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Abstract

French is known to be a language with major pronunciation ir-
regularities at word endings with consonants. Particularly, the
well-known phonetic phenomenon called Liagison is one of the
major issues for French phonetizers. Rule-based methods have
been used to solve these issues. Yet, the current models still
produce a great number of pronunciation errors to be used in
2nd language learning applications. In addition, the number
of rules tends to be large and their interaction complex, mak-
ing maintenance a problem. In order to try to alleviate such
problems, we propose here an approach that, starting from a
database (compiled from cases documented in the literature),
allows us to build C4.5 decision trees and subsequently, auto-
mate the generation of the required rules. A prototype based
on our approach has been tested against six other state-of-the-
art phonetizers. The comparison shows the prototype system is
better than most of them, being equivalent to the second-rank
syster.

Index Terms: liaison in French, post-lexical rules, speech syn-
thesis, grapheme-to-phoneme conversions

1. Introduction

Liaison is the pronunciation of an otherwise silent final conso-
nant of a word (w1) in certain contexts. It is realized when the
following word (ws) starts with a vowel, a (graphic) mute “h”
or some glides [1, 2]. For example, the adjective (w1) “mes”
[me(z)] (“my"™) is pronounced with a [z] sound when the next
word (ws) 18 a noun starting with a vowel, such as in “mes amis”
[mezami]. However, this sound should not be pronounced when
ws starts with a consonant, such as in the sequence “mes doigts”
[medwal.

Liaisons are classified as Obligatory (Ob), Optional (Op)
or Forbidden (F) [3]. Obligatory liaisons stand for contexts in
which a consonant of liaison is to be pronounced, such as in the
above sequence “mes amis”.

Optional liaisons are cases where the liaison can be real-
ized depending on the circumstances [4]. For instance, con-
sider the noun w; “amis” (friend) followed by the adjective ws
“étrangers” (“foreign™). The word sequence “amis étrangers”
can be pronounced either with or without the [z] liaison conso-
nant. When this sequence is found in isolation, liaison is likely
to be realized in order to indicate the plurality of the terms. But
this is not the case when another element of the context already
signals the plurality, such when “les” (“the™) precedes this se-
quence: “les amis étrangers” [lezamietrdze].

Finally, Forbidden liaisons are those whose realizations are
avoided, even if the graphic word ends with a consonant. For
example, if the noun w: “amis” is followed by the verb ws
“étudient” [etydi] (“study™). In this case, the sequence “amis
étudient” must be pronounced as [amietydi], as liaisons are not
triggered between nouns followed by verbs.
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A study conducted by Yvon et al. [5] evaluated the quality
of automatic grapheme-to-phoneme (G2P) converters (phone-
tizers) for French produced by 8 different systems. The study
revealed that the phonetizers are still problematic in French,
since even the best systems are prone to make at least one errar
in every 10 sentences. The authors of this study consider the
prediction of liaison as a major cause of the problems.

Unfortunately, very little literature is available on how these
kinds of systems predict liaisons. It seems that the Bell Labo-
ratories TTS system [6] uses a rule-based method. Within text
analysis processing, traces (labels) are appended at the end of
each word to indicate a possible liaison candidate. Then, these
labels are tested, verifying whether there is a liaison rule ap-
plying to a context or not. Whenever there is, the phonetic se-
quence is changed accordingly. However, specific details about
their method (such as codification technique, number of liaison
rules, etc) are not specified.

Due to the intricacy of the problem, the number of rules
to model this phenomenon tends to be large, their interaction
becomes complex, and the code becomes difficult to maintain.
That may be one major reason why the current models still pro-
duce a great number of errors, i.e. mispredictions, and this holds
even if the scope is only Obligatory and Forbidden liaisons.
Hence our motivation is to improve the quality of the French
G2P conversions.

The focus of this study is Obligatory and Forbidden liaison
contexts as indicated in the French phonetic literature. We in-
vestigate how efficiently liaison can be modeled via C4.5 deci-
sion trees learning algorithm [7]. For this purpose, we compile a
database by using lexical, phonetic, morpho-syntactic and other
linguistic properties which are characteristic of each context.
Then we use this data for training the related models. Decision
trees are used here because they allow to convert structured data
sets into respective sets of hard-coded rules necessary for the
implementation of a prototype system.

The remainder of this paper is organized as follows: Section
2 explains our methed for data collection; Section 3 describes
the training and prediction algorithms; Section 4 presents the
results and discussions related to the evaluation of the propesed
method, while conclusions and future perspectives are given in
Section 5.

2. The Creation of the Database

The creation of the database is a manual process, which consists
of three major steps. The first is the data selection and cluster-
ing, the second is the specification of features (attributes) and
values, and the third is the creation of data sets. Each of them is
explained in the next subsections.
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2.1. Step 1: Data Selection and Clustering

Rules of pronunciation (R) for words where the liaison phe-
nomenon occur can be obtained from the French phonetic lit-
erature [1, 2, 4]. We collected about 1500 contexts of liaison
in order to build the set of training data. Here we show how to
organize this knowledge in a way that it can be computationally
handled, aiming at reducing the complexity involved in coding
the rules, and at the same time, allow easy maintenance of the
model.

Most of the liaisons can be identified by contextual fea-
tures. Coniextual features are described in terms of attributes
and values extractable from the contexts where the variations
occur. They refer to information like “current lexical word” wq,
“part-of-speech (PoS) of the next word™, “initial phoneme of
next word”, and so on. Based on phonological/linguistic knowl-
edge, we manually cluster the rules of pronunciation R into sets
of rules R; with {i | 1<i <m}. Each R; is compiled from a
number of similar liaison cases, i.e. cases sharing common con-
textual features. For instance, the words “six” and “dix” (“six”
and “ten”) are grouped together into a single set R;, given the
fact that the contextual attributes and values determining the
pronunciation of one also hold for the ather.

The index 7 not anly lists the set of rules, but also allows to
disambiguate between different sets sharing the same word. Tn
this case, the index is used for ranking. Particular/exceptional
cases in which a liaison word is used are likely to have prece-
dence over general cases with the same word being used. In
such a situation, the particular cases should be handled first, by
one set of rules, let us say F;, and the general cases by another
one, Ry, with { | i < ¢ < m}. This is because the amount
of data required to distinguish exceptions from general cases is
very high if all their features were used to make a single deci-
sion free.

To predict pronunciation of the final consonants in French,
care needs to be taken with respect to the order in which the
rules are tested/applied because of ambiguities [6]. This is done
in the Bell Laboratories French TTS system by applying over-
ruling strategies. However, this might make the final code dif-
ficult for humans o understand, find bugs, and correct them.
Thus, instead of overruling, we establish prioriries with respect
to the type of liaison context. In order to set up priorities, we
recommend to cluster the sets of rules in the following order:
Forbidden > Obligatory > Optional. The preliminary evalua-
tion of known Forbidden liaisons reduces the search space for
the cases left, given that less tests are needed to handle them.

Another weak point that deserves special attention when
predicting liaisons is the fixed expressions or locutions, Nu-
merous expressions are composed of a fixed sequence of to-
kens, such as “tout & coup” of length 3 and “Jeux Olympiques”
of length 2. Consider the length of a fixed expression as the
number of tokens of which it is composed. Since the length of
such expressions as well as the relative position of token (caus-
ing a variable pronunciation of its final consonant) may vary.
the number of atiributes required to identify them varies accord-
ingly. Hence, the identification of fixed expressions of different
lengths require a huge number of attributes, values and tests, if
they were handled all together in a single set of rules.

In order to reduce this complexity, we suggest splitting
fixed expressions into several sets of rules, such as 2, Rz, a4,
etc. Every set is compiled from expressions having the same
length. In addition, the greater the length of a fixed expres-
sion, the smaller the index ¢ in R; is needed, in order to resolve
possible ambiguities likely to occur between overlapping fixed
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expressions of different lengths. The creation of rule-sets dedi-
cated to handle fixed expressions of equal length yields a simpli-
fication of other rule-sets dealing with the same words/tokens,
but in other contexts. This is because a word/token with vari-
able pronunciation of its final consonant is supposed to be pro-
nounced differently depending on whether it is (part of) a fixed
expression or not. Hence, processing together fixed expressions
of equal length has the advantage of reducing the complexity of
rule sefs.

In our case, we compiled about fifty sets of rules to account
for liaisons. This number may vary for other data or implemen-
tations. Next, given a set of rules, Subsection 2.2 shows how to
specify the features necessary for identification of liaison con-
lexts.

2.2. Step 2: Specification and Classification of Attributes

Taking phonological/linguistic knowledge into account, Step 2
stands for the manual retrieval and labeling of attributes and
values needed for the identification of liaison contexts. Exam-
ples of possible attributes are “PoS (of the current word)”, “final
letter (of the current word)”, “next word starting phoneme”, ete.

Let Y;; be an attribute among the 7; attributes (¥;1, Yia, ...,
Yin, ) of aset of rules Ry, with {j | 1 <j <n;}. The possible val-
ues for the attribute ¥;; are classified into p;; categorical values
by assigning a label Ly, to each category, with {k | 1<k <p;;}.
For example, by applying this labeling procedure to the attribute
“next word starting phoneme” (nw_start_phon), ane may obtain
the following categorical values: “vowel”, “consonant™, “aspi-
rated_h”, “mute_h" and “other”.

Most of the values for these labels can be grouped into very
few categories. A category is normally defined by a group of el-
ements with the same behavior regarding liaison, such as words,
phonemes, letters, PoS, punctuation marks, etc. We call them
here as caregorical labels. They will allow to predict liaisons
based on the categories that the elements fall in.

One important point at this step is that every attribute ¥5;
must have one extra categorical label such as “other”, indicating
that a given element does not apply to any category of that at-
tribute. This additional label will force the node to split in a de-
cision tree, allowing scrutinized use of the available attributes in
order to distinguish each target value on the basis of the context.
The more precisely and completely the categories are specified,
the better the trees will be populated and trained.

2.3. Step 3: Database Specification

Step 3 consists in the creation of the training database, once
the above procedures have been completed. Each set of rules
R; corresponds to a table T3, composed of ¥i1, ¥ia, ..., ¥in;
attributes and one target output attribute called A;. A table T is
filled by computing, over all attributes, the Cartesian Product of
all values of an attribute against all values of the next attribute.
Once this is done, we append manually the target attribute A;
to the table. These operations are summarized by the following
Equation:

T: = append(Yi % Yia X ... X Ymi,)\is], (1)

where A; is the information required for handling the pronun-
ciation of a word-final consonant. It can assume four types of
values. The first type specifies a set of features required for han-
dling a liaison. Tn practical terms, it is a string composed of five
fields with the following data:



1. an index i, representing the set of rules R; in charge of
handling the case;

2. a pointer 1o a function that performs one specific kind of
change to the phonetic sequence (insertion, deletion or
replacement of phonemes, considering possible coartic-
ulation effects);

3. aliaison phoneme;

4. an extra phoneme to be used in case of vowel co-
articulation;

5. an additional phoneme to be used in case of available
alternative pronunciation;

With this information properly specified, it is possible o
perform the phonetic changes caused by laison in the word
boundaries.

The second type of information addresses the cases where
no phonological change should be applied to a particular con-
text, implying that the ordinary lexical pronunciation of the cur-
rent word should remain unchanged. The label “ordinary” is
used for this purpose. The third type is meant to convey that the
current set of rules R; does not contribute at all to handle this
context, letting another set Re, with t > i, take care of it. A
label such as “skip” is used for this purpose. This label is re-
quired because the solution for a given context may not be found
in a tree. In that case, the execution pointer needs to “escape”
from a leaf node and continue the search in the adjacent trees,
until the solution is found. Finally, the fourth type refers to
a combination of values for attributes yielding incorrect gram-
mar, phonetic combination or illogical sequence. Since these
combinations do not comply with linguistic constraints, the la-
bel “invalid” is used to refer to such cases.

This process of table creation is repeated for all m sets of
rules. As a result, m tables are generated, with each one corre-
sponding to a set of rule R;. The Equation 2 captures the total
number of tuples (#Tuples) contained in this database.

m  ni

#Tuples = Z H pij

i=1 j=1

(2)

In practice, the implementation of these procedures led to
the creation of a database having approximately 50 tables (for
liaisons) cantaining a total of around 30 000 tuples. However,
since tuples which are linguistically invalid (A;="invalid") are
not supposed to match any text input sequence, we removed
them, leaving only about 7 000 entries.

3. Training and Prediction Algorithms

This section is divided into two parts. First, we explain how to
use the data to create decision trees. Second, we discuss how (o
connect these trees in order to process a given input text. Each
of these algorithms is described in the next subsections.

3.1. Training Decision Tree Models

We use the data of each table T; to train a corresponding DT}
decision tree, which is in charge of handling similar contexts.
Due to the particularities of each group of rules, every tree re-
quires a specific set of features for determining the variable pro-
nunciations. This technique allows individual trees to focus just
on a limited set of features, i.e. only those necessary for han-
dling a limited number of contexts.

As explained in Section 2.3, whenever a set of rules does
not contribute to handle a context, the label “skip” is used. The
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tuples containing this label for A; are informative for the train-
ing of the trees because they force node split, differentiating
contexts from each other and delimiting the scope that a DT;
is able to handle. Without this label, it would not be possible
to know whether the search for the solution should stop or not,
after reaching a leaf node.

In addition, the following two settings of the decision tree
classifier are important: 1) a tree should be able to hold at least
one instance (object) per node and 2) the trees should not be
pruned. These settings allows for the creation of all possible
valid paths (from the root to the leaf nodes), given that the train-
ing data has been previously generated by the computation of
the Cartesian Product. Because of this, the values of the at-
tributes are carefully examined by the trees during the test. The
purpose of overfitting the trees to the data is to guarantee that
every leaf achieves perfect performance as designed in the train-
ing database.

We avoid pruning the trees for two reasons. The first is
because a single leaf node can contain the prediction of up to
five interdependent parameters (cf. 2.3). This set is required
by the G2P converter for performing the appropriate changes to
the phonetic sequence. Since all these parameters are output to-
gether for a single prediction, the whole set would become inef-
fective as soon as any of them contained incorrect information
concerning the handling of the current context. For example,
even if the final consonant phoneme were correctly predicted, it
would be useless if it were accompanied by incorrect informa-
tion of how to change the phonetic sequence.

Second, notice that we utilized the Cartesian Product oper-
ation for the generation of all possible combinations of categor-
ical values for the attributes of a table. Assuming that the data
has been correctly specified, the training process should cover
all valid possibilities, and consequently the predictions based
on this data should be correct.

Although the trees are not pruned, this method does allow to
generalize predictions of liaisons with respect to unseen words.
This is possible because decisions concerning the goodness of
fit of a word with regard to a set of rules, are made not only
on the basis of lexical entries, but also on the basis of clusrers
of words, such as PoS labels. So, even if a word is not explic-
itly included in the training database, decisions regarding the
realization of liaison or not are made on the basis of these cate-
gories.

We use the code generated for the decision trees to create m
Modules. A Module is a piece of code in charge of preprocess-
ing and testing the attributes/values of the input text according
to its corresponding decision tree. In the next subsection, we
explain how this happens.

3.2, The Prediction Algorithm

The prediction algorithm stands for the integration of the auto-
matically generated trees into the G2P converter, as well as for
the description of the various steps the algorithm goes through
(stepper) during run-time.

This integration occurs in the post lexical analysis routine of
the G2P converter. Initially, it is assumed that every word/token
ending with one of the possible laison consonants allows in
principle for liaison, and should therefore be analyzed. To this
end, given the relative position of analysis of a word/token, we
extract and store in memory several general parameters con-
cerning its context. For example, the current word, some of the
neighbouring words, their parts-of-speech, the lexical phoneme
sequence of the current and following word, etc.



Then, Module 1 is called, performing the following oper-
ations: 1) classification of the input parameters concerning the
current position of analysis, assigning the same set of labels de-
fined for rule-set Ry during Step 2 and 2) use of the tree DT}
to predict liaison for this context. If the current word/token and
context are identified by this tree, then the information speci-
fied in Ay is used for resolving this case (change the phoneme
sequence), However, if the label “ordinary” is found, no phano-
logical change is necessary. Otherwise, Module 1 does not con-
tribute anything to process this context. The label “skip” re-
turned by D77 contains this information, and the task is trans-
ferred to Module 2.

The next Modules are built in a similar fashion. Each one
performs the classification required for its attributes, given the
current position of analysis of the input text, followed by the
tests checking the familiarity of this context. Thus, every Mod-
ule has its own mechanisms to identify whether a certain context
is within its purview or not. If none of the Modules is able to
recognize a context, then the phoneme sequence remains un-
changed.

Once the analysis of the current word is finished, the al-
gorithm proceeds to the next word/token ending with a conso-
nant that may cause liaison, repeating the same process over and
over, until the end of the input.

4. Comparison with State-of-the-Art G2P
Converters

The experiments were done using a French text corpus extracted
from the newspaper Le Monde of January 1987. This corpus,
used only for evaluation purposes, has approximately 26 000
words/tokens distributed in about 2 000 sentences [5]. Roughly,
it contains 1 500 liaison candidates, of which about 600 are
obligatory. Manually prepared phonetic transcriptions are alsa
available for this data, including pronunciation variations.

Yvon et al. used this corpus to conduct an objective evalu-
ation of G2P conversion for French TTS synthesis in 6 systems
(B, C, D, F, G and H). Their investigation included global as-
pects of the G2P conversions. One of the aspects investigated
was the nature and diversity of sources of errors. . They con-
cluded that liaison was one of the major sources of errors among
the synthesizers. In our case, we use these resulls o compare
the amount of errors caused by misprediction of liaisons be-
tween these systems and our prototype.

Our experiments consisted in providing the corpus to our
prototype system as input, in order to generate the G2P con-
versions. Next, the automatic conversions were aligned with
the text corpus, as well as with the transcribed corpus. For
words/tokens with a unique pronunciation, finding a mismatch
was as simple as comparing two strings, given that the pho-
netic sequences were aligned and the phonetic alphabet iden-
tical for both transcriptions. For words/tokens with multiple
pronunciations, all possible pronunciations were generated, as
indicated in the transcribed corpus. Matches were identified
whenever one of the optional pronunciations for a word/token
corresponded to the automatically produced phonetic sequence.
However, if none of the optional pronunciations corresponded
to the one produced automatically, a mismaich was marked,
Next, a list of all mismatching pronunciations was generated.

From this list, we selected the words/tokens ending with
one of the graphic consonants considered as possible liaison
candidates. This list was filtered then again by separating en-
tries with a laison error from entries having other types of error,
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Consequently, a list of words/tokens containing liaison related
errors was compiled. Table 1 shows the result of our method
compared with the results previously obtained.

Table 1: Absolute number of liaisan errors produced by previ-
ous 6 systems compared with our prototype system.

| System [ B [ C [DJF
[ #L. Errors | 111 | 123 | 76 | 49

G [ Prototype [ H |
3] W | 1A |

Unfortunately, we lack information concerning the methads
used by these 6 systems to predict liaison. Hence, we cannot
gain insight into the superiority of one methad over another,
although the results are still comparable. In addition, since
the types of liaison errors produced by these 6 systems are un-
known, it is not possible to compare them and determine which
types of liaison are most difficult to predict. Nevertheless, the
available figures allow us to get an idea concerning the perfor-
mance of the proposed method from the point of view of the
state-of-the-art G2P converters.

5. Conclusions and Future Work

This paper proposed a novel approach for modeling liaison in
French by using C4.5 decision trees. We compared the predic-
tions concerning Obligatory and Forbidden liaisons generated
by our prototype system with those generated by six other state-
of-the-art systems. The comparison shows that our method out-
performs most of the current converters, being equivalent to the
second-rank system.

Relying exclusively en linguistic/phonologic knowledge to
deal with the problem at hand, our approach dispenses with the
complexities of manual coding of rules in a programming lan-
guage. We are able to automate the production of rules given a
training database, although the latter requires human interven-
tion. The proposed method also allows for standardization and
simplification of the rule generation process due to the fact that
similar rules are grouped together. In addition, the distribution
of the rule-sets in conjunction with appropriate priority settings
contribute to alleviate the impact of maintaining the model.

Future work in this field includes: 1) enlargement of the
database used by the prototype system; 2) investigation of Op-
tional liaison contexts, using annotated corpora and 3) research
on other aspects of G2P conversions, such as proper nouns.
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