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Abstract

We previously proposed a decoding method for automatic
speech recognition utilizing hypothesis scores weighted hy
voice activity detection (VAD)-measures. This method uses two
Gaussian mixture models (GMMs) to obtain confidence mea-
sures: one for speech, the other for non-speech. To achieve
good search performance, we need to adapt the GMMSs prop-
erly for input utterances and environmental noise. We describe
a new unsupervised on-line GMM adaptation method based on
MAP estimation. The robustness of our method is further im-
proved by weighting updating parameters of GMMSs according
to the confidence measure for the adaptation data. We also
describe an approach to accelerate the adaptation by caching
statistical values to adapt GMMs. Experimental results on
Drivers’ Japanese Speech Corpus in a Car Environment (DJSC)
show that the adaptation with decoding method significantly im-
proves the word accuracy from 54.8% to 59.6%. Moreover, the
weighting method improves the rabustness of the unsupervised
adaptation, and the cache method greatly accelerates the decod-
ing process. Consequently, our adaptive decoding method sig-
nificantly improves the word accuracy in a noisy environment
with only a minor increase in the computational cost.

Index Terms: speech recognition, voice activity detection,
Gaussian mixture model adaptation

1. Introduction

When a speech recognition system is deploved in a real envi-
ronment, for example, to control a car navigation system or to
use an automated telephone service, the recognizer often needs
to process input signals that contain long non-speech or envi-
ronmental noise periods. These non-speech periods must he
correctly detected and removed, otherwise the decoder attempts
to recognize the non-speech sounds as spoken utterances, and
the recognition accuracy degrades because of insertion errors,
Therefore, voice activity detection (VAD) is an essential part of
a practical speech recognition system,

In a conventional VAD mechanism implemented at the
front-end of a recognition system, speech and non-speech are
classified at each input frame. If an input frame is detected
as speech, then the frame is passed through the recognition
pipeline. Otherwise, the frame is dropped at the front-end and
not used for recognition. Typical VAD methods calculate a
Speech/Non-Speech (SNS) score, and if the score exceeds some
pre-determined threshold, the input frame is judged as speech,
If the score is below the threshold, the input frame is judged
ag nen-speech. Most common methods for measuring the SNS
score utilize energy, the zero crossing rate (ZCR) [1], or the
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likelihood ratio. The likelihood ratia is calculated using Gaus-
sian mixture models (GMMSs) to model the speech and non-
speech statistics [2].

Decisively classifying speech and non-speech in a front-end
based VAD approach is often difficult. This is because caleu-
lating the SNS score precisely in noisy conditions is difficult.
The decisive classification of speech and nan-speech causes er-
rors of discarding speech frames as non-speech frames, and vice
versa.

To solve this problem, we previously proposed a novel
search method making use of the SNS score on a frame-by-
frame basis to bias hypothesis scores in the decoding phase [3].
If a hypothesis state belongs to silence or a short pause, a confi-
dence measure as non-speech is multiplied to the frame acoustic
score. Alternatively, if a hypothesis state belongs to a phoneme,
a confidence measure is multiplied as speech. This method can
reduce the number of errors of discarding speech frames as non-
speech. Experiments using Drivers’ Japanese Speech Corpus
in a Car Environment (DJSC) [4] have shown that our method
achieves 6 to 7% higher word accuracy than front-end VAD-
based recognition systems. However, the recognition accuracy
of our method was 7% lower than an oracle result obtained
when correct speech/non-speech classification was given. This
means that our search method still has room for improvement
in performance.

One of the major causes of a deterioration in word accuracy
in comparison with the oracle result is a mismatch between the
speech and non-speech GMMSs and actual speech and environ-
mental signals. Therefore, acoustic model adaptation of GMMs
should improve the word aceuracy. Because measuring the ac-
tual input environment and adapting the GMMs before recogni-
tion in practical recognition systems are difficult, unsupervised
on-line adaptation is essential. We investigated such an unsu-
pervised adaptation approach for implementation in our search
methad.

Our adaptation approach uses the following two meth-
ods. The first is a parameter estimation method proposed by
Reynolds [5] that uses MAP estimation. The second is an unsu-
pervised adaptation method for GMMs proposed by Zhang [6].
We devised a method to improve the robustness of the adapta-
tion in combination with these methods by weighting estimated
GMM parameters based on confidence measures for adaptation
data. We also devised an approach to accelerate the adaptation
by caching statistical values of GMMs.

The rest of the paper is structured as follows; The next sec-
tion describes details of our search method. In section 3 we de-
scribe our unsupervised on-line adaptation approach. In section
4 we demonstrate the effectiveness of our adaptation methad
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combined with our search method for an in-car speech recogni-
tion task. The paper finishes with conclusions and future work.

2. Search method utilizing SNS scores

In our search method using SNS scores [3], the acoustic likeli-
hood of the 5™ frame is biased by the confidence measure for
speech or non-speech. If the hypothesis of the frame belongs
to a phone model, the acoustic likelihood is biased by equation
(1). Otherwise, the hypothesis belongs ta a silence model, and
the acoustic likelihood is biased by equation (3).

108 Parm (Xi|6) = 108 Parm (X:]|0e) + alog T, (1}
i Ei;!«;_zp(xklﬂ-l)
Ch, = i (2
Dkt (P(Xk|Ho) + p(Xk | Hi1)}
lﬂgﬁum(X;Ww} = logpam (Xilguu) ¥ 10@,' éfl-‘u (3)
s i+ X |H
C;"Ig - — Z:Jc—a—lp( k—l U) (4)
wei—1 {P( Xk Ho) + p( Xk | H1)}

Here, X; is the it" feature vector, f, is a hypothesis of
speech, ., is a hypothesis of non-speech, pam(X;|d,) and
Pam (X:|fuw) are acoustic model scores, a is a scaling fac-
tor, and [ is a smoothing parameter for computing C_‘;,-l and
C’};ﬂ over a window. C§f1 is a smoothed confidence measure
of speech, and C_'};o is a smoothed confidence measure of non-
speech. The confidence measures are normalized between 0 and
1. p(X;|H,), and p(X;|Hp) are calculated using speech and
non-speech GMMs,

The smoothed confidence measures for speech and non-
speech are calculated using the likelihood value with GMMs
averaged over i — [ to ¢ + 1 frames. They can also be calculated
by averaging confidence measures over i — [ to 7 + 1 frames [3].
Because a preliminary experiment showed better word accuracy
by smoothing the likelihood of GMMSs, we decided to use this
likelihood smoothing in this study.

3. On-line unsupervised GMM adaptation
3.1. Adaptation process

Let X be a D dimensional feature vector for a frame. A likeli-
hood of X given a GMM is calculated by:

M

p(X1A) > Wnpm (X)), (5)
m=1

where A is a parameter set of GMM, M is the number of mix-
tures, and p., (X ) is a probability density finction (PDF) of
the m™ Gaussian component. 1wy, is a mixture weight and
> W equals 1. The PDF is defined by a D dimensional
normal distribution:

P (X)

(27)
exp{~3 (X — pim) T2 (X — pm)}. (6)

where i, is the D dimensional mean vector, and £, isa Dx D
variance-covariance matrix. Therefore, the model parameter set
is A Lty By Wi Fom = 1,2+« M.

Reynolds proposed an adaptive training method for GMMs
based on the MAP estimation [3]. In this method, parameters of
a GMM are estimated using the following two steps.
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Stepl: Calculate nm, Em(X), and By, (X?) with an adapta-
tion data sample set, X1, Xa, -+, Xn

mPm (Xi) .
Pr(m|X;) - . (7)
oy wkP ()
N
= ZPT(m]X,-) (8)
i=1
1 N
E.(X) = n—ZPr(m[X,-)X,- (9)
™ oi=1
1 N _
En(X?) = H—ZX,-'Pr(m|Xg)X.; (10)

i=1
Pr{m|X;) is a responsibility, and >~ Pr{m|X) equals 1.
Step2: Update the parameters of the GMM

B = [Bonm /N + (1= fm)wmlp (11

fm = BmEm(X)+ (1= 8m)pm (12)
B = BnBa(X®)+ (1 — Bu)(Em + tmbm)

A =

~ Y oy (13)

W, fim, and 3, are updated parameters of the weight, the
mean, and the variance-covariance matrix for the m™® Gaus-
sian. p is computed for all the adapted mixture weights to en-
sure they sum up to 1. Wm, fhm, and Xy, are the weight, the
mean, and the variance-covariance matrix for the m™® Gaussian
before adaptation. 3m controls the relative balance between the
old and new statistics:

5 Tm
B

(14)

R + Y i
where v is an application dependent parameter. If v is set to 0,
the updated parameters equal the new statistics, and if +y is set
to oe, the updated parameters equal the old statistics.

In our on-line adaptation process for GMMs, GMM param-
eters at the 1 + 1*® frame are updated using an adaptation data
sample set X1, Xo -+« X;. Confidence measures for speech and
non-speech at the ¢ + 1%F frame are calculated with updated
GMM parameters. At the i + 2% frame, the GMM param-
cters are updated again using an adaptation data sample set
X1, X+ X;.1 and the initial GMM. This process is repeated
until the end of the input signal.

3.2. Adaptation data selection

To properly update the GMM parameters. we utilize a similar
strategy as Zhang [6] to select adaptation data by setting the
threshold according to the confidence measure. If the confi-
dence measure for speech X at the i frame exceeds threshold
7, X; is added to an adaptation data set for the speech model. [f
the confidence measure for non-speech at the i® frame exceeds
the threshold, X; is added to an adaptation data set for the non-
speech model. If neither the confidence measure for speech nor
non-speech exceeds the threshold, X is discarded. Finally, if
confidence measures for both speech and non-speech exceed the
threshold, X; is added to both of the adaptation data sets.

It is difficult to optimize the T parameter, which controls
the unsupervised adaptation data selection, according to actual



acoustic conditions, such as noise conditions and original pa-
rameters of GMMs. Therefore, the robustness of the adaptation
method against mismatched = parameter must be achieved so
that it can be easily fixed before using the recognition system.

For this purpose, we utilize a method to adjust parameter
3m. which controls the balance between old and new statistics
according to a confidence measure for the adaptation data set.
An estimated parameter using an adaptation data set whose con-
fidence measures are relatively high is assumed to be more ac-
curate than an estimated parameter using an adaptation data set
whose confidence measures are relatively low. To implement
this assumption, we weight the responsibility Pr(m|X;) for
the m* Gaussian using a confidence measure of the i** frame.
The weighted responsibility Pr(m|X:) is used to estimate the
parameters instead of using Pr(m|X;).

Pr(m|X:) = C’},’j x Pr(m|X;), j€00rl (15)

This method adjusts 3y based on the confidence measure of an
adaptation data set. If all confidence measures of an adaptation
data set are 0, 7 equals 0, which means that 3, equals 0 and
the GMM parameters are not updated.

3.3. Fast adaptation

Because the an-line adaptation approach described in Section
3.1 recalculates statistical values of GMMs at each frame, a
high computational cost is incurred. However, our on-line adap-
tation approach calculates the statistical values, N, Em (X)
and Fr (X?), using the initial model instead of using the up-
dated model as the Zhang's methad [6]. Our method allows
caching and reusing the statistical values of previous frames,
thereby reducing the cost and accelerating the adaptation speed.
In our method, the statistical values, nm, Pr(m|X;)X;, and
X" Pr(m|X:)X;, are cached at each frame. These values
are then reused to calculate 7, Em (X), and Em (X?) in the
Step1 described in Section 3.1.

4. Experiments

We evaluated our methods using the Drivers’ Japanese Speech
Corpus in a Car Environment (DJSC) [4]. This consisted of
utterances in a hands-free command-and-control task recorded
in a car driven on a motorway. The test set consisted of ut-
terances by 40 speakers equally distributed between male and
female speakers. The S/N ratio of the test set was varied be-
tween -8dB and 0dB [4]. Bach speaker provided 41 command
utterances spoken with a style used in operating a car navigation
device while driving. The command utterances were separated
by non-speech perieds for one to two seconds, including various
background noise. The utterances were recorded using a micro-
phone mounted on the navigation device and were sampled at
16 kHz.

The acoustic models were trained on 52 hours of
speech data from the Japanese Newspaper Article Sentences
(TNAS [7]) corpus. The training material was gender balanced,
containing 130 male speakers giving 25 hours of speech and
130 female speakers providing another 27 hours of speech.

The training and testing data were processed during the
evaluation as follows. Raw speech waveforms were converted
to a sequence of 38 dimensional feature vectors with a [0ms
frame rate and 25ms window size. Each feature vector was
composed of 12 Mel-frequency cepstral coefficients (MFCCs)
with deltas and delta-deltas, augmented with log delta and delta-
delta energy terms. The acoustic models were EM trained using
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the processed data, and this process yielded a set of three states,
left-to-right tri-phone HMMs with 2000 states. Each state out-
put density was represented by a 16 component GMM, with
each compaonent having a diagonal covariance.

The language model was a network grammar, and the vo-
cabulary was 83 words covering all commands. The network
had a path that corresponded to each of the valid commands that
looped through the initial state to allow continuous recognition
of an utterance stream.

The GMMSs to model speech and non-speech had four
Gaussian components. The speech GMM was trained using the
data from 967 lectures in the Corpus of Spontaneous Japanese
(CSJ) [8], and the non-speech GMM was trained with data from
car noise in the Japan Electronic Industry Development Associ-
ation (JEIDA) database. Unsupervised on-line adaptation was
performed independently for each speaker. The utterance length
including silence was 150 to 200 seconds for each speaker. In
the recognition evaluation, we used the T* Decoder [9] devel-
oped at the Tokyo Institute of Technology. The experiments
were conducted on 2.5-GHz Intel Xeon machines. The scaling
factor «v was fixed to 3, and the smoothing parameter | was fixed
to 15 throughout the experiments.

4.1, Effects of unsupervised on-line adaptation

Figure 1 shows the recognition accuracy when using the unsu-
pervised on-line adapration:

e “baseline” represents the result without implementing
VAD.

e “no adapt” represents the result of our search method
with no GMM adaptation.

e “adapt” represents the result with unsupervised on-line
adaptation in our search method.

e “manual” corresponds to the result when using the cor-
pus manually labeled to remove all non-speech periods.

In these experiments, v and 7 parameters were fixed to 10 and
0.7, respectively, based on the results of our preliminary exper-
iments. The results in the figure show that the word recognition
accuracy was 43.1% and 54.8% without and with the VAD. The
unsupervised on-line adaptation further improved the accuracy
to 59.6%, meaning that it was 4.8% higher in absolute value
than the accuracy without adaptation. The result was close to
the oracle word accuracy: 60.4%. These experimental results
show that the adaptation approach implemented in our search
method can significantly improve word accuracy, and it can
achieve almost the same result as the ideal segmentation case.
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Figure 3: Effect of caching for fast adaptation
4.2. Robustness of the unsupervised adaptation

Figure 2 shows the effectiveness of weighting 3., based an the
confidence measure obtained for an adaptation data set. The
horizontal and vertical axes correspond to T and word accuracy.
The parameter v was set to 10. “threshald” in the figure shows
the results without weighting, and “threshold + weight™ shows
that with weighted .. The former result shows that the word
accuracy degrades when the 7 value decrease. However, the lat-
ter result shows that the robustness of our method significantly
increases against the variation in the 7 value, and significant
loss in word accuracy can be avoided by weighting 3,,.

4.3. Effects of fast adaptation

Figure 3 shows the effectiveness of the fast adaptation method
in terms of the real time factor (RTF). The parameters + and
7 were fixed at 10 and 0.7, respectively. “adapt™ in the figure
shows the result for the unsupervised on-line adaptation with-
out caching, “adapt + cache” shows the result with the caching
described in Section 3.3, and “no adapt” shows the result with-
out adaptation. This figure shows that the recognition time sig-
nificantly drops by using the caching, and it becomes almost
equivalent to the result with no adaptation, meaning that most
of the computational cost for adaptation was eliminated. These
results show the effectiveness of the caching in our on-line un-
supervised adaptation.

5. Conclusion

This paper presented a new approach for adapting GMMs to
an input environment in our search method, in which recogni-

125

tion hypotheses are biased by VAD values. Experimental re-
sults on the DJSC database show that our unsupervised on-line
adaptation method can significantly improve word accuracy in
a noisy environment. Moreover, the weighting method using a
confidence measure of an adaptation data set can improve the
robustness of the system against variation in the threshold pa-
rameter for selecting the data for adaptation, and the caching
method can significantly accelerate the adaptation speed.

In future work, we will conduct further evaluations an the
robustness of the adaptation method in various noisy and SNR
conditions, and we will devise an automatic method to optimize
the v parameter according to the task and environmental condi-
lions.
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