[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Jo /0000

Article / Book Information

Title An Empirical Comparison of the T3, Juicer, HDecode and Sphinx3
Decoders
Authors Josef R. Novak, Paul R. Dixon, Sadaoki Furui
Citation INTERSPEECH2010, , , pp. 1890-1893,
Pub. date 2010, 9
Copyright (c) 2010 International Speech Communication Association, ISCA
ool | wesdoow

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/
http://t2r2.star.titech.ac.jp/

INTERSPEECH 2010

An Empirical Comparison of the T3, Juicer, HDecode and Sphinx3 Decoders

Josef R. Novak®, Paul R. Dixon?, Sadaoki Furui*

!Department of Computer Science, Tokyo Institute of Technology, Japan
“National Institute of Information and Communications Technology, Kyoto, Japan

novakj@furui.cs.titech.ac.jp,

Abstract

In this paper we perform a cross-comparison of the 7% WEST
decoder against three different speech recognition decoders on
three separate tasks of variable difficulty. We show that the 7%
decoder performs favorably against several established veterans
in the field, including the Juicer WFST decoder, Sphinx3, and
HDecode in terms of RTF versus Word Accuracy. In addition
to comparing decoder performance, we evaluate both Sphinx
and HTK acoustic models on a comman footing inside T,
and show that the speed benefits that typically accompany the
WEST approach increase with the size of the vocabulary and
other input knowledge sources. In the case of 7%, we also show
that GPU acceleration can significantly extend these gains.

Index Terms: WFST, LVCSR, acoustic models, HTK, Sphinx

1. Introduction

Developing high quality baseline systems for Automatic Speech
Recognition (ASR) evaluations, comparisons and new experi-
ments often represents a challenging prospect. Research in this
area enjoys a large number of options in terms of accessible
ASR decoders, as well as acoustic and language model train-
ing frameworks. Yet without comparable baselines it can some-
times be difficult to analyze or interpret new results effectively.

In this paper we expand upon recent results from [1] and
investigate the relative performance of the 79 decoder [2] on
two widely used Large Vocabulary Continuous Speech Recog-
nition (LVCSR) evaluation sets based on the Wall Street Jour-
nal corpus (WSJI) [3]. We make an empirical comparison with
the HTK HDecode [4], Sphinx3 and Juicer [5] decoders. We
compare the 7% decoder against previously reparted baselines,
utilizing the freely available WSJ acoustic models [6] and two
standard WSJ languages models. Through the use of T° as a
common decoding engine we are also able to evaluate HTK and
Sphinx acoustic models on a common footing.

The remainder of the paper is structured as follows: Sec-
tion 2 describes the shared knowledge sources employed for
these evaluations while Section 3 describes the HTK and Sphinx
models, Section 4 describes the Weighted Finite-State Trans-
ducer (WFST) cascade configuration, Section 5 outlines the ex-
perimental setup, Section 6 provides results and related discus-
sion, and Section 7 concludes the paper.

2. Shared Knowledge Sources

In order to minimize workload and help guarantee the repeata-
bility of our experiments, throughout this work we employ the
freely available, pre-tuned acoustic models described in [6], and
for two of three tasks rely on standard WSJ language models
and pronunciation dictionaries. The third LVCSR task also re-
lies on a freely available ARPA format language model.

Copyright @ 2010 ISCA

dixonp@furui.cs.titech.ac.jp,

1890

furui@furui.cs.titech.ac.jp

3. HTK, Sphinx3 and Juicer

HTK and Sphinx are two of the more widely used open source
speech recognition toolkits, and both have enjoyed consider-
able popularity over the years. More recently the Juicer WEST
decoder has begun to gain traction as a popular WFST-based al-
ternative to the tree-based dynamic decoders provided with the
HTK and Sphinx toolkits. This section discusses some of the
salient features of these systems, focusing on acoustic models
and decoder characteristics.

3.1. HTK and Sphinx Acoustic Models

In both the case of Sphinx and HTK, the acoustic models were
trained using the full set of WSJO and WSJ1 training data con-
sisting of approximately 211 hours of data. This included the
long-term and journalist training data. In the case of T2, in
addition to the existing HTK conversion tool, a new tool was
developed to convert arbitrary Sphinx format acoustic models
into a format suitable for use with the T decoder.

Both the HTK and the Sphinx projects provide suites of
tools suitable for training, updating, adapting and performing
research on acoustic models, and while the resulting models and
overall training procedures are in general quite similar, there are
yet some differences. These differences, most of which were
originally described in [7], pertain largely to implementation
details rather than fundamental differences in approach and are
summarized below,

e HTK applies sine-curve liftering to the output MFCCs.
e HTK does not scale the mel filters to have constant area.
o HTK uses a “textbook™ DCT-2, but with a normalization

term of ./ % rather than %«

e The HTK recipe uses a very different set of filter bands
from the standard Sphinx wide-band configuration,

e HTK does not round the filter edges to fall directly on
DFET points,

e HTK supports training silence models with an indepen-
dently variable number of Gaussians.

As described in [6], the freely available acoustic models
which were employed for these experiments were trained so
as to produce results that are, as far as possible, comparable
in terms of their salient characteristics. Thus, both the HTK
and Sphinx models employed roughly 8000 tied states, and 32
Gaussian mixture models. Further details of the acoustic mod-
els employed throughout this work are described in Table 1.

3.2. Decoders

The HTK and Sphinx projects each provide several well-known
decoders suitable for use in LVCSR tasks. HTK provides HVite,

26— 30 September 2010, Makuhari, Chiba, Japan

Table 1: Acoustic Model Characteristics

Model Topology Tied States ~ Gaussians Size

HTK 3s no-skip 8000(apprx) 32 73MB

Sphinx 3sno-skip 8000 32 72MB
€:<sil>/2.15

Figure 1: Silence-class Model T

as well as the more recent HDecode. Sphinx provides Sphinx2,
Sphinx3, PocketSphinx, and Sphinx4. For these evaluations we
chose to focus on HDecode and Sphinx3 which are arguably the
most well-known and widely used among the above options.

More recently the Juicer [5] WFST decoder has been re-
leased as an open source project maintained by IDIAP. Juicer
provides similar functionality to the T3 WFST decoder in terms
of the model inputs it accepls; it is capable of performing decod-
ing on both static cascades, as well as on-the-fly composition,
and it has been developed to read in HTK-based acoustic mod-
els in native format.

4, WFST Setup

The WEST cascades for the HTK and Sphinx acoustic models
were both constructed using the same input knowledge sources
that were used as input to HDecode and Sphinx3. Each of
these individual knowledge sources was compiled into a WFST,
where G represents the language model, L the lexicon, and
C the context-dependency. Furthermore, the same HTK-based
WEST cascade was used exactly as-is in both T'® and Juicer.

A generic conversion program was written to transform
ARPA format language models to WESTs and this was em-
ployed to convert each of the language models into an equiv-
alent WFST according to the strategy outlined in [8].

The lexicon and context-dependency transducers were also
constructed using standard topologies, as described in [9]. Si-
lence modeling was implemented through the use of a silence-
class transducer, T', which was constructed following the topol-
ogy outlined in [9], and is illustrated in Figure 1. Arc weights
for the sil loop and exit arcs were estimated based on 400+
hours of force-aligned transcripts from the Fisher corpus [10].

The T transducer was composed with G prior to performing
further downstream composition or optimization operations and
the resulting G = T cascade for each task was shared across all
HTK and Sphinx based recognition networks.

Based on previous results from [9], as well as our own re-
cent experiments in [11] all compilation, composition and op-
timization operations were conducted in the log semiring. The

1891

complete, exact series of operations is thus described below,
w(C odet(Lo (GoT))).

Here o denotes the composition operation, determinization
is denoted by det, and 7 represents the auxiliary symbol re-
placement operation.

Table 2: WSJ-based Cascade Characteristics

Cascade Arcs States Size
nov92-5k-sphinx 2575545 721451 48MB
nov92-5k-htk 2529014 770393 48MB
si_dts2-20k-sphinx 4818666 1517563 O9IMB
si_dt_s2-20k-htk 4777668 1620681 91MB
Table 3: Large Cascade Characteristics
Cascade Arcs States Size
CSR-64k-sphinx 171557031 114642583 3.9GB
CSR-64k-htk 155932098 99801462 3.5GB

Using the above construction recipe, HTK-based and
Sphinx-based cascades were constructed for three different
tasks of increasing difficulty, which are described in Section 5.
In practice, and for the purpose of ensuring the greatest de-
gree of overall equivalence, the HTK-based cascades were used
without modification in both Juicer and 7. Similarly, the GoT
component which represents the combination of the sil-class
WEST and the language model, may be shared without alter-
ation across HTK-based T, Juicer, and Sphinx-based T3 cas-
cades, and in practice this is exactly the way in which the cas-
cades were compiled.

5. Experimental Setup

In these evaluations we look at three different LVCSR tasks
based on two different well-established test sets of increasing
difficulty. The first task, nov92-5k, focuses on the November
1992 ARPA WSI test set which comprises 330 sentences, and
was evaluated using the WSJT 5k non-verbalized vocabulary and
the standard WSJ 5k closed bigram language model. The sec-
ond task, si_dt_s2-20k, focuses on a subset of the WSJ1 Hub2
test set which comprises 207 sentences. The si_dt_s2-20k task,
which is somewhat more difficult, was evaluated with the stan-
dard WSJ 20k non-verbalized closed bigram language model
and corresponding vocabulary.

Network characteristics of the resulting WFST cascades for
the nov92-5k and si_dt_s2-20k tasks are described in Table 2.

Table 4: T° Parameter Seltings

Parameter Value
Beam 90~380
Band 10000
LM weight 15.0
Word insertion penalty 20.0

The third task, si_dt_s2-64k also focused on the more dif-
ficult si_dt_s2 test set, but looked at a much larger vocabulary

and more complex language model. The model evaluated for
this task covered a 64k vocabulary and included a 3-gram LM
trained on approximately 222M words from the CSR LM-1 cor-
pus [12], which comprised 13628086 bigrams and 8811112
trigrams. Along with the corresponding vocabularies and pro-
nunciation dictionaries, which are suitable for use in HTK and
Sphinx, this LM is also freely available for research purposes
and can at the time of writing be found at the location described
in [6]. Details of the two WFST cascades constructed for this
task are described in Table 3.

The LVCSR evaluations for the nov92-5k task and the
si.dr_s2-20k task were bath run on an Intel Core 2 based ma-
chine running at 3GHz with 6MB of cache and 4GBs of main
system memory. Due to significantly greater memory require-
ments, particularly where the WEFST decoders were concerned,
the evaluations for the si_dt_s2-64k task were run on an 3 core
Tntel Xeon based machine also running at 3GHz with a 6MB
cache and 64GBs of main system memory. The platform in
both cases was a 64bit Linux machine, the former running Fe-
dora Core and the latter RHEL.

In order to obtain accurate Real-Time Factor (RTF) versus
Word Accuracy curves, each decoder was evaluated on a wide
range of different beam widths, while auxiliary parameters such
as insertion penalty, language model weight, etc. were held con-
stant.

In the case of T these auxiliary parameters, which in-
cluded the band, language model weight and insertion penalty
were set to 10000, 15 and 20 respectively following initial man-
val tuning evaluations on a held out test set. Similar wning
evaluations combined with information from [13] were used to
peg these auxiliary values for the Juicer WFST decoder. The
baseline parameter values for 7% are described in Table 4 while
those for Juicer are described in Table 5.

In the case of HDecode and Sphinx3, which provide sup-
port for an exceptionally large number of auxiliary parameters,
values aside from the main beam width were implemented ex-
actly as recommended in [6].

Table 5: Juicer Parameter Settings

Parameier Value
mainBeam 90~-200
ImScaleFactor 15
insPenalty -5
threading Yes

For the nov92-5k and si_dt_s2-20k tasks, each of the WFST
networks was evaluated in the T° decoder in two different
modes. The first mode consisted in performing all computa-
tions on the CPU using only a single thread, and is referred to
in figures as T°-* sse. The second mode leveraged T®'s native
Graphics Processing Unit (GPU) support to perform acoustic
likelihood computations on the GPU; these results are referred
to as T®-*-gpu.

6. Results and Discussion

Overall the results indicate that, as one might expect, there is
very little if any significant difference in terms of absolute ac-
curacy between the acoustic models trained with Sphinx versus
those trained with HTK. Nevertheless in all the evaluations the
RTF versus Word Accuracy metric clearly favors the WFST-
based decoders. Below we summarize the results of the indi-
vidual evaluations,

1892

The results for the nov92-5k task are shown in Figure 2.
Here the Sphinx3 and HDecode results mirror those reported
in [6], and the T results effectively duplicate our own findings
in [1]. We also see that Juicer performs very similarly to the
T3-*.55¢ cascades, achieving the same absolute accuracy at a
negligibly higher average RTFE.

95
%\

a0
I

T*-sphinx—gpu

T-hik-gpu

« T*-sphinx-sse
T*~htk-sse

g Sphinx3

, HDecade

! ’ Juicer

Word Accuracy (%)

85
]
~—
—

80

Real-Time Factor

Figure 2: RTF versus Word Accuracy on the nov‘92 WSJ test set using
the 5k vocabulary bigram language models.

75
|

70
-

— T—gphinx—gpu

= = T*-htk—gpu

= = = T3-sphinx-sse

T*-hik-sse

Sphinx3

- — HDeccde
Juicer

55
|
"
-

Word Accuracy (%)

2 =

45
|
© —

40

0.4
Real-Time Factor

Figure 3: RTF versus Word Accuracy on the si_dt_s2 test set using the
20k vocabulary bigram language models.

On the more difficult si_dz_s2-20k task, the results of which
are described in Figure 3, we see that the Sphinx acoustic model
based cascade wins out slightly in terms of absolute accuracy,
but on the whole the results are quite consistent with those of
nov92-5k. We do note however, that despite eventually achiev-
ing the same absolute accuracy, in this case HDecode incurs a
significant slow down in terms of average RTF, while Sphinx3
remains relatively unchanged in this regard.

Finally on the si_dr s2-64k task, the results of which are
shown in Figure 4, although the WFST decoders remain nearly
unchanged in terms of RTF versus Word Accuracy, and the tree-
based decoders prove to be equally accurate, we see that the

Bl = - |
T T e v e
s{ 17
=
S
g /f
g\
a 2 J
< |
a .
= 8 , . = T-sphinx-sse
, "= = T-htk-sse
- -+ Sphinx3
2] = HDecode
I — Julcer
g 1! ‘ . .
0.0 0.5 1.0 1.6

Real-Time Factor

Figure 4: RTF versus Word Accuracy on the si_dt_s2 test set using the
64k vocabulary CSR-based 3-gram language model.

scale of this task imposes a quite significant RTF penalty on
both Sphinx3 and HDecode.

In terms of absolute accuracy, it is worth noting that the
GPU accelerated T configurations consistently outperformed
the other setups. This can be explained as a consequence of
the GPU accelerated systems performing the full logsum when
computing the mixture scores, as opposed to the somewhat less
computationally intensive yet also less accurate logmax opera-
tion which is employed for the CPU only configurations. When
enabling the GPU, both Sphinx and HTK models exhibited very
similar RTF characteristics, and this trend was similarly re-
flected in the case of the CPU only configurations.

All three of the tasks featured clean speech and relatively
complex acoustic models, and this helps to explain the sub-
stantial speed gains which can be seen in the results for the
GPU accelerated configurations. Moreover part of the reason
for the delay incurred by HDecode and Sphinx3 can probably
be attributed to the fundamentally different approach that these
decoders employ. Essentially HDecode and Sphinx3 employ
a time synchronous Viterbi search using a search space which
is constructed on-the-fly. Here, each node in a pronunciation
prefix tree can hold multiple hypotheses that may correspond
to different language model states [14]. This is in contrast to
the WFST-based approach where the deterministic, static net-
work topalogy serves to eliminate ambiguous input paths at
each state.

Although the T* WFST decoder and the Tuicer WFST de-
coder produce quite similar RTF vs. Word Accuracy results,
we note that they exhibit quite different memory consumption
characteristics. Specifically, in the case of the si_dr_s2-64k task,
T9 required approximately 8.5GB of memory during decoding,
while Juicer used an average of 13GB for the same cascade. For
T3 these characteristics were nearly identical across the Sphinx
and HTK-based cascades. On the other hand the tree-based de-
coders utilized an average of about 1.1GB for the same models
on this task, making it quite clear that the RTF versus Word Ac-
curacy trade-off is something that must be carefully considered
when choosing a decoding framework. We note, for example,
that where memory and storage are not an issue, the significant
speed advantages of the WFST decoders may often facilitate the
application of further post-processing operations without incur-
ring any perceptible change in response from a user perspective,

1893

7. Conclusion and Future Work

In this paper we have presented an empirical comparison of the
T® decoder alongside the HDecode, Sphinx3 and Juicer de-
coders, and further shown that it performs quite favorably in
terms of RTF and Word Accuracy. We have shown that an im-
portant feature of the T% decoder is the ability to operate on
HTK or Sphinx models with comparable performance, and we
have further confirmed the supplementary gains that may be
achieved through use of the GPU.

In future work we plan to conduct further evaluations com-
paring a yet wider range of existing decoders and decoding
tasks. If the Sphinx and HTK models generate complementary
errors we plan to invesligate a tightly coupled combination T
system that can operate on both sets of models.

Finally, although every effort was made to ensure that the
auxiliary parameter tuning process was fair for each of the sys-
tems examined, we acknowledge that due to the manual tuning
method employed, there may still be suboptimal values in use
for one or more of the decoders. In future we would like to
investigate the application of automatic parameter optimization
techniques such as those described in [14] as these may provide
an even stronger empirical framework for further experimenta-
tion.

8. References

Novak, I, Dixon, P, Furui, S., “An Empirical Comparison of
Sphinx and HTK models for Speech Recognition”, in Proc. ASJ
2010, pp. 73-74, Mar. 2010.

Dixon, P, Caseiro, D,, Oonishi, T., Furui, S., “The Titech Large

Vocabulary WFST Speech Recognition System,” in Proc. ASRU,
pp. 13011304, 2007.

Paul, D., B, Baker, J.,, M., “The Design for the Wall Street
Journal-based CSR Corpus,” in Proc. ICSLP 92, pp. 357-362,
1992.

Young, S., Everman, G., Kershaw, D., Moore, G., Odell, J., Olla-
son, D., Valtchey, V., Woodland, P., “The HTK Book,” Cambridge
University Engineering, 2006.

Moore, D., Dines, J., Magimai Doss, M., Vepa, O., Cheng, O.,
Hain, T., “Juicer: A Weighted Finite State Transducer Speech De-
coder,” in Proc. Interspeech, pp. 241-244, 2003.

Vertanen, K., “Baseline WSJ Acoustic Models for HTK
and Sphinx: Training Recipes and Recognition Experiments,”
Cavendish Laboratory, University of Cambridge, 2006.
Huggins-Daines, D., “Why Compare Sphinx and HTK" On-
line: http:/lima-2.speech.cs.cmu.edw/moinmoin/SphinxHTK, ac-
cessed Mar. 2010.

Allauzen, C., Mohri, M., Roark, B., “Generalized Algorithms for
Constructing Language Models,” in Proc. ACL, pp.4047, 2003.
Allauzen, C., Mohri, M., Riley, M., Roark, B., “A Generalized
Construction of Integrated Speech Recognition Transducers,” in
Proc. ICASSP, pp. 761764, 2004.

Cieri, C., Miller, D., Walker, K., “The Fisher Corpus: a Resource
for the Next Generalions of Speech-to-Text,” in Proc. LREC, pp.
69-71, 2004,

Dixon, P, Novak, I., Furui, S., *Recent Evaluations of a WFST-
Based Speech Recognition Decoder.”, in IEICE Tech. Report,
SP2009-78, 2009.

Doddington, G., “CSR Corpus Development,” DARPA SLS
Workshop, pp. 363-366, 1992.

Garner, P., Dines, J., Hain, T., El Hannani, A., Karafiat, M., Ko-
rchagin, D., Lincoln, M., Wan, V. Zhang, L., “Real-Time ASR
from Meetings,” in Proc. of Interspeech, 2005.

[21

[3]

7

[8]

[10]

(1]

[12]

[13]

[14] El Hannani, A., Hain, T., “Automatic Optimization of Speech De-

coder Parameters,” IEEE Signal Processing Letters, 2009.

