[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Jo /0000
Article / Book Information
Title Exploring Web-Browser based Runtimes Engines for Creating
Ubiquitous Speech Interfaces
Authors Paul R Dixon, Sadaoki Furui
Citation INTERSPEECH2010, , , pp. 630-632,
Pub. date 2010, 9
Copyright (c) 2010 International Speech Communication Association, ISCA
ool | wesdoow

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/
http://t2r2.star.titech.ac.jp/

INTERSPEECH 2010

Exploring Web-Browser based Runtimes Engines for Creating Ubiquitous
Speech Interfaces

Paul R. Dixenl, Sadaoki Furui®

National Institute of Information and Communications Technology, Japan
?Department of Computer Science, Tokyo Institute of Technology, Japan

paul .dixon@nict.go.jp,

Abstract

This paper describes an investigation into current browser based
runtimes including Adobe’s Flash and Microsoft’s Silverlight
ag platforms for delivering web based speech interfaces. The
key difference here is the browser plugin is used to perform all
the computation without any server side processing. The first
application is an HMM based text-to-speech engine running in
the Adobe Flash plugin. The second application is a WEST
based large vocabulary speech recognition decoder written in
C# running inside the Silverlight plugin.

Index Terms: speech synthesis, speech recognition, WEST

1. Introduction

‘When deploying a research-based speech system outside of
the lab environment a problem often encountered is how to
smoothly make the core technology available to other re-
searchers, developers or directly to end users. Recently there
has been a great deal of interest in cloud based solutions in
which the speech processing engines are hosted in large data
centres. Even though this approach has many advantages, there
is the potental for very high running costs and it neglects the
huge processing power that is distributed through the web.

In this paper we examine what is currently possible using
rich-client based technologies. A key motivation was to main-
tain the simplicity of a web deployment model but offload all
of the computation to the client. Even though the idea of web
based speech interfaces has been investigated by others. We
believe our approach is one of the first to investigate modern
ubiguitous browser based runtimes and in the case of Automatic
Speech Recognition (ASR) we found that on modern hardware
it is possible to run an entire large vocabulary recognition sys-
tem inside the browser. Prospective applications are speech en-
abling websites to allow better access for as many users as pos-
sible without relying on a third-party processing server. An-
other potential application area is for education use, currently
evaluating and experimenting with research speech technology
often requires the compilation of software and more compli-
cated installations procedures which can exclude some users.

The contributions of this work are: Development of an ex-
tremely compact Hidden Markov synthesis (HTS) engine[16]
running entirely in Flash[6]. This includes a description of the
process we use Lo perform the conversion of an existing TTS en-
gine. Development of a new C# based large vocabulary recog-
nition decoder executing in managed code on the .NET frame-
work and extended to a proof-of-concept browser embedded
(ASR) engine running within the Silverlight[9] runtime.

Copyright © 2010 ISCA

furui@furui.cs.titech.ac.jp

630

2. Browser Embedded Speech Synthesis

Adobe Flash[6] is a universal platform for applications.
Flite+HTS Engine for Flash is an HTS based TTS engine run-
ning entirely in Flash. The idea is to make HTS run in any mod-
em browser and allow dynamic text-to-speech to be added to
any webpage with the entire synthesis performed on the client.
The remainder of this section describes the process used to con-
vert an existing C based TTS engine into a component running
in a Flash applet.

Recently Adobe released a research compiler known as
Alchemy [7] that can compile C/C++ to byte-code that executes
inside the flash virtual machine. To rapidly develop a browser
based speech synthesis instead of re-writing an entire system for
Flash using Action Script, we took the existing the HTS Engine
and Flite codebases and compiled them to a Flash component
(swc) by using the Alchemy compiler{7]. Because of the highly
portable nature of the code no modifications required other than
a small amount of shim code to expose the TTS functionality to
the main Flash application which was written in Action Script.
The choice of HTS was motivated by the extremely small size
of the associated engine resource and models. After embedding
the necessary model parameters files into the Flash applet the
final size was only 1.8MB. No compression or alteration of the
models was made so further size reductions should be possible.

This approach for converting applications to Flash should
be relevant for converting existing C based tools and systems for
use on the web, furthermore the entire system was built using
freely available tools.

3. Browser Embedded Speech Recognition

Very recently various high performance Distributed Speech
Recognition (DSR) systems have emerged to target different
platforms and scenarios. Some systems target the recent pro-
liferation of connected mobile devices such as the iPhone
and Android-based smartphones. Another class of DSR ser-
vices provides web-based recognition engines, for example we-
bASR[12] is a web-based transcription service in which users
upload data and can later receive transcriptions. The WAMI
system[11] is targeted more at application developers and pro-
vides a plugin and JavaScript interface for creating browser-
based applications that can use an Automatic Speech Recog-
nition (ASR) service. A feature all of these systems have in
common is that there are server side engines where the user
sends the speech data and the recognition results are sent back
from. These DSR-based approaches allow for powerful server
side recognition systems to be used, however, the drawbacks
of providing such a service are: it potentially requires a large
amount of computational infrastructure; it consumes valuable

26—30 September 2010, Makuhari, Chiba, Japan

research and development time to construct and administer the
infrastructure and security; and could have potential data pro-
tection issues.

In this paper we present a different idea and implementation
for a web-based ASR system. The novel difference is we run
the distribution in the opposite direction of a traditional DSR
system and instead send the entire speech recognition engine
with the models down to the client. The recognition is then
performed locally on the client machine allowing low latency
recognition without requiring any further server side resources.
The core of the system is a new decoder called T'4 which is
wrilten with mult-platform support and flexibility in mind.

4. T4 Decoder

One of the main goals of the T4 decoder is to have a high
performance speech recognition decoder written in C# that is
capable of running on various implementations of the .NET
framework[8]. In addition to providing multi-platform support,
it is hoped the portability will allow for the creation of new and
different types of speech driven applications.

4.1, .NET Framework

The .NET framework is a runtime environment which provides
functionality such as memory management and garbage col-
lection, in addition to an extremely rich class library provid-
ing features including networking, threading and XML web
services[8]. Variants of the NET framework run on Windows,
PocketPC, Zune media players, Microsoft’s Azure cloud ser-
vice and even the Xbox games console. Because the code is first
compiled to byte code and then Just In Time (JIT) compiled by
the .NET framework, it makes it possible to create a single cross
platform binary. Open source implementations such as Maona
allow the same .NET programs to also run on *nix and Mac
platforms. Another advantage of building on top of the NET
framework is that the extremely rich base library is particularly
useful for creating rich multiplatform applications, However,
these features and flexibility come with certain runtime costs
and in this work we also evaluate the suitability of the .NET
framework as a runtime for a high performance speech recogni-
tion engine.

4.2. T4 for Silverlight

Silverlight is a cross-platform browser plugin that features a
smaller version of the NET framework along with rich mul-
timedia features[9]. The aims are to harness Silverlight to
combine a research-based Weighted Finite State Transducer
(WFST) speech recognition system with the smooth web de-
ployment medel and ease of use for end users and application
developers.

The core of the system is the T4 decoder which uses a
Viterbi beam search algorithm on a pre-compiled WEST search
network[15]. The decoder has both search and signal process-
ing companents and under Silverlight 4.0 support direct micro-
phone input.

The construction and deployment of a web-based T4 system
is as shown in figure I: In the first stage the language model,
pronunciation dictionary and HMM definitions are used (o pre-
compile an integrated WEST[15]. The WFST is combined with
the acoustic model(AM) and other resources into a single inte-
grated PAK file.

The deployment step is the most simple step, the engine and
the PAK file(s) are placed with the website contents on a web-

631

foline Constructiun

. ‘::7-31 PAKFile
“‘~—~_._.-i—'"’

T4 Decoder

CDE PAK Flle

T4 Decader

Silverlight Runtime

Web Browser

Speech
Enabled Web
Application

Figure 1: Diagram showing the model preparation and server-
client architecture of the Silverlight decoder.

server. A huge advantage of our approach is that the recognizer
will run locally on the client machine. Therefore, it doesn’t
require any further complicated server logic for the speech pro-
cessing, just the ability to serve static files.

In the final stage when a client accesses the site with a sup-
ported browser, the engine is downloaded. The engine can then
fetch the required models and make speech recognition avail-
able to the webpage for creating rich multi-modal applications.
The engine can be used directly in either a rich Silverlight ap-
plication or controlled via JavaScript by a standard browser ap-
plication. Because the engine is running locally in the browser
it allows for low latency recognition and thus permit classes of
interesting speech recognition application, such as audio joy-
sticks[3, 13]. It could also provide highly webpage specific
recognition services which may be particularly beneficial for
disabled users.

4.3. Memory Compression

To reduce the size for web deployment a simple yet more effi-
cient memory representation for the WFSTSs is used. The first
size saving comes by discarding state information and only stor-
ing the arc information. This is achieved by encoding a last arc
marker into the final arc of each state. To reduce the size of each
arc a combination of a simple compression scheme known as
sub-bit precision[4] packing with weight quantization is used.
The arc input and output labels and the destination states can
be rapidly packed using multiplication and addition operations
and unpacked using division and remainder operations. After
packing the arc labels and state information the remainder of
the container space is used to store an index to a vector quan-

tized weight. The advantage of this scheme is we do not waste
any sub-biis and the weight quantization has more flexibility as
we do not need to round up (or down) to the nearest whole bit
when constructing the quantization table.

The scheme is simple to implement and can vield good
space saving. For example a compiled WEST with 15M arcs
and 30M arcs was reduced from a disk image size of 630MB (in
AT&T binary compiled format) to 230MB by packing each arc
into 8 bytes, at this compression level the weight quantization
did not degrade the recognition accuracy. This scheme can give
comparable or better compression to the variable length scheme
described in [5]. Here the authors reported similar compressed
sizes for comparable sized acceptors (in terms of arcs and states)
whereas we are using transducers which have an additional out-
put label.

4.4. Multicore Acoustic Scoring

The acoustic scoring is often the largest CPU consumer during
the decoding of clean speech and profiling the T4 decoder re-
vealed the majority of CPU time is also spent on this computa-
tion. One particular speed-up technique that was found to be ef-
fective was to use the standard NET ThrezdPcol to compute
the required state scores for each frame in parallel. This tech-
nique involved creating batches of states and submitting them
to the ThreadFool, although the latest version of the NET
framework support parallel extensions that allow for laaps to be
parallelized very easily. The ThreadPool has greater support
across older versions of the .NET framework and is available in
Silverlight.

5. Evaluation

The evaluation task was a large vocabulary speech recognition
task evaluated on the Corpus of Spontaneous Japanese [14]. The
test set used for the evaluation was composed of segmented ut-
terances take from 10 lectures. The speech waveforms were first
converted to sequences of 39 dimensional feature vectors with
10 ms frame rate and 25 ms window size. Each feature vee-
tor was composed of 12 MFCCs with deltas and delta-deltas,
augmented with log energy, log delta and log delta-delta energy
terms. The acoustic models were three-state left-to-right HMM
tri-phone models and the complexity of GMM state models 39.

A Katz smoothed tri-gram language model & with a vocab-
ulary size of 65k words was constructed using the AT&T GRM
toolkit [2]. The C'o Lo G search network was composed and op-
timized using the dmake tool from the AT&T DCD toolkit [1].
The final search network contained approximately 1.2M states
and 2.4M arcs.

The T4 deccders were evaluated on Windows using NET
framework and Silverlight 4.0. The T* decoder was used as a
baseline comparison [10]. In all cases the decoders could reach
the same asymptotic word accuracy of 81.34%.

6. Conclusions

In this paper we have described the development of a small
browser embedded TTS engine and also presented the initial
implementation of a WFST speech decoder written in C# for
the .NET framework that can run in the browser. Qur investi-
gations have not only shown that it is feasible to run a modem
WEFST decoder on the .NET framework, but we have alsa con-
structed a prototype system using the Silverlight runtime that
makes it possible to deploy and execute an entire recognition

632

system over the web using Silverlight. It is hoped that the pro-
totype can be extended to build many different types of interest-
ing distributed speech applications; one particular arca we have
in mind is to construct a large ad-hoc speech recognition grid
for batch processing large amounts of data.

In addition to increasing the base feature set and improv-
ing performance, we plan to investigate ways to compress the
acoustic models to allow for faster downloading. The addi-
lion of on-the-fly composition in conjunction with the ability
to compile dynamic grammars on the client would be extremly
beneficial in creating even more lask specific fiexibility for end
users and creating an even more compact engine

Demo TTS and ASR systems are online at
http://www.furui.cs.titech.ac.jp/~dixonp/
hts/index.html and http://www.furui.cs.
titech.ac.jp/-dixonp/t4.html.

7. References

[1] C. Allauzen, M. Mohri, M. Riley, and B. Roark. A generalized
construction of integrated speech recognition transducers. In Proc
TCASSP, pages 761-764, 2004,

C. Allauzen, M Mohri, and B. Roark. Generalized algorithms for
constructing statistical language models. In Proc. of 415t Annual
Meeting of the Assocication for Computational Linguistics, pages
4047, 2003.

J. Bilmes, I. Malkin, X. Li, S. Harada. K. Kilanski, K. Kirch-
hoff, R. Wright, A. Subramanya, J. Landay, P. Dowden, and
H. Chizeck. The Vocal Joystick. In Proc. JEEE ICASSP, May
2006.

[3]

Jonathan Blow. Packing integers. http://number-none.
com/product /Packing\%20Integers/index.html.

Diamantino Caseiro and Isabel Trancoso. Using dynamic WFST
composition for recognizing broadcast news. In Proc. JCSLP,
pages 1301-1304, 2002.

Adobe Corporation. Adobe flash player.
adcbe.com/products/flashplayer//.

http://www,

Adobe Corporation. Alchemy. http://lzabs.zdobe.com/
technologies/alchemy/.

Microsoft Corporation. Overview of the NET framework.
http://msdn.microsoft.com/en-gb/library/
24t23ktk.aspx.

[

Microsoft Corporation. Silverlight overview. http://msdn.
microsoft.com/en-us/bk187358.aspx.

P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui. The Titech
large vocabulary WFST speech recognition system. In Proc.
ASRU, pages 1301-1304, 2007.

A, Gruenstein, I. McGraw, and 1. Badr. The WAMI toolkit for
developing, deploying, and evaluating web-accessible multimodal
interfaces. In Proc. IMCI, pages 141-148, 2008.

T. Hain, A. El Hannani, S.N. Wrigley, and V. Wan., Automatic
speech recognition for scientific purposes — webASR. In Proc.
ICSLP, pages 22-26, 2008.

T. Kawasaki, T. Oonishi, and S. Furui. Voice-based direct manip-
ulation for 3D interface. In Proc. Interaction, Januray 2009,

(1]

[t

[12]

[13]

[14] K. Maekawa. Corpus of spontaneous Japanese: Its design and
evaluation. In Proc. ISCA and IEEE Workshop on Spontaneous

Speech Processing and Recognition, pages 7-12, 2003.

M. Mohri, F. C. N Pereira, and M. Riley. Speech recognition with
weighted finite-state transducers. Springer Handbook of Speech
Processing, pages 1-31, 2008.

[15]

[16] Heiga Zen, Keiichiro Oura, Takashi Nose, Junichi Yamagishi,
Shinji Sako, Tomoki Toda, Takashi Masuko, Alan W. Black, and
Keiichi Tokuda. Recent development of the HMM-based speech

synthesis system (HTS). In n Proc. APSIPA, 2009,

