under
either the chosen plaintext attack (CPA) or the adaptive chosen ciphertext attack (CCA),
is directed at capturing various data-privacy requirements. On the other hand, the security
notions for key-privacy, such as indistinguishability of keys (IK) under either the chosen
plaintext attack or the adaptive chosen ciphertext attack, asks that an encryption scheme
provides privacy of the key under which the encryption was performed.

On the data-privacy and key-privacy, Halevi [49] provided a simple sufficient condition
for an public-key encryption scheme which meets IND to meet IK. It is, roughly speak-
ing, for any two public-key pko, pk1, the distribution of ciphertexts of random messages
under the key pko and that under the key pk; are statistically close. In [2], Abdalla et.
al. extended the Halevi’s condition to identity-based encryption. They weakened the sta-
tistical (i.e. information-theoretic) requirement of [49] to a computational one. We call
the computational version of the Halevi’s condition for public-key encryption schemes the

anonymity with random messages (IKR).

Our Contribution. We revisit the definition of key-privacy by Bellare, Boldyreva, Desai,
and Pointcheval [3]. In the experiment of the definition by [3], the adversary chooses only
one message m € MSPC(pkg) N MSPC(pk;) and receives a ciphertext of m encrypted with
one of two keys pko and pk;. Then the adversary tries to determine under which key the
encryption was performed. Therefore, their definition guarantees the anonymity property
only when the message is chosen from the set MSPC(pko) N MSPC(pky ).

However, in some public-key encryption schemes, the ciphertext space may be common
even if the message spaces for each public-key are different, and such schemes may provide

the anonymity property.

10



1.3. Relationships between Data-Privacy and Key-Privacy
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Figure 1.4: Relationships between data-privacy and key-privacy.

In this thesis, to consider this situation, we propose a new security notion for public-key
encryption, called “strong anonymity.” In the experiment of our definition, the adversary
chooses two messages mg and mj where mg and m; are in the message spaces for pky and
pk1, respectively, and receives either a ciphertext of mg encrypted with pkg or a ciphertext
of my encrypted with pk;. Thus, our security notion captures the situation described
above.

We then show the relationships between data-privacy and key-privacy. We consider the
indistinguishability (IND) as the security notion for the data-privacy, and the anonymity
(IK), the anonymity with random messages (IKR), and the strong anonymity (sIK) as
those for the key-privacy.

We show the relationships between data-privacy and key-privacy in Figure 1.4. These
relations hold under the chosen message attack and the adaptive chosen ciphertext attack.

In this figure, for notions of security A and B,

e “A —— B” means that A implies B, that is, for any public-key encryption scheme
which is secure in the sense of A is also secure in the sense of B (We denote it as
A= B.), and

e “A ---- B” means that A does not imply B, that is, there exists a public-key en-
cryption scheme which is secure in the sense of A and not secure in the sense of B
(We denote it as A # B.).

In this thesis, we prove the relations in Figure 1.5. In this figure, the number on the
arrow refers to the section of this thesis. By using the relations in Figure 1.5 and trivial
relations (IKR-atk A IND-atk = IKR-atk, IKR-atk A IND-atk = IND-atk), the relations

which are in Figure 1.4 and not in Figure 1.5 are determined automatically.

11
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Figure 1.5: Relationships proved in this thesis.

From this figure, we can see that sIK is very strong security notion. For example, IK
does not imply IND, but sIK implies IND. Furthermore, we can also see that sIK implies
IKR. Therefore, sIK is equivalent to IKR A IND, while IK is weaker than IKR A IND.

1.4 Plaintext Awareness in the Two-Key Setting and a Generic

Conversion for Encryption with Anonymity

Background. As mentioned before, the classical security requirement of public-key en-
cryption schemes is that it provides privacy of the encrypted data. The widely admitted
appropriate security level for public-key encryption is the indistinguishability against the
adaptive chosen ciphertext attack (IND-CCA). A promising way to construct such a public-
key encryption scheme is to convert it from primitives which are secure in a weaker sense
such as one-wayness (OW), IND-CPA, etc.

Bellare and Rogaway [7] proposed a generic and simple conversion scheme from a one-
way trapdoor permutation into a public-key encryption scheme. The scheme created in this
way is called OAEP. Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that OAEP
with a partial one-way trapdoor permutation is secure in the sense of IND-CCA. The
OAEP conversion has several variants, such as SAEP [9], OAEP+ [78], etc.

Fujisaki and Okamoto [42] proposed a simple conversion scheme from weak public-key
and symmetric-key encryption schemes into a public-key encryption scheme which is secure
in the sense of IND-CCA. This scheme was used to construct the identity-based encryption
scheme proposed by Boneh and Franklin [11]. Pointcheval [70] proposed a similar conversion

scheme.

12
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Recently, many conversion schemes which depend on gap problems [67], such as, RE-
ACT [66], GEM [25], and the schemes in [28], are proposed.

The public-key encryption schemes derived from the conversion schemes [7, 43, 9, 78,
42,70, 66, 25, 28] described above meet not only IND-CCA, but also the notion of plaintext
awareness (PA). The notion of PA is first proposed by Bellare and Rogaway [7] and refined
by Bellare, Desai, Pointcheval, and Rogaway [4] which is, roughly speaking, that nobody
can produce a new ciphertext without knowing the plaintext. We say that a public-key
encryption scheme is secure in the sense of PA if it is secure in the sense of IND-CPA and
there exists a knowledge extractor which is a formalization of the above property. In [4],
they proved that PA implies IND-CCA. Since it looks much easier to prove that a public-
key encryption scheme is secure in the sense of PA than to prove directly it is secure in the
sense of IND-CCA, the notion of PA is useful to prove the security of public-key encryption
schemes.

Recently, Bellare and Palacio [5] discussed the problem of defining the notion of plaintext-
awareness without random oracles and of achieving its concrete schemes.

On the other hand, the notion of PA might be too strong. The schemes described above
get a redundant construction. In [69, 29], the conversion schemes without redundancy were
proposed. They are secure in the sense of IND-CCA, but does not meet PA. Fujisaki [41]
introduced another security notion, called plaintext simulatability (PS). It implies IND-

CCA, similar to PA, however, it is a properly weaker notion than PA.

Our Contribution. In this thesis, we propose the notion of plaintext awareness in the
two-key setting, called PATK. We say that the public-key encryption scheme II is secure
in the sense of PATK if II is secure in the sense of IK-CPA and there exists a knowledge
extractor for PATK. There are some differences between the definition of a knowledge
extractor for PA in [4] and that for PATK. We can see that if there exists a knowledge
extractor K for PATK of II, then we can use K as a knowledge extractor for PA of II. That
is, if the public-key encryption scheme II is secure in the sense of PATK and IND-CPA,
then 1I is secure in the sense of PA. However, it is not clear that we can use the knowledge
extractor for PA of II as that for PATK of II.

We also prove that if a public-key encryption scheme is secure in the sense of PATK,
then it is also secure in the sense of IK-CCA. Since it looks much easier to prove that a
public-key encryption scheme is secure in the sense of PATK than to prove directly that
it is secure in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity
property of public-key encryption schemes.

We also propose the first generic conversion scheme for the anonymity from IK-CPA
to IK-CCA. We employ the Fujisaki-Okamoto conversion scheme [42]. The public-key

13
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encryption scheme derived from their conversion scheme is secure in the sense of IND-CCA
in the random oracle model when it consists of a public-key encryption scheme ITP"P and

a symmetric-key encryption scheme II¥¥™ where
e IIP"" is y-uniform (y < 1) and secure in the sense of OW, and
o II*¥™ ig secure in the sense of find-guess (FG).

We prove that the scheme derived from the Fujisaki-Okamoto conversion scheme with the
above two and the following two assumptions is secure in the sense of IK-CCA in the

random oracle model.

e In ITP"P, the message space and the randomness space are common to each user (each

public-key).
e TIPUP ig secure in the sense of IK-CPA.

We can get the public-key encryption scheme which is secure in the sense of IND-CCA and

IK-CCA if we assume the above four conditions.

1.5 Universally Anonymizable Public-Key Encryption

Background. Consider the following situation. In order to send e-mails, all members of
the company use the encryption scheme which does not provide the anonymity property.
They consider that e-mails sent to the inside of the company do not have to be anonymized
and it is sufficient to be encrypted the data. However, when e-mails are sent to the outside
of the company, they want to anonymize them for preventing the eavesdropper on the
public network.

A trivial answer for this problem is that all members use the encryption scheme with the
anonymity property. However, generally speaking, we require some computational costs
to create ciphertexts with the anonymity property. In fact, the RSA-based anonymous
encryption schemes proposed in [3] and in this thesis, which are based on RSA-OAEP, are
not efficient with respect to the encryption cost or the size of ciphertexts, compared with
RSA-OAEP (See Figure 1.6. Here, k, ko, k1 are security parameters and we assume that
N is uniformly distributed in (2¥=1,2¥).). Since the members do not require to anonymize

the e-mails, it would be better to use the standard encryption scheme within the company.

Our Contribution. We propose another way to solve this. Consider the situation that
not only the person who made the ciphertexts, but also anyone can transform the encrypted
data to those with the anonymity property without decrypting these encrypted data. If we

have this situation, we can make an e-mail gateway which can transform encrypted e-mails

14
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RSA-OAEP | Sampling Twice | RSA-RAEP (3] RSACD Expanding
anonymity No Yes Yes Yes Yes
f mod. ot rypt
# of mod. exp. to encryp 1/1 2/2 15 / ky 1.5/ 2 1/1
(average / worst)
f random bits t Typt 2ko+k+3 ko + 160
# of random bits to encryp ko o+ k+ 15k / kiko 15k / 1.5k 0+
(average / worst) [ 2ko+k+3 / ko + 160
size of ciphertexts k k k k k+ 160

Figure 1.6: The costs of the encryption schemes.

to those with the anonymity property without using the corresponding secret key when
they are sent to the outside of the company.

Furthermore, we can use this e-mail gateway in order to guarantee the anonymity
property for e-mails sent to the outside of the company. The president of the company
may consider that all e-mails sent to the outside of the company should be anonymized.
In this case, even if someone tries to send e-mails to the outside of the company without
anonymization, the e-mails passing through the e-mail gateway are always anonymized.

In this thesis, in order to formalize this idea, we propose a special type of public-key en-
cryption scheme called a universal anonymizable public-key encryption scheme. A universal
anonymizable public-key encryption scheme consists of a standard public-key encryption
scheme PE and two additional algorithms, that is, an anonymizing algorithm /A and a
decryption algorithm DA for anonymized ciphertexts. We can use PE as a standard en-
cryption scheme which is not necessary to have the anonymity property. Furthermore, in
this scheme, by using the anonymizing algorithm U A, anyone who has a standard cipher-
text can anonymize it with its public key whenever she wants to do that. The receiver can
decrypt the anonymized ciphertext by using the decryption algorithm DA for anonymized
ciphertexts. Then, the adversary cannot know under which key the anonymized ciphertext
was created.

To formalize the security properties for universal anonymizable public-key encryption,
we define three requirements, the key-privacy, the data-privacy on standard ciphertexts,
and that on anonymized ciphertexts.

We then propose the universal anonymizable public-key encryption schemes based on
the ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP,
and prove their security.

We show the key-privacy property of our schemes by applying an argument in [3]
with modification. Though Bellare, Boldyreva, Desai, and Pointcheval [3] proved that the
ElGamal and the Cramer-Shoup encryption schemes provide the anonymity property when
all of the users use a common group, the argument in [3] for these schemes depends heavily

on the situation where all of the users employ a common group. However, in our discrete-
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log based schemes, we do not use the common group for obtaining the key-privacy property.
Therefore, we cannot straightforwardly apply their argument to our schemes. To prove the
key-privacy property of our schemes, we employ the idea described in [26] by Cramer and
Shoup, where we encode the elements of QR,, (a group of quadratic residues modulo p)
where p = 2¢ + 1 and p,q are prime to those of Z,. This encoding plays an important
role in our schemes. We also employ the expanding technique. With this technique, if we
get the ciphertext, we expand it to the common domain. This technique was proposed by
Desmedt [35]. In [44], Galbraith and Mao used this technique for the undeniable signature
scheme. In [76], Rivest, Shamir, and Tauman also used this technique for the ring signature

scheme.

1.6 Organization

The organization of this thesis is as follows.

In Chapter 2, after reviewing the repeating and the expanding techniques for obtaining
the schemes for public-key encryption and signature with anonymity, we construct an RSA
family of trap-door permutations with a common domain, and show its property. We also
construct the algorithm ChooseAndShift and propose the sampling twice technique. By
applying our proposed techniques, we propose the schemes for public-key encryption in
Chapter 3, those for undeniable and confirmer signature in Chapter 4, and those for ring
signature in Chapter 5. In Chapters 3 to 5, we also propose the previously unproposed
schemes with anonymity by applying the repeating and expanding techniques.

In Chapter 6, We construct a family of Paillier’s trap-door permutations and that
with a common domain. We also propose the schemes for public-key encryption with our
proposed families of trap-door permutations. In Chapter 7, we propose a new security
notion called “strong anonymity,” and show the relationships between the data-privacy
and the key-privacy for public-key encryption schemes. In Chapter 8 we propose the
new security notion of plaintext awareness in the two-key setting, called PATK, and show
that PATK implies IK-CCA. We also propose the first generic conversion scheme for the
anonymity from IK-CPA to IK-CCA. In Chapter 9, we formalize a special type of public-
key encryption scheme called a universally anonymizable public-key encryption scheme.
We also propose the universally anonymizable public-key encryption schemes based on the
ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP, and
prove their security. We conclude in Chapter 10.
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CHAPTER 2

Technigques for Anonymity

In this chapter, we discuss the techniques for obtaining the schemes for public-key encryp-
tion and signature with anonymity. We review the repeating and expanding techniques for
obtaining the schemes for public-key encryption and signature with anonymity. We then
construct an RSA family of trap-door permutations with a common domain, and show
its property. We also construct the algorithm ChooseAndShift and propose the sampling
twice technique.

The organization of this chapter is as follows. In Section 2.1, we review the repeating
technique which is used in the public-key encryption scheme by Bellare, Boldyreva, Desai,
and Pointcheval [3]. In Section 2.2, we review the expanding technique which is used
in the public-key encryption scheme by Bellare, Boldyreva, Desai, and Pointcheval [3]. In
Section 2.3, we construct an RSA family of trap-door permutations with a common domain,
and show its property. In Section 2.4, we construct the algorithm ChooseAndShift and

propose the sampling twice technique.

2.1 The Repeating Technique

In this section, we review the repeating technique.

Repeating Repeating the evaluation of the encryption (respectively the signing) with

plaintext x (resp. message m), random r, and the RSA function, each time using
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different r until the value is smaller than any public key N of each user.

In [3], Bellare, Boldyreva, Desai, and Pointcheval used this technique for their public-key
encryption scheme.

For example, suppose that each user uses an RSA modulus of length k. We set the
ciphertext space (or the signature space) to {0,1}*~!. Then, for any N where |N| = k,
if the ciphertext is uniformly distributed over Z};, then the distribution of the outputs by

the repeating technique is almost the same as the uniform distribution over {0, 1}*~1.

2.2 The Expanding Technique
In this section, we review the expanding technique.

Expanding Doing the evaluation of the encryption (respectively the signing) with plain-
text = (resp. message m), random r, and the RSA function, and expanding it to the

common domain.

This technique was proposed by Desmedt [35]. In [44], Galbraith and Mao used this
technique for the undeniable signature scheme. In [76], Rivest, Shamir, and Tauman also
used this technique for the ring signature scheme.

For example, suppose that each user uses an RSA modulus of length k. Then, we set
the ciphertext space (or the signature space) to {0,1}***  In the expanding technique,
we expand the ciphertext (or the signature) ¢ € Z} to the common domain {0, 1}F+ke In
particular, we choose ¢ hil {0,1,2,..., (2" —¢)/N|} and set ¢/ « c¢+tN. Then, for any
N where |N| = k, if ¢ is uniformly distributed over Zy, then the distribution of the outputs
by the expanding technique is statistically indistinguishable from the uniform distribution
over {0, 1}**+* where the statistically distance is less than 1/2%~!. Therefore, for any N
where |N| = k, if ky is sufficiently large and c¢ is uniformly distributed over Z};, then the
distribution of the outputs by the expanding technique is almost the same as the uniform
distribution over {0, 1}*+ko.

2.3 An RSA family of Trap-Door Permutation with a Com-

mon Domain
In this section, we propose an RSA family of trap-door permutations with a common do-
main denoted by RSACD, and prove that the 6-partial one-wayness of RSACD is equivalent

to the one-wayness of RSACD for # > 0.5, and that the one-wayness of RSACD is equivalent

to the one-wayness of RSA.
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2.3.1 Prelimilaries

In this section, we review the definitions of families of functions, families of trap-door
permutations, and #-partial one-wayness. We also describe the standard RSA family of

trap-door permutations denoted by RSA.

Notations In this thesis, we use the following notations. If A is a probabilistic algorithm,
then A(xq,z2,---;r) is the result of running A on inputs zp,x2,--- and coins r. We
let y «— A(x1,x2,---) denote the experiment of picking r at random and letting y be
A(zy1,zo,--- ;7). If S is a finite set then x £ S is the operation of picking an element
uniformly from S. If « is not an algorithm then x « « is a simple assignment statement.

We describe the definitions of families of functions and families of trap-door permuta-

tions.

Definition 2.1 (families of functions [3]). A family of functions F = (K, S, E) is specified
by three algorithms.

o The randomized key-generation algorithm K takes as input a security parameter k €
N and returns a pair (pk, sk) where pk is a public key and sk is an associated secret
key. (In cases where the family is not trap-door, the secret key is simply the empty

string.)

o The randomized sampling algorithm S takes input pk and returns a random point in

a set that we call the domain of pk and denote by Domp(pk).

e The deterministic evaluation algorithm E takes input pk and a point x € Domp(pk)
and returns an output we denote by Epp(x). We let Rugr(pk) = {Ep(z)|2 €
Domp(pk)} denote the range of the function Epy(-).

Definition 2.2 (families of trap-door permutations [3]). We say that F is a family of
trap-door functions if there exists a deterministic inversion algorithm I that takes input sk
and a point y € Rugp(pk) and returns a point x € Domp(pk) such that Eyp(x) =y. We
say that F is a family of trap-door permutations if F is a family of trap-door functions,

Domp(pk) = Rngr(pk), and E,j is a bijection on this set.
We describe the definition of §-partial one-way.

Definition 2.3 (f-partial one-way [3]). Let F' = (K, S, E) be a family of functions. Let
k € N be a security parameter and b € {0,1}. Let 0 < 6 < 1 be a constant. Let A be an
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adversary. Now, we consider the following experiments:

f-pow-fnc

Experiment Expy (k)
(pk, sk) — K (k)
z & Domp(pk)
Yy — Ep(x)
) — A(pk,y) where |zy| = [0 - ]

if (Epk(a)||zh) =y for some %) return 1 else return 0

Here “||” denotes concatenation. We define the advantages of the adversary via
Adv%&ow—fnc(k) — Pr[EXp%fX)w—fnc(k) =1

where the probability is taken over K, x & Domp(pk), E, and A. We say that the family
6—pow—fnc

F is 0-partial one-way if the function Advy 4 (+) is negligible in k for any adversary

A whose time complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of
the code of the adversary, in some fixed RAM model of computation. Note that when § = 1
the notion of #-partial one-wayness coincides with the standard notion of one-wayness. In
the following, we say that the family F' is one-way when F' is 1-partial one-way.

We describe the standard RSA family of trap-door permutations denoted by RSA.

Definition 2.4 (the standard RSA family of trap-door permutations [3]). The specifica-
tions of the standard RSA family of trap-door permutations RSA = (K, S, E) are as follows.
The key generation algorithm takes as input a security parameter k and picks random, dis-
tinct primes p, q in the range olk/21-1 < g < 2[K/2] gnd 251 < N < 2k It sets N = pq.
1t picks e, d € Ziy ) such that ed =1 (mod ¢(N)) where p(N) = (p—1)(¢—1). The public
key is N,e,k and the secret key is N,d, k. The sets Domgsa (N, e, k) and Rngrsa(N, e, k)
are both equal to Zy. The evaluation algorithm En . j(z) = Ei’?k(:c) =2 mod N and the
inversion algorithm In 45 (y) = gff,?ik(y) = y®mod N. The sampling algorithm returns a

random point in Zy .

Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the #-partial one-wayness of
RSA is equivalent to the one-wayness of RSA for 6 > 0.5.

2.3.2 An RSA Family of Trap-door Permutations with a Common Do-
main

In this section, we propose the RSA family of trap-door permutations with a common

domain and prove that the #-partial one-wayness of RSACD is equivalent to the one-wayness

of RSACD for 6 > 0.5, and the one-wayness of RSACD is equivalent to the one-wayness of
RSA.
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Figure 2.1: Functions fjs,SeA,gD and g%sﬁ‘%[)

The Construction of RSACD In this section, we propose the RSA family of trap-door
permutations with a common domain denoted by RSACD.

Definition 2.5 (the RSA family of trap-door permutations with a common domain).

The specifications of the RSA family of trap-door permutations with a common domain

RSACD= (K, S, E) are as follows. The key generation algorithm is the same as that for

RSA. The sets Domgrsacp (N, e, k) and Rngrsacp(N, e, k) are both equal to {x |z € [0,2F) A

(x mod N) € Z }. The sampling algorithm returns a random point in Domgsacp (N, e, k)

The evaluation algorithm Ey e j(x) = ESeAkCD( ) and the inversion algorithm Iy q5(y) =
RSACD

INak (y) are as follows (See Figure 2.1.).

Function fRSACD ()
we S v o SR v AP

return y

Function {70 (x) | Function fRIP2(u) Function fREACT3(v)

if (x < N) if (u<2® -N)veu+N if (v < N)
u — € mod N elseif (2" ~N<u < N)v—u y «— v® mod N
else u+—x elsev+—u—N

else y < v
return u return v

return y

Function gRSACD(y)

v — gRSAéVDdlk(y); U — gRSACD 2( ); T — QJ%SACD 3( )
return z
Function gﬁfiﬁgD'l(y) Function g%?Q%DQ(v) Function gﬁfigD%(u)
if (y < N) if (v<28=N)ue—v+N if (u < N)
v+ 34 mod N elseif (2P ~N<v<N)u«wv z « u? mod N
else v« y elseu«+—v—N else x «—u
return v return u return x
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The choice of N from (2#~1,2¥) ensures that all elements in Domgsacp (I, e, k) are per-
muted by the standard RSA permutation at least once.

Properties of RSACD In this section, we prove that the #-partial one-wayness of RSACD
is equivalent to the one-wayness of RSACD for # > 0.5, and that the one-wayness of RSACD
is equivalent to that of RSA.

Theorem 2.1. The 0-partial one-wayness of RSACD is equivalent to the one-wayness of
RSACD for 6 > 0.5.

It is clear that if RSACD is f-partial one-way then RSACD is one-way. Therefore, we can

prove Theorem 2.1 by proving the following lemma.
Lemma 2.1. If RSACD is one-way then RSACD is 0-partial one-way for 6 > 0.5.
To prove this lemma, we use the following lemma proved in [43].

Lemma 2.2 ([43]). Consider an equation at+u = ¢ (mod N) which has solutions t and u
smaller than 2¥0. For all values of o, except a fraction 22%0%6 /N of them, (t,u) is unique
and can be computed in time O((log N)3). (We say “a is a good value” when we can solve

the above equation.)

Proof of Lemma 2.1. Let A be an algorithm that outputs the & — kg most significant bits
of the pre-image of its input ¥ € Rngrsacp (N, e, k) for 2871 < N < 2% with k > 2k (i.e.
Ais a ((k — ko)/k)-partial inverting algorithm for RSACD with k > 2kj), with success
probability ¢ = Advighop +'(k) where 6 = (k — ko)/k > 0.5, within time bound ¢. We
prove that there exists an algorithm B that outputs a pre-image of y (i.e. B is an inverting
algorithm for RSACD) with success probability ¢ = Advégigvg’_énc(k), within time bound
t' where

2
¢ > %6 (1= 220 RETY < o 1 O(K).

We construct the algorithm B to compute a pre-image of y € Rngrsacp(V, e, k), then

we analyze this algorithm and evaluate the success probability and the running time of B.
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2.3. An RSA family of Trap-Door Permutation with a Common Domain

Algorithm B((N, e, k),y)

(0% £ ZN

R
pow « {1,2}
Ytemp — ¥ - mod N
c & {0,1} [step 1] set «, pow, and ¢/
if (¢=0) Y — Yiemp
elseif (0 < yéemp <2F - N) y/ o yl/femp +N

else return fail )

z— A
—AW) [step 2] run A
2= A(Y)
find (r,s) s.t. ar — s = (2 — za) - 2" (mod N)
x— 2 2k0 4 [step 3] compute g%?Q%D(y)
return z

Now, we analyze the advantage of B. For y € Rngrsacp(V, e, k) and x = g%?ﬁ:g')(y),

(z,y) satisfies one of the following equations.

(1) y=2° (mod N)
(2) y=2 (mod N)

We say type(y) = 1 (respectively type(y) = 2) if (z, y) satisfies equation 1 (resp. equation 2).

After step 1, if B does not output fail, then y’ is uniformly distributed over Rngrsacp (X, €, k),

and for y and 2’ = gR¥CP(y), (2/, 1) satisfies one of the following equations.

(1) ¢ = (=) (mod N)
(2) ¥ =@)" (modN)

We say type(y') = 1 (respectively type(y') = 2) if (2/,y') satisfies equation 1’ (resp. equa-
tion 2/).

After step 2, if A outputs correctly, namely, z is the k — kg most significant bits of x and
2 is the k — ko most significant bits of z/, then z = z - 2k 4+ r and o/ = 2/ - 250 + 5 for
some (7, s) where 0 < r, s < 2k, Furthermore, if type(y) = type(y’) = pow, then y = ¢
(mod N) and 3/ = (2/)¢*™" (mod N). Since 3’ =y - ™" (mod N) and ged(eP*V, N) = 1,

we have 2/ = ax (mod N). Thus,

22k s =q-(2-2% 47) (mod N)
ar —s = (2 — za) -2k (mod N)
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CHAPTER 2. Techniques for Anonymity

where 0 < r,s < 2k If o is a good value, algorithm B can solve this equation in step 3

Lemma 2.2), and outputs z = z - 2k0 .
( : P

Now, we analyze the success probability. We define the following events:

e Fail : B outputs fail in step 1,

e GV : ais a good value,

o Typel : type(y) = type(y’) =1,

o Type2 : type(y) = type(y') = 2,

e SucA : A(y) and A(y’) are correct.

We have
e = Pr [A(y) is correct A type(y) = 1] + Pr[A(y) is correct A type(y) = 2]
where y is uniformly distributed over Rngrsacp(V, e, k). Thus,

Pr[A(y) is correct A type(y) = 1] > % or Pr[A(y) is correct A type(y) = 2] > %

If B does not output fail in step 1, then ¢/ is uniformly distributed over Rngrsacp(V, e, k).
Therefore,

2 62

. eNZ € . €\2
Pr[SucA A Typel|—Fail] > (§> =4 o Pr[SucA A Type2|—Fail] > (5) =7

If A(y) and A(y’) are correct, type(y) = type(y’) = pow, and « is a good value, then B
outputs correctly. Since Pr[-Fail] > Pr[c = 1] = 1/2, Pr[pow = 1] = Pr[pow = 2] = 1/2,
and Pr[GV]> 1 — 2%0=6/N > 1 — 22ko=*+T7 (Lemma 2.2), we have
€ > Pr[SucA A type(y) = type(y’) = pow A GV]
> Pr[=Fail] x Pr[GV] x Pr[SucA A type(y) = type(y’) = pow|-Fail|

> % - (1 — 2%k0=kFFT) % (Pr[SucA A Typel A pow = 1|=Fail|
+ Pr[SucA A Type2 A pow = 2|-Fail])
_ % (1= 22507K+T)  (Prpow = 1] x Pr[SucA A Typel|~Fail
+ Pr[pow = 2] x Pr[SucA A Type2|-Fail])
= % - (1 — 2%k0=k+T) % (Pr[SucA A Typel|=Fail] + Pr[SucA A Type2|—Fail])
> e (1 — %hok+Ty,
16
We estimate the running time of B. B runs A twice. B can solve ar — s = (' — za) - 2k0
(mod N) in time O(k3). Therefore, t' < 2t + O(k3). O
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Theorem 2.2. The one-wayness of RSACD is equivalent to the one-wayness of RSA.

It is easy to see that if RSACD is one-way then RSA is one-way (See Figure 2.1.). Therefore,

we can prove Theorem 2.2 by proving the following lemma.
Lemma 2.3. If RSA is one-way then RSACD is one-way.

Proof of Lemma 2.3. We prove that if there exists a polynomial-time inverting algorithm
A for RSACD with non-negligible probability ¢ = Advégﬁgvgjnc(k), then there exists
a polynomial-time inverting algorithm D for RSA with non-negligible probability ¢ =

Adv:;{g'g?g_fnc(k). We specify the algorithm D to compute a pre-image of Y € Rnggsa(IV, €, k).

Algorithm D((N,e, k),Y)

& {0,1}
if (¢ =0)

y =Yz — A((N,e,k),y); ue— fRrosC H@); v = fRneP?(w); X —w
else

u e Yiv e PR (u); y o FRAP TR (0); @ AN e k) y); X —a
return X

Now, we analyze the advantage of D. If A outputs correctly then D outputs correctly (See
Figure 2.1.). Therefore,

€ >Prle=0 A A((N,e,k),Y) is correct]

+Prje=1 AN A((N,e, k), Z) is correct]
- (Pr[A((N, e, k),Y) is correct] + Pr[A((N, e, k), Z) is correct])

vV
N RN~

- (Pr[A((N, e, k),Y) is correct]
+Pr[A((N, e, k), Z) is correct A N < Z < 2¥]).

where Z = f;SeA,SD_g‘( ]F\{,SeAISDQ(Y)). We have

Pr[A((N,e, k),Y) is correct] = Pr1[A((V, e, k),y) is correct |0 < y < N|
> Pr[A((N, e, k),y) is correct A 0 <y < NJ.

Furthermore, we have Pr[N < Z < 2¥] > Pr[N < y < 2¥] where Y is uniformly distributed

over Z% and y is uniformly distributed over Rnggsacp (N, e, k), since Pr[N < Z < 2F] =

Pr[0 <Y < 28—N]and |Z%]| < |Rnggrsaco (N, e, k)|. Since Pr[A((N, e, k), Z) is correct | N <
Z < 2% = Pr[A((N, e, k), y) is correct | N < y < 2¥] | we have

Pr[A((N,e, k), Z) is correct A N < Z < 2F]
= Pr[N < Z < 2] - Pr[A((N, e, k), Z) is correct | N < Z < 2¥]
> Pr[N <y < 2¥] - Pr[A((N, e, k), Z) is correct | N < Z < 2]
= Pr[N <y < 2¥] - Pr[A((N, e, k), y) is correct | N < y < 2]
> Pr[A((N, e, k),y) is correct A N <y < 2¥].
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RSA is f-partial one-way RSACD is f-partial one-way

l I [43] Lomma 23 l I [Lemma 2.1]

RSA is one-way

RSACD is one-way

Figure 2.2: Relationships between RSA and RSACD for 6 > 0.5.

Therefore,
e > % - (Pr[A((N, e, k),y) is correct A 0 <y < N]|
+Pr[A((N, e, k),y) is correct A N <y < 2¥])
= % -Pr[A((N,e, k), y) is correct]
-
2
which is non-negligible in k. O

Hence, we have the relations in Figure 2.2 for § > 0.5. From these relations, we have
that the f-partial one-wayness of RSACD is equivalent to the one-wayness of RSA. This
property is useful to construct the public-key encryption scheme with anonymity.

By using the RSACD function, we propose a new technique for obtaining the anonymity

property.

RSACD Doing the evaluation of the encryption (respectively the signing) with plaintext

x (resp. message m), random r, and the RSACD function.

In Chapters 3 and 5, by applying the RSACD function we construct the schemes for

public-key encryption and ring signature, respectively.

2.4 The Sampling Twice Technique

In this section, we propose a new technique for obtaining the anonymity property of RSA-
based cryptosystems. We call this technique “sampling twice.” In our technique, we employ
an algorithm ChooseAndShift. It takes two numbers x1, 22 € Zx as input and returns a
value y € [0,2F) where |N| = k, and if 2; and x5 are independently and uniformly chosen
from Zy then y is uniformly distributed over [0, 2%).

We describe the algorithm ChooseAndShift as follows. It takes two numbers z1,z9 €
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2.4. The Sampling Twice Technique

Zy as input and returns a value y € [0, 2F) where |[N| = k.

Algorithm ChooseAndShifty (71, 72)
if (0 < x1,T2 < ok _ N)
Tl with probability
return
x1+ N with probability
elseif (2’“ — N <zj,29 < N)

return

NI NI

else
y1 < min{z1,x2}; yo «— max{xy,x2}

%%% Note that 0 < y; < 28 — N and 2¥ — N < yy < N. %%%

Y1 with probability (% + 2,6%) X %
returnq y; + N with probability (% + 2,5&) X %

Yo with probability % — 21ﬁ1

Note that 28~ < N < 2% ensures 28 — N < N, 0 < %—Qk%<1, and 0 < %—FQT]\L < 1.
In order to run this algorithm, it is sufficient to prepare only k + 3 random bits.

We prove the following theorem on the property of ChooseAndShift.

Theorem 2.3. If x1 and xo are independently and uniformly chosen from Zy then the

output of the above algorithm is uniformly distributed over [0, 2F).

Proof. To prove this theorem, we show that if £y and zs are independently and uniformly
chosen from Zy then Pr[ChooseAndShifty x(z1,22) = 2] = 1/2* for any 2 € [0,2*). For
any z € [0,2F — N), we have

Pr[ChooseAndShift(x,x2) = 2]

=Prlz1 =2 A 0<zo <28 - N|x 3

A 28— N <z <N)x(3+5067) X3
k_N N_Ic
=5 X IR X g H (g x BRE) X 2x (3 + o) X 3 = o

It is clear that Pr[ChooseAndShifty ;(x1,22) = z/] = Pr[ChooseAndShifty i(z1,z2) =
2+ N] for any 2’ € [0,2F — N). Therefore, we have Pr[ChooseAndShifty (71, 72) = 2]
1/2F for any z € [N, 2F).

Furthermore, for any z € [2¥ — N, N), we have

Pr[ChooseAndShift(zy,x2) = 2]
=Prlz; =2 A 28 = N <2y < N]
+Prf(z1=2 A 0<a9 <28 -~ N)V(z2=2 A 0§m1<2k—N)]><(%—2,ﬁ1)

2
:%XQNJQQk—k(%xQk];N)XQX(%—yﬁI):i.
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CHAPTER 2. Techniques for Anonymity

By using the algorithm ChooseAndShift, we propose a new technique for obtaining the

anonymity property. We call this technique “sampling twice.”

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice
with plaintext = (resp. message m), random 7, and 79, and the RSA function, and

applying our proposed algorithm ChooseAndShift for the two resulting values.

In Chapters 3 to 5, by applying the sampling twice technique, we construct the schemes
for public-key encryption, undeniable and confirmer signature, and ring signature, respec-

tively.
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CHAPTER 3

Anonymity on Public-Key Encryption

In this chapter, we consider the public-key encryption schemes with anonymity. In [3], Bel-
lare, Boldyreva, Desai, and Pointcheval provided the key-privacy encryption scheme, RSA-
RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [7], Fujisaki, Okamoto,
Pointcheval, and Stern [43]). They constructed RSA-RAEP by using the repeating tech-
nique in order to prove the anonymity property of their scheme. In this chapter, we propose
three public-key encryption schemes, which are also variants of RSA-OAEP, with the ex-
panding technique, RSACD, and the sampling twice technique, and prove their security.
The organization of this chapter is as follows. We review the definitions of public-key
encryption in Section 3.1, and RSA-RAEP by Bellare, Boldyreva, Desai, Pointcheval in
Section 3.2. We propose a key-privacy encryption scheme with the expanding technique in
Section 3.3, that with RSACD in Section 3.4, and that with the sampling twice technique

in Section 3.5. We compare the efficiency of four schemes in Section 3.6.

3.1 Definitions of Public-Key Encryption

The classical security requirements of public-key encryption schemes provide privacy of
the encryption data. Popular formalizations—such as indistinguishability (semantic secu-
rity) [48] or non-malleability [37], under either chosen-plaintext or various kinds of chosen-
ciphertext attacks [65, 74]—are directed at capturing various data-privacy requirements.

(See [4] for a comprehensive treatment).
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In [3], Bellare, Boldyreva, Desai, and Pointcheval proposed a new (additional) security
requirement of encryption schemes called “key-privacy.” It asks that the encryption pro-
vide (in addition to privacy of the data being encrypted) privacy of the key under which
the encryption was performed. In a heterogeneous public-key environment, encryption will
probably fail to be anonymous for trivial reasons. For example, different users might be
using different cryptosystems, or, if the same cryptosystem, have keys of different lengths.
In [3], Bellare, Boldyreva, Desai, and Pointcheval put a common-key generation algorithm
into the standard definition of public-key encryption scheme explicitly. The common key
consists of some fixed “global” information which the users may share. A public-key en-

cryption scheme with common-key generation [3] is described as follows.

Definition 3.1 (public-key encryption). A public-key encryption scheme with common-key
generation PE = (G, K, E, D) consists of four algorithms.

e The common-key generation algorithm G(k) takes as input a security parameter k

and returns some common key I.

e The key generation algorithm K(I) is a randomized algorithm that takes as input a
common key I and returns a pair (pk, sk) of keys, a public key and a matching secret
key. For given pk, the message space MSPC(pk) and the randomness space COINS(pk)

of II are uniquely determined.

e The encryption algorithm Ep,(m; ) is a randomized algorithm that takes a public key
pk and a plaintext m € MSPC(pk), and returns a ciphertext ¢, using random coin

r € COINS(pk).

e The decryption algorithm Dy (c) is a deterministic algorithm that takes a secret key
sk and a ciphertext c, and returns the corresponding plaintext m or a special symbol

L to indicate that the ciphertext c is invalid.

We require that, for any k € N, if I — G(k), (pk,sk) — K(I), m € MSPC(pk), and
¢ — Ep(m), then m = Dg(c).

The notions of security typically considered for encryption schemes are “indistinguisha-
bility of encryptions” under either the chosen-plaintext attack, or the (adaptive) chosen-
ciphertext attack. These properties ask that the encryption provides privacy of the data
being encrypted. Before describing the definition of “key-privacy” by Bellare, Boldyreva,
Pointcheval, and Desai, we briefly review the definitions of “indistinguishability of encryp-

tions.”

Definition 3.2 (IND-CPA, IND-CCA). Let PE = (G, K,E,D) be an encryption scheme.
Let b € {0,1} and k € N. Let Acpa = (AL, A2 ), Acca = (AL, A2

cpar Aepa ceas Azea) be adversaries that
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3.1. Definitions of Public-Key Encryption

run in two stages and where Ao has access to the oracle Dgy(-). For atk € {cpa, cca}, we

consider the following experiment:

Experiment Expiﬁg'if;f(k)

I E Gk, (pk,sk) & K
(mo,my,si) — AL, (pk); ¢ — Ep(my); d — A2, (¢, si)
return d

Note that si is the state information. It contains mg, mi,pk, and so on. In the above

2

experiment, it is mandated that AZ.,

never queries Dgi(+) on the challenge ciphertext c.

For atk € {cpa, cca}, we define the advantages via
AdvBEAY, (k) = |Pr(Exppg i (k) = 1) - Pr{Exppg il (k) = 1]

The scheme PE is said to be IND-CPA secure (respectively IND-CCA secure) if the func-
tion Advggjlz;(-) (resp. Adv%g:ﬁfza() ) is negligible for any adversary A whose time

complexity is polynomial in k.

In [3], they formalized the property of “key-privacy.” It asks that the encryption provide
(in addition to privacy of the data being encrypted) privacy of the key under which the
encryption was performed. Similar notions had been proposed Abadi and Rogaway [1],
Fischlin [39], Camenisch and Lysyanskaya [15], Sako [77], and Desai [34], however, chosen-
ciphertext attacks do not seem to have been considered before in the context of key-privacy.
The definition by Bellare, Boldyreva, Desai, and Pointcheval [3] can be considered under
either the chosen-plaintext attack or the chosen-ciphertext attack, yielding two notions of
security, IK-CPA and IK-CCA. (IK means “indistinguishability of keys”.)

Definition 3.3 (IK-CPA, IK-CCA [3]). Let PE = (G, K,E,D) be an encryption scheme.
Let b € {0,1} and k € N. Let Acpa = (AL 4, A20), Acca = (AL, A2

cpas Aepa ccas Azea) be adversaries that

run in two stages where Acca has access to the oracles Dy, (-) and Dgy, (-) . Note that si is
the state information. It contains pko,pki, and so on. For atk € {cpa, cca}, we consider

the following experiments:

Experiment EXP%_EaE‘Il{a?k (k)

I — G(k); (pko,sko) — K(I); (pki,skr) «— K(I)
(m,si) Azlnk(pko,ph); Y — 5pkb(m)
d— Agtk(ya SI)

return d

Above it is mandated that A?

Zea Mever queries the challenge ciphertext y to either Dy, (-) or

Dgk, (-). For atk € {cpa, cca}, we define the advantages via

AdvERE (k) = [PrExpicl (k) = 1] — Pr[Expail (k) = 1]
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The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the func-
tion Adv;l;';iipa(.) (resp. Adv%‘g""ﬁcca(.)) is negligible for any adversary A whose time

complezity is polynomial in k.

3.2 RSA-RAEP by Bellare, Boldyreva, Desai, and Pointcheval

In [3], Bellare, Boldyreva, Desai, and Pointcheval proposed an RSA-based encryption
scheme which is secure in the sense of IK-CCA. It is RSA-RAEP which is a variant of
RSA-OAEP (Bellare and Rogaway [7], Fujisaki, Okamoto, Pointcheval, and Stern [43]).
Since their variant chooses N from (2F~1 2%), it simply repeats the ciphertext computa-

tion, each time using new coins, until the ciphertext y satisfies y < 281,

Definition 3.4 (RSA-RAEP [3]). RSA-RAEP = (G,K, £€,D) is as follows. The common-
key generation algorithm G takes a security parameter k and returns parameters k, ko and
k1 such that ko(k) + ki1(k) < k for all k > 1. This defines an associated plaintext-length
function n(k) = k — ko(k) — k1(k). The key generation algorithm K takes k, ko, k1, runs
the key-generation algorithm of RSA, and gets N,e,d. The public key pk is (N, e), k, ko, k1
and the secret key sk is (N,d), k, ko, k1. The other algorithms are depicted below. Let G
: {0, 1}k — {0,1}"*1 and H : {0,1}"F1 — {0,1}%0 be hash functions. Note that [x]"

denotes the n most significant bits of x and [z],, denotes the m least significant bits of x.

Algorithm 5}?;;’11(1') Algorithm DiH(y)
ctr = —1 b [y]"s v [Ylkotki+n
repeat if (b=1)
ctr — ctr +1 w  [v]kotkL 2 [v],
r & {0, 1}ko if (w=0%%F) 2« 7 else z « L
s« (z ]| 0")@G(r); t —r® H(s)| else
v (st)° mod N 5 o DA ¢ o,
until ((v < 2K YY)V (ctr = k1)) r—t® H(s)
if (ctr = ky) y « 1]|0FoFF1 ||z z—[sBGr)]" p—[sdG(r)k
else y < Ollv if (p=0M) 2z« x else z L
return y return z

They proved RSA-RAEP is secure in the sense of IND-CCA and IK-CCA in the random

oracle model assuming RSA is one-way.

Remark 3.1 (random oracle model). The random oracle model [6] provides a mathematical
model of an “ideal” hash function. In this model, a hash function h : X — Y is chosen

randomly from FXY which is the set of all functions from X to Y, and we are only
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permitted oracle access to the function h. This means that we are not given a formula or
an algorithm to compute values of the function h. Therefore, the only way to compute the
value h(z) is to query the oracle. This can be thought of as looking up the value h(x) in
a giant book of random numbers such that, for each possible x, there is completely random
value h(x).

3.3 OAEP with Expanding

In this section, we propose an encryption scheme by using the expanding technique.

Definition 3.5. The common-key generation algorithm, the key generation algorithm, and
hash functions are the same as those for RSA-RAEP. The other algorithms are depicted
below. The other algorithms are depicted below. Note that the valid ciphertext y satisfies
y € [0,2%1169) and (y mod N) € Z%.

Algorithm £ (m) Algorithm D (1)
Tﬁ{o’l}ko v+ ymod N
s (Mo &G | s o mod NJTHh
t—r®H(s) t < [v? mod Ny,
v (s|[t)° mod N re—t®H(s)
M [(25H190 — o) /N || m o [s® G(r)]"
af 0,1, , M} p—[s@G(r)k
y —v+aN if (p=0M) z—m
return y else z L

return z

In order to prove that the scheme with N-ary representation is secure in the sense of
IK-CCA, we need the restriction as follows.

For a ciphertext y and a public key pk = ((IV,e), k), we define the set of ciphertexts
EC(y,pk) called “equivalence class” as

EC(y,pk) = {§ € {0,1}*"'%]j = y (mod N)}.

If y € {0,1}F160 is a ciphertext of mg for pkg = (No,eg, k) then any element § €
EC(y, pko) is also a ciphertext of mg under pkg. Therefore, when y is a challenge ciphertext,
the adversary can ask a ciphertext § € EC(y,pko) to the decryption oracle Dgy,, and if
the answer of Dy, is mo then the adversary knows that y is encrypted by pko and the

plaintext of y is my.
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To prevent this attack, we add some restriction to the adversaries in the definition of
IK-CCA. That is, it is mandated that the adversary never queries either § € EC(y, pko)
to Dy, or § € EC(y,pk1) to Dy, .

Similarly, in order to prove that the scheme with N-ary representation is secure in the
sense of IND-CCA2, we need the same restriction. That is, in the definition of IND-CCAZ2,
it is mandated that the adversary never queries § € EC(y, pk) to Dgj.

We think these restrictions are natural and reasonable. Actually, in the case of unde-
niable and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on
undeniable signature schemes with the above restriction.

If we add these restrictions then we can prove that our scheme provides the key-privacy
against the adaptive chosen ciphertext attack in the random oracle model assuming RSA

is f-partial one-way for 8 > 0.5. More precisely, we show the following theorem.

Theorem 3.1. For any adversary A attacking the key-privacy of our scheme under the
adaptive chosen ciphertext attack, and making at most qaec queries to decryption oracle, qgen
G-oracle queries, and quash H-oracle queries, there exists a 0-partial inverting adversary
M for the RSA family, such that for any k, ko, k1, and 0 = k_—kko,

AAVEFL () < 8qnash - (1= €1) - (1= €2)) ™" - AdVRER (k) + Ggen - (1 — €)1 - 27542

e 2 2
where €1 = srts— /2%3_1 + Tllsg and €3 = 2;1,‘31“ + ZZ}‘:‘;:S + qgeﬁqd;fg et

time of M s that of A plus ggen - Ghash - O(k3).

, and the running

Proof. The proof is similar to that for RSA-RAEP. We construct the partial inverting
algorithm M for the RSA function using a CCA-adversary A attacking anonymity of our

encryption scheme.

Intuition. We assume that the challenge ciphertext for A is Y € {0, 1}*+160 which was
encrypted by pk = (N,e), and y =Y mod N. In order to distinguish under which key the
given ciphertext Y was created, the adversary A has to make queries r and s to oracles
G and H, respectively, such that s = (m||0¥) @ G(r) and y = (s||/(r ® H(s)))* mod N.
Therefore, A asks s to H with non-negligible probability where s is the n + ki most
significant bits of the e-th root of y modulo N.

We now describe the partial inverting algorithm M for RSA using a CCA-adversary A
attacking the anonymity of our encryption scheme. M is given pk = ((N, e), k) and a point
y € Zy where |y| =k =n+ ko + k1. Let sk = ((N,d), k) be the corresponding secret key.
The algorithm is trying to find the n + k1 most significant bits of the e-th root of y modulo
N.

1) M picks p & {0,1,2,...,[(2¥7160 — ) /N |} and sets Y « y + uN.
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2) M runs the key generation algorithm of RSA with security parameter k to obtain
pk! = ((N',€'),k) and sk’ = ((N',d’), k). Then it picks a bit b & {0, 1}, sets pky —
((N,e), k) and pky_p < ((N',¢’), k). If the above y does not satisfy y € (Z}y, NZ},)

then M outputs Fail and halts; else it continues.

3) M initializes for lists, called G-list, H-list, Yj-list, and Y;-list to empty. It then runs
A as follows. Note that M simulates A’s oracles G, H, Dy, and Dy, as described

below.

3-1) M runs Aj(pko,pk1) and gets (m,si) which is the output of A;.
3-2) M runs As(Y,si) and gets a bit d € {0, 1} which is the output of As.

4) M chooses a random pair (h, Hy) from the H-list and outputs h as its guess for the
n + k1 most significant bits of the e-th root of y modulo .

M simulates the random oracles G and H, and the decryption oracle as follows:

e When A makes an oracle query g to G, then for each (h, Hy) on the H-list, M builds
z = h||(g ® Hp), and computes yp, 50 = 2°° mod Ny and yp, 41 = 2°* mod N;. For
i € {0,1}, M checks whether y = yp, 4,. If for some h and i such a relation holds,
then we have inverted y under pk;, and we can still correctly simulate G by answering
Gy = h ® (m]|0¥). Otherwise, M outputs a random value G, of length n + k1. In
both cases, M adds (g,Gy) to the G-list. Then, for all h, M checks if the ki least
significant bits of h ® G4 are all 0. If they are, then it adds yj 4,0 and yj 4.1 to the
Yp-list and the Yi-list, respectively.

e When A makes an oracle query h to H, M provides A with a random string Hj, of
length ko and adds (h, Hy) to the H-list. Then for each (g,G4) on the G-list, M
builds z = h||(g ® Hp), and computes yp, g0 = 2°° mod Ng and yp g1 = 2 mod Nj.
M checks if the ky least significant bits of h & G, are all 0. If they are, then it adds
Yh,g,0 and yp g1 to the Yp-list and the Yi-list, respectively.

e When for i € {0,1}, A makes an oracle query 7 € {0,1}*+160 to D M checks if
there exists some yy, 4; in the Y;-list such that § mod N; = yp 4;. If there is, then it
returns the n most significant bits of h & G, to A. Otherwise it returns L (indicating

that ¢ is an invalid ciphertext).

In order to analyze the advantage of M, we define some events. For i € {0,1}, let
w; = y% mod N, s; = [w;]"™™, and t; = [wi]k,- That is, w; is the e;-th root of y modulo
N; and s; is the n + k1 most significant bits of the e;-th root of y modulo IN;. Note that
M wins the game if it outputs s,. Let r; be the random variable ¢; & H(s;).

We consider the following events.
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e FBad denotes the event that
— A G-oracle query ro was made by A in step 3-1, and G, # so @ (m]|0¥1), or
— A G-oracle query r; was made by A in step 3-1, and G, # s1 @ (m||0%1).

e GBad denotes the event that

— A G-oracle query rg was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query so was not on the H-list, and G, # so® (m||0*1),

or

— A G-oracle query r; was made by As in step 3-2, and at the point in time that it

was made, the H-oracle query s; was not on the H-list, and G, # s1® (m||0%1).
e DBad denotes the event that

— A Dgy, query is not correctly answered, or

— A Dgy, query is not correctly answered.
e G = —-FBad A =GBad A —~DBad.

We use the events FBad, GBad, and G for proving Lemma 3.1 described below. In this
chapter, we omit the proof of Lemma 3.1 since the proof of this lemma is similar to that
for RSA-RAEP.

We let Pr[-] denote the probability distribution in the game defining advantage. We

introduce the following additional events:
e YBad denotes the event that y & (Zy, NZjy;,)-
e FAskS denotes the event that H-oracle query sg or s; was made by A; in step 3-1.

e AskR denotes the event that (rg, Gr,) or (r1,Gy,) is on the G-list at the end of step
3-2.

e AskS denotes the event that (sg, Hs,) or (s1, Hs,) is on the H-list at the end of step
3-2.

We use the event FAskS for proving Lemma 3.1. In this chapter, we omit the proof of
Lemma 3.1 since the proof of this lemma is similar to that for RSA-RAEP.
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3.3. OAEP with Expanding

Now, we analyze the advantage of M. The algorithm M wins the game if it outputs
sp. If (s, Hs,) is on the H-list, then M outputs s, with probability at least 1/gnasn. Thus,

0-pow-fnc
AdvRSpA’M (k)
> ‘Ihish - Pr((sp, Hs,) is on the H-list]
= oz - (Pr[(s0, Hs,) is on the H-list[b = 0] + Pr[(s1, Hy, ) is on the H-list|b = 1])

> thI’ — - Pr[=YBad| - (Pr1[(s0, Hy,) is on the H-list|b = 0]
+Pr[(s1, Hs,) is on the H-list|b = 1])

where Pr;[-] denote the probability distribution in the simulated game where —YBad oc-
curs. Assuming that —YBad occurs, by the random choice of b and symmetry, we have
Pri[(si, Hs,) is on the H-list|b = 0] = Pry[(s;, Hs,) is on the H-list|b = 1] = Pry[(s;, Hs,) is
on the H-list] for ¢ € {0,1}. Therefore,

AV (k)
> 2th~ — - Pr[=YBad] - (Pr1[(s0, Hy,) is on the H-list] + Pri[(s1, Hs,) is on the H-list])
- Pr[-=YBad] - Pr; [AskS].

> 1
- thash

Pr

We next bound Pr;[AskS]. We can bound this probability in a similar way as in the
proof of anonymity for RSA-RAEP [3], and we have

1
Pr;[AskS] > 5 - Pri[AskR A AskS|—DBad] - Pr;[-DBad|—AskS].

We next bound Prq[AskR A AskS|-DBad| and Pr;[-DBad|—AskS]. Let € = Adv%"g‘f‘ff(k).
The proofs of the following lemmas are similar to that for RSA-RAEP. Intuitively, Lemma 3.1
states that if M simulates the decryption oracle for the adversary A perfectly, then A makes
queries (r, G) and (s, Hy) such that s = (m||0¥)®© G, and y = (s||(r ®© Hy))® mod N, with
non-negligible probability. Lemma 3.2 states that M can simulate the decryption oracle

with overwhelming probability.

Lemma 3.1.

€ 2Qgen 2qhash 2(]gen
Pr1[AskR A AskS|-DBad] > _ - (1 - < ot 4 >) T

Lemma 3.2.

2 2¢gen + 1
Pr;[DBad|—=AskS] < qgec - (2,“ g;;()) :
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By applying Lemmas 3.1 and 3.2, we have

Iy [ASkS]
> 1[5 (1 (e 4 2ot )) - 2] [0 guee - (B + 22|
=i (1= (g ) ) [ - (3 + 28
—5 - 2 1 queo- (F + 22t
Z i ) (1 - (22111;% + ;ZTET) — {dec * (2%1 + ‘2qg26kr2)+1)> - % : 2%%
—<. (1 _ (quen+Qd(32ckt2Qgen(Idec n 22qgfc i gzl]jjg)) — e

We next bound the probability that —YBad occurs. Note that we cannot bound
Pr[YBad] by directly applying a similar argument for RSA-RAEP.

Lemma 3.3.
2 1

Pr[YBad] < Sps— + o5

Proof of Lemma 3.3. Let N = pqg and N’ = p/q’. Note that 2/5/21-1 < p ¢, 9/, ¢ < 2[k/2]
and 2F=1 < N, N’ < 2F. We define a set S[N] as {Y|Y € [0,2"169) A (Y mod N) € Z%}.

Then, we have

Pr[YBad]
R . R
=Prly = Zi; p{0,1,2,..., [0 —¢)/N]}; Y e~y +uN: YV & S[N']]
<Py’ & S[N]: V' & S[N']] + 1/21%9
since the distribution of Y” is statistically indistinguishable from that of Y, and the statis-

tically distance is less than 1/2159,
Since 2109 . ¢(N) < |S[N]|, we have

by & SN sy g sy < L1y € SIN A v SV

|S[V]]
- Hyly 0,251 A y ¢ SINJY]
- |S[V]]
- 2k+160 |S[ ]| - 2k+160 _ |S[N’H
- |S[NV]] — 2190.9(N)
Furthermore, we have
2FHI60 — |SINT]| = {Y'|Y” € [0,2F199) A (Y mod N') & Z},}

< H{Y'|Y" € [0,2N - 2190) A (Y mod N') & Z3, }|
=216 x [{Y'|Y' € [0, N')AY' & Z}
— 2161(N/ _ ¢(N/))
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Therefore, we can bound Pr[Y’ & S[N]: Y' & S[N']] as

Pr[y’ £ S[N]: Y ¢ S[N']

< 2K H160 — |S[N)| < 2NN —p(N')) 200" +4¢ — D 200 +4d)
= 2W0.g(N) T 210.6(N) N-p—q+1°~ SN —q
2(20k/21 4 ofk/2hy 2(1+1) 4 2

< ok—1 _ o[k/2] _ 9[k/2] _ gk—1—[k/2] — ] — | < ok/2—2 _9  9k/2-3 _ 1’

Substituting the bounds for the above probabilities, we have

1
2Qhash

f-pow-fnc € Joen
Advegnyy (k) > ’(1—61)-(1.(1_62)_ §k>

2 en+ ec+2 enfdec 2 ec 2 as
where €; = 7%/2%3_1 + oty and € = & qd2 o —penddee 4 e 4 Shhe,
the terms, we get the claimed result. Note that € = Adv%"gfi‘f(k).

Finally, we estimate the time complexity of M. It is the time complexity of A plus

and re-arranging

the time for simulating the random oracles. In the random oracle simulation, for each
pair ((g,Gy), (h, Hy)), it is sufficient to compute yp 40 = (h|[(g ® Hp))® mod Ny and
Yng1 = (h||(g ® Hp))®* mod Ni. Therefore, the time complexity of M is that of A plus
Ggen * Ghash - O(K3).

O

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that the f-partial one-wayness of
RSA is equivalent to the one-wayness of RSA for § > 0.5. Therefore, the scheme with N-ary
representation is secure in the sense of IK-CCA in the random oracle model assuming that
RSA is one-way.

We can also prove that the scheme with N-ary representation is secure in the sense
of IND-CCA in the random oracle model assuming RSA is one-way with the restriction
mentioned above. More precisely, we prove that if there exists a CCA-adversary A =
(A1, A2) attacking the indistinguishability of our scheme with advantage €, then there
exists a CCA-adversary B = (Bj, By) attacking the indistinguishability of RSA-OAEP

with the same advantage e. We construct B as follows.

1) B gets pk and passes it to A1. By gets (mg, mq,si) which is an output of A;, and
B outputs it.

2) Bs gets a challenge ciphertext y, sets y’ < y + tN where ¢ & {0,1,2,---, [ (2F+160 —
y)/N |}, and passes (y/,si) to As. Ba gets d € {0,1} which is an output of Ay, and

outputs it.
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CHAPTER 3. Anonymity on Public-Key Encryption

It is easy to see that the advantage of B is the same as that for A. Since RSA-OAEP
is secure in the sense of IND-CCA in the random oracle model assuming RSA is one-way
(Fujisaki, Okamoto, Pointcheval, and Stern [43]), our scheme is also secure in the sense of

IND-CCA in the random oracle model assuming RSA is one-way.

3.4 OAEP with RSACD

In this section, we propose a key-privacy encryption scheme which uses RSACD, which we

have proposed in in Section 2.3.2.

Definition 3.6. The common-key generation algorithm G and hash functions are the same
as those for RSA-RAEP. The key generation algorithm IC takes k, ko, k1, runs the key-
generation algorithm of RSACD, and gets N,e,d. The public key pk is (N,e), k, ko, k1 and
the secret key sk is (N,d), k, ko, k1. The other algorithms are described as follows. Note
that the valid ciphertext y satisfies y € [0,2%) and (y mod N) € Z%.

Algorithm Sgg’H(z) Algorithm DSGk’H(y)
R
r & {0,1}k0 s — [gRaP W)t = [gRen P W)k
s« (z || 0M) @ G(r) r—t® H(s)
t—roH(s) z—[s@Gr)]" p—[sDG(r)k
v — ]'\?,’Se/?kCD(sHt) if (p=0F) 2z« 2 else z L
return y return z

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved OAEP with the partial one-way
function is secure in the sense of IND-CCA. Thus, OAEP with the RSACD function is
secure in the sense of IND-CCA assuming RSACD is partial one-way.

Furthermore, we can show the following theorem.

Theorem 3.2. For any adversary A attacking the key-privacy of our scheme with RSACD
under the adaptive chosen ciphertext attack, and making at most qiec queries to decryption

oracle, qgen G-oracle queries, and gnasn H-oracle queries, there exists a 0-partial inverting
adversary M for the RSACD family, such that for any k, ko, k1, and 6 = £k

AAVEER (k) < San - (1= e1) - (1= €2)) ™ - AQVRERET (8) g (1) 712742

2qdec 2Qhas 2 2 . .
where €1 = 216/227_1 and €9 = ggfc + 2211‘333 4 Qgexx+Qdae2ck'(‘!)‘ Qgeandec7 and the running time Of

M is that of A plus qgen - qhash - O(kg)-

Thus, our scheme with RSACD is secure in the sense of IND-CCA and IK-CCA as-
suming RSACD is partial one-way. Hence, from Theorems 2.1 and 2.2, our scheme with
RSACD is secure in the sense of IND-CCA and IK-CCA assuming RSA is one-way.
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Proof of Theorem 3.2. The proof is similar to that for our scheme with expanding. We
describe the partial inverting algorithm M for RSACD using a CCA-adversary A attacking
the anonymity of our encryption scheme with RSACD. M is given pk = ((N,e), k) and
a point y = fﬁseA,SD(x) where |yl = k =n+ ko + k1 and x & Domgsacp(V, e, k). Let
sk = ((N,d), k) be the corresponding secret key. The algorithm is trying to find the n+ k;

most significant bits of x.

1) M runs the key generation algorithm of RSACD with security parameter k& to obtain
pk! = ((N',€'),k) and sk’ = ((N',d'),k). Then it picks a bit b & {0,1}, sets
pky — ((N,e), k) and pki_p «— ((N',€'),k). If the above y does not satisfy y €
(Rngrsacp (No, €0, k) N Rngrsacp (N1, €1, k)) then M outputs Fail and halts; else it

continues.

2) M initializes for lists, called G-list, H-list, Yp-list, and Y;-list to empty. It then runs
A as follows. Note that M simulates A’s oracles G, H, Dgy,, and Dy, as described

below.
-1) M runs A;(pko, pk1) and gets (m,si) which is the output of A;.

-2) M runs Az(Y,si) and gets a bit d € {0,1} which is the output of As.

3) M chooses a random pair (h, H) from the H-list and outputs h as its guess for the
n + k1 most significant bits of the e-th root of y modulo N

M simulates the random oracles G and H, and the decryption oracle as follows:

e When A makes an oracle query g to G, then for each (h, Hy) on the H-list, M builds
IRR(E) and ygn = FAR(2). For

i € {0,1}, M checks whether y = yp 4,. If for some h and i such a relation holds,

= h||(g ® Hp), and computes yp 40 =

then we have inverted y under pk;, and we can still correctly simulate G by answering
Gy = h ® (m]|0¥). Otherwise, M outputs a random value G, of length n + k1. In
both cases, M adds (g,Gy) to the G-list. Then, for all h, M checks if the ki least
significant bits of h ® G4 are all 0. If they are, then it adds yj 4,0 and yj 4.1 to the
Yp-list and the Yi-list, respectively.

e When A makes an oracle query h to H, M provides A with a random string Hj, of

length ko and adds (h, Hy) to the H-list. Then for each (g,G4) on the G-list, M
= FEAD(2) and g = FEAR(). M
checks if the ki least significant bits of h @& G are all 0. If they are, then it adds
Yh,g,0 and yp g1 to the Yp-list and the Yi-list, respectively.

builds z = hl|(g ® Hp), and computes yp 40 =
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e When for i € {0,1}, A makes an oracle query § € {0, 1}* to Dgx,, M checks if there
exists some yj, g, in the Yj-list such that § = yp 4;. If there is, then it returns the n
most significant bits of h & Gy to A. Otherwise it returns L (indicating that ¢ is an

invalid ciphertext).

In order to analyze the advantage of M, we define some events. For i € {0,1}, let

w; = g%?@i%(y), s; = [w;]"**1 and t; = [wi]y,. Note that M wins the game if it outputs

sp. Let r; be the random variable t; & H(s;).

We consider the following events.

e FBad denotes the event that
— A G-oracle query ro was made by A; in step 2-1, and G,, # so © (m||0¥), or
— A G-oracle query 71 was made by A; in step 2-1, and G, # s1 ® (m||0F1).

e GBad denotes the event that

— A G-oracle query rg was made by As in step 2-2, and at the point in time that it
was made, the H-oracle query sq was not on the H-list, and G, # so® (m||0¥),

or

— A G-oracle query r1 was made by A, in step 2-2, and at the point in time that it

was made, the H-oracle query s; was not on the H-list, and G, # s1® (m/|[0*1).
e DBad denotes the event that

— A Dy, query is not correctly answered, or

— A Dy, query is not correctly answered.
e G = —FBad A =GBad A —DBad.

We use the events FBad, GBad, and G for proving Lemma 3.1 described below. In this
chapter, we omit the proof of Lemma 3.1 since the proof of this lemma is similar to that
for RSA-RAEP.

We let Pr[-] denote the probability distribution in the game defining advantage. We

introduce the following additional events:
e YBad denotes the event that y ¢ (Rnggrsacp(No, €0, k) N Rngrsacp (N1, €1, k)).
e FAskS denotes the event that H-oracle query sg or s; was made by A; in step 2-1.

e AskR denotes the event that (rg, Gy,) or (r1,Gy,) is on the G-list at the end of step
2-2.
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e AskS denotes the event that (sg, Hs,) or (si, Hs,) is on the H-list at the end of step
2-2.

We use the event FAskS for proving Lemma 3.1. In this chapter, we omit the proof of
Lemma 3.1 since the proof of this lemma is similar to that for RSA-RAEP.
Now, we analyze the advantage of M. We can bound the advantage of M in a similar

way as that for our scheme with expanding and we have

Adveltpt (k) = . Pr[~YBad] - Pr;[AskS].
' 2qhash

and

€ 2Qgen + Qdec + 2QgeHQdec 2qdec 2@hash Ggen
Prl[ASkS] > 4 ’ (1 - < 9ko + k1 + 2k—ko n 2k
where Pry[-] denote the probability distribution in the simulated game where —YBad occurs.

We next bound the probability that —=YBad occurs.

Lemma 3.4.

Proof of Lemma 3.4. Let N = pqg and N’ = p/q’. Note that 2/5/21=1 < p ¢, 9/, ¢ < 2[k/2]
and 2¢~1 < N, N’ < 2%, Since ¢(N) < |Rnggsacp (N, e, k)|, we have

Pr[YBad] < Py < Rngrsacp(N, e, k) : y & Ruggsacp (V' €', k)]
- Hyly € Rogrsaco(N, ¢, k) A y & Rugrsacp(V', ¢/, F)}|
- [Rngrsacp (Vs e, k)|
< Hyly €0, 2") A y & Rngrsacp(NV', €', k)}|
- [Rngrsacp (N, €, k)|
2" — [Rngrsacp (N, €/, k)|
¢(N)

<

Furthermore, we have

2% — [Rngrsacp (N, €, k)| = [{/ € 10,2")|y’ & Rngrsacp(N', ¢/, k)}|
< Hy' €10,2N")]y’  Rngrsacp(N', €', k) }|
=2 x[{y € [0, N)|y’ & Rngrsacp(N', €', k)}|
— 2N — G(N')).
Therefore, we can bound Pr[YBad] as
2" — |Rnggsacp(N's ¢, k)| < 2N —o(N) _ 200 +4' - 1) < 2(p" +4')
¢(N) - 9(N) N-p-q+1~ N-p—gq
_ 2(2/k/21 4 lk/21y 2(1+1) 4 B 2
= 9k—1 _ 9[k/2] _9[k/2] = 9k—1-[k/2] _ 1 _1 — 9k/2-2 _9 ~ 9k/2-3 _ {’

Pr[YBad] <
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Substituting the bounds for the above probabilities, we have

€

(e (5 1-a) - %)

6-pow-fnc
Advi? k) >
RSACD,M( ) QQhash

2¢gentqdecT2Ggenqdec + 24dec + 2Qhash
2k0 2k1 2k—k0 ’

we get the claimed result. Note that € = Adv%éff(k).
Finally, we estimate the time complexity of M. It is the time complexity of A plus

where ¢; = Wg_l and e = and re-arranging the terms,

the time for simulating the random oracles. In the random oracle simulation, for each
pair ((g,Gy), (h, Hp)), it is sufficient to compute yp 40 = ﬁ?égg(h”(g ® Hp)) and yp g1 =
fﬁféfz(h\ (9 Hp,)). Therefore, the time complexity of M is that of A plus ggen*qhash-O(K?).

O

3.5 OAEP with Sampling Twice

In this section, we propose a key-privacy encryption scheme with the sampling twice tech-

nique.

Definition 3.7. The common-key generation algorithm, the key generation algorithm, and
hash functions are the same as those for RSA-RAEP. The other algorithms are depicted
below. Note that the valid ciphertext y satisfies y € [0,2%) and (y mod N) € Z%,.

Algorithm £ () Algorithm D& (y)
71,79 Fil {0, 1}ko v+— ymod N
51« (z||0F) @ G(ry); t1 1 © H(sy) s « [v? mod N]"**1; ¢ « [v? mod NJy,
v1 < (s1/[t1)¢ mod N r—t®H(s)
s9 — (z[|0") & G(ry); ta — 1o @ H(sy) e [sBGr)] pe[sBGM),
vy« (s2][t2)¢ mod N if (p=0F) 2z« 2 else z L
y < ChooseAndShift (v, v2) return z
return y

In order to prove that the scheme with sampling twice is secure in the sense of IK-CCA,
we need the restriction similar to that for OAEP with expanding.

Since if ¢ is a ciphertext of m for pk = (N, e, k) and ¢ < 2¥ — N then ¢+ N is also
a ciphertext of m, the adversary can ask ¢ + Ny to decryption oracle Dgy, where c is a
challenge ciphertext such that ¢ < 2% — Ny and pko = (No, g, k), and if the answer of Dy,
is m, then the adversary can know that ¢ was encrypted by pkg.

To prevent this attack, we add some natural restriction to the adversaries in the defini-
tions of IK-CCA. That is, it is mandated that the adversary never queries either ¢’ € [0, 2%)
such that ¢/ = ¢ (mod Np) to Dgy, or ¢ € [0,2%) such that ¢’ = ¢ (mod Ni) to Dy, .
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3.5. OAEP with Sampling Twice

Similarly, in order to prove that the scheme with sampling twice is secure in the sense
of IND-CCA, we need the same restriction. That is, in the definition of IND-CCA, it is
mandated that the adversary never queries ¢’ € [0,2*) such that ¢ = ¢ (mod N) to Dg.

If we add these restrictions then we can prove that the scheme with sampling twice
is secure in the sense of IK-CCA in the random oracle model assuming RSA is @-partial

one-way for # > 0.5. More precisely, we prove the following theorem.

Theorem 3.3. For any adversary A attacking the anonymity of our scheme PE with
sampling twice under an adaptive chosen-ciphertexrt attack, and making at most qgec de-
cryption oracle queries, qgen G-oracle queries, and qnash H-oracle queries, there exists a

0-partial inverting adversary M for the RSA family, such that for any k, ko(k), ki(k), and

k—ko(k
0 — kO()7

AdVELL (k) < Sqnasn((1—e1) - (1—€2) - (1—e3)) ™" AdVRE " (k) + ggen(1 — €5) 71 - 2772

—1 — 2 — 2qq 2qhash | 2dgentddect29gendd
where €1 = 5, €2 = g3, and €3 = T + JphaEh 4 TEeeo et

time of M is that of A plus qgen * qhash - O(K?).

, and the running

Proof. The proof is similar to that for our scheme with expanding. We describe the RSA
partial inverting algorithm M using a CCA-adversary A attacking anonymity of our en-
cryption scheme with sampling twice. M is given pk = (N, e, k) and a point y € Z}; where
ly| = k =n+ ko + k1. Let sk = (N, d, k) be the corresponding secret key. The algorithm
is trying to find the n + k1 most significant bits of the e-th root of y modulo V.

1) M picks a bit u il {0,1} and sets Y « y + uN. If Y > 2% then outputs Fail and

halts; else it continues.

2) M runs the key generation algorithm of RSA with security parameter k to obtain
pk! = (N', €', k) and sk’ = (N',d’, k). Then it picks a bit b £ {0,1}, sets pky, < (N, e)
and pky_p « (N', ¢’). If the above y does not satisfy y € (Zy, NZ};,) then M outputs

Fail and halts; else it continues.

3) M initializes for lists, called G-list, H-list, Yj-list, and Y;-list to empty. It then runs
A as follows. Note that M simulates A’s oracles G, H, Dy, and Dy, as described

below.

3-1) M runs A;(pko, pk1) and gets (x,si) which is the output of A;.
3-2) M runs As(Y,si) and gets a bit d € {0, 1} which is the output of As.

4) M chooses a random pair (h, Hy) from the H-list and outputs h as its guess for the
n + k1 most significant bits of the e-th root of y modulo N.
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CHAPTER 3. Anonymity on Public-Key Encryption

M simulates the random oracles G and H, and the decryption oracle as follows:

e When A makes an oracle query g to G, then for each (h, Hy) on the H-list, M builds
z = h||(g ® Hp), and computes yp 40 = 2% mod Ny and yp 41 = 2 mod N;. For
i € {0,1}, M checks whether y = yj, 4;. If for some h and i such a relation holds,
then we have inverted y under pk;, and we can still correctly simulate G by answering
G, = h @ (2|/0*). Otherwise, M outputs a random value G, of length n + k;. In
both cases, M adds (g,Gy) to the G-list. Then, for all h, M checks if the k; least
significant bits of h @ G4 are all 0. If they are, then it adds yp 40 and yp 41 to the
Yo-list and the Yi-list respectively.

e When A makes an oracle query h to H, M provides A with a random string Hj, of
length ko and adds (h, Hp) to the H-list. Then for each (g,G,4) on the G-list, M
builds z = h||(g ® Hp), and computes yp, g0 = 2°° mod Ny and yp g1 = 2 mod Nj.
M checks if the ki least significant bits of h ® G4 are all 0. If they are, then it adds
Yh,g,0 and yp g1 to the Yp-list and the Yi-list respectively.

e When for i € {0,1}, A makes an oracle query 3’ € {0,1}* to Dg,, M checks if there
exists some yy, 4; in the Yj-list such that vy’ mod N; = Yh,gi- If there is, then it returns
the n most significant bits of h & G4 to A. Otherwise it returns L (indicating that

y' is an invalid ciphertext).

Now, we analyze the advantage of M. In the following, we consider the experiment
where M does not output Fail in the first step. In this experiment, we can consider the
distributions of N, e, and Y as ((N,e, k), (N,d, k)) — K(k); Y & S[N] where K is the key
generation algorithm of RSA and S[N] = {Y'|Y”’ € [0,2%) A (Y' mod N) € Z4}.

For i € {0,1}, let w; = y% mod N, s; = [w;]"* and t; = [w;],. Let r; be the random

variable t; @ H(s;). We consider the following events.

e FBad denotes the event that

— A G-oracle query 79 was made by A; in step 3-1, and G, # so @ (z||0¥1), or
— A G-oracle query 71 was made by Aj in step 3-1, and G, # s1 @ (x||0F).

e GBad denotes the event that

— A G-oracle query rg was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query s was not on the H-list, and G, # so @ (x]|0%1),

or

— A G-oracle query r1 was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query s was not on the H-list, and G, # s1 @ (x||0%1).
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3.5. OAEP with Sampling Twice

e DBad denotes the event that

— A Dgj, query is not correctly answered, or

— A Dgj, query is not correctly answered.

e G = —FBad A =GBad A —DBad.

We let Pr[-] denote the probability distribution in the game defining advantage, and
Pry[-] denote the probability distribution in the simulated game where M does not output

Fail in the first step. We introduce the following additional events:
e YBad denotes the event that y € (Zy, NZj;,)-
e FAskS denotes the event that H-oracle query sp or s; was made by A; in step 3-1.

e AskR denotes the event that (rg, Gy,) or (r1,Gy,) is on the G-list at the end of step
3-2.

e AskS denotes the event that (sg, Hs,) or (s1, Hs,) is on the H-list at the end of step
3-2.

Now, we analyze the advantage of M. We can bound the advantage of M in a similar

way as that for our scheme with expanding and we have

6-pow-fnc
AdVRSpA,M (k) > QQhﬁ -Pr[Y < 28 A =YBad] - Pr;[AskS]
= 2q}x1ash - Pr[Y < 2F] . Pro[~YBad] - Pr;[AskS]

and

€ 2(]gen + ddec T 2(]gerlqdec 2qdec |, 2Qnash Ggen
PrafAskS] 2 7 - <1 N < 2o Tk T kR ) ) T ok

where Prg[-] denote the probability distribution in the simulated game where M does not
output Fail in the first step, and Pri[-] denote the probability distribution in the simulated
game where M does not output Fail in the first step and —=YBad occurs.

We next bound the probabilities that Y is in the good range and that —YBad occurs.

Lemma 3.5.

Pr[Y > 2% < = and Prg[YBad] <

1

5 9ok/2-3 _ 1°

Proof of Lemma 3.5. We first bound Pr[Y > 2¥]. Since Y = y 4+ uN, y € Z%, and
R

wu— {0,1}, we have

1
Prly > 2" <Prjp=1] = 7
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We next bound Pry[YBad]. Let N = pg and N’ = p/q. Note that 2/%/21=1 < p q.p/, ¢’ <
2k/21 and 28=1 < N, N’ < 2%, Since ¢(N) < |S[N]|, we have

< Hyly e SIN] A y & SINTY

Pro[YBad] = Pr[Y’ & S[N]: Y’ ¢ S[N'|]

[SINV]|
< Hylyelo,2) A y¢ SINY
N [SINV]|
2~ |SINY| _ 2~ |S|N]
SN T ()

Furthermore, we have

2k —|S[N']| {Y'|Y" € [0,2%) A (Y' mod N') & Z3,,}
{Y"|Y" € [0,2N") A (Y’ mod N') & Zy,}
= 2x [{Y')Y € [0,N)AY' & Z},}

AN 6(N')).

IN

Therefore, we can bound Pry[YBad] as

28 —|SINY]| _ 2N —o(N) _ 200 +d - 1) _ 20/ +4)
PolfBadl = TSN ST e N-p—a+ 1 N-p—g
2(21k/21 4 2lk/2T) 2(1+1) 4 2

< ok—1 _ o[k/2] _ o[k/2] ~ 9k—1-[k/2] _ ] _ 1 — 2k/2-2 _9  9k/2-3 _ |

Substituting the bounds for the above probabilities, we have

_bow- 1 € q
Ad 6'p0wfnck > (1 — (1 — '<7_ 1— _ gen)
Vesan (k) = Yt (1—e1)-(1—e2) 1 (1—e3) o

2 2 2 2 :
qgen‘i’Qdchk‘g dgenddec + gglcc + 2211—81587 and re-arranging

ik-cca

the terms, we get the claimed result. Note that e = Advpg 3 (k).

1 2
where €1 = 5, €2 = 2E/2—3_17 and €3 =

Finally, we estimate the time complexity of M. It is the time complexity of A plus
the time for simulating the random oracles. In the random oracle simulation, for each
pair ((g,Gy), (h, Hy)), it is sufficient to compute yp 40 = (h|[(g ® Hp))® mod Ny and
Yng1 = (h||(g ® Hp))®* mod Ni. Therefore, the time complexity of M is that of A plus
Geen * Ghash - O (k). O

We can also prove that the scheme with sampling twice is secure in the sense of IND-
CCA in the random oracle model assuming RSA is #-partial one-way for 6 > 0.5. More
precisely, we can prove that if there exists a CCA-adversary A = (A1, Az) attacking
indistinguishability of our scheme with advantage €, then there exists a CCA-adversary
B = (By, By) attacking indistinguishability of RSA-OAEP with advantage €¢/2. We con-

struct B as follows.
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Repeating [3] Expanding RSACD Sampling Twice

f mod. .t rypt

# of mod. exp. to encryp 15/ ky 1/1 15/2 2/2
(average / worst)
f mod. . tod t

# of mod. exp. to decryp 11 11 152 11
(average / worst)
size of ciphertexts k+1 k + 160 k k

# of random bits to encrypt

(average / worst)

1.5ko / kiko

ko + 160 / ko + 160

1.5k / 1.5ko

%o+ k+3/2ko+k+3

Figure 3.1: The costs of the encryption schemes.

1) Bj gets pk and passes it to A;. Bj gets (mg, m1,si) which is an output of A, and

B outputs it.

2) B gets a challenge ciphertext y and sets y' < y + tN where t & {0,1}. If y/ > 2k
then By outputs Fail and halts; otherwise Bs passes (v/,si) to As. Bs gets d € {0,1}

which is an output of As, and By outputs it.

If B does not output Fail, A outputs correctly with advantage e. Since Pr[B outputs
Fail] < 1/2, the advantage of B is greater than €/2.

3.6 Efficiency

We show the number of modular exponentiations to encrypt, the number of modular expo-

nentiations to decrypt, the size of ciphertexts, and the number of random bits to encrypt
in Figure 3.1. We assume that N is uniformly distributed in (2%, 2%).
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CHAPTER 4

Anonymity on Undeniable and Confirmer Signature

In this chapter, we consider the undeniable and confirmer signature schemes with anonymity.
In [44], Galbraith and Mao proposed a new RSA-based undeniable and confirmer signature
scheme which provides the anonymity property. They constructed the scheme by using the
expanding technique in order to prove that their scheme provides the anonymity property.
In this chapter, we propose two undeniable and confirmer signature schemes, which are
the variants of the Galbraith—-Mao scheme, by using the repeating and the sampling twice
techniques and prove their security.

The organization of this chapter is as follows. In Section 4.1, we review the definitions
of undeniable and confirmer signature schemes, and the attacks on anonymity of undeni-
able and confirmer signature schemes proposed by Galbraith and Mao [44]. In Section 4.2
we review the undeniable and confirmer signature scheme, which provides the anonymity
property, proposed by Galbraith and Mao. We propose a undeniable and confirmer signa-
ture scheme with the repeating technique in Section 4.3, and that with the sampling twice

technique in Section 4.4. We compare the efficiency of three schemes in Section 4.5.

4.1 Definitions of Undeniable and Confirmer Signature

Digital signatures are easily verified as authentic by anyone using the corresponding public
key. This property can be advantageous for many users, but it is unsuitable for many

other users. Chaum and Antwerpen provided undeniable signature which cannot be veri-
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CHAPTER 4. Anonymity on Undeniable and Confirmer Signature

fied without the signer’s cooperation [22; 20]. The validity or invalidity of an undeniable
signature can be ascertained by conducting a protocol with the signer, assuming the signer
participates. Chaum provided confirmer signature [21] which is undeniable signature where
signatures may also be verified by interacting with an entity called the confirmer who has
been designated by the signer, and many undeniable and confirmer signature schemes were

proposed [47, 63, 16, 45]. We describe the definition of undeniable and confirmer signature.

Definition 4.1. An undeniable signature scheme SIG = (CGEN, KGEN, SIGN, CONF, DENY)

consists of three algorithms and two protocols.

e CGEN is a (randomized) common-key generation algorithm that takes as input some
security parameter k and returns a common key I. The signature space S is uniquely

determined by 1.

e KGEN is a (randomized) key generation algorithm that takes as input the common
key I and returns a pair (pk, sk) of keys, the public key and a matching secret key.
The message space My, for pk is uniquely determined by pk.

e SIGN is a (randomized) signing algorithm that takes as input a secret key sk and
a message m and outputs a signature s. Note that the signature space Spp =

{S1GNg(m) |m € My} for pk is a subset of S for any (pk, sk).

e CONF 1is a confirmation protocol between a signer and a verifier which takes as input
a message m, a signature s, and signer’s public key pk and allows the signer to prove

to a verifier that the signature s is valid for the message m and the key pk.

e DENY is a denial protocol between a signer and a verifier which takes as input a
message m, a signature s, and signer’s public key pk and allows the signer to prove

to a verifier that the signature s is invalid for the message m and the key pk.

A confirmer signature scheme is essentially the same as above, except the role of confirma-
tion and denial can also be performed by a third party called a confirmer. The significant
modification is that the key generation algorithm produces a confirmation key ck which is

needed for the confirmation or denial protocol.

The literature on confirmer signature is inconsistent on whether the original signer has
the ability to confirm and/or deny signatures. Camenisch and Michels [16] claim that it
is undesirable for signers to be able to confirm or deny their signatures and the schemes
in [16, 21, 63] do not allow signers to deny signatures. On the other hand, Galbraith and
Mao claim that it is important for signers to be able to confirm and/or deny signatures
and the schemes in [22, 20, 45, 47] do allow signers to deny signatures. In any case, these

distinctions have no bearing on the discussion of the anonymity of the schemes.
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Generalized Invisibility. Before describing the definition of the anonymity. We review
the security notion called “invisibility.” The notion of the invisibility was the strongest
notion for undeniable and confirmer signature scheme, which was introduced by Chaum,
van Heijst, and Pfitzmann [24]. This is essentially the inability to determine whether a
given message-signature pair is valid for a given user. In [24], the invisibility is defined in
terms of simulatability. In [17], this notion is phrased in terms of distinguishing whether
a signature s corresponds to a message mg or mi. Galbraith and Mao slightly modified
the definition in [17], which they call “generalized invisibility.” We review the definition of
the generalized invisibility. Note that we slightly modify the definition of the generalized

invisibility in [44] in order to put a common key generation into it explicitly.

Definition 4.2 (generalized invisibility [44]). Let SZG = (CGEN, KGEN, S1GN, CONF, DENY)
be an undeniable or confirmer signature scheme. Let b € {0,1} and k € N (security pa-
rameter). Let A = (A1, As) be adversaries that run in two stages. A has access to the
oracles SIGNg, and A can execute confirmation and denial protocols CONFg, DENYg on
any message-signature pair. However, As cannot execute either CONFg or DENY on
(m',0’) € EC(m,o,pk). (EC means “equivalence class.” If we get a message-signature
pair (m, o) under the key pk, then we can easily compute all elements in EC(m, o, pk). See
also Remark 4.1.) Note that si be a state information. It contains common keys, public

keys, and so on. Now we consider the following experiments:

Experiment Expéggnzm_b(k)

I «— CaEN(1¥); (pk, sk) — KGEN(I);
(m,si) — A1(pk);
if (b =0) then o « SIGNg(m)
if (b=1) then o & S
d «— Ay(m,o,si)
return d

We define the advantages of the adversaries via:

Anonym Anonym- Anonym-
Advgzgh " (k) = [Pr[Expgrg Yy =1]— Pr[Expgrc 4 °(k) = 1]|.
The scheme STG provides the generalized invisibility if the function Advg‘;g‘zlm(-) is neg-

ligible for any adversary A whose time complexity is polynomial in k.

Galbraith and Mao showed that if the scheme meets the generalized invisibility, then

the scheme also meets the invisibility in [17], and vice versa.

Anonymity. Galbraith and Mao proposed a new security notion of undeniable and con-

firmer signatures named “anonymity” in [44]. We say that an undeniable or confirmer
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signature scheme provides anonymity when it is infeasible to determine which user gener-
ated the message-signature pair. Informally, this security property is as follows. Imagine a
system with n users and suppose an adversary is given a valid message-signature pair and is
asked to determine which user generated the signature. By running signature confirmation
or denial protocols with a given user (or their designated confirmer) one can determine
whether or not the user generated the signature. An undeniable or confirmer signature
scheme has the anonymity property if it is infeasible to determine whether a user is or is
not the signer of the message without interacting with that user or with the n — 1 other
users with given message-signature pair.

We slightly modify the definition of anonymity in [44] in order to put a common key

generation into it explicitly.

Definition 4.3 (anonymity [44]). Let SIG = (CGEN, KGEN, SIGN, CONF, DENY) be an
undeniable or confirmer signature scheme. Let b € {0,1} and k € N (security parameter).
Let A = (A1, A) be adversaries that run in two stages. A has access to the oracles
SIGNgg,, SIGNg,, and A can execute confirmation and denial protocols CONFgy,, CONFgy,,
DENYgk,, DENYgk, on any message-signature pair. However, Ay cannot evecute any one
of CONFgp,, CONFgi,, DENY,, and DENY, on (m/,0') € EC(m,o,pko) U EC(m, o, pk;)
(EC means “equivalence class.” If we get a message-signature pair (m,o) under the key
pk, then we can easily compute all elements in EC(m,o,pk).). Note that si be a state
information. It contains common keys, public keys, and so on. Now we consider the

following experiments:
Experiment Expg\;g?ﬁm'b(k)
I « CaEN(1¥); (pko, sko) « KGEN(I); (pki, sk1) «+ KGEN(I)
(m,si) «— Aj(pko,pk1); 0 < SIGNg, (m); d «— Az(m,o,si)

return d
We define the advantages of the adversaries via:
AQVA () = [PHEXpRE () = 1] - PrExpAE () = 1]

Anonym

The scheme SIG provides anonymity if the function Advgzs =y (-) is negligible for any

adversary A whose time complexity is polynomial in k.
Galbraith and Mao proved the following proposition.

Proposition 4.1. If the scheme meets the generalized invisibility, then the scheme also

meets the anonymity, and vice versa.
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Attacks on Anonymity In [47], Gennaro, Krawczyk and Rabin described an undeni-
able/confirmer signature scheme based on RSA. In their case the signature for a message
m is s where s = m?% mod N and m is a one-way encoding. The signature may be veri-
fied by proving that s¢ = m (mod N) where the verification exponent e is known to the
signer/confirmer. This scheme requires that the moduli be products of safe primes. Later
the scheme was generalized to use arbitrary RSA moduli [45]. To handle adaptive attacks
on anonymity it is clear that the one-way encoding must also be randomized. Hence, a sig-
nature becomes a pair (r,s) where r is random and s = H(m,r)? (mod N) where H(m,r)
is the randomized one-way encoding (such as PSS [8]).

In [44], Galbraith and Mao pointed out the Gennaro-Krawczyk-Rabin scheme does not
provide anonymity. They showed the following attacks:

Jacobi Symbols Attack Since d is odd it follows that the Jacobi symbols (%) and
(%) are equal. Hence, given a pair (H(m,r),s) and a user’s public key N,
if (%) # <W)then the signature is not valid for that user. This shows that the

scheme does not have anonymity.

Signature Length Attack A simple observation that seems to be folklore is that stan-
dard RSA signature does not provide anonymity, even when all moduli in the system
have the same length. Suppose an adversary knows that the signature s is created
under one of two keys (Ny, dg) or (N1,d1) (length of Ny and N; are k), and suppose
No < Njp. If s > Ny then the adversary knows it was created under (Ny,d;).

4.2 TUndeniable and Confirmer Signature with Expanding by
Galbraith and Mao

In [44], Galbraith and Mao proposed a new RSA-based scheme. In this section, we review

their scheme.

Definition 4.4 ([44]). The common-key generation algorithm CGEN takes a security pa-
rameter k and returns parameters k, ko and k1 such that ko(k)+k1(k) < k for allk > 1. The
key generation algorithm KGEN takes k, ko, k1, runs the key-generation algorithm of RSA,
and gets N,e,d,p,q where p,q the safe prime (i.e. (p—1)/2 and (q—1)/2 are also prime).
It picks g from Z3; and sets h g mod N. The public key pk is (N,g,h), k, ko, k1 and the
secret key sk is (N, e, d,p,q), k, ko, k1. The signature space is S = {0,1}?F x {0,110 Let
Go : {0,1}* — {0,1}*1, Gy : {0,1}Fr — {0,1}%0, Gy : {0,1}Fr — {0, 1}F—Fo—Fi=1 " gnd F
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- {0,1}% — {0,1}* be hash functions.

SIGN(m) SIGN2(m, 1)
1 &0, 11k w — Go(m||r)
2 m < SIGN2(m, 1) r* — Gi(w)®r
3 t&{ceZy|=12m (mod N)} | M — wl|r*||Ga(w)
4 s« t?mod N m— M
5 u& {0,1,...,[(2%* — 5)/N |} while ((%) #1) repeat m «— F(m)
6 §—s+uN return m
7  return (§,7)

CONF (respectively DENY ) is a non-interactive designated verifier proof which proves the
knowledge of an integer e such that g = h® (mod N) and §%¢ = £S1GN2(m,7) (mod N)
(resp. g = h® (mod N) and §%¢ # +S1GN2(m,r) (mod N)). Note that 5 = s + uN = s

(mod N) and all users can compute SIGN2(m,r) given m,r, and N.

Remark 4.1. It is clear that if a message-signature pair (m,(8,r)) is valid for pk =
(N, g,h) then (m, (£s£uN,r)) is also valid where s = § mod N and u € {0,1,...,|(2% —
s)/N|}. Thus, Galbraith and Mao defined the equivalence class for their scheme as

EC(m, (3,7),pk) = {(m, (£s £ uN,r))|s = §mod N, u € {0,1,...,[(2% — s)/N|}}.

Since using a Blum integer N, for every m € Z}, with (%) =1, it follows that either
m or —m is a square. One can compute square-root and randomly chooses ¢ from four
possibilities in step 3. Since (%) is not fixed, their scheme prevents the Jacobi symbols
attack. In step 5 and 6, it extends signatures of length k to be bit-strings of length 2k.
Since 0 < § < 2%% and § is indistinguishable from a random 2k-bit string for any N whose
length is k, their scheme prevents the signature length attack (See also [35].).

Galbraith and Mao proved that their scheme provides the generalized invisiblity and the
anonymity in the random oracle model under the assumption that the composite decision

Diffie-Hellman problem is hard.

Definition 4.5 (composite decision Diffie-Hellman problem). Let N be a product of two
safe primes (i.e. N = pq where p, q, (p —1)/2, (¢ —1)/2 are primes). Consider the two

sets

T = {(gvhu U, U) € (Zj\/)4 ’ Ord(Q) = Ord(h) = 2plq/a h e <g>7 (g,v) - Z*N}
and

Tcopu = {(g, h,u,v) € T |h = g% (mod N) for some d coprime to ¢(N),

v = au? (mod N) for some a € Z} of order 2}
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with the uniform distribution on each. We say that the composite decision Diffie-Hellman

problem is hard if it is infeasible to distinguish these two distributions.

To obtain the security result it is necessary that executions of the confirm and deny
protocol can be simulated in the random oracle model. This is not possible with interactive
proofs so we must use non-interactive proofs. To maintain the security of the system, it is
necessary to use non-interactive designated verifier proofs [53].

They also proved that their scheme is existential unforgeable in the random oracle
model under the assumption that factoring integers which are products of safe primes is
hard.

In the scheme by Galbraith and Mao (and also our schemes we will propose later
on), we have to use RSA moduli which are the products of safe primes for obtaining
the anonymity property. Gennaro, Krawczyk, and Rabin [47] proposed the RSA-based
undeniable signature schemes where RSA moduli are restricted to the products of safe
primes, and the confirmation and denial protocols in [47] is more efficient than those by
Galbraith, Mao, and Paterson [45]. Therefore, it seems better to use the protocols in [47].
However, if we use the protocols in [47], the prover will have to prove that her RSA modulo
has the proper form (i.e. a product of safe primes) during the protocols, and it needs a
costly proof. To avoid this, Galbraith, Mao, and Paterson [45] constructed different scheme

where there is no restriction for the RSA moduli.

4.3 Undeniable and Confirmer Signature with Repeating

In this section, we propose the undeniable and confirmer signature schemes with the re-

peating technique.

Definition 4.6. The common-key generation algorithm CGEN, the key generation algo-
rithm KGEN, and hash functions Go, G1, Ga, F' are the same as those for the Galbraith—
Mao scheme. The signature space is S = {0,1}*~1 x {0,1}*0. The signing algorithm is as
follows.
SIGN(m)
ctr «— —1
repeat
ctr — ctr +1
r & {0,1Y%0; m — S1aN2(m, r)
t & {c€[0,N)|c® =+m (mod N)}; s+ tYmod N
until (s < 2KV ctr = k)

return (s,r)
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CONF or DENY executes non-interactive designated verifier proofs which prove knowledge
of an integer e such that g = h® (mod N) and s*¢ z +S16N2(m,r) (mod N). In order
to construct such proofs, we first employ protocols similar to those in [45] by Galbraith,
Mao, and Paterson. Then, we transform them to corresponding non-interactive designated

verifier proofs by the method of Jakobsson, Sako, and Impagliazzo [53].
We now prove the security of the scheme with repeating.

Lemma 4.1. If the scheme with expanding proposed by Galbraith and Mao provides the
generalized invisibility, then the scheme with repeating also provides the generalized invisi-

bality.

Proof. Suppose that we have an adversary A = (41, A2) attacking the generalized invisi-
bility of the scheme with repeating. We construct the algorithm B = (Bj, By) attacking
the generalized invisibility of the scheme by Galbraith and Mao, using the algorithm A.

Note that B simulates A’s oracles as described below.

1) Bj takes pk and passes it to A;. Bj gets (m,si) which is an output of A, and By

outputs it.

2) By gets a challenge pair (5,7) € {0,1}?#x {0,1}*0. Then, By computes s < § mod N,
and if s > 251 then it outputs fail and halts.

3) B passes ((s,7),si) to As. Bg gets d € {0,1} which is an output of Az, and outputs
it.
B simulates the oracles as follows.
Hash query B uses its random oracles Go, G1, G2, F' to answer the query by A.

Signing query To answer the signing query m by A, B uses its signing oracle and gets
(5,r). Then, B computes s « 5§ mod N, and if s < 2¥~! then it answers (s,7) to A.
Otherwise B makes a query to its signing oracle again, and repeats the procedure

described above until s < 261,

Confirmation and Denial query B uses its confirmation and denial oracles, and re-
turns the results to A. (Note that our confirmation and denial protocols of the
scheme with repeating and those of the Galbraith-Mao scheme are non-interactive

one.)

It is easy to see that the probability that B outputs fail (when B makes a challenge) is
non-negligible. Furthermore, the distribution of the challenge (s,r) in the above game is
indistinguishable from that in the real game for the Galbraith—-Mao scheme. Therefore, the
advantage of B is non-negligible if that of A is non-negligible. O
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From Lemma 4.1, Proposition 4.1, and the result by Galbraith and Mao with respect

to the security of their scheme, we have the following theorem.

Theorem 4.1. The scheme with repeating provides the generalized invisibility and the

anonymity in the random oracle model under the assumption that the composite decision
Diffie-Hellman problem is hard.

We next prove the following theorem.

Theorem 4.2. The scheme with repeating is existential unforgeable in the random oracle
model under the assumption that factoring integers which are products of safe primes is
hard.

Proof. Suppose that we have an adversary A attacking the unforgeability of the scheme
with repeating. Then, we can construct the algorithm B attacking the unforgeability of the
scheme by Galbraith and Mao, using the algorithm A. The algorithm B runs A with simu-
lating A’ oracles. B can simulate the oracles for A in a similar way as those in the previous
proof. It is easy to see that if A outputs a valid signature of the scheme with repeating,
then the signature is also a valid signature of the Galbraith—-Mao scheme. Therefore, if A
forges the signature of the scheme with repeating with non-negligible probability, then B
can forge the signature of the Galbraith—-Mao scheme with non-negligible probability. O

4.4 Undeniable and Confirmer Signature with Sampling Twice

In this section, we propose the undeniable and confirmer signature scheme with the sam-

pling twice technique.

Definition 4.7. The common-key generation algorithm CGEN, the key generation algo-
rithm KGEN, and hash functions Go, G1, Go, F' are the same as those for the Galbraith—
Mao scheme. The signature space is S = {0,1}* x {0,1}%0. The signing algorithm is as

follows.

SIGN(m)
ri, 7 & {0, 1}k
my < SIGN2(m,r1); 11 Rl {c€Zn|c? =+my (mod N)}; s1« (t1)? mod N
Mg < SIGN2(m, r3); 1o bl {c € Zn|c? = +my (mod N)}; sp < (t2)? mod N
s «— ChooseAndShift(si, s2)
if (smod N =s1) r < r; else r < 79

return (s,r)

CONF (respectively DENY ) is a non-interactive designated verifier proof which proves the
knowledge of an integer e such that g = h® (mod N) and s?¢ = £S1GN2(m,7) (mod N)
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Repeating Expanding [44] Sampling Twice

f mod. . to sig

# of mod. exp. to sign 15 / by 1/1 2 /2
(average / worst)

# of computation of square roots 15 / by 1/1 5 /2
(average / worst)
size of signatures (k—=1)+ko 2k + ko k+ ko
of random bits to sign

# 5o sie 1.5(ko +2) / ki(ko+2) | ko+k+2/ko+k+2 | ko+k+5/ko+k+5

(average / worst)

Figure 4.1: The costs of the undeniable and confirmer signature schemes.

(resp. g = h® (mod N) and s*¢ # £S1GN2(m,7) (mod N)). In order to construct such
proofs, we first employ protocols similar to those in [45] by Galbraith, Mao, and Paterson.
Then, we transform them to corresponding non-interactive designated verifier proofs by the
method of Jakobsson, Sako, and Impagliazzo [53]. The equivalence class of this scheme is
EC(m, (s,7),pk) = {(m, (s’ £uN,r))|s’ = smod N Au € {0,1,2,...,[(2¥ — &) /N|}}.

We can prove that the scheme with sampling twice provides the generalized invisiblity
and the anonymity in the random oracle model under the assumption that the composite
decision Diffie-Hellman problem is hard, and is existential unforgeable in the random oracle
model under the assumption that factoring integers which are products of safe primes is

hard. The proofs are similar to those for the scheme with repeating.

4.5 Efficiency

We show the number of modular exponentiations to sign, the number of computation of
square root, the size of signatures, and the number of random bits to sign in Figure 4.1.

We assume that N is uniformly distributed in (281, 2%).
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CHAPTER 5

Anonymity on Ring Signature

In this chapter, we consider the ring signature schemes with anonymity. In [76], Rivest,
Shamir, and Tauman proposed the notion of ring signature, which allows a member of
an ad hoc collection of users S to prove that a message is authenticated by a member
of S without revealing which member actually produced the signature. They constructed
the scheme which provides the above property by using the expanding technique. In this
chapter, we propose three ring signature schemes, which are variants of the Rivest-Shamir—
Tauman scheme, with the repeating technique, RSACD, and the sampling twice technique,
and prove their security.

The organization of this chapter is as follows. We review the definitions of ring signature
in Section 5.1, and the RSA-based ring signature scheme proposed by Rivest, Shamir, and
Tauman in Section 5.2. We propose a ring signature scheme with the repeating technique
in Section 5.3, that with RSACD in Section 5.4, and that with the sampling twice technique

in Section 5.5. We compare the efficiency of four schemes in Section 5.6.

5.1 Definitions of Ring Signature

In [76], Rivest, Shamir, and Tauman proposed the notion of ring signature, which allows
a member of an ad hoc collection of users S to prove that a message is authenticated by
a member of S without revealing which member actually produced the signature. Unlike

group signature, ring signature has no group managers, no setup procedures, no revocation
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procedures, and no coordination.

Definition 5.1 (ring signature [76]). One assumes that each user (called a ring member)
has received (via a PKI or a certificate) a public key Py, for which the corresponding secret

key is denoted by Si. A ring signature scheme consists of the following algorithms.

e ring-sign(m, Py, Pa, - , Py, s,Ss) which produces a ring signature o for the message
m, given the public keys Py, Ps,--- , P, of the r ring members, together with the secret
key Sg of the s-th member (who is the actual signer).

e ring-verify(m, o) which accepts a message m and a signature o (which includes the

public key of all the possible signers), and outputs either “valid” or “invalid”.

The signer does not need the knowledge, consent, or assistance of the other ring mem-
bers to put them in the ring. All he needs is knowledge of their regular public keys.
Verification must satisfy the usual soundness and completeness conditions, but in addition
the signature scheme must satisfy “signer-ambiguous”, which is the property that the veri-
fier should be unable to determine the identity of the actual signer with probability greater
than 1/r + €, where 7 is the size of the ring, and e is negligible.

Furthermore, the signature scheme must satisfy “existential unforgeability under adap-
tive chosen message attack”, which is the property that any polynomial time adversary,
where she can have access to the signing oracle and get signatures for any message, cannot
forge a message-signature pair with non-negligible probability, other than the pairs the

signing oracle has previously produced.

5.2 RSA-based Ring Signature Scheme by Rivest, Shamir,

and Tauman

In [76], Rivest, Shamir, and Tauman constructed the ring signature scheme in which all
the ring member use RSA as their individual signature schemes. FEach user can uses the
RSA moduli whose lengths are different from other users.

The formal concept of ring signature can be related to an abstract concept called
combining functions. A combining function Cy ,(y1,¥2,- - ,yr) takes as input a key k, an
initialization value v, and a list of arbitrary values of the same length £. It outputs a single
value z € {0,1}* such that for any k,v, any index s, and any fixed values of {Yi }itss Cho
is a permutation over {0, 1}5 , when seen as a function of y;. Moreover, this permutation is
efficiently computable as well as its inverse.

In [76], Rivest, Shamir, and Tauman proposed a combining function based on a sym-

metric encryption scheme E modeled by a (keyed) random permutation

CrowWi, -, yr) = Ex(Yr ® Ex(yr—1 ® -+ Ex(y2 ® Ex(yh1 & v))--+)). (5.1)
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For any index s, we can easily verify that C} , is a combining function by rewriting equa-

tion 5.1 as follows:

ys = Ek_l(ys+1 @"'Ek_l(yr @Elzl(v))~--) @Ek(ys—l © - Ep(y1 D) - ) (5.2)

By using the combining function, Rivest, Shamir, and Tauman proposed the RSA-based

ring signature scheme.

Definition 5.2 ([76]). Let ¢, k, and b be security parameters. Let E be a symmetric en-
cryption scheme over {0, 1} using (-bit keys and h be a hash function which maps arbitrary
strings to £-bit strings. They use h to make a key for E. Each user has an RSA public key
P; = (Nj, e, k;) and secret key S; = (N;, d;, ki) where k; > k by running the key generation
algorithm of RSA. Let v be a number of ring member. We define the extended trap-door
permutation g; over {0,1}° as follows: for any b-bits input x; define nonnegative integers

q; and r; such that r; = ¢;N; +r; and 0 < 1; < N;. Then

gile) = | TN IRk () A (G DN <2
o Xy otherwise.

The signing algorithm is as follows.

ring-sign(m, P, Pa,--- , Py, s, S5)
for eachie {l,---,s—1,s+1,---,r} do
zi 240,130 y;  gi(xs)
v & 40,13
find ys s.t. Chm)o(y1, -+ ,yr) =0

-1
Ts < Js (ys)
return o = (P17P27"' 7PT5’07:U1,332’”' ,l'r)

Note that we can find ys such that Cp ) (Y1, ,yr) = v in the signing algorithm by using
equation 5.2 (See also Figure 5.1.).
The verification algorithm ring-verify(m, o) computes y; < g;(z;) for each z; and z —

Chim),w(Y1,- yr). It returns valid if z = v (See Figure 5.2.).

If b is sufficiently large (e.g. 160 bits larger than any of the IV;), g; is a one-way trap-
door permutation, and Rivest, Shamir, and Tauman proved this scheme is unconditionally
signer-ambiguous and existential unforgeable under adaptive chosen message attack in the

ideal cipher model assuming RSA is one-way.

Remark 5.1 (ideal cipher model). The ideal cipher model provides a mathematical model
of an “ideal” symmetric encryption scheme. In this model, a function (a symmetric encryp-

tion scheme) hy : X x K — X is chosen randomly from P which is a set of functions
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v

Yo = gr(Zr) E ! Y1 = gi1(71)
\ ‘k/ |\ /J‘ 8
e @
E,:/ ng
Yr—1 = gr—l(ﬂ?r—l)\ ® GB a Yo = go(22)
By 1( )Ek
Bt Ej,
ys

compute Z; s.t. ¥s = gs(xs)

Figure 5.1: The construction of ring signature.

¥
Z =7

Ek i
\EB/| |\. @/

Yr—1 = Gr—1(Tr—1)~a o U2 = ga(72)
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Ef l Ey

Yr = gr(m'r') =9 (Tl)

Figure 5.2: The verification of ring signature.
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such that for any fixred k € K, hy is a permutation over X, and we are only permitted oracle
access to the function hy for any k € K. This means that we are not given a formula or
an algorithm to compute values of the function hy for any k € K. Therefore, the only way
to compute the value hi(x) is to query the oracle. It should be noticed that the ideal cipher

model is considered to be stronger than the random oracle model.

Bresson, Stern, and Szydlo [14] recently improved the ring signature scheme proposed
by Rivest, Shamir, and Tauman. They showed that security can be based on the random
oracle model which is strictly weaker complexity assumption than the ideal cipher model.
Furthermore, this greatly simplified the security proof provided in [76]. They also provided
the threshold ring signature scheme and its applications. For examples of applications of
ring signatures, Naor [64] proposed the deniable ring authentication scheme. It is possible
to convince a verifier that a member of an ad hoc subset of participants is authenticating
a message without revealing which one (source hiding), and the verifier cannot convince a
third party that message was indeed authenticated. Zhang and Kim [81] proposed the ID-
based ring signature scheme which is based on the bilinear pairings and they also analyzed

its security and efficiency.

5.3 Ring Signature with Repeating

In this section, we propose the ring signature scheme by using the repeating technique.

Definition 5.3. Let {,k, and b = k — 1 be security parameters. Let E be a symmetric
encryption scheme over {0,1}° using £-bit keys and h a hash function which maps arbitrary
strings to £-bit strings. FEach user has an RSA public key P; = (N;,ei, ki) and secret key
Si = (N;, d;, ki) by running the key generation algorithm of RSA with security parameter k

(i.e. the size of N is k). Let r be a number of ring member. The signing algorithm is as
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follows.
ring-sign(m, Py, P, -+, Py, s, S5)
for eachie {l,---,s—1,s+1,---,7r} do
ctr «— —1
repeat
ctr «— ctr +1
v & Zn,; i < (2;)% mod N;
until (y; < 2571V ctr = k)
if (ctr=k) z; «— 1; y; — 1
v & {0,1}°
find ys s.t. Cpm)w(y1, -+, yr) =0
Tg — ygs mod Ng
return o = (P, Pa,--- , Pr,v, 21,29, -+, 2y)
ring-verify(m, o) computes y; — x;* mod N; for each x; and z < Ch(my oY1, yr). It

returns valid if z = v.

We can prove that our scheme is unconditionally signer-ambiguous, since for each k
and v the equation C,(p) (1, -+, yr) = v has exactly (2F=1)"=1 solutions, and all of them
can be chosen by the signature generation procedure with equal probability, regardless of
the signer’s identity.

We can also prove that our scheme is existential unforgeable under adaptive chosen
message attack in the ideal cipher model assuming RSA is one-way. The proof is almost
the same as that for the Rivest—Shamir—Tauman scheme. The difference is as follows.

In the proof of unforgeability for the Rivest—Shamir-Tauman scheme, given y € Z%,
one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger
has to compute the e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for our scheme, given y € Z%;, if y > 2F=1 then outputs Fail and halts.
Otherwise, one slips y as a “gap” between two consecutive E functions along the ring. We
can easily see that the probability of outputting Fail is smaller than 1/2. The rest of the
proof is the same as that for the Rivest-Shamir-Tauman scheme (See Section 3.5 in [76].),
and it is not hard to see that if there exists a forger for our scheme with advantage €, then

we can invert RSA with probability €/2¢? where ¢ is a number of oracle queries.

5.4 Ring Signature with RSACD

In this section, we propose a ring signature scheme with the RSACD function. We use

JB/??ZCI?() instead of g;(+).
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Definition 5.4. The values £, k, E,h,r are the same as those of Rivest—Shamir—Tauman
scheme. Each user has a public key P; = (N;,ei, k) and secret key S; = (N;,d;i, k) by
running the key generation algorithm of RSACD with security parameter k (i.e. the length
of N is k), and let b= k. The signing algorithm is as follows.

ring-sign(m, Py, P>, -+ , P, s, S5)
for eachi e {l,---,s—1,s+1,---,r} do
zi 40,115 y; — FROAD(a)
v & 10,1}k
find ys s.t. Chm)o(y1, -+ ,Ur) =0

s — g0 (ys)

return o = (P17P27"' 7PT7U7:C1)3325"' )xr)

The verification algorithm ring-verify(m, o) computes y; «— ]%?éf,?(mz) for each x; and

2 — Chm) w1, Yr). It returns valid if z = v.

We can prove that the scheme with RSACD is unconditionally signer-ambiguous, since
for each k and v the equation Cj, ) (1, - - -, ¥r) = v has exactly (2F)r=1 solutions, and all
of them are chosen by the signature generation procedure with equal probability, regardless
of the signer’s identity.

We can also prove that the scheme with RSACD is existential unforgeable under adap-
tive chosen message attack in the ideal cipher model assuming RSA is one-way. The proof
is almost the same as that for the Rivest—-Shamir-Tauman scheme. The difference is as
follows.

In the proof of unforgeability for the Rivest-Shamir-Tauman scheme, given y € Zj,,
one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger
has to compute the e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for the scheme with RSACD, given y' € Rngrsacp(IV, e, k), one slips ¢ as
a “gap” between two consecutive E functions along the ring. The rest of the proof is the

same as that for the Rivest—-Shamir-Tauman scheme

5.5 Ring Signature with Sampling Twice

In this section, we propose a ring signature scheme with the sampling twice technique. To

verify the signatures deterministically, we add some information c¢; to the signature.

Definition 5.5. Let £, k be security parameters. Let E be a symmetric encryption scheme
over {0,1}* using £-bit keys, and let h be a hash function which maps strings of arbitrary
length to £-bit strings. FEach user U; has public key P; = (N;,e;, k) and secret key S; =
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(Ni,di, k) by running the key generation algorithm of RSA with security parameter k (i.e.
the size of N; is k). Let r be the number of ring members. The signing algorithm is as
follows.
ring-sign(m, P, Ps, ..., P., s, Ss)
foreachi e {l,...,s—1,s+1,...,r} do

Tig win & Ly,

Yi1 — (241)% mod N;; yi2 « (252)% mod N;

Y; < ChooseAndShift(y;1,¥iz2)

if (y; mod N; = y;1) x; < x;,1 else x; «— o

if (y; > N;) ci— 1lelsec; — 0

v & 0,1}k
find ys s.t. Chpm)w(Y1s-- 5 Yr) =0
if (ys > Ng) cs < 1 else ¢ «— 0
zs — (y5)% mod N
return o = (P, Py, ..., P, v, (21,¢1), (T2, C2), ..., (Tr,¢p))
The verification algorithm ring-verify(m, o) computes y; < ((x;)® mod N;) + ¢; - N; for

each (z;,c;) and z < Chimy (Y1, - -+, Yr). It returns valid if and only if z = v.

We can prove that the scheme with the sampling twice technique is unconditionally
signer-ambiguous, since for each k and v the equation C,(y)(y1,- -, %) = v has exactly
(2%)r=1 solutions, and all of them are chosen by the signature generation procedure with
equal probability, regardless of the signer’s identity.

We can also prove that the scheme with the sampling twice technique is existential
unforgeable under adaptive chosen message attack in the ideal cipher model assuming RSA
is one-way. The proof is almost the same as that for the Rivest—-Shamir-Tauman scheme.
The difference is as follows.

In the proof of unforgeability for the Rivest—Shamir-Tauman scheme, given y € Z%,
one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger
has to compute the e-th root of ¢, and this leads one to obtain the e-th root of y.

In the proof for the scheme with the sampling twice technique, given y € Z3;, we pick
a random bit ¢ € {0,1}, set 3 « y + tN. If 3 < 2¥ then one slips ¢/ as a “gap” between
two consecutive E functions along the ring. The rest of the proof is the same as that for

the Rivest—Shamir—-Tauman scheme

5.6 Efficiency

We show the number of modular exponentiations to sign and to verify, the size of signatures,

and the number of random bits to sign in Figure 5.3. We assume that each N; is uniformly
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Repeating Expanding [76] RSACD Sampling Twice
f mod. exp. to si
# of mod. exp. to sign 1.5r / kr r/r 1.5r / 2r 2r / 2r
(average / worst)
f mod. exp. t if
# of mod. exp. to verify v/ . L5 ) 2 v/
(average / worst)
size of signatures Br+1)k—-1 Br+1)k+160(r+1) | 3r+ 1)k Br+1)k+r
# of random bits to sign 1.5k(r—1)+k—1 (k + 160)r b |k 3k+1)(r—1)+k
r /| kr
(average / worst) SR —1)+k—1 / (k+160)r /3k+1)(r—1)+k

Figure 5.3: The comparison of the ring signature schemes (|N;| = k)

distributed in (2871, 2F).

In the schemes with sampling twice and RSACD, it is necessary for each ring member
to choose her RSA modulo with the same length, and in the scheme with repeating, it is
necessary for each ring member to choose her RSA modulo with almost the same length.
In contrast to these schemes, in the scheme with expanding, there is no restriction on
the lengths of users’” moduli. However, if there is one ring member whose RSA modulo
is much larger than the other member’s moduli, then the size of the signature and the
number of random bits depends on the largest modulo. For example, if there is a user
whose RSA modulo has length k& + ¢ and the other users’ moduli have lengths &, then the
size of signature is (3r + 1)k + 160(r + 1) 4+ ¢(r +4) and the number of random bits to sign
is r(k + 160) + r¢.
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CHAPTER 6

A Family of Paillier’s Trap-door Permutations and its
Applications to Public-Key Encryption with
Anonymity

In [68], Paillier provided a trap-door one-way bijective function, and proved that the func-
tion is one-way if and only if the problem of extracting N-th roots modulo N is hard.

In this chapter, we focus on the four techniques, repeating, expanding, RSACD, and
sampling twice, in the case using the Paillier’s bijective function instead of the RSA func-
tion. We slightly modify his function and construct a family of Paillier’s trap-door permu-
tations denoted by Paillier. We also construct a family of Paillier’s trap-door permutations
with a common domain denoted by PCD, and prove the relations in Figure 6.1 for 8 > 0.5.
Here, RSA denotes an RSA family of trap-door permutations with the fixed exponent N.

We also apply Paillier and PCD to encryption, and obtain Paillier-OAEP (OAEP with
Paillier’s trap-door permutation) with repeating, that with expanding, that with sampling
twice, and PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common do-
main), and prove their security.

The organization of this chapter is as follows. In Section 6.1, after reviewing the
Paillier’s bijective function [68], we propose a family of Paillier’s trap-door permutations
denoted by Paillier and a family of Paillier’s trap-door permutations with a common domain
denote by PCD. We also prove that the §-partial one-wayness of Paillier is equivalent to the

one-wayness of Paillier for § > 0.5, the 6-partial one-wayness of PCD is equivalent to the
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[68]

[this chapter]
RSAy isone-way . Paillier is one-way

PCD is one-way

I l [43] I l [this chapter] I l [this chapter]
RSAy is Paillier is PCD is
f-partial one-way f-partial one-way f-partial one-way

Figure 6.1: Relationships between RSAy, Paillier, and PCD for 6 > 0.5.

one-wayness of PCD for § > 0.5, and that the one-wayness of Paillier is reduced to that of
PCD. In Section 6.2, we propose applications of Paillier and PCD to encryption and prove
that our schemes provide the anonymity and the indistinguishability in the random oracle

model assuming that RSAy is one-way.

6.1 A Family of Paillier’s Trap-door Permutations and that
with a Common Domain

In this section, we propose a family of Paillier’s trap-door permutations and that with a

common domain.

6.1.1 Paillier’s Bijective Functions

In [68], Paillier provided the bijective function gy : {z1 +x2- N|w1 € Zn, 20 € Z} — L2
such that

gy (z) = (14 Nzp)zh mod N?
where 1 = 2 mod N and x9 = x div N. By using the trap-door A = lem(p — 1,4 — 1)

where N = pg, we can compute g;,l(y) =21+ x2 - N, where L(u) = (u—1)/N,

L(y* mod N?)
A

He proved the following proposition.

x1 — mod N, and :102<—(y'(1—]\73:1))N_1 med A 1nod N2

Proposition 6.1 ([68]). The family of Paillier’s bijective functions is one-way if and only
if RSAN is one-way.

Definition 6.1 (the RSA family of trap-door permutations with the fixed exponent N).
The RSA family of trap-door permutations with the fized exponent N RSAn = (K, S, E)
1s as follows. The key generation algorithm K takes as input a security parameter k and
picks random, distinct primes p, q such that 21F/21=1 < p ¢ < 21K/21 gpd |p?q?| = 2k. It sets
N =pq (i.e. 22571 < N2 <228 ) and X = A\(N) = lem(p—1,q—1). It returns a public key
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pk = (N, k) and a secret key sk = (N, k,\). Dompgsa, (N, k) and Rnggrsa, (N, k) are both
equal to 7. The evaluation algorithm Ey (z) = ¥ mod N and the inversion algorithm

Ingpa(y) = yN71 mod A mod N. The sampling algorithm returns a random point in Ly

6.1.2 A Family of Paillier’s Trap-door Permutations

In this section, we propose a family of Paillier’s trap-door permutations denoted by Paillier
and prove that the #-partial one-wayness of Paillier is equivalent to the one-wayness of
Paillier for 8 > 0.5.

The domain and the range of the Paillier’s bijective function are different. In order to
construct a permutation based on the Paillier’s bijective function, we consider a function
hy : Zyo — {w1+22- N|21 € ZN, 22 € Z}} such that hy(z) = (2 div N) + (2 mod N)-N.
It is clear that hy is bijective and hy'(y) = (y div N) + (y mod N)- N. Therefore, hy o gy
is a trap-door permutation over {x; + 22 - N|z1 € Zn, 2 € Z} }.

We now propose the family of Paillier’s trap-door permutations denoted by Paillier.

Definition 6.2 (the family of Paillier’s trap-door permutations). The specifications of the
family of Paillier’s trap-door permutations Paillier = (K, S, E) are as follows. The key
generation algorithm K takes as input a security parameter k, runs the key generation
algorithm for RSAN, and returns a public key pk = (N, k) and a secret key sk = (N, k, \).
Dompy,jjiier (N, k) and Rugpaitiier(IV, k) are both equal to {x1+x2-Nlx1 € Zn,x2 € Zy}. The
sampling algorithm returns a random point in Dompyjjier (N, k). The evaluation algorithm
Eni(z) = FY(z), and the inversion algorithm Iy j\(y) = GPNM\(y) are as follows. Note
that F]f’, =hyogn and Gl]DV,)\ = g;,l ) h&l.

Function Ff () Function GX ,(v)
x1 «+—xmod N; x9 «— x divN y1 —ymod N; yos«—ydivN; YV «—y;-N+yo
L(Y* mod N?)

Y « (14 Nzp)zd mod N? Ty — 3 mod N

y1 «— Y divN; y < Y mod N 2y — (Y - (1= Nap))N ' mod A od N2
Yye—1y1+y2- N T 11 +x90- N

return y return

From Proposition 6.1, we can easily see the following lemma.
Lemma 6.1. Paillier is one-way if and only if RSAyn is one-way.

We prove the following theorem. Note that we cannot prove the following theorem by

directly applying a similar argument for RSA in [43].

Theorem 6.1. The 0-partial one-wayness of Paillier is equivalent to the one-wayness of
Paillier for 6 > 0.5.
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Proof. 1t is easy to see that if Paillier is #-partial one-way then Paillier is one-way. Therefore,
we prove the opposite direction.

Let A be an algorithm that outputs the 2k — ko most significant bits of the pre-image
of its input y € Rungpajiier(N, k) with & > ko (i.e. A is a ((2k — ko)/2k)-partial inverting
algorithm for Paillier with & > ko), with success probability e = Advﬁﬁﬁiv:fﬁc(k) where
0 = (2k — ko)/k > 0.5, within time bound ¢. We prove that there exists an algorithm B
that outputs a pre-image of y with success probability € = Advéﬁﬁi‘gfgc(k) > €/2, within
time bound # <t + O(k3). We construct the algorithm B as follows.

AMgorithm B((N,k),y)
X — A((N, k), y); ¢ £40,1}; 22 — (2% - X) divN) + ¢
y1<—ymod N; yo —y divN; Y «— 1y - N+ 1o

Y
find 21 s.t. 1 + N2y = —— mod N?

(w2)
xr+— x1+xo- N; return x

Assume that A outputs correctly, that is, X is the most 2k — kg significant bits of z. We
know x = 20 . X 4+ R for some 0 < R < 2%0. Thus, 3 = 2 div N = (2%0 . X) div N + ((2 -
X)mod N + R) div N. Since R < 2%0 < 2F=1 < N (Note that ko < k — 1, since k, kg € N
and ko < k.), we have (2% - X) mod N + R < 2N. Hence, ((2¥ - X) mod N + R) div N is
equal to 0 or 1, and we have zo = (2% . X)div N or (2% . X)div N + 1.

It is easy to see that if xo is correct then the output of B, that is, x = 1 + 22 - N
is the pre-image of y. Therefore, ¢ = Advll:,;l?ﬁivev;fgc(k) > ¢/2. Tt is not hard to see that
t' <t+ O(k?). O

Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the f-partial one-wayness
of RSA is equivalent to the one-wayness of RSA for # > 0.5. In their reduction, they
assume the #-partial inverting algorithm A for RSA with advantage €, and construct the
inverting algorithm B for RSA by running A twice. Then, the success probability of B is
approximately y/e. Furthermore, their reduction can be extended to the case that 6 is a
constant fraction less than 0.5. That is, B runs A 1/6 times, and the success probability
decreases to approximately €!/?.

Our reduction for Paillier is tight than that for RSA in [43] with respect to both the
success probability and the running time. However, our reduction cannot to be extended

to the case that 6 is a constant fraction less than 0.5.
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0 2%k N2 N2 9%
FPeD-1y Pallier ] LI A58
FRCP| prep-2y )!31‘%3’\’ tGRRR|GRRA
FPOP3 Y Paillier Tt GP<D-L
]

Figure 6.2: The functions F K,SCD and G]PVC,? \-

6.1.3 A Family of Paillier’s Trap-door Permutations with a Common

Domain

In this section, we construct a family of Paillier’s trap-door permutations with a common
domain denoted by PCD and prove that the 6-partial one-wayness of PCD is equivalent to

the one-wayness of Paillier for 8 > 0.5.

The construction of PCD

The construction of PCD is similar to that of RSACDRSACD in Section 2.3.2.

Definition 6.3 (the family of Paillier’s trap-door permutations with a common domain).
=(K,S,E) is
as follows. The key generation algorithm is the same as that of Paillier. Dompcp (N, k) and
Rngpcp (N, k) are both equal to {x1+x2-N|(x1+x2-N) € [0,2%), 21 € Zy, (v2 mod N) €

Zy}. The sampling algorithm returns a random point in Dompcp(N, k). The evaluation

GED,(y) are as

The family of Paillier’s trap-door permutations with a common domain PCD

algorithm Ey j(x) = F]'\D,SCD(:L'), and the inversion algorithm Inj x\(y) =

follows. (See also Figure 6.2.)

Function F{SP(x)
U — FES{D'I(@"); vV — FES{DQ(U);

return y

Function FJI\)[SCD_I(SU)
if (x < N?)
we FY@)
elseu«ux

return u

: PCD-2
Function Fiy 7~ (u)
if (u < 2%
elseif (2%
else v «— u — N?

return v
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Function GRP, (y)

v GRon () w e GRR(0): @ — GRY (w)
return x
Function G%?k[?;\l (y) | Function GR&E}?(U) Function G]P\,?,Ef(u)
if (y < N?) if (v < 2% — N2) y v+ N2 if (u < N?)
v =GR, elseif (228 — N2 <v < N?) u v z— GY 5 (u)
else v+« y else u «— v — N? else xz «—u
return v return u return z

The choice of N? from (2261, 22%) ensures that all elements in Dompcp (N, k) are permuted
by F]'\D, at least once. Since F]E), is a permutation over Domp,jjjier (N, k), both FES{D'l and
FECsz are permutations over Dompcp (N, k). Since it is clear that FK,%DQ is a permutation

over Dompcp (N, k), we have that FRSP is a permutation over Dompcp (N, k).

Property of PCD

In this section, we prove the #-partial one-wayness of PCD is equivalent to the one-wayness
of PCD for # > 0.5, and that the one-wayness of PCD is equivalent to the one-wayness of
Paillier.

We first prove the partial one-wayness of PCD. Note that we cannot prove this by
directly applying a similar argument for that of RSACD.

Theorem 6.2. The 0-partial one-wayness of PCD is equivalent to the one-wayness of PCD
for 6 > 0.5.

Proof. Tt is easy to see that if PCD is #-partial one-way then PCD is one-way. Therefore,
we prove the opposite direction.

Let A be an algorithm that outputs the 2k — ko most significant bits of the pre-image
of its input y € Rngpcp(V, k) with k& > ko (i.e. A is a ((2k — ko)/2k)-partial inverting
algorithm for PCD with k > ko), with success probability ¢ = Advg'ggfvjnc(k) where
0 = (2k — ko)/2k > 0.5, within time bound ¢. We prove that there exists an algorithm B

1-pow-fnc

that outputs a pre-image of y with success probability ¢ = Advpiy'p " (k) > €/2. within
time bound #' <t + O(k3). We construct the algorithm B as follows.

76



6.1. A Family of Paillier’s Trap-door Permutations and that with a Common Domain

Algorithm B((N,k),y)
X — A((N k), y); ¢ £40,1}; 2 — (20 - X) divN) + ¢
y1 <— ymod N; yo «+— y divN
if (zg > N Vy2 > N)

Y —yi - N+ (y2 mod N)
Y

[ N2
(22 mod N)N mod

find 1 s.t. 1+ Nx1 =

else

Z —y1 - N + yo; U)Q(—l'éVmOdN

find 27 s.t. 1+ Ny = LN [(ZN — 1) —|—w2} mod N2
D) Wa

r—x1+2x2-N

return x
Analysis
Assume that y = y1 + y2 - N € Rngpcp(V, k) and « = x1 + x2 - N which is the pre-image
of y, that is, z = G]Fi,?lg)\(y).

The algorithm B computes x2 in a similar way as the inverting algorithm in the proof

of Theorem 6.1.

If 29 > N or yo > N, z is permuted by F]E; only once, and then, we have
y1 + (y2 mod N) - N = FY (21 4 (2 mod N) - N).

Therefore, we can compute x1 in a similar way as the inverting algorithm in the proof of
Theorem 6.1 with replacing x2 by 2 mod N and y2 by y2 mod N.

If 13 < N and y» < N, z is permuted by FJ twice, that is, y = FK(Fk(x)). Assume
that w = wy +wa - N = F{(z). By the definition of FF, we have

wi - N +wy = (14 Nzp)zh  (mod N?)
and
Z=y1-N+ys=(1+Nw)w) (mod N?).
Thus,
Z
(Nw; =) (14 Nz)zd —wy = — —1 (mod N?),

N
w;

1 Z
1+ Nrp = — [(N - 1) +w2} (mod N?).
Ty wy

Since 1 + Nz < N2,

1 A
1+ Nrp = — [(N—1>+w2} mod NZ. (6.1)
L2

Wy
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Furthermore, since wy = ((1+ Nx1)zd mod N?) mod N = ) mod N, B can compute the
right term of equation 6.1 and compute x7.

Hence, if x5 is correct then z = 1 + x2 - N is the pre-image of y, and we have ¢ =
Advé’éjg?’;nc(k) > ¢/2. Tt is also clear that t' <t + O(k3). O

We can prove the following theorem in a similar way as that of the relationship between

RSA and RSACD.
Theorem 6.3. If Paillier is one-way then PCD is one-way.

Proof. We prove that if there exists a polynomial-time inverting algorithm A for PCD
with non-negligible probability € = Adv%,'ggf:fnc(k), then there exists a polynomial-time
inverting algorithm D for Paillier with non-negligible probability ¢ = Advéﬁﬁi‘gfg(k). We
specify the algorithm D to compute a pre-image of Y € Rngp.ijjier (N, k).

Algorithm D((N,k),Y)
c & 40,1}
if (¢ =0)
y —Y; x—A((N,k),y); u—F{P2); v = F{P?(u); X —v
else
u—Y; ve FP2(u); y— FRO3(0); & — A((N k), y); X —x

return X

Now, we analyze the advantage of D. In the following, we assume that Y is uniformly
distributed over Rngp,ijier (N, k) and w is uniformly distributed over Rngpcp (N, k). If A
outputs correctly then D outputs correctly (See Figure 6.2.). Therefore,

€ >Prle=0 A A((N,k),Y) is correct] + Prlc=1 AN A((N,k), Z) is correct]
1

(Pr[A((N,k),Y) is correct] + Pr[A((N, k), Z) is correct])

> — - (Pr[A((N,k),Y) is correct] + Pr[A((N, k), Z) is correct A N? < Z < 2%])

N | =N

where Z = FRSP3(FRSP-2(Y)), and we have

Pr[A((N,k),Y) is correct] = Pr[A((N, k), w) is correct |0 < w < N?|
> Pr[A((N, k), w) is correct A 0 < w < N2.

Noticing that Z = FESCD‘:“(FE%DQ(Y)) and |Rngpcp(N, k)| > |Rngpainier(IV, k)|, we
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have
Pr[N?2 < Z <2%] =Pr0<Y <22k - N2

Y)Y € (0,22 — N?) N Rngp,jjier (N, k) }
IRngp,iier (IV, K|

S {Y’]Y" € [0,2% — N?) N Rngpaijjier (N, k) }|
IRngpcp (I, k)|

_ Y)Y’ €[0,2%% — N?) N Rngpcp (N, k)|
[Rngpcp (N, k)|

= Pr[0 < w < 22 — N?

= Pr[N? < w < 2%].

Since Pr[A((N, k), Z) is correct | N? < Z < 22F] = Pr[A((N,k),w) is correct | N? <

w < 22F], we have

Pr[A((N, k), Z) is correct A N? < Z < 2%¥]
= Pr[N? < Z < 22%] x Pr[A((N, k), Z) is correct | N2 < Z < 2%F]
> Pr[N2 < w < 2%%] x Pr[A((N, k), Z) is correct | N? < Z < 2%¥]
= Pr[N? < w < 22%] x Pr[A((N, k), w) is correct | N2 < w < 2%¥]
[A

= Pr[A((N, k), w) is correct A N? <w < 2%F].
Therefore,
€ > % (Pr[A((N, k), w) is correct A 0 <w < N2
+Pr[A((N, k), w) is correct A N? <w < 2%¥])
= % - Pr[A((N, k), w) is correct] = =
which is non-negligible in k. O

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that the one-wayness of RSAy
is equivalent to the #-partial one-wayness of RSAy for 6 > 0.5. Therefore, the relations in
Figure 6.1 (in Section 6) are satisfied for 8 > 0.5.

6.2 Application to Public-Key Encryption with Anonymity

In this section, we propose public-key encryption schemes with anonymity by using Paillier,
PCD, and the four techniques, repeating, expanding, Paillier-CD, and sampling twice, and
prove their security.

6.2.1 Our Proposed Schemes

In this section, we propose Paillier-OAEP with repeating, expanding, and sampling twice,
and PCD-OAEP.
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Definition 6.4 (Paillier-OAEP with repeating). Paillier-OAEP PE = (G,K,E,D) with
repeating is as follows. The common-key generation algorithm G takes a security parameter
k and returns parameters k, ko, and k1 such that ko+k1 < 2k for all k > 1. This defines an
associated plaintext-length function n = 2k—ko—k1. The key generation algorithm K takes
k, ko, k1, runs the key-generation algorithm of Paillier, and gets N, k, X. The public key pk
is N,k,ko,k1 and the secret key sk is (N, ), k, ko, k1. The other algorithms are depicted
below. Let G : {0,1}%0 — {0,1}"*% and H : {0,1}"F1 — {0,1}% be hash functions.
Note that [z]¢ denotes the £ most significant bits of x and [x], denotes the £ least significant
bits of x.

Algorithm &y (x) Algorithm Dy (y)
ctr e —1 b [y]"s v [Ylkotkitn
repeat if (b=1)
ctr« ctr+1; r « {0,1} w — [v]fotkL: & [v],
u « OAEP(z,7); v « FX(u) if (w=0FFF) 2 g else z L
until((v < 2261V (etr = ky)) else
if (ctr = ky) y « 1]|0Fotk1]|z U — G]PV)\(U); 2 «— OAEP!(u)
else y < Olfv return z
return y

where

Algorithm OAEP(xz;r) | Algorithm OAEP™!(u)

s« (2||0F) @ G(r) s e [u]"TR b [ulpy; 7t @ H(s)
t—roH(s) z—[s®Gr)]" p—[s®G(r)k,
return s||t if (p=0M) 2z < x else z «1; return z

Definition 6.5 (Paillier-OAEP with expanding). Paillier-OAEP PE = (G,K,E, D) with
expanding is as follows. The common-key generation algorithm G, the key generation al-
gorithm IC, and the hash functions G, H are the same as those of Paillier-OAEP with
repeating. The other algorithms are depicted below. Note that the valid ciphertext y satis-
fies y € [0,2%+169) 4nd (y mod N?) € Rugp.jier (IV, k).

Algorithm &y (x) Algorithm Dy (y)
7« {0,1}%0; w « OAEP(x,7); v « FF(u) v+ y mod N2
o & {0,1,2,- -+ (22160 — ) /N?]} u— G ,\(v)

y — v+ aN? z «— OAEP!(u)
return y return z
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Definition 6.6 (PCD-OAEP). PCD-OAEP PE = (G,K,E,D) is as follows. The common-
key generation algorithm G, the key generation algorithm IC, and the hash functions G, H
are the same as those of Paillier-OAFEP with repeating. The other algorithms are depicted
below. Note that the valid ciphertext y satisfies y € Rugpcp(N, k).

Algorithm &Ep(m) Algorithm Dy (y)
r& {0,1}%0; 4 « OAEP(z, 1) U — GRE,EA(y); z — OAEP™1(u)
y «— FRSP(u); return y return z

Definition 6.7 (Paillier-OAEP with sampling twice). Paillier-OAEP PE = (G,K,E,D)
with sampling twice is as follows. The common-key generation algorithm G, the key gener-
ation algorithm IC, and the hash functions G, H are the same as those of Paillier-OAEP
with repeating. The other algorithms are depicted below. Note that the valid ciphertext y
satisfies y € [0,22%%) and (y mod N?) € Rngp,iier (N, k).

Algorithm &y (x) Algorithm Dy (y)
1+ {0,1}%0; wy « OAEP(z,71); v1 « FX(uq) v <y mod N?
19 + {0, 1}%0; wuy « OAEP(z,79); v « FX (u2) u — GJF(,A(U)

y < ChooseAndShift y2 o (v1,v2) 2 «— OAEP!(u)
return y return z

6.2.2 Analysis

In this section, we compare the four schemes proposed in the previous section.

Security

PCD-OAEP Fujisaki, Okamoto, Pointcheval, and Stern [43] proved OAEP with any
partial one-way permutation is secure in the sense of IND-CCA in the random oracle
model. Thus, PCD-OAEP is secure in the sense of IND-CCA in the random oracle model
assuming PCD is partial one-way.

We can also prove PCD-OAEP is secure in the sense of IK-CCA in the random oracle

model assuming PCD is partial one-way. More precisely, we prove the following lemma.

Lemma 6.2. For any adversary A attacking the anonymity of PCD-OAEP PE under the
adaptive chosen ciphertext attack, and making at most qaec decryption oracle queries, qgen

G-oracle queries, and qn.sn H-oracle queries, there exists a 0-partial inverting adversary B

for the PCD family, such that for any k, ko, k1, and 0 = Qk;kko,

AdVEES (k) < 8qnasn((1— €1)(1 — €2)) 71 - AdVEESH™ (k) + ggen - (1 — €)1 - 2725F2
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= 29gen+qdect+2ggenddec + 2ql(ciec + 2Qhash
2k1

where €1 = 2,6/2%371,62 5o SRy and the running time of B is

that of A plus ggen - Ghash - O(k?).

Proof. The proof is similar to that for RSA-RAEP, which is a variant of RSA-OAEP
with repeating by Bellare, Boldyreva, Desai, and Pointcheval [3]. We construct the par-

tial inverting algorithm M for the PCD function using a CCA-adversary A attacking the
anonymity of PCD-OAEP.

Intuition. We assume that the challenge ciphertext for A is y € Rugpcp(N, k). In order
to distinguish under which key the given ciphertext y was created, the adversary A has to
make queries r and s to oracles G and H, respectively, such that s = (m||0¥1) @ G(r) and
Yy = FJ'\),SCD(SH(r @ H(s))). Therefore, A asks s to H with non-negligible probability where

s is the n + k; most significant bits of GRP, (y).

We now describe the partial inverting algorithm M. The algorithm M is given pk =
(N, k) and a point y € Rngpcp(N, k) where |y| = 2k = n + ko + k1. Let sk = (N, k, \)
be the corresponding secret key. The algorithm M is trying to find the n + ki (= 2k — ko)
most significant bits of GZPV?kD, £ ().

1) M runs the key generation algorithm of PCD with security parameter & to obtain
pk! = (N' k) and sk’ = (N',k,N). Then it picks a bit b il {0,1}, sets pky «—
(N, k) and pki_p < (N’ k). If the above y does not satisfy y € (Rngpcp(No, k) N
Rngpcp (N1, k)) then M outputs Fail and halts; else it continues.

2) M initializes four lists, called G-list, H-list, Yp-list, and Y7-list to empty. It then runs
A as follows. Note that M simulates A’s oracles G, H, Dgy,, and Dy, as described

below.

2-1) M runs Aj(pko, pk1) and gets (m,si) which is the output of A;.
2-2) M runs As(y,si) and gets a bit d € {0, 1} which is the output of As.

3) M chooses a random pair (h, Hy) from the H-list and outputs h as its guess for the
n + ki most significant bits of GRP, (y).

M simulates the random oracles G and H, and the decryption oracle as follows:

e When A makes an oracle query g to G, then for each (h,Hp) on the H-list, M
builds z = h||(g ® Hp), and computes yp, g0 = F]'\),g,',?(z) and yp g1 = F]'\D,i',?(z). For
i € {0,1}, M checks whether y = yp, 4,. If for some h and ¢ such a relation holds,
then we have inverted y under pk;, and we can still correctly simulate G by answering
G, = h @ (m||0*). Otherwise, M outputs a random value G, of length n + k1. In
both cases, M adds (g,Gy) to the G-list. Then, for all h, M checks if the ki least
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significant bits of h ® G4 are all 0. If they are, then it adds yj 4,0 and y 4.1 to the
Yp-list and the Y;-list respectively.

e When A makes an oracle query h to H, M provides A with a random string Hj, of
length ko and adds (h, Hy) to the H-list. Then for each (g,G,) on the G-list, M
builds z = hl|(¢g ® Hp), and computes yp 40 = FEOCE(Z) and yp g1 = F]'\D,f%(z) M
checks if the kq least significant bits of h ® G4 are all 0. If they are, then it adds
Yh,g,0 and ¥y g1 to the Yp-list and the Yi-list respectively.

e When for i € {0,1}, A makes an oracle query y' € Rugpcp(Ni, k) to Dg,, M checks
if there exists some yp, 4; in the Yj-list such that y' = yp 4. If there is, then it returns
the n most significant bits of h @ G4 to A. Otherwise it returns L (indicating that

y' is an invalid ciphertext).

In order to analyze the advantage of M, we define some events. For i € {0,1}, let
w; = G%’%Ai (y), si = [w;]"** and t; = [wi]k,- Let 7; be the random variable t; & H (s;).

We consider the following events.
e FBad denotes the event that

— A G-oracle query 79 was made by A; in step 3-1, and G, # so ® (m||0¥1), or
— A G-oracle query 71 was made by Aj in step 3-1, and G, # 51 @© (m||0*1).

e GBad denotes the event that

— A G-oracle query rg was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query sy was not on the H-list, and G, # so@® (m||0%1),

or
— A G-oracle query r; was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query s; was not on the H-list, and G,, # s1® (m]|01).

e DBad denotes the event that

— A Dgj, query is not correctly answered, or

— A Dgj, query is not correctly answered.

e G = —-FBad A =GBad A —=DBad.

We use the events FBad, GBad, and G for proving Lemma 6.3 described below. In this
chapter, we omit the proof of Lemma 6.3 since the proof of this lemma is similar to that
for RSA-RAEP.

We let Pr[-] denote the probability distribution in the game defining advantage. We

introduce the following additional events:
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e YBad denotes the event that y ¢ (Rngpcp(No, k) N Rngpcp (N1, k)).
e FAskS denotes the event that H-oracle query sg or s; was made by A; in step 3-1.

e AskR denotes the event that (rg, Gy,) or (r1,Gy,) is on the G-list at the end of step
3-2.

e AskS denotes the event that (sg, Hs,) or (s1, Hs,) is on the H-list at the end of step
3-2.

We use the event FAskS for proving Lemma 6.3. In this chapter, we omit the proof of
Lemma 6.3 since the proof of this lemma is similar to that for RSA-RAEP.

Now, we analyze the advantage of M. The algorithm M wins the game if it outputs
sp. If (sp, Hg,) is on the H-list, then M outputs s, with probability at least 1/gnash. Thus,

Advplg (k)
> A— - Pr[(sy, Hy,) is on the H-list]

= qulas} - (Pr[(s0, Hs,) is on the H-list|b = 0] 4+ Pr[(s1, Hs, ) is on the H-list|b = 1])

o - Pr[=YBad] - (Pri[(s0, Hs,) is on the H-list[b = 0]
+Prq[(s1, Hs,) is on the H-list|b = 1])

v

where Pri[-] denote the probability distribution in the simulated game where —YBad oc-
curs. Assuming that —=YBad occurs, by the random choice of b and symmetry, we have
Pry[(s;, Hs,;) is on the H-list|b = 0] = Pr1[(s;, Hs,) is on the H-list|b = 1] = Pr;[(s;, H,) is
on the H-list] for i € {0,1}. Therefore,

i

Advpi ™ (k)

> 2thash Pr[=YBad] - (Pr1[(so, Hs,) is on the H-list] + Pri[(s1, Hs, ) is on the H-list])
Pr[—YBad] - Pr;[AskS].

> 1
— 2¢nash

We next bound Pr;[AskS]. We can bound this probability in a similar way as in the
proof of anonymity for RSA-RAEP [3], and we have

Pr;[AskS] > = - Pri[AskR A AskS|—DBad] - Pr;[-DBad|—-AskS].

DN =

We next bound Pr;[AskR A AskS|-DBad] and Prj[—-DBad|—AskS]. Let € = Adv%"gf‘sj‘(kz).
The proofs of the following lemmas are similar to those for RSA-RAEP.

Lemma 6.3.

Pri[AskR A AskS|-DBad] >

€ _ e _
_5‘(1_2Qgen‘2 k0_2Qhash'2 " kl)_2Qgen'2 2k-
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Lemma 6.4.
Pr,[DBad|~AskS] < qgec - (2 2R 4 (2ggen + 1) - 2—’“)) .

Intuitively, Lemma 6.3 states that if M simulates the decryption oracle for the adversary
A perfectly, then A makes queries (r,G,.) and (s, H) such that s = (m||0"1) © G, and
y = FPCD( ||(r & Hs)) with non-negligible probability. Lemma 6.4 states that M can
simulate the decryption oracle with overwhelming probability.

By applying Lemmas 6.3 and 6.4, we have

I [ASkS]

1 € 2(]gen 2qh h 2qgen QQgen+1
>3- [5 (1 - ( oko T onth o2k | X |1~ Gdec 2k1 + — 5k
_ ¢ 2q, 2@nast 2 2!1 +1
=5 (1 (e + 3t — ace * (i T "5t

2q 2 2¢gen+1
-3 (1 e (g 51|

€ 2q,gen 2qhast 2 2Qgen+1 1 2(]gen

21'<1—(2T0+ﬁ T dee (gt TR ) T3 o

2 2
. (1 ( qgen'i‘Qde;'g dgenddec + zggfc + 222(21':11}6 )) _ ngQGI? .

Il
N

We next bound the probability that —YBad occurs.

Lemma 6.5.

4

Proof of Lemma 6.5. Let N = pg and N’ = p/q’. Note that 2/*/21=1 < p ¢, 9/, ¢ < 2/k/2]
and 22F-1 < N2 N'? < 22k Since N - ¢(N) < |Rngpcp (N, k)|, we have

Pr[YBad] < Prly < Rugpcp (N, k) : y & Rngpep (V' k)]
< H{yly € Rngpep(N, k) A y & Rngpep(N', k)|
B [Rngpcp (N, k)
_ Hyly€[0,2?%) A y & Rngpep(V', )}
- |Rngpcp (N, k)|
- |RngPCD(N,v k)|
- N - ¢(N)

Furthermore, we have

— [Rngpep(N', k)| = [{y' € [0,2°%)|y’ & Rugpep(N', k)}
< ’{y’ € [0,2N"?)|y ¢ RngPCD<N/7k)}’
=2 [{y' € [0,N)ly’ & Rugpcp(V',k)}|
= 2(N"? = N'- ¢(N")).
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Therefore, we can bound Pr[YBad] as

2% — Rugpep(N', k)| _ 2(N"” = N"-¢(N)) _ 2N'(p' +¢' — 1)

Pr[YBad] < < -
VBl <N o) =T Noa) NN —p—q+1)
2N'(' +d) _ 2. 2k(2lk/21 4 olk/21y 4(141)
= N(N —p— q) = 2k—1(2k—1 —9fk/2] — 2[k/2]) T o9k—1-[k/2] _ 1 _ 1
8 4

S ok/2-2 _ 9 - 9k/2-3 _ 1°

Substituting the bounds for the above probabilities, we have
1
AdvEE e (k) > (—a) (5 (1-e) - )

N 2C.7hash
2 2 :
qgenﬂdzc;g Jgenddee | 22",3;0 + 222‘1,?‘31%, and re-arranging the

ik-cca

terms, we get the claimed result. Note that € = Advpg 4 (k).

where ¢, = ﬁ and €5 =

Finally, we estimate the running time of M. It is the running time of A plus the
time for simulating the random oracles. In the random oracle simulation, for each pair
((g,Gy), (h, Hy)), it is sufficient to compute yp 40 = F]E’,g",?(z) and yp g1 = F}\),ﬁ',?(z). There-
fore, the running time of M is that of A plus ggen - Ghash - O(K?). O

Since if RSAy is one-way then PCD is #-partial one-way for § > 0.5 (See Figure 6.1.),
PCD-OAEP is secure in the sense of IND-CCA and IK-CCA in the random oracle model

assuming RSAy is one-way.

Paillier-OAEP with Repeating Fujisaki, Okamoto, Pointcheval, and Stern [43] proved
OAEP with any partial one-way permutation is secure in the sense of IND-CCA in the
random oracle model. Thus, Paillier-OAEP (OAEP with Paillier’s trap-door permutation)
is secure in the sense of IND-CCA in the random oracle model assuming Paillier is partial
one-way.

We can prove that if Paillier-OAEP provides the indistinguishability then that with
repeating also provides the indistinguishability. More precisely, if there exists a CCA-
adversary A = (A1, Ag) attacking the indistinguishability of Paillier-OAEP with repeating
with advantage €, then there exists a CCA-adversary B = (B1, By) attacking the indistin-
guishability of Paillier-OAEP with advantage €/2. We construct B as follows.

1) B gets pk and passes it to A1. By gets (mg,mq,si) which is an output of A;, and
B outputs it.

2) By gets a challenge ciphertext y. If y > 22=! then B, outputs Fail and halts;
otherwise By passes (¢/,si) to Ay where y' «— 0||ly. Bs gets d € {0,1} which is an
output of As, and By outputs it.
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If B does not output Fail, A outputs correctly with advantage e. Since Pr[B outputs
Fail] < 1/2, the advantage of B is greater than €/2.

Furthermore, we can prove that Paillier-OAEP with repeating is secure in the sense of
IK-CCA in the random oracle model assuming Paillier is partial one-way. Noticing that the
functions F zi\)kaD and G']D\,?,E \ are replaced by F ]'f, and Gf\ﬂ \» respectively, and the domain of
valid ciphertexts changes, we can prove the following lemma in a similar way as that for
PCD-OAEP.

Lemma 6.6. For any adversary A attacking the anonymity of Paillier-OAEP PE with
repeating under the adaptive chosen ciphertext attack, and making at most qqec decryption
oracle queries, qgen G-oracle queries, and quash H-oracle queries, there exists a 0-partial

inverting adversary B for the Paillier family, such that for any k, ko, k1, and 0 = %,

AQVEE () < 16uaan(1 — e2)(1 — €))7 AQVEERUE(h) g - (1= )7 27242

2 2 o .
where €, = 2&/2}3_1762 = qge“+qdzckt deenddec 25;3? + 222‘1,?31*(‘) , and the running time of B is

that of A plus qgen - Ghash - O(k?).

Since the f-partial one-wayness of Paillier is equivalent to the one-wayness of RSAy for
6 > 0.5 (See Figure 6.1), Paillier-OAEP with repeating is secure in the sense of IND-CCA

and IK-CCA in the random oracle model assuming RSAy is one-way.

Paillier-OAEP with Sampling Twice In order to prove that Paillier-OAEP with
sampling twice is secure in the sense of IND-CCA, we need the restriction as follows.

Since if ¢ is a ciphertext of m for pk = (N, k) and ¢ < 22* — N2 then ¢ + N? is also a
ciphertext of m. Thus, the adversary can ask ¢ + N? to decryption oracle Dy, where c is
a challenge ciphertext such that ¢ < 2%* — N2 and pk = (N, k), and if the answer of D,y is
m, then the adversary knows that c is a ciphertext of m for the key pk.

To prevent this attack, we add some natural restriction to the adversary in the definition
of IND-CCA. That is, in the definition of IND-CCA, it is mandated that the adversary
never queries Dy, on (¢ mod N2) +yN? where v € [ (2% — (c mod N?))/N2|.

We think this restriction is natural and reasonable. Actually, in the case of undeni-
able and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on
undeniable signature schemes with the above restriction.

If we add this restriction then we can prove that Paillier-OAEP with sampling twice
is secure in the sense of IND-CCA in the random oracle model assuming Paillier is partial
one-way. Noticing that the domain of valid ciphertexts changes, we can prove this in a
similar way as that for Paillier-OAEP with repeating.

Similarly, in order to prove that Paillier-OAEP with sampling twice is secure in the sense
of IK-CCA, we need the same kind of restriction. That is, it is mandated that the adversary
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never queries D, on (c mod No?) + BoNo? where 8y € [(2% — (¢ mod Ny?))/No?], and
Dy, on (¢ mod Ni?) 4 81 N1? where 3 € (2% — (c mod N1?))/N{2|.

If we add this restriction then we can prove that Paillier-OAEP with sampling twice
is secure in the sense of IK-CCA in the random oracle model assuming Paillier is partial

one-way. More precisely, we can prove the following lemma, and the proof is similar to
that for PCD-OAEP.

Lemma 6.7. For any adversary A attacking the anonymity of Paillier-OAEP PE with
sampling twice under the adaptive chosen ciphertext attack, and making at most qqec de-
cryption oracle queries, qgen G-oracle queries, and quash H-oracle queries, there exists

a O-partial inverting adversary B for the Paillier family, such that for any k, ko, k1, and

_ 2k—kg
0= 2k

AQVEET (k) < 16ghaen (1 — 1) (1 = €2)) ™+ AdVERICT(8) + gen - (1 — €)™ - 27242

— 2Qgen+(Idec+2Qgen(Idec + 2!]2% + 2Ghash
2k1

where €1 = 2,6/2%371,62 5o SRy and the running time of B is

that of A plus Ggen * Ghash ° O(kg)

Since the #-partial one-wayness of Paillier is equivalent to the one-wayness of RSAn
for & > 0.5 (See Figure 6.1), Paillier-OAEP with sampling twice is secure in the sense of
IND-CCA and IK-CCA in the random oracle model assuming RSAy is one-way.

Paillier-OAEP with Expanding In order to prove that Paillier-OAEP with expanding
is secure in the sense of IND-CCA and IK-CCA, we need similar restriction as that for
Paillier-OAEP with sampling twice. That is, in the definition of IND-CCA, it is mandated
that the adversary never queries Dy, on (c mod N2) +yN? where v € | (22116 — (¢ mod
N?2))/N?|. Similarly, in the definition of IK-CCA, it is mandated that the adversary never
queries Dy, on (c mod No?) + BoNo? where By € (227160 — (¢ mod Ny?))/No?|, and Dy,
on (¢ mod Ni?) + 1 N1% where 3; € [ (221160 — (¢ mod N12))/N,2].

If we add these restrictions then we can prove that Paillier-OAEP with expanding is
secure in the sense of IND-CCA and IK-CCA in the random oracle model assuming Paillier
is partial one-way. Noticing that the domain of valid ciphertexts changes, we can prove
them in a similar way as those for Paillier-OAEP with repeating. In particular, we can

prove the following lemma for the anonymity property.

Lemma 6.8. For any adversary A attacking the anonymity of Paillier-OAEP PE with
expanding under the adaptive chosen ciphertext attack, and making at most qqec decryption

oracle queries, qgen G-oracle queries, and quash H-oracle queries, there exists a 0-partial

2k—ko

inverting adversary B for the Paillier family, such that for any k, ko, k1, and 0 = =572,

AQVEES (F) < Sauaan(1 = 1)(1 = €2)) ™" AQVATILT () + gen - (1 — ) 71 2725+
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Repeating Expanding PCD Sampling Twice
f d. .t t
# of mod. exp. to encryp 15/ k1 1/1 15/ 2 2/2
(average / worst)
f mod. . tod t
# of mod. exp. to decryp 1/1 1/1 15/ 2 1/1
(average / worst)
size of ciphertexts 2k +1 2k + 160 2k 2k
f random bits t 6 ko + 160 2ko + 2k + 3
# of random bits to encryp 1.5k / kiko o+ ko / ko o+ 2k +
(average / worst) / ko + 160 / 2ko +2k+3

Figure 6.3: The costs of the encryption schemes.

2 2 ) . .
’whe’r‘e € = MT—I + 217159, €9 = qgen“l“]de;]jo' Qgenfdec + 22ql(cifc + 222‘1’?31}6 , and th@ running time

of B is that of A plus qgen * qhash - O(K?).

Since the f-partial one-wayness of Paillier is equivalent to the one-wayness of RSAy for
6 > 0.5 (See Figure 6.1), Paillier-OAEP with expanding is secure in the sense of IND-CCA

and IK-CCA in the random oracle model assuming RSAy is one-way.

Efficiency

We show the costs of our schemes. We show the number of modular exponentiations to
encrypt, the number of modular exponentiations to decrypt, the size of ciphertexts, and
the number of random bits to encrypt in Figure 6.3. We assume that N is uniformly
distributed in (22+1, 22k),

Paillier-OAEP with repeating is inefficient with respect to the encryption cost in the
worst case. In this scheme, the number of random bits to encrypt is large in the worst case.

Paillier-OAEP with expanding is efficient with respect to the encryption and the de-
cryption costs. However, the size of ciphertexts is about 160 bits larger than those of the
other schemes.

PCD-OAEP is the most efficient among the four schemes with respect to the number
of random bits to encrypt. However, the decryption cost is twice as those of the other
schemes in the worst case.

Paillier-OAEP with sampling twice requires many random bits to encrypt messages.
If £ = ko/2 = k1/2, then the number of random bits to encrypt in Paillier-OAEP with
sampling twice is at least four times as many as those of the other schemes in the average

case.
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CHAPTER 7

Relationships between Data-Privacy and
Key-Privacy

In this chapter, we propose a new security notion for public-key encryption of key-privacy,
called the strong anonymity. This captures the situation that a public-key encryption
scheme provides the anonymity even if the message spaces for each public-key are different,
while the anonymity proposed in [3] cannot capture such a situation.

We also show the relationships between data-privacy and key-privacy. We consider the
indsitinguishability (IND) as the security notion for the data-privacy, and the anonymity
(IK), the anonymity with random messages (IKR), and the strong anonymity (sIK) as
those for the key-privacy.

We show the relationships between data-privacy and key-privacy in Figure 7.1. These
relations hold under the chosen message attack and the adaptive chosen ciphertext attack.

In this figure, for notions of security A and B,

e “A —— B” means that A implies B, that is, for any public-key encryption scheme
which is secure in the sense of A is also secure in the sense of B (We denote it as
A= B.), and

e “A ---» B” means that A does not imply B, that is, there exists a public-key en-
cryption scheme which is secure in the sense of A and mot secure in the sense of B
(We denote it as A A B.).
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IKR& IND IKR
A
v
sIK IND
A Y
e
IK

Figure 7.1: Relationships between data-privacy and key-privacy.

In this chapter, we prove the relations in Figure 7.2. In this figure, the number on the
arrow refers to the section of this chapter. By using the relations in Figure 7.2 and trivial
relations (IKR-atk A IND-atk = IKR-atk, IKR-atk A IND-atk = IND-atk), the relations
which are in Figure 7.1 and not in Figure 7.2 are determined automatically.

The organization of this chapter is as follows. In Section 7.1, we review the anonymity
with random messages. In Section 7.2, we propsose a new security notion called the strong

anonymity. In Section 7.3, we show the relationships between data-privacy and key-privacy.

7.1 Anonymity with Random Messages

In this section, we review the definition of the anonymity with random messages.

Halevi [49] provides a simple sufficient condition for an IND-atk public-key encryption
scheme to meet wlK-atk for atk € {CPA, CCA}. The condition is that even a computa-
tionally unbounded adversary, given public keys pkg, pk1l and the encryption of a random
message under pky, have only a negligible advantage in determining the random challenge
bit b. In [2], Abdalla et. al. extended the Halevi’s condition to identity-based encryp-
tion. They weakened the statistical (i.e. information-theoretic) requirement of to [49] a
computational one.

We also consider the computational version of the Halevi’s condition for public-key

encryption schemes as follows.

Definition 7.1 (IKR-CPA, IKR-CCA). Let I1 = (G,K,&, D) be a public-key encryption
scheme. Let Acpa and Acca be adversary. The adversaries Acpa and Acca can access to

some oracles Ocpa and Occa, respectively. For atk € {cpa, cca}, we consider the following
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IKR& IND IKR
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Figure 7.2: Relationships proved in this chapter.

experiment:
Experiment Expillf;itti‘b(k)
I —G(k); (pko,sko), (pk1, sk1) « K(I)
m & MSPC(phy); ¢ — Epy, (m)
d Afﬁfk (pko, pk1,c); return d
where Ocpa = € and Occa = {Dsky, Dsky }- We require that Acca mever queries the challenge
c to either Dgy, or Dy, .

For atk € {cpa, cca}, we define the advantage via

AdviEatk (1) — (PrExpitatel (k) = 1] — Pr[Exp%‘fAﬁi’O(k‘) =1]|.

»atk 1Aatk

We say that 11 is secure in the sense of IKR-CPA (resp. IKR-CCA) if Adv?{(rxij(k:)
(resp. Adv%‘fﬁi(k)) is negligible for any poly-time adversary Acpa (Tesp. Acca )-

Halevi [49] showed that for atk € {CCA, CPA}, if the public-key encryption scheme is
secure in the sense of IND-atk and IKR-atk, then it is also secure in the sense of IK-atk.

We can apply his proof to our strong anonymity, and see the following claim.
Claim 7.1. For atk € {CCA, CPA}, IND-atk N IKR-atk = sIK-atk.

Proof. The proof is similar to those in [49] and [2], and is a simple hybrid argument. Let
A be a poly-time algorithm in the sense of sIK-atk. It is easy to construct poly-time
algorithms A; and Ag in the sense of IND-atk and As in the sense of IKR-atk such that

| Pr{Bxpi (k) = 1) — PrBxpliT (k) = 1]] < Adviidet(h),

| PriBxplft 1 (k) = 1] - PriBxplfti0(k) = 1]] < AdviTit(b),
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Pr{Expiifi (k) = 1] - Pr{Expi i (k) = 1]| < AdviiZi™ (k).

Therefore,
Advi™ (k) < AdviiP (k) + Advi 25 (k) + Advpie™ (k)

and this concludes the proof. O

7.2 Strong Anonymity

We propose the definition of the strong anonymity.

Definition 7.2 (sIK-CPA, sIK-CCA). Let IT = (G,K,&, D) be a public-key encryption
scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The
adversaries Acpa and Acca can access to some oracles Ocpa and Occa, Tespectively.

For atk € {cpa, cca}, we consider the following experiment:

Experiment Expﬁljil;b(k)
I — G(k); (pko,sko), (pk1,sk1) «— K(I)
(mo,ma,si) — ASax(find, pk); ¢ — Epp, (my)
d Afg;k (guess, ¢,si); return d

where Ocpa = € and Occa = {Dsky, Dsk ). We require that mg € MSPC(pko) and my €
MSPC(pki). We also require that Acca never queries the challenge ¢ to either Dgy, or Dsk,
in the guess stage.

For atk € {cpa, cca}, we define the advantage via

AdviRE () = | Pr[Expitcl (k) = 1] — Pr[Expiisate0 (k) = 1]|.

slatk 7Aatk 7Aatk

We say that 11 is secure in the sense of sIK-CPA (resp. sIK-CCA) if Advﬁﬁiﬂi(lﬂ)
(resp. Advsﬁk/ﬁii(k)) is negligible for any poly-time adversary Acpa (Tesp. Acca )

There is only one difference between the definition of the anonymity in [3] and that of
the strong anonymity.

In the experiment of the definition by [3], the adversary chooses only one message
m € MSPC(pko) NMSPC(pk;) and receives a ciphertext of m encrypted with one of two keys
pko and pky. Therefore, their definition guarantees the anonymity property only when the
message is chosen from the set MSPC(pko) N MSPC(pky).

However, in some public-key encryption schemes, the ciphertext space may be common
even if the message spaces for each public-key are different. and such schemes may provide

the anonymity property.
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To consider this situation, in the experiment of our definition, the adversary chooses
two messages mg and mj where mg and m; are in the message spaces for pky and pkq,
respectively, and receives either a ciphertext of mg encrypted with pkg or a ciphertext of
my encrypted with pk;.

We can easily see the following claim.

Claim 7.2. For any atk € {CPA, CCA}, sIK-atk = IK-atk.

Proof. Let A be an adversary for II in the sense of IK-atk.
We construct an algorithm B for II in the sense of sIK-atk by using Aas follows.

1) In the find stage, B takes pko and pki, and runs A as (m,si) «— A(find, pko, pk1).
Then B outputs (m,m,si).

2) In the guess stage, B takes ¢ = &y, (myp) and si. (Note that m; = m; = m.) Then,
B runs A as d < A(guess, ¢, si) and outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by
using B’s decryption oracles. It is easy to see that Advﬂlféatk(k) = Advill]‘:itk(k), and the

running time of B is that of A. O

7.3 Relationships between Data-Privacy and Key-Privacy

In this section, we show the relationships between data-privacy and key-privacy.

7.3.1 IK-atk % sIK-atk

Lemma 7.1. For atk € {CPA, CCA}, there exist a public-key encryption scheme II which

is secure in the sense of IK-atk, but not secure in the sense of sIK-atk.

Proof. For atk € {CPA, CCA}, let I' = (G', K', &', D’) be a public-key encryption scheme
which is secure in the sense of IK-atk. Then, consider the public-key encryption scheme II
whose encryption algorithm is defined as Ep,(m) := &' pi.(m)||m. We can easily see that II
meets IK-atk, and does not meet sIK-atk. ]

7.3.2 IK-atk # IND-atk

Lemma 7.2. For atk € {CPA, CCA}, there exist a public-key encryption scheme II which

is secure in the sense of IK-atk, but not secure in the sense of IND-atk.

Proof. We can see this by using the encryption scheme II in the proof of Lemma 7.1. [
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7.3.3 IND-atk # IK-atk

Lemma 7.3. For atk € {CPA, CCA}, there exist a public-key encryption scheme I1 which

18 secure in the sense of IND-atk, but not secure in the sense of IK-atk.

Proof. For atk € {CPA, CCA}, let I" = (G',K', &', D’) be a public-key encryption scheme
which is secure in the sense of IND-atk. Then, consider the public-key encryption scheme
IT whose encryption algorithm is defined as E,;(m) := &'y (m)||pk. We can easily see that
IT meets IND-atk, and does not meet IK-atk. ]

7.3.4 IND-atk # IKR-atk

Lemma 7.4. For atk € {CPA, CCA}, there exist a public-key encryption scheme II which

is secure in the sense of IND-atk, but not secure in the sense of IKR-atk.

Proof. We can see this by using the encryption scheme II in the proof of Lemma 7.3. [

7.3.5 IKR-atk # IND-atk

Lemma 7.5. For atk € {CPA, CCA}, there exist a public-key encryption scheme I which

is secure in the sense of IKR-atk, but not secure in the sense of IND-atk.

Proof. For atk € {CPA, CCA}, let I' = (G, K', &', D’) be a public-key encryption scheme
which is secure in the sense of sIK-atk where the message space is common to each public-
key (i.e. for any public-keys pko and pki, MSPC(pko) = MSPC(pk1)). We consider the public-
key encryption scheme IT whose encryption algorithm is defined as &y (m) := & pr(m)||m.

Then II is secure in the sense of IKR-atk. We show the following claim.

Claim 7.3. For atk € {CPA, CCA}, if I is secure in the sense of sIK-atk, then II is

secure in the sense of IKR-atk.

Proof. Let A be an adversary for II in the sense of IKR-atk.

We construct an algorithm B for II' in the sense of sIK-atk by using A as follows.

1) In the find stage, B takes pko and pk;, and picks m & MSPC(pko)(= MSPC(pk1)).
Then B sets mg < m and m; < m, and outputs (mg, m1,si) where si contains two

public-keys pko and pk;.

2) In the guess stage, B takes ¢ = &y, (myp) and si (Note that mg = m; = m.). Then, B
sets ¢ « c||m and runs A as d — A(pkg, pk1, ). Finally, B outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by
using B’s decryption oracles. It is easy to see that Adv%ilf:gtk(k) = Adv%‘fftk(k), and the

running time of B is that of A plus O(k). O
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It is easy to see that IT does not meet IND-atk. This concludes the proof of Lemma 7.5.
O

7.3.6 sIK-atk = IND-atk N IKR-atk

Before beginning the proof, we define an additional security notion, called strong anonymity

with one random message (SIKOR).

Definition 7.3 (SIKOR-CPA, sIKOR-CCA). Let I = (G, K, E, D) be a public-key encryp-
tion scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The
adversaries Acpa and Acca can access to some oracles Ocpa and Ocgea, Tespectively.

For atk € {cpa, cca}, we consider the following experiment:

Experiment Expﬁkzi'itk'b(k)

I — g(k)7 (pkOa SkO)? (pkh Skl) — IC(I)
(mo,si) — AQax(find, pk)
m1 & MSPC(pk1); ¢ « gpkb (myp)

d — AS3* (guess, ¢, si); return d

where Ocpa = € and Occa = {Dsky, Dok, }. We require that mo € MSPC(pko) and m; €
MSPC(pki1). We also require that Acca never queries the challenge ¢ to either Dgy, or Dgy,
in the guess stage.

For atk € {cpa, cca}, we define the advantage via
AV (k) = [Pr{Expi201 (k) = 1] — Pr{Expileqae(k) = 1]|

We say that 11 is secure in the sense of SIKOR-CPA (resp. sSIKOR-CCA) if the function
Advﬁlfzijfa(k) (resp. Advﬁlfﬁi';ca(k)) is negligible for any poly-time adversary Acpa (Tesp.
Acca )

We can easily see the following lemma.
Lemma 7.6. For any atk € {CPA, CCA}, sIK-atk = sIKOR-atk = IKR-atk.

Proof. Let A be an adversary for II in the sense of SIKOR-atk.

We construct an algorithm B for II in the sense of sIK-atk by using A as follows.

1) In the find stage, B takes pko and pk;, and runs A as (mo,si) < A(find, pko, pk1).
Then B picks m; E MSPC(pk1) and outputs (mg, m1,si’) where si’ contains si and two

public-keys pko and pk;.

2) In the guess stage, B takes ¢ = Epi, (myp) and si’. Then, B runs A as d < A(guess, ¢, si)
and outputs d.
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Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by
using B’s decryption oracles. It is easy to see that Advf—}lfjgatk(k) = Advf—}lfjr'atk(k), and
the running time of B is that of A plus O(k).

We can prove “sIKOR-atk = IKR-atk” in a similar way. O

Remark 7.1. We can easily prove that “sIK-atk = IKR-atk” directly without using the
notion sSIKOR-atk. We take this approach since we use the relation “sIK-atk = sIKOR-atk”

in the next proof.

Now, we prove the relation “sIK-atk = IND-atk A IKR-atk.” We can rewrite this
relation as “sIK-atk = IKR-atk V (-IKR-atk A IND-atk)”. We prove “sIK-atk = IKR-
atk” in Lemma 7.6, and it is sufficient to prove “sIK-atk = —IKR-atk A IND-atk.” Since
sIK-atk implies sSIKOR-atk (Lemma 7.6), we prove “sIKOR-atk = —IKR-atk A IND-atk.”

Lemma 7.7. For atk € {CPA, CCA}, if there exists an adversary A for I1 in the sense of
IND-atk and I1 is secure in the sense of IKR-atk, then there exists an adversary B for 11
in the sense of SIKOR-CPA where

AdviTg (k) > Advii™ (k) — A(k)
and A(k) is a negligible function in k, and the running time of B is that of A.

Proof. Let A be an adversary for II in the sense of IND-atk.
We construct an algorithm B for II in the sense of SIKOR~atk by using A as follows.

1) In the find stage, B takes pko and pki, and runs A as (mg,si) < A(find, pko), and

outputs (mo,si’) where si’ contains si, pkg, and pk;.

2) In the guess stage, B takes ¢ = &y, (my) and si’ where b & {0,1}. (Note that
my & MSPC(pk1) in the sIKOR-atk game). Then, B runs A as d «+ A(guess, ¢, si) and
outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by
using B’s decryption oracles.

We analyze the advantage of B. If b = 0, then the distribution of the input of A
simulated by B is identical to that of real A. If b = 1, in the guess stage, the input of A
simulated by B is ¢ < &, (m1) where my & MSPC(pk1 ), and that of real A is ¢ « Eppy(m1)
where m; bl MSPC(pko). Here, in the guess stage, if the probability that the output of A
simulated by B and that of real A are different is non-negligible, then it implies that A
breaks II in the sense of IKR-atk. Therefore, the probability that the output of A simulated
by B and that of real A are different is negligible.
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Thus, we have

Advigt (k)
Pr{Expii ! (k) = 1] — Pr[Expiig " (k) = 1]‘

>

PrExpii™! (k) = 1] — Pr{BExpi™ (k) = 1]| - A(k)
= AdvFH (k) — A(R),

where A(k) is a negligible function in k. It is easy to see that the running time of B is
equal to that of A. O
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CHAPTER 8

Plaintext Awareness in the Two-Key Setting and a
Generic Conversion for Encryption with Anonymity

In this chapter, we propose a new secrity notion of public-key encryption scheme with re-
spect to the anonymity property, called plaintext awareness in the two-key setting (PATK).
We also prove that if a public-key encryption scheme is secure in the sense of PATK, then it
is also secure in the sense of IK-CCA. Since it looks much easier to prove that a public-key
encryption scheme is secure in the sense of PATK than to prove directly that it is secure
in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity property of
public-key encryption schemes. We also propose the first generic conversion scheme for the
anonymity from IK-CPA to IK-CCA.

The organization of this chapter is as follows. In Section 8.1, we review the security
notions for public-key encryption. We also review the definition and the security notion
of symmetric-key encryption. In Section 8.2, we propose the notion of plaintext awareness
in the two-key setting (PATK), and prove that PATK implies IK-CCA. In Section 8.3, we
review the conversion scheme to IND-CCA proposed by Fujisaki and Okamoto [42]. In
Section 8.4, we propose a generic conversion scheme for the anonymity. More precisely, we
prove that the public-key encryption scheme derived from the Fujisaki-Okamoto conversion
scheme, where the basic public-key encryption scheme is secure in the sense of IK-CPA, is

secure in the sense of IK-CCA in the random oracle model.
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8.1 Definitions

In this section, we review the security notions for public-key encryption. We also review the
definition and the security notion of symmetric-key encryption. Note that, in this section,
we redefine some security notions (IND, IK) for public-key encryption in Section 3.1, which
are used only in this chapter. Note that the definitions of IND and IK in this section are

essentially equivalent to those in Section 3.1, respectively.

8.1.1 Public-Key Encryption

~v-uniformity

We review a property of public-key encryption, called y-uniformity, following [42].
Definition 8.1 (y-uniformity). Let Il = (G,K,E,D) be a public-key encryption scheme.
We say that 11 is y-uniform, if, for any I «— G(1%), (pk, sk) «— K(I), m € MSPC(pk), and

y € {01},
Pr[r & COINS(pk) : y = Epp(asr)] <.

One-Wayness

We review a weak security notion for public-key encryption, called one-wayness, follow-
ing [42].

Definition 8.2 (OW). Let II = (G,K,E,D) be a public-key encryption scheme. Let A be
an adversary. We define the advantage of A via

AQv (k) = Pr[T — G(1%); (pk,sk) — K(I); m & MSPC(pk); ¢ — Epp(m)
. A(ce,pk) = m)].

We say that A is a (t,€)-adversary for I1 in the sense of OW if A runs in at most time t
and archives Adviy'y(k) > €. We say that 11 is (t, €)-secure in the sense of OW if there is

no (t,€)-adversary for 11 in that sense.

Indistinguishability
We review the definition of the indistinguishability of ciphertexts, following [42].
Definition 8.3 (IND-CPA, IND-CCA). Let IT = (G,K,E,D) be a public-key encryption

scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The
adversaries Acpa and Acca have access to some oracles Ocpa and Occa, respectively. For atk

€ {cpa, cca}, we define the advantages of Ay via
AVt (k) = 2 Pr[T « G(1F); (pk, sk) — K(I); (mo,m1,si) — AS3*(find, pk);

b & {0,1}; ¢ — Ep(my) - Aft‘ifk (guess, c,si) =b] — 1
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where Ocpa = € and Occa = Dgi. Note that si is the state information. It contains the
public key pk, the messages mg and my, and so on. We require that mg # my and mg, m1 €
MSPC(pk). We also require that Acca never queries the challenge ¢ to Dgy in the guess stage.

We say that Acpa is a (t,€)-adversary for II in the sense of IND-CPA if Acpa runs in
at most time t and achieves Advi-rf’iiij(k) >e.

Similarly, we say that Acca s a (t,qq, €)-adversary for Il in the sense of IND-CCA if
Acca Tuns in at most time t, asks at most qq queries to decryption oracle Dy, and achieves
Advii9ied (k) > e.

We say that I1 is (t,€)-secure (respectively (t,qq, €)-secure) in the sense of IND-CPA
(resp. IND-CCA) if there is no (t,€)-adversary (resp. (t,qq,e€)-adversary) for II in the

corresponding sense.

Indistinguishability in the Random Oracle Model. We can consider the definition
of the indistinguishability in the random oracle model in a similar way as that in the
standard model described above.

We define 2 as the map family from an appropriate range. The domain and range
depend on the underlying encryption scheme. Even if we choose two random functions
that have distinct domains and distinct ranges respectively, we just write the experiment,
for convenience, as G, H < ), instead of preparing two map families.

In the random oracle model, we begin the experiment of A, described above (which
defines advantage) by H < €. Then, we add the random oracle H to both Ocpa and Occa,
and allow that &, and D, may depend on H (which we write Eﬁg and Dgc, respectively).

We define the adversaries in a similar way as those in the standard model, that is,
we define a (¢, gp, €)-adversary in the sense of IND-CPA in the random oracle model and
a (t,qn, qq, €)-adversary in the sense of IND-CCA in the random oracle model where the
adversary makes at most qp queries to H.

We say that II is (¢, ¢n, €)-secure (respectively (t, gp,qq, €)-secure) in the sense of IND-
CPA (resp. IND-CCA) in the random oracle model if there is no (t, g, €)-adversary (resp.

(t,qn, qa, €)-adversary) for II in the corresponding sense in the random oracle model.

Knowledge Extractor and Plaintext Awareness

The notion of knowledge extractor and plaintext awareness for a public-key encryption
scheme is defined in [7, 4]. We describe the definitions by Bellare, Desai, Pointcheval, and
Rogaway [4].

Definition 8.4 (Knowledge Extractor and Plaintext Awareness). Let Il = (G, K,E,D) be a
public-key encryption scheme. Let B and K be algorithms, called adversary and knowledge

extractor, respectively. They work in the random oracle model as follows:
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e B is a (qn,qe)-adversary that takes a public-key pk and makes queries at most qp,
and qe. times to the random oracle H and the encryption oracle Sﬁ, respectively. B

finally outputs ¢ & C, where

— Ty denotes the set of all pairs of B’s queries and the corresponding answers
from H,

— C denotes the set of all answers from Eﬁg.
We write the above experiment as (T, C, ¢, pk) < run BEk (pk).
e Knowledge extractor K takes (Ty,C,c,pk) and output a string m.
For any k € N, we define

Succ?Bﬂ(/{) =Pr[H « Q; I — G(1F); (pk, sk) — K(I);
(Ty,C,c,pk) < run BTEk (pk) + K(Tu,C,c,pk) =DI(c)).

We say that K is a (tkg, A, qn, ¢e)-knowledge extractor for PA of 11 if for any (qn, ge)-
adversary B, K runs in at most time txg and achieves Succ?BVH(k) >\

We say that 11 is (tcpa, tKE; G, ge, €, A)-secure in the sense of PA if II is (tcpa, qh,€)-
secure in the sense of IND-CPA, and there exists a (tkg, A, qn, ge)-knowledge extractor K
for PA of 11.

Bellare, Desai, Pointcheval, and Rogaway [4] showed that if the public-key encryption

scheme is secure in the sense of PA, then it is also secure in the sense of IND-CCA.

Anonymity
We describe the definition of the anonymity, following [3].

Definition 8.5 (IK-CPA, IK-CCA [3]). Let I = (G,K,E,D) be a public-key encryption
scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The
adversaries Acpa and Acca have access to some oracles Ocpa and Occa, respectively. For atk

€ {cpa, cca}, we define the advantages of Ak via

Advifi (k) =2 Pr[l — G(1¥); (pko, sko), (pk1, sk) — K(I);

(m,si) — ASs5(find, pko, p1); b & {0,1}; ¢ — Epp, (m) = A2 (guess, ¢, si) = b] — 1

where Ocpa = € and Occa = (Dsky, Dsk, ). Note that si is the state information. It contains
the public keys pko, pk1, the message m, and so on. We require that m € MSPC(pkgy) N
MSPC(pk1). We also require that Acca never queries the challenge ¢ to either Dy, or Dgy,

in the guess stage.
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We say that Acpa is a (t, €)-adversary for II in the sense of IK-CPA if Acpa Tuns in at
most time t and achieves Adv%(:zi;(k) > €.

Similarly, we say that Acca s a (t,qq, €)-adversary for IL in the sense of IK-CCA if Acca
runs in at most time t, makes a total number of qq queries to decryption oracles Dgy, and
Dsy, , and achieves Adv%‘:jiia(k) > €.

We say that 11 is (t,€)-secure (respectively (t,qq,€)-secure) in the sense of IK-CPA
(resp. IK-CCA) if there is no (t,€)-adversary (resp. (t,qq,€)-adversary) for Il in the

corresponding sense.

Anonymity in the Random Oracle Model. We can consider the definition of the
anonymity in the random oracle model in a similar way as that in the standard model
described above.

We define €2 as the map family from an appropriate range. The domain and range
depend on the underlying encryption scheme. Even if we choose two random functions
that have distinct domains and distinct ranges respectively, we just write the experiment,
for convenience, as G, H « ), instead of preparing two map families.

In the random oracle model, we begin the experiment of A, described above (which
defines advantage) by H < €. Then, we add the random oracle H to both Ocpa and Occa,
and allow that for ¢ € {0,1}, &y, and Dy, may depend on H (which we write Eﬁ% and
Dgﬁ, respectively).

We define the adversaries in a similar way as those in the standard model, that is,
we define a (t, qp, €)-adversary in the sense of IK-CPA in the random oracle model and
a (t,qn,qq4, €)-adversary in the sense of IK-CCA in the random oracle model where the
adversary makes at most ¢; queries to H.

We say that II is (¢, qn, €)-secure (respectively (¢, qn, g4, €)-secure) in the sense of IK-
CPA (resp. IK-CCA) in the random oracle model if there is no (¢, gy, €)-adversary (resp.

(t, qn, qa, €)-adversary) for II in the corresponding sense in the random oracle model.

8.1.2 Symmetric-Key Encryption
The Definition of Symmetric-Key Encryption

We review the definition of symmetric-key encryption schemes.

Definition 8.6. A symmetric-key encryption scheme II = (€,D) consists of two algo-

rithms.

e The encryption algorithm E,(m) is a deterministic algorithm that takes a symmetric-

key x € KSPC(k) and a message m € MSPC(k), and returns a ciphertext c. Note that
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KSPC(k) and MSPC(k) are the key space and the message space for k, respectively.

They are uniquely determined by a security parameter 1%,

e The decryption algorithm Dy (c) is a deterministic algorithm that takes a symmetric

key x and a ciphertext c, and returns the corresponding plaintext m.

We require that, for any k € N, if © € KSPC(k), m € MSPC(k), and ¢ < &;(m), then
m = Dy(c).

Find-Guess

We review a security notion for symmetric-key encryption, called find-guess (FG), follow-
ing [42].

Definition 8.7 (FG). Let Il = (£,D) be a symmetric-key encryption scheme. Let A be an

adversary that runs in two stages, find and guess. We define the advantage of A via

AdvE(k) =2 Pr[z £ kSPC(k); (mo,ma,si) — A(find, k);
b & {0,1}; ¢ — Ey(my) : Alguess,c,si) = b] — 1.

We require that mo # m1 and mg, m; € MSPC(k).

We say that A is a (t,€)-adversary for Il in the sense of FG if A runs in at most time
t and achieves AdvﬁA(k‘) > €.

We say that 11 is (t, €)-secure in the sense of FG if there is no (t, €)-adversary for Il in
the sense of FG.

8.2 Plaintext Awareness in the Two-Key Setting

In this section, we propose the notion of plaintext awareness in the two-key setting (PATK),
and prove that PATK implies IK-CCA.

We describe the definition of plaintext awareness in the two-key setting.

Definition 8.8 (Plaintext Awareness in the two-key setting and Knowledge Extractor for
PATK). Let IT = (G,K,E,D) be a public-key encryption scheme. Let B and K be algo-
rithms, called an adversary for PATK and a knowledge extractor for PATK, respectively.

They work in the random oracle model as follows:

e B is a (g, qe)-adversary for PATK that takes two public-keys pko, pk1 and an index
i € {0,1}, and makes at most q; queries to H and q. queries to the encryption

oracles, Sﬁm and Sgﬁ. B finally outputs ¢ ¢ C, where

— Ty denotes the set of all pairs of a B’s query and the corresponding answer from
H, and
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— C denotes the set of all answers from 5560 and Eﬁl. (Note that C' does not

contain an information of which encryption oracle responded.)
. . . HEH g .
We write this experiment as (T, C,c,pki) < run B Pk “Pk1 (pky, pk1, 7).

e Knowledge extractor K for PATK takes (Ty,C, ¢, pk;) and outputs a string m.
For any k € N and i € {0,1}, we define

Succl's 1, (k) = Pr[H «— Q; T — G(1F); (pko, sko), (pk1, sk1) — K(I);
H H
(TH, C, C,pki) <— run BHygpkojgpkl (pk()apkla Z) : K(TH7 C) C, pk’b) = Dg;l (C)]

We say that K is a (tKkeTK, A, @h, ¢e)-knowledge extractor for PATK of 11 if for any
(gn, ge)-adversary Band for any index i € {0,1}, K runs in at most time txgprk and
achieves Succ?g’nyi(l{) >\

We say that I is (tepa, LKETK, Ghs Qe €, A) -secure in the sense of PATK if I1 is (tcpa, G, €) -
secure in the sense of IK-CPA, and there ezists a (tKETK, A, ¢h, ¢e)-knowledge extractor K

for PATK of 11.

There are some differences between the definition of PA in [4] and that of PATK. First,
the adversary B in our definition receives two public keys and two encryption oracles, while
the adversary in the definition of PA receives one public key and one encryption oracle.
Second, we define the success probability of B for any index i € {0,1}. This indicates under
which key, pko or pki, the knowledge extractor K for PATK should decrypt ¢. Third, in
the definition of PA, the list C' contains the answers (ciphertexts) from only one encryption
oracle Eﬁ. When we prove that PA implies IND-CCA, C plays an important role, that is,
C contains the challenge ciphertext of IND-CCA game to give it to the adversary B for PA.
In our definition, if we use C to prove that PATK implies IK-CCA, C has to contain the
challenge ciphertext of IK-CCA game and the challenge ciphertext is encrypted by either
pko or pki. Therefore, in our definition, we define that the list C consists of the answers
(ciphertexts) from both 5560 and Sﬁﬂ.

It is easy to see that if there exists a knowledge extractor K for PATK of II, then we
can use K as a knowledge extractor for PA of II. That is, if the public-key encryption
scheme II is secure in the sense of PATK and IND-CPA, then II is secure in the sense
of PA. However, it is not clear that we can use the knowledge extractor for PA of II as
that for PATK of II. The difficulty of proving this seems to depend on the third difference
described above.

We prove the following theorem.

Theorem 8.1. If the public encryption scheme II is (tcpa, tKETK, h, 1, €, X)-secure in the
sense of PATK, then I1 is (teca, Gn, qa, € )-secure in the sense of IK-CCA where

teca = tcpa —qq - tKETK and € =€+ 2qq - (1 - A)
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Proof. In [4], Bellare, Desai, Pointcheval, and Rogaway proved that PA implies IND-CCA.
We prove Theorem 8.1 in a similar way.

Let Acca be an (tcea, G, qa, €)-adversary of I in the sense of IK-CCA. We construct an
adversary Acp, of II in the sense of IK-CPA by using Acca.

We construct the algorithm Acp, as follows. Note that Acp, simulates Agc,’s oracles H,

Dk, and Dy, as described below.
1) Acpa initializes two lists, Ty and C' to empty.
2) Acpa(find, pko, pk1) runs Acca as (m,si) < Acca(find, pko, pk1) and outputs (m,si).
3) Acpa receives a challenge ciphertext ¢ = Sﬁb(m) where b & {0,1}.
4) Acpa(guess, ¢) runs Acea as d «— Acca(guess, ¢) and outputs d.
Acpa simulates Acc,’s oracle as follows:

e When A.., makes a query h to H, Ay, makes a query h to its oracle H and obtains
an answer H(h). Then, Acp, returns H(h) to Acca and puts (h, H(h)) into the list
Ty.

e When A, makes a decryption query c to Dgﬁ_, Acpa Tuns the knowledge extractor

K as follows.

— In the find stage, Acpa runs K as m «— K(T'H, €, ¢, pk;) and returns m to Acca.

— In the guess stage, Acpa runs K as m «— K(Tq, ¢, ¢, pk;) and returns m to Acca.

To guarantee that the knowledge extractor K for PATK outputs a correct answer (a
corresponding plaintext m or an invalid symbol L), for j € {1,2,---, g4} we construct the
adversary B; for PATK as follows. Note that B; simulates Ac.’s oracles H, Dy, and
Dgy, as described below. Note that Bj(pko, pki,i) returns some value and halts when Agc,

makes its j-th decryption query.
1) By initializes two lists, Ty and C to empty.
2) Bj runs Acca as (m,si) «— Acca(find, pko, pki).
3) Bj picks a random bit b hil {0,1} and makes an oracle query as ¢ « gﬁ% (m).

4) Bj runs Acca(guess,¢). (Note that Bj is sure to halt before A, outputs d. See
below.)

Bj(pko, pk1,1) simulates Acca’s oracle as follows:
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e When A, makes a query h to H, Acpa makes a query h to its oracle H and obtains
an answer H(h). Then, Acp, returns H(h) to Acca and puts (h, H(h)) into the list
Ty.

e When A.., makes a j’-th decryption query c to Dgﬁ,, Acpa Tuns the knowledge ex-

tractor K as follows.

— In the find stage, if j/ = j then Bj returns ¢ and halts; otherwise, Acp, runs K

as m < K(Ty,e€,c,pk;) and returns m to Acca-

— In the guess stage, if j/ = j then B; returns ¢ and halts; otherwise, Acpa runs K

as m — K(Ty,¢,c,pk;) and returns m to Acca.

Since j < gq and Acca makes at most gg queries to the decryption oracles, B; is sure to
output ¢ and halt before A..; outputs d in the guess stage.
We analyze the success probability of Acp,. We have that for any j € {1,2,---, g4} the

o HE Eok .
distribution of (Ty, C, ¢, pk;) < run B, PROTPRL (pko, pky, i) where
H —Q; T—G(1"%); (pko, sko), (pk1, sk1) — K(I)

and the distribution of the j-th input for K in the above adversary Acp, is identical.

Therefore,
Pr[Acpa(find, pko, pk1) = Acea(find, pko, pk1)] > 1 — ¢4 (1 = A)

and

Pr[Acpa(guess, ¢, (si, Tr)) = Acca(guess, ¢, si)
|Acpa(ﬁndapk0apkl) = Acca(findvpkO)pkl)] > 1-— (Qd - qgind) : (1 - )‘)

where qgnd is a number of decryption queries of Ace, in the find stage. Hence, ¢ >

€ —2q4(1 = N).

It is easy to see that the running time of Acp, is less than teca + qq - tKETK- O

8.3 The Fujisaki-Okamoto Conversion

In this section, we review the conversion proposed by Fujisaki and Okamoto [42].

Let TIPUP = (gpub_ fcpub gpub ppub) he 5 public-key encryption scheme and let TI™ =
(EY™ DY™) be a symmetric-key encryption scheme. Let G : MSPCP'™P — KSPC®™ and
H : MSPCP"P x MSPC®™ — COINSPUP be hash functions.

A public-key encryption scheme ITW = (G, K, £y DY) derived from the Fujisaki-

Okamoto conversion is as follows:
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e Common key generation and key generation: G and K" are the same as GP"P and

ICPUP | respectively.
e Encryption:

ExY (m;0) = ER (a3 H (o, m) || £ (m)

where COINSYY = MSPCP"P and MSPChY = MSPCSY™,

e Decryption:

o if o = ENP(6; H(G,1m))

Dhy Cc1||C2) =
Sk( H ) 1 otherwise

where 6 — DP'(c;) and i — Dg’&l)(@).

Fujisaki and Okamoto showed that the public-key encryption scheme IT" is secure in the

sense of IND-CCA in the random oracle model when
e I1P"P is y-uniform (7 < 1) and secure in the sense of OW, and

o [IY™ is secure in the sense of FG.

8.4 A Generic Conversion for the Anonymity

In this section, we propose the generic conversion for the anonymity, that is, we prove that
the public-key encryption scheme derived from the Fujisaki-Okamoto conversion with the

following assumptions is secure in the sense of IK-CCA in the random oracle model.

e IIP"P yse the common message space MSPCPUP(I) and the common randomness space
COINSPUP(]) as the message space MSPCP"P(pk) and the randomness space COINSP'P (pk),
respectively, for any public key pk outputted by K (I),

e IIP" is secure in the sense of IK-CPA,
e I1P"P is y-uniform (7 < 1) and secure in the sense of OW, and
e II®™ is secure in the sense of FG.

Since these conditions are sufficient that II" meets IND-CCA, we can get a public-key
encryption scheme which is secure in the sense of IND-CCA and IK-CCA in the random

oracle model when we assume the above four conditions.
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IK-CPA Security. We prove the following lemma with respect to the anonymity prop-
erty.

Lemma 8.1. Let IIP"" be a public-key encryption scheme where TIP"? uses the common
message space MSPCPP(I) and the common randomness space COINSP'™P(I) as the message
space MSPCP"™ (pk) and the randomness space COINSP'P (pk), respectively, for any public key
pk outputted by K(I).

Suppose that TIP"P is (11, e1)-secure in the sense of IK-CPA, and (ta, €2)-secure in the
sense of OW. Let {3 be the size of MSPCY™. Then, II"Y is (t, dg» Qn, €)-secure in the sense of
IK-CPA in the random oracle model, where t = min{ty,t2} — poly(¢2) and € = €1 + 2(qy +

Qh) - €2.

Remark 8.1. Note that IK-CPA does not imply OW. For example, let 11 = (G,K,E,D)
be a public-key encryption scheme which is secure in the sense of IK-CPA. Then, consider
the public-key encryption scheme II' whose encryption algorithm is defined as S;k(m) =
Ep(m)||m. We can easily see that II' meets IK-CPA, and does not meet OW.

Proof. Suppose that A is a (t,qg, s, €)-adversary for I in the sense of IK-CPA in the
random oracle model. We show that there exists a (¢1, €1 )-adversary B for ITP"" in the sense
of IK-CPA and a (2, €2)-adversary C for IIP"" in the sense of OW, where ¢t = min{t,t} —
poly(¢3) and € = €1 + 2(qq + qn) - €2.

We construct the adversaries B and C by using the adversary A. B and C have to
simulate the random oracles G and H for A. We describe how to simulate the random

oracles in both B and C. We use the lists 7¢ and 7y which are initially empty lists.

e The simulation of G. For a query o, if there exist an entry (¢’,¢’) € 7¢ such that
o =o', it returns ¢’ to A. Otherwise, it picks a string g pia KSPC™™(k), returns g to
A, and puts (o, g) on the list 7¢.

e The simulation of H. For a query (o,m), if there exist an entry (¢',m/,h’') € Ty

/

such that 0 = ¢/ and m = m/, it returns A’ to A. Otherwise, it picks a string

h& COINSP'P(I), returns h to A, and puts (o, m, h) on the list 7.
We construct the adversary B in the sense of IK-CPA as follows.

Algorithm B(find, pko,pk1) | Algorithm B(guess,c,si’)
(m,si) — A(find, pko.pk1) | & & KSPCY™ (k)

o & MsPcPub(T)  — c||EF™ (m)
si’ « (si,m) b — A(guess, ¢, si)
return (o,si’) return i
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We construct the adversary C in the sense of OW as follows.

Algorithm C(c, pk)
(pk!, sk') « KPUb(TI)
d & 40,1} pka — pk; pki_g — pk'
(m,si) < A(find, pko, pk1)
b & {0,1}; = £ ksPCY™(k): ¢ c||EY™ (m)
b — A(guess, )
6 & {0'|(0",¢') € T or (0!, m/ ) € Ty}

return &

It is easy to see that the running times of B and C' is at most that of A plus the time for
computing & (m), that is, t1,ta < t + poly({).
We analyze the advantages of B and C'. We define the following events.

e AskA = [A asks o to the oracle G or asks (0, m) to the oracle H where the challenge
ciphertext is ¢/ = S;’,leb(a; H (o, m))Hggy(f) (m).]

e SuccA = [G, H « Q; I « GW(1¥); (pko, sko), (pki1, sk1) « KM (I);
(m,si) « ASH (find, pk); b & {0,1}; ¢ «— S;gb(m) . A%H (guess, ¢/, si) = b]

e SuccB = [I < GP"P(1%); (pko, sko), (pk1, sk1) — KPP (I);
(0,51) « B(find, pk); b < {0,1}; ¢ — E5"(0) : B(guess,c,si) =

e SuccC = [T — GPUP(1K); (pk, sk) — KPU(I); o & MSPCPU(pk)
c—ENP(0) + Cle,pk) = o]

In the experiment of B, if the event —AskA holds, the view of A simulated in B is
identical to the real A’s view. Therefore, Pr[SuccB] > Pr[SuccA|—-AskA] - Pr[-AskA].

In the experiment of C, if the event AskA holds, there exist a string o such that
c= Eggbb(a) in {0o’|(¢/,¢") € Tg or (¢/,m', 1) € Ty} and C' can output the correct answer
with probability at least 1/(ge + qm). Furthermore, if b = d holds, the probability that
C asks such ¢ is the same as the probability that the real A asks such o. Therefore,
Pr[SuccC] > Pr[b = d] x Pr[SuccC|b =d] > 1/(2(qc + qu)) - Pr[AskA].

Hence, we have

Pr[SuccA] = Pr[SuccA|-AskA| - Pr[=AskA] + Pr[SuccA|AskA] - Pr[AskA]
< Pr[SuccA|—~AskA] - Pr[-AskA] + Pr[AskA]
< Pr[SuccB] + 2(g¢ + qzr) - Pr[SuccC].
Since € = 2 - Pr[SuccA] — 1, ¢ = 2 - Pr[SuccB| — 1, and €2 = Pr[SuccC], we have ¢ <
&1+ (g6 +qn) - 2. O
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Knowledge Extractor for PATK. We show the existence of the knowledge extractor
for PATK of our scheme.

Though we mentioned that we could not use the knowledge extractor for PA directly as
that for PATK, fortunately, we can use the knowledge extractor for PA as that for PATK
in the case of the Fujisaki-Okamoto conversion.

We show the following lemma.

Lemma 8.2. Suppose that IIP"® is ~-uniform and (t2,ez)-secure in the sense of OW.
Suppose that TI™ is (3, e3)-secure in the sense of FG. Let £1 and lo be the sizes of MSPCPUP
and MSPC™™, respectively. Then, there exist a (t, )\, qq, qn, e)-knowledge extractor K for
PATK of I such that t = (qg + q1) - poly(f1 + €3) and A =1 — 2q. - 3 — 2e3 — vy — 272,

Proof. The construction of the knowledge extractor for PATK is the same as that for PA
in [42]. We first describe the knowledge extractor K(T¢, Ty, C, ¢, pk) as follows. Here, let

TG = {(01791)|Z = 1’ cee aQQ} and TH = {(O-;’mjvh])b = 17 .. 'th}‘
1) Set two empty lists, S7 and So.

2) Find all elements in Ty such that ¢; = 8£Eb(0;-,hj) and put them into list Sy. If
S1 = 0, then output L.

3) For every (0}, mj,hj) € S, find all elements in T¢ such that o; = o} and put them
(i.e. (0}, mj, hj)||(0i, gi)’s) into Sa. If Sy = ), then output L.

4) Check in Sy if there exists a (07, mj, h;)||(0i, gi) such that ca = Eg™ (my). If it exists

in Sy, then output m; otherwise output L.

This protocol runs in (gq + gp) - poly(¢1 + ¢2).
Next, we examine the advantage of the knowledge extractor for PATK. We define the

following events.

e Inv0 is true if there exists (cf,c3) € C and (04,9:) € Tg or (0j,mj, hj) € Ty such

that o; = DS,‘;;)(CT) or oj = DSE[?(CT).

Invl is true if there exists (cj,c3) € C and (04,9;) € T or (05, mj,h;) € Ty such

that o; = DS,‘;F(CT) or oj = Ds;f(c“{).

Inv = Inv0 V Invl.

p(Sy) true if Sy # 0.

p(S2) true if Sy # 0.

Find is true if there exists a (o, m;, hj)|[(0i, gi) in Sa such that ¢y = 7™ (my).
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e Fail is true if “the output of knowledge extractor K for PATK” # D?,Z (c1,c2).

We further define the following events:

‘1’ = Inv.
‘00’ = =lnv A =p(Sy).
‘010" = =lnv A p(S1) A —p(S2
‘0110" = =lnv Ap(S1) A (Sg) A =Find.
‘0111 = =lnv A p(S1) A p(S2) A Find.
We have
Pr[Faill = Pr[Fail|1] - Pr[1] 4 Pr[Fail|00] - Pr[00] + Pr[Fail|010] - Pr[010]

+ Pr[Fail[0110] - Pr[0110] + Pr[Fail|0111] - Pr[0111]
< Pr[1] + Pr[Fail|00] + Pr[Fail|010] 4 Pr[Fail|0110] + Pr[Fail|0111]
= Pr[1] + Pr[Fail|00] + Pr[Fail|010].

We prove the following claim.

Claim 8.1. Pr[1] < 2¢. - €.

Proof. We first consider Pr[Inv0]. For any i € {0,1}, when the adversary B makes
a query m to the encryption oracle 52,31_ , the oracle picks random coins ¢ and returns
(Sglib(a, H (o, m))HEg(I:) (m)) to B. B makes at most g. to the encryption oracles. There-
fore, Pr[Inv0] < g, - €2. Similarly, we have Pr[Inv1l] < ¢ - €2. Hence, Pr[1] = Pr[Inv] <
2¢e - € O

The proofs of the following claims are the same as those in [42].
Claim 8.2. Pr[Fail|00 < 7.
Claim 8.3. Pr[Fail|010] < 2e3 4 27,

Therefore, Pr[Fail] < 2q. - €2 + v + 2¢3 4+ 27, Hence,

A=1—PrFail] > 1 — (2¢c - €2 + v + 2e3 + 277).

From Theorem 8.1 and Lemmas 8.1 and 8.2, we have the following theorem.

Theorem 8.2. Let IIP"P be o public-key encryption scheme where IIP™ yses the common
message space MSPCP™P(I) and the common randomness space COINSPUP(I) as the message
space MSPCP"P (pk) and the randommess space COINSP™P(pk) for any public key pk outputted
by K(I), respectively.
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Suppose that IIP"" is ~v-uniform, (t1,e€1)-secure in the sense of IK-CPA, and (ta,€2)-
secure in the sense of OW. Suppose that II™ is (t3,€3)-secure in the sense of FG. Let
01 and U5 be the sizes of MSPCP"P and MSPC™Y™, respectively. Then, TIY is (t, 49,90, 44, €)-
secure in the sense of IK-CCA in the random oracle model where t = min{t,t2} — (qq +
qn) - poly(ly + l3). and € = €1 + 2(qq + qn)e2 + 2qq(2€2 + 2e3 + v + 27 2),
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CHAPTER 9

Universally Anonymizable Public-Key Encryption

In this chapter, we consider the following situation. In order to send e-mails, all members
of the company use the encryption scheme which does not provide the anonymity property.
They consider that e-mails sent to the inside of the company do not have to be anonymized
and it is sufficient to be encrypted the data. However, when e-mails are sent to the outside
of the company, they want to anonymize them for preventing the eavesdropper on the
public network.

We propose a solution to solve this as follows. Consider the situation that not only the
person who made the ciphertexts, but also anyone can transform the encrypted data to
those with the anonymity property without decrypting these encrypted data. If we have
this situation, we can make an e-mail gateway which can transform encrypted e-mails to
those with the anonymity property without using the corresponding secret key when they
are sent to the outside of the company.

In this chapter, in order to formalize this idea, we propose a special type of public-key
encryption scheme called a universally anonymizable public-key encryption scheme.

The organization of this chapter is as follows. In Section 9.1, we review the definitions
of the Decisional Diffie-Hellman problem and the families of hash functions. In Section 9.2,
we formulate the notion of universally anonymizable public-key encryption and its secu-
rity properties. We propose the universally anonymizable public-key encryption scheme
based on the ElGamal encryption scheme in Section 9.3, that based on the Cramer-Shoup
encryption scheme in Section 9.4, and that based on RSA-OAEP in Section 9.5.
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9.1 Preliminaries

The Decisional Diffie-Hellman Problem We review the decisional Diffie-Hellman

Problem.

Definition 9.1 (decisional Diffie-Hellman problem). Let G be a group generator which
takes as input a security parameter k and returns (q,g) where q is a k-bit integer and g
is a generator of a cyclic group Gy of order q. Let D be an adversary. We consider the

following experiments:

Experiment Expdg‘}g'real(k) Experiment Expgf%'rand(kz)
(¢:9) = G(k); z,y & Z, (¢:9) = G(k); 2,y & 7,
X—ghYe—g¥% T g™ X<—g“’;Y<—gy;T<§Gq
d <« D(q,9,X,Y,T) d«— D(q,9,X,Y,T)
return d return d

The advantage of D in solving the decisional Diffie-Hellman (DDH) problem for G is defined
by
Advgflg(k) = ‘Pr[Expcgl%'real(k) =1] - Pr[Expg‘}B‘rand(k;) = 1“

We say that the DDH problem for G is hard if the function Advdgf%(k) 1s negligible for any

algorithm D whose time-complezity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of

the code of the adversary, in some fixed RAM model of computation.

Families of Hash Functions We describe the definitions of families of hash functions

and universal one-wayness.

Definition 9.2 (families of hash functions). A family of hash functions H = (GH,EH)
is defined by two algorithms. A probabilistic generator algorithm GH takes the security
parameter k as input and returns a key K. A deterministic evaluation algorithm EH takes
the key K and a string M € {0,1}* and returns a string EHx (M) € {0, 1}+1.

Definition 9.3 (universal one-wayness). Let H = (GH,EH) be a family of hash functions

and let C' = (C1,C3) be an adversary. We consider the following experiment:

Experiment Expy/t: (k)
(xo,si) — Cl(k); K — Q’H(k), Ty < CQ(K, xo,si)
if ((wo # 1) N (EHK(20) = EHK(71))) then return 1 else return 0

Note that si is the state information. We define the advantage of C' via

AV (k) = Pr[Expyo% (k) = 1].
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We say that the family of hash functions H is universal one-way if Adv%‘g(k‘) 1s negligible

for any algorithm C whose time-complezity is polynomial in k.

9.2 Universally Anonymizable Public-Key Encryption

In this section, we propose the definition of universally anonymizable public-key encryption

schemes and its security properties.

9.2.1 Definition

We formalize the notion of universally anonymizable public-key encryption schemes as

follows.

Definition 9.4. A universally anonymizable public-key encryption scheme UAPE = ((K, €,
D),UA,DA) consists of a public-key encryption scheme PE = (K,E,D) and two other al-

gorithms.

o The key generation algorithm K is a randomized algorithm that takes as input a
security parameter k and returns a pair (pk, sk) of keys, a public key and a matching

secret key. For any pk, the message space M(pk) is uniquely determined.

o The encryption algorithm £ is a randomized algorithm that takes the public key pk

and a plaintext m and returns a standard ciphertext c.

e The decryption algorithm D for standard ciphertexts is a deterministic algorithm
that takes the secret key sk and a standard ciphertext c and returns the corresponding

plaintext m or a special symbol 1 to indicate that the standard ciphertext is invalid.

o The anonymizing algorithm UA is a randomized algorithm that takes the public key

pk and a standard ciphertext ¢ and returns an anonymized ciphertext c’.

o The decryption algorithm DA for anonymized ciphertezts is a deterministic algorithm
that takes the secret key sk and an anonymized ciphertext ¢ and returns the corre-
sponding plaintext m or a special symbol L to indicate that the anonymized ciphertext
1s invalid.

We require the standard correctness condition. That is, for any (pk,sk) outputted by K
and m € M(pk), we have m = Dy (Ep(m)) and m = DAy, (UAp(Epr(m))).

In the universally anonymizable public-key encryption scheme, we can use PE =
(K,E,D) as a standard encryption scheme. Furthermore, in this scheme, by using the
anonymizing algorithm U A, anyone who has a standard ciphertext can anonymize it when-
ever she wants to do that. The receiver can decrypt the anonymized ciphertext by using

the decryption algorithm DA for anonymized ciphertexts.
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9.2.2 Security Properties

We now define security properties with respect to universally anonymizable public-key

encryption schemes.

Data-Privacy

We define the security property called data-privacy of universally anonymizable public-
key encryption schemes. The definition is based on the indistinguishability for standard
public-key encryption schemes.

We can consider two types of data-privacy, that is, the data-privacy on standard ci-
phertexts and that on anonymized ciphertexts. We first describe the definition of the

data-privacy on standard ciphertexts.

Definition 9.5 (data-privacy on standard ciphertexts). Let b € {0,1} and k € N. Let
Acpa = (Alas A200): Acca = (Abca, AZ.,) be adversaries that run in two stages and where
Acca has access to the oracles Dy (), Dsky (+), DAsi, (+), and DAgk, (). Note that si is the
state information. It contains pk, mg,m1, and so on. For atk € {cpa, cca}, we consider

the following experiment:

Experiment Expfi5s*i<? (k)

(pk, sk) «— K(k); (mo,my,si) — ALy (pk); ¢ Epr(my); d — AZy(c,si)

return d

Note that mg, m1 € M(pk). Above it is mandated that A2

Zen Mever queries the challenge c to

either Dgky (+) or Dk, (). It is also mandated that A2, never queries either the anonymized
ciphertext ¢ € {UApk,(c)} to DAg, () or ¢ € {UAp, (c)} to DAy, (-). For atk € {cpa,

cca}, we define the advantage via
Advipe, (k) = [PrExpiieis, (k) = 1] — Pr{Expilpe i, (k) = 1]

We say that the universally anonymizable public-key encryption scheme UAPE provides
the data-privacy on standard ciphertexts against the chosen plaintext attack (respectively

. . . dataS-cpa dataS-cca :
the adaptive chosen ciphertext attack) if AquAPS,ACpa(k) (resp. Adviiipe i, (k) is

negligible for any adversary A whose time complexity is polynomial in k.

In the above experiment, if the challenge is ¢, then anyone can compute UAy,(c).
Therefore, in the CCA setting, we restrict the oracle access to DA as described above.

We next describe the definition of the data-privacy on anonymized ciphertexts.

Definition 9.6 (data-privacy on anonymized ciphertexts). Let b € {0,1} and k € N. Let

Acpa = (Adpar AZpa) s Acca = (Alea, AZea) be adversaries that run in two stages and where
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Acca has access to the oracles Dgg,(-), Dsk, (+), DAsk,(+), and DAgg, (-). For atk € {cpa,

cca}, we consider the following experiment:

Experiment Expfiijsi=?(k)

(pk, sk) — K(k); (mo,ma,si) — AL, (pk)
c— Ep(my); ¢ —UA(c); d— Aitk(c’, si)

return d

Note that mg,m; € M(pk). Above it is mandated that A2

cca

to either DAgy,(-) or DAgg, (-). For atk € {cpa, cca}, we define the advantage via

never queries the challenge ¢

AR, (k) = [PrExpiiips s, (k) = 1] — Pr(Expiipe s, (k) = 1.

We say that the universally anonymizable public-key encryption scheme UAPE provides
the data-privacy on anonymized ciphertexts against the chosen plaintext attack (resp. the

. . . dataA-cpa dataA-cca : .
adaptive chosen ciphertext attack) if AquAPS,Acpa(k) (resp. Advyaps it (k)) is megli-

gible for any adversary A whose time complexity is polynomial in k.

Remark 9.1. In the CPA setting, if there exists an algorithm which breaks the data-
privacy on anonymized ciphertexts, then we can break that on standard ciphertexts by ap-
plying the anonymizing algorithm to the standard ciphertexts and passing the resulting
anonymized ciphertexts to the adversary which breaks the data-privacy on anonymized ci-
phertexts. Therefore, in the CPA setting, it is sufficient that the universally anonymizable
public-key encryption scheme provides the data-privacy of standard ciphertexts.

On the other hand, in the CCA setting, the data privacy on standard ciphertexts does
not always imply that on anonymized ciphertexts, since the oracle access of the adversary
attacking the data privacy on standard ciphertexts is restricted more strictly than that on

anonymized ciphertexts.

Key-Privacy

We define the security property called key-privacy of universally anonymizable public-key
encryption schemes. If the scheme provides the key-privacy, the adversary cannot know

under which key the anonymized ciphertext was created.

Definition 9.7 (key-privacy). Let b € {0,1} and k € N. Let Acpa = (A%pa,Agpa), Acea =
(AL, A2

cca’ cca

Dstiy (*)s Doty (+), DAgko (), and DAg, (+). For atk € {cpa, cca}, we consider the following

) be adversaries that run in two stages and where Acca has access to the oracles
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experiment:

Experiment EXlej{ei;:tfkjatk (k)

(pko, sko) « K(k); (pk1,sk1) «— K(k)
(mo,m1,si) «— AL, (pko,pk1); ¢ «— Epry, (mp); ¢ — UAp, (c); d — A2, (¢, si)

return d

Note that mg € M(pko) and m; € M(pky). Above it is mandated that A2,

the challenge ¢ to either DAgk, () or DAg, (). For atk € {cpa, cca}, we define the

advantage via

never queries

key-atk key-atk-1 key-atk-0
Advu’z;&Aatk(k) = Pr[Expuej;&Aatk(k) =1] - Pr[Expuei;&Aatk(k) =1]|.

We say that the universally anonymizable public-key encryption scheme UAPE provides

the key-privacy against the chosen plaintext attack (resp. the adaptive chosen ciphertext
. key-cpa key-cca . .

attack) if AdvuAPS,Acpa(k) (resp. Advype .. (k)) is negligible for any adversary A

whose time complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [3] proposed a security requirement of en-
cryption schemes called “key-privacy.” Similar to the above definition, it asks that the
encryption provides privacy of the key under which the encryption was performed. In ad-
dition to the property of the universal anonymizability, there are two differences between
their definition and ours.

In [3], they defined the encryption scheme with some common-key which contains the
common parameter for all users to obtain the key-privacy property. For example, in
the discrete-log based schemes such that the ElGamal and the Cramer-Shoup encryption
schemes, the common key contains a common group G, and the encryption is performed
over the common group for all uses.

On the other hand, in our definition, we do not prepare any common key for obtaining
the key-privacy property. In the universally anonymizable public-key encryption scheme,
we can use the standard encryption scheme which is not necessary to have the key-privacy
property. In addition to it, anyone can anonymize the ciphertext by using its public
key whenever she want to do that, and the adversary cannot know under which key the
anonymized ciphertext was created.

The definition in [3], they considered the situation that the message space was common
to each user. Therefore, in the experiment of their definition, the adversary chooses only
one message m from the common message space and receives a ciphertext of m encrypted
with one of two keys pkqg and pk;.

In our definition, we do not use common parameter and the message spaces for users

may be different even if the security parameter is fixed. In fact, in Sections 9.3 and 9.4, we
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propose the encryption schemes whose message spaces for users are different. Therefore,
in the experiment of our definition, the adversary chooses two messages mg and mi where
mo and mq are in the message spaces for pky and pkq, respectively, and receives either
a ciphertext of mg encrypted with pkg or a ciphertext of m; encrypted with pk;. The
ability of the adversary with two messages mg and m; might be stronger than that with
one message m.

We say that a universally anonymizable public-key encryption scheme U APE is CPA-
secure (resp. CCA-secure) if the scheme UAPE provides the data-privacy on standard
ciphertexts, that on anonymized ciphertexts, and the key-privacy against the chosen plain-

text attack (resp. the adaptive chosen ciphertext attack).

9.3 ElGamal and its Universal Anonymizability

In this section, we propose a universally anonymizable ElGamal encryption scheme.

9.3.1 The ElGamal Encryption Scheme

Definition 9.8 (ElGamal). The ElGamal encryption scheme PEEC = (KEG, £EG DEG) s
as follows. Note that Q is a QR-group generator with a safe prime which takes as input a
security parameter k and returns (q,g) where q is k-bit prime, p = 2q + 1 is prime, and g

is a generator of a cyclic group QR, (a group of quadratic residues modulo p) of order q.

Algorithm KEC(k) Algorithm EEG(m) | Algorithm DEC(c1, c2)
(q,9) — Q(k) r& Zg mcy-c]”
& Lg; y < g° c1+—g" return m

return pk = (¢,9,y) and sk = x co—m-y"

return (cy, c2)

The ElGamal encryption scheme is secure in the sense of IND-CPA if the DDH problem
for Q is hard.

9.3.2 Universal Anonymizability of the ElGamal Encryption Scheme

We now consider the situation that there exists no common key, and in the above definition
of the ElGamal encryption scheme, each user chooses an arbitrary prime ¢ where |¢| = k
and p = 2¢ 4+ 1 is also prime, and uses a group of quadratic residues modulo p. Therefore,
each user U; uses a different groups G; for her encryption scheme and if she publishes the
ciphertext directly (without anonymization) then the scheme does not provide the key-
privacy. In fact, the adversary simply checks whether the ciphertext y is in the group Gj,
and if y € G; then y was not encrypted by U;. To anonymize the standard ciphertext
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of the ElGamal encryption scheme, we consider the following strategy in the anonymizing

algorithm.
1) Compute a ciphertext ¢ over each user’s prime-order group.
2) Encode c to an element ¢ € Z, (the encoding function).

3) Expand ¢ to the common domain (the expanding technique).

The Encoding Function

Generally speaking, it is not easy to encode the elements of a prime-order group of order
q to those of Z,. We employ the idea described in [26] by Cramer and Shoup. We can
encode the elements of QQR, where p = 2¢ + 1 and p, ¢ are prime to those of Zj.

Let p be safe prime (i.e. ¢ = (p—1)/2 is also prime) and QR,, C Z; a group of quadratic
residues modulo p. Then we have |QR,| = ¢ and QR, = {12 mod p, 22 mod p, - - - , ¢*> mod
p}. It is easy to see that QR, is a cyclic group of order ¢, and each g € QR,\{1} is a
generator of QR,,.

We now define a function F, : QR, — Z4 as

F,(x) = min {:I::I:Z%1 mod p} :
Noticing that 4+ xp% mod p are the square roots of x modulo p, the function Fj is bijective
and we have Fq_l(y) = y? mod p. We call the function F, an encoding function. We also
define a t-encoding function Fy s : (QR,)t — (Zg)t. F,4 takes asinput (z1,- - ,2¢) € (QR)p)"
and returns (yi1,---,y:) € (Zq)" where y; = Fy(x;) for each i € {1,--- ,¢}. It is easy to see

that F,; is bijective and we can define qu L

Our Scheme

We now propose our universally anonymizable ElGamal encryption scheme. Our scheme
provides the key-privacy against the chosen plaintext attack even if each user chooses an
arbitrary prime ¢ where |g| = k and p = 2¢+ 1 is also prime, and uses a group of quadratic

residues modulo p.

Definition 9.9. Our universally anonymizable ElGamal encryption scheme UAPEEC

((KCEG, EFG DEG) 14 AEC DAEC) consists of the ElGamal encryption scheme PEEC = (KCEC,
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EFG DEC) and two algorithms described as follows.

Algorithm MAS,S(Q, c2) Algorithm DAES(c), ch)
(€1,E2) — Fya(cr,c2) ¢1 «— ¢y mod ¢; ¢ « ¢, mod ¢
t 450,12, |20 — &) /g | (c1,02) — g (e1,20)
ty 4 {0,1,2,--- (2190 — ) /q|} | m — DES(c1, c2)

cy — ¢ +tiq; dy — Ea+tag return m

return (c},c)

9.3.3 Security

In this section, we prove that our universally anonymizable ElGamal encryption scheme
UAPEEC is CPA-secure assuming that the DDH problem for Q is hard.

We can easily see that our scheme provides the data-privacy on standard ciphertexts
against the chosen plaintext attack if the DDH problem for @ is hard. More precisely,
we can prove that if there exists a CPA-adversary attacking the data-privacy on standard
ciphertexts of our scheme with advantage €, then there exists a CPA-adversary attacking
the indistinguishability of the ElGamal encryption scheme with the same advantage e.

Note that this implies our scheme provides the data-privacy on anonymized ciphertexts
against the chosen plaintext attack if the DDH problem for Q is hard.

We now prove our scheme provides the key-privacy against the chosen plaintext attack.

To prove this, we use the idea of Halevi [49].

Lemma 9.1 (Halevi [49]). Let PE = (K,&,D) be a (standard) encryption scheme that
is CCA secure (resp. CPA secure) for the indistinguishability (data-privacy). Then a
sufficient condition for PE to be also CCA secure (resp. CPA secure) for the key-privacy
(defined by Bellare, Boldyreva, Desai, and Pointcheval) if the statistical distance between

the two distributions

Do = {(pko, pk1, Epko (M) = (Pko, sko), (Pk1, sk1) «— K(k);
D1 = {(pko, pk1, Epk, (M) : (Pko, sko), (pk1, sk1) «— K(k);

is negligible.

(pko) }
(pk1)}

IERE

M
M

m
m

This lemma shows the relation between the indistinguishability and the key-privacy for
standard encryption scheme. We can apply this lemma to our universally anonymizable
encryption scheme. That is, if the universally anonymizable encryption scheme UAPE =
(K,E,D),UA, DA) provides the data-privacy on anonymized ciphertexts against CCA
(resp. CPA) and the statistical distance between the two distributions

Dy = {(pko, pk1, U Apky (Epko (M) = (Pko, ko), (pk1, sk1) « K(k); m
Dy = {(pko, pk1,UApk, (Epy (M) = (Pko, sko), (pk1, sk1) « K(k); m

R
Pl

R
Pl

M (pko)}
M(pk1)}
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is negligible, then U APE provides the key-privacy against CCA (resp. CPA).

By using this, in order to prove that our scheme provides the key-privacy against the
chosen plaintext attack, all we have to do is to see that the two distributions Df, and
D} derived by our scheme satisfy the property defined above. It is easy to see that the
statistical distance between Dj, and D) is less than 2 x (1/2%59)2,

In conclusion, our universally anonymizable ElGamal encryption scheme is CPA-secure
assuming that the DDH problem for © is hard.

9.4 Cramer-Shoup and its Universal Anonymizability

In this section, we propose a universally anonymizable Cramer-Shoup encryption scheme.

9.4.1 The Cramer-Shoup Encryption Scheme

Definition 9.10 (Cramer-Shoup). The Cramer-Shoup encryption scheme PECS = (KCCS, £,
DCS) is defined as follows. Let H = (GH,EH) be a family of hash functions. Note that Q

is a QR-group generator with a safe prime.

Algorithm K®(k) Algorithm Spcks(m) Algorithm D (u1,uz,e,v)
(¢:9) — Q(k); K —GH(k) | rLz, o — EMic(ur, uz, )
g1 g 92 QR, Ul — gi; U2 < gh if (up Vgt = o)
xl,fcg,yl,yg,zﬁzq e« h"m then m «— e/uf
c— g7tgy?; d— gl gy a — EHk(ur,ug,e) | elsem L
h — g7 v c'd® return m
pk — (q,91,92,¢,d,h, K) return (u1,uz,e,v)

Sk — (mlax27yl7y27 Z)

return (pk, sk)

Cramer and Shoup [26] proved that the Cramer-Shoup encryption scheme is secure in
the sense of IND-CCA2 assuming that H is universal one-way and the DDH problem for Q
is hard. Lucks [61] recently proposed a variant of the Cramer-Shoup encryption scheme for
groups of unknown order. This scheme is secure in the sense of IND-CCA2 assuming that
the family of hash functions in the scheme is universal one-way, and both the Decisional
Diffie-Hellman problem in QRy (a set of quadratic residues modulo N) and factoring N

are hard.
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9.4.2 Universal Anonymizability of the Cramer-Shoup Encryption Scheme

We propose our universally anonymizable Cramer-Shoup encryption scheme. Our scheme
provides the key-privacy against the adaptive chosen ciphertext attack even if each user
chooses an arbitrary prime g where |¢| = k and p = 2¢ + 1 is also prime, and uses a group
of quadratic residues modulo p.

Note that in our scheme we employ the encoding function and the expanding technique

appeared in Section 9.3.

Definition 9.11. Our universally anonymizable Cramer-Shoup encryption scheme UAPES

((K©3, SCS,’DCS),U.ACS,DACS) consists of the Cramer-Shoup encryption scheme PESS =
(K5, £S5, D) and two algorithms described as follows.

Algorithm U.AS o >(u1, ug, e,v) Algorithm DA (u), ul, e, v')
(1, u2,8,0) «— Fya(ur,us,e,v) a1 < v} mod ¢; ug «— u) mod g
ty £40,1,2,-+, [(25+160 —51)/q|} | &« ¢ mod q; T v’ mod g
ty &{0,1,2,- - [(2M100 — )/} | (ur,uz,e,0)  Fy L(an, G2, €, 0)
ts < {0,1,2,- ,L(2’“+160 &)/al} | m—DF(ur,uze,0)
ty & {0,1,2,---, [(2FF160 — %) /q]} return m
uy < Uy +t1g; uy < Uz +tag
e —e+t3q; vV — v+ taq
return (uf,u), e, v)

9.4.3 Security

In this section, we prove that our universally anonymizable Cramer-Shoup encryption
scheme UAPEEC is CCA-secure assuming that the DDH problem for Q is hard and H
is universal one-way.

We can prove that our scheme provides the data-privacy on standard ciphertexts against
the adaptive chosen ciphertext attack if the DDH problem for Q is hard and H is universal
one-way. More precisely, we can prove that if there exists a CCA-adversary A attacking
the data-privacy on standard ciphertexts of our scheme with advantage €, then there exists
a CCA2-adversary B attacking the indistinguishability of the Cramer-Shoup encryption
scheme with the same advantage €. In the reduction of the proof, we have to simulate the
decryption oracles for anonymized ciphertexts for A. If A makes a query & = (u}, ub, e/, v")
to DAk, (+), we simply compute ¢ = (v} mod go, u5 mod go, ¢’ mod g, v’ mod gp) and de-
crypt ¢ by using the decryption algorithm Dgy, (-) for standard ciphertexts for B. We can
simulate DA, (+) in a similar way.

In order to prove that our scheme provides the key-privacy and the data-privacy on

anonymized ciphertexts against the adaptive chosen ciphertext attack, we need restriction
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as follows.

We define the set of ciphertexts ECcs((uf,u, €’ ,v"), pk) called “equivalence class” as

ECcs((u),ub, €', 0), pk) = {(ti1, Ua, &, 0) € ({0, 1}+160)4)
1 = v} (mod q) A tig = uby (mod g) Aé=¢' (mod ¢) Av=1" (mod q)}.

If @ = (uy,ub,e,v") € ({0,1}¥+160)4 is an anonymized ciphertext of m under pk =
(¢, 91,92, ¢,d, h, K) then any element ¢ = (1,19, ¢,0) € ECcs(c, pk) is also an anonymized
ciphertext of m under pk. Therefore, when & is a challenge anonymized ciphertext, the
adversary can ask an anonymized ciphertext ¢e ECcs(d, pko) to the decryption oracle
DAE,CSO for anonymized ciphertexts, and if the answer of D.Ag,fo is mg then the adversary
knows that ¢ is encrypted by pko and the plaintext of & is my.

Furthermore, the adversary can ask (u} mod go, v}, mod qg, ¢’ mod ¢p,v" mod ¢p) to the
decryption oracle ngso for standard ciphertexts. If the answer of ngso is mg, then the
adversary knows that ¢ is encrypted by pkg and the plaintext of & is my.

To prevent these attacks, we add some natural restriction to the adversaries in the
definitions of the key-privacy and the data-privacy on anonymized ciphertexts. That is,
it is mandated that the adversary never queries either ¢ € ECcs(@, pko) to DAg,fo or ¢ e
ECcs(é, pky) to D.Ag,fl. It is also mandated that the adversary never queries either (u} mod
o, uh, mod qo, ¢’ mod qo, v’ mod qo) to Dg,fo or (uj mod ¢, u5 mod g1, € mod ¢i,v" mod qp)
to Dscksl .

We think these restrictions are natural and reasonable. Actually, in the case of undeni-
able and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on un-
deniable signature schemes with the above restriction. Incidentally, Canetti, Krawczyk, and
Nielsen [18] proposed a relaxed notion of CCA security, called Replayable CCA (RCCA).
In their security model, the schemes which require restriction such as equivalence class
for proving their CCA security satisfy a variant of RCCA, pd-RCCA (publicly-detectable
replayable-CCA) secure.

If we add these restrictions then we can prove that our scheme provides the data-
privacy on anonymized ciphertexts against the adaptive chosen ciphertext attack if the
DDH problem for Q is hard and H is universal one-way. More precisely, we can prove that
if there exists a CCA-adversary attacking the data-privacy on anonymized ciphertexts of
our scheme with advantage €, then there exists a CCA-adversary attacking the data-privacy
on standard ciphertexts of our scheme with the same advantage e.

We now prove our scheme provides the key-privacy against the adaptive chosen cipher-
text attack. If we add the restrictions described above, we can prove this in a similar
way as that for our universally anonymizable ElGamal encryption scheme. Note that the

statistical distance between D}, and D} (See Section 9.3.3.) is less than 2 x (1/21%9)%,
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In conclusion, our universally anonymizable Cramer-Shoup encryption scheme is CCA-

secure assuming that the DDH problem for @ is hard and H is universal one-way.

9.5 RSA-OAEP and its Universal Anonymizability

In this section, we propose a universally anonymizable RSA-OAEP scheme.

9.5.1 RSA-OAEP

Definition 9.12 (RSA-OAEP). RSA-OAEP PERC = (KRO, RO DROY s s follows. Let
k, ko and ki be security parameters such that ko + k1 < k. This defines an associated
plaintext-length n = k—ko—k1. The key generation algorithm ICRO takes as input a security
parameter k and runs the key generation algorithm of RSA to get N,e,d. It outputs the
public key pk = (N, e) and the secret key sk = d. The other algorithms are depicted below.
Let G : {0,1}*0 — {0,1}"**1 and H : {0,1}"+*1 — {0,1}*0 be hash functions. Note that

[z]¢ denotes the £ most significant bits of x, and [x]y denotes the ' least significant bits of

x.
Algorithm Sgko(m) Algorithm DRO(c)
r & {0, 1}Fo s « [¢? mod N|""*1; ¢ « [c? mod Ny,
s « (m]|0F) @ G(r) r—t® H(s)
t e Hs) m e [s® GO p s ® Gk
¢« (s]|t)¢ mod N if (p=0¥) 2z« m else z L
return c return z

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that OAEP with partial one-way
permutations is secure in the sense of IND-CCA2 in the random oracle model. They also
showed that RSA is one-way if and only if RSA is #-partial one-way for ¢ > 0.5. Thus,
RSA-OAEP is secure in the sense of IND-CCAZ2 in the random oracle model assuming RSA

is one-way.

9.5.2 Universal Anonymizability of RSA-OAEP

A simple observation that seems to be folklore is that if one publishes the ciphertext of the
RSA-OAEP scheme directly (without anonymization) then the scheme does not provide
the key-privacy. Suppose an adversary knows that the ciphertext c is created under one of
two keys (No, ep) or (N1, e1), and suppose Ny < Nj. If ¢ > Ny then the adversary bets it
was created under (Ny,e1), else the adversary bets it was created under (Ny, ep). It is not
hard to see that this attack has non-negligible advantage.

To anonymize ciphertexts of RSA-OAEP, we do not have to employ the encoding func-

tion and we only use the expanding technique.
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Definition 9.13. Our universally anonymizable RSA-OAEP scheme UAPERC = ((KRO,
ERO,DRO),I/{ARO,DARO) consists of RSA-OAEP PERC = (RO, £RO DROY und two algo-

rithms described as follows.

Algorithm Z/{AE]?(C) Algorithm DARO(¢)
ad0,1,2,-+,|(2F10 ) /N|} | ¢ mod N
d —c+aN z « DRO(¢)
return ¢ return z

9.5.3 Security

In this section, we prove that our universally anonymizable RSA-OAEP scheme U APERC
is CCA-secure in the random oracle model assuming RSA is one-way.

We can prove that our scheme provides the data-privacy on standard ciphertexts against
the adaptive chosen ciphertext attack in the random oracle model assuming RSA is #-partial
one-way for 8 > 0.5. More precisely, if RSA-OAEP is secure in the sense of IND-CCA2
then our scheme provides the data-privacy on standard ciphertexts against the adaptive
chosen ciphertext attack. The proof is similar to that for our universally anonymizable
Cramer-Shoup encryption scheme.

In order to prove that our scheme provides the key-privacy and the data-privacy on
anonymized ciphertexts against the adaptive chosen ciphertext attack, we need the restric-
tions similar to those for our universally anonymizable Cramer-Shoup encryption scheme.

We define the equivalence class for our universally anonymizable RSA-OAEP scheme as
ECRro(c,pk) = {¢ € {0,1}*16% ¢ = ¢/ (mod N)}

where pk = (N, e) and it is mandated that the adversary never queries either ¢ € ECro(c/, pko)
to DAE,% or ¢ € ECro(d,pki) to DASR,g . It is also mandated that the adversary never
queries either ¢’ mod Ny to DS% or ¢’ mod N to DE,Q.

If we add these restrictions then we can prove that our scheme provides the data-privacy
on anonymized ciphertexts against the adaptive chosen ciphertext attack in the random
oracle model assuming RSA is f-partial one-way for # > 0.5 in a similar way as that for
our universally anonymizable Cramer-Shoup encryption scheme.

Furthermore, if we add the restrictions described above, then we can prove that our
scheme provides the key-privacy against the adaptive chosen ciphertext attack in the ran-
dom oracle model assuming RSA is §-partial one-way for # > 0.5. More precisely, we show

the following theorem .

'Halevi [49] noted that we cannot apply Lemma 9.1 directly to the schemes analyzed in the random

oracle model.
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Theorem 9.1. For any adversary A attacking the key-privacy of our scheme under the
adaptive chosen ciphertext attack, and making at most qeec queries to decryption oracle
for standard ciphertexts, ¢),. queries to decryption oracle for anonymized ciphertexts, qgen
G-oracle queries, and qunasn H-oracle queries, there exists a 0-partial inverting adversary
M for RSA, such that for any k, ko, k1, and 6 = %,

key- — 6-pow-f
Adv, ko 4 (k) < 8gnash - (1 — 1) - (1 — €2)) b AdvRE (k)
+Qgen : (1 - 62)_1 LQk+2

2(1gcn4’Qdec+qzleC+2Qgcn(Qdec+qaec) 2(Qdec+q(/iec) 2Qhash
o + oL + SR and the

running time of B is that of A plus qgen * qhash - O(K?).

2 1
where €1 = srp=5— + g9, €2 =

In conclusion, since RSA is #-partial one-way if and only if RSA is one-way for 6 > 0.5,
our universally anonymizable RSA-OAEP scheme is CCA-secure in the random oracle

model assuming RSA is one-way.

Proof of Theorem 9.1. The proof is similar to that for OAEP with expanding in Section 3.3.
We describe the partial inverting algorithm M for RSA using a CCA-adversary A attacking
the anonymity of our encryption scheme. M is given pk = (N, e, k) and a point y € Z}
where |y| = k = n+ ko + k1. Let sk = (N,d, k) be the corresponding secret key. The
algorithm is trying to find the n + k1 most significant bits of the e-th root of ¥ modulo N.
Intuition. We assume that the challenge ciphertext for A is Y € {0,1}*+160 which was
encrypted by pk = (N,e), and y =Y mod N. In order to distinguish under which key the
given ciphertext Y was created, the adversary A has to make queries r and s to oracles
G and H, respectively, such that s = (m||0") @ G(r) and y = (s||(r @ H(s)))® mod N.
Therefore, A asks s to H with non-negligible probability where s is the n 4+ k; most
significant bits of the e-th root of y modulo N.

1) M picks p & {0,1,2,..., (28160 —4)/N|} and sets YV « y + uN.

2) M runs the key generation algorithm of RSA with security parameter k to obtain
pk! = (N’ €', k) and sk’ = (N’,d’,k). Then it picks a bit b hil {0,1}, and sets
pky « (N, e) and pki_p < (N',¢’). If the above y does not satisfy y € (Zy, N Z},)

then M outputs Fail and halts; else it continues.

3) M initializes four lists, called G-list, H-list, Yj-list, and Y;-list to empty. It then runs
A as follows. Note that M simulates A’s oracles G, H, Dy, and Dy, as described

below.

3-1) M runs A;(pko,pk1) and gets (mo, m1,si) which is the output of A;.
3-2) M runs As(Y,si) and gets a bit d € {0, 1} which is the output of As.
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4) M chooses a random pair (h, Hy) from the H-list and outputs h as its guess for the
n + k1 most significant bits of the e-th root of y modulo N.

M simulates A’s random oracles G and H, the decryption oracles Dy, and Dgy, for stan-
dard ciphertexts, and the decryption oracles DAy, and DA, for anonymized ciphertexts

as follows:

e When A makes an oracle query g to G, then for each (h, Hy) on the H-list, M builds
z = hl|(g ® Hy), and computes yp 40 = 2°° mod Ny and y 41 = 2°' mod N;. For
i € {0,1}, M checks whether y = yp, 4;. If for some h and i such a relation holds,
then we have inverted y under pk;, and we can still correctly simulate G' by answering
G, = h @ (m;]|0¥). Otherwise, M outputs a random value Gy of length n + k;. In
both cases, M adds (g,Gy) to the G-list. Then, for all h, M checks if the ki least
significant bits of h @& G4 are all 0. If they are, then it adds yp 40 and ¥4 41 to the
Yy-list and the Yi-list, respectively.

e When A makes an oracle query h to H, M provides A with a random string Hj, of
length ko and adds (h, Hp) to the H-list. Then for each (g,G,y) on the G-list, M
builds z = h||(g ® Hy), and computes yp, g0 = 2°° mod Ny and yp 41 = 2°* mod Nj.
M checks if the kq least significant bits of h & G are all 0. If they are, then it adds
Yh,g,0 and yp 1 to the Yp-list and the Yi-list, respectively.

e When for i € {0,1}, A makes an oracle query § € Z}. to Dy, M checks if there
exists some yp, 4, in the Yj-list such that § = yp, 4;. If there is, then it returns the n
most significant bits of h & Gy to A. Otherwise it returns L (indicating that ¢ is an

invalid ciphertext).

e When for i € {0,1}, A makes an oracle query ¥ € {0,1}*+160 to DA, , M checks if
there exists some yp, 4; in the Y;-list such that Y mod N; = yp g,i- If there is, then it
returns the n most significant bits of h® Gy to A. Otherwise it returns L (indicating

that Y is an invalid anonymized ciphertext).

In order to analyze the advantage of M, we define some events. For i € {0,1}, let
w; = y* mod Nj, s; = [w]"T*, and t; = [wi]g,- That is, w; is the e;-th root of y modulo
N; and s; is the n + k1 most significant bits of the e;-th root of y modulo N;. Note that
M wins the game if it outputs sp. Let r; be the random variable ¢t; & H(s;).

We consider the following events.
e FBad denotes the event that

— A G-oracle query ry was made by Aj in step 3-1, and G,, # so © (mg||0*), or
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9.5. RSA-OAEP and its Universal Anonymizability

— A G-oracle query r; was made by A; in step 3-1, and G, # s1 @© (m1||0*1).
e GBad denotes the event that

— A G-oracle query rg was made by As in step 3-2, and at the point in time that it
was made, the H-oracle query sg was not on the H-list, and G, # so®(mg||0%1),

or

— A G-oracle query 1 was made by As in step 3-2, and at the point in time that it

was made, the H-oracle query s; was not on the H-list, and G, # s1®(mq]|0F1).
e DSBad denotes the event that

— A Dgj, query is not correctly answered, or

— A Dgj, query is not correctly answered.

DABad denotes the event that

— A DA, query is not correctly answered, or

— A DA, query is not correctly answered.

DBad = DSBad vV DABad.

o G = —-FBad A =GBad A —=DBad.

We use the events FBad, GBad, and G for proving Lemma 9.2 described below. In this
chapter, we omit the proof of Lemma 9.2 since the proof of this lemma is similar to that
for RSA-RAEP.

We let Pr[-] denote the probability distribution in the game defining advantage. We

introduce the following additional events:
e YBad denotes the event that y & (Z3, NZ};,).
e FAskS denotes the event that H-oracle query sg or s; was made by A; in step 3-1.

e AskR denotes the event that (rg, Gy,) or (r1,Gy,) is on the G-list at the end of step
3-2.

e AskS denotes the event that (sg, Hs,) or (si, Hs,) is on the H-list at the end of step
3-2.

We use the event FAskS for proving Lemma 9.2. In this chapter, we omit the proof of
Lemma, 9.2 since the proof of this lemma is similar to that for RSA-RAEP.
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CHAPTER 9. Universally Anonymizable Public-Key Encryption

Now, we analyze the advantage of M. The algorithm M wins the game if it outputs
sp. If (sp, Hg,) is on the H-list, then M outputs s, with probability at least 1/gnash. Thus,

0-pow-fnc
AdVRspA,M (k)
> L. Pr[(sy, Hy,) is on the H-list]

— QGhash

= QQhIash - (Pr[(so, Hs,) is on the H-list|b = 0] 4+ Pr[(s1, Hs, ) is on the H-list|b = 1])

> 2q111ash - Pr[-YBad]| - (Pri[(so, Hs,) is on the H-list|b = 0]
+Pri[(s1, Hs,) is on the H-list|b = 1])

where Pr;[-] denote the probability distribution in the simulated game where —YBad oc-
curs. Assuming that —YBad occurs, by the random choice of b and symmetry, we have
Pri[(si, Hs,) is on the H-list|b = 0] = Pry[(s;, Hs,) is on the H-list|b = 1] = Pry[(s;, Hs,) is

on the H-list] for i € {0,1}. Therefore,

Advg'ggfﬁm(k)

> 2q}11ash Pr[=YBad] - (Pr1[(so0, Hs,) is on the H-list] + Pri[(s1, Hs, ) is on the H-list])
Pr[—YBad] - Pr[AskS].

P
- 2qhash

We next bound Pr;[AskS]. We can bound Pr;[AskS] in a similar way as in the proof of
the anonymity for RSA-RAEP [3], and we have

1
Pr;[AskS] > 3 Pri[AskR A AskS|—-DBad] - Pr;[-DBad|—=AskS].

We next bound Pry[AskR A AskS|-DBad]. Let € = AdvzezgzioA(k). The proof of the
following lemma is similar to that for RSA-RAEP. Intuitively, this lemma states that if M
simulates the decryption oracle for the adversary A perfectly, then A makes queries (7, G,)
and (s, Hy) such that s = (m||0")® G, and y = (s||(r® H))® mod N, with non-negligible

probability.
Lemma 9.2.

2 2 2
Pry[AskR A AskS|-DBad] > g (1 - ( Jeen | th)) _ Zdgen,

= 9ko on+k1 9k
We next bound Pri[-DBad|—-AskS]. It is easy to see that
Pr,[~DBad|—~AskS] < Pr;[~DSBad|~AskS] + Pr;[~DABad|-AskS],

and the proof of the following lemma is similar to that for RSA-RAEP. Intuitively, this
lemma states that M can simulate the decryption oracle for standard ciphertexts with

overwhelming probability.

Lemma 9.3.

2 2Qsen + 1
Prl[DSBad|ﬁAskS] < Qdec ° <2kl —+ qg+> .

2ko
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Furthermore, we can prove the following lemma in a similar way as that for Lemma 9.3.
Intuitively, this lemma states that M can simulate the decryption oracle for anonymized

ciphertexts with overwhelming probability.
Lemma 9.4.

2 2Qgen +1
Pr;[DABad|~AskS] < ¢/, - (Qk qggk:o—i_) :

By applying Lemmas 9.2, 9.3, and 9.4, we can bound Pr;[AskS]| as

PI‘l[ASkS]
2 en as 2 en 2 en+1
>3- [5 (- (G 2 ) — 2] x [1— (g + i) - (35 + 2527 )]
2 en 2 as. 2 en+]-
(1= (G 2 ) ) ¢ 1= (e + i) - (5 + 25270
2 en 2 en+1
3 2 1 (qaee + o) (o + 25550
2qgen 2@has 2¢gen+1 2Qgen
(1 (2 2 ) — (e + o) - (G + 257 )) - 1 2

1 2qgen+Qdec+Qécc+2Qgen(Qdec+qacc) 2(Qdec+‘1£1cc) 2@hash Qgen
: - 9ko - ok1 T 9k—kg ) T "ok -

[N

e

v
N

|
T

We next bound the probability that =YBad occurs.

Lemma 9.5.
2 1

< ok/2-3 _ 1 + 2159°

Pr[YBad]

Lemma 9.5. Let N = pg and N’ = p/¢. Note that 2/21=1 < p ¢.p/. ¢ < 2/%/2] and
2k=1 < N,N’' < 2F. We define a set S[N] as {Y|Y € [0,257160) A (Y mod N) € Zj%}.

Then, we have

Pr[YBad]
= Prly & Zi p & {0,120 (M0 — ) /N |} Yyt uN 2 Y ¢ SV
<Pily’ & SIN]: v ¢ SIN')) + 1217

since the distribution of Y is statistically indistinguishable from that of Y, and the statis-
tically distance is less than 1/2159,
Since 2160 . ¢(N) < |S[N]|, we have

Py’ & siv] v g spv) < WL S[N;[]Q”y 7SIV

_ Hylye0.28719%) A y & SIN']}
N |SIN]]
<

2k+160 _ ’S[N/” 2k+160 _ ‘S[N/”
- |SIN]| 2190 ¢(N)
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Furthermore, we have

2FHIE0 —SIN']| = [{Y']Y” € [0,25T150) A (Y mod N') & Zy,}
< {Y'|Y" € [0,2N - 2190) A (Y mod N') & Z3, }|
=210 x {Y'|Y' € [0, N) AY' &€ Z7}
= 210H(N" = ¢(N")).

Therefore, we can bound Pr[Y”’ Eg [N]: Y' & S[N']] as

PrY’ & SIN]: Y ¢ S[N||

24160 |SIN'| _ 219NN’ — g(N')) _ 2+ —1) _ 200 +4)
SR G(N) © 20 GN) N-p-gtl N-p-q
_ 2(21k/21 4 ofk/2hy 2(14 1) _ 4 B 2
= 9k—1 _9[k/2] _9[k/2] = 9k—1-[k/2] _ 1 _1 — 9k/2-2 _9  9k/2-3 _ |’
O
Substituting the bounds for the above probabilities, we have
-pow- 1 € q
Adv@powfnck_ > (1= ‘<7. 1—e9) — gen)
where € = WQZT_I + 21% and €9 = QQgen‘i’qdec‘l’q(lieEZ’OQQgen(qdec‘i’q:iec) 4 2((1de2cljiqéec) 4 3211:3237 and
re-arranging the terms, we get the claimed result. Note that ¢ = Advzl;ej;?;{o A(F).

Finally, we estimate the time complexity of M. It is the time complexity of A plus
the time for simulating the random oracles. In the random oracle simulation, for each
pair ((g,Gy), (h, Hy)), it is sufficient to compute yn 40 = (h|[(g ® Hp))®® mod Ny and
Yng1 = (h||(g ® Hy))®* mod Ni. Therefore, the time complexity of M is that of A plus
Geen * Ghash - O(K3).

O
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CHAPTER 1 0

Conclusion

In this thesis, we have focused on the security property for encryption and signature

schemes, called “anonymity.”

In Chapters 2 to 5, we have studied the techniques which can be used to obtain the
anonymity property. We have proposed two techniques for anonymity. We have also
constructed the schemes for public-key encryption, undeniable and confirmer, and ring
signature, by applying our proposed techniques.

In Chapter 2, we have provided the RSA family of trap-door permutations with a
common domain. The domain and range of RSACD are common to each user when each
user has an RSA modulus of the same size. We have proved that the §-partial one-wayness
of RSACD is equivalent to the one-wayness of RSACD for # > 0.5, and that the one-
wayness of RSACD is equivalent to the one-wayness of RSA. We have also proposed a new
technique for obtaining the anonymity property of RSA-based cryptosystems, which we
call “sampling twice.” In our technique, we employ an algorithm ChooseAndShift which
takes two numbers 1,72 € Zy as input and returns a value y € [0,2%) where |N| = k.
Then, for any N where |N| = k, the output is uniformly distributed over [0, 2¥) if z1 and
x9 are independently and uniformly chosen from Z .

We have proposed new schemes for public-key encryption in Chapter 3, those for unde-
niable and confirmer signature in Chapter 4, and those for ring signature in Chapter 5, by

applying the previously proposed and our new techniques, repeating, expanding, RSACD,
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CHAPTER 10. Conclusion

sampling twice. We have also proved the anonymity property and other required security

of the schemes.

We again describe the (dis)advantage of the schemes with four techniques.

The scheme with repeating is efficient with respect to the sizes of ciphertexts and
signatures, the computational costs to encrypt messages and to sign messages in the average
case, and those to decrypt ciphertexts and to verify signatures. However, it is inefficient
with respect to the computational costs to encrypt messages and to sign messages in the
worst case. In order to obtain the anonymity property, it is necessary for each user to
choose a public key with almost the same size.

The scheme with expanding provides anonymity even if each user uses the public key of
different length. It is efficient with respect to the computational costs to encrypt messages,
to sign messages, to decrypt ciphertexts, and to verify signatures. However, the sizes of
ciphertexts and signatures are larger than those of the other schemes.

The scheme with RSACD is efficient with respect to the sizes of ciphertexts and signa-
tures, and the computational costs to encrypt messages and to sign messages. However, it
is inefficient with respect to the computational costs to decrypt a ciphertext and to verify
a signature. In order to obtain the anonymity property, it is necessary for each user to
choose a public key with exact the same size.

The scheme with sampling twice is efficient with respect to the sizes of ciphertexts and
signatures, the computational costs to decrypt ciphertexts and to verify signatures, and the
computational costs to encrypt messages and to sign messages in the worst case. However,
the number of exponentiations for encryption or signing is two, while that of the other
schemes is one or 1.5 in the average case. Similar to the scheme with RSACD, in order to
obtain the anonymity property, it is necessary for each user to choose a public key with

exact the same size.

In this thesis, we have not succeeded to construct the undeniable and confirmer signa-
ture scheme with anonymity by applying the RSACD function. It might be interesting to
construct such schemes.

It would be also interesting to consider other applications of our proposed techniques.
There are many schemes which required the anonymity property, such as (hybrid) ID-based
encryption [11, 2], group signatures [23], anonymous group identification [32, 60] signcryp-
tion [82, 13], designated verifier signature [53, 59], and so on. Our proposed techniques

seem to be useful to construct such schemes with the anonymity property.

In Chapter 6, we have considered the schemes with anonymity using the Paillier’s

bijective function. We have applied the four techniques described above in the case using
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the Paillier’s bijective function instead of the RSA function. We have constructed a family
of Paillier’s trap-door permutations and that with a common, and prove the properties of
them. We have also proposed the public-key encryption schemes with the above families of
permutations by applying the four techniques, that is, Paillier-OAEP (OAEP with Paillier’s
trap-door permutation) with repeating, that with expanding, that with sampling twice, and
PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common domain).

It would be interesting to consider the construction of families of trap-door permutations
with a common domain based on the variants of Paillier’s permutation. After the paper of
Paillier, several variants of Paillier’s scheme were proposed. Catalano, Gennaro, Howgrave-
Graham, and Nguyen [19] proposed a mix of Paillier’s scheme with the RSA scheme, in order
to obtain an IND-CPA cryptosystem in the standard model with efficiency similar to that of
the RSA cryptosystem. It is based on the permutation (m,7) + r¢(1+mN) mod N? where
ged(e, A(N?)) = 1. The encryption scheme is semantically secure under the Decisional
Small e-Residues assumption. Galindo, Martin, Morillo, and Villar [46] proposed a encryp-
tion scheme based on the permutation: (m,r) — r2¢+mN mod N? where p = ¢ = 3 mod 4
and ged(e, A(N)) = 1. This function is one-way under the Factoring assumption. Damgard
and Jurik [30] proposed a generalization of Paillier’s scheme, in which the expansion factor
is reduced and which allows to adjust the block length of the scheme even after the public
key has been fixed, without loosing the homomorphic property. They also constructed its
threshold variant. Forque, Poupard and Stern [40] also proposed the threshold version of
Paillier’s scheme.

In Chapter 7, we have proposed the new security notion for public-key encryption
with anonymity, called “strong anonymity,” and show the relationships between the data-
privacy and the key-privacy for public-key encryption schemes. From our results, we have
that the strong anonymity (sIK) is a sufficient condition in order to satisfy that a public-key
encryption scheme provides the data-privacy (IND) and the key-privacy (IK).

The motivation to propose the strong anonymity is capturing the situation that the
schemes whose message spaces for each public-key are different provide the anonymity
property. However, our proposed security notion not only captures such situation but also
implies the data-privacy (the indistinguishability of ciphertexts). Therefore, it might be
interesting to consider a security notion which captures the above situation, while it does
not implies the data-privacy.

In Chapter 8 we have proposed the notion of plaintext awareness in the two-key setting,
called PATK, and proved that if a public-key encryption scheme is secure in the sense of
PATK, then it is also secure in the sense of IK-CCA. Since it looks much easier to prove that
a public-key encryption scheme is secure in the sense of PATK than to prove directly that

it is secure in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity
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property of public-key encryption schemes. The previously proposed public-key encryption
schemes in [3, 50, 51] which are based on RSA-OAEP and secure in the sense of IK-CCA
seem to meet PAKE.

We have also proposed the first generic conversion scheme for the anonymity from IK-
CPA to IK-CCA. More precisely, we have proved that the public-key encryption scheme
derived from the Fujisaki-Okamoto conversion scheme, where the basic public-key encryp-
tion scheme is secure in the sense of IK-CPA, is secure in the sense of IK-CCA in the random
oracle model. Recently, Bellare and Palacio [5] proposed the definition of the plaintext-
awareness in the standard model (i.e. without random oracles). Dent [33] showed that the
Cramer-Shoup hybrid encryption scheme [27] satisfies the plaintext-awareness in the stan-
dard model. It might be interesting to consider the definition of the plaintext awareness in
the two-key setting without random oracles and the schemes in the standard model which
meet the plaintext awareness in the two-key setting.

In Chapter 9, we have formalized a special type of public-key encryption scheme called
a universally anonymizable public-key encryption scheme. A universally anonymizable
public-key encryption scheme consists of a standard public-key encryption scheme PE and
two additional algorithms, that is, an anonymizing algorithm U/ A and a decryption algo-
rithm DA for anonymized ciphertexts. We can use PE as a standard encryption scheme
which is not necessary to have the anonymity property. Furthermore, in this scheme, by us-
ing the anonymizing algorithm U/ A, anyone who has a standard ciphertext can anonymize it
with its public key whenever she wants to do that. The receiver can decrypt the anonymized
ciphertext by using the decryption algorithm DA for anonymized ciphertexts. Then, the
adversary cannot know under which key the anonymized ciphertext was created.

We have also proposed the universally anonymizable public-key encryption schemes
based on the ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-
OAEP, and proved their security. It might be interesting to consider the application of
our proposed primitive, or construct other schemes for universally anonymizable public-key

encryption.
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