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We report on a Schottky junction fabricated on O-polar ZnO surfaces with a
silane-coupling agent as a protective layer, and a conducting polymer poly�3,4-
ethylenedioxythiophene�:poly�styrenesulfonate� �PEDOT:PSS� as a deep work function metal
electrode, simply by using wet processes. The silane-coupling agent prevented the O-polar ZnO
surface from an etching reaction in contact with the acidic PEDOT:PSS solution, resulting in a good
rectification with a current rectification ratio of 107 at �1 V. The junction characteristics were
systematically controlled in accord with the electron density in ZnO ranging from 8�1014 to 4
�1016 cm−3. © 2008 American Institute of Physics. �DOI: 10.1063/1.2956419�

A metal/semiconductor Schottky junction is one of the
most fundamental devices that can be used to evaluate vari-
ous semiconductor parameters including carrier density and
Schottky barrier height as well as carrier density profile and
band gap discontinuity.1,2 ZnO is one of the oxide semicon-
ductors possessing a wide direct band gap of 3.37 eV and a
large electron affinity ��s� of 4.1–4.4 eV.3 Recent advances
in ZnO epitaxial growth techniques led to the demonstrations
of light-emitting p-n homojunction diode and quantum Hall
effect at MgxZn1−xO /ZnO heterointerfaces.4–6 Fabrication of
a good Schottky contact to the ZnO surface will further pro-
mote an understanding of the device physics and practical
applications such as photodiodes. However, it has been dif-
ficult to reproduce high performance Schottky junctions on
ZnO with noble metals such as Au, Pt, and Ag,7–10 despite
the high S-index due to the strong ionicity11 and a number of
proposed surface treatment methods. To account for an in-
trinsic nature of ZnO surface lying under this issue, a model
of the Fermi level pinning due to the oxygen vacancies near
the surfaces has been proposed.12

Recently, we proposed a conducting polymer,
poly�3,4-ethylenedioxythiophene�: poly�styrenesulfonate�
�PEDOT:PSS�, as a good candidate for Schottky contact
electrode on the Zn-polar surface.13 PEDOT:PSS is com-
posed of �-conjugated PEDOT and p-type dopant of PSS
and has been widely used as hole injection electrodes in or-

ganic electronic devices. Electrical conductivity and work
function ��m� of the PEDOT:PSS used in our experiments
are about 300 S cm−1 and 5.0 eV, respectively. This polymer
electrode is expected to avoid a surface damage because of
the moderate fabrication processes at room temperature.

It is well known that Zn- and O-polar surfaces have quite
different chemical reactivities.14 Usually, epitaxial film sur-
faces are terminated by the O-polar surface; hence it is de-
sired to form good Schottky contact on the O-polar surface
with use of PEDOT:PSS. However, the O-polar surface is
easily degraded by acidic PEDOT:PSS as described below.
This study aims at developing a robust Schottky contact on
the O-polar surface with PEDOT:PSS by using a silane-
coupling agent as a protective layer. Indeed, good Schottky
junctions were fabricated on ZnO single-crystalline sub-
strates having a wide range of electron density.

A silane-coupling agent, 3-aminopropyltriethoxysilane
�APS�, was chosen for the surface protective layer, since
aminopropylsilanes were demonstrated to prevent a surface
reaction with acids.15 The APS layer was formed on the hy-
drothermally grown O-polar ZnO substrates �Tokyo Denpa�
with different electron densities nHall �see Table I�. Each sub-
strate �5�5 mm2� was dipped for 1 min into a diluted
0.1 mol / l APS water solution with 10 vol % isopropyl alco-
hol. The thickness of the APS layer was determined to be
several monolayers thick by x-ray reflectivity measurements
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TABLE I. The Schottky junction parameters obtained from J-V and C-V measurements for the O-polar ZnO
substrates with different nHall �samples A–D� and a Zn-polar ZnO substrate. The parameters from Zn-polar ZnO
are after Ref. 13.

Sample nHall �cm−3� n �b �eV� ND−NA �cm−3� qVbi �eV�

A 3.7�1016 1.3 1.03 7.6�1016 0.29
B 5.0�1015 1.3 0.94 1.1�1016 0.14
C 3.4�1015 1.4 0.88 9.3�1015 0.13
D 7.8�1014 1.6 1.02 2.8�1015 0.14

Zn-polar ZnO
�Ref. 13� 1.0�1017 1.2 0.9 1.4�1017 0.6
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for the layer grown on a sapphire substrate �10�10 mm2� as
a reference. On the APS layers formed on the O-polar ZnO
surfaces, PEDOT:PSS layers were formed under the same
spin-coating condition as reported previously.13 As refer-
ences, PEDOT:PSS layers were directly formed on Zn- and
O-polar ZnO substrates. For electrical measurements,
circular-shaped mesa structures were fabricated as reported
previously.13 Conventional photolithography and Ar ion mill-
ing were used to form circular-shaped Schottky contacts
�350 �m in diameter� and ring-shaped Ohmic contacts with
the separation gap of 25 �m, where the former contacts were
Au electrode deposited on PEDOT:PSS by thermal evapora-
tion and the latter contacts were Ti /Au electrodes deposited
on ZnO substrate by electron beam evaporation. The Ti /Au
Ohmic contacts were confirmed by current-voltage character-
istics between two adjacent ring-shaped outer electrodes.7

Hall effect measurement was performed to evaluate nHall in
the ZnO substrates �5�5 mm2� with Van der Pauw geometry
under a magnetic field scan of �1 T. Current density-voltage
�J-V� and capacitance-voltage �C-V� measurements were
carried out at room temperature by using a semiconductor
parameter analyzer �Agilent Technologies, 4155C� and an
LCR meter �Agilent Technologies, 4284A�, respectively.

Figure 1�a� shows a top view of the PEDOT:PSS directly
formed on Zn-polar substrate �PEDOT:PSS/Zn-polar ZnO�.
The thickness of the PEDOT:PSS is about 50 nm and the
sample is sufficiently transparent. However, the PEDOT:PSS
directly formed on O-polar ZnO �PEDOT:PSS/O-polar ZnO�
becomes thicker than 1500 nm, yielding in a blackish opaque
appearance, as shown in Fig. 1�b�. The striking difference
arises from high reactivity for the latter as described below.
Figure 1�d� shows an atomic force microscopy image of an
O-polar ZnO substrate after the removal of PEDOT:PSS,
where the half was directly coated with the PEDOT:PSS and
another half was protected with a photoresist beforehand.
The former region shows a rough surface morphology, while

the latter surface shows a very flat morphology. Figure 1�e�
shows a cross-sectional profile averaged along the boundary
between the rough and flat surfaces in Fig. 1�d�, which rep-
resents dissolution of ZnO with nearly 120 nm in depth.
Such dissolution of ZnO in PEDOT:PSS solution was also
confirmed by electron probe microanalysis of the removed
PEDOT:PSS layer that contains considerable concentrations
of Zn ��1 at. % �. Such inevitable degradation of O-polar
surface with PEDOT:PSS solution prohibits high perfor-
mance PEDOT:PSS/O-polar ZnO Schottky junction, in con-
trast with the PEDOT:PSS/Zn-polar ZnO junction. Figure
1�c� shows a top view of the PEDOT:PSS formed on O-polar
substrate coated by APS �PEDOT:PSS/APS/O-polar ZnO�.
The thickness of the PEDOT:PSS is typically about 50 nm
keeping its transparency, representing that APS can effec-
tively suppress the surface reaction. The use of APS layer
enables us to obtain high performance Schottky junctions
reproducibly as described hereafter.

Figure 2�a� shows the typical J-V curves of the junctions
on the four O-polar substrates having different nHall in addi-
tion to reference data for that on the Zn-polar substrate13

listed in Table I. All the junctions exhibit a good rectification
behavior with the rectification ratio as high as 107 at bias
voltage of �1 V, representing the formation of good
Schottky contact on the O-polar surface of ZnO via APS
protective layer. The current density at high forward bias
voltage is mainly limited by the sheet resistance of the ZnO
substrates, roughly scaled as 1 /nHall. The APS layer appar-
ently contributes to the additional resistance, since the slope
of J-V curves at 1 V does not exactly correspond to the
difference in nHall. Indeed, the current density both for the
forward and reverse biases is two or more decades lower
than that of Zn-polar junction.13

FIG. 1. �Color online� Top view photographs of �a� PEDOT:PSS/Zn-polar
ZnO substrate, �b� PEDOT:PSS/O-polar ZnO substrate, and �c�
PEDOT:PSS/APS/O-polar ZnO substrate. Size of the substrates is
5�5 mm2. �d� Atomic force microscope image �25�25 �m2� of an
O-polar ZnO surface after the removal of PEDOT:PSS layer, where the flat
area was protected by a photoresist before the spin coating of PEDOT:PSS
solution. �e�Cross-sectional profile averaged along the boundary between the
rough and flat surfaces in �d�. FIG. 2. �Color online� Voltage dependence of �a�current density and �b�

1 /C2 of PEDOT:PSS/APS/O-polar ZnO junctions on different nHall sub-
strates �samples A–D� and PEDOT:PSS/Zn-polar ZnO junction �black curve
�Ref. 13��. Note that 1 /C2 values in �b� for sample A and Zn-polar ZnO are
multiplied by 1 /5.
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The ideality factor �n� and the Schottky barrier
height ��b� for all the junctions were evaluated with
thermionic emission model using the following equation:
J=J0 exp�qV /nkBT�, where q is the elementary charge,
V is the applied voltage, kB is Boltzmann’s constant, and
T is the absolute temperature. J0 is the saturation current
density expressed as J0=A*T2 exp�−�b /kBT�, where A*

=36 A cm−2 K−2 is the effective Richardson constant with
m*=0.3m0, m* is the electron effective mass, and m0 is the
free electron mass.1 The obtained values of n and �b are also
listed in Table I. The values of n and �b ranged 1.3–1.6 and
0.88–1.03 eV, respectively. The latter values are relatively
higher than the reported values of 0.6–0.8 eV for Schottky
junctions with noble metal electrodes,10 although the contri-
bution of APS layer is not taken into account in this analysis.

Figure 2�b� shows 1 /C2-V curves at a voltage frequency
�f� of 10 kHz for the same junctions. The dissipation factor
for all the samples was as low as 0.01. The C did not depend
on f from 1 kHz to 1 MHz at V=0 V. The 1 /C2-V curve
under reverse bias shows an ideal relationship expressed as
1 /C2=2�Vbi−V� /q�S�0�ND−NA�, where Vbi is the built-in
potential, �S is the dielectric constant of ZnO, �0 is the
vacuum permittivity, and ND�A� is the ionized donor �accep-
tor� concentration in the depletion layer.1 The effective donor
concentration �ND−NA� and Vbi deduced from the fit to the
experimental data by using the above equation are listed in
Table I. The linearity of 1 /C2-V plots indicates uniform ND
−NA distribution through depletion layers in the substrates.
The slope inversely proportional to ND−NA systematically
decreases with increasing nHall for the junctions A–D and the
Zn-polar junction. On the other hand, the Vbi of O-polar
junctions are much smaller than that of Zn-polar junction.
This smaller Vbi can be attributed to the interface dipole or
the vacuum level shift,13,16 and/or the surface polarity depen-
dence observed in silver oxide/ZnO Schottky junctions.17 For
better understanding, precise control of thickness and mo-
lecular orientation of the APS layer is required. Despite such
uncertainty, these J-V and C-V characteristics clearly indi-
cate that PEDOT:PSS serves as a Schottky contact electrode
on the O-polar ZnO substrates with the use of APS protective
layer.

Finally, we address the relationship between nHall and
ND−NA, as shown in Fig. 3. It is consistent that nHall in-
creases roughly proportional to ND−NA. The value of nHall
for all the junctions, however, tends to be smaller than ND
−NA. This tendency implies that unintentional impurities and
defects acting as donor and/or accepter have larger activation
energy than thermal energy at room temperature ��25 meV�
in the hydrothermally grown ZnO single crystal
substrate.18,19

In summary, high quality Schottky junctions were fabri-
cated in a PEDOT:PSS/APS/O-polar ZnO structure via
simple wet processes. The results pave a pathway to apply
PEDOT:PSS for the Schottky contact not only on ZnO single
crystals but also on standard ZnO thin films and heterostruc-
tures with O-polar surface termination.
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FIG. 3. The relationship between nHall and ND−NA, where the former and
the latter were evaluated from Hall effect and C-V measurements, respec-
tively. The closed and open circles correspond to the values of O-polar
�samples A–D� and Zn-polar ZnO �Ref. 13� substrates, respectively. The
broken line represents the nHall is equal to ND−NA.
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