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Gaussian Mixture Optimization Based
on Efficient Cross-Validation

Takahiro Shinozaki, Member, IEEE, Sadaoki Furui, Fellow, IEEE, and Tatsuya Kawahara, Senior Member, IEEE

Abstraci—A Gaussian mixture optimization method is devel-
oped by using the cross-validation (CV) likelihood as an objective
function instead of the conventional training set likelihood. The
optimization is based on reducing the number of mixture com-
ponents by selecting and merging pairs of Gaussians step by step
according to the objective function so as to remove redundant
components and improve the generality of the model. The CV
likelihood is more effective for avoiding over-fitting than is the
conventional likelihood, and it provides a termination criterion
that does not rely on empirical thresholds. While the idea is simple,
one problem is its infeasible computational cost. To make such
optimization practical, an efficient evaluation algorithm using suf-
ficient statistics is proposed. In addition, aggregated CV (AgCV)
is developed to further improve the generalization performance
of CV. Large-vocabulary speech recognition experiments on oral
presentations show that the proposed methods improve speech
recognition performance with automatically determined model
complexity. The AgCV-based optimization is computationally
more expensive than the CV-based method but gives better recog-
nition performance.

Index Terms—Cross-validation, Gaussian mixture, hidden
Markov model (HMM), speech recognition, sufficient statistics.

1. INTRODUCTION

AUSSIAN mixture distributions are used in Gaussian
mixture models (GMMs) and Gaussian mixture hidden
Markov models (HMMs), both of which have wide applications
in speech segmentation, speech recognition, image processing,
and so forth [1]-[3]. In these applications, model parameters
are estimated from training data, and one general problem is
how to determine the number of Gaussians for a given training
data set so as to maximize model performance by balancing the
model precision and parameter estimation accuracy. Since a
Gaussian mixture has a hidden variable in the form of mixture
weights and has many local optima, optimizing the mixture
size and arranging the components are both important.
Given a Gaussian mixture with a large number of compo-
nents, a sirategy to optimize the mixture distribution is to reduce
the number of components by iteratively selecting and merging
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pairs of components according to an objective function until
a termination criterion is satisfied. Since optimization requires
evaluating the merging scores for all combinations of compo-
nents, the scores must be efficiently estimated to make the algo-
rithm feasible.

The most popular choice for the objective function is the like-
lihood. Using the likelihood in model structure optimization has
the advantages of being consistent with the overall objective
of standard model training and of having an efficient algorithm
[4] for evaluation. A limitation, however, is that the likelihood
does not provide a termination criterion for balancing model
fit and parameter estimation accuracy. Because the likelihood
is estimated for training data and is optimistically biased, it is
monotonic with respect to the number of model parameters. A
threshold for the change in likelihood can be specified as a ter-
mination criterion, but empirical tuning is required to determine
the threshold value. Information-theoretic criteria such as the
minimum description length (MDL) provide possible termina-
tion criteria [5], [6], butin practice, they often require an empir-
ical tuning factor to compensate for errors in the theoretical bias
estimation [7]. Moreover, as an extreme case of the bias effect, a
Gaussian mixture sometimes becomes unstable and earns an ex-
orbitantly large likelihood when some of its components are as-
signed to particular training samples with very small variances.
Because such likelihood inflation occurs without increasing the
number of model parameters, an information-theoretic criterion
defined as the sum of likelihood and model-size-based penalty
terms loses its meaning in such a situation. Variance flooring
mitigates the problem, but finding the optimal flooring threshold
is not trivial [8].

These problems result from using the same data for model
parameter estimation and likelihood evaluation. Cross-valida-
tion (CV) is a data-driven method that separates these data and
can significantly reduce the bias in score evaluation [9]-[11].
Outlier Gaussian components covering particular training sam-
ples cannot earn large likelihoods, because the same samples do
not appear in the likelihood evaluation. Therefore, by using the
CV likelihood as the objective function for Gaussian mixture
optimization, such abnormal components should be efficiently
removed. A difficulty of the CV method, however, is its com-
putational cost. Because no efficient algorithm to estimate the
CV likelihood for Gaussian distributions is known, the applica-
tion of CV has been quite restricted in GMM and HMM training
121

An efficient algorithm to estimate the conventional training
set likelihood of a Gaussian distribution for model structure op-
timization [4] is based on using sufficient statistics. In this paper,
we show that this algorithm can be extended to estimate CV like-
lihood, and we apply the extended algorithm to Gaussian mix-
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ture optimization [13], [14]. The resulting CV likelihood esti-
mation algorithm is also similar to those used as part of the suc-
cessive state splitting procedure [15] and in selective waining
[16]. The similarity is that the likelihood is evaluated for a data
set that differ from the one used for model parameter estimation,
and the proposed algorithm can be regarded as an extension of
those algorithms. In addition to the CV-based Gaussian mix-
ture optimization, we also propose aggregated cross-validation
(AgCV) and AgCV-based Gaussian mixture optimization [17].
AgCV is an extension of CV with higher generalization ability,
making it more advantageous when larger numbers of models
are compared.

This paper is organized as follows. In Section II, we briefly
review CV and add some theoretical analysis. The proposed
Gaussian mixture optimization algorithms are described in
Section ITI. Our experimental setting is described in Section TV,
and the results are presented in Section V. Finally, a summary
and discussion of our future work are given in Section VI.

M. K-FoLD CROSS-VALIDATION

K -fold cross-validation (/K -fold CV) is a widely used data-
driven model selection method that can assess how the perfor-
mance of a statistical model will generalize to a data set inde-
pendent of the training data. It works by partitioning the original
training data into K subsets. Of the K subsets, a single subset is
retained as the validation data for evaluating the model, and the
remaining K — 1 subsets are used to estimate the model param-
eters. This process is repeated K times by changing the subset
used for evaluation. The K evaluation results are then averaged
to generate the overall evaluation score. Since this process sep-
arates the data used for model parameter estimation and evalua-
tion, the CV evaluation score is mostly unbiased. The data frag-
mentation problem is minimized by choosing a large K, since
each CV model is estimated using (K — 1)/ K of the original
training data. When K is equal to the number of training sam-
ples, the method is called leave-one-out CV.

LetT = {®;,29, -, zx} be a training set consisting of
N samples taken independently. Let M be a statistical model
with a specific model structure, and let Yy (x|7) be the log
likelihood or more generally any kind of score for a data sample
x evaluated by M, whose parameters are estimated using 7'
Then, the expected error e., of a leave-one-out CV score
(1/N) 3., er Tar(we|T \ {x}) with respect to a model score
based on the true data distribution E[Y s (2|7)] is expressed by

it
e IV) = T’iI]::_':N [(? 1; Tag ([T \ {"Eﬁ})
-r [Tm(a-wn)_} 0
it B
A ﬁ:w [}; (T3 (=T)]
- (}E [T (1’|T)]) i (2)

1 A v
= T."I];"::~' , [D.g':_\, {7\; E;D Tar(za|T)
2
. E) Té\-f(ifﬂ'fT)} (3)
=egev(V, N). 4)

By assuming thart eliminating up to two training samples from
1" does not significantly change the model score for x, i.e., that
T_:u(;vlT) = T_\.[(;B[T \ {.L‘L}) = TM'(QI?T \ {.LL.I,'J}) for ar-
bitrary @; and ; in 7', (1) can be rewritten as (2). Then, e,
is equal to the expected error ey, of an evaluation score based
on an independent development set D = {2}, -- -, 2y}, as
shown by (3) and (4). Therefore, leave-one-out CV has about
the same generalization ability in model evaluation as evalua-
tion using a development set of the same size as the training set.
The advantage of the leave-one-out CV method is that it does
not actually require such extra data. A similar argument holds
for K -fold CV with a large K.

IT1. GAUSSIAN MIXTURE OPTIMIZATION

This section first describes a framework of Gaussian mixture
structure optimization that uses an objective function to select a
pair of components to merge. Then, we describe efficient likeli-
hood evaluation algorithms to formulate the objective function.
For the likelihood evaluation algorithms, we first review the
conventional algorithm to estimate training set likelihood and
then explain the proposed cross-validation (CV) and aggregated
cross-validation (AgCV) likelihood estimation algorithms, We
refer to the conventional training set likelihood as the self-test
likelihood to distinguish it from the proposed CV and AgCV
likelihoods.

A. Gaussian Mixture Structure Optimization Framework

While the proposed CV and AgCV likelihood estimation
algorithms are of general application, we specifically targeted
bottom-up clustering for Gaussian mixture optimization in this
study. The optimization works by taking a Gaussian mixture
with a large mixture size as an input and iteratively selecting
and merging pairs of its components according to an objective
function until a termination criterion is satisfied, as illustrated
in Fig. L. In this optimization, M (M — 1)/2 component pairs
are subject to comparison to reduce the mixture size from M
to M — 1, and the process is iterated. Therefore, the objective
function must be efficiently computable to make the optimiza-
tion practical.

B. Self-Test Likelihood Method

An efficient self-test likelihood evaluation algorithm for
Gaussians is based on sufficient statistics. This type of al-
gorithm has been used in HMM state clustering [4], which
assumes a single Gaussian per state. In this case, a set of HMM
states corresponds to a set of Gaussians and is the subject of
the optimization. It is assumed that the state alignment does
not change for the training data during clustering, Similarly, a
set of M Gaussians is the subject of optimization for Gaussian

Authorized licensed use limited to: TOKYO INSTITUTE OF TECHNOLOGY. Dawnloaded on June 10,2010 at 08:34:01 UTC from |EEE Xplore. Restrictions apply.



342 [EEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 3, JUNE 2010

Optimized set of Gaussian components

GC1

Py

GCN

Initial set of Gaussian components

Fig. 1. Gaussian mixture optimization. Pairs of Gaussian components are
merged step by step according to an objective function until a termination
criterion is met.

mixture optimization, and we assume a fixed mixture assign-
ment during optimization. These optimizations require wo
steps: merging multiple Gaussian distributions into a single
distribution, and evaluating the likelihoods of Gaussians for
the training data in order to select the Gaussians to merge.
The fixed-alignment assumption enables efficient computation
of both steps by using sufficient statistics. The algorithms for
clustering and Gaussian merging are basically the same, but for
simplicity in the following discussion, we consider Gaussian
merging.

Let there be M Gaussians in a Gaussian mixture ©, and let
B = {ltm,vm | be the parameters of the mth Gaussian con-
sisting of the mean p,,, and variance v,,. For a diagonal covari-
ance Gaussian distribution, the sufficient statistics are the sum
of the observation count, and the first and second order sample
averages

AYm) =3 pm(t) (5)
teT

r‘.l(m) = Zw.t"‘,’*m(t) (6)
teT

A%(m) =) oirm(t) @
teT

where T' is a training set, ¢ is a time or frame index, z; =
(z1(t), 22(t), - -+, z2())7 is a d-dimensional feature vector at
tieie §.* = (zf,23, - ,mi)T, and v, (t) = P(my|T, Q) is
the occupancy probability of the mth mixture at time ¢ given a
proper initial model ©¢. These sufficient statistics are computed
for all the Gaussians from the training data only once before the
optimization process.

Let #; ;; be a Gaussian formed by merging the ith and jth
Gaussians. That is, #; jy is a Gaussian that is estimated using
a union of data assigned to either the ith or jth Gaussians.
Since the sufficient statistics are weighted averages, those

for the merged Gaussian are easily obtained by adding the
corresponding statistics of the original Gaussians:

A ((3,7)) = A°() + A°() (8)
A ((3,5)) =AME) + A (9)
A% ((i,5)) = A%(3) + A2(5). (10)

From these statistics, the parameters of the merged Gaussian
f; 5y are estimated as follows:

{56 ) = e an
UENES- e STV

The mixture weight of the merged Gaussian is the sum of the
weights of the original Gaussians.

The self-test log likelihood of the Gaussian mixture © ap-
proximated as an occupancy weighted log likelihood [4] is ex-
pressed as follows:

M

Lae(®) = > Y {log P@ltm)} mlt)  (13)
m=1teT
= — 53" {tog (Cm)* [2(m)) + d)

where ¥(m) is a diagonal covariance matrix whose main diag-
onal is v(m). When component Gaussians are merged, they are
removed from the summation and the merged Gaussian is added
instead. Mixture weights do not affect the optimization and are
thus omitted.

Equations (11), (12), and (14) can be efficiently evaluated
without directly accessing the original training data since the
summation over £ is pushed in the precomputed sufficient sta-
tistics. For the A -mixture Gaussian distribution ©, there are
M(M — 1)/2 possible pairs of components. Let ¥ be a set of
M — 1 mixwure Gaussian distributions obtained by merging one
of the pairs. Selecting a pair of Gaussians for merging corre-
sponds to selecting an element of V. Therefore, by using the
self-test likelihood, the selection is formulated as

O’ = argmax Ls(©').
e

(15)

By repeating the same procedure, the number of Gaussians is
reduced one by one. To optimize a Gaussian-mixture HMM, the
optimization can be independently applied for each HMM state.

As mentioned in the introduction, the problems of Gaussian
merging using the self-test likelihood are that the likelihood
has an “optimistic” bias and is especially inaccurate when the
number of training samples is not large. Because of this bias,
the likelihood monotonically decreases for mixture optimiza-
tion and does not provide a termination criterion.
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C. CV Likelihood Method

To solve the problems with using the self-test likelihood,
we propose an efficient algorithm to compute the CV likeli-
hood, and we apply it to Gaussian mixture optimization. For
K-fold CV-likelihood-based Gaussian merging optimization,
the training data is partitioned into & subsets of about the same
S1Ze:

K
T=||% T()G=¢ GEH (16)
k=1

Let © be an M -mixture Gaussian distribution, and let A3 (m) =
{A2(m), At(m), A3(m)} be the set of sufficient statistics of
the mnth Gaussian component #,,, computed for the kth subset.
The parameters of #,,, to be trained using all training data are
estimarted from Zi;l Apg(m). Let O be the kth CV Gaussian
mixture model corresponding to ©, and let &, ; be the mth
Gaussian of 0. Similarly to the case of #,,,, the parameters &,,, ;.
are obtained from 3, ., A;(m) by excluding the kth subset
from the parameter estimation.

With the same assumptions used for the self-test likelihood
method, the CV likelihood of © is expressed as follows:

K M
Lo(@) =Y 3" > {log Pmylfm i)} ¥m(t)-  (17T)

k=1m=1teT}

In the equation, the £th CV model 6,, \ is used to estimate the
likelihood of the kth subset Ti.. Because T} is excluded from
the estimation of f,,, 1. this makes the data for model estimation
and likelihood evaluation mutually independent.

By substituting a Gaussian distribution for P(x¢|f,, ) and
moving the summation over ¢ inside, (17) can be rewritten as
(19), which can be efficiently evaluated using the precomputed
sufficient statistics:

X EXP(“i (Cﬂzu,u-k(m))T Zk(_m)_l
X (@y—pk(m)))} vm(t) (18)

{log ((2m)* |Zx(m)]) AR(m)

+ (w(m) )" AR(m)
— 2 (Se(m) ™ (m)) T Af(m)
+ (lm) ™) p(m)2al(m)}. 19)

This is the main aspect of the proposed optimization method
making it possible to apply CV to mixture optimization with a
feasible computational cost, By using (19) as the objective func-
tion, we obtain a CV version of the Gaussian merging algorithm.
Equation (19) is the CV counterpart of the likelihood evaluation

function given by (14). In fact, if the CV index k is omitted, (19)
is further simplified and become identical to (14).

Because the CV method separates the data used for parameter
estimation and likelihood evaluation, it is less biased than the
self-test likelihood. As a result, the CV likelihood behaves as
though it is being estimated for new data and is not monotonic
with respect to the number of mixture components. Therefore,
the optimal termination point for the merging process is easily
determined as a maximum point of the likelihood.

D. Aggregated CV (AgCV) Likelihood Method

Applying the CV technique can greatly reduce the bias in the
estimated likelihood. A concern when using CV in Gaussian
mixture optimization, however, is that the number of models
subject to comparison is much larger than that in the traditional
use of CV. As we showed in Section II, the generalization ability
of CV is about the same as that of evaluation using a develop-
ment set of the same size as the training data set. Therefore, if
the number of models to compare is too large for the training
set, over-fitting can still occur, depending on the specific CV
configuration such as that for data distribution and partitioning.
To address this problem, we propose aggregated cross-valida-
tion (AgCV), which introduces a bagging-like [18] idea into the
CV framework, and we apply AgCV to Gaussian mixture opti-
mization.

Bagging is an ensemble method to improve classification per-
formance by integrating outputs from multiple classifiers. The
multiple classifiers are trained on mutually overlapping subsets
of the original training data, obtained by sampling with replace-
ment. In the proposed AgCV algorithm, each excluded subset
in K-fold CV is repeatedly processed by /¥ models, and the re-
sulting scores are averaged, as shown in Fig. 2. As in bagging,
the /¥ models are trained from mutually overlapping subsets de-
fined by sub-sampling the original training set. Unlike bagging,
however, a coarse sampling strategy is adopted by using the CV
subsets as the unit for sampling. That is, K’ subsets out of the
K — 1 subsets in the CV partitioning (i.e., those other than the
excluded subset) are randomly selected without replacement /N
times to obtain the subsets for model estimation. The similarity
among the N models is controlled by the value K'/K, which
determines the amount of shared data. In this study, we speci-
fied K" as K/2. f K/ = K —1and N = 1, AgCV reduces to
conventional CV.

The AgCV likelihood can also be efficiently computed for a
Gaussian mixture & by using the precomputed sufficient statis-
tics as follows:

K N M

Lagev(@) =2 33" 3" 3 {log(Pilfm,in))

k=1n=1m=1icT,

(£} (20)
p Zi s A}(m)
i n(m) = S 1)
1€k "2
Yieq,., Ai(m) (22)

v {]’T«') = G (mjg
k,n ) === ZiEQk‘” A?(m,) f—Lk,n.

Authorized licensed use limited to: TOKYO INSTITUTE OF TECHNOLOGY. Downloaded on June 10,2010 at 08:34:01 UTC from |EEE Xplore. Restrictions apply.



344 [EEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL, 4, NO. 3, JUNE 2010

D= Training data

(3] ﬁ D3 D4 Ds

----- DK

Randomly selects
K' < K-1 subseis

@

Maodels

Fig.2. Aggregated cross-validation (AgCV). Multiple models are used to eval-
uate an excluded subset in order to improve the generalization performance
of CV.

where {2, is a set of K' integers randomly selected from
11.2,--- K} \ {k} without replacement, #,, i » is a Gaussian
component, 7 is a mixture index, k& is a CV subset index, and
n is an aggregated model index. Since (20) includes one extra
summation as compared to (17), AgCV-based optimization is
more computationaily expensive than CV-based optimization.
The coarse sampling strategy is essential for this algorithm
in order to suppress the storage cost for the set of sufficient
statistics, While the idea of using a bagging-like approach in
Ag(CV is similar to our previously proposed AgEM [19], [20],
these concepts differ significantly in that AgCV is a model
selection method extending CV, whereas AgEM is a parameter
estimation algorithm extending expectation maximization
(EM) [21].

E. Preliminary Likelihood Results

Fig. 3 shows an example of the likelihood estimated during
Gaussian merging optimization for a certain HMM state.
The initial model had 256 Gaussian components, which were
merged using both the self-test and 40-fold CV likelihood
criteria. The horizontal axis represents the number of Gaus-
sians and the vertical axis represents the total likelihood of the
mixture distribution for the training set. As the graph shows,
because of the optimistic bias, the self-test likelihood takes
larger values than does the CV likelihood. Because the self-test
likelihood is monotonic with respect to the number of Gaus-
sians, it is difficult to know when to stop the merging. On the
other hand, the CV likelihood has a peak at around 210. The
increased likelihood to the left of the peak indicates that the
generality of the model is improved by reducing the number
of excessive components. As the merging process proceeds,
the subsequent decrease in likelihood indicates that the model
size is becoming too small and the Gaussian mixture is losing
modeling accuracy. Therefore, in this case, the CV likelihood
indicates that around 210 mixtures is appropriate to balance the
modeling accuracy and the data sparseness problem.

-35)‘10,,_ —C B e e
g - = =Self-test |
~3.65F i i | =—=Cross—validation| |
g :
-3.7}: Ty

-~
~
~
&
i ~
: ~
3 -
3 LY
! -~
-
a
~

Log likelihood
h
(2=}

200 150 100 50
Number of Gaussians

Fig. 3. Gaussian mixture optimization and the variation in the estimated GMM
likelihood. Through optimization, the mixture size is decreased one by one. The
self-test likelihood takes larger values than does the CV likelihood because of
its optimistic bias. Unlike the self-test likelihood. the CV likelihood has a peak
indicating the optimal mixture size.

IV. TRAINING PARADIGM AND EXPERIMENTAL SETUP

We applied the proposed Gaussian mixture optimization al-
gorithms to a Gaussian mixture HMM used for speech recogni-
tion. There are several possibilities for how to apply Gaussian
mixture optimization in HMM training. For example, it can be
applied only once by using an HMM with large mixtures as an
input. A problem with this strategy is that it is not obvious how to
choose the number of mixture components for the input model.
Another strategy is to repeat the merging process along with
mixture splitting. In this way, the initial mixture size problem is
avoided. In addition, this strategy can have a positive effect in
finding better local optima, because it kneads the mixtures by
repeatedly absorbing unnecessary components and splitting the
survived Gaussians. In this study, we adopted the latter strategy.
The HMMs were trained with the following procedure.

1) Input a one-mixture tied-state HMM as an initial model.

2) Randomize and uniformly partition the training data, Tt-
erate EM five times. Compute sufficient statistics for each
data subset for the CV- or AgCV-based mixture optimiza-
tion method.

3) Optimize the Gaussian mixtures with the CV or AgCV
merging method by using the sufficient statistics. The mix-
ture size is reduced until the CV or AgCV likelihood is
maximized. Output the HMM.

4) Split and double the number of mixture components. Go to
step 2.

In the following discussion, we count step 2 through step 4 as
one training iteration, If the Gaussian merging in step 3 is not
performed, then the number of Gaussians in the HMM is simply
doubled for each training iteration. We refer to that procedure as
a baseline.

The random partitioning for CV was performed for each
training iteration by using an utterance as an unit. In a pre-
liminary experiment, we also evaluated partitioning with a
speaker-independent constraint in which utterances from the
same speaker belonged to the same subset, so that the CV score
was evaluated in a speaker-independent manner. This gave a
similar but slightly (= 0.1%) worse word error rate than did
partitioning without this constraint. Hence, all partitioning de-
scribed here was performed without the constraint. For mixture
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splitting, the parameters of each Gaussian component were du-
plicated, and 0.1 times the component’s standard deviation was
added to one of the duplicated mean vectors, while the same
amount was subtracted from the other. The mixture weights for
the duplicated Gaussians were half their original weights.

For the HMM training set, we used 30- and 100-hour sub-
sets of the Corpus of Spontaneous Japanese (CST) [22]. The
training set consists of utterances from academic presentations,
with an average length of 6.7 seconds. The acoustic model was a
tied-state Gaussian mixture HMM with a three-state left-to-right
topology. The HMM had 1000 states for experiments using the
30-hour training set and 3000 states for the 100-hour training
set. For the purpose of comparison, the MDL information-the-
oretic criterion was also applied.

The feature vectors had 39 elements comprised of 12 mel-fre-
quency cepsiral coefficients (MFCCs) and the log energy, their
deltas, and their delta-delta. The HTK toolkit [23] was used
for the EM training. The language model was a trigram model
trained with 6.8 million words from academic and extempora-
neous presentations in CS8J. The test set was a CSJ evaluation set
consisting of ten academic presentations given by male speakers
who were not included in the training set. The lengths of the
presentations were about 10 to 20 minutes, and the total dura-
tion was 2.3 hours. Speech recognition was performed using the
Julius decoder [24].

V. RESULTS

Fig. 4 shows the computational costs of 15 training iterations
with the CV- and AgCV-based Gaussian mixture optimizations
and the 30-hour training set. Since the training process was par-
allelized, the cost was measured as the total user CPU time for
all the parallelized processes. The value of & for the CV-based
optimization was 40, while the AgCV-based optimization used
K =6, K’ = 3, and N = 10. For the CV case, the ratio
of the mixture structure optimization cost to the total training
procedure cost was about 13%. This result shows that the pro-
posed CV Gaussian merging algorithm is efficient and highly
practical. For the AgCV case, the computational cost increased
compared to the CV case. Tt was about the same, however, as
the cost for the EM iterations and thus still affordable.

Table T lists the word error rates for various values of CV
folds K. The table shows that stable results were obtained
when K was larger than 30. Fig. 5 shows the word error
rates for the training iterations when the 30-hour training
set was used. Four types of experiments were performed:
“EM,” “EM+MDL,” “EM+CV,” and "EM+AgCV.” “EM” was
the baseline result with no Gaussian merging optimization.
“EM+MDL,” “EM+CV]" and “EM+AgCV” were the results
when the Gaussian optimization was performed using the
MDL, CV, and AgCV criteria, respectively. For the MDL cri-
terion, the tuning factor was set to 1.0 according to preliminary
experiments, so as to minimize the test set word error rate. The
value of K for the CV-based optimization was 30, while the
AgCV-based optimization used K = 6, K/ = 3, and N = 10.
For the baseline training, the lowest word error rate of 27.4%
was obtained at the seventh training iteration, and then the error
rate began to increase with each additional training iteration.
This is because the mixture size increases exponentially with

EM+CVopt

EM-+AgCVopt

|:| EM iterations GM optimizations

Fig. 4. Computational costs for training with EM iterations and CV Gaussian
mixture optimization (inner circle), and for training with EM iterations and
AgCYV optimization (outer circle). Both rainings used the 30-hour data set. The
CV optimization used i = 40, and the AgCV optimization used ' = G,
K’ =3, and ¥V = 10. The costs are the totals for 13 training iterations, mea-
sured in seconds.

TABLEI
VALUE OF CV FoLps ' AND WORD ERROR RATE

CV folds K 3 10 20
ZhL] 271 | 27

30 | 40 | 80
268 | 267 | 26.7

Word error rate (%)

the number of training iterations, as shown in Fig. 6, and the
sparseness preblem arose as the model size became large.
When the structure optimization methods were applied, the
model sizes were automatically controlled, and the error rates
gradually stabilized with the increasing number of training
iterations. The proposed CV-based method produced lower
word error rates than those of baseline and MDL methods.
Further improvement was obtained with the AgCV method.
The lowest word error rates with MDL-, CV-, and AgCV-based
optimization were 26.9%, 26.8%, and 26.4%, respectively. The
relative word error rate reductions from the baseline with the
CV and AgCV methods were 2.2% and 3.5%, respectively,
and they were both statistically significant according to the
MAPSSWE test [25]. The difference between the MDL and
AgCV results was also statistically significant.

In terms of model size, EM training combined with the
proposed CV- or AgCV-based Gaussian mixture optimization
had a larger optimal point than those of the baseline and MDL
methods. Table 1T lists the lowest word error rates and average
number of Gaussians per state of the HMMs exhibiting those
error rates. While a larger model size is a consequence of supe-
rior generalization ability in estimating model parameters from
a limited amount of training data, this property has both pros
and cons. The advantage is that it enables more precise model
estimation from limited training data, while the disadvantage is
the increased computational cost for training and decoding.

After 15 training iterations, CV optimization produced a
larger model than that with AgCV optimization. This was
probably because of over-fitting. To further analyze this point,
different threshold values were investigated as termination
criteria. That is, the Gaussian merging optimization was
terminated when the increase of CV- or AgCV-likelihood by
merging a pair of components was below a predefined threshold
value. A zero threshold value corresponds to maximizing the
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Fig. 5. Number of training iterations and test set word error rate. “EM”
indicates the results when no mixture structure optimization was applied.
“EM+MDL," “EM+CV" and “EM+AgCV" indicates the results with MDL-,
CV- and AgCV-based optimization, respectively. The proposed CV and AgCV
methods gave better results than did the conventional methods.
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Fig. 6. Number of iterations and average number of Gaussians per state with
the 30-hour training set. The CV case used ¥ = 30, and the AgCV case used
K=6~K8"=3 N=10,

TABLE I
LOWEST WORD ERROR RATE AND AVERAGE NUMBER OF GAUSSIANS
PER STATE WITH THE 30-HOUR TRAINING SET. AN ASTERISK INDICATES
THAT THE DIFFERENCE IN WORD ERROR RATE FROM THE BASELINE
EM WAS STATISTICALLY SIGNIFICANT

EM EM+MDL | EM+CV EM+AgCY
WER 274 269 26.8* 26.4*
# Gaussians 64 42.4 205.1 163.1

CV- or AgCV-likelihood. The smaller the threshold value,
the more aggressive the Gaussian merging process becomes.
Table I1T lists the results. CV optimization gave the lowest word
error rate when the threshold value was negative, This makes
sense because the negative threshold suppresses the over-fitting
problem. This means, however, that it again requires empirical
threshold tuning to achieve the best result. On the other hand,
AgCV was more robust against over-fitting, and the best result
was obtained without tuning.

Table TV lists the lowest word error rates when the 100-hour
training set was used. The value of K for the CV-based opti-
mization was 30, while the AgCV case used X = 6, K’ = 3,
and N = 10. Both optimization methods gave lower error rates

TABLE IIT
GAIN THRESHOLD (GTh) TO TERMINATE CV-BASED GAUSSIAN MERGING
AND WORD ERROR RATE AFTER 15 TRAINING ITERATIONS. THE VALUES IN
PARENTHESES ARE THE AVERAGE NUMBERS OF GAUSSIANS PER HMM STATE

GTh -120 -60 0 30
G\ 26.9 (115.4) | 26.5 (178.6) | 26.8 (296.8) | 27.3 (380.2)
AgCV || 26.9 (90.2) | 26.8 (121.6) | 264 (163.1) | 26.8 (196.5)

TABLE IV
LowEST WORD ERROR RATE AND AVERAGE NUMBER OF GAUSSIANS
PER STATE WITH 100-HOUR TRAINING. AN ASTERISK INDICATES
THAT THE DIFFERENCE IN WORD ERROR RATE FROM THE
BASELINE EM WAS STATISTICALLY SIGNIFICANT

EM | EM+MDL | EM+CV | EM+AgCY
WER 231 22.6* 22.8 27.2%
# Gaussians a2 54.4 395.2 218.1

than those of the baseline EM where no Gaussian mixture struc-
ture optimization was performed. Under this condition, how-
ever, the word error rate of the CV-based method was higher
than that of MDL. This was probably because of the increased
optimal mixture size. Since a larger mixture size increases the
number of model comparisons in Gaussian mixture optimiza-
tiomn, it increases the risk of choosing an over-fitted model. On
the other hand, AgCV was more robust against over-fitting than
was CV, giving the lowest word error rate. The relative word
error rate reduction from the baseline was 2.1%, 1.4%, and 3.6%
for the MDL, CV, and AgCV methods, respectively. The im-
provement from the baseline with AgCV was statistically sig-
nificant.

VI. CONCLUSION

We have proposed a Gaussian mixture optimization method
using the CV likelihood. The CV likelihood can be efficiently
estimated by using sufficient statistics. It is more reliable than
the conventional self-test likelihood and gives a clear termina-
tion criterion for model structure optimization. In addition, we
have proposed AgCV to introduce a bagging-like idea into the
CV framework to further improve the generalization ability of
CV. The AgCV likelihood for Gaussian mixtures can also be ef-
ficiently computed using sufficient statistics. Large-vocabulary
speech recognition experiments on oral presentations with 30
hours of training data showed that the CV- and AgCV-based
methods gave lower word error rates than did MDL-based op-
timization. When the amount of training data was increased
o 100 hours, CV-based optimization gave higher word error
rates than did MDL, This was probably due to the over-fitting
problem, since the number of models subject to comparison in-
creases in optimization as the mixture size increases. On the
other hand, AgCV-based optimization gave lower word error
rates than did MDL, demonstrating its superior generalization
ability in model selection.

Future work includes theoretical and experimental compar-
isons with the variational Bayesian (VB) approach [26], [27].
The VB approach has similar benefits to those of the proposed
CV methods in that it has the ability to deal with the overtraining
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problem and can compare models with different numbers of pa-
rameters. One advantage of the proposed CV methods with re-
spect to VB method is that they do not require a prior distribu-
tion. Since CV is a data-driven approach, the proposed methods
can be applied to evaluate other objective functions if sufficient
statistics are available. Tn fact, a combination of our CV method
with VB was recently proposed [28] in order to cross-validate
prior distributions. It would also be interesting to extend our CV
methods to discriminative training [29], [30]. While we have
evaluated the proposed methods in terms of speech recognition,
the optimization algorithms are general and should be widely
applicable,
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