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Abstract—Variations in walking speed have a strong impact
on the recognition of gait. We propose a method of recogni-
tion of gait that is robust against walking-speed variations.
It is established on a combination of Fisher discriminant
analysis (FDA)-based cubic higher-order local auto-correlation
(CHLAC) and the statistical framework provided by hidden
Markov models (HMMs), The HMMs in this method identify
the phase of each gait even when walking speed changes
nonlinearly, and the CHLAC features capture the within-phase
spatio-temporal characteristics of each individual. We com-
pared the performance of our method with other conventional
methods in our evaluation using three different databases, i.e.,
USH, USF-NIST, and TokyoTech DB. Ours was equal or beiter
than the others when the speed did not change too much, and
was significantly better when the speed varied across and within
a gait sequence.

I. INTRODUCTION

People can walk at various speeds in any real-life situa-
tions, and human motion changes nonlinearly according to
its speed (e.g., [1]). Variations can appear across and within a
gait sequence that will significantly affect the performance of
human-gait-based ID recognition systems. Therefore, many
studies have been conducted to build a gait-recognition
system that is robust against variations in walking speed.

For example, Lee et al. [6] proposed a shape-based frieze
pattern and evaluated it using CMU MoBo database [3],
which consisted of gait data at different speeds. Kobayashi
et al. [5] proposed a three-way (X-, y-, and time-axis) method
of autocorrelation for extracting features that effectively
extracted spatio-temporal local geometric features to charac-
terize motions. It was called cubic higher-order local auto-
correlation (CHLAC). It was expected to be relatively robust
against variations in walking speed, since it only used the
sums of local features over a gait sequence, and thus did not
explicitly use the phase information of the gait. To the best
of our knowledge, this method performed the best among
all gait-recognition methods. However, in most of these
methods including CHLAC, researchers have assumed that
walking speed does not change much within or across gait
sequences. Their performance may degrade greatly when
walking speed varies significantly because of misaligned gait
cycles and/or phases.

A straightforward way of tackling this misalignment
problem is to estimate the nonlinear time-warping function
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between two time-sequence patterns with different speeds.
Veeraraghavan et al. proposed an approach based on dy-
namic time warping (DTW), which used a set of DTW
functions to represent the distribution of gait patterns using
uniform and wrapped-Gaussian distributions [10] [11]. Kale
et al. [4] used a hidden Markov model (HMM) for this
purpose. HMM, which is a natural extension of DTW to a
framework based on a probability theory, implicitly carries
out time-alignment between different patterns.

In this paper, we propose a novel method of gait recog-
nition, where we modily the extraction process of CHLAC
to model each gait phase, and combine it with a statistical
HMM framework. It uses speed-invariant features and can
adapt to speed variations across and within a gait sequence.
We expect that this combination can perform better than
using any of them individually.

This paper is organized as follows. Section 2 reviews
CHLAC-based features, and Section 3 explains our com-
bined method of CHLAC features and HMMs. Section 4
reports the experimental results. Section 5 concludes the

paper.

I1. CHLAC FEATURES

CHLAC extracts shape and motion information based
on local autocorrelation [5]. One of the most important
properties of CHLAC features is their shift invariance,
i.e., CHLAC features do not change if the posidon of a
person varies inside a frame image. Let f(x,y,t) represent
spatio-temporal data (pixel intensity) depending on the
image region, where z and y are pixel coordinates in one
frame image, and ¢ is the time index. Each of the N-th
order autocorrelation functions is defined as:

Ry(ai,...,an)
= Z f(zsy:t)f(m+alxry+aly:t+alt)
Ty teD,
- fle+ anz. ¥ + any, t+ ane), (D
where a; (i =1,...,N) is a displacement vector from the
reference point, r = (z,y.t). The set (r,r+ay,...,r+ay)

represents a local mask pattern, and its examples are shown
in Fig. 1. D, is a spatio-temporal region that sums up the
correlation for each pixel. The size of D, is mxnxT, where
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Figure 1. Extraction of CHLAC features,

T is the window width to be optimized in the experiments.
For N = 2, the components of a; for each i are limited
to £Az, £Ay, £At or 0 corresponding t0 @iz, aiy, and
aqy, where Az and Ay denote the spatial displacement in
pixels and At denotes the frame interval in frames. Here,
we use the same value for Az and Ay and denote this as
Ar. When the order of correlation is N = 0, N = 1, and
N = 2, the numbers of mask patterns (the dimensions of a
CHLAC feature vector) correspond to 1, 14, and 251.

Then, the CHLAC features are mapped to the (¢ — 1)-
dimensional (¢ is the total number of classes) feature vector
using Fisher discriminant analysis (FDA) to better separate
classes in the feature space.

A k-nearest neighbor (k-NN) classifier was used in the
original framework [5], where the Euclidean distance was
used as the distance measure between training and testing
feature vectors. The number of neighbors k was set to 30.
The time window width 7' was set to 30, and the pair of
parameters (Ar, At) were set to be (2,1), (4,2), (6,3), (8.4),
(10,5), (12,6), (14,7), and (16,8). In each frame, the CHLAC
features for each parameter pair were extracted and mapped
to the FDA space. Next, the number of nearest neighbors
belonging to each 1D i, M ,_«.r,m)(i), was counted for each
of eight parameter pairs of Ar and Af. Then, the ID i with
the maximum number of neighbors over all parameter pairs
was selected:

(2)

1= arg max max Mar,a)(1)-

The same process was repeated for all the frames. Finally,

the ID i that most frequently appeared over all the frames
was selected.

Since the parameters related to walking speed are auto-

matically selected during the recognition process, CHLAC

features are relatively robust against variations in speed
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across samples when changes in speed are almost constant
in a complete gait sequence. When walking speed varies
within one gait sequence, however, the selected parameters
are not optimal for some cycles and/or phases. This may
degrade recognition.

ITI. COMBINATION OF CHLAC WITH HMMSs

CHLAC discriminates accurately between classes, while
HMMs have excellent properties to match sequences that
have different speeds. By combining them, we expect to
obtain a more robust method against speed variations, even
when the speed varies within a gait sequence. We employ
a continuous gait-recognition framework where gait cycles
are segmented simultaneously with the recognition process.

Since CHLAC features do not have much gait phase/cycle
information, it is difficult to train HMMs solely with
CHLAC features. We not only extract CHLAC features, but
also principal component analysis (PCA) features. We use
PCA features to segment phases and cycles in each gait
sequence, and use the segment information obtained to train
the state output probability for CHLAC features.

Kobayashi et al. [5] set the window length, T, for CHLAC
at 30 (frames), which roughly corresponded to the duration
of a complete gait cycle. In our approach using HMMs, this
window length should be modified to capture features at
a certain phase in a gait cycle. We set 7T at five (frames)
according to the results from our preliminary experiments.

We use a half-gait cycle as a unit to train the HMM
because we assume symmetrical similarity between the first
and the second half of the cycle. HMM topology is left-
to-right without any skips. We use a mixture of Gaussian
distributions as an output probability. We use an eight-
state HMM that gave the best performance among different
numbers of states.

IV. EXPERIMENTS
A. Experimental Conditions

In our experiments, we first compared our method with
other conventional approaches under a condition where
walking speed did not change too much. Second, we eval-
uated it under the condition where the walking speed was
changed.

For the first evaluation, we used the University of South-
hampton’s (USH) large database [8] (115 subjects) and the
University of South Florida’s (USF)-NIST database Probe
A [7] (71 subjects). Variations in both testing sets was only
in the camera-views, and other conditions including walking
speed were the same.

For the second evaluation, we constructed a TokyoTech
database containing 30 subjects walking at various fixed
speeds. A treadmill was used to ensure that all subjects
walked at exactly the same speed for all speed categories.
The gait data were categorized into four types: slow, normal,
fast, and mixed (Table I). We divided the slow data into two



Table T
TOKYOTECH DATABASE.

[ Speed type Slow | Normal | Fast | Mixed
Speed (knv/hr) 2 3| 45 |3 &45
| No. of samples || 605 550 | 447 300

parts, 60% for training (363 samples) and 40% for testing
(242 samples). The training set only consisted of slow data.
The testing set consisted of the rest of the slow data and
data with the other three speeds. In each evaluation, one
testing sample was a gait sequence that contained five gait
cycles from one subject. To evaluate the effect of variation
within one gait cycle, we created mixed data, where each
test sample was constructed from the concatenation of three
gait cycles and two gait cycles from the normal and fast data
respectively (150 samples), and also from the concatenation
of three gait cycles and two gait cycles from the fast and
normal data respectively (150 samples).

We assumed that a background image was available in
the preprocessing stage. After setting a certain threshold for
the intensity of each pixel, the background and foreground
pixels were classified to produce a silhouette image. Then,
the bounding box around the silhouette was resized into a
fixed m x n pixels. In this study, the size was set to m = 128
and n = 88 following the NIST standard.

We used the 0% to 27% order CHLAC features and applied
FDA. In our method, CHLAC-HMM, Ar was 12 and Af
was 6 for the USH and USF-NIST databases, and these
correspond to 4 and 2 for the TokyoTech database.

We used 114 CHLAC-FDA feature dimensions in our
experiments for USH, 70 for USF-NIST, and 29 for the
TokyoTech database. These dimensions were automatically
determined by the number of subjects to be classified. We
also used 60-dimensional PCA features, to compare them
with the CHLAC features.

We used a single Gaussian distribution in each state of the
HMMs to evaluate the USH and USF-NIST databases due
the limited number of training samples. We used a Gaussian
mixture distribution with 16 mixtures in the TokyoTech
database, which was relatively large. We used the HMM-
Toolkit (HTK) [12] to produce the gait-sequence HMM:s,

The segmentation results in a sequence were compared to
the manual transcriptions, The frame mis-alignments from
all databases before and after using the segment information
from PCA features to train the HMMSs on average correspond
to 12.6 and 10.3 frames. We confirmed that the segmentation
was better when using the segment information from PCA
features.

B. Results

Table T lists the results of our experiment using the
USH and USF-NIST databases, For USH database, we have
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Table 11
GAIT RECOGNITION ACCURACY (%) FOR USH AND USF-NIST PROBE
A DATABASE.

USH | USF-NIST
Foster et al. [2] 75.0 —~
Tolliver et al. [9] - 85.0
Kale er al. [4] - 99.0
CHLAC-k-NN 98.3 100.0
CHLAC-HMM 08.3 100.0
(Proposed method)

presented the results of the area-based mask pattern-k-NN
proposed by Foster er al. [2] and CHLAC-k-NN [5] for
comparison. The proposed CHLAC-HMM was better than
the area-based mask pattern-k-NN and equal to CHLAC-k-
NN. For USF-NIST database, we compared our method with
the other three methods, i.e., Shape-1-WN [9], Silhouette
frame-to-exemplar distance (FED)-HMM [4], and CHLAC-
k-NN [5]. The results for these methods were taken from
those published in their corresponding papers. We found that
our method was significantly better than Shape-1-NN and
almost equal to (FED)-HMM and CHLAC-k-NN.,

Next, we evaluated the robustness of our proposed
approach against speed differences using the TokyoTech
database. The recognition results are listed in Figure 2. The
results reveal that CHLAC-HMM vielded better results than
the other three methods including CHLAC-£-NN. When
walking speed was “mixed”, 96.7% accuracy was achieved
while the accuracy obtained by the CHLAC-k-NN was
92.0%. The robustness of the proposed approach against
walking-speed variations across and within sequences has
been confirmed.

V. CONCLUSION

We proposed a method of robust gait recognition against
speed variations, based on the combination of CHLAC
and HMM. By using USH, USF-NIST, and TokyoTech
databases, we confirmed that the approach we propose
performed well across different rates of speed across and
within sequences, In particular, it successfully reduce the
errors more than half from CHLAC-.£-NN method when the
walking speed varied within a gait sequence.

In future work, we plan to apply an adaptation scheme to
the HMM-based framework, to further improve recognition.
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Figure 2,  Gait recognition accuracy (%) for TokyoTech database.
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