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Abstract

In this thesis, we study the security property for encryption and signature schemes, called

“anonymity.” Roughly speaking, it is said that an encryption scheme provides the anonymity

when the eavesdropper, in possession of a ciphertext, cannot determine who is the receiver

of the ciphertext. That is, the receiver is anonymous from the point of view of the eaves-

dropper. For signature schemes, it is said that a signature scheme provides the anonymity

when it is infeasible to determine who produced the signature. Some signature schemes

with special functionality, such as undeniable and confirmer signature schemes and ring

signature schemes, require the anonymity property.

In the first half of this thesis, we study the techniques which can be used to obtain

the RSA-based schemes with the anonymity property. In order to construct the schemes

for encryption or signature with the anonymity property, it is necessary that the space of

ciphertexts or signatures is common to each user. We propose two techniques for anonymity,

and by using these techniques, the space of ciphertexts or signatures of RSA based schemes

can be common to each user. We also construct the schemes for encryption, undeniable and

confirmer signature, and ring signature, by applying our proposed techniques, and show

the advantage and the disadvantage of the previous and our proposed schemes.

In the second half of this thesis, we carry on further research with respect to the

anonymity property of encryption schemes. We first construct a family of Paillier’s trap-

door permutations with a common domain, and propose the schemes for public-key en-

cryption with our proposed families of trap-door permutations. We next propose a new

security notion for public-key encryption with anonymity, called “strong anonymity,” and

show the relationships between the data-privacy and the key-privacy for public-key encryp-

tion schemes. Furthermore, we propose a new security notion of plaintext awareness in the

two-key setting, called PATK, and show that PATK implies IK-CCA, which is considered
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Abstract

as the required security level with respect to the anonymity property. We also propose the

first generic conversion scheme for the anonymity from IK-CPA, which is a weaker secu-

rity notion than IK-CCA, to IK-CCA. Finally, we formalize a special type of public-key

encryption schemes called a universally anonymizable public-key encryption scheme. We

then propose the universally anonymizable public-key encryption schemes based on the

ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP, and

prove their security.
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CHAPTER 1

Introduction

In this thesis, we study the security property for encryption and signature schemes, called

“anonymity.” Roughly speaking, it is said that an encryption scheme provides the anonymity

when the eavesdropper, in possession of a ciphertext, cannot determine who is the receiver

of the ciphertext. That is, the receiver is anonymous from the point of view of the eaves-

dropper. For signature schemes, it is said that a signature scheme provides the anonymity

when it is infeasible to determine who produced the signature. Some signature schemes

with special functionality, such as undeniable and confirmer signature schemes and ring

signature schemes, require the anonymity property.

In Chapters 2 to 5, we study the techniques which can be used to obtain the RSA-based

schemes with the anonymity property. We propose two techniques for anonymity. We also

construct the schemes for public-key encryption, undeniable and confirmer signature, and

ring signature, by applying our proposed techniques.

In Chapter 6, We construct a family of Paillier’s trap-door permutations and that with a

common domain. We also propose the schemes for public-key encryption with our proposed

families of trap-door permutations.

In Chapter 7, we propose a new security notion for public-key encryption with anonymity,

called “strong anonymity,” and show the relationships between the data-privacy and the

key-privacy for public-key encryption schemes.

In Chapter 8 we propose a new security notion of plaintext awareness in the two-key

setting, called PATK, and show that PATK implies IK-CCA. We also propose the first
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CHAPTER 1. Introduction

generic conversion scheme for the anonymity from IK-CPA to IK-CCA.

In Chapter 9, we formalize a special type of public-key encryption schemes called a

universally anonymizable public-key encryption scheme. We then propose the universally

anonymizable public-key encryption schemes based on the ElGamal encryption scheme,

the Cramer-Shoup encryption scheme, and RSA-OAEP, and prove their security.

1.1 Techniques and Schemes for Public-Key Encryption and

Signature with Anonymity

1.1.1 Background

We review public-key encryption, undeniable and confirmer signature, and ring signature,

and the anonymity properties for them.

Public-Key Encryption In 1976, Diffie and Hellman published the idea of public-key

cryptography in their famous paper [36]. They introduced a public-key method for key

agreement which is in use to this day. In addition, they described how digital signatures

would work, and proposed, as an open question, the search for such a function. The first

public-key cryptosystem that could function as both key agreement and as digital signature

was the RSA cryptosystem published in 1978 by Rivest, Shamir, and Adleman [75]. The

RSA cryptosystem provides encryption and digital signatures and is the most popular and

widely used public-key cryptosystem today.

Until up now, many public-key encryption schemes have been proposed, and the security

notions for public-key encryption have also been proposed. A convenient way to define the

security notions for public-key encryption is by considering separately the various possible

goals and the various possible attack models, and then obtain each definition as a pairing

of a particular goal and a particular attack model.

The classical security goal (requirement) of public-key encryption schemes is that it pro-

vides privacy of the encrypted data. Popular formalizations such as the indistinguishability

of encryptions by Goldwasser and Micali [48], or the non-malleability by Dolev, Dwork,

and Naor [37]. The indistinguishability (IND) formalizes that an adversary, given a ci-

phertext c, is not able to learn any information about the plaintext. The non-malleability

(NM) formalizes that an adversary’s inability, given a challenge ciphertext c, to output

a different ciphertext c′ such that the plaintexts m, m′ underlying these two ciphertexts

are meaningfully related. (For example, m′ = m + 1.) It captures a sense in which ci-

phertexts can be tamper-proof. On the other hand, popular formalizations of the attack

models are the chosen plaintext attack (CPA) and the adaptive chosen ciphertext attack

(CCA). Under the CPA setting, the adversary can obtain ciphertexts of plaintexts of her

2
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choice. In the public-key setting, giving the adversary the public key suffices to capture

this attack. Under the CCA setting [73], the adversary gets (in addition to the public key)

access to an oracle for the decryption function. The only restriction is that the adversary

cannot ask c to the decryption oracle. (The attack is called adaptive because queries to

the decryption oracle can depend on the challenge c.) From the above argument, we can

consider four security notions, IND-CPA, IND-CCA, NM-CPA, NM-CCA. Bellare, Desai,

Pointcheval, and Rogaway [4] discussed the relationships between these security notions.

The widely admitted appropriate security level for public-key encryption is the indistin-

guishability against the adaptive chosen ciphertext attack (IND-CCA). There are many

public-key encryption schemes proved IND-CCA2, such as [26, 7], etc.

Bellare, Boldyreva, Desai, and Pointcheval [3] proposed a new security requirement of

the encryption schemes called “key-privacy” or “anonymity.” It asks that the encryption

provide (in addition to privacy of the data being encrypted) privacy of the key under which

the encryption was performed. That is, the receiver is anonymous from the point of view

of the adversary.

Anonymous encryption schemes have many applications. For example, anonymous en-

cryption schemes have arisen in the context of mobile communications. If a mobile user

uses an anonymous encryption scheme, he can keep his identity private from an eaves-

dropping adversary. A particular case of this is anonymous authenticated key exchange

protocol such as SKEME (Krawczyk [57]). The encryption scheme in SKEME must have

the anonymity property. Anonymous credential system (Camenisch and Lysyanskaya [15])

enables users to control the dissemination of information about themselves. It is required

to be infeasible to correlate transactions carried out by the same user. They use a ver-

ifiable circular encryption scheme that needs to have the anonymity property. Sako [77]

proposed an auction protocol. They express a bid as an encryption of a fixed message,

with the key to encrypt it corresponding to the value of the bid. In their scheme, if the

encryption scheme has the anonymity property, the value of the bid is protected from the

other bidders.

A simple observation that seems to be folklore is that standard RSA encryption, namely,

a ciphertext is xe mod N where x is a plaintext and (N, e) is a public key, does not provide

anonymity, even when all moduli in the system have the same length. Suppose an adversary

knows that the ciphertext y is created under one of two keys (N0, e0) or (N1, e1), and

suppose N0 ≤ N1. If y ≥ N0 then the adversary bets it was created under (N1, e1), else

the adversary bets it was created under (N0, e0). It is not hard to see that this attack has

non-negligible advantage. To construct the schemes with anonymity, it is necessary that

the space of ciphertexts is common to each user.

In [3], Bellare, Boldyreva, Desai, Pointcheval provided the key-privacy encryption

3
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scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [7], Fujisaki,

Okamoto, Pointcheval, and Stern [43]), and made the space of ciphertexts common to each

user by repeating the evaluation of the RSA-OAEP permutation f(x, r) with plaintext x

and random r, each time using different r until the value is in the safe range (See Sec-

tion 3.2.). For deriving a value in the safe range, the number of the repetition would be

very large (the value of the security parameter). In fact, their algorithm can fail to give a

desired output with some (small) probability.

Undeniable and Confirmer Signature Digital signature is an important tool for re-

alizing security in open distributed systems and in electronic commerce as they guarantee

the authenticity of data. In the common model, a digital signature can be verified by

everyone (universal verifiability) and therefore its validity cannot be denied by the signer

(non-repudiation). However, the universal verifiability property of digital signatures is not

always a desirable property. For example, consider the situation that a signature contains

some confidential agreement or private or personal information. In these case, limiting the

ability of third parties to verify the validity of signatures is an important goal.

Undeniable signature proposed by Chaum and Antwerpen [22, 20] is a solution to this

problem. Undeniable signature scheme is non-self-authenticating signature scheme, that is,

the signatures can only be verified by conducting a confirmation protocol with the signer,

assuming the signer participates. However, if a signature is only verifiable with the aid of

a signer, a dishonest signer may refuse to authenticate a genuine document. Undeniable

signature solves this problem by adding a new component called the denial (disavowal)

protocol in addition to the normal components of signature and verification. Chaum also

provided confirmer signature [21] which is undeniable signature where signatures may also

be verified by interacting with an entity called the confirmer who has been designated

by the signer, and many undeniable and confirmer signature schemes have been proposed

[47, 63, 16, 45]. The standard security requirements for undeniable and confirmer signature

are the unforgeability of signatures, and the correctness and soundness of the confirmation

and denial protocols.

In 2003, Galbraith and Mao proposed a new security notion of undeniable and confirmer

signature named “anonymity” in [44]. Informally, this security property is as follows.

Imagine a system with n users and suppose an adversary is given a valid message-signature

pair and is asked to determine which user generated the signature. By running signature

confirmation or denial protocols with a given user (or their designated confirmer) one can

determine whether or not the user generated the signature. An undeniable or confirmer

signature scheme has the anonymity property if it is infeasible to determine whether a

user is or is not the signer of the message without interacting with the user or with the

4
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n−1 other users, with a given message-signature pair. In [44], Galbraith and Mao pointed

out that the RSA-based undeniable and confirmer signature scheme proposed by Gennaro,

Krawczyk and Rabin [47] does not satisfy the anonymity property, and provided a new

undeniable and confirmer signature scheme with anonymity. Since their scheme is based

on the RSA function, it is necessary that the space of signatures is common to each user,

similar to the case of public-key encryption schemes with anonymity. They made the space

of signatures common to each user by encoding the message to an N -ary representation and

applying the standard RSA permutation to the low-order digits where N is a public key

for each user (See Section 4.2.). This technique was originally proposed by Desmedt [35].

Ring Signature The general notion of group signature was introduced by Chaum and

van Heyst [23]. In such a scheme, a trusted group manager predefines certain groups of

users and distributes specially designed keys to their members. Individual members can

then use these keys to anonymously sign messages on behalf of their group. That is, the

receiver of the signature can verify that it is a valid signature of the group, but cannot find

which member of the group produced the signature (anonymity). Though the signatures

produced by different group members look indistinguishable to the verifiers, not to the

group manager who can revoke the anonymity of misbehaving signers.

In 2001, Rivest, Shamir, and Tauman [76] proposed the notion of ring signature schemes.

These are simplified group signature schemes which have only users and no managers.

Unlike group signature, ring signature has no group managers, no setup procedures, no

revocation procedures, and no coordination. The signer does not need the knowledge,

consent, or assistance of the other ring members to put them in the ring. All the signer

needs is knowledge of their regular public keys. To produce a ring signature, the actual

signer declares an arbitrary set of possible signers that includes himself, and computes the

signature entirely by himself using only his secret key and the other’s public keys. Then,

the receiver of the signature can verify that it is a valid signature of the ad hoc group,

but cannot find which member of the group produced the signature. Here, since the group

manager does not exist, no one revoke the anonymity of the actual signer (unless he decides

to expose himself).

They also proposed the efficient schemes based on RSA and Rabin. In their RSA-based

scheme, the trap-door RSA permutations of the various ring members will have domains

of different sizes. This makes it awkward to combine the individual signatures, so one

should construct some trap-door one-way permutation which has a common domain for

each user. Intuitively, in the ring signature scheme, Rivest, Shamir, and Tauman solved this

problem by encoding the message to an Ni-ary representation and applying an standard

RSA permutation f to the low-order digits where Ni is a public key for each user (See

5
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Section 5.2.). This is the same kind of the technique employed in the undeniable and

confirmer signature by Galbraith and Mao. As mentioned in [76], for deriving a secure

permutation g with a common domain, the domain of g would be 160 bits larger than that

of f .

1.1.2 Our Contribution on Techniques

From the previous results mentioned above, we can find two techniques, repeating, expand-

ing for anonymity of cryptosystems based on RSA.

Repeating Repeating the evaluation of the encryption (respectively the signing) with

plaintext x (resp. message m), random r, and the RSA function, each time using

different r until the value is smaller than any public key N of each user.

In [3], Bellare, Boldyreva, Desai, and Pointcheval used this technique for the encryp-

tion scheme.

Expanding Doing the evaluation of the encryption (respectively the signing) with plain-

text x (resp. message m), random r, and the RSA function, and expanding it to the

common domain.

This technique was proposed by Desmedt [35]. In [44], Galbraith and Mao used this

technique for the undeniable signature scheme. In [76], Rivest, Shamir, and Tauman

also used this technique for the ring signature scheme.

In this thesis, we propose two new techniques for obtaining the anonymity property of

RSA-based cryptosystems.

An RSA Family of Trap-Door Permutation with a Common Domain We first

consider an underlying primitive element common to the key-privacy encryption and the

ring signature schemes, that is, families of trap-door permutations with a common domain.

As we have seen before, for a standard RSA family of trap-door permutations denoted by

RSA, even if all of the functions in a family use RSA moduli of the same size (the same

number of bits), it will have domains with different sizes. In this thesis, we construct an

RSA family of trap-door permutations with a common domain denoted by RSACD. The

domain and range of RSACD are common to each user when each user has an RSA modulus

of the same size. We also prove the properties of RSACD, that is, we show that the θ-partial

one-wayness (Roughly speaking, given a function f and an element y = f(x), it is hard

to compute a θ fraction of the most significant bits of x.) of RSACD is equivalent to the

one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to

the one-wayness of RSA. Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the

θ-partial one-wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5. Thus,
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1.1. Techniques and Schemes for Public-Key Encryption and Signature with Anonymity

RSA is θ-partial one-way RSACD is θ-partial one-way

�

�[43]
�

�[this thesis]

RSA is one-way

[this thesis]
�

� RSACD is one-way

Figure 1.1: Relationships between RSA and RSACD for θ > 0.5.

the relations in Figure 1.1 are satisfied for θ > 0.5. From these relations, we have that the

θ-partial one-wayness of RSACD is equivalent to the one-wayness of RSA. This property is

useful to construct the public-key encryption scheme with anonymity.

By using the RSACD function, we propose a new technique for obtaining the anonymity

property.

RSACD Doing the evaluation of the encryption (respectively the signing) with plaintext

x (resp. message m), random r, and the RSACD function.

The Sampling Twice Technique We next propose a new technique for obtaining the

anonymity property of RSA-based cryptosystems, called “sampling twice.” We propose

an algorithm ChooseAndShift as follows. It takes two numbers x1, x2 ∈ ZN as input and

returns a value y ∈ [0, 2k) where |N | = k, and if x1 and x2 are independently and uniformly

chosen from ZN then y is uniformly distributed over [0, 2k).

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k − N)

return

{
x1 with probability 1

2

x1 + N with probability 1
2

elseif (2k − N ≤ x1, x2 < N)

return x1

else

y1 ← min{x1, x2}; y2 ← max{x1, x2}
%%% Note that 0 ≤ y1 < 2k − N and 2k − N ≤ y2 < N. %%%

return

⎧⎪⎪⎨
⎪⎪⎩

y1 with probability (1
2 + N

2k+1 ) × 1
2

y1 + N with probability (1
2 + N

2k+1 ) × 1
2

y2 with probability 1
2 − N

2k+1

By using the algorithm ChooseAndShift, we propose the sampling twice technique.

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice

with plaintext x (resp. message m), random r1 and r2, and the RSA function, and

7
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Repeating Expanding RSACD Sampling Twice

Encryption Bellare et al. this thesis this thesis this thesis

Undeniable and Confirmer Signature this thesis Galbraith et al. - this thesis

Ring Signature this thesis Rivest et al. this thesis this thesis

Figure 1.2: The previous and our proposed schemes.

applying our proposed algorithm ChooseAndShift for the two resulting values.

1.1.3 Our Contribution on Schemes

We then propose the schemes for encryption, undeniable and confirmer signature, and ring

signature, by applying our proposed techniques. More precisely, we propose the schemes

for encryption and ring signature with the RSACD function, and those for encryption,

undeniable and confirmer signature, and ring signature with the sampling twice technique.

We also prove the anonymity property and other required security of the schemes. Un-

fortunately, we have not succeeded to construct the undeniable and confirmer signature

scheme with anonymity by applying the RSACD function.

Furthermore, we present the previously unproposed schemes with the anonymity prop-

erty by applying the repeating and expanding techniques. We also prove the anonymity

property and other required security of the schemes (See Figure 1.2.).

We summarize the (dis)advantage of the schemes with four techniques.

The scheme with repeating is efficient with respect to the sizes of ciphertexts and

signatures, the computational costs to encrypt messages and to sign messages in the average

case, and those to decrypt ciphertexts and to verify signatures. However, it is inefficient

with respect to the computational costs to encrypt messages and to sign messages in the

worst case. In order to obtain the anonymity property, it is necessary for each user to

choose a public key with almost the same size.

The scheme with expanding provides anonymity even if each user uses the public key of

different length. It is efficient with respect to the computational costs to encrypt messages,

to sign messages, to decrypt ciphertexts, and to verify signatures. However, the sizes of

ciphertexts and signatures are larger than those of the other schemes.

The scheme with RSACD is efficient with respect to the sizes of ciphertexts and signa-

tures, and the computational costs to encrypt messages and to sign messages. However, it

is inefficient with respect to the computational costs to decrypt a ciphertext and to verify

a signature. In order to obtain the anonymity property, it is necessary for each user to

choose a public key with exact the same size.

The scheme with sampling twice is efficient with respect to the sizes of ciphertexts and
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1.2. A Family of Paillier’s Trap-Door Permutations and its Applications to Public-Key
Encryption with Anonymity

RSAN is one-way
[68]

�
� Paillier is one-way

[this thesis]
� PCD is one-way

�

� [43]
�

� [this thesis]
�

� [this thesis]

RSAN is

θ-partial one-way

Paillier is

θ-partial one-way

PCD is

θ-partial one-way

Figure 1.3: Relationships between RSAN , Paillier, and PCD for θ > 0.5.

signatures, the computational costs to decrypt ciphertexts and to verify signatures, and the

computational costs to encrypt messages and to sign messages in the worst case. However,

the number of exponentiations for encryption or signing is two, while that of the other

schemes is one or 1.5 in the average case. Similar to the scheme with RSACD, in order to

obtain the anonymity property, it is necessary for each user to choose a public key with

exact the same size.

1.2 A Family of Paillier’s Trap-Door Permutations and its

Applications to Public-Key Encryption with Anonymity

Background. In [68], Paillier provided a public-key encryption scheme based on the

problem of computing high-degree residuosity classes modulo N2 where N is a typical

RSA modulus. His encryption scheme is based on the permutation (m, r) �→ gmrN mod

N2. Paillier proved that his encryption scheme is IND-CPA if and only if the Decisional

Composite Residuosity Problem (given w ∈ Z
∗
N2 , to decide whether w is an N -th residue

modulo N2 or not) is hard, and that the Decisional Composite Residuosity Problem is hard

if the RSA problem is hard. Paillier also provided a trap-door one-way bijective function,

and proved that the function is one-way if and only if the problem of extracting N -th roots

modulo N is hard.

Our Contribution. In this thesis, we focus on the four techniques described above in

the case using the Paillier’s bijective function instead of the RSA function. We slightly

modify his function and construct a family of Paillier’s trap-door permutations denoted by

Paillier. We also construct a family of Paillier’s trap-door permutations with a common

domain denoted by PCD, and prove the relations in Figure 1.3 for θ > 0.5. Here, RSAN

denotes an RSA family of trap-door permutations with the fixed exponent N .

We prove that the one-wayness of Paillier is reduced to that of PCD. The proof is similar

to that for RSA and RSACD. On the other hand, we cannot prove the partial one-wayness

of Paillier by directly applying a similar argument for that of RSA in [43]. Furthermore,

although the construction of PCD is similar to that of RSACD, we cannot prove the partial

9
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one-wayness of PCD by directly applying a similar argument for that of RSACD.

We also apply Paillier and PCD to encryption, and obtain Paillier-OAEP (OAEP with

Paillier’s trap-door permutation) with repeating, that with expanding, that with sampling

twice, and PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common do-

main). We prove that the anonymity and the indistinguishability of Paillier-OAEP with

repeating, that with expanding, and that with sampling twice can be reduced directly

to the θ-partial one-wayness of Paillier. We also prove that the anonymity and the in-

distinguishability of PCD-OAEP is reduced directly to the θ-partial one-wayness of PCD.

From the relations in Figure 1.3, our proposed schemes provide the anonymity and the

indistinguishability assuming that RSAN is one-way.

1.3 Relationships between Data-Privacy and Key-Privacy

Background. We have considered two kinds of security notions, data-privacy and key-

privacy. Popular formalizations for data-privacy, such as indistinguishability (IND) under

either the chosen plaintext attack (CPA) or the adaptive chosen ciphertext attack (CCA),

is directed at capturing various data-privacy requirements. On the other hand, the security

notions for key-privacy, such as indistinguishability of keys (IK) under either the chosen

plaintext attack or the adaptive chosen ciphertext attack, asks that an encryption scheme

provides privacy of the key under which the encryption was performed.

On the data-privacy and key-privacy, Halevi [49] provided a simple sufficient condition

for an public-key encryption scheme which meets IND to meet IK. It is, roughly speak-

ing, for any two public-key pk0, pk1, the distribution of ciphertexts of random messages

under the key pk0 and that under the key pk1 are statistically close. In [2], Abdalla et.

al. extended the Halevi’s condition to identity-based encryption. They weakened the sta-

tistical (i.e. information-theoretic) requirement of [49] to a computational one. We call

the computational version of the Halevi’s condition for public-key encryption schemes the

anonymity with random messages (IKR).

Our Contribution. We revisit the definition of key-privacy by Bellare, Boldyreva, Desai,

and Pointcheval [3]. In the experiment of the definition by [3], the adversary chooses only

one message m ∈ MSPC(pk0) ∩ MSPC(pk1) and receives a ciphertext of m encrypted with

one of two keys pk0 and pk1. Then the adversary tries to determine under which key the

encryption was performed. Therefore, their definition guarantees the anonymity property

only when the message is chosen from the set MSPC(pk0) ∩ MSPC(pk1).

However, in some public-key encryption schemes, the ciphertext space may be common

even if the message spaces for each public-key are different, and such schemes may provide

the anonymity property.

10
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sIK IND

IK

IKR & IND IKR

Figure 1.4: Relationships between data-privacy and key-privacy.

In this thesis, to consider this situation, we propose a new security notion for public-key

encryption, called “strong anonymity.” In the experiment of our definition, the adversary

chooses two messages m0 and m1 where m0 and m1 are in the message spaces for pk0 and

pk1, respectively, and receives either a ciphertext of m0 encrypted with pk0 or a ciphertext

of m1 encrypted with pk1. Thus, our security notion captures the situation described

above.

We then show the relationships between data-privacy and key-privacy. We consider the

indistinguishability (IND) as the security notion for the data-privacy, and the anonymity

(IK), the anonymity with random messages (IKR), and the strong anonymity (sIK) as

those for the key-privacy.

We show the relationships between data-privacy and key-privacy in Figure 1.4. These

relations hold under the chosen message attack and the adaptive chosen ciphertext attack.

In this figure, for notions of security A and B,

• “A � B” means that A implies B, that is, for any public-key encryption scheme

which is secure in the sense of A is also secure in the sense of B (We denote it as

A ⇒ B.), and

• “A � B” means that A does not imply B, that is, there exists a public-key en-

cryption scheme which is secure in the sense of A and not secure in the sense of B

(We denote it as A 	⇒ B.).

In this thesis, we prove the relations in Figure 1.5. In this figure, the number on the

arrow refers to the section of this thesis. By using the relations in Figure 1.5 and trivial

relations (IKR-atk ∧ IND-atk ⇒ IKR-atk, IKR-atk ∧ IND-atk ⇒ IND-atk), the relations

which are in Figure 1.4 and not in Figure 1.5 are determined automatically.
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sIK IND

IK

IKR & IND IKR

7.2

7.1

7.3.1

7.3.6

7.3.2

7.3.3

7.3.4 7.3.5

Figure 1.5: Relationships proved in this thesis.

From this figure, we can see that sIK is very strong security notion. For example, IK

does not imply IND, but sIK implies IND. Furthermore, we can also see that sIK implies

IKR. Therefore, sIK is equivalent to IKR ∧ IND, while IK is weaker than IKR ∧ IND.

1.4 Plaintext Awareness in the Two-Key Setting and a Generic

Conversion for Encryption with Anonymity

Background. As mentioned before, the classical security requirement of public-key en-

cryption schemes is that it provides privacy of the encrypted data. The widely admitted

appropriate security level for public-key encryption is the indistinguishability against the

adaptive chosen ciphertext attack (IND-CCA). A promising way to construct such a public-

key encryption scheme is to convert it from primitives which are secure in a weaker sense

such as one-wayness (OW), IND-CPA, etc.

Bellare and Rogaway [7] proposed a generic and simple conversion scheme from a one-

way trapdoor permutation into a public-key encryption scheme. The scheme created in this

way is called OAEP. Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that OAEP

with a partial one-way trapdoor permutation is secure in the sense of IND-CCA. The

OAEP conversion has several variants, such as SAEP [9], OAEP+ [78], etc.

Fujisaki and Okamoto [42] proposed a simple conversion scheme from weak public-key

and symmetric-key encryption schemes into a public-key encryption scheme which is secure

in the sense of IND-CCA. This scheme was used to construct the identity-based encryption

scheme proposed by Boneh and Franklin [11]. Pointcheval [70] proposed a similar conversion

scheme.
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Anonymity

Recently, many conversion schemes which depend on gap problems [67], such as, RE-

ACT [66], GEM [25], and the schemes in [28], are proposed.

The public-key encryption schemes derived from the conversion schemes [7, 43, 9, 78,

42, 70, 66, 25, 28] described above meet not only IND-CCA, but also the notion of plaintext

awareness (PA). The notion of PA is first proposed by Bellare and Rogaway [7] and refined

by Bellare, Desai, Pointcheval, and Rogaway [4] which is, roughly speaking, that nobody

can produce a new ciphertext without knowing the plaintext. We say that a public-key

encryption scheme is secure in the sense of PA if it is secure in the sense of IND-CPA and

there exists a knowledge extractor which is a formalization of the above property. In [4],

they proved that PA implies IND-CCA. Since it looks much easier to prove that a public-

key encryption scheme is secure in the sense of PA than to prove directly it is secure in the

sense of IND-CCA, the notion of PA is useful to prove the security of public-key encryption

schemes.

Recently, Bellare and Palacio [5] discussed the problem of defining the notion of plaintext-

awareness without random oracles and of achieving its concrete schemes.

On the other hand, the notion of PA might be too strong. The schemes described above

get a redundant construction. In [69, 29], the conversion schemes without redundancy were

proposed. They are secure in the sense of IND-CCA, but does not meet PA. Fujisaki [41]

introduced another security notion, called plaintext simulatability (PS). It implies IND-

CCA, similar to PA, however, it is a properly weaker notion than PA.

Our Contribution. In this thesis, we propose the notion of plaintext awareness in the

two-key setting, called PATK. We say that the public-key encryption scheme Π is secure

in the sense of PATK if Π is secure in the sense of IK-CPA and there exists a knowledge

extractor for PATK. There are some differences between the definition of a knowledge

extractor for PA in [4] and that for PATK. We can see that if there exists a knowledge

extractor K for PATK of Π, then we can use K as a knowledge extractor for PA of Π. That

is, if the public-key encryption scheme Π is secure in the sense of PATK and IND-CPA,

then Π is secure in the sense of PA. However, it is not clear that we can use the knowledge

extractor for PA of Π as that for PATK of Π.

We also prove that if a public-key encryption scheme is secure in the sense of PATK,

then it is also secure in the sense of IK-CCA. Since it looks much easier to prove that a

public-key encryption scheme is secure in the sense of PATK than to prove directly that

it is secure in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity

property of public-key encryption schemes.

We also propose the first generic conversion scheme for the anonymity from IK-CPA

to IK-CCA. We employ the Fujisaki-Okamoto conversion scheme [42]. The public-key
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encryption scheme derived from their conversion scheme is secure in the sense of IND-CCA

in the random oracle model when it consists of a public-key encryption scheme Πpub and

a symmetric-key encryption scheme Πsym where

• Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and

• Πsym is secure in the sense of find-guess (FG).

We prove that the scheme derived from the Fujisaki-Okamoto conversion scheme with the

above two and the following two assumptions is secure in the sense of IK-CCA in the

random oracle model.

• In Πpub, the message space and the randomness space are common to each user (each

public-key).

• Πpub is secure in the sense of IK-CPA.

We can get the public-key encryption scheme which is secure in the sense of IND-CCA and

IK-CCA if we assume the above four conditions.

1.5 Universally Anonymizable Public-Key Encryption

Background. Consider the following situation. In order to send e-mails, all members of

the company use the encryption scheme which does not provide the anonymity property.

They consider that e-mails sent to the inside of the company do not have to be anonymized

and it is sufficient to be encrypted the data. However, when e-mails are sent to the outside

of the company, they want to anonymize them for preventing the eavesdropper on the

public network.

A trivial answer for this problem is that all members use the encryption scheme with the

anonymity property. However, generally speaking, we require some computational costs

to create ciphertexts with the anonymity property. In fact, the RSA-based anonymous

encryption schemes proposed in [3] and in this thesis, which are based on RSA-OAEP, are

not efficient with respect to the encryption cost or the size of ciphertexts, compared with

RSA-OAEP (See Figure 1.6. Here, k, k0, k1 are security parameters and we assume that

N is uniformly distributed in (2k−1, 2k).). Since the members do not require to anonymize

the e-mails, it would be better to use the standard encryption scheme within the company.

Our Contribution. We propose another way to solve this. Consider the situation that

not only the person who made the ciphertexts, but also anyone can transform the encrypted

data to those with the anonymity property without decrypting these encrypted data. If we

have this situation, we can make an e-mail gateway which can transform encrypted e-mails
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RSA-OAEP Sampling Twice RSA-RAEP [3] RSACD Expanding

anonymity No Yes Yes Yes Yes

# of mod. exp. to encrypt

(average / worst)
1 / 1 2 / 2 1.5 / k1 1.5 / 2 1 / 1

# of random bits to encrypt

(average / worst)
k0

2k0 + k + 3

/ 2k0 + k + 3
1.5k0 / k1k0 1.5k0 / 1.5k0

k0 + 160

/ k0 + 160

size of ciphertexts k k k k k + 160

Figure 1.6: The costs of the encryption schemes.

to those with the anonymity property without using the corresponding secret key when

they are sent to the outside of the company.

Furthermore, we can use this e-mail gateway in order to guarantee the anonymity

property for e-mails sent to the outside of the company. The president of the company

may consider that all e-mails sent to the outside of the company should be anonymized.

In this case, even if someone tries to send e-mails to the outside of the company without

anonymization, the e-mails passing through the e-mail gateway are always anonymized.

In this thesis, in order to formalize this idea, we propose a special type of public-key en-

cryption scheme called a universal anonymizable public-key encryption scheme. A universal

anonymizable public-key encryption scheme consists of a standard public-key encryption

scheme PE and two additional algorithms, that is, an anonymizing algorithm UA and a

decryption algorithm DA for anonymized ciphertexts. We can use PE as a standard en-

cryption scheme which is not necessary to have the anonymity property. Furthermore, in

this scheme, by using the anonymizing algorithm UA, anyone who has a standard cipher-

text can anonymize it with its public key whenever she wants to do that. The receiver can

decrypt the anonymized ciphertext by using the decryption algorithm DA for anonymized

ciphertexts. Then, the adversary cannot know under which key the anonymized ciphertext

was created.

To formalize the security properties for universal anonymizable public-key encryption,

we define three requirements, the key-privacy, the data-privacy on standard ciphertexts,

and that on anonymized ciphertexts.

We then propose the universal anonymizable public-key encryption schemes based on

the ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP,

and prove their security.

We show the key-privacy property of our schemes by applying an argument in [3]

with modification. Though Bellare, Boldyreva, Desai, and Pointcheval [3] proved that the

ElGamal and the Cramer-Shoup encryption schemes provide the anonymity property when

all of the users use a common group, the argument in [3] for these schemes depends heavily

on the situation where all of the users employ a common group. However, in our discrete-
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log based schemes, we do not use the common group for obtaining the key-privacy property.

Therefore, we cannot straightforwardly apply their argument to our schemes. To prove the

key-privacy property of our schemes, we employ the idea described in [26] by Cramer and

Shoup, where we encode the elements of QRp (a group of quadratic residues modulo p)

where p = 2q + 1 and p, q are prime to those of Zq. This encoding plays an important

role in our schemes. We also employ the expanding technique. With this technique, if we

get the ciphertext, we expand it to the common domain. This technique was proposed by

Desmedt [35]. In [44], Galbraith and Mao used this technique for the undeniable signature

scheme. In [76], Rivest, Shamir, and Tauman also used this technique for the ring signature

scheme.

1.6 Organization

The organization of this thesis is as follows.

In Chapter 2, after reviewing the repeating and the expanding techniques for obtaining

the schemes for public-key encryption and signature with anonymity, we construct an RSA

family of trap-door permutations with a common domain, and show its property. We also

construct the algorithm ChooseAndShift and propose the sampling twice technique. By

applying our proposed techniques, we propose the schemes for public-key encryption in

Chapter 3, those for undeniable and confirmer signature in Chapter 4, and those for ring

signature in Chapter 5. In Chapters 3 to 5, we also propose the previously unproposed

schemes with anonymity by applying the repeating and expanding techniques.

In Chapter 6, We construct a family of Paillier’s trap-door permutations and that

with a common domain. We also propose the schemes for public-key encryption with our

proposed families of trap-door permutations. In Chapter 7, we propose a new security

notion called “strong anonymity,” and show the relationships between the data-privacy

and the key-privacy for public-key encryption schemes. In Chapter 8 we propose the

new security notion of plaintext awareness in the two-key setting, called PATK, and show

that PATK implies IK-CCA. We also propose the first generic conversion scheme for the

anonymity from IK-CPA to IK-CCA. In Chapter 9, we formalize a special type of public-

key encryption scheme called a universally anonymizable public-key encryption scheme.

We also propose the universally anonymizable public-key encryption schemes based on the

ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-OAEP, and

prove their security. We conclude in Chapter 10.
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CHAPTER 2

Techniques for Anonymity

In this chapter, we discuss the techniques for obtaining the schemes for public-key encryp-

tion and signature with anonymity. We review the repeating and expanding techniques for

obtaining the schemes for public-key encryption and signature with anonymity. We then

construct an RSA family of trap-door permutations with a common domain, and show

its property. We also construct the algorithm ChooseAndShift and propose the sampling

twice technique.

The organization of this chapter is as follows. In Section 2.1, we review the repeating

technique which is used in the public-key encryption scheme by Bellare, Boldyreva, Desai,

and Pointcheval [3]. In Section 2.2, we review the expanding technique which is used

in the public-key encryption scheme by Bellare, Boldyreva, Desai, and Pointcheval [3]. In

Section 2.3, we construct an RSA family of trap-door permutations with a common domain,

and show its property. In Section 2.4, we construct the algorithm ChooseAndShift and

propose the sampling twice technique.

2.1 The Repeating Technique

In this section, we review the repeating technique.

Repeating Repeating the evaluation of the encryption (respectively the signing) with

plaintext x (resp. message m), random r, and the RSA function, each time using
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different r until the value is smaller than any public key N of each user.

In [3], Bellare, Boldyreva, Desai, and Pointcheval used this technique for their public-key

encryption scheme.

For example, suppose that each user uses an RSA modulus of length k. We set the

ciphertext space (or the signature space) to {0, 1}k−1. Then, for any N where |N | = k,

if the ciphertext is uniformly distributed over Z
∗
N , then the distribution of the outputs by

the repeating technique is almost the same as the uniform distribution over {0, 1}k−1.

2.2 The Expanding Technique

In this section, we review the expanding technique.

Expanding Doing the evaluation of the encryption (respectively the signing) with plain-

text x (resp. message m), random r, and the RSA function, and expanding it to the

common domain.

This technique was proposed by Desmedt [35]. In [44], Galbraith and Mao used this

technique for the undeniable signature scheme. In [76], Rivest, Shamir, and Tauman also

used this technique for the ring signature scheme.

For example, suppose that each user uses an RSA modulus of length k. Then, we set

the ciphertext space (or the signature space) to {0, 1}k+kb . In the expanding technique,

we expand the ciphertext (or the signature) c ∈ Z
∗
N to the common domain {0, 1}k+kb . In

particular, we choose t
R← {0, 1, 2, . . . , �(2k+kb − c)/N�} and set c′ ← c+ tN . Then, for any

N where |N | = k, if c is uniformly distributed over ZN , then the distribution of the outputs

by the expanding technique is statistically indistinguishable from the uniform distribution

over {0, 1}k+kb , where the statistically distance is less than 1/2kb−1. Therefore, for any N

where |N | = k, if kb is sufficiently large and c is uniformly distributed over Z
∗
N , then the

distribution of the outputs by the expanding technique is almost the same as the uniform

distribution over {0, 1}k+kb .

2.3 An RSA family of Trap-Door Permutation with a Com-

mon Domain

In this section, we propose an RSA family of trap-door permutations with a common do-

main denoted by RSACD, and prove that the θ-partial one-wayness of RSACD is equivalent

to the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent

to the one-wayness of RSA.
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2.3. An RSA family of Trap-Door Permutation with a Common Domain

2.3.1 Prelimilaries

In this section, we review the definitions of families of functions, families of trap-door

permutations, and θ-partial one-wayness. We also describe the standard RSA family of

trap-door permutations denoted by RSA.

Notations In this thesis, we use the following notations. If A is a probabilistic algorithm,

then A(x1, x2, · · · ; r) is the result of running A on inputs x1, x2, · · · and coins r. We

let y ← A(x1, x2, · · · ) denote the experiment of picking r at random and letting y be

A(x1, x2, · · · ; r). If S is a finite set then x
R← S is the operation of picking an element

uniformly from S. If α is not an algorithm then x ← α is a simple assignment statement.

We describe the definitions of families of functions and families of trap-door permuta-

tions.

Definition 2.1 (families of functions [3]). A family of functions F = (K,S, E) is specified

by three algorithms.

• The randomized key-generation algorithm K takes as input a security parameter k ∈
N and returns a pair (pk, sk) where pk is a public key and sk is an associated secret

key. (In cases where the family is not trap-door, the secret key is simply the empty

string.)

• The randomized sampling algorithm S takes input pk and returns a random point in

a set that we call the domain of pk and denote by DomF (pk).

• The deterministic evaluation algorithm E takes input pk and a point x ∈ DomF (pk)

and returns an output we denote by Epk(x). We let RngF (pk) = {Epk(x) |x ∈
DomF (pk)} denote the range of the function Epk(·).

Definition 2.2 (families of trap-door permutations [3]). We say that F is a family of

trap-door functions if there exists a deterministic inversion algorithm I that takes input sk

and a point y ∈ RngF (pk) and returns a point x ∈ DomF (pk) such that Epk(x) = y. We

say that F is a family of trap-door permutations if F is a family of trap-door functions,

DomF (pk) = RngF (pk), and Epk is a bijection on this set.

We describe the definition of θ-partial one-way.

Definition 2.3 (θ-partial one-way [3]). Let F = (K,S, E) be a family of functions. Let

k ∈ N be a security parameter and b ∈ {0, 1}. Let 0 < θ ≤ 1 be a constant. Let A be an
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adversary. Now, we consider the following experiments:

Experiment Expθ-pow-fnc
F,A (k)

(pk, sk) ← K(k)

x
R← DomF (pk)

y ← Epk(x)

x′
1 ← A(pk, y) where |x′

1| = �θ · |x|�
if

(
Epk(x′

1||x′
2) = y for some x′

2

)
return 1 else return 0

Here “ ||” denotes concatenation. We define the advantages of the adversary via

Advθ-pow-fnc
F,A (k) = Pr[Expθ-pow-fnc

F,A (k) = 1]

where the probability is taken over K, x
R← DomF (pk), E, and A. We say that the family

F is θ-partial one-way if the function Advθ−pow−fnc
F,A (·) is negligible in k for any adversary

A whose time complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of

the code of the adversary, in some fixed RAM model of computation. Note that when θ = 1

the notion of θ-partial one-wayness coincides with the standard notion of one-wayness. In

the following, we say that the family F is one-way when F is 1-partial one-way.

We describe the standard RSA family of trap-door permutations denoted by RSA.

Definition 2.4 (the standard RSA family of trap-door permutations [3]). The specifica-

tions of the standard RSA family of trap-door permutations RSA = (K, S, E) are as follows.

The key generation algorithm takes as input a security parameter k and picks random, dis-

tinct primes p, q in the range 2�k/2�−1 < p, q < 2�k/2� and 2k−1 < N < 2k. It sets N = pq.

It picks e, d ∈ Z
∗
φ(N) such that ed = 1 (mod φ(N)) where φ(N) = (p−1)(q−1). The public

key is N, e, k and the secret key is N, d, k. The sets DomRSA(N, e, k) and RngRSA(N, e, k)

are both equal to Z
∗
N . The evaluation algorithm EN,e,k(x) = fRSA

N,e,k(x) = xe mod N and the

inversion algorithm IN,d,k(y) = gRSA
N,d,k(y) = yd mod N . The sampling algorithm returns a

random point in Z
∗
N .

Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the θ-partial one-wayness of

RSA is equivalent to the one-wayness of RSA for θ > 0.5.

2.3.2 An RSA Family of Trap-door Permutations with a Common Do-

main

In this section, we propose the RSA family of trap-door permutations with a common

domain and prove that the θ-partial one-wayness of RSACD is equivalent to the one-wayness

of RSACD for θ > 0.5, and the one-wayness of RSACD is equivalent to the one-wayness of

RSA.
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Figure 2.1: Functions fRSACD
N,e,k and gRSACD

N,d,k

The Construction of RSACD In this section, we propose the RSA family of trap-door

permutations with a common domain denoted by RSACD.

Definition 2.5 (the RSA family of trap-door permutations with a common domain).

The specifications of the RSA family of trap-door permutations with a common domain

RSACD= (K,S, E) are as follows. The key generation algorithm is the same as that for

RSA. The sets DomRSACD(N, e, k) and RngRSACD(N, e, k) are both equal to {x |x ∈ [0, 2k) ∧
(x mod N) ∈ Z

∗
N}. The sampling algorithm returns a random point in DomRSACD(N, e, k).

The evaluation algorithm EN,e,k(x) = fRSACD
N,e,k (x) and the inversion algorithm IN,d,k(y) =

gRSACD
N,d,k (y) are as follows (See Figure 2.1.).

Function fRSACD
N,e,k (x)

u ← fRSACD-1
N,e,k (x); v ← fRSACD-2

N,e,k (u); y ← fRSACD-3
N,e,k (v)

return y

Function fRSACD-1
N,e,k (x) Function fRSACD-2

N,e,k (u) Function fRSACD-3
N,e,k (v)

if (x < N) if (u < 2k − N) v ← u + N if (v < N)

u ← xe mod N elseif (2k − N ≤ u < N) v ← u y ← ve mod N

else u ← x else v ← u − N else y ← v

return u return v return y

Function gRSACD
N,d,k (y)

v ← gRSACD-1
N,d,k (y); u ← gRSACD-2

N,d,k (v); x ← gRSACD-3
N,d,k (u)

return x

Function gRSACD-1
N,d,k (y) Function gRSACD-2

N,d,k (v) Function gRSACD-3
N,d,k (u)

if (y < N) if (v < 2k − N) u ← v + N if (u < N)

v ← yd mod N elseif (2k − N ≤ v < N) u ← v x ← ud mod N

else v ← y else u ← v − N else x ← u

return v return u return x
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The choice of N from (2k−1, 2k) ensures that all elements in DomRSACD(N, e, k) are per-

muted by the standard RSA permutation at least once.

Properties of RSACD In this section, we prove that the θ-partial one-wayness of RSACD

is equivalent to the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD

is equivalent to that of RSA.

Theorem 2.1. The θ-partial one-wayness of RSACD is equivalent to the one-wayness of

RSACD for θ > 0.5.

It is clear that if RSACD is θ-partial one-way then RSACD is one-way. Therefore, we can

prove Theorem 2.1 by proving the following lemma.

Lemma 2.1. If RSACD is one-way then RSACD is θ-partial one-way for θ > 0.5.

To prove this lemma, we use the following lemma proved in [43].

Lemma 2.2 ([43]). Consider an equation αt+u = c (mod N) which has solutions t and u

smaller than 2k0. For all values of α, except a fraction 22k0+6/N of them, (t, u) is unique

and can be computed in time O((log N)3). (We say “α is a good value” when we can solve

the above equation.)

Proof of Lemma 2.1. Let A be an algorithm that outputs the k − k0 most significant bits

of the pre-image of its input y ∈ RngRSACD(N, e, k) for 2k−1 < N < 2k with k > 2k0 (i.e.

A is a ((k − k0)/k)-partial inverting algorithm for RSACD with k > 2k0), with success

probability ε = Advθ−pow−fnc
RSACD,A (k) where θ = (k − k0)/k > 0.5, within time bound t. We

prove that there exists an algorithm B that outputs a pre-image of y (i.e. B is an inverting

algorithm for RSACD) with success probability ε′ = Adv1−pow−fnc
RSACD,B (k), within time bound

t′ where

ε′ ≥ ε2

16
· (1 − 22k0−k+7), t′ ≤ 2t + O(k3).

We construct the algorithm B to compute a pre-image of y ∈ RngRSACD(N, e, k), then

we analyze this algorithm and evaluate the success probability and the running time of B.
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Algorithm B((N, e, k), y)

α
R← ZN

pow R← {1, 2}
y′temp ← y · αepow

mod N

c
R← {0, 1}

if (c = 0) y′ ← y′temp

elseif (0 ≤ y′temp < 2k − N) y′ ← y′temp + N

else return fail

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[step 1] set α, pow, and y′

z ← A(y)

z′ ← A(y′)

}
[step 2] run A

find (r, s) s.t. αr − s = (z′ − zα) · 2k0 (mod N)

x ← z · 2k0 + r

return x

⎫⎪⎪⎬
⎪⎪⎭ [step 3] compute gRSACD

N,d,k (y)

Now, we analyze the advantage of B. For y ∈ RngRSACD(N, e, k) and x = gRSACD
N,d,k (y),

(x, y) satisfies one of the following equations.

(1) y = xe (mod N)

(2) y = xe2
(mod N)

We say type(y) = 1 (respectively type(y) = 2) if (x, y) satisfies equation 1 (resp. equation 2).

After step 1, if B does not output fail, then y′ is uniformly distributed over RngRSACD(N, e, k),

and for y′ and x′ = gRSACD
N,d,k (y′), (x′, y′) satisfies one of the following equations.

(1′) y′ = (x′)e (mod N)

(2′) y′ = (x′)e2
(mod N)

We say type(y′) = 1 (respectively type(y′) = 2) if (x′, y′) satisfies equation 1′ (resp. equa-

tion 2′).

After step 2, if A outputs correctly, namely, z is the k − k0 most significant bits of x and

z′ is the k − k0 most significant bits of x′, then x = z · 2k0 + r and x′ = z′ · 2k0 + s for

some (r, s) where 0 ≤ r, s < 2k0 . Furthermore, if type(y) = type(y′) = pow, then y = xepow

(mod N) and y′ = (x′)epow
(mod N). Since y′ = y · αepow

(mod N) and gcd(epow, N) = 1,

we have x′ = αx (mod N). Thus,

z′ · 2k0 + s = α · (z · 2k0 + r) (mod N)

αr − s = (z′ − zα) · 2k0 (mod N)
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where 0 ≤ r, s < 2k0 . If α is a good value, algorithm B can solve this equation in step 3

(Lemma 2.2), and outputs x = z · 2k0 + r.

Now, we analyze the success probability. We define the following events:

• Fail : B outputs fail in step 1,

• GV : α is a good value,

• Type1 : type(y) = type(y′) = 1,

• Type2 : type(y) = type(y′) = 2,

• SucA : A(y) and A(y′) are correct.

We have

ε = Pr [A(y) is correct ∧ type(y) = 1] + Pr[A(y) is correct ∧ type(y) = 2]

where y is uniformly distributed over RngRSACD(N, e, k). Thus,

Pr[A(y) is correct ∧ type(y) = 1] >
ε

2
or Pr[A(y) is correct ∧ type(y) = 2] >

ε

2
.

If B does not output fail in step 1, then y′ is uniformly distributed over RngRSACD(N, e, k).

Therefore,

Pr[SucA ∧ Type1|¬Fail] >
( ε

2

)2
=

ε2

4
or Pr[SucA ∧ Type2|¬Fail] >

( ε

2

)2
=

ε2

4
.

If A(y) and A(y′) are correct, type(y) = type(y′) = pow, and α is a good value, then B

outputs correctly. Since Pr[¬Fail] > Pr[c = 1] = 1/2, Pr[pow = 1] = Pr[pow = 2] = 1/2,

and Pr[GV]> 1 − 22k0−6/N > 1 − 22k0−k+7 (Lemma 2.2), we have

ε′ ≥ Pr[SucA ∧ type(y) = type(y′) = pow ∧ GV]

≥ Pr[¬Fail] × Pr[GV] × Pr[SucA ∧ type(y) = type(y′) = pow|¬Fail]

≥ 1
2
· (1 − 22k0−k+7) × (Pr[SucA ∧ Type1 ∧ pow = 1|¬Fail]

+ Pr[SucA ∧ Type2 ∧ pow = 2|¬Fail])

=
1
2
· (1 − 22k0−k+7) × (Pr[pow = 1] × Pr[SucA ∧ Type1|¬Fail]

+ Pr[pow = 2] × Pr[SucA ∧ Type2|¬Fail])

=
1
4
· (1 − 22k0−k+7) × (Pr[SucA ∧ Type1|¬Fail] + Pr[SucA ∧ Type2|¬Fail])

>
ε2

16
· (1 − 22k0−k+7).

We estimate the running time of B. B runs A twice. B can solve αr − s = (z′ − zα) · 2k0

(mod N) in time O(k3). Therefore, t′ ≤ 2t + O(k3).
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Theorem 2.2. The one-wayness of RSACD is equivalent to the one-wayness of RSA.

It is easy to see that if RSACD is one-way then RSA is one-way (See Figure 2.1.). Therefore,

we can prove Theorem 2.2 by proving the following lemma.

Lemma 2.3. If RSA is one-way then RSACD is one-way.

Proof of Lemma 2.3. We prove that if there exists a polynomial-time inverting algorithm

A for RSACD with non-negligible probability ε = Adv1−pow−fnc
RSACD,A (k), then there exists

a polynomial-time inverting algorithm D for RSA with non-negligible probability ε′ =

Adv1−pow−fnc
RSA,D (k). We specify the algorithm D to compute a pre-image of Y ∈ RngRSA(N, e, k).

Algorithm D((N, e, k), Y )

c
R← {0, 1}

if (c = 0)

y ← Y ; x ← A((N, e, k), y); u ← fRSACD−1
N,e,k (x); v ← fRSACD−2

N,e,k (u); X ← v

else

u ← Y ; v ← fRSACD−2
N,e,k (u); y ← fRSACD−3

N,e,k (v); x ← A((N, e, k), y); X ← x

return X

Now, we analyze the advantage of D. If A outputs correctly then D outputs correctly (See

Figure 2.1.). Therefore,

ε′ > Pr[c = 0 ∧ A((N, e, k), Y ) is correct]

+ Pr[c = 1 ∧ A((N, e, k), Z) is correct]

=
1
2
· (Pr[A((N, e, k), Y ) is correct] + Pr[A((N, e, k), Z) is correct])

≥ 1
2
· (Pr[A((N, e, k), Y ) is correct]

+ Pr[A((N, e, k), Z) is correct ∧ N ≤ Z < 2k]).

where Z = fRSACD−3
N,e,k (fRSACD−2

N,e,k (Y )). We have

Pr[A((N, e, k), Y ) is correct] = Pr1[A((N, e, k), y) is correct | 0 ≤ y < N ]

> Pr[A((N, e, k), y) is correct ∧ 0 ≤ y < N ].

Furthermore, we have Pr[N ≤ Z < 2k] > Pr[N ≤ y < 2k] where Y is uniformly distributed

over Z
∗
N and y is uniformly distributed over RngRSACD(N, e, k), since Pr[N ≤ Z < 2k] =

Pr[0 ≤ Y < 2k−N ] and |Z∗
N | < |RngRSACD(N, e, k)|. Since Pr[A((N, e, k), Z) is correct |N ≤

Z < 2k] = Pr[A((N, e, k), y) is correct |N ≤ y < 2k] , we have

Pr[A((N, e, k), Z) is correct ∧ N ≤ Z < 2k]

= Pr[N ≤ Z < 2k] · Pr[A((N, e, k), Z) is correct |N ≤ Z < 2k]

> Pr[N ≤ y < 2k] · Pr[A((N, e, k), Z) is correct |N ≤ Z < 2k]

= Pr[N ≤ y < 2k] · Pr[A((N, e, k), y) is correct |N ≤ y < 2k]

> Pr[A((N, e, k), y) is correct ∧ N ≤ y < 2k].
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RSA is θ-partial one-way RSACD is θ-partial one-way

�

�[43]
�

�[Lemma 2.1]

RSA is one-way

[Lemma 2.3]
�

� RSACD is one-way

Figure 2.2: Relationships between RSA and RSACD for θ > 0.5.

Therefore,

ε′ >
1
2
· (Pr[A((N, e, k), y) is correct ∧ 0 ≤ y < N ]

+ Pr[A((N, e, k), y) is correct ∧ N ≤ y < 2k])

=
1
2
· Pr[A((N, e, k), y) is correct]

=
ε

2

which is non-negligible in k.

Hence, we have the relations in Figure 2.2 for θ > 0.5. From these relations, we have

that the θ-partial one-wayness of RSACD is equivalent to the one-wayness of RSA. This

property is useful to construct the public-key encryption scheme with anonymity.

By using the RSACD function, we propose a new technique for obtaining the anonymity

property.

RSACD Doing the evaluation of the encryption (respectively the signing) with plaintext

x (resp. message m), random r, and the RSACD function.

In Chapters 3 and 5, by applying the RSACD function we construct the schemes for

public-key encryption and ring signature, respectively.

2.4 The Sampling Twice Technique

In this section, we propose a new technique for obtaining the anonymity property of RSA-

based cryptosystems. We call this technique “sampling twice.” In our technique, we employ

an algorithm ChooseAndShift. It takes two numbers x1, x2 ∈ ZN as input and returns a

value y ∈ [0, 2k) where |N | = k, and if x1 and x2 are independently and uniformly chosen

from ZN then y is uniformly distributed over [0, 2k).

We describe the algorithm ChooseAndShift as follows. It takes two numbers x1, x2 ∈
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ZN as input and returns a value y ∈ [0, 2k) where |N | = k.

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k − N)

return

{
x1 with probability 1

2

x1 + N with probability 1
2

elseif (2k − N ≤ x1, x2 < N)

return x1

else

y1 ← min{x1, x2}; y2 ← max{x1, x2}
%%% Note that 0 ≤ y1 < 2k − N and 2k − N ≤ y2 < N. %%%

return

⎧⎪⎪⎨
⎪⎪⎩

y1 with probability (1
2 + N

2k+1 ) × 1
2

y1 + N with probability (1
2 + N

2k+1 ) × 1
2

y2 with probability 1
2 − N

2k+1

Note that 2k−1 < N < 2k ensures 2k − N < N , 0 < 1
2 − N

2k+1 < 1, and 0 < 1
2 + N

2k+1 < 1.

In order to run this algorithm, it is sufficient to prepare only k + 3 random bits.

We prove the following theorem on the property of ChooseAndShift.

Theorem 2.3. If x1 and x2 are independently and uniformly chosen from ZN then the

output of the above algorithm is uniformly distributed over [0, 2k).

Proof. To prove this theorem, we show that if x1 and x2 are independently and uniformly

chosen from ZN then Pr[ChooseAndShiftN,k(x1, x2) = z] = 1/2k for any z ∈ [0, 2k). For

any z ∈ [0, 2k − N), we have

Pr[ChooseAndShift(x1, x2) = z]

= Pr[x1 = z ∧ 0 ≤ x2 < 2k − N ] × 1
2

+ Pr[(x1 = z ∧ 2k − N ≤ x2 < N) ∨ (x2 = z ∧ 2k − N ≤ x1 < N)] × (1
2 + N

2k+1 ) × 1
2

= 1
N × 2k−N

N × 1
2 + ( 1

N × 2N−2k

N ) × 2 × (1
2 + N

2k+1 ) × 1
2 = 1

2k .

It is clear that Pr[ChooseAndShiftN,k(x1, x2) = z′] = Pr[ChooseAndShiftN,k(x1, x2) =

z′ + N ] for any z′ ∈ [0, 2k −N). Therefore, we have Pr[ChooseAndShiftN,k(x1, x2) = z] =

1/2k for any z ∈ [N, 2k).

Furthermore, for any z ∈ [2k − N,N), we have

Pr[ChooseAndShift(x1, x2) = z]

= Pr[x1 = z ∧ 2k − N ≤ x2 < N ]

+ Pr[(x1 = z ∧ 0 ≤ x2 < 2k − N) ∨ (x2 = z ∧ 0 ≤ x1 < 2k − N)] × (1
2 − N

2k+1 )

= 1
N × 2N−2k

N + ( 1
N × 2k−N

N ) × 2 × (1
2 − N

2k+1 ) = 1
2k .
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By using the algorithm ChooseAndShift, we propose a new technique for obtaining the

anonymity property. We call this technique “sampling twice.”

Sampling Twice Doing the evaluation of the encryption (respectively the signing) twice

with plaintext x (resp. message m), random r1 and r2, and the RSA function, and

applying our proposed algorithm ChooseAndShift for the two resulting values.

In Chapters 3 to 5, by applying the sampling twice technique, we construct the schemes

for public-key encryption, undeniable and confirmer signature, and ring signature, respec-

tively.
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CHAPTER 3

Anonymity on Public-Key Encryption

In this chapter, we consider the public-key encryption schemes with anonymity. In [3], Bel-

lare, Boldyreva, Desai, and Pointcheval provided the key-privacy encryption scheme, RSA-

RAEP, which is a variant of RSA-OAEP (Bellare and Rogaway [7], Fujisaki, Okamoto,

Pointcheval, and Stern [43]). They constructed RSA-RAEP by using the repeating tech-

nique in order to prove the anonymity property of their scheme. In this chapter, we propose

three public-key encryption schemes, which are also variants of RSA-OAEP, with the ex-

panding technique, RSACD, and the sampling twice technique, and prove their security.

The organization of this chapter is as follows. We review the definitions of public-key

encryption in Section 3.1, and RSA-RAEP by Bellare, Boldyreva, Desai, Pointcheval in

Section 3.2. We propose a key-privacy encryption scheme with the expanding technique in

Section 3.3, that with RSACD in Section 3.4, and that with the sampling twice technique

in Section 3.5. We compare the efficiency of four schemes in Section 3.6.

3.1 Definitions of Public-Key Encryption

The classical security requirements of public-key encryption schemes provide privacy of

the encryption data. Popular formalizations—such as indistinguishability (semantic secu-

rity) [48] or non-malleability [37], under either chosen-plaintext or various kinds of chosen-

ciphertext attacks [65, 74]—are directed at capturing various data-privacy requirements.

(See [4] for a comprehensive treatment).
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In [3], Bellare, Boldyreva, Desai, and Pointcheval proposed a new (additional) security

requirement of encryption schemes called “key-privacy.” It asks that the encryption pro-

vide (in addition to privacy of the data being encrypted) privacy of the key under which

the encryption was performed. In a heterogeneous public-key environment, encryption will

probably fail to be anonymous for trivial reasons. For example, different users might be

using different cryptosystems, or, if the same cryptosystem, have keys of different lengths.

In [3], Bellare, Boldyreva, Desai, and Pointcheval put a common-key generation algorithm

into the standard definition of public-key encryption scheme explicitly. The common key

consists of some fixed “global” information which the users may share. A public-key en-

cryption scheme with common-key generation [3] is described as follows.

Definition 3.1 (public-key encryption). A public-key encryption scheme with common-key

generation PE = (G,K, E ,D) consists of four algorithms.

• The common-key generation algorithm G(k) takes as input a security parameter k

and returns some common key I.

• The key generation algorithm K(I) is a randomized algorithm that takes as input a

common key I and returns a pair (pk, sk) of keys, a public key and a matching secret

key. For given pk, the message space MSPC(pk) and the randomness space COINS(pk)

of Π are uniquely determined.

• The encryption algorithm Epk(m; r) is a randomized algorithm that takes a public key

pk and a plaintext m ∈ MSPC(pk), and returns a ciphertext c, using random coin

r ∈ COINS(pk).

• The decryption algorithm Dsk(c) is a deterministic algorithm that takes a secret key

sk and a ciphertext c, and returns the corresponding plaintext m or a special symbol

⊥ to indicate that the ciphertext c is invalid.

We require that, for any k ∈ N, if I ← G(k), (pk, sk) ← K(I), m ∈ MSPC(pk), and

c ← Epk(m), then m = Dsk(c).

The notions of security typically considered for encryption schemes are “indistinguisha-

bility of encryptions” under either the chosen-plaintext attack, or the (adaptive) chosen-

ciphertext attack. These properties ask that the encryption provides privacy of the data

being encrypted. Before describing the definition of “key-privacy” by Bellare, Boldyreva,

Pointcheval, and Desai, we briefly review the definitions of “indistinguishability of encryp-

tions.”

Definition 3.2 (IND-CPA, IND-CCA). Let PE = (G, K, E ,D) be an encryption scheme.

Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1
cpa, A

2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that
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run in two stages and where Acca has access to the oracle Dsk(·). For atk ∈ {cpa, cca}, we

consider the following experiment:

Experiment Expind-atk-b
PE,Aatk

(k)

I
R← G(k); (pk, sk) R← K(I)

(m0,m1, si) ← A1
atk(pk); c ← Epk(mb); d ← A2

atk(c, si)

return d

Note that si is the state information. It contains m0, m1, pk, and so on. In the above

experiment, it is mandated that A2
cca never queries Dsk(·) on the challenge ciphertext c.

For atk ∈ {cpa, cca}, we define the advantages via

Advind-atk
PE,Aatk

(k) =
∣∣∣Pr[Expind-atk-1

PE,Aatk
(k) = 1] − Pr[Expind-atk-0

PE,Aatk
(k) = 1]

∣∣∣.
The scheme PE is said to be IND-CPA secure (respectively IND-CCA secure) if the func-

tion Advind-cpa
PE,Acpa

(·) (resp. Advind-cca
PE,Acca

(·) ) is negligible for any adversary A whose time

complexity is polynomial in k.

In [3], they formalized the property of “key-privacy.” It asks that the encryption provide

(in addition to privacy of the data being encrypted) privacy of the key under which the

encryption was performed. Similar notions had been proposed Abadi and Rogaway [1],

Fischlin [39], Camenisch and Lysyanskaya [15], Sako [77], and Desai [34], however, chosen-

ciphertext attacks do not seem to have been considered before in the context of key-privacy.

The definition by Bellare, Boldyreva, Desai, and Pointcheval [3] can be considered under

either the chosen-plaintext attack or the chosen-ciphertext attack, yielding two notions of

security, IK-CPA and IK-CCA. (IK means “indistinguishability of keys”.)

Definition 3.3 (IK-CPA, IK-CCA [3]). Let PE = (G, K, E ,D) be an encryption scheme.

Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1
cpa, A

2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that

run in two stages where Acca has access to the oracles Dsk0(·) and Dsk1(·) . Note that si is

the state information. It contains pk0, pk1, and so on. For atk ∈ {cpa, cca}, we consider

the following experiments:

Experiment Expik-atk-b
PE,Aatk

(k)

I ← G(k); (pk0, sk0) ← K(I); (pk1, sk1) ← K(I)

(m, si) ← A1
atk(pk0, pk1); y ← Epkb

(m)

d ← A2
atk(y, si)

return d

Above it is mandated that A2
cca never queries the challenge ciphertext y to either Dsk0(·) or

Dsk1(·). For atk ∈ {cpa, cca}, we define the advantages via

Advik-atk
PE,Aatk

(k) =
∣∣∣Pr[Expik-atk-1

PE,Aatk
(k) = 1] − Pr[Expik-atk-0

PE,Aatk
(k) = 1]

∣∣∣.
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The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the func-

tion Advik-cpa
PE,Acpa

(·) (resp. Advik-cca
PE,Acca

(·)) is negligible for any adversary A whose time

complexity is polynomial in k.

3.2 RSA-RAEP by Bellare, Boldyreva, Desai, and Pointcheval

In [3], Bellare, Boldyreva, Desai, and Pointcheval proposed an RSA-based encryption

scheme which is secure in the sense of IK-CCA. It is RSA-RAEP which is a variant of

RSA-OAEP (Bellare and Rogaway [7], Fujisaki, Okamoto, Pointcheval, and Stern [43]).

Since their variant chooses N from (2k−1, 2k), it simply repeats the ciphertext computa-

tion, each time using new coins, until the ciphertext y satisfies y < 2k−1.

Definition 3.4 (RSA-RAEP [3]). RSA-RAEP = (G,K, E ,D) is as follows. The common-

key generation algorithm G takes a security parameter k and returns parameters k, k0 and

k1 such that k0(k) + k1(k) < k for all k > 1. This defines an associated plaintext-length

function n(k) = k − k0(k) − k1(k). The key generation algorithm K takes k, k0, k1, runs

the key-generation algorithm of RSA, and gets N, e, d. The public key pk is (N, e), k, k0, k1

and the secret key sk is (N, d), k, k0, k1. The other algorithms are depicted below. Let G

: {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that [x]n

denotes the n most significant bits of x and [x]m denotes the m least significant bits of x.

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

ctr = −1 b ← [y]1; v ← [y]k0+k1+n

repeat if (b = 1)

ctr ← ctr + 1 w ← [v]k0+k1 ; x ← [v]n
r

R← {0, 1}k0 if (w = 0k0+k1) z ← x else z ←⊥
s ← (x || 0k1) ⊕ G(r); t ← r ⊕ H(s) else

v ← (s||t)e mod N s ← [vd]n+k1 ; t ← [vd]k0

until ((v < 2k−1) ∨ (ctr = k1)) r ← t ⊕ H(s)

if (ctr = k1) y ← 1||0k0+k1 ||x x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

else y ← 0||v if (p = 0k1) z ← x else z ←⊥
return y return z

They proved RSA-RAEP is secure in the sense of IND-CCA and IK-CCA in the random

oracle model assuming RSA is one-way.

Remark 3.1 (random oracle model). The random oracle model [6] provides a mathematical

model of an “ideal” hash function. In this model, a hash function h : X → Y is chosen

randomly from FX,Y which is the set of all functions from X to Y , and we are only
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permitted oracle access to the function h. This means that we are not given a formula or

an algorithm to compute values of the function h. Therefore, the only way to compute the

value h(x) is to query the oracle. This can be thought of as looking up the value h(x) in

a giant book of random numbers such that, for each possible x, there is completely random

value h(x).

3.3 OAEP with Expanding

In this section, we propose an encryption scheme by using the expanding technique.

Definition 3.5. The common-key generation algorithm, the key generation algorithm, and

hash functions are the same as those for RSA-RAEP. The other algorithms are depicted

below. The other algorithms are depicted below. Note that the valid ciphertext y satisfies

y ∈ [0, 2k+160) and (y mod N) ∈ Z
∗
N .

Algorithm EG,H
pk (m) Algorithm DG,H

sk (y)

r
R← {0, 1}k0 v ← y mod N

s ← (m||0k1) ⊕ G(r) s ← [vd mod N ]n+k1

t ← r ⊕ H(s) t ← [vd mod N ]k0

v ← (s||t)e mod N r ← t ⊕ H(s)

M ← �(2k+160 − v)/N� m ← [s ⊕ G(r)]n

α
R← {0, 1, · · · , M} p ← [s ⊕ G(r)]k1

y ← v + αN if (p = 0k1) z ← m

return y else z ←⊥
return z

In order to prove that the scheme with N -ary representation is secure in the sense of

IK-CCA, we need the restriction as follows.

For a ciphertext y and a public key pk = ((N, e), k), we define the set of ciphertexts

EC(y, pk) called “equivalence class” as

EC(y, pk) = {y̌ ∈ {0, 1}k+160|y̌ = y (mod N)}.

If y ∈ {0, 1}k+160 is a ciphertext of m0 for pk0 = (N0, e0, k) then any element y̌ ∈
EC(y, pk0) is also a ciphertext of m0 under pk0. Therefore, when y is a challenge ciphertext,

the adversary can ask a ciphertext y̌ ∈ EC(y, pk0) to the decryption oracle Dsk0 , and if

the answer of Dsk0 is m0 then the adversary knows that y is encrypted by pk0 and the

plaintext of y is m0.
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To prevent this attack, we add some restriction to the adversaries in the definition of

IK-CCA. That is, it is mandated that the adversary never queries either y̌ ∈ EC(y, pk0)

to Dsk0 or y̌ ∈ EC(y, pk1) to Dsk1 .

Similarly, in order to prove that the scheme with N -ary representation is secure in the

sense of IND-CCA2, we need the same restriction. That is, in the definition of IND-CCA2,

it is mandated that the adversary never queries y̌ ∈ EC(y, pk) to Dsk.

We think these restrictions are natural and reasonable. Actually, in the case of unde-

niable and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on

undeniable signature schemes with the above restriction.

If we add these restrictions then we can prove that our scheme provides the key-privacy

against the adaptive chosen ciphertext attack in the random oracle model assuming RSA

is θ-partial one-way for θ > 0.5. More precisely, we show the following theorem.

Theorem 3.1. For any adversary A attacking the key-privacy of our scheme under the

adaptive chosen ciphertext attack, and making at most qdec queries to decryption oracle, qgen

G-oracle queries, and qhash H-oracle queries, there exists a θ-partial inverting adversary

M for the RSA family, such that for any k, k0, k1, and θ = k−k0
k ,

Advik-cca
PE,A (k) ≤ 8qhash · ((1 − ε1) · (1 − ε2))

−1 · Advθ-pow-fnc
RSA,M (k) + qgen · (1 − ε2)−1 · 2−k+2

where ε1 = 2
2k/2−3−1

+ 1
2159 and ε2 = 2qdec

2k1
+ 2qhash

2k−k0
+ 2qgen+qdec+2qgenqdec

2k0
, and the running

time of M is that of A plus qgen · qhash · O(k3).

Proof. The proof is similar to that for RSA-RAEP. We construct the partial inverting

algorithm M for the RSA function using a CCA-adversary A attacking anonymity of our

encryption scheme.

Intuition. We assume that the challenge ciphertext for A is Y ∈ {0, 1}k+160 which was

encrypted by pk = (N, e), and y = Y mod N . In order to distinguish under which key the

given ciphertext Y was created, the adversary A has to make queries r and s to oracles

G and H, respectively, such that s = (m||0k1) ⊕ G(r) and y = (s||(r ⊕ H(s)))e mod N .

Therefore, A asks s to H with non-negligible probability where s is the n + k1 most

significant bits of the e-th root of y modulo N .

We now describe the partial inverting algorithm M for RSA using a CCA-adversary A

attacking the anonymity of our encryption scheme. M is given pk = ((N, e), k) and a point

y ∈ Z
∗
N where |y| = k = n + k0 + k1. Let sk = ((N, d), k) be the corresponding secret key.

The algorithm is trying to find the n+k1 most significant bits of the e-th root of y modulo

N .

1) M picks µ
R← {0, 1, 2, . . . , �(2k+160 − y)/N�} and sets Y ← y + µN .
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2) M runs the key generation algorithm of RSA with security parameter k to obtain

pk′ = ((N ′, e′), k) and sk′ = ((N ′, d′), k). Then it picks a bit b
R← {0, 1}, sets pkb ←

((N, e), k) and pk1−b ← ((N ′, e′), k). If the above y does not satisfy y ∈ (Z∗
N0

∩ Z
∗
N1

)

then M outputs Fail and halts; else it continues.

3) M initializes for lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs

A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described

below.

3-1) M runs A1(pk0, pk1) and gets (m, si) which is the output of A1.

3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random pair (h,Hh) from the H-list and outputs h as its guess for the

n + k1 most significant bits of the e-th root of y modulo N .

M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h,Hh) on the H-list, M builds

z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. For

i ∈ {0, 1}, M checks whether y = yh,g,i. If for some h and i such a relation holds,

then we have inverted y under pki, and we can still correctly simulate G by answering

Gg = h ⊕ (m||0k1). Otherwise, M outputs a random value Gg of length n + k1. In

both cases, M adds (g,Gg) to the G-list. Then, for all h, M checks if the k1 least

significant bits of h ⊕ Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the

Y0-list and the Y1-list, respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of

length k0 and adds (h,Hh) to the H-list. Then for each (g, Gg) on the G-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1.

M checks if the k1 least significant bits of h ⊕ Gg are all 0. If they are, then it adds

yh,g,0 and yh,g,1 to the Y0-list and the Y1-list, respectively.

• When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ {0, 1}k+160 to Dski , M checks if

there exists some yh,g,i in the Yi-list such that ŷ mod Ni = yh,g,i. If there is, then it

returns the n most significant bits of h⊕Gg to A. Otherwise it returns ⊥ (indicating

that ŷ is an invalid ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1}, let

wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 . That is, wi is the ei-th root of y modulo

Ni and si is the n + k1 most significant bits of the ei-th root of y modulo Ni. Note that

M wins the game if it outputs sb. Let ri be the random variable ti ⊕ H(si).

We consider the following events.
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• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 �= s0 ⊕ (m||0k1), or

– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 �= s1 ⊕ (m||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s0 was not on the H-list, and Gr0 �= s0⊕(m||0k1),

or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s1 was not on the H-list, and Gr1 �= s1⊕(m||0k1).

• DBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We use the events FBad, GBad, and G for proving Lemma 3.1 described below. In this

chapter, we omit the proof of Lemma 3.1 since the proof of this lemma is similar to that

for RSA-RAEP.

We let Pr[·] denote the probability distribution in the game defining advantage. We

introduce the following additional events:

• YBad denotes the event that y �∈ (Z∗
N0

∩ Z
∗
N1

).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step

3-2.

• AskS denotes the event that (s0, Hs0) or (s1,Hs1) is on the H-list at the end of step

3-2.

We use the event FAskS for proving Lemma 3.1. In this chapter, we omit the proof of

Lemma 3.1 since the proof of this lemma is similar to that for RSA-RAEP.
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Now, we analyze the advantage of M . The algorithm M wins the game if it outputs

sb. If (sb,Hsb
) is on the H-list, then M outputs sb with probability at least 1/qhash. Thus,

Advθ-pow-fnc
RSA,M (k)

≥ 1
qhash

· Pr[(sb,Hsb
) is on the H-list]

= 1
2qhash

· (Pr[(s0,Hs0) is on the H-list|b = 0] + Pr[(s1, Hs1) is on the H-list|b = 1])

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0, Hs0) is on the H-list|b = 0]

+Pr1[(s1, Hs1) is on the H-list|b = 1])

where Pr1[·] denote the probability distribution in the simulated game where ¬YBad oc-

curs. Assuming that ¬YBad occurs, by the random choice of b and symmetry, we have

Pr1[(si, Hsi) is on the H-list|b = 0] = Pr1[(si,Hsi) is on the H-list|b = 1] = Pr1[(si,Hsi) is

on the H-list] for i ∈ {0, 1}. Therefore,

Advθ-pow-fnc
RSA,M (k)

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0, Hs0) is on the H-list] + Pr1[(s1,Hs1) is on the H-list])

≥ 1
2qhash

· Pr[¬YBad] · Pr1[AskS].

We next bound Pr1[AskS]. We can bound this probability in a similar way as in the

proof of anonymity for RSA-RAEP [3], and we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR∧AskS|¬DBad] and Pr1[¬DBad|¬AskS]. Let ε = Advik-cca
PE,A (k).

The proofs of the following lemmas are similar to that for RSA-RAEP. Intuitively, Lemma 3.1

states that if M simulates the decryption oracle for the adversary A perfectly, then A makes

queries (r,Gr) and (s,Hs) such that s = (m||0k1)⊕Gr and y = (s||(r⊕Hs))eb mod Nb with

non-negligible probability. Lemma 3.2 states that M can simulate the decryption oracle

with overwhelming probability.

Lemma 3.1.

Pr1[AskR ∧ AskS|¬DBad] ≥ ε

2
·
(

1 −
(

2qgen

2k0
+

2qhash

2n+k1

))
− 2qgen

2k
.

Lemma 3.2.

Pr1[DBad|¬AskS] ≤ qdec ·
(

2
2k1

+
2qgen + 1

2k0

)
.
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By applying Lemmas 3.1 and 3.2, we have

Pr1[AskS]

≥ 1
2 ·

[
ε
2 ·

(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
− 2qgen

2k

]
×

[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
= ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
×

[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
−1

2 · 2qgen

2k ·
[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
≥ ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

)
− qdec ·

(
2

2k1
+ 2qgen+1

2k0

))
− 1

2 · 2qgen

2k

= ε
4 ·

(
1 −

(
2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

2k−k0

))
− qgen

2k .

We next bound the probability that ¬YBad occurs. Note that we cannot bound

Pr[YBad] by directly applying a similar argument for RSA-RAEP.

Lemma 3.3.

Pr[YBad] ≤ 2
2k/2−3 − 1

+
1

2159
.

Proof of Lemma 3.3. Let N = pq and N ′ = p′q′. Note that 2�k/2�−1 < p, q, p′, q′ < 2�k/2�

and 2k−1 < N, N ′ < 2k. We define a set S[N ] as {Ỹ |Ỹ ∈ [0, 2k+160) ∧ (Ỹ mod N) ∈ Z
∗
N}.

Then, we have

Pr[YBad]

= Pr[y R← Z
∗
N ; µ

R← {0, 1, 2, . . . , �(2k+160 − y)/N�}; Y ← y + µN : Y �∈ S[N ′]]

≤ Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] + 1/2159

since the distribution of Y ′ is statistically indistinguishable from that of Y , and the statis-

tically distance is less than 1/2159.

Since 2160 · φ(N) ≤ |S[N ]|, we have

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] ≤ |{y | y ∈ S[N ] ∧ y �∈ S[N ′]}|
|S[N ]|

≤ |{y | y ∈ [0, 2k+160) ∧ y �∈ S[N ′]}|
|S[N ]|

≤ 2k+160 − |S[N ′]|
|S[N ]| ≤ 2k+160 − |S[N ′]|

2160 · φ(N)
.

Furthermore, we have

2k+160 − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k+160) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
≤ ∣∣{Y ′|Y ′ ∈ [0, 2N ′ · 2160) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
= 2161 × ∣∣{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ �∈ Z

∗
N ′}

∣∣
= 2161(N ′ − φ(N ′)).
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Therefore, we can bound Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] as

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]]

≤ 2k+160 − |S[N ′]|
2160 · φ(N)

≤ 2161(N ′ − φ(N ′))
2160 · φ(N)

=
2(p′ + q′ − 1)
N − p − q + 1

≤ 2(p′ + q′)
N − p − q

≤ 2(2�k/2� + 2�k/2�)
2k−1 − 2�k/2� − 2�k/2� =

2(1 + 1)
2k−1−�k/2� − 1 − 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.

Substituting the bounds for the above probabilities, we have

Advθ-pow-fnc
RSA,M (k) ≥ 1

2qhash
· (1 − ε1) ·

( ε

4
· (1 − ε2) − qgen

2k

)

where ε1 = 2
2k/2−3−1

+ 1
2159 and ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

2k−k0
, and re-arranging

the terms, we get the claimed result. Note that ε = Advik-cca
PE,A (k).

Finally, we estimate the time complexity of M . It is the time complexity of A plus

the time for simulating the random oracles. In the random oracle simulation, for each

pair ((g, Gg), (h,Hh)), it is sufficient to compute yh,g,0 = (h||(g ⊕ Hh))e0 mod N0 and

yh,g,1 = (h||(g ⊕ Hh))e1 mod N1. Therefore, the time complexity of M is that of A plus

qgen · qhash · O(k3).

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that the θ-partial one-wayness of

RSA is equivalent to the one-wayness of RSA for θ > 0.5. Therefore, the scheme with N -ary

representation is secure in the sense of IK-CCA in the random oracle model assuming that

RSA is one-way.

We can also prove that the scheme with N -ary representation is secure in the sense

of IND-CCA in the random oracle model assuming RSA is one-way with the restriction

mentioned above. More precisely, we prove that if there exists a CCA-adversary A =

(A1, A2) attacking the indistinguishability of our scheme with advantage ε, then there

exists a CCA-adversary B = (B1, B2) attacking the indistinguishability of RSA-OAEP

with the same advantage ε. We construct B as follows.

1) B1 gets pk and passes it to A1. B1 gets (m0,m1, si) which is an output of A1, and

B1 outputs it.

2) B2 gets a challenge ciphertext y, sets y′ ← y + tN where t
R← {0, 1, 2, · · · , �(2k+160 −

y)/N�}, and passes (y′, si) to A2. B2 gets d ∈ {0, 1} which is an output of A2, and

outputs it.
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It is easy to see that the advantage of B is the same as that for A. Since RSA-OAEP

is secure in the sense of IND-CCA in the random oracle model assuming RSA is one-way

(Fujisaki, Okamoto, Pointcheval, and Stern [43]), our scheme is also secure in the sense of

IND-CCA in the random oracle model assuming RSA is one-way.

3.4 OAEP with RSACD

In this section, we propose a key-privacy encryption scheme which uses RSACD, which we

have proposed in in Section 2.3.2.

Definition 3.6. The common-key generation algorithm G and hash functions are the same

as those for RSA-RAEP. The key generation algorithm K takes k, k0, k1, runs the key-

generation algorithm of RSACD, and gets N, e, d. The public key pk is (N, e), k, k0, k1 and

the secret key sk is (N, d), k, k0, k1. The other algorithms are described as follows. Note

that the valid ciphertext y satisfies y ∈ [0, 2k) and (y mod N) ∈ Z
∗
N .

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

r
R← {0, 1}k0 s ← [gRSACD

N,d,k (y)]n+k1 ; t ← [gRSACD
N,d,k (y)]k0

s ← (x || 0k1) ⊕ G(r) r ← t ⊕ H(s)

t ← r ⊕ H(s) x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

v ← fRSACD
N,e,k (s||t) if (p = 0k1) z ← x else z ←⊥

return y return z

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved OAEP with the partial one-way

function is secure in the sense of IND-CCA. Thus, OAEP with the RSACD function is

secure in the sense of IND-CCA assuming RSACD is partial one-way.

Furthermore, we can show the following theorem.

Theorem 3.2. For any adversary A attacking the key-privacy of our scheme with RSACD

under the adaptive chosen ciphertext attack, and making at most qdec queries to decryption

oracle, qgen G-oracle queries, and qhash H-oracle queries, there exists a θ-partial inverting

adversary M for the RSACD family, such that for any k, k0, k1, and θ = k−k0
k ,

Advik-cca
PE,A (k) ≤ 8qhash · ((1 − ε1) · (1 − ε2))

−1 · Advθ-pow-fnc
RSACD,M (k) + qgen · (1 − ε2)−1 · 2−k+2

where ε1 = 2
2k/2−3−1

and ε2 = 2qdec

2k1
+ 2qhash

2k−k0
+ 2qgen+qdec+2qgenqdec

2k0
, and the running time of

M is that of A plus qgen · qhash · O(k3).

Thus, our scheme with RSACD is secure in the sense of IND-CCA and IK-CCA as-

suming RSACD is partial one-way. Hence, from Theorems 2.1 and 2.2, our scheme with

RSACD is secure in the sense of IND-CCA and IK-CCA assuming RSA is one-way.

40



3.4. OAEP with RSACD

Proof of Theorem 3.2. The proof is similar to that for our scheme with expanding. We

describe the partial inverting algorithm M for RSACD using a CCA-adversary A attacking

the anonymity of our encryption scheme with RSACD. M is given pk = ((N, e), k) and

a point y = fRSACD
N,e,k (x) where |y| = k = n + k0 + k1 and x

R← DomRSACD(N, e, k). Let

sk = ((N, d), k) be the corresponding secret key. The algorithm is trying to find the n+k1

most significant bits of x.

1) M runs the key generation algorithm of RSACD with security parameter k to obtain

pk′ = ((N ′, e′), k) and sk′ = ((N ′, d′), k). Then it picks a bit b
R← {0, 1}, sets

pkb ← ((N, e), k) and pk1−b ← ((N ′, e′), k). If the above y does not satisfy y ∈
(RngRSACD(N0, e0, k) ∩ RngRSACD(N1, e1, k)) then M outputs Fail and halts; else it

continues.

2) M initializes for lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs

A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described

below.

2-1) M runs A1(pk0, pk1) and gets (m, si) which is the output of A1.

2-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

3) M chooses a random pair (h,Hh) from the H-list and outputs h as its guess for the

n + k1 most significant bits of the e-th root of y modulo N .

M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h,Hh) on the H-list, M builds

z = h||(g ⊕ Hh), and computes yh,g,0 = fRSACD
N0,e0,k(z) and yh,g,1 = fRSACD

N1,e1,k(z). For

i ∈ {0, 1}, M checks whether y = yh,g,i. If for some h and i such a relation holds,

then we have inverted y under pki, and we can still correctly simulate G by answering

Gg = h ⊕ (m||0k1). Otherwise, M outputs a random value Gg of length n + k1. In

both cases, M adds (g,Gg) to the G-list. Then, for all h, M checks if the k1 least

significant bits of h ⊕ Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the

Y0-list and the Y1-list, respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of

length k0 and adds (h,Hh) to the H-list. Then for each (g, Gg) on the G-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = fRSACD
N0,e0,k(z) and yh,g,1 = fRSACD

N1,e1,k(z). M

checks if the k1 least significant bits of h ⊕ Gg are all 0. If they are, then it adds

yh,g,0 and yh,g,1 to the Y0-list and the Y1-list, respectively.
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• When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ {0, 1}k to Dski
, M checks if there

exists some yh,g,i in the Yi-list such that ŷ = yh,g,i. If there is, then it returns the n

most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥ (indicating that ŷ is an

invalid ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1}, let

wi = gRSACD
Ni,di,k

(y), si = [wi]n+k1 , and ti = [wi]k0 . Note that M wins the game if it outputs

sb. Let ri be the random variable ti ⊕ H(si).

We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 2-1, and Gr0 �= s0 ⊕ (m||0k1), or

– A G-oracle query r1 was made by A1 in step 2-1, and Gr1 �= s1 ⊕ (m||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 2-2, and at the point in time that it

was made, the H-oracle query s0 was not on the H-list, and Gr0 �= s0⊕(m||0k1),

or

– A G-oracle query r1 was made by A2 in step 2-2, and at the point in time that it

was made, the H-oracle query s1 was not on the H-list, and Gr1 �= s1⊕(m||0k1).

• DBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We use the events FBad, GBad, and G for proving Lemma 3.1 described below. In this

chapter, we omit the proof of Lemma 3.1 since the proof of this lemma is similar to that

for RSA-RAEP.

We let Pr[·] denote the probability distribution in the game defining advantage. We

introduce the following additional events:

• YBad denotes the event that y �∈ (RngRSACD(N0, e0, k) ∩ RngRSACD(N1, e1, k)).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 2-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step

2-2.
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• AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end of step

2-2.

We use the event FAskS for proving Lemma 3.1. In this chapter, we omit the proof of

Lemma 3.1 since the proof of this lemma is similar to that for RSA-RAEP.

Now, we analyze the advantage of M . We can bound the advantage of M in a similar

way as that for our scheme with expanding and we have

Advθ-pow-fnc
RSACD,M (k) ≥ 1

2qhash
· Pr[¬YBad] · Pr1[AskS].

and

Pr1[AskS] ≥ ε

4
·
(

1 −
(

2qgen + qdec + 2qgenqdec

2k0
+

2qdec

2k1
+

2qhash

2k−k0

))
− qgen

2k

where Pr1[·] denote the probability distribution in the simulated game where ¬YBad occurs.

We next bound the probability that ¬YBad occurs.

Lemma 3.4.

Pr[YBad] ≤ 2
2k/2−3 − 1

.

Proof of Lemma 3.4. Let N = pq and N ′ = p′q′. Note that 2�k/2�−1 < p, q, p′, q′ < 2�k/2�

and 2k−1 < N, N ′ < 2k. Since φ(N) ≤ |RngRSACD(N, e, k)|, we have

Pr[YBad] ≤ Pr[y R← RngRSACD(N, e, k) : y �∈ RngRSACD(N ′, e′, k)]

≤ |{y | y ∈ RngRSACD(N, e, k) ∧ y �∈ RngRSACD(N ′, e′, k)}|
|RngRSACD(N, e, k)|

≤ |{y | y ∈ [0, 2k) ∧ y �∈ RngRSACD(N ′, e′, k)}|
|RngRSACD(N, e, k)|

≤ 2k − |RngRSACD(N ′, e′, k)|
φ(N)

.

Furthermore, we have

2k − |RngRSACD(N ′, e′, k)| =
∣∣{y′ ∈ [0, 2k)|y′ �∈ RngRSACD(N ′, e′, k)}∣∣

≤ |{y′ ∈ [0, 2N ′)|y′ �∈ RngRSACD(N ′, e′, k)}|
= 2 × |{y′ ∈ [0, N ′)|y′ �∈ RngRSACD(N ′, e′, k)}|
= 2(N ′ − φ(N ′)).

Therefore, we can bound Pr[YBad] as

Pr[YBad] ≤ 2k − |RngRSACD(N ′, e′, k)|
φ(N)

≤ 2(N ′ − φ(N ′))
φ(N)

=
2(p′ + q′ − 1)
N − p − q + 1

≤ 2(p′ + q′)
N − p − q

≤ 2(2�k/2� + 2�k/2�)
2k−1 − 2�k/2� − 2�k/2� =

2(1 + 1)
2k−1−�k/2� − 1 − 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.
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Substituting the bounds for the above probabilities, we have

Advθ-pow-fnc
RSACD,M (k) ≥ 1

2qhash
· (1 − ε1) ·

( ε

4
· (1 − ε2) − qgen

2k

)

where ε1 = 2
2k/2−3−1

and ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

2k−k0
, and re-arranging the terms,

we get the claimed result. Note that ε = Advik-cca
PE,A (k).

Finally, we estimate the time complexity of M . It is the time complexity of A plus

the time for simulating the random oracles. In the random oracle simulation, for each

pair ((g, Gg), (h,Hh)), it is sufficient to compute yh,g,0 = fRSACD
N0,e0,k(h||(g ⊕Hh)) and yh,g,1 =

fRSACD
N1,e1,k(h||(g⊕Hh)). Therefore, the time complexity of M is that of A plus qgen·qhash·O(k3).

3.5 OAEP with Sampling Twice

In this section, we propose a key-privacy encryption scheme with the sampling twice tech-

nique.

Definition 3.7. The common-key generation algorithm, the key generation algorithm, and

hash functions are the same as those for RSA-RAEP. The other algorithms are depicted

below. Note that the valid ciphertext y satisfies y ∈ [0, 2k) and (y mod N) ∈ Z
∗
N .

Algorithm EG,H
pk (x)

r1, r2
R← {0, 1}k0

s1 ← (x||0k1) ⊕ G(r1); t1 ← r1 ⊕ H(s1)

v1 ← (s1||t1)e mod N

s2 ← (x||0k1) ⊕ G(r2); t2 ← r2 ⊕ H(s2)

v2 ← (s2||t2)e mod N

y ← ChooseAndShift(v1, v2)

return y

Algorithm DG,H
sk (y)

v ← y mod N

s ← [vd mod N ]n+k1 ; t ← [vd mod N ]k0

r ← t ⊕ H(s)

x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

if (p = 0k1) z ← x else z ←⊥
return z

In order to prove that the scheme with sampling twice is secure in the sense of IK-CCA,

we need the restriction similar to that for OAEP with expanding.

Since if c is a ciphertext of m for pk = (N, e, k) and c < 2k − N then c + N is also

a ciphertext of m, the adversary can ask c + N0 to decryption oracle Dsk0 where c is a

challenge ciphertext such that c < 2k −N0 and pk0 = (N0, e0, k), and if the answer of Dsk0

is m, then the adversary can know that c was encrypted by pk0.

To prevent this attack, we add some natural restriction to the adversaries in the defini-

tions of IK-CCA. That is, it is mandated that the adversary never queries either c′ ∈ [0, 2k)

such that c′ = c (mod N0) to Dsk0 or c′′ ∈ [0, 2k) such that c′′ = c (mod N1) to Dsk1 .
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Similarly, in order to prove that the scheme with sampling twice is secure in the sense

of IND-CCA, we need the same restriction. That is, in the definition of IND-CCA, it is

mandated that the adversary never queries c′ ∈ [0, 2k) such that c′ = c (mod N) to Dsk.

If we add these restrictions then we can prove that the scheme with sampling twice

is secure in the sense of IK-CCA in the random oracle model assuming RSA is θ-partial

one-way for θ > 0.5. More precisely, we prove the following theorem.

Theorem 3.3. For any adversary A attacking the anonymity of our scheme PE with

sampling twice under an adaptive chosen-ciphertext attack, and making at most qdec de-

cryption oracle queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a

θ-partial inverting adversary M for the RSA family, such that for any k, k0(k), k1(k), and

θ = k−k0(k)
k ,

Advik-cca
PE,A (k) ≤ 8qhash((1− ε1) · (1− ε2) · (1− ε3))−1 ·Advθ-pow-fnc

RSA,M (k)+ qgen(1− ε3)−1 ·2−k+2

where ε1 = 1
2 , ε2 = 2

2k/2−3−1
, and ε3 = 2qdec

2k1
+ 2qhash

2k−k0
+ 2qgen+qdec+2qgenqdec

2k0
, and the running

time of M is that of A plus qgen · qhash · O(k3).

Proof. The proof is similar to that for our scheme with expanding. We describe the RSA

partial inverting algorithm M using a CCA-adversary A attacking anonymity of our en-

cryption scheme with sampling twice. M is given pk = (N, e, k) and a point y ∈ Z
∗
N where

|y| = k = n + k0 + k1. Let sk = (N, d, k) be the corresponding secret key. The algorithm

is trying to find the n + k1 most significant bits of the e-th root of y modulo N .

1) M picks a bit µ
R← {0, 1} and sets Y ← y + µN . If Y ≥ 2k then outputs Fail and

halts; else it continues.

2) M runs the key generation algorithm of RSA with security parameter k to obtain

pk′ = (N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b
R← {0, 1}, sets pkb ← (N, e)

and pk1−b ← (N ′, e′). If the above y does not satisfy y ∈ (Z∗
N0

∩Z
∗
N1

) then M outputs

Fail and halts; else it continues.

3) M initializes for lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs

A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described

below.

3-1) M runs A1(pk0, pk1) and gets (x, si) which is the output of A1.

3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random pair (h,Hh) from the H-list and outputs h as its guess for the

n + k1 most significant bits of the e-th root of y modulo N .
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M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h, Hh) on the H-list, M builds

z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. For

i ∈ {0, 1}, M checks whether y = yh,g,i. If for some h and i such a relation holds,

then we have inverted y under pki, and we can still correctly simulate G by answering

Gg = h ⊕ (x||0k1). Otherwise, M outputs a random value Gg of length n + k1. In

both cases, M adds (g,Gg) to the G-list. Then, for all h, M checks if the k1 least

significant bits of h ⊕ Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the

Y0-list and the Y1-list respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of

length k0 and adds (h, Hh) to the H-list. Then for each (g, Gg) on the G-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1.

M checks if the k1 least significant bits of h ⊕ Gg are all 0. If they are, then it adds

yh,g,0 and yh,g,1 to the Y0-list and the Y1-list respectively.

• When for i ∈ {0, 1}, A makes an oracle query y′ ∈ {0, 1}k to Dski
, M checks if there

exists some yh,g,i in the Yi-list such that y′ mod Ni = yh,g,i. If there is, then it returns

the n most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥ (indicating that

y′ is an invalid ciphertext).

Now, we analyze the advantage of M . In the following, we consider the experiment

where M does not output Fail in the first step. In this experiment, we can consider the

distributions of N , e, and Y as ((N, e, k), (N, d, k)) ← K(k); Y
R← S[N ] where K is the key

generation algorithm of RSA and S[N ] = {Y ′ |Y ′ ∈ [0, 2k) ∧ (Y ′ mod N) ∈ Z
∗
N}.

For i ∈ {0, 1}, let wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 . Let ri be the random

variable ti ⊕ H(si). We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 �= s0 ⊕ (x||0k1), or

– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 �= s1 ⊕ (x||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s0 was not on the H-list, and Gr0 �= s0⊕ (x||0k1),

or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s1 was not on the H-list, and Gr1 �= s1⊕ (x||0k1).
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• DBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We let Pr[·] denote the probability distribution in the game defining advantage, and

Pr0[·] denote the probability distribution in the simulated game where M does not output

Fail in the first step. We introduce the following additional events:

• YBad denotes the event that y ∈ (Z∗
N0

∩ Z
∗
N1

).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step

3-2.

• AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end of step

3-2.

Now, we analyze the advantage of M . We can bound the advantage of M in a similar

way as that for our scheme with expanding and we have

Advθ-pow-fnc
RSA,M (k) ≥ 1

2qhash
· Pr[Y < 2k ∧ ¬YBad] · Pr1[AskS]

≥ 1
2qhash

· Pr[Y < 2k] · Pr0[¬YBad] · Pr1[AskS]

and

Pr1[AskS] ≥ ε

4
·
(

1 −
(

2qgen + qdec + 2qgenqdec

2k0
+

2qdec

2k1
+

2qhash

2k−k0

))
− qgen

2k

where Pr0[·] denote the probability distribution in the simulated game where M does not

output Fail in the first step, and Pr1[·] denote the probability distribution in the simulated

game where M does not output Fail in the first step and ¬YBad occurs.

We next bound the probabilities that Y is in the good range and that ¬YBad occurs.

Lemma 3.5.

Pr[Y ≥ 2k] ≤ 1
2

and Pr0[YBad] ≤ 2
2k/2−3 − 1

.

Proof of Lemma 3.5. We first bound Pr[Y ≥ 2k]. Since Y = y + µN , y ∈ Z
∗
N , and

µ
R← {0, 1}, we have

Pr[Y ≥ 2k] ≤ Pr[µ = 1] =
1
2
.
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We next bound Pr0[YBad]. Let N = pq and N ′ = p′q′. Note that 2�k/2�−1 < p, q, p′, q′ <

2�k/2� and 2k−1 < N,N ′ < 2k. Since φ(N) ≤ |S[N ]|, we have

Pr0[YBad] = Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] ≤ |{y | y ∈ S[N ] ∧ y �∈ S[N ′]}|
|S[N ]|

≤ |{y | y ∈ [0, 2k) ∧ y �∈ S[N ′]}|
|S[N ]|

≤ 2k − |S[N ′]|
|S[N ]| ≤ 2k − |S[N ′]|

φ(N)
.

Furthermore, we have

2k − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
≤ ∣∣{Y ′|Y ′ ∈ [0, 2N ′) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
= 2 × ∣∣{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ �∈ Z

∗
N ′}

∣∣
= 2(N ′ − φ(N ′)).

Therefore, we can bound Pr0[YBad] as

Pr0[YBad] ≤ 2k − |S[N ′]|
φ(N)

≤ 2(N ′ − φ(N ′))
φ(N)

=
2(p′ + q′ − 1)
N − p − q + 1

≤ 2(p′ + q′)
N − p − q

≤ 2(2�k/2� + 2�k/2�)
2k−1 − 2�k/2� − 2�k/2� =

2(1 + 1)
2k−1−�k/2� − 1 − 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.

Substituting the bounds for the above probabilities, we have

Advθ-pow-fnc
RSA,M (k) ≥ 1

2qhash
· (1 − ε1) · (1 − ε2) ·

( ε

4
· (1 − ε3) − qgen

2k

)

where ε1 = 1
2 , ε2 = 2

2k/2−3−1
, and ε3 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

2k−k0
, and re-arranging

the terms, we get the claimed result. Note that ε = Advik-cca
PE,A (k).

Finally, we estimate the time complexity of M . It is the time complexity of A plus

the time for simulating the random oracles. In the random oracle simulation, for each

pair ((g, Gg), (h, Hh)), it is sufficient to compute yh,g,0 = (h||(g ⊕ Hh))e0 mod N0 and

yh,g,1 = (h||(g ⊕ Hh))e1 mod N1. Therefore, the time complexity of M is that of A plus

qgen · qhash · O(k3).

We can also prove that the scheme with sampling twice is secure in the sense of IND-

CCA in the random oracle model assuming RSA is θ-partial one-way for θ > 0.5. More

precisely, we can prove that if there exists a CCA-adversary A = (A1, A2) attacking

indistinguishability of our scheme with advantage ε, then there exists a CCA-adversary

B = (B1, B2) attacking indistinguishability of RSA-OAEP with advantage ε/2. We con-

struct B as follows.
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3.6. Efficiency

Repeating [3] Expanding RSACD Sampling Twice

# of mod. exp. to encrypt

(average / worst)
1.5 / k1 1 / 1 1.5 / 2 2 / 2

# of mod. exp. to decrypt

(average / worst)
1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts k + 1 k + 160 k k

# of random bits to encrypt

(average / worst)
1.5k0 / k1k0 k0 + 160 / k0 + 160 1.5k0 / 1.5k0 2k0 + k + 3 / 2k0 + k + 3

Figure 3.1: The costs of the encryption schemes.

1) B1 gets pk and passes it to A1. B1 gets (m0,m1, si) which is an output of A1, and

B1 outputs it.

2) B2 gets a challenge ciphertext y and sets y′ ← y + tN where t
R← {0, 1}. If y′ ≥ 2k

then B2 outputs Fail and halts; otherwise B2 passes (y′, si) to A2. B2 gets d ∈ {0, 1}
which is an output of A2, and B2 outputs it.

If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B outputs

Fail] < 1/2, the advantage of B is greater than ε/2.

3.6 Efficiency

We show the number of modular exponentiations to encrypt, the number of modular expo-

nentiations to decrypt, the size of ciphertexts, and the number of random bits to encrypt

in Figure 3.1. We assume that N is uniformly distributed in (2k−1, 2k).
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CHAPTER 4

Anonymity on Undeniable and Confirmer Signature

In this chapter, we consider the undeniable and confirmer signature schemes with anonymity.

In [44], Galbraith and Mao proposed a new RSA-based undeniable and confirmer signature

scheme which provides the anonymity property. They constructed the scheme by using the

expanding technique in order to prove that their scheme provides the anonymity property.

In this chapter, we propose two undeniable and confirmer signature schemes, which are

the variants of the Galbraith–Mao scheme, by using the repeating and the sampling twice

techniques and prove their security.

The organization of this chapter is as follows. In Section 4.1, we review the definitions

of undeniable and confirmer signature schemes, and the attacks on anonymity of undeni-

able and confirmer signature schemes proposed by Galbraith and Mao [44]. In Section 4.2

we review the undeniable and confirmer signature scheme, which provides the anonymity

property, proposed by Galbraith and Mao. We propose a undeniable and confirmer signa-

ture scheme with the repeating technique in Section 4.3, and that with the sampling twice

technique in Section 4.4. We compare the efficiency of three schemes in Section 4.5.

4.1 Definitions of Undeniable and Confirmer Signature

Digital signatures are easily verified as authentic by anyone using the corresponding public

key. This property can be advantageous for many users, but it is unsuitable for many

other users. Chaum and Antwerpen provided undeniable signature which cannot be veri-
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CHAPTER 4. Anonymity on Undeniable and Confirmer Signature

fied without the signer’s cooperation [22, 20]. The validity or invalidity of an undeniable

signature can be ascertained by conducting a protocol with the signer, assuming the signer

participates. Chaum provided confirmer signature [21] which is undeniable signature where

signatures may also be verified by interacting with an entity called the confirmer who has

been designated by the signer, and many undeniable and confirmer signature schemes were

proposed [47, 63, 16, 45]. We describe the definition of undeniable and confirmer signature.

Definition 4.1. An undeniable signature scheme SIG = (Cgen,Kgen,Sign, Conf,Deny)

consists of three algorithms and two protocols.

• Cgen is a (randomized) common-key generation algorithm that takes as input some

security parameter k and returns a common key I. The signature space S is uniquely

determined by I.

• Kgen is a (randomized) key generation algorithm that takes as input the common

key I and returns a pair (pk, sk) of keys, the public key and a matching secret key.

The message space Mpk for pk is uniquely determined by pk.

• Sign is a (randomized) signing algorithm that takes as input a secret key sk and

a message m and outputs a signature s. Note that the signature space Spk :=

{Signsk(m) |m ∈ Mpk} for pk is a subset of S for any (pk, sk).

• Conf is a confirmation protocol between a signer and a verifier which takes as input

a message m, a signature s, and signer’s public key pk and allows the signer to prove

to a verifier that the signature s is valid for the message m and the key pk.

• Deny is a denial protocol between a signer and a verifier which takes as input a

message m, a signature s, and signer’s public key pk and allows the signer to prove

to a verifier that the signature s is invalid for the message m and the key pk.

A confirmer signature scheme is essentially the same as above, except the role of confirma-

tion and denial can also be performed by a third party called a confirmer. The significant

modification is that the key generation algorithm produces a confirmation key ck which is

needed for the confirmation or denial protocol.

The literature on confirmer signature is inconsistent on whether the original signer has

the ability to confirm and/or deny signatures. Camenisch and Michels [16] claim that it

is undesirable for signers to be able to confirm or deny their signatures and the schemes

in [16, 21, 63] do not allow signers to deny signatures. On the other hand, Galbraith and

Mao claim that it is important for signers to be able to confirm and/or deny signatures

and the schemes in [22, 20, 45, 47] do allow signers to deny signatures. In any case, these

distinctions have no bearing on the discussion of the anonymity of the schemes.
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Generalized Invisibility. Before describing the definition of the anonymity. We review

the security notion called “invisibility.” The notion of the invisibility was the strongest

notion for undeniable and confirmer signature scheme, which was introduced by Chaum,

van Heijst, and Pfitzmann [24]. This is essentially the inability to determine whether a

given message-signature pair is valid for a given user. In [24], the invisibility is defined in

terms of simulatability. In [17], this notion is phrased in terms of distinguishing whether

a signature s corresponds to a message m0 or m1. Galbraith and Mao slightly modified

the definition in [17], which they call “generalized invisibility.” We review the definition of

the generalized invisibility. Note that we slightly modify the definition of the generalized

invisibility in [44] in order to put a common key generation into it explicitly.

Definition 4.2 (generalized invisibility [44]). Let SIG = (Cgen,Kgen,Sign,Conf, Deny)

be an undeniable or confirmer signature scheme. Let b ∈ {0, 1} and k ∈ N (security pa-

rameter). Let A = (A1, A2) be adversaries that run in two stages. A has access to the

oracles Signsk and A can execute confirmation and denial protocols Confsk,Denysk on

any message-signature pair. However, A2 cannot execute either Confsk or Denysk on

(m′, σ′) ∈ EC(m,σ, pk). (EC means “equivalence class.” If we get a message-signature

pair (m,σ) under the key pk, then we can easily compute all elements in EC(m, σ, pk). See

also Remark 4.1.) Note that si be a state information. It contains common keys, public

keys, and so on. Now we consider the following experiments:

Experiment ExpAnonym-b
SIG,A (k)

I ← Cgen(1k); (pk, sk) ← Kgen(I);

(m, si) ← A1(pk);

if (b = 0) then σ ← Signsk(m)

if (b = 1) then σ
R← S

d ← A2(m,σ, si)

return d

We define the advantages of the adversaries via:

AdvAnonym
SIG,A (k) =

∣∣∣Pr[ExpAnonym-1
SIG,A (k) = 1] − Pr[ExpAnonym-0

SIG,A (k) = 1]
∣∣∣.

The scheme SIG provides the generalized invisibility if the function AdvAnonym
SIG,A (·) is neg-

ligible for any adversary A whose time complexity is polynomial in k.

Galbraith and Mao showed that if the scheme meets the generalized invisibility, then

the scheme also meets the invisibility in [17], and vice versa.

Anonymity. Galbraith and Mao proposed a new security notion of undeniable and con-

firmer signatures named “anonymity” in [44]. We say that an undeniable or confirmer
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signature scheme provides anonymity when it is infeasible to determine which user gener-

ated the message-signature pair. Informally, this security property is as follows. Imagine a

system with n users and suppose an adversary is given a valid message-signature pair and is

asked to determine which user generated the signature. By running signature confirmation

or denial protocols with a given user (or their designated confirmer) one can determine

whether or not the user generated the signature. An undeniable or confirmer signature

scheme has the anonymity property if it is infeasible to determine whether a user is or is

not the signer of the message without interacting with that user or with the n − 1 other

users with given message-signature pair.

We slightly modify the definition of anonymity in [44] in order to put a common key

generation into it explicitly.

Definition 4.3 (anonymity [44]). Let SIG = (Cgen,Kgen,Sign,Conf, Deny) be an

undeniable or confirmer signature scheme. Let b ∈ {0, 1} and k ∈ N (security parameter).

Let A = (A1, A2) be adversaries that run in two stages. A has access to the oracles

Signsk0 ,Signsk1 and A can execute confirmation and denial protocols Confsk0 ,Confsk1 ,

Denysk0 ,Denysk1 on any message-signature pair. However, A2 cannot execute any one

of Confsk0 ,Confsk1 ,Denysk0, and Denysk1 on (m′, σ′) ∈ EC(m,σ, pk0)∪EC(m,σ, pk1)

(EC means “equivalence class.” If we get a message-signature pair (m, σ) under the key

pk, then we can easily compute all elements in EC(m,σ, pk).). Note that si be a state

information. It contains common keys, public keys, and so on. Now we consider the

following experiments:

Experiment ExpAnonym-b
SIG,A (k)

I ← Cgen(1k); (pk0, sk0) ← Kgen(I); (pk1, sk1) ← Kgen(I)

(m, si) ← A1(pk0, pk1); σ ← Signskb
(m); d ← A2(m,σ, si)

return d

We define the advantages of the adversaries via:

AdvAnonym
SIG,A (k) =

∣∣∣Pr[ExpAnonym-1
SIG,A (k) = 1] − Pr[ExpAnonym-0

SIG,A (k) = 1]
∣∣∣.

The scheme SIG provides anonymity if the function AdvAnonym
SIG,A (·) is negligible for any

adversary A whose time complexity is polynomial in k.

Galbraith and Mao proved the following proposition.

Proposition 4.1. If the scheme meets the generalized invisibility, then the scheme also

meets the anonymity, and vice versa.
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Attacks on Anonymity In [47], Gennaro, Krawczyk and Rabin described an undeni-

able/confirmer signature scheme based on RSA. In their case the signature for a message

m is s where s = m̄d mod N and m̄ is a one-way encoding. The signature may be veri-

fied by proving that se = m̄ (mod N) where the verification exponent e is known to the

signer/confirmer. This scheme requires that the moduli be products of safe primes. Later

the scheme was generalized to use arbitrary RSA moduli [45]. To handle adaptive attacks

on anonymity it is clear that the one-way encoding must also be randomized. Hence, a sig-

nature becomes a pair (r, s) where r is random and s = H(m, r)d (mod N) where H(m, r)

is the randomized one-way encoding (such as PSS [8]).

In [44], Galbraith and Mao pointed out the Gennaro–Krawczyk–Rabin scheme does not

provide anonymity. They showed the following attacks:

Jacobi Symbols Attack Since d is odd it follows that the Jacobi symbols
(

s
N

)
and(

H(m,r)
N

)
are equal. Hence, given a pair (H(m, r), s) and a user’s public key N ,

if
(

s
N

) �=
(

H(m,r)
N

)
then the signature is not valid for that user. This shows that the

scheme does not have anonymity.

Signature Length Attack A simple observation that seems to be folklore is that stan-

dard RSA signature does not provide anonymity, even when all moduli in the system

have the same length. Suppose an adversary knows that the signature s is created

under one of two keys (N0, d0) or (N1, d1) (length of N0 and N1 are k), and suppose

N0 ≤ N1. If s ≥ N0 then the adversary knows it was created under (N1, d1).

4.2 Undeniable and Confirmer Signature with Expanding by

Galbraith and Mao

In [44], Galbraith and Mao proposed a new RSA-based scheme. In this section, we review

their scheme.

Definition 4.4 ([44]). The common-key generation algorithm Cgen takes a security pa-

rameter k and returns parameters k, k0 and k1 such that k0(k)+k1(k) < k for all k > 1. The

key generation algorithm Kgen takes k, k0, k1, runs the key-generation algorithm of RSA,

and gets N, e, d, p, q where p, q the safe prime (i.e. (p− 1)/2 and (q− 1)/2 are also prime).

It picks g from Z
∗
N and sets h ← gd mod N . The public key pk is (N, g, h), k, k0, k1 and the

secret key sk is (N, e, d, p, q), k, k0, k1. The signature space is S = {0, 1}2k × {0, 1}k0. Let

G0 : {0, 1}∗ → {0, 1}k1, G1 : {0, 1}k1 → {0, 1}k0, G2 : {0, 1}k1 → {0, 1}k−k0−k1−1, and F
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: {0, 1}k → {0, 1}k be hash functions.

Sign(m) Sign2(m, r)

1 r
R← {0, 1}k0 w ← G0(m||r)

2 m̄ ← Sign2(m, r) r∗ ← G1(w) ⊕ r

3 t
R← {c ∈ ZN | c2 = ±m̄ (mod N)} M ← w||r∗||G2(w)

4 s ← td mod N m̄ ← M

5 u
R← {0, 1, . . . , 	(22k − s)/N
} while

((
m̄
N

) �= 1
)
repeat m̄ ← F (m̄)

6 ŝ ← s + uN return m̄

7 return (ŝ, r)

Conf (respectively Deny) is a non-interactive designated verifier proof which proves the

knowledge of an integer e such that g = he (mod N) and ŝ2e = ±Sign2(m, r) (mod N)

(resp. g = he (mod N) and ŝ2e �= ±Sign2(m, r) (mod N)). Note that ŝ = s + uN = s

(mod N) and all users can compute Sign2(m, r) given m, r, and N .

Remark 4.1. It is clear that if a message-signature pair (m, (ŝ, r)) is valid for pk =

(N, g, h) then (m, (±s±uN, r)) is also valid where s = ŝ mod N and u ∈ {0, 1, . . . , 	(22k −
s)/N
}. Thus, Galbraith and Mao defined the equivalence class for their scheme as

EC(m, (ŝ, r), pk) = {(m, (±s ± uN, r))|s = ŝ mod N, u ∈ {0, 1, . . . , 	(22k − s)/N
}}.

Since using a Blum integer N , for every m̄ ∈ Z
∗
N with

(
m̄
N

)
= 1, it follows that either

m̄ or −m̄ is a square. One can compute square-root and randomly chooses t from four

possibilities in step 3. Since
(

t
N

)
is not fixed, their scheme prevents the Jacobi symbols

attack. In step 5 and 6, it extends signatures of length k to be bit-strings of length 2k.

Since 0 ≤ ŝ < 22k and ŝ is indistinguishable from a random 2k-bit string for any N whose

length is k, their scheme prevents the signature length attack (See also [35].).

Galbraith and Mao proved that their scheme provides the generalized invisiblity and the

anonymity in the random oracle model under the assumption that the composite decision

Diffie-Hellman problem is hard.

Definition 4.5 (composite decision Diffie-Hellman problem). Let N be a product of two

safe primes (i.e. N = pq where p, q, (p − 1)/2, (q − 1)/2 are primes). Consider the two

sets

T = {(g, h, u, v) ∈ (Z∗
N )4 | ord(g) = ord(h) = 2p′q′, h ∈ 〈g〉, 〈g, v〉 = Z

∗
N}

and

TCDDH = {(g, h, u, v) ∈ T |h = gd (mod N) for some d coprime to φ(N),

v = αud (mod N) for some α ∈ Z
∗
N of order 2}
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with the uniform distribution on each. We say that the composite decision Diffie-Hellman

problem is hard if it is infeasible to distinguish these two distributions.

To obtain the security result it is necessary that executions of the confirm and deny

protocol can be simulated in the random oracle model. This is not possible with interactive

proofs so we must use non-interactive proofs. To maintain the security of the system, it is

necessary to use non-interactive designated verifier proofs [53].

They also proved that their scheme is existential unforgeable in the random oracle

model under the assumption that factoring integers which are products of safe primes is

hard.

In the scheme by Galbraith and Mao (and also our schemes we will propose later

on), we have to use RSA moduli which are the products of safe primes for obtaining

the anonymity property. Gennaro, Krawczyk, and Rabin [47] proposed the RSA-based

undeniable signature schemes where RSA moduli are restricted to the products of safe

primes, and the confirmation and denial protocols in [47] is more efficient than those by

Galbraith, Mao, and Paterson [45]. Therefore, it seems better to use the protocols in [47].

However, if we use the protocols in [47], the prover will have to prove that her RSA modulo

has the proper form (i.e. a product of safe primes) during the protocols, and it needs a

costly proof. To avoid this, Galbraith, Mao, and Paterson [45] constructed different scheme

where there is no restriction for the RSA moduli.

4.3 Undeniable and Confirmer Signature with Repeating

In this section, we propose the undeniable and confirmer signature schemes with the re-

peating technique.

Definition 4.6. The common-key generation algorithm Cgen, the key generation algo-

rithm Kgen, and hash functions G0, G1, G2, F are the same as those for the Galbraith–

Mao scheme. The signature space is S = {0, 1}k−1 × {0, 1}k0. The signing algorithm is as

follows.
Sign(m)

ctr ← −1

repeat

ctr ← ctr + 1

r
R← {0, 1}k0 ; m̄ ← Sign2(m, r)

t
R← {c ∈ [0, N) | c2 = ±m̄ (mod N)}; s ← td mod N

until (s < 2k−1 ∨ ctr = k1)

return (s, r)
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Conf or Deny executes non-interactive designated verifier proofs which prove knowledge

of an integer e such that g = he (mod N) and s2e ?= ±Sign2(m, r) (mod N). In order

to construct such proofs, we first employ protocols similar to those in [45] by Galbraith,

Mao, and Paterson. Then, we transform them to corresponding non-interactive designated

verifier proofs by the method of Jakobsson, Sako, and Impagliazzo [53].

We now prove the security of the scheme with repeating.

Lemma 4.1. If the scheme with expanding proposed by Galbraith and Mao provides the

generalized invisibility, then the scheme with repeating also provides the generalized invisi-

bility.

Proof. Suppose that we have an adversary A = (A1, A2) attacking the generalized invisi-

bility of the scheme with repeating. We construct the algorithm B = (B1, B2) attacking

the generalized invisibility of the scheme by Galbraith and Mao, using the algorithm A.

Note that B simulates A’s oracles as described below.

1) B1 takes pk and passes it to A1. B1 gets (m, si) which is an output of A1, and B1

outputs it.

2) B2 gets a challenge pair (ŝ, r) ∈ {0, 1}2k×{0, 1}k0 . Then, B2 computes s ← ŝ mod N ,

and if s > 2k−1 then it outputs fail and halts.

3) B2 passes ((s, r), si) to A2. B2 gets d ∈ {0, 1} which is an output of A2, and outputs

it.

B simulates the oracles as follows.

Hash query B uses its random oracles G0, G1, G2, F to answer the query by A.

Signing query To answer the signing query m by A, B uses its signing oracle and gets

(ŝ, r). Then, B computes s ← ŝ mod N , and if s ≤ 2k−1 then it answers (s, r) to A.

Otherwise B makes a query to its signing oracle again, and repeats the procedure

described above until s ≤ 2k−1.

Confirmation and Denial query B uses its confirmation and denial oracles, and re-

turns the results to A. (Note that our confirmation and denial protocols of the

scheme with repeating and those of the Galbraith–Mao scheme are non-interactive

one.)

It is easy to see that the probability that B outputs fail (when B makes a challenge) is

non-negligible. Furthermore, the distribution of the challenge (s, r) in the above game is

indistinguishable from that in the real game for the Galbraith–Mao scheme. Therefore, the

advantage of B is non-negligible if that of A is non-negligible.
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From Lemma 4.1, Proposition 4.1, and the result by Galbraith and Mao with respect

to the security of their scheme, we have the following theorem.

Theorem 4.1. The scheme with repeating provides the generalized invisibility and the

anonymity in the random oracle model under the assumption that the composite decision

Diffie-Hellman problem is hard.

We next prove the following theorem.

Theorem 4.2. The scheme with repeating is existential unforgeable in the random oracle

model under the assumption that factoring integers which are products of safe primes is

hard.

Proof. Suppose that we have an adversary A attacking the unforgeability of the scheme

with repeating. Then, we can construct the algorithm B attacking the unforgeability of the

scheme by Galbraith and Mao, using the algorithm A. The algorithm B runs A with simu-

lating A’ oracles. B can simulate the oracles for A in a similar way as those in the previous

proof. It is easy to see that if A outputs a valid signature of the scheme with repeating,

then the signature is also a valid signature of the Galbraith–Mao scheme. Therefore, if A

forges the signature of the scheme with repeating with non-negligible probability, then B

can forge the signature of the Galbraith–Mao scheme with non-negligible probability.

4.4 Undeniable and Confirmer Signature with Sampling Twice

In this section, we propose the undeniable and confirmer signature scheme with the sam-

pling twice technique.

Definition 4.7. The common-key generation algorithm Cgen, the key generation algo-

rithm Kgen, and hash functions G0, G1, G2, F are the same as those for the Galbraith–

Mao scheme. The signature space is S = {0, 1}k × {0, 1}k0. The signing algorithm is as

follows.

Sign(m)

r1, r2
R← {0, 1}k0

m̄1 ← Sign2(m, r1); t1
R← {c ∈ ZN | c2 = ±m̄1 (mod N)}; s1 ← (t1)d mod N

m̄2 ← Sign2(m, r2); t2
R← {c ∈ ZN | c2 = ±m̄2 (mod N)}; s2 ← (t2)d mod N

s ← ChooseAndShift(s1, s2)

if (s mod N = s1) r ← r1 else r ← r2

return (s, r)

Conf (respectively Deny) is a non-interactive designated verifier proof which proves the

knowledge of an integer e such that g = he (mod N) and s2e = ±Sign2(m, r) (mod N)
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Repeating Expanding [44] Sampling Twice

# of mod. exp. to sign

(average / worst)
1.5 / k1 1 / 1 2 / 2

# of computation of square roots

(average / worst)
1.5 / k1 1 / 1 2 / 2

size of signatures (k − 1) + k0 2k + k0 k + k0

# of random bits to sign

(average / worst)
1.5(k0 + 2) / k1(k0 + 2) k0 + k + 2 / k0 + k + 2 k0 + k + 5 / k0 + k + 5

Figure 4.1: The costs of the undeniable and confirmer signature schemes.

(resp. g = he (mod N) and s2e �= ±Sign2(m, r) (mod N)). In order to construct such

proofs, we first employ protocols similar to those in [45] by Galbraith, Mao, and Paterson.

Then, we transform them to corresponding non-interactive designated verifier proofs by the

method of Jakobsson, Sako, and Impagliazzo [53]. The equivalence class of this scheme is

EC(m, (s, r), pk) = {(m, (±s′ ± uN, r)) | s′ = s mod N ∧ u ∈ {0, 1, 2, . . . , 	(2k − s′)/N
}}.

We can prove that the scheme with sampling twice provides the generalized invisiblity

and the anonymity in the random oracle model under the assumption that the composite

decision Diffie-Hellman problem is hard, and is existential unforgeable in the random oracle

model under the assumption that factoring integers which are products of safe primes is

hard. The proofs are similar to those for the scheme with repeating.

4.5 Efficiency

We show the number of modular exponentiations to sign, the number of computation of

square root, the size of signatures, and the number of random bits to sign in Figure 4.1.

We assume that N is uniformly distributed in (2k−1, 2k).
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CHAPTER 5

Anonymity on Ring Signature

In this chapter, we consider the ring signature schemes with anonymity. In [76], Rivest,

Shamir, and Tauman proposed the notion of ring signature, which allows a member of

an ad hoc collection of users S to prove that a message is authenticated by a member

of S without revealing which member actually produced the signature. They constructed

the scheme which provides the above property by using the expanding technique. In this

chapter, we propose three ring signature schemes, which are variants of the Rivest–Shamir–

Tauman scheme, with the repeating technique, RSACD, and the sampling twice technique,

and prove their security.

The organization of this chapter is as follows. We review the definitions of ring signature

in Section 5.1, and the RSA-based ring signature scheme proposed by Rivest, Shamir, and

Tauman in Section 5.2. We propose a ring signature scheme with the repeating technique

in Section 5.3, that with RSACD in Section 5.4, and that with the sampling twice technique

in Section 5.5. We compare the efficiency of four schemes in Section 5.6.

5.1 Definitions of Ring Signature

In [76], Rivest, Shamir, and Tauman proposed the notion of ring signature, which allows

a member of an ad hoc collection of users S to prove that a message is authenticated by

a member of S without revealing which member actually produced the signature. Unlike

group signature, ring signature has no group managers, no setup procedures, no revocation
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procedures, and no coordination.

Definition 5.1 (ring signature [76]). One assumes that each user (called a ring member)

has received (via a PKI or a certificate) a public key Pk, for which the corresponding secret

key is denoted by Sk. A ring signature scheme consists of the following algorithms.

• ring-sign(m,P1, P2, · · · , Pr, s, Ss) which produces a ring signature σ for the message

m, given the public keys P1, P2, · · · , Pr of the r ring members, together with the secret

key Ss of the s-th member (who is the actual signer).

• ring-verify(m,σ) which accepts a message m and a signature σ (which includes the

public key of all the possible signers), and outputs either “valid” or “invalid”.

The signer does not need the knowledge, consent, or assistance of the other ring mem-

bers to put them in the ring. All he needs is knowledge of their regular public keys.

Verification must satisfy the usual soundness and completeness conditions, but in addition

the signature scheme must satisfy “signer-ambiguous”, which is the property that the veri-

fier should be unable to determine the identity of the actual signer with probability greater

than 1/r + ε, where r is the size of the ring, and ε is negligible.

Furthermore, the signature scheme must satisfy “existential unforgeability under adap-

tive chosen message attack”, which is the property that any polynomial time adversary,

where she can have access to the signing oracle and get signatures for any message, cannot

forge a message-signature pair with non-negligible probability, other than the pairs the

signing oracle has previously produced.

5.2 RSA-based Ring Signature Scheme by Rivest, Shamir,

and Tauman

In [76], Rivest, Shamir, and Tauman constructed the ring signature scheme in which all

the ring member use RSA as their individual signature schemes. Each user can uses the

RSA moduli whose lengths are different from other users.

The formal concept of ring signature can be related to an abstract concept called

combining functions. A combining function Ck,v(y1, y2, · · · , yr) takes as input a key k, an

initialization value v, and a list of arbitrary values of the same length �. It outputs a single

value z ∈ {0, 1}� such that for any k, v, any index s, and any fixed values of {yi}i �=s, Ck,v

is a permutation over {0, 1}�, when seen as a function of ys. Moreover, this permutation is

efficiently computable as well as its inverse.

In [76], Rivest, Shamir, and Tauman proposed a combining function based on a sym-

metric encryption scheme E modeled by a (keyed) random permutation

Ck,v(y1, · · · , yr) = Ek(yr ⊕ Ek(yr−1 ⊕ · · ·Ek(y2 ⊕ Ek(y1 ⊕ v)) · · · )). (5.1)
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For any index s, we can easily verify that Ck,v is a combining function by rewriting equa-

tion 5.1 as follows:

ys = E−1
k

(
ys+1 ⊕ · · ·E−1

k (yr ⊕ E−1
k (v)) · · · ) ⊕ Ek

(
ys−1 ⊕ · · ·Ek(y1 ⊕ v) · · · ). (5.2)

By using the combining function, Rivest, Shamir, and Tauman proposed the RSA-based

ring signature scheme.

Definition 5.2 ([76]). Let �, k, and b be security parameters. Let E be a symmetric en-

cryption scheme over {0, 1}b using �-bit keys and h be a hash function which maps arbitrary

strings to �-bit strings. They use h to make a key for E. Each user has an RSA public key

Pi = (Ni, ei, ki) and secret key Si = (Ni, di, ki) where ki ≥ k by running the key generation

algorithm of RSA. Let r be a number of ring member. We define the extended trap-door

permutation gi over {0, 1}b as follows: for any b-bits input xi define nonnegative integers

qi and ri such that xi = qiNi + ri and 0 ≤ ri < Ni. Then

gi(xi) =

{
qiNi + fRSA

Ni,ei,ki
(ri) if (qi + 1)Ni ≤ 2b

xi otherwise.

The signing algorithm is as follows.

ring-sign(m,P1, P2, · · · , Pr, s, Ss)

for each i ∈ {1, · · · , s − 1, s + 1, · · · , r} do

xi
R← {0, 1}b; yi ← gi(xi)

v
R← {0, 1}b

find ys s.t. Ch(m),v(y1, · · · , yr) = v

xs ← g−1
s (ys)

return σ = (P1, P2, · · · , Pr, v, x1, x2, · · · , xr)

Note that we can find ys such that Ch(m),v(y1, · · · , yr) = v in the signing algorithm by using

equation 5.2 (See also Figure 5.1.).

The verification algorithm ring-verify(m,σ) computes yi ← gi(xi) for each xi and z ←
Ch(m),v(y1, · · · , yr). It returns valid if z = v (See Figure 5.2.).

If b is sufficiently large (e.g. 160 bits larger than any of the Ni), gi is a one-way trap-

door permutation, and Rivest, Shamir, and Tauman proved this scheme is unconditionally

signer-ambiguous and existential unforgeable under adaptive chosen message attack in the

ideal cipher model assuming RSA is one-way.

Remark 5.1 (ideal cipher model). The ideal cipher model provides a mathematical model

of an “ideal” symmetric encryption scheme. In this model, a function (a symmetric encryp-

tion scheme) hk : X × K → X is chosen randomly from PX,K which is a set of functions
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Figure 5.1: The construction of ring signature.

Figure 5.2: The verification of ring signature.
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such that for any fixed k ∈ K, hk is a permutation over X, and we are only permitted oracle

access to the function hk for any k ∈ K. This means that we are not given a formula or

an algorithm to compute values of the function hk for any k ∈ K. Therefore, the only way

to compute the value hk(x) is to query the oracle. It should be noticed that the ideal cipher

model is considered to be stronger than the random oracle model.

Bresson, Stern, and Szydlo [14] recently improved the ring signature scheme proposed

by Rivest, Shamir, and Tauman. They showed that security can be based on the random

oracle model which is strictly weaker complexity assumption than the ideal cipher model.

Furthermore, this greatly simplified the security proof provided in [76]. They also provided

the threshold ring signature scheme and its applications. For examples of applications of

ring signatures, Naor [64] proposed the deniable ring authentication scheme. It is possible

to convince a verifier that a member of an ad hoc subset of participants is authenticating

a message without revealing which one (source hiding), and the verifier cannot convince a

third party that message was indeed authenticated. Zhang and Kim [81] proposed the ID-

based ring signature scheme which is based on the bilinear pairings and they also analyzed

its security and efficiency.

5.3 Ring Signature with Repeating

In this section, we propose the ring signature scheme by using the repeating technique.

Definition 5.3. Let �, k, and b = k − 1 be security parameters. Let E be a symmetric

encryption scheme over {0, 1}b using �-bit keys and h a hash function which maps arbitrary

strings to �-bit strings. Each user has an RSA public key Pi = (Ni, ei, ki) and secret key

Si = (Ni, di, ki) by running the key generation algorithm of RSA with security parameter k

(i.e. the size of Ni is k). Let r be a number of ring member. The signing algorithm is as
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follows.
ring-sign(m, P1, P2, · · · , Pr, s, Ss)

for each i ∈ {1, · · · , s − 1, s + 1, · · · , r} do

ctr ← −1

repeat

ctr ← ctr + 1

xi
R← ZNi ; yi ← (xi)ei mod Ni

until (yi < 2k−1 ∨ ctr = k)

if (ctr = k) xi ← 1; yi ← 1

v
R← {0, 1}b

find ys s.t. Ch(m),v(y1, · · · , yr) = v

xs ← yds
s mod Ns

return σ = (P1, P2, · · · , Pr, v, x1, x2, · · · , xr)

ring-verify(m, σ) computes yi ← xei
i mod Ni for each xi and z ← Ch(m),v(y1, · · · , yr). It

returns valid if z = v.

We can prove that our scheme is unconditionally signer-ambiguous, since for each k

and v the equation Ch(m),v(y1, · · · , yr) = v has exactly (2k−1)r−1 solutions, and all of them

can be chosen by the signature generation procedure with equal probability, regardless of

the signer’s identity.

We can also prove that our scheme is existential unforgeable under adaptive chosen

message attack in the ideal cipher model assuming RSA is one-way. The proof is almost

the same as that for the Rivest–Shamir–Tauman scheme. The difference is as follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given y ∈ Z
∗
N ,

one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger

has to compute the e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for our scheme, given y ∈ Z
∗
N , if y ≥ 2k−1 then outputs Fail and halts.

Otherwise, one slips y as a “gap” between two consecutive E functions along the ring. We

can easily see that the probability of outputting Fail is smaller than 1/2. The rest of the

proof is the same as that for the Rivest–Shamir–Tauman scheme (See Section 3.5 in [76].),

and it is not hard to see that if there exists a forger for our scheme with advantage ε, then

we can invert RSA with probability ε/2q2 where q is a number of oracle queries.

5.4 Ring Signature with RSACD

In this section, we propose a ring signature scheme with the RSACD function. We use

fRSACD
Ni,ei,k

(·) instead of gi(·).
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Definition 5.4. The values �, k, E, h, r are the same as those of Rivest–Shamir–Tauman

scheme. Each user has a public key Pi = (Ni, ei, k) and secret key Si = (Ni, di, k) by

running the key generation algorithm of RSACD with security parameter k (i.e. the length

of Ni is k), and let b = k. The signing algorithm is as follows.

ring-sign(m,P1, P2, · · · , Pr, s, Ss)

for each i ∈ {1, · · · , s − 1, s + 1, · · · , r} do

xi
R← {0, 1}k; yi ← fRSACD

Ni,ei,k
(xi)

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, · · · , yr) = v

xs ← gRSACD
Ns,ds,k(ys)

return σ = (P1, P2, · · · , Pr, v, x1, x2, · · · , xr)

The verification algorithm ring-verify(m, σ) computes yi ← fRSACD
Ni,ei,k

(xi) for each xi and

z ← Ch(m),v(y1, · · · , yr). It returns valid if z = v.

We can prove that the scheme with RSACD is unconditionally signer-ambiguous, since

for each k and v the equation Ch(m),v(y1, . . . , yr) = v has exactly (2k)r−1 solutions, and all

of them are chosen by the signature generation procedure with equal probability, regardless

of the signer’s identity.

We can also prove that the scheme with RSACD is existential unforgeable under adap-

tive chosen message attack in the ideal cipher model assuming RSA is one-way. The proof

is almost the same as that for the Rivest–Shamir–Tauman scheme. The difference is as

follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given y ∈ Z
∗
N ,

one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger

has to compute the e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for the scheme with RSACD, given y′ ∈ RngRSACD(N, e, k), one slips y′ as

a “gap” between two consecutive E functions along the ring. The rest of the proof is the

same as that for the Rivest–Shamir–Tauman scheme

5.5 Ring Signature with Sampling Twice

In this section, we propose a ring signature scheme with the sampling twice technique. To

verify the signatures deterministically, we add some information ci to the signature.

Definition 5.5. Let �, k be security parameters. Let E be a symmetric encryption scheme

over {0, 1}k using �-bit keys, and let h be a hash function which maps strings of arbitrary

length to �-bit strings. Each user Ui has public key Pi = (Ni, ei, k) and secret key Si =
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(Ni, di, k) by running the key generation algorithm of RSA with security parameter k (i.e.

the size of Ni is k). Let r be the number of ring members. The signing algorithm is as

follows.
ring-sign(m,P1, P2, . . . , Pr, s, Ss)

for each i ∈ {1, . . . , s − 1, s + 1, . . . , r} do

xi,1, xi,2
R← Z

∗
Ni

yi,1 ← (xi,1)ei mod Ni; yi,2 ← (xi,2)ei mod Ni

yi ← ChooseAndShift(yi,1, yi,2)

if (yi mod Ni = yi,1) xi ← xi,1 else xi ← xi,2

if (yi ≥ Ni) ci ← 1 else ci ← 0

v
R← {0, 1}k

find ys s.t. Ch(m),v(y1, . . . , yr) = v

if (ys ≥ Ns) cs ← 1 else cs ← 0

xs ← (ys)ds mod Ns

return σ = (P1, P2, . . . , Pr, v, (x1, c1), (x2, c2), . . . , (xr, cr))

The verification algorithm ring-verify(m,σ) computes yi ← ((xi)ei mod Ni) + ci · Ni for

each (xi, ci) and z ← Ch(m),v(y1, . . . , yr). It returns valid if and only if z = v.

We can prove that the scheme with the sampling twice technique is unconditionally

signer-ambiguous, since for each k and v the equation Ch(m),v(y1, . . . , yr) = v has exactly

(2k)r−1 solutions, and all of them are chosen by the signature generation procedure with

equal probability, regardless of the signer’s identity.

We can also prove that the scheme with the sampling twice technique is existential

unforgeable under adaptive chosen message attack in the ideal cipher model assuming RSA

is one-way. The proof is almost the same as that for the Rivest–Shamir–Tauman scheme.

The difference is as follows.

In the proof of unforgeability for the Rivest–Shamir–Tauman scheme, given y ∈ Z
∗
N ,

one slips y as a “gap” between two consecutive E functions along the ring. Then, the forger

has to compute the e-th root of y, and this leads one to obtain the e-th root of y.

In the proof for the scheme with the sampling twice technique, given y ∈ Z
∗
N , we pick

a random bit t ∈ {0, 1}, set y′ ← y + tN . If y′ < 2k then one slips y′ as a “gap” between

two consecutive E functions along the ring. The rest of the proof is the same as that for

the Rivest–Shamir–Tauman scheme

5.6 Efficiency

We show the number of modular exponentiations to sign and to verify, the size of signatures,

and the number of random bits to sign in Figure 5.3. We assume that each Ni is uniformly
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Repeating Expanding [76] RSACD Sampling Twice

# of mod. exp. to sign

(average / worst)
1.5r / kr r / r 1.5r / 2r 2r / 2r

# of mod. exp. to verify

(average / worst)
r / r r / r 1.5r / 2r r / r

size of signatures (3r + 1)k − 1 (3r + 1)k + 160(r + 1) (3r + 1)k (3r + 1)k + r

# of random bits to sign

(average / worst)

1.5k(r − 1) + k − 1

/ k2(r − 1) + k − 1

(k + 160)r

/ (k + 160)r
kr / kr

3(k + 1)(r − 1) + k

/ 3(k + 1)(r − 1) + k

Figure 5.3: The comparison of the ring signature schemes (|Ni| = k)

distributed in (2k−1, 2k).

In the schemes with sampling twice and RSACD, it is necessary for each ring member

to choose her RSA modulo with the same length, and in the scheme with repeating, it is

necessary for each ring member to choose her RSA modulo with almost the same length.

In contrast to these schemes, in the scheme with expanding, there is no restriction on

the lengths of users’ moduli. However, if there is one ring member whose RSA modulo

is much larger than the other member’s moduli, then the size of the signature and the

number of random bits depends on the largest modulo. For example, if there is a user

whose RSA modulo has length k + � and the other users’ moduli have lengths k, then the

size of signature is (3r + 1)k + 160(r + 1) + �(r + 4) and the number of random bits to sign

is r(k + 160) + r�.
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CHAPTER 6

A Family of Paillier’s Trap-door Permutations and its
Applications to Public-Key Encryption with

Anonymity

In [68], Paillier provided a trap-door one-way bijective function, and proved that the func-

tion is one-way if and only if the problem of extracting N -th roots modulo N is hard.

In this chapter, we focus on the four techniques, repeating, expanding, RSACD, and

sampling twice, in the case using the Paillier’s bijective function instead of the RSA func-

tion. We slightly modify his function and construct a family of Paillier’s trap-door permu-

tations denoted by Paillier. We also construct a family of Paillier’s trap-door permutations

with a common domain denoted by PCD, and prove the relations in Figure 6.1 for θ > 0.5.

Here, RSAN denotes an RSA family of trap-door permutations with the fixed exponent N .

We also apply Paillier and PCD to encryption, and obtain Paillier-OAEP (OAEP with

Paillier’s trap-door permutation) with repeating, that with expanding, that with sampling

twice, and PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common do-

main), and prove their security.

The organization of this chapter is as follows. In Section 6.1, after reviewing the

Paillier’s bijective function [68], we propose a family of Paillier’s trap-door permutations

denoted by Paillier and a family of Paillier’s trap-door permutations with a common domain

denote by PCD. We also prove that the θ-partial one-wayness of Paillier is equivalent to the

one-wayness of Paillier for θ > 0.5, the θ-partial one-wayness of PCD is equivalent to the
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RSAN is one-way
[68]

�
� Paillier is one-way

[this chapter]
� PCD is one-way

�

� [43]
�

� [this chapter]
�

� [this chapter]

RSAN is

θ-partial one-way

Paillier is

θ-partial one-way

PCD is

θ-partial one-way

Figure 6.1: Relationships between RSAN , Paillier, and PCD for θ > 0.5.

one-wayness of PCD for θ > 0.5, and that the one-wayness of Paillier is reduced to that of

PCD. In Section 6.2, we propose applications of Paillier and PCD to encryption and prove

that our schemes provide the anonymity and the indistinguishability in the random oracle

model assuming that RSAN is one-way.

6.1 A Family of Paillier’s Trap-door Permutations and that

with a Common Domain

In this section, we propose a family of Paillier’s trap-door permutations and that with a

common domain.

6.1.1 Paillier’s Bijective Functions

In [68], Paillier provided the bijective function gN : {x1 +x2 ·N |x1 ∈ ZN , x2 ∈ Z
∗
N} → Z

∗
N2

such that

gN (x) = (1 + Nx1)xN
2 mod N2

where x1 = x mod N and x2 = x div N . By using the trap-door λ = lcm(p − 1, q − 1)

where N = pq, we can compute g−1
N (y) = x1 + x2 · N , where L(u) = (u − 1)/N ,

x1 ← L(yλ mod N2)
λ

mod N, and x2 ← (y · (1 − Nx1))N−1 mod λ mod N2

He proved the following proposition.

Proposition 6.1 ([68]). The family of Paillier’s bijective functions is one-way if and only

if RSAN is one-way.

Definition 6.1 (the RSA family of trap-door permutations with the fixed exponent N).

The RSA family of trap-door permutations with the fixed exponent N RSAN = (K,S,E)

is as follows. The key generation algorithm K takes as input a security parameter k and

picks random, distinct primes p, q such that 2�k/2�−1 < p, q < 2�k/2� and |p2q2| = 2k. It sets

N = pq (i.e. 22k−1 < N2 < 22k.) and λ = λ(N) = lcm(p−1, q−1). It returns a public key
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pk = (N, k) and a secret key sk = (N, k, λ). DomRSAN
(N, k) and RngRSAN

(N, k) are both

equal to Z
∗
N . The evaluation algorithm EN,k(x) = xN mod N and the inversion algorithm

IN,k,λ(y) = yN−1 mod λ mod N . The sampling algorithm returns a random point in Z
∗
N .

6.1.2 A Family of Paillier’s Trap-door Permutations

In this section, we propose a family of Paillier’s trap-door permutations denoted by Paillier

and prove that the θ-partial one-wayness of Paillier is equivalent to the one-wayness of

Paillier for θ > 0.5.

The domain and the range of the Paillier’s bijective function are different. In order to

construct a permutation based on the Paillier’s bijective function, we consider a function

hN : Z
∗
N2 → {x1 +x2 ·N |x1 ∈ ZN , x2 ∈ Z

∗
N} such that hN (x) = (x div N)+(x mod N) ·N .

It is clear that hN is bijective and h−1
N (y) = (y div N)+ (y mod N) ·N . Therefore, hN ◦ gN

is a trap-door permutation over {x1 + x2 · N |x1 ∈ ZN , x2 ∈ Z
∗
N}.

We now propose the family of Paillier’s trap-door permutations denoted by Paillier.

Definition 6.2 (the family of Paillier’s trap-door permutations). The specifications of the

family of Paillier’s trap-door permutations Paillier = (K, S, E) are as follows. The key

generation algorithm K takes as input a security parameter k, runs the key generation

algorithm for RSAN , and returns a public key pk = (N, k) and a secret key sk = (N, k, λ).

DomPaillier(N, k) and RngPaillier(N, k) are both equal to {x1+x2 ·N |x1 ∈ ZN , x2 ∈ Z
∗
N}. The

sampling algorithm returns a random point in DomPaillier(N, k). The evaluation algorithm

EN,k(x) = FP
N (x), and the inversion algorithm IN,k,λ(y) = GP

N,λ(y) are as follows. Note

that FP
N = hN ◦ gN and GP

N,λ = g−1
N ◦ h−1

N .

Function FP
N (x) Function GP

N,λ(y)

x1 ← x mod N ; x2 ← x div N y1 ← y mod N ; y2 ← y div N ; Y ← y1 · N + y2

Y ← (1 + Nx1)xN
2 mod N2 x1 ← L(Y λ mod N2)

λ
mod N

y1 ← Y div N ; y2 ← Y mod N x2 ← (Y · (1 − Nx1))N−1 mod λ mod N2

y ← y1 + y2 · N x ← x1 + x2 · N
return y return x

From Proposition 6.1, we can easily see the following lemma.

Lemma 6.1. Paillier is one-way if and only if RSAN is one-way.

We prove the following theorem. Note that we cannot prove the following theorem by

directly applying a similar argument for RSA in [43].

Theorem 6.1. The θ-partial one-wayness of Paillier is equivalent to the one-wayness of

Paillier for θ > 0.5.
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Proof. It is easy to see that if Paillier is θ-partial one-way then Paillier is one-way. Therefore,

we prove the opposite direction.

Let A be an algorithm that outputs the 2k − k0 most significant bits of the pre-image

of its input y ∈ RngPaillier(N, k) with k > k0 (i.e. A is a ((2k − k0)/2k)-partial inverting

algorithm for Paillier with k > k0), with success probability ε = Advθ-pow-fnc
Paillier,A (k) where

θ = (2k − k0)/k > 0.5, within time bound t. We prove that there exists an algorithm B

that outputs a pre-image of y with success probability ε′ = Adv1-pow-fnc
Paillier,B (k) ≥ ε/2, within

time bound t′ ≤ t + O(k3). We construct the algorithm B as follows.

Algorithm B((N, k), y)

X ← A((N, k), y); c
R← {0, 1}; x2 ← ((2k0 · X) div N) + c

y1 ← y mod N ; y2 ← y div N ; Y ← y1 · N + y2

find x1 s.t. 1 + Nx1 =
Y

(x2)N
mod N2

x ← x1 + x2 · N ; return x

Assume that A outputs correctly, that is, X is the most 2k−k0 significant bits of x. We

know x = 2k0 ·X + R for some 0 < R < 2k0 . Thus, x2 = x div N = (2k0 ·X) div N + ((2k0 ·
X) mod N + R) div N. Since R < 2k0 ≤ 2k−1 < N (Note that k0 ≤ k − 1, since k, k0 ∈ N

and k0 < k.), we have (2k0 · X) mod N + R < 2N . Hence, ((2k0 · X) mod N + R) div N is

equal to 0 or 1, and we have x2 = (2k0 · X) div N or (2k0 · X) div N + 1.

It is easy to see that if x2 is correct then the output of B, that is, x = x1 + x2 · N

is the pre-image of y. Therefore, ε′ = Adv1-pow-fnc
Paillier,B (k) ≥ ε/2. It is not hard to see that

t′ ≤ t + O(k3).

Fujisaki, Okamoto, Pointcheval, and Stern [43] showed that the θ-partial one-wayness

of RSA is equivalent to the one-wayness of RSA for θ > 0.5. In their reduction, they

assume the θ-partial inverting algorithm A for RSA with advantage ε, and construct the

inverting algorithm B for RSA by running A twice. Then, the success probability of B is

approximately
√

ε. Furthermore, their reduction can be extended to the case that θ is a

constant fraction less than 0.5. That is, B runs A 1/θ times, and the success probability

decreases to approximately ε1/θ.

Our reduction for Paillier is tight than that for RSA in [43] with respect to both the

success probability and the running time. However, our reduction cannot to be extended

to the case that θ is a constant fraction less than 0.5.
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Figure 6.2: The functions FPCD
N,k and GPCD

N,k,λ.

6.1.3 A Family of Paillier’s Trap-door Permutations with a Common

Domain

In this section, we construct a family of Paillier’s trap-door permutations with a common

domain denoted by PCD and prove that the θ-partial one-wayness of PCD is equivalent to

the one-wayness of Paillier for θ > 0.5.

The construction of PCD

The construction of PCD is similar to that of RSACDRSACD in Section 2.3.2.

Definition 6.3 (the family of Paillier’s trap-door permutations with a common domain).

The family of Paillier’s trap-door permutations with a common domain PCD = (K, S,E) is

as follows. The key generation algorithm is the same as that of Paillier. DomPCD(N, k) and

RngPCD(N, k) are both equal to {x1+x2 ·N |(x1+x2 ·N) ∈ [0, 22k), x1 ∈ ZN , (x2 mod N) ∈
Z
∗
N}. The sampling algorithm returns a random point in DomPCD(N, k). The evaluation

algorithm EN,k(x) = FPCD
N,k (x), and the inversion algorithm IN,k,λ(y) = GPCD

N,k,λ(y) are as

follows. (See also Figure 6.2.)

Function FPCD
N,k (x)

u ← FPCD-1
N,k (x); v ← FPCD-2

N,k (u); y ← FPCD-3
N,k (v)

return y

Function FPCD-1
N,k (x) Function FPCD-2

N,k (u) Function FPCD-3
N,k (v)

if (x < N2) if (u < 22k − N2) v ← u + N2 if (v < N2)

u ← FP
N (x) elseif (22k − N2 ≤ u < N2) v ← u y ← FP

N (v)

else u ← x else v ← u − N2 else y ← v

return u return v return y
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Function GPCD
N,k,λ(y)

v ← GPCD-1
N,k,λ (y); u ← GPCD-2

N,k,λ (v); x ← GPCD-3
N,k,λ (u)

return x

Function GPCD-1
N,k,λ (y) Function GPCD-2

N,k,λ (v) Function GPCD-3
N,k,λ (u)

if (y < N2) if (v < 22k − N2) u ← v + N2 if (u < N2)

v ← GP
N,λ(y) elseif (22k − N2 ≤ v < N2) u ← v x ← GP

N,λ(u)

else v ← y else u ← v − N2 else x ← u

return v return u return x

The choice of N2 from (22k−1, 22k) ensures that all elements in DomPCD(N, k) are permuted

by FP
N at least once. Since FP

N is a permutation over DomPaillier(N, k), both FPCD-1
N,k and

FPCD-3
N,k are permutations over DomPCD(N, k). Since it is clear that FPCD-2

N,k is a permutation

over DomPCD(N, k), we have that FPCD
N,k is a permutation over DomPCD(N, k).

Property of PCD

In this section, we prove the θ-partial one-wayness of PCD is equivalent to the one-wayness

of PCD for θ > 0.5, and that the one-wayness of PCD is equivalent to the one-wayness of

Paillier.

We first prove the partial one-wayness of PCD. Note that we cannot prove this by

directly applying a similar argument for that of RSACD.

Theorem 6.2. The θ-partial one-wayness of PCD is equivalent to the one-wayness of PCD

for θ > 0.5.

Proof. It is easy to see that if PCD is θ-partial one-way then PCD is one-way. Therefore,

we prove the opposite direction.

Let A be an algorithm that outputs the 2k − k0 most significant bits of the pre-image

of its input y ∈ RngPCD(N, k) with k > k0 (i.e. A is a ((2k − k0)/2k)-partial inverting

algorithm for PCD with k > k0), with success probability ε = Advθ-pow-fnc
PCD,A (k) where

θ = (2k − k0)/2k > 0.5, within time bound t. We prove that there exists an algorithm B

that outputs a pre-image of y with success probability ε′ = Adv1-pow-fnc
PCD,B (k) ≥ ε/2. within

time bound t′ ≤ t + O(k3). We construct the algorithm B as follows.
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Algorithm B((N, k), y)

X ← A((N, k), y); c
R← {0, 1}; x2 ← ((2k0 · X) div N) + c

y1 ← y mod N ; y2 ← y div N

if (x2 ≥ N ∨ y2 ≥ N)

Y ← y1 · N + (y2 mod N)

find x1 s.t. 1 + Nx1 =
Y

(x2 mod N)N
mod N2

else

Z ← y1 · N + y2; w2 ← xN
2 mod N

find x1 s.t. 1 + Nx1 =
1

xN
2

[(
Z

wN
2

− 1
)

+ w2

]
mod N2

x ← x1 + x2 · N
return x

Analysis

Assume that y = y1 + y2 · N ∈ RngPCD(N, k) and x = x1 + x2 · N which is the pre-image

of y, that is, x = GPCD
N,k,λ(y).

The algorithm B computes x2 in a similar way as the inverting algorithm in the proof

of Theorem 6.1.

If x2 ≥ N or y2 ≥ N , x is permuted by FP
N only once, and then, we have

y1 + (y2 mod N) · N = FP
N (x1 + (x2 mod N) · N).

Therefore, we can compute x1 in a similar way as the inverting algorithm in the proof of

Theorem 6.1 with replacing x2 by x2 mod N and y2 by y2 mod N .

If x2 < N and y2 < N , x is permuted by FP
N twice, that is, y = FP

N (FP
N (x)). Assume

that w = w1 + w2 · N = FP
N (x). By the definition of FP

N , we have

w1 · N + w2 = (1 + Nx1)xN
2 (mod N2)

and

Z = y1 · N + y2 = (1 + Nw1)wN
2 (mod N2).

Thus,

(Nw1 = ) (1 + Nx1)xN
2 − w2 =

Z

wN
2

− 1 (mod N2),

1 + Nx1 =
1

xN
2

[(
Z

wN
2

− 1
)

+ w2

]
(mod N2).

Since 1 + Nx1 < N2,

1 + Nx1 =
1

xN
2

[(
Z

wN
2

− 1
)

+ w2

]
mod N2. (6.1)
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Furthermore, since w2 = ((1+Nx1)xN
2 mod N2) mod N = xN

2 mod N , B can compute the

right term of equation 6.1 and compute x1.

Hence, if x2 is correct then x = x1 + x2 · N is the pre-image of y, and we have ε′ =

Adv1-pow-fnc
PCD,B (k) ≥ ε/2. It is also clear that t′ ≤ t + O(k3).

We can prove the following theorem in a similar way as that of the relationship between

RSA and RSACD.

Theorem 6.3. If Paillier is one-way then PCD is one-way.

Proof. We prove that if there exists a polynomial-time inverting algorithm A for PCD

with non-negligible probability ε = Adv1-pow-fnc
PCD,A (k), then there exists a polynomial-time

inverting algorithm D for Paillier with non-negligible probability ε′ = Adv1-pow-fnc
Paillier,D (k). We

specify the algorithm D to compute a pre-image of Y ∈ RngPaillier(N, k).

Algorithm D((N, k), Y )

c
R← {0, 1}

if (c = 0)

y ← Y ; x ← A((N, k), y); u ← FPCD-1
N,k (x); v ← FPCD-2

N,k (u); X ← v

else

u ← Y ; v ← FPCD-2
N,k (u); y ← FPCD-3

N,k (v); x ← A((N, k), y); X ← x

return X

Now, we analyze the advantage of D. In the following, we assume that Y is uniformly

distributed over RngPaillier(N, k) and w is uniformly distributed over RngPCD(N, k). If A

outputs correctly then D outputs correctly (See Figure 6.2.). Therefore,

ε′ > Pr[c = 0 ∧ A((N, k), Y ) is correct] + Pr[c = 1 ∧ A((N, k), Z) is correct]

=
1
2
· (Pr[A((N, k), Y ) is correct] + Pr[A((N, k), Z) is correct])

≥ 1
2
· (Pr[A((N, k), Y ) is correct] + Pr[A((N, k), Z) is correct ∧ N2 ≤ Z < 22k])

where Z = FPCD-3
N,k (FPCD-2

N,k (Y )), and we have

Pr[A((N, k), Y ) is correct] = Pr[A((N, k), w) is correct | 0 ≤ w < N2]

> Pr[A((N, k), w) is correct ∧ 0 ≤ w < N2].

Noticing that Z = FPCD-3
N,k (FPCD-2

N,k (Y )) and |RngPCD(N, k)| ≥ |RngPaillier(N, k)|, we
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have
Pr[N2 ≤ Z < 22k] = Pr[0 ≤ Y < 22k − N2]

=
|{Y ′|Y ′ ∈ [0, 22k − N2) ∩ RngPaillier(N, k)}|

|RngPaillier(N, k)|
>

|{Y ′|Y ′ ∈ [0, 22k − N2) ∩ RngPaillier(N, k)}|
|RngPCD(N, k)|

=
|{Y ′|Y ′ ∈ [0, 22k − N2) ∩ RngPCD(N, k)}|

|RngPCD(N, k)|
= Pr[0 ≤ w < 22k − N2]

= Pr[N2 ≤ w < 22k].

Since Pr[A((N, k), Z) is correct |N2 ≤ Z < 22k] = Pr[A((N, k), w) is correct |N2 ≤
w < 22k], we have

Pr[A((N, k), Z) is correct ∧ N2 ≤ Z < 22k]

= Pr[N2 ≤ Z < 22k] × Pr[A((N, k), Z) is correct |N2 ≤ Z < 22k]

> Pr[N2 ≤ w < 22k] × Pr[A((N, k), Z) is correct |N2 ≤ Z < 22k]

= Pr[N2 ≤ w < 22k] × Pr[A((N, k), w) is correct |N2 ≤ w < 22k]

= Pr[A((N, k), w) is correct ∧ N2 ≤ w < 22k].

Therefore,

ε′ >
1
2
· (Pr[A((N, k), w) is correct ∧ 0 ≤ w < N2]

+ Pr[A((N, k), w) is correct ∧ N2 ≤ w < 22k])

=
1
2
· Pr[A((N, k), w) is correct] =

ε

2
which is non-negligible in k.

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that the one-wayness of RSAN

is equivalent to the θ-partial one-wayness of RSAN for θ > 0.5. Therefore, the relations in

Figure 6.1 (in Section 6) are satisfied for θ > 0.5.

6.2 Application to Public-Key Encryption with Anonymity

In this section, we propose public-key encryption schemes with anonymity by using Paillier,

PCD, and the four techniques, repeating, expanding, Paillier-CD, and sampling twice, and

prove their security.

6.2.1 Our Proposed Schemes

In this section, we propose Paillier-OAEP with repeating, expanding, and sampling twice,

and PCD-OAEP.
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Definition 6.4 (Paillier-OAEP with repeating). Paillier-OAEP PE = (G,K, E ,D) with

repeating is as follows. The common-key generation algorithm G takes a security parameter

k and returns parameters k, k0, and k1 such that k0+k1 < 2k for all k > 1. This defines an

associated plaintext-length function n = 2k−k0−k1. The key generation algorithm K takes

k, k0, k1, runs the key-generation algorithm of Paillier, and gets N, k, λ. The public key pk

is N, k, k0, k1 and the secret key sk is (N, λ), k, k0, k1. The other algorithms are depicted

below. Let G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions.

Note that [x]� denotes the � most significant bits of x and [x]� denotes the � least significant

bits of x.

Algorithm Epk(x) Algorithm Dsk(y)

ctr ← −1 b ← [y]1; v ← [y]k0+k1+n

repeat if (b = 1)

ctr ← ctr + 1; r ← {0, 1}k0 w ← [v]k0+k1 ; x ← [v]n
u ← OAEP(x, r); v ← FP

N (u) if (w = 0k0+k1) z ← x else z ←⊥
until((v < 22k−1) ∨ (ctr = k1)) else

if (ctr = k1) y ← 1||0k0+k1 ||x u ← GP
N,λ(v); z ← OAEP−1(u)

else y ← 0||v return z

return y

where

Algorithm OAEP(x; r) Algorithm OAEP−1(u)

s ← (x||0k1) ⊕ G(r) s ← [u]n+k1 ; t ← [u]k0 ; r ← t ⊕ H(s)

t ← r ⊕ H(s) x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

return s||t if (p = 0k1) z ← x else z ←⊥; return z

Definition 6.5 (Paillier-OAEP with expanding). Paillier-OAEP PE = (G,K, E ,D) with

expanding is as follows. The common-key generation algorithm G, the key generation al-

gorithm K, and the hash functions G, H are the same as those of Paillier-OAEP with

repeating. The other algorithms are depicted below. Note that the valid ciphertext y satis-

fies y ∈ [0, 22k+160) and (y mod N2) ∈ RngPaillier(N, k).

Algorithm Epk(x) Algorithm Dsk(y)

r ← {0, 1}k0 ; u ← OAEP(x, r); v ← FP
N (u) v ← y mod N2

α
R← {0, 1, 2, · · · , 
(22k+160 − v)/N2�} u ← GP

N,λ(v)

y ← v + αN2 z ← OAEP−1(u)

return y return z
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Definition 6.6 (PCD-OAEP). PCD-OAEP PE = (G,K, E ,D) is as follows. The common-

key generation algorithm G, the key generation algorithm K, and the hash functions G, H

are the same as those of Paillier-OAEP with repeating. The other algorithms are depicted

below. Note that the valid ciphertext y satisfies y ∈ RngPCD(N, k).

Algorithm Epk(m) Algorithm Dsk(y)

r
R← {0, 1}k0 ; u ← OAEP(x, r) u ← GPCD

N,k,λ(y); z ← OAEP−1(u)

y ← FPCD
N,k (u); return y return z

Definition 6.7 (Paillier-OAEP with sampling twice). Paillier-OAEP PE = (G,K, E ,D)

with sampling twice is as follows. The common-key generation algorithm G, the key gener-

ation algorithm K, and the hash functions G, H are the same as those of Paillier-OAEP

with repeating. The other algorithms are depicted below. Note that the valid ciphertext y

satisfies y ∈ [0, 22k) and (y mod N2) ∈ RngPaillier(N, k).

Algorithm Epk(x) Algorithm Dsk(y)

r1 ← {0, 1}k0 ; u1 ← OAEP(x, r1); v1 ← FP
N (u1) v ← y mod N2

r2 ← {0, 1}k0 ; u2 ← OAEP(x, r2); v2 ← FP
N (u2) u ← GP

N,λ(v)

y ← ChooseAndShiftN2,2k(v1, v2) z ← OAEP−1(u)

return y return z

6.2.2 Analysis

In this section, we compare the four schemes proposed in the previous section.

Security

PCD-OAEP Fujisaki, Okamoto, Pointcheval, and Stern [43] proved OAEP with any

partial one-way permutation is secure in the sense of IND-CCA in the random oracle

model. Thus, PCD-OAEP is secure in the sense of IND-CCA in the random oracle model

assuming PCD is partial one-way.

We can also prove PCD-OAEP is secure in the sense of IK-CCA in the random oracle

model assuming PCD is partial one-way. More precisely, we prove the following lemma.

Lemma 6.2. For any adversary A attacking the anonymity of PCD-OAEP PE under the

adaptive chosen ciphertext attack, and making at most qdec decryption oracle queries, qgen

G-oracle queries, and qhash H-oracle queries, there exists a θ-partial inverting adversary B

for the PCD family, such that for any k, k0, k1, and θ = 2k−k0
2k ,

Advik-cca
PE,A (k) ≤ 8qhash((1 − ε1)(1 − ε2))−1 · Advθ-pow-fnc

PCD,B (k) + qgen · (1 − ε2)−1 · 2−2k+2
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where ε1 = 4
2k/2−3−1

, ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0
, and the running time of B is

that of A plus qgen · qhash · O(k3).

Proof. The proof is similar to that for RSA-RAEP, which is a variant of RSA-OAEP

with repeating by Bellare, Boldyreva, Desai, and Pointcheval [3]. We construct the par-

tial inverting algorithm M for the PCD function using a CCA-adversary A attacking the

anonymity of PCD-OAEP.

Intuition. We assume that the challenge ciphertext for A is y ∈ RngPCD(N, k). In order

to distinguish under which key the given ciphertext y was created, the adversary A has to

make queries r and s to oracles G and H, respectively, such that s = (m||0k1) ⊕ G(r) and

y = FPCD
N,k (s||(r ⊕ H(s))). Therefore, A asks s to H with non-negligible probability where

s is the n + k1 most significant bits of GPCD
N,k,λ(y).

We now describe the partial inverting algorithm M . The algorithm M is given pk =

(N, k) and a point y ∈ RngPCD(N, k) where |y| = 2k = n + k0 + k1. Let sk = (N, k, λ)

be the corresponding secret key. The algorithm M is trying to find the n + k1(= 2k − k0)

most significant bits of GPCD
N,k,λ(y).

1) M runs the key generation algorithm of PCD with security parameter k to obtain

pk′ = (N ′, k) and sk′ = (N ′, k, λ′). Then it picks a bit b
R← {0, 1}, sets pkb ←

(N, k) and pk1−b ← (N ′, k). If the above y does not satisfy y ∈ (RngPCD(N0, k) ∩
RngPCD(N1, k)) then M outputs Fail and halts; else it continues.

2) M initializes four lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs

A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described

below.

2-1) M runs A1(pk0, pk1) and gets (m, si) which is the output of A1.

2-2) M runs A2(y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

3) M chooses a random pair (h,Hh) from the H-list and outputs h as its guess for the

n + k1 most significant bits of GPCD
N,k,λ(y).

M simulates the random oracles G and H, and the decryption oracle as follows:

• When A makes an oracle query g to G, then for each (h,Hh) on the H-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = FPCD
N0,k (z) and yh,g,1 = FPCD

N1,k (z). For

i ∈ {0, 1}, M checks whether y = yh,g,i. If for some h and i such a relation holds,

then we have inverted y under pki, and we can still correctly simulate G by answering

Gg = h ⊕ (m||0k1). Otherwise, M outputs a random value Gg of length n + k1. In

both cases, M adds (g,Gg) to the G-list. Then, for all h, M checks if the k1 least
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significant bits of h ⊕ Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the

Y0-list and the Y1-list respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of

length k0 and adds (h,Hh) to the H-list. Then for each (g, Gg) on the G-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = FPCD
N0,k (z) and yh,g,1 = FPCD

N1,k (z). M

checks if the k1 least significant bits of h ⊕ Gg are all 0. If they are, then it adds

yh,g,0 and yh,g,1 to the Y0-list and the Y1-list respectively.

• When for i ∈ {0, 1}, A makes an oracle query y′ ∈ RngPCD(Ni, k) to Dski
, M checks

if there exists some yh,g,i in the Yi-list such that y′ = yh,g,i. If there is, then it returns

the n most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥ (indicating that

y′ is an invalid ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1}, let

wi = GPCD
Ni,k,λi

(y), si = [wi]n+k1 , and ti = [wi]k0 . Let ri be the random variable ti ⊕ H(si).

We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 �= s0 ⊕ (m||0k1), or

– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 �= s1 ⊕ (m||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s0 was not on the H-list, and Gr0 �= s0⊕(m||0k1),

or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s1 was not on the H-list, and Gr1 �= s1⊕(m||0k1).

• DBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We use the events FBad, GBad, and G for proving Lemma 6.3 described below. In this

chapter, we omit the proof of Lemma 6.3 since the proof of this lemma is similar to that

for RSA-RAEP.

We let Pr[·] denote the probability distribution in the game defining advantage. We

introduce the following additional events:
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• YBad denotes the event that y �∈ (RngPCD(N0, k) ∩ RngPCD(N1, k)).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step

3-2.

• AskS denotes the event that (s0, Hs0) or (s1,Hs1) is on the H-list at the end of step

3-2.

We use the event FAskS for proving Lemma 6.3. In this chapter, we omit the proof of

Lemma 6.3 since the proof of this lemma is similar to that for RSA-RAEP.

Now, we analyze the advantage of M . The algorithm M wins the game if it outputs

sb. If (sb,Hsb
) is on the H-list, then M outputs sb with probability at least 1/qhash. Thus,

Advθ-pow-fnc
PCD,M (k)

≥ 1
qhash

· Pr[(sb,Hsb
) is on the H-list]

= 1
2qhash

· (Pr[(s0,Hs0) is on the H-list|b = 0] + Pr[(s1,Hs1) is on the H-list|b = 1])

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0,Hs0) is on the H-list|b = 0]

+Pr1[(s1,Hs1) is on the H-list|b = 1])

where Pr1[·] denote the probability distribution in the simulated game where ¬YBad oc-

curs. Assuming that ¬YBad occurs, by the random choice of b and symmetry, we have

Pr1[(si,Hsi) is on the H-list|b = 0] = Pr1[(si, Hsi) is on the H-list|b = 1] = Pr1[(si,Hsi) is

on the H-list] for i ∈ {0, 1}. Therefore,

Advθ-pow-fnc
PCD,M (k)

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0,Hs0) is on the H-list] + Pr1[(s1,Hs1) is on the H-list])

≥ 1
2qhash

· Pr[¬YBad] · Pr1[AskS].

We next bound Pr1[AskS]. We can bound this probability in a similar way as in the

proof of anonymity for RSA-RAEP [3], and we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR∧AskS|¬DBad] and Pr1[¬DBad|¬AskS]. Let ε = Advik-cca
PE,A (k).

The proofs of the following lemmas are similar to those for RSA-RAEP.

Lemma 6.3.

Pr1[AskR ∧ AskS|¬DBad] ≥ ε

2
·
(
1 − 2qgen · 2−k0 − 2qhash · 2−n−k1

)
− 2qgen · 2−2k.
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Lemma 6.4.

Pr1[DBad|¬AskS] ≤ qdec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.

Intuitively, Lemma 6.3 states that if M simulates the decryption oracle for the adversary

A perfectly, then A makes queries (r,Gr) and (s,Hs) such that s = (m||0k1) ⊕ Gr and

y = FPCD
Nb,k

(s||(r ⊕ Hs)) with non-negligible probability. Lemma 6.4 states that M can

simulate the decryption oracle with overwhelming probability.

By applying Lemmas 6.3 and 6.4, we have

Pr1[AskS]

≥ 1
2 ·

[
ε
2 ·

(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
− 2qgen

22k

]
×

[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
= ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
×

[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
−1

2 · 2qgen

22k ·
[
1 − qdec ·

(
2

2k1
+ 2qgen+1

2k0

)]
≥ ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

)
− qdec ·

(
2

2k1
+ 2qgen+1

2k0

))
− 1

2 · 2qgen

22k

= ε
4 ·

(
1 −

(
2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0

))
− qgen

22k .

We next bound the probability that ¬YBad occurs.

Lemma 6.5.

Pr[YBad] ≤ 4
2k/2−3 − 1

.

Proof of Lemma 6.5. Let N = pq and N ′ = p′q′. Note that 2�k/2�−1 < p, q, p′, q′ < 2�k/2�

and 22k−1 < N2, N ′2 < 22k. Since N · φ(N) ≤ |RngPCD(N, k)|, we have

Pr[YBad] ≤ Pr[y R← RngPCD(N, k) : y �∈ RngPCD(N ′, k)]

≤ |{y | y ∈ RngPCD(N, k) ∧ y �∈ RngPCD(N ′, k)}|
|RngPCD(N, k)|

≤ |{y | y ∈ [0, 22k) ∧ y �∈ RngPCD(N ′, k)}|
|RngPCD(N, k)|

≤ 22k − |RngPCD(N ′, k)|
N · φ(N)

.

Furthermore, we have

22k − |RngPCD(N ′, k)| =
∣∣{y′ ∈ [0, 22k)|y′ �∈ RngPCD(N ′, k)}∣∣

≤
∣∣∣{y′ ∈ [0, 2N ′2)|y′ �∈ RngPCD(N ′, k)}

∣∣∣
= 2 ×

∣∣∣{y′ ∈ [0, N ′2)|y′ �∈ RngPCD(N ′, k)}
∣∣∣

= 2(N ′2 − N ′ · φ(N ′)).
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Therefore, we can bound Pr[YBad] as

Pr[YBad] ≤ 22k − |RngPCD(N ′, k)|
N · φ(N)

≤ 2(N ′2 − N ′ · φ(N ′))
N · φ(N)

=
2N ′(p′ + q′ − 1)

N(N − p − q + 1)

≤ 2N ′(p′ + q′)
N(N − p − q)

≤ 2 · 2k(2�k/2� + 2�k/2�)
2k−1(2k−1 − 2�k/2� − 2�k/2�)

=
4(1 + 1)

2k−1−�k/2� − 1 − 1

≤ 8
2k/2−2 − 2

=
4

2k/2−3 − 1
.

Substituting the bounds for the above probabilities, we have

Advθ-pow-fnc
PCD,M (k) ≥ 1

2qhash
· (1 − ε1) ·

( ε

4
· (1 − ε2) − qgen

22k

)

where ε1 = 4
2k/2−3−1

and ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0
, and re-arranging the

terms, we get the claimed result. Note that ε = Advik-cca
PE,A (k).

Finally, we estimate the running time of M . It is the running time of A plus the

time for simulating the random oracles. In the random oracle simulation, for each pair

((g, Gg), (h, Hh)), it is sufficient to compute yh,g,0 = FPCD
N0,k (z) and yh,g,1 = FPCD

N1,k (z). There-

fore, the running time of M is that of A plus qgen · qhash · O(k3).

Since if RSAN is one-way then PCD is θ-partial one-way for θ > 0.5 (See Figure 6.1.),

PCD-OAEP is secure in the sense of IND-CCA and IK-CCA in the random oracle model

assuming RSAN is one-way.

Paillier-OAEP with Repeating Fujisaki, Okamoto, Pointcheval, and Stern [43] proved

OAEP with any partial one-way permutation is secure in the sense of IND-CCA in the

random oracle model. Thus, Paillier-OAEP (OAEP with Paillier’s trap-door permutation)

is secure in the sense of IND-CCA in the random oracle model assuming Paillier is partial

one-way.

We can prove that if Paillier-OAEP provides the indistinguishability then that with

repeating also provides the indistinguishability. More precisely, if there exists a CCA-

adversary A = (A1, A2) attacking the indistinguishability of Paillier-OAEP with repeating

with advantage ε, then there exists a CCA-adversary B = (B1, B2) attacking the indistin-

guishability of Paillier-OAEP with advantage ε/2. We construct B as follows.

1) B1 gets pk and passes it to A1. B1 gets (m0,m1, si) which is an output of A1, and

B1 outputs it.

2) B2 gets a challenge ciphertext y. If y ≥ 22k−1 then B2 outputs Fail and halts;

otherwise B2 passes (y′, si) to A2 where y′ ← 0||y. B2 gets d ∈ {0, 1} which is an

output of A2, and B2 outputs it.
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If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B outputs

Fail] < 1/2, the advantage of B is greater than ε/2.

Furthermore, we can prove that Paillier-OAEP with repeating is secure in the sense of

IK-CCA in the random oracle model assuming Paillier is partial one-way. Noticing that the

functions FPCD
N,k and GPCD

N,k,λ are replaced by FP
N and GP

N,λ, respectively, and the domain of

valid ciphertexts changes, we can prove the following lemma in a similar way as that for

PCD-OAEP.

Lemma 6.6. For any adversary A attacking the anonymity of Paillier-OAEP PE with

repeating under the adaptive chosen ciphertext attack, and making at most qdec decryption

oracle queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a θ-partial

inverting adversary B for the Paillier family, such that for any k, k0, k1, and θ = 2k−k0
2k ,

Advik-cca
PE,A (k) ≤ 16qhash((1 − ε1)(1 − ε2))−1 · Advθ-pow-fnc

Paillier,B (k) + qgen · (1 − ε2)−1 · 2−2k+2

where ε1 = 1
2k/2−3−1

, ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0
, and the running time of B is

that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of RSAN for

θ > 0.5 (See Figure 6.1), Paillier-OAEP with repeating is secure in the sense of IND-CCA

and IK-CCA in the random oracle model assuming RSAN is one-way.

Paillier-OAEP with Sampling Twice In order to prove that Paillier-OAEP with

sampling twice is secure in the sense of IND-CCA, we need the restriction as follows.

Since if c is a ciphertext of m for pk = (N, k) and c < 22k − N2 then c + N2 is also a

ciphertext of m. Thus, the adversary can ask c + N2 to decryption oracle Dsk where c is

a challenge ciphertext such that c < 22k −N2 and pk = (N, k), and if the answer of Dsk is

m, then the adversary knows that c is a ciphertext of m for the key pk.

To prevent this attack, we add some natural restriction to the adversary in the definition

of IND-CCA. That is, in the definition of IND-CCA, it is mandated that the adversary

never queries Dsk on (c mod N2) + γN2 where γ ∈ 
(22k − (c mod N2))/N2�.
We think this restriction is natural and reasonable. Actually, in the case of undeni-

able and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on

undeniable signature schemes with the above restriction.

If we add this restriction then we can prove that Paillier-OAEP with sampling twice

is secure in the sense of IND-CCA in the random oracle model assuming Paillier is partial

one-way. Noticing that the domain of valid ciphertexts changes, we can prove this in a

similar way as that for Paillier-OAEP with repeating.

Similarly, in order to prove that Paillier-OAEP with sampling twice is secure in the sense

of IK-CCA, we need the same kind of restriction. That is, it is mandated that the adversary
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never queries Dsk0 on (c mod N0
2) + β0N0

2 where β0 ∈ 
(22k − (c mod N0
2))/N0

2�, and

Dsk1 on (c mod N1
2) + β1N1

2 where β1 ∈ 
(22k − (c mod N1
2))/N1

2�.
If we add this restriction then we can prove that Paillier-OAEP with sampling twice

is secure in the sense of IK-CCA in the random oracle model assuming Paillier is partial

one-way. More precisely, we can prove the following lemma, and the proof is similar to

that for PCD-OAEP.

Lemma 6.7. For any adversary A attacking the anonymity of Paillier-OAEP PE with

sampling twice under the adaptive chosen ciphertext attack, and making at most qdec de-

cryption oracle queries, qgen G-oracle queries, and qhash H-oracle queries, there exists

a θ-partial inverting adversary B for the Paillier family, such that for any k, k0, k1, and

θ = 2k−k0
2k ,

Advik-cca
PE,A (k) ≤ 16qhash((1 − ε1)(1 − ε2))−1 · Advθ-pow-fnc

Paillier,B (k) + qgen · (1 − ε2)−1 · 2−2k+2

where ε1 = 4
2k/2−3−1

, ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0
, and the running time of B is

that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of RSAN

for θ > 0.5 (See Figure 6.1), Paillier-OAEP with sampling twice is secure in the sense of

IND-CCA and IK-CCA in the random oracle model assuming RSAN is one-way.

Paillier-OAEP with Expanding In order to prove that Paillier-OAEP with expanding

is secure in the sense of IND-CCA and IK-CCA, we need similar restriction as that for

Paillier-OAEP with sampling twice. That is, in the definition of IND-CCA, it is mandated

that the adversary never queries Dsk on (c mod N2) + γN2 where γ ∈ 
(22k+160 − (c mod

N2))/N2�. Similarly, in the definition of IK-CCA, it is mandated that the adversary never

queries Dsk0 on (c mod N0
2)+β0N0

2 where β0 ∈ 
(22k+160− (c mod N0
2))/N0

2�, and Dsk1

on (c mod N1
2) + β1N1

2 where β1 ∈ 
(22k+160 − (c mod N1
2))/N1

2�.
If we add these restrictions then we can prove that Paillier-OAEP with expanding is

secure in the sense of IND-CCA and IK-CCA in the random oracle model assuming Paillier

is partial one-way. Noticing that the domain of valid ciphertexts changes, we can prove

them in a similar way as those for Paillier-OAEP with repeating. In particular, we can

prove the following lemma for the anonymity property.

Lemma 6.8. For any adversary A attacking the anonymity of Paillier-OAEP PE with

expanding under the adaptive chosen ciphertext attack, and making at most qdec decryption

oracle queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a θ-partial

inverting adversary B for the Paillier family, such that for any k, k0, k1, and θ = 2k−k0
2k ,

Advik-cca
PE,A (k) ≤ 8qhash((1 − ε1)(1 − ε2))−1 · Advθ-pow-fnc

Paillier,B (k) + qgen · (1 − ε2)−1 · 2−2k+2
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Repeating Expanding PCD Sampling Twice

# of mod. exp. to encrypt

(average / worst)
1.5 / k1 1 / 1 1.5 / 2 2 / 2

# of mod. exp. to decrypt

(average / worst)
1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts 2k + 1 2k + 160 2k 2k

# of random bits to encrypt

(average / worst)
1.5k0 / k1k0

k0 + 160

/ k0 + 160
k0 / k0

2k0 + 2k + 3

/ 2k0 + 2k + 3

Figure 6.3: The costs of the encryption schemes.

where ε1 = 4
2k/2−3−1

+ 1
2159 , ε2 = 2qgen+qdec+2qgenqdec

2k0
+ 2qdec

2k1
+ 2qhash

22k−k0
, and the running time

of B is that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of RSAN for

θ > 0.5 (See Figure 6.1), Paillier-OAEP with expanding is secure in the sense of IND-CCA

and IK-CCA in the random oracle model assuming RSAN is one-way.

Efficiency

We show the costs of our schemes. We show the number of modular exponentiations to

encrypt, the number of modular exponentiations to decrypt, the size of ciphertexts, and

the number of random bits to encrypt in Figure 6.3. We assume that N is uniformly

distributed in (22k−1, 22k).

Paillier-OAEP with repeating is inefficient with respect to the encryption cost in the

worst case. In this scheme, the number of random bits to encrypt is large in the worst case.

Paillier-OAEP with expanding is efficient with respect to the encryption and the de-

cryption costs. However, the size of ciphertexts is about 160 bits larger than those of the

other schemes.

PCD-OAEP is the most efficient among the four schemes with respect to the number

of random bits to encrypt. However, the decryption cost is twice as those of the other

schemes in the worst case.

Paillier-OAEP with sampling twice requires many random bits to encrypt messages.

If k = k0/2 = k1/2, then the number of random bits to encrypt in Paillier-OAEP with

sampling twice is at least four times as many as those of the other schemes in the average

case.
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CHAPTER 7

Relationships between Data-Privacy and
Key-Privacy

In this chapter, we propose a new security notion for public-key encryption of key-privacy,

called the strong anonymity. This captures the situation that a public-key encryption

scheme provides the anonymity even if the message spaces for each public-key are different,

while the anonymity proposed in [3] cannot capture such a situation.

We also show the relationships between data-privacy and key-privacy. We consider the

indsitinguishability (IND) as the security notion for the data-privacy, and the anonymity

(IK), the anonymity with random messages (IKR), and the strong anonymity (sIK) as

those for the key-privacy.

We show the relationships between data-privacy and key-privacy in Figure 7.1. These

relations hold under the chosen message attack and the adaptive chosen ciphertext attack.

In this figure, for notions of security A and B,

• “A � B” means that A implies B, that is, for any public-key encryption scheme

which is secure in the sense of A is also secure in the sense of B (We denote it as

A ⇒ B.), and

• “A � B” means that A does not imply B, that is, there exists a public-key en-

cryption scheme which is secure in the sense of A and not secure in the sense of B

(We denote it as A �⇒ B.).
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sIK IND

IK

IKR & IND IKR

Figure 7.1: Relationships between data-privacy and key-privacy.

In this chapter, we prove the relations in Figure 7.2. In this figure, the number on the

arrow refers to the section of this chapter. By using the relations in Figure 7.2 and trivial

relations (IKR-atk ∧ IND-atk ⇒ IKR-atk, IKR-atk ∧ IND-atk ⇒ IND-atk), the relations

which are in Figure 7.1 and not in Figure 7.2 are determined automatically.

The organization of this chapter is as follows. In Section 7.1, we review the anonymity

with random messages. In Section 7.2, we propsose a new security notion called the strong

anonymity. In Section 7.3, we show the relationships between data-privacy and key-privacy.

7.1 Anonymity with Random Messages

In this section, we review the definition of the anonymity with random messages.

Halevi [49] provides a simple sufficient condition for an IND-atk public-key encryption

scheme to meet wIK-atk for atk ∈ {CPA, CCA}. The condition is that even a computa-

tionally unbounded adversary, given public keys pk0, pk1 and the encryption of a random

message under pkb, have only a negligible advantage in determining the random challenge

bit b. In [2], Abdalla et. al. extended the Halevi’s condition to identity-based encryp-

tion. They weakened the statistical (i.e. information-theoretic) requirement of to [49] a

computational one.

We also consider the computational version of the Halevi’s condition for public-key

encryption schemes as follows.

Definition 7.1 (IKR-CPA, IKR-CCA). Let Π = (G,K, E , D) be a public-key encryption

scheme. Let Acpa and Acca be adversary. The adversaries Acpa and Acca can access to

some oracles Ocpa and Occa, respectively. For atk ∈ {cpa, cca}, we consider the following
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sIK IND

IK

IKR & IND IKR

7.2

7.1

7.3.1

7.3.6

7.3.2

7.3.3

7.3.4 7.3.5

Figure 7.2: Relationships proved in this chapter.

experiment:
Experiment Expikr-atk-b

Π,Aatk
(k)

I ← G(k); (pk0, sk0), (pk1, sk1) ← K(I)

m
R← MSPC(pkb); c ← Epkb

(m)

d ← AOatk
atk (pk0, pk1, c); return d

where Ocpa = ε and Occa = {Dsk0 ,Dsk1}. We require that Acca never queries the challenge

c to either Dsk0 or Dsk1.

For atk ∈ {cpa, cca}, we define the advantage via

Advikr-atk
Π,Aatk

(k) =
∣∣∣Pr[Expikr-atk-1

Π,Aatk
(k) = 1] − Pr[Expikr-atk-0

Π,Aatk
(k) = 1]

∣∣∣.
We say that Π is secure in the sense of IKR-CPA (resp. IKR-CCA) if Advikr-cpa

Π,Acpa
(k)

(resp. Advikr-cca
Π,Acca

(k)) is negligible for any poly-time adversary Acpa (resp. Acca ).

Halevi [49] showed that for atk ∈ {CCA, CPA}, if the public-key encryption scheme is

secure in the sense of IND-atk and IKR-atk, then it is also secure in the sense of IK-atk.

We can apply his proof to our strong anonymity, and see the following claim.

Claim 7.1. For atk ∈ {CCA, CPA}, IND-atk ∧ IKR-atk ⇒ sIK-atk.

Proof. The proof is similar to those in [49] and [2], and is a simple hybrid argument. Let

A be a poly-time algorithm in the sense of sIK-atk. It is easy to construct poly-time

algorithms A1 and A3 in the sense of IND-atk and A2 in the sense of IKR-atk such that∣∣∣ Pr[Expsik-atk-1
Π,A (k) = 1] − Pr[Expikr-atk-1

Π,A (k) = 1]
∣∣∣ ≤ Advind-atk

Π,A1
(k),

∣∣∣ Pr[Expikr-atk-1
Π,A (k) = 1] − Pr[Expikr-atk-0

Π,A (k) = 1]
∣∣∣ ≤ Advikr-atk

Π,A2
(k),
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∣∣∣ Pr[Expikr-atk-0
Π,A (k) = 1] − Pr[Expsik-atk-0

Π,A (k) = 1]
∣∣∣ ≤ Advind-atk

Π,A3
(k).

Therefore,

Advsik-atk
Π,A (k) ≤ Advind-atk

Π,A1
(k) + Advikr-atk

Π,A2
(k) + Advind-atk

Π,A3
(k)

and this concludes the proof.

7.2 Strong Anonymity

We propose the definition of the strong anonymity.

Definition 7.2 (sIK-CPA, sIK-CCA). Let Π = (G,K, E , D) be a public-key encryption

scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The

adversaries Acpa and Acca can access to some oracles Ocpa and Occa, respectively.

For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment Expsik-atk-b
Π,Aatk

(k)

I ← G(k); (pk0, sk0), (pk1, sk1) ← K(I)

(m0,m1, si) ← AOatk
atk (find, pk); c ← Epkb

(mb)

d ← AOatk
atk (guess, c, si); return d

where Ocpa = ε and Occa = {Dsk0 ,Dsk1}. We require that m0 ∈ MSPC(pk0) and m1 ∈
MSPC(pk1). We also require that Acca never queries the challenge c to either Dsk0 or Dsk1

in the guess stage.

For atk ∈ {cpa, cca}, we define the advantage via

Advsik-atk
Π,Aatk

(k) =
∣∣∣Pr[Expsik-atk-1

Π,Aatk
(k) = 1] − Pr[Expsik-atk-0

Π,Aatk
(k) = 1]

∣∣∣.
We say that Π is secure in the sense of sIK-CPA (resp. sIK-CCA) if Advsik-cpa

Π,Acpa
(k)

(resp. Advsik-cca
Π,Acca

(k)) is negligible for any poly-time adversary Acpa (resp. Acca ).

There is only one difference between the definition of the anonymity in [3] and that of

the strong anonymity.

In the experiment of the definition by [3], the adversary chooses only one message

m ∈ MSPC(pk0) ∩ MSPC(pk1) and receives a ciphertext of m encrypted with one of two keys

pk0 and pk1. Therefore, their definition guarantees the anonymity property only when the

message is chosen from the set MSPC(pk0) ∩ MSPC(pk1).

However, in some public-key encryption schemes, the ciphertext space may be common

even if the message spaces for each public-key are different. and such schemes may provide

the anonymity property.
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To consider this situation, in the experiment of our definition, the adversary chooses

two messages m0 and m1 where m0 and m1 are in the message spaces for pk0 and pk1,

respectively, and receives either a ciphertext of m0 encrypted with pk0 or a ciphertext of

m1 encrypted with pk1.

We can easily see the following claim.

Claim 7.2. For any atk ∈ {CPA, CCA}, sIK-atk ⇒ IK-atk.

Proof. Let A be an adversary for Π in the sense of IK-atk.

We construct an algorithm B for Π in the sense of sIK-atk by using Aas follows.

1) In the find stage, B takes pk0 and pk1, and runs A as (m, si) ← A(find, pk0, pk1).

Then B outputs (m, m, si).

2) In the guess stage, B takes c = Epkb
(mb) and si. (Note that m1 = m1 = m.) Then,

B runs A as d ← A(guess, c, si) and outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by

using B’s decryption oracles. It is easy to see that Advsik-atk
Π,B (k) = Advik-atk

Π,A (k), and the

running time of B is that of A.

7.3 Relationships between Data-Privacy and Key-Privacy

In this section, we show the relationships between data-privacy and key-privacy.

7.3.1 IK-atk �⇒ sIK-atk

Lemma 7.1. For atk ∈ {CPA, CCA}, there exist a public-key encryption scheme Π which

is secure in the sense of IK-atk, but not secure in the sense of sIK-atk.

Proof. For atk ∈ {CPA, CCA}, let Π′ = (G′,K′, E ′,D′) be a public-key encryption scheme

which is secure in the sense of IK-atk. Then, consider the public-key encryption scheme Π

whose encryption algorithm is defined as Epk(m) := E ′
pk(m)||m. We can easily see that Π

meets IK-atk, and does not meet sIK-atk.

7.3.2 IK-atk �⇒ IND-atk

Lemma 7.2. For atk ∈ {CPA, CCA}, there exist a public-key encryption scheme Π which

is secure in the sense of IK-atk, but not secure in the sense of IND-atk.

Proof. We can see this by using the encryption scheme Π in the proof of Lemma 7.1.
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7.3.3 IND-atk �⇒ IK-atk

Lemma 7.3. For atk ∈ {CPA, CCA}, there exist a public-key encryption scheme Π which

is secure in the sense of IND-atk, but not secure in the sense of IK-atk.

Proof. For atk ∈ {CPA, CCA}, let Π′ = (G′,K′, E ′,D′) be a public-key encryption scheme

which is secure in the sense of IND-atk. Then, consider the public-key encryption scheme

Π whose encryption algorithm is defined as Epk(m) := E ′
pk(m)||pk. We can easily see that

Π meets IND-atk, and does not meet IK-atk.

7.3.4 IND-atk �⇒ IKR-atk

Lemma 7.4. For atk ∈ {CPA, CCA}, there exist a public-key encryption scheme Π which

is secure in the sense of IND-atk, but not secure in the sense of IKR-atk.

Proof. We can see this by using the encryption scheme Π in the proof of Lemma 7.3.

7.3.5 IKR-atk �⇒ IND-atk

Lemma 7.5. For atk ∈ {CPA, CCA}, there exist a public-key encryption scheme Π which

is secure in the sense of IKR-atk, but not secure in the sense of IND-atk.

Proof. For atk ∈ {CPA, CCA}, let Π′ = (G′,K′, E ′,D′) be a public-key encryption scheme

which is secure in the sense of sIK-atk where the message space is common to each public-

key (i.e. for any public-keys pk0 and pk1, MSPC(pk0) = MSPC(pk1)). We consider the public-

key encryption scheme Π whose encryption algorithm is defined as Epk(m) := E ′
pk(m)||m.

Then Π is secure in the sense of IKR-atk. We show the following claim.

Claim 7.3. For atk ∈ {CPA, CCA}, if Π′ is secure in the sense of sIK-atk, then Π is

secure in the sense of IKR-atk.

Proof. Let A be an adversary for Π in the sense of IKR-atk.

We construct an algorithm B for Π′ in the sense of sIK-atk by using A as follows.

1) In the find stage, B takes pk0 and pk1, and picks m
R← MSPC(pk0)(= MSPC(pk1)).

Then B sets m0 ← m and m1 ← m, and outputs (m0,m1, si) where si contains two

public-keys pk0 and pk1.

2) In the guess stage, B takes c = Epkb
(mb) and si (Note that m0 = m1 = m.). Then, B

sets c′ ← c||m and runs A as d ← A(pk0, pk1, c
′). Finally, B outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by

using B’s decryption oracles. It is easy to see that Advsik-atk
Π′,B (k) = Advikr-atk

Π,A (k), and the

running time of B is that of A plus O(k).

96



7.3. Relationships between Data-Privacy and Key-Privacy

It is easy to see that Π does not meet IND-atk. This concludes the proof of Lemma 7.5.

7.3.6 sIK-atk ⇒ IND-atk ∧ IKR-atk

Before beginning the proof, we define an additional security notion, called strong anonymity

with one random message (sIKOR).

Definition 7.3 (sIKOR-CPA, sIKOR-CCA). Let Π = (G,K, E ,D) be a public-key encryp-

tion scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The

adversaries Acpa and Acca can access to some oracles Ocpa and Occa, respectively.

For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment Expsikor-atk-b
Π,Aatk

(k)

I ← G(k); (pk0, sk0), (pk1, sk1) ← K(I)

(m0, si) ← AOatk
atk (find, pk)

m1
R← MSPC(pk1); c ← Epkb

(mb)

d ← AOatk
atk (guess, c, si); return d

where Ocpa = ε and Occa = {Dsk0 ,Dsk1}. We require that m0 ∈ MSPC(pk0) and m1 ∈
MSPC(pk1). We also require that Acca never queries the challenge c to either Dsk0 or Dsk1

in the guess stage.

For atk ∈ {cpa, cca}, we define the advantage via

Advsikor-atk
Π,Aatk

(k) =
∣∣∣Pr[Expsikor-atk-1

Π,Aatk
(k) = 1] − Pr[Expsikor-atk-0

Π,Aatk
(k) = 1]

∣∣∣.
We say that Π is secure in the sense of sIKOR-CPA (resp. sIKOR-CCA) if the function

Advsikor-cpa
Π,Acpa

(k) (resp. Advsikor-cca
Π,Acca

(k)) is negligible for any poly-time adversary Acpa (resp.

Acca ).

We can easily see the following lemma.

Lemma 7.6. For any atk ∈ {CPA, CCA}, sIK-atk ⇒ sIKOR-atk ⇒ IKR-atk.

Proof. Let A be an adversary for Π in the sense of sIKOR-atk.

We construct an algorithm B for Π in the sense of sIK-atk by using A as follows.

1) In the find stage, B takes pk0 and pk1, and runs A as (m0, si) ← A(find, pk0, pk1).

Then B picks m1
R← MSPC(pk1) and outputs (m0, m1, si

′) where si′ contains si and two

public-keys pk0 and pk1.

2) In the guess stage, B takes c = Epkb
(mb) and si′. Then, B runs A as d ← A(guess, c, si)

and outputs d.
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Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by

using B’s decryption oracles. It is easy to see that Advsik-atk
Π,B (k) = Advsikor-atk

Π,A (k), and

the running time of B is that of A plus O(k).

We can prove “sIKOR-atk ⇒ IKR-atk” in a similar way.

Remark 7.1. We can easily prove that “sIK-atk ⇒ IKR-atk” directly without using the

notion sIKOR-atk. We take this approach since we use the relation “sIK-atk ⇒ sIKOR-atk”

in the next proof.

Now, we prove the relation “sIK-atk ⇒ IND-atk ∧ IKR-atk.” We can rewrite this

relation as “sIK-atk ⇒ IKR-atk ∨ (¬IKR-atk ∧ IND-atk)”. We prove “sIK-atk ⇒ IKR-

atk” in Lemma 7.6, and it is sufficient to prove “sIK-atk ⇒ ¬IKR-atk ∧ IND-atk.” Since

sIK-atk implies sIKOR-atk (Lemma 7.6), we prove “sIKOR-atk ⇒ ¬IKR-atk ∧ IND-atk.”

Lemma 7.7. For atk ∈ {CPA, CCA}, if there exists an adversary A for Π in the sense of

IND-atk and Π is secure in the sense of IKR-atk, then there exists an adversary B for Π

in the sense of sIKOR-CPA where

Advsikor-atk
Π,B (k) ≥ Advind-atk

Π,A (k) − λ(k)

and λ(k) is a negligible function in k, and the running time of B is that of A.

Proof. Let A be an adversary for Π in the sense of IND-atk.

We construct an algorithm B for Π in the sense of sIKOR-atk by using A as follows.

1) In the find stage, B takes pk0 and pk1, and runs A as (m0, si) ← A(find, pk0), and

outputs (m0, si
′) where si′ contains si, pk0, and pk1.

2) In the guess stage, B takes c = Epkb
(mb) and si′ where b

R← {0, 1}. (Note that

m1
R← MSPC(pk1) in the sIKOR-atk game). Then, B runs A as d ← A(guess, c, si) and

outputs d.

Above, in case of atk = CCA, if A makes some decryption queries, B answers to A by

using B’s decryption oracles.

We analyze the advantage of B. If b = 0, then the distribution of the input of A

simulated by B is identical to that of real A. If b = 1, in the guess stage, the input of A

simulated by B is c ← Epk1(m1) where m1
R← MSPC(pk1), and that of real A is c ← Epk0(m1)

where m1
R← MSPC(pk0). Here, in the guess stage, if the probability that the output of A

simulated by B and that of real A are different is non-negligible, then it implies that A

breaks Π in the sense of IKR-atk. Therefore, the probability that the output of A simulated

by B and that of real A are different is negligible.
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Thus, we have

Advsikor-atk
Π,B (k)

=
∣∣∣Pr[Expsikor-atk-1

Π,B (k) = 1] − Pr[Expsikor-atk-0
Π,B (k) = 1]

∣∣∣
≥

∣∣∣Pr[Expind-atk-1
Π,A (k) = 1] − Pr[Expind-atk-0

Π,A (k) = 1]
∣∣∣ − λ(k)

= Advsikor-atk
Π,A (k) − λ(k),

where λ(k) is a negligible function in k. It is easy to see that the running time of B is

equal to that of A.
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CHAPTER 8

Plaintext Awareness in the Two-Key Setting and a
Generic Conversion for Encryption with Anonymity

In this chapter, we propose a new secrity notion of public-key encryption scheme with re-

spect to the anonymity property, called plaintext awareness in the two-key setting (PATK).

We also prove that if a public-key encryption scheme is secure in the sense of PATK, then it

is also secure in the sense of IK-CCA. Since it looks much easier to prove that a public-key

encryption scheme is secure in the sense of PATK than to prove directly that it is secure

in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity property of

public-key encryption schemes. We also propose the first generic conversion scheme for the

anonymity from IK-CPA to IK-CCA.

The organization of this chapter is as follows. In Section 8.1, we review the security

notions for public-key encryption. We also review the definition and the security notion

of symmetric-key encryption. In Section 8.2, we propose the notion of plaintext awareness

in the two-key setting (PATK), and prove that PATK implies IK-CCA. In Section 8.3, we

review the conversion scheme to IND-CCA proposed by Fujisaki and Okamoto [42]. In

Section 8.4, we propose a generic conversion scheme for the anonymity. More precisely, we

prove that the public-key encryption scheme derived from the Fujisaki-Okamoto conversion

scheme, where the basic public-key encryption scheme is secure in the sense of IK-CPA, is

secure in the sense of IK-CCA in the random oracle model.
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8.1 Definitions

In this section, we review the security notions for public-key encryption. We also review the

definition and the security notion of symmetric-key encryption. Note that, in this section,

we redefine some security notions (IND, IK) for public-key encryption in Section 3.1, which

are used only in this chapter. Note that the definitions of IND and IK in this section are

essentially equivalent to those in Section 3.1, respectively.

8.1.1 Public-Key Encryption

γ-uniformity

We review a property of public-key encryption, called γ-uniformity, following [42].

Definition 8.1 (γ-uniformity). Let Π = (G,K, E ,D) be a public-key encryption scheme.

We say that Π is γ-uniform, if, for any I ← G(1k), (pk, sk) ← K(I), m ∈ MSPC(pk), and

y ∈ {0, 1}∗,
Pr[r R← COINS(pk) : y = Epk(x; r)] < γ.

One-Wayness

We review a weak security notion for public-key encryption, called one-wayness, follow-

ing [42].

Definition 8.2 (OW). Let Π = (G,K, E ,D) be a public-key encryption scheme. Let A be

an adversary. We define the advantage of A via

Advow
Π,A(k) = Pr[I ← G(1k); (pk, sk) ← K(I); m

R← MSPC(pk); c ← Epk(m)

: A(c, pk) = m].

We say that A is a (t, ε)-adversary for Π in the sense of OW if A runs in at most time t

and archives Advow
Π,A(k) ≥ ε. We say that Π is (t, ε)-secure in the sense of OW if there is

no (t, ε)-adversary for Π in that sense.

Indistinguishability

We review the definition of the indistinguishability of ciphertexts, following [42].

Definition 8.3 (IND-CPA, IND-CCA). Let Π = (G,K, E ,D) be a public-key encryption

scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The

adversaries Acpa and Acca have access to some oracles Ocpa and Occa, respectively. For atk

∈ {cpa, cca}, we define the advantages of Aatk via

Advind-atk
Π,Aatk

(k) = 2 · Pr[I ← G(1k); (pk, sk) ← K(I); (m0,m1, si) ← AOatk
atk (find, pk);

b
R← {0, 1}; c ← Epk(mb) : AOatk

atk (guess, c, si) = b] − 1
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where Ocpa = ε and Occa = Dsk. Note that si is the state information. It contains the

public key pk, the messages m0 and m1, and so on. We require that m0 �= m1 and m0,m1 ∈
MSPC(pk). We also require that Acca never queries the challenge c to Dsk in the guess stage.

We say that Acpa is a (t, ε)-adversary for Π in the sense of IND-CPA if Acpa runs in

at most time t and achieves Advind-cpa
Π,Acpa

(k) ≥ ε.

Similarly, we say that Acca is a (t, qd, ε)-adversary for Π in the sense of IND-CCA if

Acca runs in at most time t, asks at most qd queries to decryption oracle Dsk, and achieves

Advind-cca
Π,Acca

(k) ≥ ε.

We say that Π is (t, ε)-secure (respectively (t, qd, ε)-secure) in the sense of IND-CPA

(resp. IND-CCA) if there is no (t, ε)-adversary (resp. (t, qd, ε)-adversary) for Π in the

corresponding sense.

Indistinguishability in the Random Oracle Model. We can consider the definition

of the indistinguishability in the random oracle model in a similar way as that in the

standard model described above.

We define Ω as the map family from an appropriate range. The domain and range

depend on the underlying encryption scheme. Even if we choose two random functions

that have distinct domains and distinct ranges respectively, we just write the experiment,

for convenience, as G,H ← Ω, instead of preparing two map families.

In the random oracle model, we begin the experiment of Aatk described above (which

defines advantage) by H ← Ω. Then, we add the random oracle H to both Ocpa and Occa,

and allow that Epk and Dsk may depend on H (which we write EH
pk and DH

sk, respectively).

We define the adversaries in a similar way as those in the standard model, that is,

we define a (t, qh, ε)-adversary in the sense of IND-CPA in the random oracle model and

a (t, qh, qd, ε)-adversary in the sense of IND-CCA in the random oracle model where the

adversary makes at most qh queries to H.

We say that Π is (t, qh, ε)-secure (respectively (t, qh, qd, ε)-secure) in the sense of IND-

CPA (resp. IND-CCA) in the random oracle model if there is no (t, qh, ε)-adversary (resp.

(t, qh, qd, ε)-adversary) for Π in the corresponding sense in the random oracle model.

Knowledge Extractor and Plaintext Awareness

The notion of knowledge extractor and plaintext awareness for a public-key encryption

scheme is defined in [7, 4]. We describe the definitions by Bellare, Desai, Pointcheval, and

Rogaway [4].

Definition 8.4 (Knowledge Extractor and Plaintext Awareness). Let Π = (G,K, E ,D) be a

public-key encryption scheme. Let B and K be algorithms, called adversary and knowledge

extractor, respectively. They work in the random oracle model as follows:
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• B is a (qh, qe)-adversary that takes a public-key pk and makes queries at most qh

and qe times to the random oracle H and the encryption oracle EH
pk, respectively. B

finally outputs c �∈ C, where

– TH denotes the set of all pairs of B’s queries and the corresponding answers

from H,

– C denotes the set of all answers from EH
pk.

We write the above experiment as (TH , C, c, pk) ← run BH,EH
pk(pk).

• Knowledge extractor K takes (TH , C, c, pk) and output a string m.

For any k ∈ N, we define

Succpa
K,B,Π(k) = Pr[H ← Ω; I ← G(1k); (pk, sk) ← K(I);

(TH , C, c, pk) ← run BH,EH
pk(pk) : K(TH , C, c, pk) = DH

sk(c)].

We say that K is a (tKE, λ, qh, qe)-knowledge extractor for PA of Π if for any (qh, qe)-

adversary B, K runs in at most time tKE and achieves Succpa
K,B,Π(k) ≥ λ.

We say that Π is (tcpa, tKE, qh, qe, ε, λ)-secure in the sense of PA if Π is (tcpa, qh, ε)-

secure in the sense of IND-CPA, and there exists a (tKE, λ, qh, qe)-knowledge extractor K

for PA of Π.

Bellare, Desai, Pointcheval, and Rogaway [4] showed that if the public-key encryption

scheme is secure in the sense of PA, then it is also secure in the sense of IND-CCA.

Anonymity

We describe the definition of the anonymity, following [3].

Definition 8.5 (IK-CPA, IK-CCA [3]). Let Π = (G,K, E ,D) be a public-key encryption

scheme. Let Acpa and Acca be adversaries that run in two stages, find and guess. The

adversaries Acpa and Acca have access to some oracles Ocpa and Occa, respectively. For atk

∈ {cpa, cca}, we define the advantages of Aatk via

Advik-atk
Π,Aatk

(k) = 2 · Pr[I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(m, si) ← AOatk
atk (find, pk0, pk1); b

R← {0, 1}; c ← Epkb
(m) : AOatk

atk (guess, c, si) = b] − 1

where Ocpa = ε and Occa = (Dsk0 ,Dsk1). Note that si is the state information. It contains

the public keys pk0, pk1, the message m, and so on. We require that m ∈ MSPC(pk0) ∩
MSPC(pk1). We also require that Acca never queries the challenge c to either Dsk0 or Dsk1

in the guess stage.
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We say that Acpa is a (t, ε)-adversary for Π in the sense of IK-CPA if Acpa runs in at

most time t and achieves Advik-cpa
Π,Acpa

(k) ≥ ε.

Similarly, we say that Acca is a (t, qd, ε)-adversary for Π in the sense of IK-CCA if Acca

runs in at most time t, makes a total number of qd queries to decryption oracles Dsk0 and

Dsk1, and achieves Advik-cca
Π,Acca

(k) ≥ ε.

We say that Π is (t, ε)-secure (respectively (t, qd, ε)-secure) in the sense of IK-CPA

(resp. IK-CCA) if there is no (t, ε)-adversary (resp. (t, qd, ε)-adversary) for Π in the

corresponding sense.

Anonymity in the Random Oracle Model. We can consider the definition of the

anonymity in the random oracle model in a similar way as that in the standard model

described above.

We define Ω as the map family from an appropriate range. The domain and range

depend on the underlying encryption scheme. Even if we choose two random functions

that have distinct domains and distinct ranges respectively, we just write the experiment,

for convenience, as G,H ← Ω, instead of preparing two map families.

In the random oracle model, we begin the experiment of Aatk described above (which

defines advantage) by H ← Ω. Then, we add the random oracle H to both Ocpa and Occa,

and allow that for i ∈ {0, 1}, Epki and Dski may depend on H (which we write EH
pki

and

DH
ski

, respectively).

We define the adversaries in a similar way as those in the standard model, that is,

we define a (t, qh, ε)-adversary in the sense of IK-CPA in the random oracle model and

a (t, qh, qd, ε)-adversary in the sense of IK-CCA in the random oracle model where the

adversary makes at most qh queries to H.

We say that Π is (t, qh, ε)-secure (respectively (t, qh, qd, ε)-secure) in the sense of IK-

CPA (resp. IK-CCA) in the random oracle model if there is no (t, qh, ε)-adversary (resp.

(t, qh, qd, ε)-adversary) for Π in the corresponding sense in the random oracle model.

8.1.2 Symmetric-Key Encryption

The Definition of Symmetric-Key Encryption

We review the definition of symmetric-key encryption schemes.

Definition 8.6. A symmetric-key encryption scheme Π = (E ,D) consists of two algo-

rithms.

• The encryption algorithm Ex(m) is a deterministic algorithm that takes a symmetric-

key x ∈ KSPC(k) and a message m ∈ MSPC(k), and returns a ciphertext c. Note that
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KSPC(k) and MSPC(k) are the key space and the message space for k, respectively.

They are uniquely determined by a security parameter 1k.

• The decryption algorithm Dx(c) is a deterministic algorithm that takes a symmetric

key x and a ciphertext c, and returns the corresponding plaintext m.

We require that, for any k ∈ N, if x ∈ KSPC(k), m ∈ MSPC(k), and c ← Ex(m), then

m = Dx(c).

Find-Guess

We review a security notion for symmetric-key encryption, called find-guess (FG), follow-

ing [42].

Definition 8.7 (FG). Let Π = (E ,D) be a symmetric-key encryption scheme. Let A be an

adversary that runs in two stages, find and guess. We define the advantage of A via

Advfg
Π(k) = 2 · Pr[x R← KSPC(k); (m0,m1, si) ← A(find, k);

b
R← {0, 1}; c ← Ex(mb) : A(guess, c, si) = b] − 1.

We require that m0 �= m1 and m0, m1 ∈ MSPC(k).

We say that A is a (t, ε)-adversary for Π in the sense of FG if A runs in at most time

t and achieves Advfg
Π,A(k) ≥ ε.

We say that Π is (t, ε)-secure in the sense of FG if there is no (t, ε)-adversary for Π in

the sense of FG.

8.2 Plaintext Awareness in the Two-Key Setting

In this section, we propose the notion of plaintext awareness in the two-key setting (PATK),

and prove that PATK implies IK-CCA.

We describe the definition of plaintext awareness in the two-key setting.

Definition 8.8 (Plaintext Awareness in the two-key setting and Knowledge Extractor for

PATK). Let Π = (G,K, E ,D) be a public-key encryption scheme. Let B and K be algo-

rithms, called an adversary for PATK and a knowledge extractor for PATK, respectively.

They work in the random oracle model as follows:

• B is a (qh, qe)-adversary for PATK that takes two public-keys pk0, pk1 and an index

i ∈ {0, 1}, and makes at most qh queries to H and qe queries to the encryption

oracles, EH
pk0

and EH
pk1

. B finally outputs c �∈ C, where

– TH denotes the set of all pairs of a B’s query and the corresponding answer from

H, and
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– C denotes the set of all answers from EH
pk0

and EH
pk1

. (Note that C does not

contain an information of which encryption oracle responded.)

We write this experiment as (TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1 (pk0, pk1, i).

• Knowledge extractor K for PATK takes (TH , C, c, pki) and outputs a string m.

For any k ∈ N and i ∈ {0, 1}, we define

Succpatk
K,B,Π,i(k) = Pr[H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I);

(TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1 (pk0, pk1, i) : K(TH , C, c, pki) = DH
ski

(c)].

We say that K is a (tKETK, λ, qh, qe)-knowledge extractor for PATK of Π if for any

(qh, qe)-adversary Band for any index i ∈ {0, 1}, K runs in at most time tKETK and

achieves Succpatk
K,B,Π,i(k) ≥ λ.

We say that Π is (tcpa, tKETK, qh, qe, ε, λ)-secure in the sense of PATK if Π is (tcpa, qh, ε)-

secure in the sense of IK-CPA, and there exists a (tKETK, λ, qh, qe)-knowledge extractor K

for PATK of Π.

There are some differences between the definition of PA in [4] and that of PATK. First,

the adversary B in our definition receives two public keys and two encryption oracles, while

the adversary in the definition of PA receives one public key and one encryption oracle.

Second, we define the success probability of B for any index i ∈ {0, 1}. This indicates under

which key, pk0 or pk1, the knowledge extractor K for PATK should decrypt c. Third, in

the definition of PA, the list C contains the answers (ciphertexts) from only one encryption

oracle EH
pk. When we prove that PA implies IND-CCA, C plays an important role, that is,

C contains the challenge ciphertext of IND-CCA game to give it to the adversary B for PA.

In our definition, if we use C to prove that PATK implies IK-CCA, C has to contain the

challenge ciphertext of IK-CCA game and the challenge ciphertext is encrypted by either

pk0 or pk1. Therefore, in our definition, we define that the list C consists of the answers

(ciphertexts) from both EH
pk0

and EH
pk1

.

It is easy to see that if there exists a knowledge extractor K for PATK of Π, then we

can use K as a knowledge extractor for PA of Π. That is, if the public-key encryption

scheme Π is secure in the sense of PATK and IND-CPA, then Π is secure in the sense

of PA. However, it is not clear that we can use the knowledge extractor for PA of Π as

that for PATK of Π. The difficulty of proving this seems to depend on the third difference

described above.

We prove the following theorem.

Theorem 8.1. If the public encryption scheme Π is (tcpa, tKETK, qh, 1, ε, λ)-secure in the

sense of PATK, then Π is (tcca, qh, qd, ε
′)-secure in the sense of IK-CCA where

tcca = tcpa − qd · tKETK and ε′ = ε + 2qd · (1 − λ).
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Proof. In [4], Bellare, Desai, Pointcheval, and Rogaway proved that PA implies IND-CCA.

We prove Theorem 8.1 in a similar way.

Let Acca be an (tcca, qh, qd, ε)-adversary of Π in the sense of IK-CCA. We construct an

adversary Acpa of Π in the sense of IK-CPA by using Acca.

We construct the algorithm Acpa as follows. Note that Acpa simulates Acca’s oracles H,

Dsk0 , and Dsk1 as described below.

1) Acpa initializes two lists, TH and C to empty.

2) Acpa(find, pk0, pk1) runs Acca as (m, si) ← Acca(find, pk0, pk1) and outputs (m, si).

3) Acpa receives a challenge ciphertext ĉ = EH
pkb

(m) where b
R← {0, 1}.

4) Acpa(guess, ĉ) runs Acca as d ← Acca(guess, ĉ) and outputs d.

Acpa simulates Acca’s oracle as follows:

• When Acca makes a query h to H, Acpa makes a query h to its oracle H and obtains

an answer H(h). Then, Acpa returns H(h) to Acca and puts (h,H(h)) into the list

TH .

• When Acca makes a decryption query c to DH
ski

, Acpa runs the knowledge extractor

K as follows.

– In the find stage, Acpa runs K as m ← K(TH , ε, c, pki) and returns m to Acca.

– In the guess stage, Acpa runs K as m ← K(TH , ĉ, c, pki) and returns m to Acca.

To guarantee that the knowledge extractor K for PATK outputs a correct answer (a

corresponding plaintext m or an invalid symbol ⊥), for j ∈ {1, 2, · · · , qd} we construct the

adversary Bj for PATK as follows. Note that Bj simulates Acca’s oracles H, Dsk0 , and

Dsk1 as described below. Note that Bj(pk0, pk1, i) returns some value and halts when Acca

makes its j-th decryption query.

1) Bj initializes two lists, TH and C to empty.

2) Bj runs Acca as (m, si) ← Acca(find, pk0, pk1).

3) Bj picks a random bit b
R← {0, 1} and makes an oracle query as ĉ ← EH

pkb
(m).

4) Bj runs Acca(guess, ĉ). (Note that Bj is sure to halt before Acca outputs d. See

below.)

Bj(pk0, pk1, i) simulates Acca’s oracle as follows:
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• When Acca makes a query h to H, Acpa makes a query h to its oracle H and obtains

an answer H(h). Then, Acpa returns H(h) to Acca and puts (h,H(h)) into the list

TH .

• When Acca makes a j′-th decryption query c to DH
ski

, Acpa runs the knowledge ex-

tractor K as follows.

– In the find stage, if j′ = j then Bj returns c and halts; otherwise, Acpa runs K

as m ← K(TH , ε, c, pki) and returns m to Acca.

– In the guess stage, if j′ = j then Bj returns c and halts; otherwise, Acpa runs K

as m ← K(TH , ĉ, c, pki) and returns m to Acca.

Since j ≤ qd and Acca makes at most qd queries to the decryption oracles, Bj is sure to

output c and halt before Acca outputs d in the guess stage.

We analyze the success probability of Acpa. We have that for any j ∈ {1, 2, · · · , qd} the

distribution of (TH , C, c, pki) ← run B
H,EH

pk0
,EH

pk1
j (pk0, pk1, i) where

H ← Ω; I ← G(1k); (pk0, sk0), (pk1, sk1) ← K(I)

and the distribution of the j-th input for K in the above adversary Acpa is identical.

Therefore,

Pr[Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1 − qfind
d · (1 − λ)

and

Pr[Acpa(guess, c, (si, TH)) = Acca(guess, c, si)

|Acpa(find, pk0, pk1) = Acca(find, pk0, pk1)] ≥ 1 − (qd − qfind
d ) · (1 − λ)

where qfind
d is a number of decryption queries of Acca in the find stage. Hence, ε′ ≥

ε − 2qd(1 − λ).

It is easy to see that the running time of Acpa is less than tcca + qd · tKETK.

8.3 The Fujisaki–Okamoto Conversion

In this section, we review the conversion proposed by Fujisaki and Okamoto [42].

Let Πpub = (Gpub,Kpub, Epub,Dpub) be a public-key encryption scheme and let Πsym =

(Esym,Dsym) be a symmetric-key encryption scheme. Let G : MSPCpub → KSPCsym and

H : MSPCpub × MSPCsym → COINSpub be hash functions.

A public-key encryption scheme Πhy = (Ghy,Khy, Ehy,Dhy) derived from the Fujisaki-

Okamoto conversion is as follows:
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• Common key generation and key generation: Ghy and Khy are the same as Gpub and

Kpub, respectively.

• Encryption:

Ehy
pk (m; σ) = Epub

pk (σ; H(σ,m)) || Esym
G(σ)(m)

where COINShy = MSPCpub and MSPChy = MSPCsym.

• Decryption:

Dhy
sk (c1||c2) =

{
m̂ if c1 = Epub

pk (σ̂; H(σ̂, m̂))

⊥ otherwise

where σ̂ ← Dpub
sk (c1) and m̂ ← Dsym

G(σ̂)(c2).

Fujisaki and Okamoto showed that the public-key encryption scheme Πhy is secure in the

sense of IND-CCA in the random oracle model when

• Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and

• Πsym is secure in the sense of FG.

8.4 A Generic Conversion for the Anonymity

In this section, we propose the generic conversion for the anonymity, that is, we prove that

the public-key encryption scheme derived from the Fujisaki-Okamoto conversion with the

following assumptions is secure in the sense of IK-CCA in the random oracle model.

• Πpub use the common message space MSPCpub(I) and the common randomness space

COINSpub(I) as the message space MSPCpub(pk) and the randomness space COINSpub(pk),

respectively, for any public key pk outputted by K(I),

• Πpub is secure in the sense of IK-CPA,

• Πpub is γ-uniform (γ < 1) and secure in the sense of OW, and

• Πsym is secure in the sense of FG.

Since these conditions are sufficient that Πhy meets IND-CCA, we can get a public-key

encryption scheme which is secure in the sense of IND-CCA and IK-CCA in the random

oracle model when we assume the above four conditions.
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IK-CPA Security. We prove the following lemma with respect to the anonymity prop-

erty.

Lemma 8.1. Let Πpub be a public-key encryption scheme where Πpub uses the common

message space MSPCpub(I) and the common randomness space COINSpub(I) as the message

space MSPCpub(pk) and the randomness space COINSpub(pk), respectively, for any public key

pk outputted by K(I).

Suppose that Πpub is (t1, ε1)-secure in the sense of IK-CPA, and (t2, ε2)-secure in the

sense of OW. Let �2 be the size of MSPCsym. Then, Πhy is (t, qg, qh, ε)-secure in the sense of

IK-CPA in the random oracle model, where t = min{t1, t2} − poly(�2) and ε = ε1 + 2(qg +

qh) · ε2.

Remark 8.1. Note that IK-CPA does not imply OW. For example, let Π = (G,K, E ,D)

be a public-key encryption scheme which is secure in the sense of IK-CPA. Then, consider

the public-key encryption scheme Π′ whose encryption algorithm is defined as E ′
pk(m) :=

Epk(m)||m. We can easily see that Π′ meets IK-CPA, and does not meet OW.

Proof. Suppose that A is a (t, qg, qh, ε)-adversary for Πhy in the sense of IK-CPA in the

random oracle model. We show that there exists a (t1, ε1)-adversary B for Πpub in the sense

of IK-CPA and a (t2, ε2)-adversary C for Πpub in the sense of OW, where t = min{t1, t2}−
poly(�2) and ε = ε1 + 2(qg + qh) · ε2.

We construct the adversaries B and C by using the adversary A. B and C have to

simulate the random oracles G and H for A. We describe how to simulate the random

oracles in both B and C. We use the lists TG and TH which are initially empty lists.

• The simulation of G. For a query σ, if there exist an entry (σ′, g′) ∈ TG such that

σ = σ′, it returns g′ to A. Otherwise, it picks a string g
R← KSPCsym(k), returns g to

A, and puts (σ, g) on the list TG.

• The simulation of H. For a query (σ,m), if there exist an entry (σ′,m′, h′) ∈ TH

such that σ = σ′ and m = m′, it returns h′ to A. Otherwise, it picks a string

h
R← COINSpub(I), returns h to A, and puts (σ,m, h) on the list TH .

We construct the adversary B in the sense of IK-CPA as follows.

Algorithm B(find, pk0, pk1) Algorithm B(guess, c, si′)

(m, si) ← A(find, pk0, pk1) x
R← KSPCsym(k)

σ
R← MSPCpub(I) c′ ← c||Esym

x (m)

si′ ← (si,m) b′ ← A(guess, c, si)

return (σ, si′) return b′
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We construct the adversary C in the sense of OW as follows.

Algorithm C(c, pk)

(pk′, sk′) ← Kpub(I)

d
R← {0, 1}; pkd ← pk; pk1−d ← pk′

(m, si) ← A(find, pk0, pk1)

b
R← {0, 1}; x

R← KSPCsym(k); c′ ← c||Esym
x (m)

b′ ← A(guess, c′)

σ̂
R← {σ′|(σ′, g′) ∈ TG or (σ′,m′, h′) ∈ TH}

return σ̂

It is easy to see that the running times of B and C is at most that of A plus the time for

computing Esym
x (m), that is, t1, t2 < t + poly(�2).

We analyze the advantages of B and C. We define the following events.

• AskA = [A asks σ to the oracle G or asks (σ,m) to the oracle H where the challenge

ciphertext is c′ = Epub
pkb

(σ; H(σ,m))||Esym
G(σ)(m).]

• SuccA = [G,H ← Ω; I ← Ghy(1k); (pk0, sk0), (pk1, sk1) ← Khy(I);

(m, si) ← AG,H(find, pk); b
R← {0, 1}; c′ ← Ehy

pkb
(m) : AG,H(guess, c′, si) = b]

• SuccB = [I ← Gpub(1k); (pk0, sk0), (pk1, sk1) ← Kpub(I);

(σ, si) ← B(find, pk); b
R← {0, 1}; c ← Epub

pkb
(σ) : B(guess, c, si) = b]

• SuccC = [I ← Gpub(1k); (pk, sk) ← Kpub(I); σ
R← MSPCpub(pk)

c ← Epub
pk (σ) : C(c, pk) = σ]

In the experiment of B, if the event ¬AskA holds, the view of A simulated in B is

identical to the real A’s view. Therefore, Pr[SuccB] ≥ Pr[SuccA|¬AskA] · Pr[¬AskA].

In the experiment of C, if the event AskA holds, there exist a string σ such that

c = Epub
pkb

(σ) in {σ′|(σ′, g′) ∈ TG or (σ′,m′, h′) ∈ TH} and C can output the correct answer

with probability at least 1/(qG + qH). Furthermore, if b = d holds, the probability that

C asks such σ is the same as the probability that the real A asks such σ. Therefore,

Pr[SuccC] ≥ Pr[b = d] × Pr[SuccC|b = d] ≥ 1/(2(qG + qH)) · Pr[AskA].

Hence, we have

Pr[SuccA] = Pr[SuccA|¬AskA] · Pr[¬AskA] + Pr[SuccA|AskA] · Pr[AskA]

≤ Pr[SuccA|¬AskA] · Pr[¬AskA] + Pr[AskA]

≤ Pr[SuccB] + 2(qG + qH) · Pr[SuccC].

Since ε = 2 · Pr[SuccA] − 1, ε1 = 2 · Pr[SuccB] − 1, and ε2 = Pr[SuccC], we have ε ≤
ε1 + (qG + qH) · ε2.
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Knowledge Extractor for PATK. We show the existence of the knowledge extractor

for PATK of our scheme.

Though we mentioned that we could not use the knowledge extractor for PA directly as

that for PATK, fortunately, we can use the knowledge extractor for PA as that for PATK

in the case of the Fujisaki-Okamoto conversion.

We show the following lemma.

Lemma 8.2. Suppose that Πpub is γ-uniform and (t2, ε2)-secure in the sense of OW.

Suppose that Πsym is (t3, ε3)-secure in the sense of FG. Let �1 and �2 be the sizes of MSPCpub

and MSPCsym, respectively. Then, there exist a (t, λ, qg, qh, qe)-knowledge extractor K for

PATK of Πhy such that t = (qg + qh) · poly(�1 + �2) and λ = 1 − 2qe · ε2 − 2ε3 − γ − 2−�2.

Proof. The construction of the knowledge extractor for PATK is the same as that for PA

in [42]. We first describe the knowledge extractor K(TG, TH , C, c, pk) as follows. Here, let

TG = {(σi, gi)|i = 1, . . . , qg} and TH = {(σ′
j ,mj , hj)|j = 1, . . . , qh}.

1) Set two empty lists, S1 and S2.

2) Find all elements in TH such that c1 = Epub
pk (σ′

j , hj) and put them into list S1. If

S1 = ∅, then output ⊥.

3) For every (σ′
j , mj , hj) ∈ S1, find all elements in TG such that σi = σ′

j and put them

(i.e. (σ′
j ,mj , hj)||(σi, gi)’s) into S2. If S2 = ∅, then output ⊥.

4) Check in S2 if there exists a (σ′
j ,mj , hj)||(σi, gi) such that c2 = Esym

gi (mj). If it exists

in S2, then output mj otherwise output ⊥.

This protocol runs in (qg + qh) · poly(�1 + �2).

Next, we examine the advantage of the knowledge extractor for PATK. We define the

following events.

• Inv0 is true if there exists (c∗1, c∗2) ∈ C and (σi, gi) ∈ TG or (σj ,mj , hj) ∈ TH such

that σi = Dpub
sk0

(c∗1) or σj = Dpub
sk0

(c∗1).

• Inv1 is true if there exists (c∗1, c∗2) ∈ C and (σi, gi) ∈ TG or (σj ,mj , hj) ∈ TH such

that σi = Dpub
sk1

(c∗1) or σj = Dpub
sk1

(c∗1).

• Inv = Inv0 ∨ Inv1.

• p(S1) true if S1 �= ∅.

• p(S2) true if S2 �= ∅.

• Find is true if there exists a (σ′
j ,mj , hj)||(σi, gi) in S2 such that c2 = Esym

gi (mj).
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• Fail is true if “the output of knowledge extractor K for PATK” �= Dhy
sk (c1, c2).

We further define the following events:

‘1′ = Inv.

‘00′ = ¬Inv ∧ ¬p(S1).

‘010′ = ¬Inv ∧ p(S1) ∧ ¬p(S2).

‘0110′ = ¬Inv ∧ p(S1) ∧ p(S2) ∧ ¬Find.

‘0111′ = ¬Inv ∧ p(S1) ∧ p(S2) ∧ Find.

We have

Pr[Fail] = Pr[Fail|1] · Pr[1] + Pr[Fail|00] · Pr[00] + Pr[Fail|010] · Pr[010]

+ Pr[Fail|0110] · Pr[0110] + Pr[Fail|0111] · Pr[0111]

≤ Pr[1] + Pr[Fail|00] + Pr[Fail|010] + Pr[Fail|0110] + Pr[Fail|0111]
= Pr[1] + Pr[Fail|00] + Pr[Fail|010].

We prove the following claim.

Claim 8.1. Pr[1] ≤ 2qe · ε2.

Proof. We first consider Pr[Inv0]. For any i ∈ {0, 1}, when the adversary B makes

a query m to the encryption oracle Ehy
pki

, the oracle picks random coins σ and returns

(Epub
pki

(σ,H(σ,m))||Esym
G(σ)(m)) to B. B makes at most qe to the encryption oracles. There-

fore, Pr[Inv0] ≤ qe · ε2. Similarly, we have Pr[Inv1] ≤ qe · ε2. Hence, Pr[1] = Pr[Inv] ≤
2qe · ε2

The proofs of the following claims are the same as those in [42].

Claim 8.2. Pr[Fail|00 ≤ γ.

Claim 8.3. Pr[Fail|010] ≤ 2ε3 + 2−�2.

Therefore, Pr[Fail] ≤ 2qe · ε2 + γ + 2ε3 + 2−�2 . Hence,

λ = 1 − Pr[Fail] ≥ 1 − (2qe · ε2 + γ + 2ε3 + 2−�2).

From Theorem 8.1 and Lemmas 8.1 and 8.2, we have the following theorem.

Theorem 8.2. Let Πpub be a public-key encryption scheme where Πpub uses the common

message space MSPCpub(I) and the common randomness space COINSpub(I) as the message

space MSPCpub(pk) and the randomness space COINSpub(pk) for any public key pk outputted

by K(I), respectively.
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Suppose that Πpub is γ-uniform, (t1, ε1)-secure in the sense of IK-CPA, and (t2, ε2)-

secure in the sense of OW. Suppose that Πsym is (t3, ε3)-secure in the sense of FG. Let

�1 and �2 be the sizes of MSPCpub and MSPCsym, respectively. Then, Πhy is (t, qg, qh, qd, ε)-

secure in the sense of IK-CCA in the random oracle model where t = min{t1, t2} − (qg +

qh) · poly(�1 + �2). and ε = ε1 + 2(qg + qh)ε2 + 2qd(2ε2 + 2ε3 + γ + 2−�2).
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CHAPTER 9

Universally Anonymizable Public-Key Encryption

In this chapter, we consider the following situation. In order to send e-mails, all members

of the company use the encryption scheme which does not provide the anonymity property.

They consider that e-mails sent to the inside of the company do not have to be anonymized

and it is sufficient to be encrypted the data. However, when e-mails are sent to the outside

of the company, they want to anonymize them for preventing the eavesdropper on the

public network.

We propose a solution to solve this as follows. Consider the situation that not only the

person who made the ciphertexts, but also anyone can transform the encrypted data to

those with the anonymity property without decrypting these encrypted data. If we have

this situation, we can make an e-mail gateway which can transform encrypted e-mails to

those with the anonymity property without using the corresponding secret key when they

are sent to the outside of the company.

In this chapter, in order to formalize this idea, we propose a special type of public-key

encryption scheme called a universally anonymizable public-key encryption scheme.

The organization of this chapter is as follows. In Section 9.1, we review the definitions

of the Decisional Diffie-Hellman problem and the families of hash functions. In Section 9.2,

we formulate the notion of universally anonymizable public-key encryption and its secu-

rity properties. We propose the universally anonymizable public-key encryption scheme

based on the ElGamal encryption scheme in Section 9.3, that based on the Cramer-Shoup

encryption scheme in Section 9.4, and that based on RSA-OAEP in Section 9.5.
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9.1 Preliminaries

The Decisional Diffie-Hellman Problem We review the decisional Diffie-Hellman

Problem.

Definition 9.1 (decisional Diffie-Hellman problem). Let G be a group generator which

takes as input a security parameter k and returns (q, g) where q is a k-bit integer and g

is a generator of a cyclic group Gq of order q. Let D be an adversary. We consider the

following experiments:

Experiment Expddh-real
G,D (k) Experiment Expddh-rand

G,D (k)

(q, g) ← G(k); x, y
R← Zq (q, g) ← G(k); x, y

R← Zq

X ← gx; Y ← gy; T ← gxy X ← gx; Y ← gy; T
R← Gq

d ← D(q, g, X, Y, T ) d ← D(q, g, X, Y, T )

return d return d

The advantage of D in solving the decisional Diffie-Hellman (DDH) problem for G is defined

by

Advddh
G,D(k) =

∣∣Pr[Expddh-real
G,D (k) = 1] − Pr[Expddh-rand

G,D (k) = 1]
∣∣.

We say that the DDH problem for G is hard if the function Advddh
G,D(k) is negligible for any

algorithm D whose time-complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus the size of

the code of the adversary, in some fixed RAM model of computation.

Families of Hash Functions We describe the definitions of families of hash functions

and universal one-wayness.

Definition 9.2 (families of hash functions). A family of hash functions H = (GH, EH)

is defined by two algorithms. A probabilistic generator algorithm GH takes the security

parameter k as input and returns a key K. A deterministic evaluation algorithm EH takes

the key K and a string M ∈ {0, 1}∗ and returns a string EHK(M) ∈ {0, 1}k−1.

Definition 9.3 (universal one-wayness). Let H = (GH, EH) be a family of hash functions

and let C = (C1, C2) be an adversary. We consider the following experiment:

Experiment Expuow
H,C(k)

(x0, si) ← C1(k); K ← GH(k); x1 ← C2(K, x0, si)

if ((x0 �= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

Note that si is the state information. We define the advantage of C via

Advuow
H,C(k) = Pr[Expuow

H,C(k) = 1].
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We say that the family of hash functions H is universal one-way if Advuow
H,C(k) is negligible

for any algorithm C whose time-complexity is polynomial in k.

9.2 Universally Anonymizable Public-Key Encryption

In this section, we propose the definition of universally anonymizable public-key encryption

schemes and its security properties.

9.2.1 Definition

We formalize the notion of universally anonymizable public-key encryption schemes as

follows.

Definition 9.4. A universally anonymizable public-key encryption scheme UAPE = ((K, E ,

D),UA,DA) consists of a public-key encryption scheme PE = (K, E ,D) and two other al-

gorithms.

• The key generation algorithm K is a randomized algorithm that takes as input a

security parameter k and returns a pair (pk, sk) of keys, a public key and a matching

secret key. For any pk, the message space M(pk) is uniquely determined.

• The encryption algorithm E is a randomized algorithm that takes the public key pk

and a plaintext m and returns a standard ciphertext c.

• The decryption algorithm D for standard ciphertexts is a deterministic algorithm

that takes the secret key sk and a standard ciphertext c and returns the corresponding

plaintext m or a special symbol ⊥ to indicate that the standard ciphertext is invalid.

• The anonymizing algorithm UA is a randomized algorithm that takes the public key

pk and a standard ciphertext c and returns an anonymized ciphertext c′.

• The decryption algorithm DA for anonymized ciphertexts is a deterministic algorithm

that takes the secret key sk and an anonymized ciphertext c′ and returns the corre-

sponding plaintext m or a special symbol ⊥ to indicate that the anonymized ciphertext

is invalid.

We require the standard correctness condition. That is, for any (pk, sk) outputted by K
and m ∈ M(pk), we have m = Dsk(Epk(m)) and m = DAsk(UApk(Epk(m))).

In the universally anonymizable public-key encryption scheme, we can use PE =

(K, E ,D) as a standard encryption scheme. Furthermore, in this scheme, by using the

anonymizing algorithm UA, anyone who has a standard ciphertext can anonymize it when-

ever she wants to do that. The receiver can decrypt the anonymized ciphertext by using

the decryption algorithm DA for anonymized ciphertexts.
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9.2.2 Security Properties

We now define security properties with respect to universally anonymizable public-key

encryption schemes.

Data-Privacy

We define the security property called data-privacy of universally anonymizable public-

key encryption schemes. The definition is based on the indistinguishability for standard

public-key encryption schemes.

We can consider two types of data-privacy, that is, the data-privacy on standard ci-

phertexts and that on anonymized ciphertexts. We first describe the definition of the

data-privacy on standard ciphertexts.

Definition 9.5 (data-privacy on standard ciphertexts). Let b ∈ {0, 1} and k ∈ N. Let

Acpa = (A1
cpa, A

2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages and where

Acca has access to the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). Note that si is the

state information. It contains pk,m0,m1, and so on. For atk ∈ {cpa, cca}, we consider

the following experiment:

Experiment ExpdataS-atk-b
UAPE,Aatk

(k)

(pk, sk) ← K(k); (m0,m1, si) ← A1
atk(pk); c ← Epk(mb); d ← A2

atk(c, si)

return d

Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the challenge c to

either Dsk0(·) or Dsk1(·). It is also mandated that A2
cca never queries either the anonymized

ciphertext c̃ ∈ {UApk0(c)} to DAsk0(·) or c̃ ∈ {UApk1(c)} to DAsk1(·). For atk ∈ {cpa,

cca}, we define the advantage via

AdvdataS-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataS-atk-1

UAPE,Aatk
(k) = 1] − Pr[ExpdataS-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE provides

the data-privacy on standard ciphertexts against the chosen plaintext attack (respectively

the adaptive chosen ciphertext attack) if AdvdataS-cpa
UAPE,Acpa

(k) (resp. AdvdataS-cca
UAPE,Acca

(k)) is

negligible for any adversary A whose time complexity is polynomial in k.

In the above experiment, if the challenge is c, then anyone can compute UApk0(c).

Therefore, in the CCA setting, we restrict the oracle access to DA as described above.

We next describe the definition of the data-privacy on anonymized ciphertexts.

Definition 9.6 (data-privacy on anonymized ciphertexts). Let b ∈ {0, 1} and k ∈ N. Let

Acpa = (A1
cpa, A

2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in two stages and where
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Acca has access to the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa,

cca}, we consider the following experiment:

Experiment ExpdataA-atk-b
UAPE,Aatk

(k)

(pk, sk) ← K(k); (m0,m1, si) ← A1
atk(pk)

c ← Epk(mb); c′ ← UApk(c); d ← A2
atk(c

′, si)
return d

Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the challenge c′

to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa, cca}, we define the advantage via

AdvdataA-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataA-atk-1

UAPE,Aatk
(k) = 1] − Pr[ExpdataA-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE provides

the data-privacy on anonymized ciphertexts against the chosen plaintext attack (resp. the

adaptive chosen ciphertext attack) if AdvdataA-cpa
UAPE,Acpa

(k) (resp. AdvdataA-cca
UAPE,Acca

(k)) is negli-

gible for any adversary A whose time complexity is polynomial in k.

Remark 9.1. In the CPA setting, if there exists an algorithm which breaks the data-

privacy on anonymized ciphertexts, then we can break that on standard ciphertexts by ap-

plying the anonymizing algorithm to the standard ciphertexts and passing the resulting

anonymized ciphertexts to the adversary which breaks the data-privacy on anonymized ci-

phertexts. Therefore, in the CPA setting, it is sufficient that the universally anonymizable

public-key encryption scheme provides the data-privacy of standard ciphertexts.

On the other hand, in the CCA setting, the data privacy on standard ciphertexts does

not always imply that on anonymized ciphertexts, since the oracle access of the adversary

attacking the data privacy on standard ciphertexts is restricted more strictly than that on

anonymized ciphertexts.

Key-Privacy

We define the security property called key-privacy of universally anonymizable public-key

encryption schemes. If the scheme provides the key-privacy, the adversary cannot know

under which key the anonymized ciphertext was created.

Definition 9.7 (key-privacy). Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1
cpa, A

2
cpa), Acca =

(A1
cca, A

2
cca) be adversaries that run in two stages and where Acca has access to the oracles

Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa, cca}, we consider the following
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experiment:

Experiment Expkey-atk-b
UAPE,Aatk

(k)

(pk0, sk0) ← K(k); (pk1, sk1) ← K(k)

(m0,m1, si) ← A1
atk(pk0, pk1); c ← Epkb

(mb); c′ ← UApkb
(c); d ← A2

atk(c
′, si)

return d

Note that m0 ∈ M(pk0) and m1 ∈ M(pk1). Above it is mandated that A2
cca never queries

the challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa, cca}, we define the

advantage via

Advkey-atk
UAPE,Aatk

(k) =
∣∣∣Pr[Expkey-atk-1

UAPE,Aatk
(k) = 1] − Pr[Expkey-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.
We say that the universally anonymizable public-key encryption scheme UAPE provides

the key-privacy against the chosen plaintext attack (resp. the adaptive chosen ciphertext

attack) if Advkey-cpa
UAPE,Acpa

(k) (resp. Advkey-cca
UAPE,Acca

(k)) is negligible for any adversary A

whose time complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [3] proposed a security requirement of en-

cryption schemes called “key-privacy.” Similar to the above definition, it asks that the

encryption provides privacy of the key under which the encryption was performed. In ad-

dition to the property of the universal anonymizability, there are two differences between

their definition and ours.

In [3], they defined the encryption scheme with some common-key which contains the

common parameter for all users to obtain the key-privacy property. For example, in

the discrete-log based schemes such that the ElGamal and the Cramer-Shoup encryption

schemes, the common key contains a common group G, and the encryption is performed

over the common group for all uses.

On the other hand, in our definition, we do not prepare any common key for obtaining

the key-privacy property. In the universally anonymizable public-key encryption scheme,

we can use the standard encryption scheme which is not necessary to have the key-privacy

property. In addition to it, anyone can anonymize the ciphertext by using its public

key whenever she want to do that, and the adversary cannot know under which key the

anonymized ciphertext was created.

The definition in [3], they considered the situation that the message space was common

to each user. Therefore, in the experiment of their definition, the adversary chooses only

one message m from the common message space and receives a ciphertext of m encrypted

with one of two keys pk0 and pk1.

In our definition, we do not use common parameter and the message spaces for users

may be different even if the security parameter is fixed. In fact, in Sections 9.3 and 9.4, we
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propose the encryption schemes whose message spaces for users are different. Therefore,

in the experiment of our definition, the adversary chooses two messages m0 and m1 where

m0 and m1 are in the message spaces for pk0 and pk1, respectively, and receives either

a ciphertext of m0 encrypted with pk0 or a ciphertext of m1 encrypted with pk1. The

ability of the adversary with two messages m0 and m1 might be stronger than that with

one message m.

We say that a universally anonymizable public-key encryption scheme UAPE is CPA-

secure (resp. CCA-secure) if the scheme UAPE provides the data-privacy on standard

ciphertexts, that on anonymized ciphertexts, and the key-privacy against the chosen plain-

text attack (resp. the adaptive chosen ciphertext attack).

9.3 ElGamal and its Universal Anonymizability

In this section, we propose a universally anonymizable ElGamal encryption scheme.

9.3.1 The ElGamal Encryption Scheme

Definition 9.8 (ElGamal). The ElGamal encryption scheme PEEG = (KEG, EEG, DEG) is

as follows. Note that Q is a QR-group generator with a safe prime which takes as input a

security parameter k and returns (q, g) where q is k-bit prime, p = 2q + 1 is prime, and g

is a generator of a cyclic group QRp (a group of quadratic residues modulo p) of order q.

Algorithm KEG(k) Algorithm EEG
pk (m) Algorithm DEG

sk (c1, c2)

(q, g) ← Q(k) r
R← Zq m ← c2 · c−x

1

x
R← Zq; y ← gx c1 ← gr return m

return pk = (q, g, y) and sk = x c2 ← m · yr

return (c1, c2)

The ElGamal encryption scheme is secure in the sense of IND-CPA if the DDH problem

for Q is hard.

9.3.2 Universal Anonymizability of the ElGamal Encryption Scheme

We now consider the situation that there exists no common key, and in the above definition

of the ElGamal encryption scheme, each user chooses an arbitrary prime q where |q| = k

and p = 2q + 1 is also prime, and uses a group of quadratic residues modulo p. Therefore,

each user Ui uses a different groups Gi for her encryption scheme and if she publishes the

ciphertext directly (without anonymization) then the scheme does not provide the key-

privacy. In fact, the adversary simply checks whether the ciphertext y is in the group Gi,

and if y �∈ Gi then y was not encrypted by Ui. To anonymize the standard ciphertext
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of the ElGamal encryption scheme, we consider the following strategy in the anonymizing

algorithm.

1) Compute a ciphertext c over each user’s prime-order group.

2) Encode c to an element c̄ ∈ Zq (the encoding function).

3) Expand c̄ to the common domain (the expanding technique).

The Encoding Function

Generally speaking, it is not easy to encode the elements of a prime-order group of order

q to those of Zq. We employ the idea described in [26] by Cramer and Shoup. We can

encode the elements of QRp where p = 2q + 1 and p, q are prime to those of Zq.

Let p be safe prime (i.e. q = (p−1)/2 is also prime) and QRp ⊂ Z
∗
p a group of quadratic

residues modulo p. Then we have |QRp| = q and QRp = {12 mod p, 22 mod p, · · · , q2 mod

p}. It is easy to see that QRp is a cyclic group of order q, and each g ∈ QRp\{1} is a

generator of QRp.

We now define a function Fq : QRp → Zq as

Fq(x) = min
{
±x

p−1
4 mod p

}
.

Noticing that ±x
p−1
4 mod p are the square roots of x modulo p, the function Fq is bijective

and we have F−1
q (y) = y2 mod p. We call the function Fq an encoding function. We also

define a t-encoding function F̄q,t : (QRp)t → (Zq)t. F̄q,t takes as input (x1, · · · , xt) ∈ (QRp)t

and returns (y1, · · · , yt) ∈ (Zq)t where yi = Fq(xi) for each i ∈ {1, · · · , t}. It is easy to see

that F̄q,t is bijective and we can define F̄−1
q,t .

Our Scheme

We now propose our universally anonymizable ElGamal encryption scheme. Our scheme

provides the key-privacy against the chosen plaintext attack even if each user chooses an

arbitrary prime q where |q| = k and p = 2q +1 is also prime, and uses a group of quadratic

residues modulo p.

Definition 9.9. Our universally anonymizable ElGamal encryption scheme UAPEEG =

((KEG, EEG,DEG),UAEG,DAEG) consists of the ElGamal encryption scheme PEEG = (KEG,
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EEG,DEG) and two algorithms described as follows.

Algorithm UAEG
pk (c1, c2) Algorithm DAEG

sk (c′1, c′2)
(c̄1, c̄2) ← F̄q,2(c1, c2) c̄1 ← c′1 mod q; c̄2 ← c′2 mod q

t1
R← {0, 1, 2, · · · , �(2k+160 − c̄1)/q	} (c1, c2) ← F̄−1

q,2 (c̄1, c̄2)

t2
R← {0, 1, 2, · · · , �(2k+160 − c̄2)/q	} m ← DEG

sk (c1, c2)

c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q return m

return (c′1, c′2)

9.3.3 Security

In this section, we prove that our universally anonymizable ElGamal encryption scheme

UAPEEG is CPA-secure assuming that the DDH problem for Q is hard.

We can easily see that our scheme provides the data-privacy on standard ciphertexts

against the chosen plaintext attack if the DDH problem for Q is hard. More precisely,

we can prove that if there exists a CPA-adversary attacking the data-privacy on standard

ciphertexts of our scheme with advantage ε, then there exists a CPA-adversary attacking

the indistinguishability of the ElGamal encryption scheme with the same advantage ε.

Note that this implies our scheme provides the data-privacy on anonymized ciphertexts

against the chosen plaintext attack if the DDH problem for Q is hard.

We now prove our scheme provides the key-privacy against the chosen plaintext attack.

To prove this, we use the idea of Halevi [49].

Lemma 9.1 (Halevi [49]). Let PE = (K, E ,D) be a (standard) encryption scheme that

is CCA secure (resp. CPA secure) for the indistinguishability (data-privacy). Then a

sufficient condition for PE to be also CCA secure (resp. CPA secure) for the key-privacy

(defined by Bellare, Boldyreva, Desai, and Pointcheval) if the statistical distance between

the two distributions

D0 = {(pk0, pk1, Epk0(m)) : (pk0, sk0), (pk1, sk1) ← K(k); m
R← M(pk0)}

D1 = {(pk0, pk1, Epk1(m)) : (pk0, sk0), (pk1, sk1) ← K(k); m
R← M(pk1)}

is negligible.

This lemma shows the relation between the indistinguishability and the key-privacy for

standard encryption scheme. We can apply this lemma to our universally anonymizable

encryption scheme. That is, if the universally anonymizable encryption scheme UAPE =

((K, E ,D),UA,DA) provides the data-privacy on anonymized ciphertexts against CCA

(resp. CPA) and the statistical distance between the two distributions

D′
0 = {(pk0, pk1,UApk0(Epk0(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m

R← M(pk0)}
D′

1 = {(pk0, pk1,UApk1(Epk1(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m
R← M(pk1)}

125



CHAPTER 9. Universally Anonymizable Public-Key Encryption

is negligible, then UAPE provides the key-privacy against CCA (resp. CPA).

By using this, in order to prove that our scheme provides the key-privacy against the

chosen plaintext attack, all we have to do is to see that the two distributions D′
0 and

D′
1 derived by our scheme satisfy the property defined above. It is easy to see that the

statistical distance between D′
0 and D′

1 is less than 2 × (1/2159)2.

In conclusion, our universally anonymizable ElGamal encryption scheme is CPA-secure

assuming that the DDH problem for Q is hard.

9.4 Cramer-Shoup and its Universal Anonymizability

In this section, we propose a universally anonymizable Cramer-Shoup encryption scheme.

9.4.1 The Cramer-Shoup Encryption Scheme

Definition 9.10 (Cramer-Shoup). The Cramer-Shoup encryption scheme PECS = (KCS, ECS,

DCS) is defined as follows. Let H = (GH, EH) be a family of hash functions. Note that Q
is a QR-group generator with a safe prime.

Algorithm KCS(k) Algorithm ECS
pk (m) Algorithm DCS

sk (u1, u2, e, v)

(q, g) ← Q(k); K ← GH(k) r
R← Zq α ← EHK(u1, u2, e)

g1 ← g; g2
R← QRp u1 ← gr

1; u2 ← gr
2 if (ux1+y1α

1 ux2+y2α
2 = v)

x1, x2, y1, y2, z
R← Zq e ← hrm then m ← e/uz

1

c ← gx1
1 gx2

2 ; d ← gy1
1 gy2

2 α ← EHK(u1, u2, e) else m ←⊥
h ← gz

1 v ← crdrα return m

pk ← (q, g1, g2, c, d, h, K) return (u1, u2, e, v)

sk ← (x1, x2, y1, y2, z)

return (pk, sk)

Cramer and Shoup [26] proved that the Cramer-Shoup encryption scheme is secure in

the sense of IND-CCA2 assuming that H is universal one-way and the DDH problem for Q
is hard. Lucks [61] recently proposed a variant of the Cramer-Shoup encryption scheme for

groups of unknown order. This scheme is secure in the sense of IND-CCA2 assuming that

the family of hash functions in the scheme is universal one-way, and both the Decisional

Diffie-Hellman problem in QRN (a set of quadratic residues modulo N) and factoring N

are hard.
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9.4.2 Universal Anonymizability of the Cramer-Shoup Encryption Scheme

We propose our universally anonymizable Cramer-Shoup encryption scheme. Our scheme

provides the key-privacy against the adaptive chosen ciphertext attack even if each user

chooses an arbitrary prime q where |q| = k and p = 2q + 1 is also prime, and uses a group

of quadratic residues modulo p.

Note that in our scheme we employ the encoding function and the expanding technique

appeared in Section 9.3.

Definition 9.11. Our universally anonymizable Cramer-Shoup encryption scheme UAPECS =

((KCS, ECS,DCS),UACS,DACS) consists of the Cramer-Shoup encryption scheme PECS =

(KCS, ECS,DCS) and two algorithms described as follows.

Algorithm UACS
pk (u1, u2, e, v) Algorithm DACS

sk (u′
1, u

′
2, e

′, v′)
(ū1, ū2, ē, v̄) ← F̄q,4(u1, u2, e, v) ū1 ← u′

1 mod q; ū2 ← u′
2 mod q

t1
R← {0, 1, 2, · · · , �(2k+160 − ū1)/q	} ē ← e′ mod q; v̄ ← v′ mod q

t2
R← {0, 1, 2, · · · , �(2k+160 − ū2)/q	} (u1, u2, e, v) ← F̄−1

q,4 (ū1, ū2, ē, v̄)

t3
R← {0, 1, 2, · · · , �(2k+160 − ē)/q	} m ← DCS

sk (u1, u2, e, v)

t4
R← {0, 1, 2, · · · , �(2k+160 − v̄)/q	} return m

u′
1 ← ū1 + t1q; u′

2 ← ū2 + t2q

e′ ← ē + t3q; v′ ← v̄ + t4q

return (u′
1, u

′
2, e

′, v′)

9.4.3 Security

In this section, we prove that our universally anonymizable Cramer-Shoup encryption

scheme UAPEEG is CCA-secure assuming that the DDH problem for Q is hard and H
is universal one-way.

We can prove that our scheme provides the data-privacy on standard ciphertexts against

the adaptive chosen ciphertext attack if the DDH problem for Q is hard and H is universal

one-way. More precisely, we can prove that if there exists a CCA-adversary A attacking

the data-privacy on standard ciphertexts of our scheme with advantage ε, then there exists

a CCA2-adversary B attacking the indistinguishability of the Cramer-Shoup encryption

scheme with the same advantage ε. In the reduction of the proof, we have to simulate the

decryption oracles for anonymized ciphertexts for A. If A makes a query �c′ = (u′
1, u

′
2, e

′, v′)
to DAsk0(·), we simply compute �c = (u′

1 mod q0, u
′
2 mod q0, e

′ mod q0, v
′ mod q0) and de-

crypt �c by using the decryption algorithm Dsk0(·) for standard ciphertexts for B. We can

simulate DAsk1(·) in a similar way.

In order to prove that our scheme provides the key-privacy and the data-privacy on

anonymized ciphertexts against the adaptive chosen ciphertext attack, we need restriction
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as follows.

We define the set of ciphertexts ECCS((u′
1, u

′
2, e

′, v′), pk) called “equivalence class” as

ECCS((u′
1, u

′
2, e

′, v′), pk) = {(ǔ1, ǔ2, ě, v̌) ∈ ({0, 1}k+160)4|
ǔ1 = u′

1 (mod q) ∧ ǔ2 = u′
2 (mod q) ∧ ě = e′ (mod q) ∧ v̌ = v′ (mod q)}.

If �c′ = (u′
1, u

′
2, e

′, v′) ∈ ({0, 1}k+160)4 is an anonymized ciphertext of m under pk =

(q, g1, g2, c, d, h, K) then any element �̌c = (ǔ1, ǔ2, ě, v̌) ∈ ECCS(�c′, pk) is also an anonymized

ciphertext of m under pk. Therefore, when �c′ is a challenge anonymized ciphertext, the

adversary can ask an anonymized ciphertext �̌c ∈ ECCS(�c′, pk0) to the decryption oracle

DACS
sk0

for anonymized ciphertexts, and if the answer of DACS
sk0

is m0 then the adversary

knows that �c′ is encrypted by pk0 and the plaintext of �c′ is m0.

Furthermore, the adversary can ask (u′
1 mod q0, u

′
2 mod q0, e

′ mod q0, v
′ mod q0) to the

decryption oracle DCS
sk0

for standard ciphertexts. If the answer of DCS
sk0

is m0, then the

adversary knows that �c′ is encrypted by pk0 and the plaintext of �c′ is m0.

To prevent these attacks, we add some natural restriction to the adversaries in the

definitions of the key-privacy and the data-privacy on anonymized ciphertexts. That is,

it is mandated that the adversary never queries either �̌c ∈ ECCS(�c′, pk0) to DACS
sk0

or �̌c ∈
ECCS(�c′, pk1) to DACS

sk1
. It is also mandated that the adversary never queries either (u′

1 mod

q0, u
′
2 mod q0, e

′ mod q0, v
′ mod q0) to DCS

sk0
or (u′

1 mod q1, u
′
2 mod q1, e

′ mod q1, v
′ mod q1)

to DCS
sk1

.

We think these restrictions are natural and reasonable. Actually, in the case of undeni-

able and confirmer signature schemes, Galbraith and Mao [44] defined the anonymity on un-

deniable signature schemes with the above restriction. Incidentally, Canetti, Krawczyk, and

Nielsen [18] proposed a relaxed notion of CCA security, called Replayable CCA (RCCA).

In their security model, the schemes which require restriction such as equivalence class

for proving their CCA security satisfy a variant of RCCA, pd-RCCA (publicly-detectable

replayable-CCA) secure.

If we add these restrictions then we can prove that our scheme provides the data-

privacy on anonymized ciphertexts against the adaptive chosen ciphertext attack if the

DDH problem for Q is hard and H is universal one-way. More precisely, we can prove that

if there exists a CCA-adversary attacking the data-privacy on anonymized ciphertexts of

our scheme with advantage ε, then there exists a CCA-adversary attacking the data-privacy

on standard ciphertexts of our scheme with the same advantage ε.

We now prove our scheme provides the key-privacy against the adaptive chosen cipher-

text attack. If we add the restrictions described above, we can prove this in a similar

way as that for our universally anonymizable ElGamal encryption scheme. Note that the

statistical distance between D′
0 and D′

1 (See Section 9.3.3.) is less than 2 × (1/2159)4.

128



9.5. RSA-OAEP and its Universal Anonymizability

In conclusion, our universally anonymizable Cramer-Shoup encryption scheme is CCA-

secure assuming that the DDH problem for Q is hard and H is universal one-way.

9.5 RSA-OAEP and its Universal Anonymizability

In this section, we propose a universally anonymizable RSA-OAEP scheme.

9.5.1 RSA-OAEP

Definition 9.12 (RSA-OAEP). RSA-OAEP PERO = (KRO, ERO,DRO) is as follows. Let

k, k0 and k1 be security parameters such that k0 + k1 < k. This defines an associated

plaintext-length n = k−k0−k1. The key generation algorithm KRO takes as input a security

parameter k and runs the key generation algorithm of RSA to get N, e, d. It outputs the

public key pk = (N, e) and the secret key sk = d. The other algorithms are depicted below.

Let G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that

[x]� denotes the � most significant bits of x, and [x]�′ denotes the �′ least significant bits of

x.
Algorithm ERO

pk (m) Algorithm DRO
sk (c)

r
R← {0, 1}k0 s ← [cd mod N ]n+k1 ; t ← [cd mod N ]k0

s ← (m||0k1) ⊕ G(r) r ← t ⊕ H(s)

t ← r ⊕ H(s) m ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

c ← (s||t)e mod N if (p = 0k1) z ← m else z ←⊥
return c return z

Fujisaki, Okamoto, Pointcheval, and Stern [43] proved that OAEP with partial one-way

permutations is secure in the sense of IND-CCA2 in the random oracle model. They also

showed that RSA is one-way if and only if RSA is θ-partial one-way for θ > 0.5. Thus,

RSA-OAEP is secure in the sense of IND-CCA2 in the random oracle model assuming RSA

is one-way.

9.5.2 Universal Anonymizability of RSA-OAEP

A simple observation that seems to be folklore is that if one publishes the ciphertext of the

RSA-OAEP scheme directly (without anonymization) then the scheme does not provide

the key-privacy. Suppose an adversary knows that the ciphertext c is created under one of

two keys (N0, e0) or (N1, e1), and suppose N0 ≤ N1. If c ≥ N0 then the adversary bets it

was created under (N1, e1), else the adversary bets it was created under (N0, e0). It is not

hard to see that this attack has non-negligible advantage.

To anonymize ciphertexts of RSA-OAEP, we do not have to employ the encoding func-

tion and we only use the expanding technique.
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Definition 9.13. Our universally anonymizable RSA-OAEP scheme UAPERO = ((KRO,

ERO,DRO),UARO,DARO) consists of RSA-OAEP PERO = (KRO, ERO,DRO) and two algo-

rithms described as follows.

Algorithm UARO
pk (c) Algorithm DARO

sk (c′)

α
R← {0, 1, 2, · · · , �(2k+160 − c)/N	} c ← c′ mod N

c′ ← c + αN z ← DRO
sk (c)

return c′ return z

9.5.3 Security

In this section, we prove that our universally anonymizable RSA-OAEP scheme UAPERO

is CCA-secure in the random oracle model assuming RSA is one-way.

We can prove that our scheme provides the data-privacy on standard ciphertexts against

the adaptive chosen ciphertext attack in the random oracle model assuming RSA is θ-partial

one-way for θ > 0.5. More precisely, if RSA-OAEP is secure in the sense of IND-CCA2

then our scheme provides the data-privacy on standard ciphertexts against the adaptive

chosen ciphertext attack. The proof is similar to that for our universally anonymizable

Cramer-Shoup encryption scheme.

In order to prove that our scheme provides the key-privacy and the data-privacy on

anonymized ciphertexts against the adaptive chosen ciphertext attack, we need the restric-

tions similar to those for our universally anonymizable Cramer-Shoup encryption scheme.

We define the equivalence class for our universally anonymizable RSA-OAEP scheme as

ECRO(c′, pk) = {č ∈ {0, 1}k+160|č = c′ (mod N)}

where pk = (N, e) and it is mandated that the adversary never queries either č ∈ ECRO(c′, pk0)

to DARO
sk0

or č ∈ ECRO(c′, pk1) to DARO
sk1

. It is also mandated that the adversary never

queries either c′ mod N0 to DRO
sk0

or c′ mod N1 to DRO
sk1

.

If we add these restrictions then we can prove that our scheme provides the data-privacy

on anonymized ciphertexts against the adaptive chosen ciphertext attack in the random

oracle model assuming RSA is θ-partial one-way for θ > 0.5 in a similar way as that for

our universally anonymizable Cramer-Shoup encryption scheme.

Furthermore, if we add the restrictions described above, then we can prove that our

scheme provides the key-privacy against the adaptive chosen ciphertext attack in the ran-

dom oracle model assuming RSA is θ-partial one-way for θ > 0.5. More precisely, we show

the following theorem 1.

1Halevi [49] noted that we cannot apply Lemma 9.1 directly to the schemes analyzed in the random

oracle model.
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Theorem 9.1. For any adversary A attacking the key-privacy of our scheme under the

adaptive chosen ciphertext attack, and making at most qdec queries to decryption oracle

for standard ciphertexts, q′dec queries to decryption oracle for anonymized ciphertexts, qgen

G-oracle queries, and qhash H-oracle queries, there exists a θ-partial inverting adversary

M for RSA, such that for any k, k0, k1, and θ = k−k0
k ,

Advkey-cca

UAPERO,A
(k) ≤ 8qhash · ((1 − ε1) · (1 − ε2))

−1 · Advθ-pow-fnc
RSA,M (k)

+qgen · (1 − ε2)−1 · 2−k+2

where ε1 = 2
2k/2−3−1

+ 1
2159 , ε2 = 2qgen+qdec+q′dec+2qgen(qdec+q′dec)

2k0
+ 2(qdec+q′dec)

2k1
+ 2qhash

2k−k0
, and the

running time of B is that of A plus qgen · qhash · O(k3).

In conclusion, since RSA is θ-partial one-way if and only if RSA is one-way for θ > 0.5,

our universally anonymizable RSA-OAEP scheme is CCA-secure in the random oracle

model assuming RSA is one-way.

Proof of Theorem 9.1. The proof is similar to that for OAEP with expanding in Section 3.3.

We describe the partial inverting algorithm M for RSA using a CCA-adversary A attacking

the anonymity of our encryption scheme. M is given pk = (N, e, k) and a point y ∈ Z
∗
N

where |y| = k = n + k0 + k1. Let sk = (N, d, k) be the corresponding secret key. The

algorithm is trying to find the n + k1 most significant bits of the e-th root of y modulo N .

Intuition. We assume that the challenge ciphertext for A is Y ∈ {0, 1}k+160 which was

encrypted by pk = (N, e), and y = Y mod N . In order to distinguish under which key the

given ciphertext Y was created, the adversary A has to make queries r and s to oracles

G and H, respectively, such that s = (m||0k1) ⊕ G(r) and y = (s||(r ⊕ H(s)))e mod N .

Therefore, A asks s to H with non-negligible probability where s is the n + k1 most

significant bits of the e-th root of y modulo N .

1) M picks µ
R← {0, 1, 2, . . . , �(2k+160 − y)/N	} and sets Y ← y + µN .

2) M runs the key generation algorithm of RSA with security parameter k to obtain

pk′ = (N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b
R← {0, 1}, and sets

pkb ← (N, e) and pk1−b ← (N ′, e′). If the above y does not satisfy y ∈ (Z∗
N0

∩ Z
∗
N1

)

then M outputs Fail and halts; else it continues.

3) M initializes four lists, called G-list, H-list, Y0-list, and Y1-list to empty. It then runs

A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and Dsk1 as described

below.

3-1) M runs A1(pk0, pk1) and gets (m0,m1, si) which is the output of A1.

3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.
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4) M chooses a random pair (h,Hh) from the H-list and outputs h as its guess for the

n + k1 most significant bits of the e-th root of y modulo N .

M simulates A’s random oracles G and H, the decryption oracles Dsk0 and Dsk1 for stan-

dard ciphertexts, and the decryption oracles DAsk0 and DAsk1 for anonymized ciphertexts

as follows:

• When A makes an oracle query g to G, then for each (h, Hh) on the H-list, M builds

z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1. For

i ∈ {0, 1}, M checks whether y = yh,g,i. If for some h and i such a relation holds,

then we have inverted y under pki, and we can still correctly simulate G by answering

Gg = h ⊕ (mi||0k1). Otherwise, M outputs a random value Gg of length n + k1. In

both cases, M adds (g,Gg) to the G-list. Then, for all h, M checks if the k1 least

significant bits of h ⊕ Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the

Y0-list and the Y1-list, respectively.

• When A makes an oracle query h to H, M provides A with a random string Hh of

length k0 and adds (h, Hh) to the H-list. Then for each (g, Gg) on the G-list, M

builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and yh,g,1 = ze1 mod N1.

M checks if the k1 least significant bits of h ⊕ Gg are all 0. If they are, then it adds

yh,g,0 and yh,g,1 to the Y0-list and the Y1-list, respectively.

• When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ Z
∗
Ni

to Dski
, M checks if there

exists some yh,g,i in the Yi-list such that ŷ = yh,g,i. If there is, then it returns the n

most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥ (indicating that ŷ is an

invalid ciphertext).

• When for i ∈ {0, 1}, A makes an oracle query Ŷ ∈ {0, 1}k+160 to DAski , M checks if

there exists some yh,g,i in the Yi-list such that Ŷ mod Ni = yh,g,i. If there is, then it

returns the n most significant bits of h⊕Gg to A. Otherwise it returns ⊥ (indicating

that Ŷ is an invalid anonymized ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1}, let

wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 . That is, wi is the ei-th root of y modulo

Ni and si is the n + k1 most significant bits of the ei-th root of y modulo Ni. Note that

M wins the game if it outputs sb. Let ri be the random variable ti ⊕ H(si).

We consider the following events.

• FBad denotes the event that

– A G-oracle query r0 was made by A1 in step 3-1, and Gr0 �= s0 ⊕ (m0||0k1), or
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– A G-oracle query r1 was made by A1 in step 3-1, and Gr1 �= s1 ⊕ (m1||0k1).

• GBad denotes the event that

– A G-oracle query r0 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s0 was not on the H-list, and Gr0 �= s0⊕(m0||0k1),

or

– A G-oracle query r1 was made by A2 in step 3-2, and at the point in time that it

was made, the H-oracle query s1 was not on the H-list, and Gr1 �= s1⊕(m1||0k1).

• DSBad denotes the event that

– A Dsk0 query is not correctly answered, or

– A Dsk1 query is not correctly answered.

• DABad denotes the event that

– A DAsk0 query is not correctly answered, or

– A DAsk1 query is not correctly answered.

• DBad = DSBad ∨ DABad.

• G = ¬FBad ∧ ¬GBad ∧ ¬DBad.

We use the events FBad, GBad, and G for proving Lemma 9.2 described below. In this

chapter, we omit the proof of Lemma 9.2 since the proof of this lemma is similar to that

for RSA-RAEP.

We let Pr[·] denote the probability distribution in the game defining advantage. We

introduce the following additional events:

• YBad denotes the event that y �∈ (Z∗
N0

∩ Z
∗
N1

).

• FAskS denotes the event that H-oracle query s0 or s1 was made by A1 in step 3-1.

• AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end of step

3-2.

• AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end of step

3-2.

We use the event FAskS for proving Lemma 9.2. In this chapter, we omit the proof of

Lemma 9.2 since the proof of this lemma is similar to that for RSA-RAEP.
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Now, we analyze the advantage of M . The algorithm M wins the game if it outputs

sb. If (sb,Hsb
) is on the H-list, then M outputs sb with probability at least 1/qhash. Thus,

Advθ-pow-fnc
RSA,M (k)

≥ 1
qhash

· Pr[(sb,Hsb
) is on the H-list]

= 1
2qhash

· (Pr[(s0,Hs0) is on the H-list|b = 0] + Pr[(s1,Hs1) is on the H-list|b = 1])

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0,Hs0) is on the H-list|b = 0]

+Pr1[(s1,Hs1) is on the H-list|b = 1])

where Pr1[·] denote the probability distribution in the simulated game where ¬YBad oc-

curs. Assuming that ¬YBad occurs, by the random choice of b and symmetry, we have

Pr1[(si,Hsi) is on the H-list|b = 0] = Pr1[(si, Hsi) is on the H-list|b = 1] = Pr1[(si,Hsi) is

on the H-list] for i ∈ {0, 1}. Therefore,

Advθ-pow-fnc
RSA,M (k)

≥ 1
2qhash

· Pr[¬YBad] · (Pr1[(s0,Hs0) is on the H-list] + Pr1[(s1,Hs1) is on the H-list])

≥ 1
2qhash

· Pr[¬YBad] · Pr1[AskS].

We next bound Pr1[AskS]. We can bound Pr1[AskS] in a similar way as in the proof of

the anonymity for RSA-RAEP [3], and we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR ∧ AskS|¬DBad]. Let ε = Advkey-cca

UAPERO,A
(k). The proof of the

following lemma is similar to that for RSA-RAEP. Intuitively, this lemma states that if M

simulates the decryption oracle for the adversary A perfectly, then A makes queries (r,Gr)

and (s,Hs) such that s = (m||0k1)⊕Gr and y = (s||(r⊕Hs))eb mod Nb with non-negligible

probability.

Lemma 9.2.

Pr1[AskR ∧ AskS|¬DBad] ≥ ε

2
·
(

1 −
(

2qgen

2k0
+

2qhash

2n+k1

))
− 2qgen

2k
.

We next bound Pr1[¬DBad|¬AskS]. It is easy to see that

Pr1[¬DBad|¬AskS] ≤ Pr1[¬DSBad|¬AskS] + Pr1[¬DABad|¬AskS],

and the proof of the following lemma is similar to that for RSA-RAEP. Intuitively, this

lemma states that M can simulate the decryption oracle for standard ciphertexts with

overwhelming probability.

Lemma 9.3.

Pr1[DSBad|¬AskS] ≤ qdec ·
(

2
2k1

+
2qgen + 1

2k0

)
.
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Furthermore, we can prove the following lemma in a similar way as that for Lemma 9.3.

Intuitively, this lemma states that M can simulate the decryption oracle for anonymized

ciphertexts with overwhelming probability.

Lemma 9.4.

Pr1[DABad|¬AskS] ≤ q′dec ·
(

2
2k1

+
2qgen + 1

2k0

)
.

By applying Lemmas 9.2, 9.3, and 9.4, we can bound Pr1[AskS] as

Pr1[AskS]

≥ 1
2 ·

[
ε
2 ·

(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
− 2qgen

2k

]
×

[
1 − (qdec + q′dec) ·

(
2

2k1
+ 2qgen+1

2k0

)]
= ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

))
×

[
1 − (qdec + q′dec) ·

(
2

2k1
+ 2qgen+1

2k0

)]
−1

2 · 2qgen

2k ·
[
1 − (qdec + q′dec) ·

(
2

2k1
+ 2qgen+1

2k0

)]
≥ ε

4 ·
(
1 −

(
2qgen

2k0
+ 2qhash

2n+k1

)
− (qdec + q′dec) ·

(
2

2k1
+ 2qgen+1

2k0

))
− 1

2 · 2qgen

2k

= ε
4 ·

(
1 − 2qgen+qdec+q′dec+2qgen(qdec+q′dec)

2k0
− 2(qdec+q′dec)

2k1
− 2qhash

2k−k0

)
− qgen

2k .

We next bound the probability that ¬YBad occurs.

Lemma 9.5.

Pr[YBad] ≤ 2
2k/2−3 − 1

+
1

2159
.

Lemma 9.5. Let N = pq and N ′ = p′q′. Note that 2�k/2�−1 < p, q, p′, q′ < 2�k/2� and

2k−1 < N, N ′ < 2k. We define a set S[N ] as {Ỹ |Ỹ ∈ [0, 2k+160) ∧ (Ỹ mod N) ∈ Z
∗
N}.

Then, we have

Pr[YBad]

= Pr[y R← Z
∗
N ; µ

R← {0, 1, 2, . . . , �(2k+160 − y)/N	}; Y ← y + µN : Y �∈ S[N ′]]

≤ Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] + 1/2159

since the distribution of Y ′ is statistically indistinguishable from that of Y , and the statis-

tically distance is less than 1/2159.

Since 2160 · φ(N) ≤ |S[N ]|, we have

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] ≤ |{y | y ∈ S[N ] ∧ y �∈ S[N ′]}|
|S[N ]|

≤ |{y | y ∈ [0, 2k+160) ∧ y �∈ S[N ′]}|
|S[N ]|

≤ 2k+160 − |S[N ′]|
|S[N ]| ≤ 2k+160 − |S[N ′]|

2160 · φ(N)
.
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Furthermore, we have

2k+160 − |S[N ′]| =
∣∣{Y ′|Y ′ ∈ [0, 2k+160) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
≤ ∣∣{Y ′|Y ′ ∈ [0, 2N ′ · 2160) ∧ (Y ′ mod N ′) �∈ Z

∗
N ′}

∣∣
= 2161 × ∣∣{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ �∈ Z

∗
N ′}

∣∣
= 2161(N ′ − φ(N ′)).

Therefore, we can bound Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]] as

Pr[Y ′ R← S[N ] : Y ′ �∈ S[N ′]]

≤ 2k+160 − |S[N ′]|
2160 · φ(N)

≤ 2161(N ′ − φ(N ′))
2160 · φ(N)

=
2(p′ + q′ − 1)
N − p − q + 1

≤ 2(p′ + q′)
N − p − q

≤ 2(2�k/2� + 2�k/2�)
2k−1 − 2�k/2� − 2�k/2� =

2(1 + 1)
2k−1−�k/2� − 1 − 1

≤ 4
2k/2−2 − 2

=
2

2k/2−3 − 1
.

Substituting the bounds for the above probabilities, we have

Advθ-pow-fnc
RSA,M (k) ≥ 1

2qhash
· (1 − ε1) ·

( ε

4
· (1 − ε2) − qgen

2k

)

where ε1 = 2
2k/2−3−1

+ 1
2159 and ε2 = 2qgen+qdec+q′dec+2qgen(qdec+q′dec)

2k0
+ 2(qdec+q′dec)

2k1
+ 2qhash

2k−k0
, and

re-arranging the terms, we get the claimed result. Note that ε = Advkey-cca

UAPERO,A
(k).

Finally, we estimate the time complexity of M . It is the time complexity of A plus

the time for simulating the random oracles. In the random oracle simulation, for each

pair ((g, Gg), (h, Hh)), it is sufficient to compute yh,g,0 = (h||(g ⊕ Hh))e0 mod N0 and

yh,g,1 = (h||(g ⊕ Hh))e1 mod N1. Therefore, the time complexity of M is that of A plus

qgen · qhash · O(k3).
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Conclusion

In this thesis, we have focused on the security property for encryption and signature

schemes, called “anonymity.”

In Chapters 2 to 5, we have studied the techniques which can be used to obtain the

anonymity property. We have proposed two techniques for anonymity. We have also

constructed the schemes for public-key encryption, undeniable and confirmer, and ring

signature, by applying our proposed techniques.

In Chapter 2, we have provided the RSA family of trap-door permutations with a

common domain. The domain and range of RSACD are common to each user when each

user has an RSA modulus of the same size. We have proved that the θ-partial one-wayness

of RSACD is equivalent to the one-wayness of RSACD for θ > 0.5, and that the one-

wayness of RSACD is equivalent to the one-wayness of RSA. We have also proposed a new

technique for obtaining the anonymity property of RSA-based cryptosystems, which we

call “sampling twice.” In our technique, we employ an algorithm ChooseAndShift which

takes two numbers x1, x2 ∈ ZN as input and returns a value y ∈ [0, 2k) where |N | = k.

Then, for any N where |N | = k, the output is uniformly distributed over [0, 2k) if x1 and

x2 are independently and uniformly chosen from ZN .

We have proposed new schemes for public-key encryption in Chapter 3, those for unde-

niable and confirmer signature in Chapter 4, and those for ring signature in Chapter 5, by

applying the previously proposed and our new techniques, repeating, expanding, RSACD,

137



CHAPTER 10. Conclusion

sampling twice. We have also proved the anonymity property and other required security

of the schemes.

We again describe the (dis)advantage of the schemes with four techniques.

The scheme with repeating is efficient with respect to the sizes of ciphertexts and

signatures, the computational costs to encrypt messages and to sign messages in the average

case, and those to decrypt ciphertexts and to verify signatures. However, it is inefficient

with respect to the computational costs to encrypt messages and to sign messages in the

worst case. In order to obtain the anonymity property, it is necessary for each user to

choose a public key with almost the same size.

The scheme with expanding provides anonymity even if each user uses the public key of

different length. It is efficient with respect to the computational costs to encrypt messages,

to sign messages, to decrypt ciphertexts, and to verify signatures. However, the sizes of

ciphertexts and signatures are larger than those of the other schemes.

The scheme with RSACD is efficient with respect to the sizes of ciphertexts and signa-

tures, and the computational costs to encrypt messages and to sign messages. However, it

is inefficient with respect to the computational costs to decrypt a ciphertext and to verify

a signature. In order to obtain the anonymity property, it is necessary for each user to

choose a public key with exact the same size.

The scheme with sampling twice is efficient with respect to the sizes of ciphertexts and

signatures, the computational costs to decrypt ciphertexts and to verify signatures, and the

computational costs to encrypt messages and to sign messages in the worst case. However,

the number of exponentiations for encryption or signing is two, while that of the other

schemes is one or 1.5 in the average case. Similar to the scheme with RSACD, in order to

obtain the anonymity property, it is necessary for each user to choose a public key with

exact the same size.

In this thesis, we have not succeeded to construct the undeniable and confirmer signa-

ture scheme with anonymity by applying the RSACD function. It might be interesting to

construct such schemes.

It would be also interesting to consider other applications of our proposed techniques.

There are many schemes which required the anonymity property, such as (hybrid) ID-based

encryption [11, 2], group signatures [23], anonymous group identification [32, 60] signcryp-

tion [82, 13], designated verifier signature [53, 59], and so on. Our proposed techniques

seem to be useful to construct such schemes with the anonymity property.

In Chapter 6, we have considered the schemes with anonymity using the Paillier’s

bijective function. We have applied the four techniques described above in the case using
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the Paillier’s bijective function instead of the RSA function. We have constructed a family

of Paillier’s trap-door permutations and that with a common, and prove the properties of

them. We have also proposed the public-key encryption schemes with the above families of

permutations by applying the four techniques, that is, Paillier-OAEP (OAEP with Paillier’s

trap-door permutation) with repeating, that with expanding, that with sampling twice, and

PCD-OAEP (OAEP with Paillier’s trap-door permutation with a common domain).

It would be interesting to consider the construction of families of trap-door permutations

with a common domain based on the variants of Paillier’s permutation. After the paper of

Paillier, several variants of Paillier’s scheme were proposed. Catalano, Gennaro, Howgrave-

Graham, and Nguyen [19] proposed a mix of Paillier’s scheme with the RSA scheme, in order

to obtain an IND-CPA cryptosystem in the standard model with efficiency similar to that of

the RSA cryptosystem. It is based on the permutation (m, r) �→ re(1+mN) mod N2 where

gcd(e, λ(N2)) = 1. The encryption scheme is semantically secure under the Decisional

Small e-Residues assumption. Galindo, Mart́ın, Morillo, and Villar [46] proposed a encryp-

tion scheme based on the permutation: (m, r) �→ r2e+mN mod N2 where p = q = 3 mod 4

and gcd(e, λ(N)) = 1. This function is one-way under the Factoring assumption. Damg̊ard

and Jurik [30] proposed a generalization of Paillier’s scheme, in which the expansion factor

is reduced and which allows to adjust the block length of the scheme even after the public

key has been fixed, without loosing the homomorphic property. They also constructed its

threshold variant. Forque, Poupard and Stern [40] also proposed the threshold version of

Paillier’s scheme.

In Chapter 7, we have proposed the new security notion for public-key encryption

with anonymity, called “strong anonymity,” and show the relationships between the data-

privacy and the key-privacy for public-key encryption schemes. From our results, we have

that the strong anonymity (sIK) is a sufficient condition in order to satisfy that a public-key

encryption scheme provides the data-privacy (IND) and the key-privacy (IK).

The motivation to propose the strong anonymity is capturing the situation that the

schemes whose message spaces for each public-key are different provide the anonymity

property. However, our proposed security notion not only captures such situation but also

implies the data-privacy (the indistinguishability of ciphertexts). Therefore, it might be

interesting to consider a security notion which captures the above situation, while it does

not implies the data-privacy.

In Chapter 8 we have proposed the notion of plaintext awareness in the two-key setting,

called PATK, and proved that if a public-key encryption scheme is secure in the sense of

PATK, then it is also secure in the sense of IK-CCA. Since it looks much easier to prove that

a public-key encryption scheme is secure in the sense of PATK than to prove directly that

it is secure in the sense of IK-CCA, the notion of PATK is useful to prove the anonymity
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CHAPTER 10. Conclusion

property of public-key encryption schemes. The previously proposed public-key encryption

schemes in [3, 50, 51] which are based on RSA-OAEP and secure in the sense of IK-CCA

seem to meet PAKE.

We have also proposed the first generic conversion scheme for the anonymity from IK-

CPA to IK-CCA. More precisely, we have proved that the public-key encryption scheme

derived from the Fujisaki-Okamoto conversion scheme, where the basic public-key encryp-

tion scheme is secure in the sense of IK-CPA, is secure in the sense of IK-CCA in the random

oracle model. Recently, Bellare and Palacio [5] proposed the definition of the plaintext-

awareness in the standard model (i.e. without random oracles). Dent [33] showed that the

Cramer-Shoup hybrid encryption scheme [27] satisfies the plaintext-awareness in the stan-

dard model. It might be interesting to consider the definition of the plaintext awareness in

the two-key setting without random oracles and the schemes in the standard model which

meet the plaintext awareness in the two-key setting.

In Chapter 9, we have formalized a special type of public-key encryption scheme called

a universally anonymizable public-key encryption scheme. A universally anonymizable

public-key encryption scheme consists of a standard public-key encryption scheme PE and

two additional algorithms, that is, an anonymizing algorithm UA and a decryption algo-

rithm DA for anonymized ciphertexts. We can use PE as a standard encryption scheme

which is not necessary to have the anonymity property. Furthermore, in this scheme, by us-

ing the anonymizing algorithm UA, anyone who has a standard ciphertext can anonymize it

with its public key whenever she wants to do that. The receiver can decrypt the anonymized

ciphertext by using the decryption algorithm DA for anonymized ciphertexts. Then, the

adversary cannot know under which key the anonymized ciphertext was created.

We have also proposed the universally anonymizable public-key encryption schemes

based on the ElGamal encryption scheme, the Cramer-Shoup encryption scheme, and RSA-

OAEP, and proved their security. It might be interesting to consider the application of

our proposed primitive, or construct other schemes for universally anonymizable public-key

encryption.
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